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ABSTRACT 

New electric vehicles demand higher performing, more cost-effective 

electric motors leading to the tractive induction motor (IM) being a promising choice 

for electric vehicles. Tractive IMs, however, have lower torque densities and slightly 

lower efficiency due to losses incurred in the rotor must be improved through rotor 

bar optimization to improve torque and reduced losses considering dynamic 

operating conditions. Numerous design factors, material limitations and 

performance characteristics must be considered during the design of tractive IMs 

prompting the use of optimization algorithms capable of systematically optimizing 

multiple design aspects. Unfortunately, conventional optimization algorithms are 

time consuming, limited objectives and input variables and susceptible to function 

bias resulting in undesirable traits for IM optimization. Therefore, a novel, robust 

non-dominated adaptive restart genetic algorithm capable of geometric rotor bar 

optimization considering dynamic operation is developed and proposed. To attain 

the desired optimization algorithm and optimal rotor bar geometry, this thesis: (1) 

Analyzes the challenges of IM design optimization, identifying optimization targets 

and design constraints. (2) Investigates and selects an optimization algorithm fit for 

IM design applications. (3) Proposes novel hyperbolic tangent based objective 

functions ensuring non-dominated solution. (4) A new adaptive restart genetic 

algorithm is developed with enhanced resistance to stalling minimizing run time. (5) 

The novel algorithm is implemented to optimize the torque and losses producing an 

optimal rotor bar which is validated and compared to a baseline IM. The proposed 

method is applicable to various IM topologies for multiple objective targets. 
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CHAPTER 1 Introduction 

1.1. Electric Vehicles–A Green Form of Personal Transportation 

 In the area of personal transportation, advances in vehicle electrification have 

allowed the use of electric vehicles (EVs) to become more popular. EVs exhibit several 

advantages over conventional combustion engine powered vehicles, the most obvious of 

which is that EVs depend on a renewable energy source, no longer relying on gas or diesel 

for fuel. As a result, EVs produce zero emissions which can significantly contribute to 

reducing the greenhouse gas (GHG) emissions in the private transportation sector. The 

transportation sector was the second largest contributor to Canada’s GHG emissions in 

2018, as seen in Fig. 1.1(a) [1], [2] and has been a major contributor to the production of 

harmful gasses such as carbon monoxide over the last 30 years, as shown in Fig. 1.1(b). 

 

Fig. 1.1. Demonstrates the significance of passenger vehicle emissions. (a) The GHG emissions produced in 
Canada by sector in 2018. (b) The falling trend of Canadian carbon monoxide emissions by sector from 1990 
to 2020. [1], [2] 
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 Increased use of EVs has already had an impact on greatly reducing the total emissions 

produced not only by fossil fuel burning vehicles but also a decreased demand on the oil 

extraction and refinement industry which is also a leading contributor to GHGs [1], [3], 

[4]. In addition to the environmental benefits EVs have, they are also much quieter than 

combustion engines. This greatly reduces the noise pollution caused by combustion 

vehicles, especially in large cities leading to an improvement in the quality of life for the 

city’s residents. EVs also require less maintenance as there are fewer moving mechanical 

parts as a result of the tractive electric motor used to power the vehicle. The unique design 

of the electric motor used by an EV allows the motor to spin the axel of the vehicle directly 

without the need for a gear box, meaning no mechanical losses are experienced by the drive 

system adding to the overall efficiency of EV systems [5], [6]. This also results in no torque 

drops as a result of gear changes enabling smooth vehicle acceleration comparable to high 

performance combustion vehicles at much more affordable prices. All EVs drive systems 

are comprised of three main components [7]–[9] as seen in Fig. 1.2. The battery of the EV 

 

Fig. 1.2. Depicts the major components and relative configuration of tractive EVs. [7] 
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is used to store electrical energy on board the vehicle, which can then be discharged during 

operation. The capacity of the battery limits the amount of energy that can be stored by the 

vehicle and therefore limits the amount of energy that can be consumed by the electric 

motor and power electronic device. The purpose of power electronic devices is to convert 

the direct current supplied by the battery of the vehicle into a controlled input to the electric 

motor with respect to the demand of the vehicle’s driver [10]. Power electronic devices are 

known to consume very little power with operating efficiencies as high as 99.8% in the 

case of industry leading EVs [11]–[14] meaning the majority of the power sored in the 

battery will be used to operate the electric motor. Therefore, the efficiency of the electric 

motor plays a large role in determining the total range of the EV with respect to the size of 

the battery. With increasing support from governments and private institutions, research 

into improving EVs in every aspect is sure to rapidly increase the quality and performance 

of EVs available on the market in the coming future.  

1.1.1.  A Surging Interest in Electric Vehicles 

 The global interest in EVs has greatly increased over the past decade through the 

initiatives set by global organizations and international governments supporting the growth 

of the EV industry and the switch to renewable energy-based transportation [15], [16]. The 

EV30@30 Campaign was initiated in 2017 by the Clean Energy Ministerial and backed by 

fourteen countries, including Canada, and 30 international companies and organizations 

setting a collective goal of EVs holding at least a 30% market share in every country by 

2030 [17]. The EV30@30 Campaign stands on five actions, including supporting and 

tracking the development of EV charging stations while sparking public and private sector 

interest through incentives and commitments. The research and development of EVs are 
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fueled by increasing policy research and information exchanges as well as supporting 

governments through training and capacity building. The last goal of the initiative is to 

establish the Global Electric Vehicle Pilot City Program aimed at achieving 100 cities 

globally converted to EV friendly cities to provide a model and learning opportunity for 

EV infrastructure. Global initiatives such as this have led to the exponential increase in the 

EV stock between 2010 and 2020 [18] as demonstrated in Fig. 1.3 and the number of 

vehicle registrations and market share depicted in Fig. 1.4 [19]. One of the primary driving 

forces behind EVs interests in Canada is the global ecological benefits in that EVs have 

the potential to reduce GHG emissions by the transportation sector of society. To maintain 

the Sustainable Development Scenario, 2000 to 2030 developed by the International 

Energy Agency (IEA) [20], encouraging the shift to EVs would greatly reduce the 

emissions of passenger road vehicles and road freight sectors which are the primary 

contributors to GHG emissions such as carbon dioxide as seen in Fig. 1.5. Numerous 

incentives have been put into effect by the Canadian government to increase the popularity 

 

Fig. 1.3. Indicates the exponential growth of the global EV stock from 2010 to 2020. China is seen to hold 
the largest EV stock as of 2020. [18] 
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Fig. 1.4. The number of global EV registrations in various regions is depicted against the total vehicle market 
share held by EVs. [19] 

of EVs, including a $150 million CAD Zero Emissions Vehicle Infrastructure Program 

(iZEV) focused on the installation of fast charging stations for apartments and workplaces 

as well as improving the charging infrastructure within Canada. Areas with high traffic, 

such as cities and highways, are being equipped with rapid charging stations available to 

EV owners, as well as priority lanes and parking in high traffic areas. The Canadian 

government also offers $5,000 [21] in purchase incentives for individuals purchasing a new 

 

Fig. 1.5. Under the Sustainable Development Scenario, the global CO2 emissions are forecasted to decrease 
after its implementation in 2017. [20] 

Year 
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EV as well as providing businesses with opportunity tax incentives on the purchase of EV 

fleets for transportation and shipping. As a result of this incentivized program, the sales 

share of zero emissions vehicles has risen from 2.3% in 2018 to 3.1% in 2019 to 3.8% in 

2020. In more recent developments, Stellantis North America COO has announced they 

will be updating and retooling automotive assembly plants in Windsor and Brampton, 

Ontario expanding the plants’ capabilities to produce EVs and EV batteries. The $3.6 

billion dollar investment will also lead to large amounts of funding for the research and 

development centers for all aspects of EVs [22]. This influx of funding and cutting-edge 

research will rapidly improve the quality and performance of EVs. 

1.1.2. Industry Leading Electric Drive System for Tractive Applications 

 As the global interest in EVs increases and markets begin to shift away from 

combustion engines, the number of EVs will increase, and the performance of EVs will 

significantly increase as companies compete to dominate the market. The global market 

shares seen in Fig. 1.6 [18] held by leading automotive companies with respect to the EV 

 

Fig. 1.6. The global overview of EV manufacturers with respect to market share held by manufacturer. [18] 
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market in 2021 shows Tesla held the largest market share of 13.84%, followed by the VW 

Group with an 11.28% share. As consumer demand continues to increase, EV market will 

become flooded with new EV models, as indicated by Fig. 1.7, which shows the number 

of EV models globally from 2015 to 2020 [19] to compete for a place in the market. This 

competition leads to the rapid improvement of the major limitations of EVs, such as the 

vehicle range, which is also greatly improved as a result of design, material and process 

improvements. Through the analysis of the current EV topologies, performance targets can 

be set with respect to motor type, drive configuration, market pricing and range to ensure 

new EVs are competitive within the market. Therefore, Table 1.1 provides an overview of 

crucial factors such as the cost, range and motor type of the 2022 Audi e-tron, 2022 BMW 

iX3, 2022 Hyundai Ioniq 5, 2022 Ford Mustang Mach-E and the 2022 Tesla Model X [23]–

[25]. Similar vehicle types were chosen for this analysis to ensure a fair comparison 

between all 5 models. The analysis shows that the usable battery capacity of the average 

 

Fig. 1.7. Demonstrates the increase in average EV range as more models become available to consumers over 
a five-year period from 2015 to 2020. [19] 
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current EV is between 70 and 90 kWh while the range lies between 400 to 500 km. The 

vehicle weight and charging capacity are relatively similar across all models, while the 

peak torque and power are between 400 to 670 Nm and 210 to 325 kW, respectively. The 

Highest peak torque and the output power were produced by the 2022 Audi e-tron, which 

utilizes two tractive induction motors (IMs) to generate an acceleration time of 5.7 seconds. 

This has caused the range of the vehicle to suffer as its total range is the lowest therefore, 

if the operating efficiency of the vehicle could be increased, while the torque and power 

density are also increased, the acceleration time may be further reduced to compete with 

the leading acceleration of the Tesla Model Y which also features an IM. EVs featuring 

IMs are also capable of higher top speeds, as seen by the 200 km/h and 217 km/h top speeds 

of the Audi e-tron and Tesla Model Y, respectively.   
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TABLE 1.1 

COMPARISON BETWEEN 2022 ELECTRIC VEHICLES [23]–[25] 

Vehicle 
Specifications 

Audi 
e-tron 

BMW iX3 
Ford 

Mustang 
Mach-E 

Hyundai 
Ioniq 5 

Tesla 
Model Y 

Base Price (CAD) 111,655 92,201 87,269 66,993 82,152 

Drive Configuration 
Dual Motor 

AWD 
Single 

Motor RWD 
Dual Motor 

AWD 
Dual Motor 

AWD 
Dual Motor 

AWD 

Motor Type 
(F=front, R=Rear) 

F: IM 
R: IM 

PMSM 
F: PMSM 
R: PMSM 

F: PMSM 
R: PMSM 

F: IM 
R: PMSM 

Battery Capacity 95 kWh 80 kWh 98.7 kWh 72.6 kWh 82 kWh 

Usable Battery 
Capacity 

86.5 kWh 74 kWh 88 kWh 70 kWh 75 kWh 

Average Range 
(Mild Temp.) 

410 km 440 km 475 km 425 km 505 km 

Average Range 
(Cold Temp.) 

315 km 325 km 360 km 315 km 365 km 

Acceleration  
(0 to 100 km/h) 

5.7 s 6.8 s 5.8 s 5.2 s 5 s 

Top Speed 200 km/h 180 km/h 180 km/h 185 km/h 217 km/h 

Energy 
Consumption 
(Mild Temp.) 

211 Wh/km 168 Wh/km 185 Wh/km 165 Wh/km 149 Wh/km 

Energy 
Consumption 
(Cold Temp.) 

275 Wh/km 228 Wh/km 244 Wh/km 222 Wh/km 205 Wh/km 

Peak Torque 664 Nm 400 Nm 580 Nm 605 Nm 493 Nm 

Peak Power 300 kW 210 kW 258 kW 225 kW 324 kW 

Vehicle Weight 2565 kg 2260 kg 2218 kg 2095 kg 2054 kg 

Vehicle Height 1.616 m 1.668 m 1.625 m 1.605 m 1.624 m 

Vehicle Width 1.935 m 1.891 m 1.881 m 1.89 m 1.921 m 

Fast-Charger 
Average Power 

146 kW 100 kW 90 kW 185 kW 110 kW 

Fast-Charge Rate 590 km/h 490 km/h 410 km/h 910 km/h 600 km/h 

Fast-Charge Time 
(10 to 80%) 

26 min 33 min 43 min 17 min 30 min 
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1.2. State of the Art Electric Motors for Tractive Applications 

The ideal motor for tractive applications is able to produce the operating conditions 

described by torque-speed curve depicted in Fig. 1.8 [26] which represents the operating 

regions of tractive electric motors. The constant torque region spans from starting to the 

rated speed of the motor [27]. If the synchronous speed is increased past the rated speed of 

the motor, the maximum torque will begin to decrease as the speed continues to increase. 

This tradeoff between speed and torque occurs as a result of the current in the rotor bars 

being reduced. The reason the current ion rotor bars must be reduced is to avoid magnetic 

field weakening and over voltage caused by high levels of flux saturation within the stator 

and rotor core. In this operating region, it is the output power that remains constant over 

the entire region, and therefore the second operating region of tractive IMs referred to the 

field weakening or constant power region. To maximize the performance of an IM for 

tractive applications, every aspect of the electromagnetic design must be considered. 

 

Fig. 1.8. Depicts the desired torque and power performance required by different operating regions that 
appear in tractive applications. 
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Under operating speeds less than the base speed, constant torque can be delivered 

to the vehicle by the motor, which is useful for urban and aggressive driving as well as low 

speed hill climbing. The constant power operating region corresponds to high-speed 

highway and sport driving while the motor delivers constant power with respect to the 

speed and torque of the motor. Lastly, the reduced power region represents operation past 

4 times the base speed of the electric motor resulting in reduced power and torque as the 

speed continues to increase. To ensure the power demands of Fig. 1.8 can be met, tractive 

electric motors are designed for high torque and power density to generate high starting 

torque for low-speed operation and high-power capabilities at high speeds. The constant 

power region is generally considered to be approximately 3 to 4 times the size of the 

constant torque region to provide a reasonable compromise between the peak torque 

requirements of the vehicle and the rating of the required inverter. High efficiency 

operation is essential to the vehicle’s energy consumption and range. Therefore, it must be 

maximized over the entire operating range. Lastly, the motor must have a robust, durable 

design suitable for manufacturing and use in an EV [28]. Fig. 1.9 [29] depicts the two types 

of electric motors considered for tractive EV applications, which are IMs and permanent 

magnet synchronous motors (PMSM) [30]–[32]. Both motors are capable of providing a 

wide range of operating speeds while meeting tractive torque demands. Tractive PMSM 

and IM designs have similar stator structure. The major difference between the two designs 

is the rotor design and the materials required for rotor field production. Current EVs feature 

a number of variations of both IMs and PMSMs, however, they are largely dominated by 

variations of permanent magnet machines for their high-power density due to a smaller size 

and a higher efficiency when compared to induction machines [33]. The constant magnetic 
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field generated by the permanent magnets in the rotor hold several advantages over the 

induced magnetic field used by tractive IMs. By eliminating the need for slip to exist 

between rotor and stator field, PMSMs is able to decrease heat losses which raises the 

overall machine efficiency. In addition, since there is no need for currents to flow in the 

rotor to excite the machine, PMSMs have no losses due to electromagnetic losses in the 

rotor [34]. The downfall of PMSMs lies in its dependence on the rare earth metals such as 

neodymium and dysprosium used to produce strong magnets with high magnetic flux 

density favorable for EV applications. These materials are not readily available and require 

extensive processing before being incorporated into an EV. In addition to the already 

limited nature of these metals, according to the Institute of French International Relations, 

China is dominating the rare earth metal market, holding about 97% of the market share in 

2010 [35]. This monopoly over the industry essentially lowers the availability of these 

materials even more to the remainder of the world. In turn, these high material and 

production costs means the price of PMSMs is also high, which inevitably trickles down 

to the consumer. In the hopes of producing electric motor that can compete with the 

performance of a PMSM for tractive applications while eliminating the dependence on 

limited and expensive materials, tractive IMs have peaked the interest of research institutes 

and industry leaders across the globe. Boasting high maximum speeds, relatively low 

current during no load operation and a robust, cost-efficient design, IMs are an ideal 

candidate for the electrification process by optimizing the motor to combat the major 

drawbacks of induction machines [36]–[38]. Due to a higher weight and volume, tractive 

IMs offer a lower torque density than rival PMSMs, as well as higher losses incurred in the 

rotor. A more detailed breakdown of the advantages and disadvantages associated with 
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PMSMs and IMs is seen in Table 1.2. To improve the drawbacks associated with the 

tractive IM, the torque density of the induction machine as well as the operating efficiency 

must be improved to be considered a competitive contender for EV applications. Many 

aspects of the electromagnetic design of tractive IMs, including the rotor and stator size 

and geometry, slot and bar shape and material and the winding configuration may be 

considered for optimization to ensure the best possible performance for EV applications. 

TABLE 1.2 

ADVANTAGES AND DISADVANTAGES OF IMS AND PMSMS [39], [40] 

P
M

S
M

 

A
d

va
n

ta
ge

  Various configurations and adjustable performance 

 High torque and power density due to smaller size 

 High efficiency and power factor 

 Good heat dissipation due to no rotor losses 

D
is

ad
va

n
ta

ge
 

 High material cost due to rare earth elements 

 Control is difficult especially in flux weakening operation 

 Lower efficiencies at high speeds 

 High temperatures may lead to demagnetization on PMs 

 High back EMF in case of a fault 

IM
 

A
d

va
n

ta
ge

 

 Robust design resistance to ware and damage 

 Low production and material costs 

 Various configurations and adjustable performance 

 High peak torque, overload capability 

 Relatively simple control methods 

 Well established manufacturing process 

D
is

ad
va

n
ta

ge
 

 More demanding design process due to slightly lower performance  

 Lower efficiency due to rotor losses being present 

 Generally larger and therefore lower torque and power densities 

 Lower power factor 

 Rotor thermal management must be considered to dissipate heat 
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1.3. Literature Survey on Traction Induction Motor Design and Geometry 

IMs for tractive applications must be specifically designed for high performance 

tractive applications. The same basic operating principles are exploited through new 

materials and manufacturing methods to ensure peak performance over a wide speed range. 

The design process of tractive IMs is analyzed to identify key design attributes crucial to 

determining the performance of IMs, the torque density, and the efficiency of IMs [39], 

[40]. These design aspects can then be optimized to offer optimal performance with respect 

to the desired target performance. Throughout the design process, key design factors must 

be constantly evaluated to provide an overall balanced design. Economic factors consider 

the cost of the overall product in order to be competitive within the market, which as a 

result of cost effective and available materials, IMs have the economic advantage. Material 

limitations always contribute to the constraints of the overall design and must be considered 

throughout the design process. Design specifications and safety regulations also play an 

important role in determining the limitations of a given design and depend on the 

application. The most crucial design factors with respect to tractive IM design is the 

electromagnetic design of the motor encompassing all electrical and magnetic components 

of the motor. It is these design factors that determine the preliminary constraints of the 

design problem specifying the desired power, speed, voltage, and frequency ratings 

required for EV applications. The design process begins with the desired performance and 

available electric loading of the application being used to define the size and power rating 

of the motor. The size and length of the rotor and stator are defined by sizing equations 

based on the desired performance and size constraints of the design application. The 

number of phases and the number of poles of the IM are assigned, tractive EV applications 
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typically feature 3 or 6 phases with 2, 4 or 8 poles [41]. Once the basic dimensions, 

performance and electric ratings are known, the design moves to the stator to develop the 

number of stator slots, the winding type and configuration and the selection of end winding 

connection summarized in the following section. 

1.3.1. Stator Design and Geometry 

The stator design process of IMs is similar to the design of permanent magnet 

synchronous machines and is therefore subject to similar improvements from a design 

perspective. The stator design begins with the selection of the stator slot shape. Commonly 

used stator slot shapes are the open and semi-closed stator slots, as seen in Fig. 1.9 [42], 

[43]. Open slots are typically designed with form wound winding bundles in mind to allow 

the ridged winding structures to be easily inserted into the slot and are ideal for applications 

with high power and voltage rating beyond the range used in EV. Therefore, the majority 

of EV stator slots are based on semi-closed slot designs as they offer smoother synchronous 

field production due to smaller air gaps and less harmonics. Semi closed stator slots must 

 

Fig. 1.9. Commonly used stator slot designs can be classified into two main slot types. (a) Depicts an open 
stator slot with winding bundles. (b) Depicts a semi-closed stator slot holding randomly wound coils. 
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be randomly wound due to the limited opening at the neck of each slot. The stator winding 

configuration is next to be decided and can take one of two commonly used winding types. 

Concentrated windings see stator windings wound about only 1 stator tooth best suited for 

applications that require short tractive IMs with large diameters due to shorter end 

windings. Concentrated windings are easier to manufacture and produce slightly higher 

torque than distributed windings however incur higher losses and higher harmonics as a 

result. Most EVs rely on some form of distributed winding configuration [44]–[46] where 

the winding of each phase is wound over two or more stator teeth, as seen in Fig. 1.10. 

Multiple winding layers sit in each slot, ensuring the smoothest possible synchronous 

magnetic field overlapping the next phase [47]–[49]. The number of stator slots spanned 

by the coil of each phase and the number of slots occupied by each phase must be carefully 

determined to ensure minimal harmonic losses leading to the higher efficiency of the 

designed motor. Once the winding configuration is determined and the coil span, slot pitch 

 

Fig. 1.10. The top and side view of an unrolled stator demonstrates the difference between three phase stator 
windings. (a) Concentric winding configuration features only one phase per stator tooth. (b) Distributed 
windings overlap phases. 
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and pole pitch are known, the coil type usually random fill or press fit, end winding 

connection of either Wye or Delta and conductor sizing based on standardized 

requirements are determined. The last step in stator design is selecting the number of stator 

slots which effects design factors such as the breakdown torque, torque ripple and starting 

currents of the tractive IM and therefore are chosen to be either 36,48 or 54 slots for tractive 

IM applications [50], [51]. This ensures an even magnetic field distribution and therefore 

higher efficiency operation while maintaining smooth output torque production. The 

preliminary stator design is complete, and the optimal rotor design to fit the stator. 

1.3.2. Rotor Design and Geometry 

 The rotor structure of tractive induction machines is the most unique part about its 

design and therefore hold the potential to greatly improve the performance of the motor 

when optimally designed. Before investigating different rotor bar shapes, the first step in 

rotor bar design is to determine the number of rotor bars that complement the number of 

stator slots chosen during the stator design process. The selection of the correct number of 

rotor bars is crucial as certain slot combinations result in poor motor performance. To 

ensure a compatible slot combination is selected, the following cases outlined in Table 1.3 

must be avoided. Slot combinations that satisfy case 1 in which 𝑆1 is the number of stator 

slots and 𝑆2 are the number of rotor bars, respectively, while 𝑃 represents the number of 

poles, result in extremely high noise and engine vibration, which would greatly impact the 

safety and comfort level if the motor were used for tractive applications. If a slot 

combination satisfying case 2 is chosen, the resulting torque and speed curves may develop 

sharp cusps rendering the motor undesirable for use in EVs. Lastly, cogging issues resulting 

in stalling or the inability to start can occur with slot combinations that satisfy case 3, where 
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TABLE 1.3 

STATOR SLOT AND ROTOR BAR COMBINATIONS TO AVOID [41], [52], [53] 

Case Stator Slot and Rotor Bar Combination 

Case 1 𝑆ଵ −  𝑆ଶ = ൝

 ±2
(𝑃 ± 1)
(𝑃 ± 2)

 

Case 2 𝑆ଵ −  𝑆ଶ = ൝

 ±𝑃
(±2𝑃)

(±5𝑃)
 

Case 3 𝑆ଵ −  𝑆ଶ = ቄ
0

±𝑚𝑃
 

 (𝑚) is the number of phases. If a suitable number of rotor bars is selected and the slot 

combination does not satisfy any of the three cases, the most crucial and final step in 

tractive IM rotor design is determining the size and geometry of the rotor bar. From this 

analysis, the basic rotor bar in Fig. 1.11 demonstrates two distinct rotor bar regions that 

have a greater effect on specific output characteristics. Region 1 is considered to be the 

torque region of the rotor bar as it greatly affects the starting torque and torque density of 

the IM, while region 2 has a greater effect on the power density and efficiency of the IM. 

The National Electrical Manufacturers Association (NEMA) [54], [55]classifies four 

 

Fig. 1.11. Demonstrates the regions of the rotor bar and their respective affects on the performance 
characteristic the IM. 
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conventional rotor bars by geometry with respect to the performance characteristics of each 

to assist in the selection of a base rotor bar shape that can then be modified to suite the 

specific application. NEMA rotor bar classes A to D and their typical respective normalized 

torque-speed curves are depicted with respect the percentage of rated torque produced and 

the rotor slip in Fig. 1.12. Based on the torque-speed characteristics of each rotor bar class, 

and overview of the effect of different rotor bar geometries has on the overall motor 

performance with respect to all four NEMA classes is provided in Table 1.4. When 

designing rotor bars, the primary performance tradeoff is with respect to the resistance of 

the bar. Class A and B rotor bars are designed to have lower resistance as a result of a larger 

surface area leading to lower losses and higher efficiency while sacrificing starting torque. 

Class A and B rotor bars operate under low slip conditions resulting in higher torque, while 

 

Fig. 1.12. NEMA classifications assist in the early IM design process. (a) Possible examples of the four 
NEMA rotor bar classifications are depicted. (b) The torque performance is displayed with respect to the slip 
for each rotor bar class. 
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TABLE 1.4 

SUMMARY OF NEMA CLASS ROTOR BAR CHARACTERISTICS [55]–[57] 

Operating 
Characteristics 

Class A Class B Class C Class D 

Starting 
Torque 

100% of Rated 
for large motors 

100% to 150% 
of Rated for 
large motors 

200% to 250% 
of Rated for 
large motors 

250% to 300% 
of Rated 

Starting 
Current 

800% Rated 
500% to 600% 

Rated 
600% to 800% 

Rated 
800% to 

1200% Rated 

Pullout 
Torque 

200% to 300% 
of Rated 

Greater than 
200% of Rated 

Slightly > 
class A 

50% of Rated 

Pullout Slip <0.2 <0.2 
Slightly > 
Class A 

<1.0 

Rated Slip 
<0.05 slightly 

lower than class 
B 

Between 
<0.05 and 

<0.03 

<0.05 slightly 
higher than 

class B 

Very High, 
typically <0.7 

to <0.11 

the bars are under less current, meaning more efficient operation when compared to class 

C or D rotor bar designs. Class D rotor bars depend on extremely high resistance, 

generating high starting torque, making them ideal for high inertial load scenarios however 

do not meet the efficiency standards required by tractive vehicle applications. Class A rotor 

bars may be used for tractive applications however, due to the low resistance-based design 

of class A designs, high inrush currents are experienced by the bars during starting often 

requiring specialized starting methods. Therefore, class B and C rotor bar designs are 

preferred for EV applications as they exploit current effects, including skin effect and skin 

depth to achieve a variable resistance with respect to operating condition. Class C rotor bar 

designs consist of two separate rotor bars entirely exploiting material properties to as to 

generate high starting torque as only the outer cage conducts during motor startup. This 

increased starting torque, however, causes a decrease in the efficiency of class D motors 

that is not justified in EVs leaving the ideal rotor bar geometry to be based on the class B 
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rotor bar design. Class B rotor bars offer the ideal balance between high torque 

performance while maintaining high operating efficiency due to lower losses [58]. Through 

the iterative modification and analysis of the effect of rotor bar dimensions and geometry 

on IM performance, the optimal rotor bar shape with respect to maximum operating torque 

and minimal losses. 

1.3.3. Summary of the Effect of Geometry on Design Factors 

 Due to the computationally intensive nature of the design process, it is common to 

see the complete detailed design process be followed to develop a single motor. Different 

aspects of the design are then scaled to achieve the desired performance targets while 

upholding the same speed, flux density and current density as the detailed design. To 

summarize the effect size and geometry has on various design factors, Table 1.5 considers 

a motor in which all design aspects have been scaled up by the same factor. Although, in 

this case, the entire machine size increases, similar effects are observed in conductive and 

magnetic elements if only one specific design parameter were to be scaled. The effect 

changing size of various design aspects are directly or indirectly linked to the performance 

characteristics of the tractive IM and, therefore, must be carefully analyzed to strategically 

target the area with the greatest impact on optimization targets. 

 In conclusion, the design process of tractive IMs requires the simultaneous 

consideration of numerous design factors that have adverse effects on one another. 

Optimizing the IM design with respect to all considerable design factors would be 

impossible. Therefore, a balance with respect to several significant objectives depending 

on the application should instead be established. The rotor structure is unique to IMs, and 

a direct relationship between the rotor bar geometry and the output torque and losses of the 
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motor have been described. These output characteristics provide excellent objective targets 

for optimization. Optimal rotor bar design with respect to these targets will inevitably yield 

an IM with higher torque density and operating efficiency for EV applications. 

TABLE 1.5 

EFFECT OF SCALING ON DESIGN FACTORS 

Design Factors Effect of Increased Scaling by Factor k 

Weight 
Since all linear dimensions of the machine increase by a factor of k, 
the volume and therefore the weight will increase by k3 

Terminal 
Voltage 

Increase in the core area and flux path by a factor of k2 results in 
terminal voltage by k2 if the number of turns is not changed 

Load Current 
The area of conducting materials increases by k2, therefore the 
current carrying can be increased by k2 

Input Power 
Since the terminal voltage and load current increase by a factor of k2, 
respectively, the power input will increase by k2 

Resistance 
Since the cross-sectional area of conducting materials will be 
increase by a factor of k2, however, the length will increase by a 
factor of k, resulting in a reduction in resistance by a factor of k 

Copper Loss 
Since current increases by k2 and the resistance goes down by a 
factor of k, the copper losses will increase by a factor of k2 

Iron Loss 
Since flux density in iron components remains constant and the 
volume increases by a factor of k3, the iron losses will increase by k3 

Power Output 
Since the input power increase by a factor of k4 while the losses 
increase by a factor of k3, the output power increases at a rate slightly 
less than k4. 

Efficiency 
Since the input power increased by a factor of k4 and the output 
power by a factor slightly less than k4 depending on the losses, the 
efficiency will be increase slightly with large increases in factor k. 

Power Density 

Since the input power increases by a factor of k4 while the volume 
increases by a factor of k3, the power density increases by factor k 
therefore explaining why larger machines eventually have higher 
efficiency. 
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1.4. Tractive Induction Motor Optimization 

Tractive IM design is an extremely difficult and time-consuming process that 

involves countless multi-disciplinary design factors which have opposing effects on the 

output performance of the motor with respect to multiple conflicting desired performance 

requirements. Therefore, the design of a tractive IM for EV applications may vary greatly 

depending on the emphasis placed on each requirement by the designer. Due to the 

computationally heavy and time-consuming nature of tractive IM design, an initial design 

is generated in the effort to meet the desired performance targets required by the application 

[59]. The initial designs performance can only be verified after the complete design is 

created, often leading to a moderate design that fails to meet all requirements. Due to the 

large number of possible solutions, the initial design’s performance is often less than the 

desired performance meaning the design must be further refined in order to provide optimal 

operating characteristics for tractive applications. This makes the design process iterative 

by nature, as the designer must sequentially adjust various aspects of the motors design to 

achieve the optimal design with respect to the design requirements. Once an initial design 

has been produced, this iterative process may be greatly assisted by an Optimization 

Algorithm (OA) [60], [61]. OAs are capable of solving for a set of design factors that 

minimizing or maximizing multiple desired performance objectives. An analytical model 

capable of determining the motor performance of all required objectives based on the 

selected design factor is coupled through OFs to the OA, as illustrated in Fig. 1.13 [62]. 

The run time and solution quality of the OA greatly depends on the speed and accuracy of 

the analytical model used and, therefore, must be carefully considered when selecting the 

type of model to be implemented. 
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Fig. 1.13. This simple flow chart demonstrates the information that flows between the OA and the analytical 
model of the tractive IM. 

1.4.1. Tractive Induction Motor Analytical Modeling for Optimization 

Tractive IM analytical models for optimization purposes serve to simulate the 

output characteristics of the IM with respect to the set of chosen input variables allowing 

the OA to slightly altered and re-evaluate the motor performance under different 

combinations of input variables [63]–[65]. Depending on the algorithm, this iterative 

performance calculation takes place extremely often, and therefore the simulation time of 

the analytical model greatly affects the overall run time of the algorithm and furthermore 

the total number of possible solutions that can be discovered by the algorithm. The three 

most commonly used analytical models used for tractive IM optimization are electric 

equivalent circuit modeling (ECM), magnetic equivalent circuit modeling (MEC) and 

finite element analysis (FEA) based models compared in Table 1.6. FEA based modeling 

consists of breaking the entire motor assembly into a fine interconnected mesh of nodes at 

which all electromagnetic effects are considered. The smaller the mesh, the higher the mesh 

density becomes allowing the performance of the IM to be simulated at nearly any point 

that exists within the design. FEA produces extremely high-quality simulation results with 

respect to a wide range of possible performance objectives as well as being capable of 

simulating transient effects [66], [67]. The drawback of FEA is that due to its high 

computational nature, the simulation run times are extremely long and  
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TABLE 1.6 

ADVANTAGES AND DISADVANTAGES OF ANALYTICAL MODELS [68]–[72] 

F
E

A
 

A
d

va
n

ta
ge

 
 

 Extremely high accuracy simulation capable of calculating the 
simultaneous effect of electromagnetic performance 

 Accurately models both magnetic and electrical losses under 
transient conditions 

 Multi-disciplinary effects may be considered 

D
is

ad
va

n
ta

ge
 

 Extremely high run times make FEA based OAs very 
computationally heavy and therefore slow 

 The search space, number of input variables, and objectives must be 
greatly reduced to accommodate for high run times 

 The model is not easily adjusted or modified 

M
E

C
 A

d
va

n
ta

ge
 

 

 Less complicated computations leading to shorter run times 
 Focused on modeling magnetic components including rotor and 

stator cores 
 Accurately models magnetic leakage flux losses experienced by the 

IM 
 Easily modified to incorporate various effects and increase 

simulation accuracy 

D
is

ad
va

n
ta

ge
 

 Less accurate in determining performance characteristics than FEA 
simulation 

 Electrical loss effects are not closely considered 
 Must be modified to increase simulation accuracy for use in tractive 

motor optimization 

E
C

M
 A

d
va

n
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ge
 

 

 Less complicated computations leading to shorter run times 
 Focused on modeling electrical motor components including rotor 

bars and stator windings 
 Accurately models electrical losses experienced by the IM 
 Capable of linking characteristic performance to rotor bar design 
 Easily modified to incorporate various effects and increase 

simulation accuracy 

D
is

ad
va

n
ta

ge
 

 Less accurate in determining performance characteristics than FEA 
simulation 

 Electric loss effects are not closely considered 
 Must be modified to increase simulation accuracy for use in tractive 

motor optimization 
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therefore, makes FEA an ideal tool when attempting to validate a specific design, however 

a poor choice for complex multi-objective optimization. The Magnetic equivalent circuit 

modeling is based on the magnetic effects that occur withing magnetizing elements of the 

IM. An equivalent circuit modeling the stator and rotor core with respect the flux path 

generated at any instant in time while the IM is under a magnetic loading. Although 

magnetic equivalent circuit modeling is less precise than FEA, the mathematical based 

model provides relatively high accuracy results while considering numerous magnetic 

effects that may affect the performance of the overall design [73]–[76]. The computation 

time associated with this method is much lower as a result of the motor geometry and 

effects being simplified into a simple circuit. As the name suggests, the electrical 

equivalent circuit is similar to the magnetic equivalent circuit. However, it considers the 

electrified components, specifically the stator windings and rotors of the tractive IM. Both 

magnetic and ECMs are favoured for optimization purposes as they are easily modified to 

fit the selected subject of the optimization and the desired performance targets, offer much 

faster run times and offer relatively accurate results [77]–[79]. The decision between the 

two is often made based on the function of the subject of the optimization and the nature 

of the output characteristics selected as targets by the designer. 

1.4.2. Induction Motor Optimization Input Variables and Objective Targets 

The proposed method focuses on optimizing the rotor bar geometry to offer 3% 

higher torque performance while minimizing the total losses of the base design by 3%. 

Therefore, an ECM is selected to analytically model and simulate the output torque and 

total losses of the tractive IM with respect to changes in the rotor bar geometry determined 

by the OA. Fig. 1.14 depicts the rotor bar dimensions are defined by three widths and four 
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Fig. 1.14. The rotor bar is broken into 4 heights and 3 widths to be given to the OA as input variables. 

heights seen in making up the seven input variables to the OA. The search space is defined 

by the limits placed on each dimension of the rotor bar. To provide a reasonably large 

search space to the OA, limits are set 75% above and below the base design. To ensure the 

design is still structurally feasible and the tooth width is maintained, the search space is 

also limited to 60% of the slot pitch. This ensures the tooth width is maintained while 

allowing the largest possible search space to the algorithm. The other constraint placed on 

the design is the maximum magnetic loading of 1.7T allowed in the rotor tooth to avoid 

magnetic saturation and temperature rise [80]. The equivalent circuit model will determine 

the output torque and total losses of the induction machine and relay the performance back 

to the OA through OFs in an iterative loop until the optimal rotor bar geometry is found. 

Table 1.7 summarizes the input variables, constraints, and output targets of the problem. 
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TABLE 1.7 

OPTIMIZATION INPUT VARIABLES AND OBJECTIVE TARGETS 

Subject and Number of 
Input Variables 

The rotor bar is the subject of the optimization and is 
divided into 7 input variables to describe the geometry 

Input Variable Bounds 
The rotor bar geometry is given ±75% of the baseline 

rotor bar design to endure a large search space  

Input Variable 
Constraints 

The rotor bar geometry is constrained by occupying a 
maximum of 60% of the rotor slot pitch 

Design Constraints 
The maximum flux density in the rotor teeth may not 

exceed 1.7T 

Performance Objective 
The output torque and total losses are selected as the 

performance objectives of the optimization 

Torque Objective Target The target is to increase the output torque by 3% 

Loss Objective Target The target is to decrease the total losses by 3% 

1.5. Research Motivations 

To properly outline the objectives and the motivations of all aspects of the proposed 

method, multiple perspectives must be considered to determine the target and subject of 

the research presented. On the vehicle level, the entire EV must be considered and 

determines the desired performance of the entire system. The desired performance 

characteristics favorable for tractive application are investigated, and the components of 

EVs with the most influence on these characteristics are identified for further study. This 

has led to the electric motor becoming the focal point of EV performance resulting in a set 

of motor level objectives aimed at improving the major drawbacks of IMs for tractive 

applications. The rotor bar is unique to IMs and therefore is selected as the subject of the 

design optimization as they play a crucial role in determining the performance of the 
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desired targets. Since the design process of induction machines is complicated and time 

consuming, an algorithm is required to greatly reduce the time spent on designing the rotor 

bar and greatly improve the quality of the solution produced. To determine the 

modifications to the OA required to accommodate the design problem, algorithm level 

objectives and motivations are defined to address the challenges associated with rotor bar 

optimization of tractive induction machines.  

1.5.1. Vehicle Level Motivations 

As a relatively new technology, EVs offer a promising emissions free solution to 

personal transportation, which has led to the recent increase in the public interest and 

garnered the support of international governments and industries. To satisfy consumer 

demand while competing with traditional internal combustion vehicles, crucial 

performance characteristics of EVs, including range and torque density, must be improved. 

Although there are numerous factors that determine the performance capabilities of an EV, 

the efficiency and torque density of the electric motor selected are essential. Through 

increased research and development into the electromagnetic design of electric motors, the 

desired performance characteristics of EVs must be enhanced. 

1.5.2. Motor Level Motivations 

With their robust structure and cost-effective materials and manufacturing process, 

IMs offer high peak torque and overload capabilities, making them an ideal choice for 

tractive applications. Since IMs offer slightly lower efficiency due to the presence of losses 

in the rotor and lower torque densities as a result of a larger size when compared to more 
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commonly used permanent magnet motors, the design of the rotor bar may be optimized to 

reduce the total losses and increase the IMs torque capabilities. 

1.5.3. Algorithm Level Motivations 

The rotor bar optimization of a tractive IM poses a complex multi-variable 

optimization problem. In order to generate a high-quality solution under a maximum 

algorithm run time of 300 seconds, an OA must be developed that is capable of non-

dominated multi-objective optimization considering the dynamic nature of the application. 

Conventional optimization strategies must be modified to reduce the computation time, 

improve the solution quality, and ensure a balanced solution that satisfies both optimization 

objectives while avoiding stalling, function bias and premature convergence. 

1.6. Research Objectives 

The global objective of the proposed method is to develop a robust, novel multi-

objective GA capable of optimizing the rotor bar geometry of a tractive IM considering the 

dynamic operation for use in commercially available EVs, leading to improvements in the 

overall performance of future EVs. The vehicle level objectives are to increase the range 

and torque density of commercial EVs through design optimization of a tractive electric 

motor raising the efficiency by 1% and torque density by 3%. This is achieved through an 

optimized rotor bar geometry resulting in the motor level objectives of 3% higher torque 

and 3% lower losses. To determine the optimal rotor bar geometry, the algorithm level 

objective is to develop a non-dominated, robust GA capable of optimizing the rotor bar 

geometry for higher torque and lower losses over the entire operating range while 

maintaining low run times and high solution quality. 
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1.7. Research Contribution and Deliverables 

To satisfy the algorithm level objectives, a novel, non-dominated adaptive restart 

GA capable of optimizing the rotor bar geometry for higher torque and lower total losses 

with respect to driving cycle based dynamic operating points is proposed and implemented 

to achieve the motor level objectives by proposing an optimal rotor bar design which 

produces higher torque and lower losses over the entire operating range. When used in 

tractive EV application, the proposed optimal rotor bar offers a cost effective, durable 

tractive IM with 3% higher torque density and 1% higher efficiency leading to improved 

EV boasting longer ranges and higher power density, fulfilling vehicle level objectives. 

1.8. Organization of Thesis 

This thesis proposes a novel method of geometric rotor bar optimization to increase 

the torque density and efficiency of a tractive IM for tractive applications while considering 

dynamic operating conditions through the implementation of a non-dominated adaptive 

restart GA. The major sections of this thesis are as follows: 

1) Chapter 1 provides an overview of EVs, tractive electric machines and the use of 

OAs in induction machine optimization, demonstrating the motivations, challenges and 

objectives associated with the proposed method from a vehicle level to the motor level and 

the incorporation of the algorithm level. 

2) The baseline tractive IM considered for optimization is introduced in chapter 2, 

outlining the base rotor bar shape and the baseline torque and loss performance is 

determined. The modified permeance based equivalent circuit model used in the proposed 

method is described and validated, and the optimization algorithm to be used is selected. 
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3) A novel OF modeling strategy is proposed and tested in chapter 3 to ensure all 

function bias is eliminated between the torque and loss objectives during optimization. The 

elimination of function bias ensures a balanced optimal solution across all objectives. 

4) The development of a robust adaptive restart GA is detailed in chapter 4 to improve 

the algorithms ability to resist stalling and early convergence, increase the final solution 

quality and reduce the overall run time through intelligent search space reduction. 

5) Chapter 5 incorporates the effects of various dynamic operating conditions required 

by tractive IMs into the optimization process. These dynamic operating points are 

determined over the WLTP -3 drive cycle and reduced using the energy center of gravity 

method ensuring operating conditions of the highest energy consumption are represented. 

6) Chapter 6 analyzes the optimized rotor bar shape and performance against the 

baseline motor and validates using FEA. The algorithm performance of the novel non-

dominated adaptive restart GA is analyzed and discussed. 

7) Chapter 7 summarizes the results generated through the proposed method and 

identifies the future scope of the proposed research and developed method in the area of 

IMs and algorithm-based IM optimization.   



 

33 
 

CHAPTER 2 Permeance Based Equivalent Circuit Modeling of Induction 

Motors and Optimization Algorithm Selection 

2.1. Baseline Tractive Electric Motors 

The tractive IM considered as the baseline motor is a small scale 11 kW IM designed as a 

prototype for tractive applications. The baseline IM offers 36.34 Nm of continuous torque 

under rated conditions requiring a 400 V DC supply for SUV style tractive applications 

seen in Fig. 2.1(a), and a cross section of the rotor and stator structure is depicted in Fig. 

2.1(b). The motor was selected as it offers output characteristics designed for tractive 

applications while offering small-scale size allowing it to be easily tested at various 

operating points under laboratory conditions. Table 2.1 details the physical parameters and 

rated performance. Therefore, if the performance of the baseline IM can be improved 

through rotor bar optimization, the prototype may be scaled up to meet the design ratings 

 

Fig. 2.1. The scaled down prototype tractive IM used as the baseline IM to be optimized. (a) Depicts the 
baseline prototype tractive IM used for experimental validation. (b) The rotor and stator structure of the 
baseline IM. 
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TABLE 2.1 

BASELINE TRACTIVE INDUCTION MOTOR PARAMETERS AND RATINGS 

Physical Parameters Rated Characteristics 

Parameter Baseline Characteristic Baseline 

Stator Inner Diameter 89.4 mm Rated DC Voltage 396 V 

Rotor Outer Diameter 88.9 mm Peak Line to Line Voltage 227.9 V 

Air Gap Length 0.5 mm Peak Input Current 480 A 

Motor Weight 21.5 kg Output Power 11 kW 

Core Material Steel Rated Torque 36 Nm 

Winding Material Copper Rated Speed 3000 rpm 

of commercially available tractile IMs. The baseline motor allows for experimental model 

validation at various operating points ensuring high solution quality and drive-cycle based 

testing to identify operating regions requiring further optimization. The rotor bar geometry 

with respect to the seven rotor bar dimensions of the baseline tractive IM defined by the 

input variables of the OA are depicted in Fig. 2.2. 

 

Fig. 2.2. The rotor bar dimensions of the baseline tractive IM with respect to the seven input variables defined 
for the optimization problem. 
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2.2. Permeance Base Equivalent Circuit Modeling of Induction Motors 

To accurately model the baseline tractive IM, a modified electrical equivalent circuit 

is selected as the analytical model for the OA. The permeance based equivalent circuit 

model [81] allows for the consideration of magnetic flux leakage effects and electrical non-

linearities caused by alternating supply currents required in tractive applications [82]–[84]. 

Since magnetic leakage effects, including slot, zig-zag, and tooth top leakage, greatly 

depend on the rotor and stator geometry, they must be closely considered during 

optimization to ensure the magnetic characteristics of a particular rotor bar design are 

accurately modeled. Non-linearities in electrical equivalent circuit parameters are the result 

of alternating current direction and magnitude and are also influenced by the rotor and 

stator slot and bar geometry. Through the incorporation of slotting and skin effects in all 

current carrying elements [85], the simulation accuracy of the permeance based equivalent 

circuit model provides the OA a better opportunity to generate a higher quality solution. 

The permeance based equivalent circuit is depicted in Fig. 2.3, can evaluate the output 

torque, total loss and operating efficiency of the baseline tractive IM performance accuratly 

at a fraction of the computational complexity of FEA simulation. The benefit of 

incorporating the specific permeance of baseline motor is that it allows for the geometry 

 

Fig. 2.3. Depicts the permeance based equivalent circuit model with stator, rotor and magnetization branches 
incorporating non-linearities and leakage effects. 
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to be directly related to electromagnetic equivalent parameters. The reactance modeling of 

the rotor bar, along with the incorporation of leakage flux effects are defined for the rotor 

in the following section. The simultaneous integration of non-linearities into the rotor 

resistance modeling is described. The same effects are applied to the stator in the same 

manner leading to the calculation of the output torque, total losses and operating efficiency 

of the baseline tractive IM. 

2.2.1. Incorporation of Leakage Effects 

To determine a direct relation between the rotor bar geometry and the reactance of 

the rotor, a permanence-based model is implemented. Through the incorporation of 

magnetic flux leakage effects, including rotor slot, zigzag, and tooth top leakage flux, the 

accuracy of the analytical model and, therefore, the solution quality produced by the GA 

will improve. Rotor slot leakage permeance λ𝑟 can be calculated using (1) and represents 

the flux loss in the slot to the surrounding core not contributing to the useful flux at the top 

of the rotor bar near the air gap. Dependent on the cross-sectional area 𝑆𝐴𝑏 and shape of 

the rotor bar determined by the rotor bar dimensions. 

λ୰ =
୦౨

ଷ୛భ
ቂ1 −

஠୛భ
మ

଼ୟౘ
ቃ

ଶ

+ 0.66 −
୦బ

ଶ୛భ
+

୦బ
మ

୛బ
     (1) 

Zigzag leakage effects are the result of flux interaction between the rotor and stator 

teeth and therefore depends on the stator and rotor tooth top width 𝑤𝑡𝑠 and 𝑤𝑡𝑟. Since the 

tooth top width of the rotor teeth are directly dependent on the rotor bar dimensions, Zigzag 

leakage permeance λ𝑧 is calculated using (2) incorporating the tooth widths of both the 

stator and rotor and 𝑦𝑠 and 𝑦𝑟 representing the stator and rotor slot pitch. 

λ୞ =
ஜబ×୛౪౩×୛౪౨×൫୛౪౩

మ ×୛౪౨
మ ൯
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మ×୷౨

      (2) 
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Rotor tooth top leakage permeance  λ𝑡 is a result of flux loss in the rotor teeth, 

which depends on air gap permeability μ0, the rotor slot pitch 𝑦𝑟 and the effective air gap 

length 𝑙𝑒𝑔 is modeled using (3). 

λ୲ =
ஜబ×୪౛ౝ

୷౨
       (3) 

The equivalent circuit reactance components of the rotor are calculated using (4) in 

which n represents the respective subscripts for the slot Xr, zigzag Xz and tooth-top Xt 

reactances. The operating synchronous frequency is given by 𝑓, 𝑇𝑝ℎ is the number of turns 

per phase in the stator, 𝐿 is the axial stack, 𝑝 is the number of poles and 𝑄 is the number of 

poles per phase. 

X୬ = 8π × f × T୮୦
ଶ × L × ቀ

஛౤

୮×୕
ቁ     (4) 

A similar technique is applied to incorporate the three before mentioned leakage 

effects in stator slots, as well as an additional overhang leakage component due to 

overhanging stator turns. The summation of these leakage effects determines the total rotor 

reactance X2 of the baseline tractive IM in (5). 

Xଶ = X୰ + X୲ + X୸      (5) 

2.2.2. Incorporation of Non-Linearities 

The equivalent DC resistance of the rotor bar is calculated using (6) and has a direct 

relation to rotor bar geometry through the cross-sectional area 𝑆𝐴௕  and axial length of the 

rotor bar 𝐿𝑏. The stator winding factor 𝑘𝑤𝑠, the number of phases 𝑚, the number of rotor 

bars 𝑆𝑟 also contribute to the equivalent DC resistance. Lastly, 𝐷𝑒 and 𝑆𝐴𝑒 are the diameter 

and cross-sectional area of the end ring and 𝜌𝐴𝑙 is the resistivity of the material. 

Rr dc = ρ୅୪ × m × T୮୦
ଶ × p × k୵ୱ
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୐ౘ
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To incorporate the effects of alternating supply currents, skin and slotting effects 

must be incorporated to further improve the accuracy of the permeance based equivalent 

circuit model. Skin effect describes the tendency of more current to flowing near the outer 

edge of a conductor, essentially changing the resistance of the bar as a function of its height. 

Skin effect is therefore incorporated through dividing the rotor bar geometry into sub-

section and determining the resistance of each sub section iteratively based on the ratio 

between the conductor height and the penetration depth 𝜉 in equation (7). 

Rଶ ୟୡ = ቀξ
(sin2ξାsin2ξ)

(cosh2ξିcos2ξ)
ቁ × Rr dc      (7) 

Caused by the slight change in air gap length due to rotor bar openings, the slotting 

effect is incorporated through the use of the Carter coefficient 𝐾𝑐 calculated in (8). The 

Carter coefficient changes the effective air gap as a function f() dependent on 

representing the ratio between the tooth widths and the air gap length 𝑙𝑔. The Carters 

coefficient is then multiplied by the air gap to solve for the effective air gap length 𝑙𝑒𝑔 

Kୡ =
୛౪౩ା୛౪౨

୛౪౨ା୛౪౩ି୪ౝ୤(஑)
       (8) 

The effects of these non-linearities are incorporated in the stator, all equivalent parameters 

incorporate the slot, tooth top, and zigzag leakage effects, as well as skin and slotting effect 

allowing the reactance and resistance of the rotor, stator and magnetization branch to be 

calculated. The output torque, 𝑇௢௨௧ , is determined by (9) and depends on the slip s, the 

calculated rotor and stator reactance and resistance, synchronous speed ω𝑠, and the air gap 

voltage 𝑉𝑔. 
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The total losses 𝑃𝑙𝑜𝑠𝑠 of the baseline, IM are found through the summation of the rotor core 

losses 𝑃௥ ௖௢௥௘, rotor copper loss, 𝑃௥ ஼௨ and stator core 𝑃𝑠 𝑐𝑜𝑟𝑒 and copper 𝑃𝑠 𝐶𝑢 seen in (10). 

P୪୭ୱୱ = P୰ େ୳ + P୰ ୡ୭୰ୣ + Pୱ େ୳ + Pୱ ୡ୭୰ୣ     (10) 

The resultant output torque and total losses of each respective rotor bar design 

generated by the GA is then fed to the algorithm through the OFs to determine the overall 

fitness of the particular rotor bar design. The respective input and output powers of the 

baseline tractive IM 𝑃𝑜𝑢𝑡 and 𝑃௜௡ are used to determine the efficiency η in (11), which is 

an important characteristic with respect to the vehicle level objectives proposed. 

η =
୔౥౫౪

୔౟౤
× 100      (11) 

The permeance based equivalent circuit model must now be validated to ensure 

simulation accuracy against FEA of the baseline tractive IM, ensuring a high solution 

quality is produced by the GA. 

2.2.3. Permeance Based Model Validation 

To validate the accuracy of the permeance based equivalent circuit model (PECM) 

to be used as the analytical model for optimization, the output torque, total losses and 

efficiency produced by the PECM at various operating points are compared to FEA and 

experimental test results. Operating points at speeds above and below the base speed of 

3000 rpm were selected to ensure the baseline motor is analyzed in both the constant torque 

and constant power operating regions. The experimental setup used to test the baseline 

motor is shown in Fig. 2.4 in which the baseline motor is depicted as the DUT. The baseline 

IM is coupled through a variable gear box to a low speed, torque-controlled DYNO used 

to apply the required load torque at each test point. The use of a variable gearbox is 

necessary because the baseline IM has a high speed and low torque rating, while the DYNO 
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Fig. 2.4. Depicts the experimental setup used to test the 11 kW baseline IM at various operating points in 
both the constant torque and constant power region for permeance based model validation. 

has a low speed and low torque rating. Therefore, variable gear box is implemented to 

allow a wide range of operating points to be tested. The torque, speed and input power of 

the baseline IM are measured through sensors and used to validate the results produced by 

the PECM. The measured torque can be directly compared, while the total losses and 

efficiency can be calculated through measured parameters. 

The results collected experimentally from the baseline IM and through FEA 

simulation are compared in Fig. 2.5 with respect to the output torque, total losses and 

operating efficiency at 5 operating points. The PECM was able to predict the output torque 

and total losses with an average error of 5.2% and 6.8%, respectively, while predicting the 

operating efficiency with an average error of 1.8% of the measured performance. The close 

correlation of the PECM output characteristics and the results produced through FEA and 

experimental testing in both the constant torque and constant power regions are within an
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Fig. 2.5. Torque, total losses and operating efficiency validation on 5 test points. (a) Depicts the torque 
relationship. (b) Validates the total losses produced by the PECM. (c) Depicts the efficiency validation. 
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acceptable error margin to ensure the OA produces a high-quality solution while 

maintaining low run times. With the PECM selected as the analytical model, linking the 

rotor bar shape to the desired objective targets, a multi-objective OA must now be selected 

to optimize the rotor bar geometry of the baseline IM for higher torque and lower losses. 

2.3. Optimization Algorithms 

In its simplest form, optimization is finding the input variable or set of input 

variables that result in the minimum or maximum value of one or more selected OFs. In 

many cases, the OF may be subject to constraints limiting the search space and increasing 

the complexity of the algorithm [86]–[88]. The larger the search space of an algorithm, the 

better the chances of finding a high-quality optimal solution. A constrained optimization 

problem can be converted to an unconstrained optimization problem through various 

constraint handling methods, such as the addition of a penalty function [89]–[93]. The 

reason unconstrained optimization problems are preferred lies in the simple fact that 

without constraints, the algorithm is able to search without limitation, offering the highest 

probability of finding the optimal solution. Simple optimization problems with little 

computation and known constraints can be solved through parametric search (PS) based 

algorithms [61], [94], [95] while complex multi-variable applications of OAs such as 

optimizing the geometry of a tractive IM requires the aid of higher-level algorithms. 

Genetic or Particle Swarm based algorithms draw their inspiration from biological and 

social mechanisms and are well suited to handle complex optimization problems due to the 

application flexible stochastic optimization methods [36], [96]–[102]. The following 

section will highlight three types of OAs and present a case study examining the single 

objective performance when applied to minimize an optimization test function with respect 
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to two input variables. The results of this case study will ultimately determine which OA 

is best suited for geometric optimization of the rotor bar for improved output torque and 

reduced total losses for tractive IM applications. 

2.3.1. Parametric Search Based Optimization 

 The premise of a PS algorithm is essentially a grid-based sweep across the entire 

search space, making PS algorithms among the simplest OAs to implement. Through 

iteratively reducing the search space while centering it at the best-known point from the 

previous iteration, the PS algorithm is able to solve simple multi-variable and multi-

objective with increasing accuracy the more iterations are performed. The main limitation 

of PS algorithms is the algorithm run time. Since the number of calculations performed by 

the algorithm depends on the grid resolution, even at low resolution, the number of 

computations is much higher than evolution or swarm-based algorithms. In addition to high 

run times, PS algorithms are prone to premature convergence to a local minimum as a result 

of low search grid resolution. The conventional flow of a PS algorithm is demonstrated in 

figure 2.6. [103], [104]. The initialization step sets the global bounds of the search space 

with respect to each input variable, the reduction factor determining the percentage 

reduction in search bounds and the grid resolution, which determines how many samples 

will be taken between the search bounds of each iteration. During the initial iteration, the 

search bounds are set to the global bounds allowing a course sweep of the entire search 

space. Each iteration, the search bounds are reduced and centered about the best-known 

point using (12) and (13). 

L୳ୠ୨
(iter) = x୫୧୬ౠ

(iter − 1) + (1 − K୰ୣୢ) × ቚL୳ୠ୨
(iter − 1) − x୫୧୬ౠ

(iter − 1)ቚ  (12) 
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L୪ୠ୨
(iter) = x୫୧୬ౠ

(iter − 1) − (1 − K୰ୣୢ) × ቚL୪ୠ୨
(iter − 1) − x୫୧୬ౠ

(iter − 1)ቚ  (13) 

From the search bounds and the resolution, (14) determines the step size at each iteration. 

step୨(iter) =
୐౫ౘౠ

(୧୲ୣ୰)ି୐ౢౘౠ
(୧୲ୣ୰)

୰ୣୱ(୧୲ୣ୰)
           (14) 

 

Fig. 2.6. The flow chart demonstrates the iterative limit reduction and evaluation performed by 
conventional parametric search-based OAs. 
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As the search space is reduced each iteration, the step size becomes smaller allowing for 

fine tuning of the optimal result. The PS algorithm then generates an array of possible 

combinations of input variables evenly distributed over the search space. The OFs are 

evaluated on all points generating an output array of corresponding OF scores. The 

algorithm then sorts the output array identifying the minimum OF score and thereby the 

current optimal combination of input variables. The percentage change in OF score of the 

current optimal solution is compared to the function tolerance to determine if the stopping 

criteria of the algorithm have been met. When the algorithm converges, or the maximum 

number of iterations has been met, the algorithm displays the optimal combination of input 

variables resulting in the minimum OF score. 

2.3.2. Particle Swarm Optimization 

Based on the principles of swarm intelligence, particle swarm optimization (PSO) 

is an iterative process in which a swarm of particles moves about the defined global search 

space in search of the global minimum solution. Swarm intelligence states that although 

individuals of the swarm on their own would not be able to solve the optimization problem, 

however, as a collective, through observing the successes and failures of other individuals 

within the entire swarm and learning from previous experience, a high-quality optimal 

solution to complex multi-objective optimization problems can be iteratively solved [105], 

[106]. Each particle within the swarm represents a combination of input variables which 

represents the position of the current particle within the global search space. Each particle 

also has an associated velocity denoting how quickly and in which direction the individual 

particle is moving through the search space. Each iteration of the particle swarm algorithm, 

the position and velocity of every particle are updated, and its next step is determined 
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considering the current velocity of the individual, the individual’s position with respect to 

its personal best-known position and the individuals position with respect to the global best 

known position by all particles of the swarm [107], [108]. The velocity update of a particle 

is described in (15) and used to determine particle position in the next iteration using (16).  

v୧୨(it + 1) = cv୧୨(it) + rଵcଵ ቀx୫୧୬౟ౠ
(it) − x୧୨(it)ቁ +  rଶcଶ ቀG୫୧୬ౠ

(it) − x୧୨(it)ቁ   (15) 

x୧୨(it + 1) = x୧୨(it) + v୧୨(it)     (16) 

The position of the particle, 𝑖, is denoted by 𝑥𝑖𝑗 at a particular iteration, 𝑖𝑡, which represents 

a possible combination of j input variables. The current velocity of an individual particle 

is denoted by 𝑣𝑖𝑗 and represents the speed and direction in which the particle is moving 

through the search space. The fitness of each particle is evaluated every iteration, as seen 

in Fig. 2.7 where the global best particle position 𝐺𝑚𝑖𝑛𝑗
 is determined along with the best-

known position of the particular particle 𝑥𝑚𝑖𝑛𝑖𝑗
. Acceleration coefficients 𝑐 , 𝑐1  and 𝑐2 

allow the effect of each term in the velocity update to be manipulated and 𝑟1  and 𝑟2 

represent randomly generated scalar coefficients between 0 and 1. An arbitrary particle, its 

associated velocity and the resultant velocity vectors between the particle and the personal 

 

Fig. 2.7. Each particle evaluates its current position with respect to the three vectors shown and uses the 
resultant vector to determine its position and velocity during the next iteration. 
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and global best solution.  The three resultant velocity vectors are added together, and the 

velocity and particle position of the next generation are found. The swarm size, function 

tolerance, maximum iterations, global limits and other algorithm parameters are set during 

the initialization stage, as seen in Fig. 2.8. The initial particle position and velocity are 

generated randomly across the search space to generate the swarm, which is then evaluated 

by the OFs of the algorithm. Particles are ranked based on fitness, and the global best 

particle position is determined to be the best-known solution of the current iteration. If the 

maximum number of iterations or stall iterations has been reached or the change in fitness 

falls below the set function tolerance, the particle swarm algorithm converges, and the 

global best solution is displayed. If none of these cases are met, the algorithm iterates and 

generates the future velocity and position of the future swarm. This iterative process 

ensures that particles rapidly congregate towards the global best-known solution as all 

velocity vectors graduality begin to mimic the direction of other particles within the swarm. 

Through learning from other particles, the collective swarm gains intelligence 

exponentially faster than an individual particle could on its own. Through tuning of 

acceleration coefficients, swarm size and function tolerance, the quality of solutions 

produced by multi-objective particle swarm OAs can be greatly improved while reducing 

the overall run time of the algorithm. PSO, similar to GA-based optimization, is very 

versatile and can be adapted to solve a wide range of optimization problems. When dealing 

with large search spaces, PSO often requires larger swarm sizes to maintain diverse 

solutions ensuring the algorithm does not converge to a local solution, slightly increasing 

the number of OF evaluations having an adverse effect on the run time of the algorithm. 

As each particle is able to make its own decisions based on its own position and velocity 
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as well as accessing the greater intelligence of the entire swarm, Particle Swarm based OAs 

are ideal for complex multivariable optimization problems such as multi-objective 

optimization of tractive IMs. 

 

Fig. 2.8. The Iterative flow of a conventional particle swarm-based OA is depicted. 
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2.3.3. Genetic Algorithms 

Genetic Algorithms (GA) draw inspiration from Darwin’s principles of evolution, 

which states that through gene mutation and crossover, the fittest individuals will pass on 

dominant traits while weaker individuals with inferior traits will become extinct. Through 

simulating numerous generations, GAs are able rapidly solve for the global minimum of 

complex multi-objective optimization problems [109], [110]. GAs employ an iterative 

process where each iteration is called a generation. Each generation consists of a preset 

number of individuals representing a possible combination of input variables. The group 

of individuals within one generation is considered the current population. One or more OFs 

evaluate and assign a fitness value to each individual within the population that corresponds 

to its objective performance. In the case of multiple objectives, once an individual has been 

assigned an objective score for each objective, a total fitness score is assigned to the 

individual. Top ranking individuals with the lowest fitness scores of the current population 

are considered elite and are passed on to the next generation without change making up 

approximately five to ten percent of the next population. The remaining individuals to 

populate the next generation are created through the reproduction process. The first stage 

of reproduction consists of selecting individuals from the current population to be 

reproduced populating the next generation based on their fitness. The selection process is 

best demonstrated using a simple roulette wheel, as seen in Fig. 2.9 [60] to represent six 

individuals with fitness values shown in Table 2.3 and the results of selection in Table 2.4. 

The cumulative fitness is calculated for each individual, and a random number between 

zero and the total cumulative fitness is generated. The cumulative fitness range the random 

number falls in determines the selected individual to be reproduced in the next generation 
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Fig. 2.9. Depicts the proportion of each individual’s fitness score out of the total cumulative fitness 
represented by a linear roulette wheel 

TABLE 2.2 

ROULETTE WHEEL FITNESS 

Individual 1 2 3 4 5 6 

Fitness (%) 30 25 20 15 7 3 

Cumulative Fitness 30 55 75 90 97 100 

TABLE 2.3 

ROULETTE WHEEL SELECTION 

Roulette Wheel Spin 1 2 3 4 5 6 

Random Fitness 54 9 64 96 28 82 

Selected Individual 2 1 3 5 1 4 

simulating the spinning of the roulette wheel. The selection process utilizes probability to 

generate the next population of six individuals containing individuals 2, 3, 4, 5 and two 

copies of individual 1. Individual 1 had the highest fitness value and, therefore, the highest 

probability of reproducing, resulting in two copies of 1 being selected for the next 

generation. Individual 6 no longer exists in the next generation as a result of a poor fitness 

score. The second stage of reproduction ensures that individuals share combinations of 

input variables to create entirely new individuals from two selected parents through and 

entirely new input variable combinations are created through individual mutations. The 

crossover operator combines traits of two parents at one or more random crossover points 

to produce two new offspring. The crossover probability may be adjusted by the optimizer 
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and determines how often the operator is performed. Consider the two individuals selected 

for crossover operations in Fig. 2.10(a) each containing 8 binary input variables. A 

crossover point is randomly generated and splits the parent function. The offspring 

produced clearly contain input variable combinations from both Parent A and Parent B 

allow for greater variation between generations and increased solution quality. Similar to 

crossover operations, the probability of an individual being selected for mutation is 

determined by the mutation probability. Mutation involves multiplying one or more input 

variables at random mutation location of the parent individual to inject new possible 

solutions into the next generation. In Fig. 2.10(b), individual 1 is selected as the parent, 

 

Fig. 2.10. New solutions are introduced during selection. (a) Provides an example of the crossover operator 
applied to selected 8-bit binary numbers. (b) Demonstrates the use of the mutation operator on an individual. 
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mutations occurred at two mutation locations creating an entirely new individual for the 

next generation. The evolutionary algorithm iterates, as seen in Fig. 2.11. This ensures 

diversity amongst solutions as well as rapidly eliminating combinations of input variables 

with poor objective performance. Following the evaluation of each generation, the 

percentage change between the best know solution found within the current population, 

and the best-known solution of previous solutions are evaluated. If the percentage change 

is less than a set function tolerance indicating the algorithm has converged, or the algorithm 

reaches the maximum number of generations, the global optimal solution is displayed. If 

none of these criteria are met, reproduction generates the next generation. In the presence 

of multiple objectives, objective scores should be similar in magnitude and have equal 

effect on the total fitness of the individual. The fitness determines the best solutions of each 

generation, the selection process grants dominant individuals a higher probability of 

reproducing. Crossover ensures the traits if dominant individuals are shuffled together to 

create new configurations of input variables. Mutation ensures selected individuals 

randomly altered to improve population diversity, enhancing the overall solution quality. 

Through tuning of reproductive operators, GA parameters and OFs based on the specific 

application, the run time of the GA and the quality of the solution produced can be greatly 

improved. Several benefits of GA based multi-objective optimization include the use of 

parameter coding, simplifying complex problems to produce results quickly, reproductive 

operators depend on probability meaning the more generations are evaluated, the higher 

the solution quality and GAs are able to maintain large search spaces to avoid converging 

to a local minimum ensuring the global optimal solution is found. These benefits as well 

as the application flexible nature of GAs make them applicable to all aspects of IM design. 
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Fig. 2.11. The flow chart demonstrates the iterative process of a conventional GA. 

2.3.4. Schwefel Function Minimization Case Study 

 The following case study will examine the performance of a PS, GA and PSO when 

applied to minimize a multi-variable single objective optimization test function [111]. 

Optimization test functions are designed to have several local maximums and minimums, 

potentially tricking the algorithm into converging prematurely. In addition to local minima, 
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many test functions have large search spaces and rapid fluctuations in function value. The 

optimization test function seen in Fig. 2.12 selected for this study is called the Schwefel 

Function and is represented by (17) where 𝑎𝑗 represents the input variables to be optimized 

and 𝑓൫𝑎𝑗൯ is the OF to be minimized. 

f൫a୨൯ = 418.9829d − ∑ a୨ sin ቆටหa୨หቇ
ୢ
୨ୀଵ,ଶ,…       (17) 

The input variables are bound between [-500,500], leaving a relatively large search space 

for the algorithms to process. There are three prominent local minima that lie on the 

Schwefel Function surface and only one global minima at 𝑓(420.9687, 420.9687) = 0. 

Algorithm parameters such as the population, function tolerance, stall generations and 

resolution are kept constant across all three algorithms to ensure an equal comparison. 

Table 2.4 contains the algorithm parameters of each respective OA. The importance of this 

comparison is to analyze each algorithms speed through run time, number of function 

evaluations, stall time and solution quality to determine which algorithm would be best 

suited for multi-objective IM design optimization. The PS based algorithm is expected to 

 

Fig. 2.12. Optimization test functions allow for algorithms to be equally compared. (a) Depicts a surface plot 
of the Schwefel Function. (b) Shows a contour plot of the Schwefel function with its minimum in red. 
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TABLE 2.4 

OPTIMIZATION ALGORITHM PARAMETERS 

PS Optimization PSO GA Optimization 

Parameter Value Parameter Value Parameter Value 

Maximum 
Iterations 

25 
Maximum 
Iterations 

500 
Maximum 
Iterations 

500 

Max Stall 
Iterations 

5 
Max Stall 
Iterations 

25 
Max Stall 
Iterations 

25 

Function 
Tolerance 

10-6 
Function 
Tolerance 

10-6 
Function 
Tolerance 

10-6 

Global Upper 
Bound 

[500, 500] 
Global Upper 

Bound 
[500, 500] 

Global Upper 
Bound 

[500, 500] 

Global Lower 
Bound 

[-500, -500] 
Global Lower 

Bound 
[-500, -500] 

Global Lower 
Bound 

[-500, -500] 

Reduction 
Factor 

25% Swarm Size 200 
Population 

Size 
200 

Resolution 100 
Global Vector 

Constant 
40% 

Crossover 
Fraction 

30% 

Resolution 
Factor 

15% 
Local Vector 

Constant 
25% 

Mutation 
Fraction 

10% 

be the slowest of the three algorithms due to its high number of computations to maintain 

a comparable solution resolution. PS algorithms provide the most information about the 

Schwefel Function surface within several initial generations. After the initial generations, 

the individuals located at any of the three local minima are expected to become extinct, 

and the algorithm should converge to the global optimal solution. Similarly, the particles 

of the particle swarm algorithm will be widely spread during the few initial generations. In 

later generations, the Particle Swarm algorithm will likely locate the global minima slightly 

faster than the GA. However, it will take longer to settle on a final solution. For this reason, 

the run time and solution quality of both the GA and the Particle Swarm algorithm will 

likely be similar to one another. Each algorithm will be run five times, and the average 

performance can be seen in Table 2.5. After running each algorithm multiple times, it is  
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TABLE 2.5 

OPTIMIZATION ALGORITHM PERFORMANCE 

Optimization Algorithm PS  PSO GA  

Total Iterations 13 52 39 

Algorithm Run Time 1.4560s 9.3813s 7.4137s 

X1 Solution 420.9706 420.9687 420.9687 

X2 Solution 420.9706 420.9687 420.9687 

Function Value at Solution 2.633 x10-5 2.5455 x10-5 2.5455 x10-5 

Error In Solution 0.002633% 0.0025455% 0.0025455% 

evident that the PS algorithm had the longest average run time. The PS algorithm was also 

able to identify the global minimum of the Schwefel Function surface. However, for the 

purpose of complex multi-objective optimization, a PS-based algorithm is to 

computationally inefficient. Fig. 2.13 shows the depicts the iterative improvements made 

by the PS, while Fig. 2.14 demonstrates the population of particles and individuals at 

 

Fig. 2.13. Depicts the migration of the best-known solution of the PS algorithm over the 13 limit reduction 
iterations the PS algorithm performed. 
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Fig. 2.14. Visualizes different stages of the particle swarm and GA optimization. 
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various stages of the algorithm. The initial populations of both the GA and The PSO are 

widely spread across the search space before collapsing to the lowest valleys of the 

Schwefel Function surface. The Particle Swarm algorithm maintains a wider spread for 

several generations longer than GA before both collapses on the global minima. The GA 

was able to converge after 39 iterations, while the PSO required an additional 11 iterations 

leading to the longer run time. The particle search algorithm was the quickest algorithm 

however had the solution yielded a larger error than particle swarm or GA-based 

optimization. The total population of the GA was centered about the optimal solution in 

later generations, which shows higher confidence in the global optimal solution as the 

entirety of the population has migrated to this region. In conclusion, the case study has 

shown that the PS-based algorithm is least suited for complex optimization. Although both 

the GA and PSO performed extremely well, both converging to the optimal solution in 

under 9.38 s, the GA settled to the global optimal solution quicker and are known to be 

extremely efficient at managing multiple objectives and is less susceptible to local 

solutions when dealing with unconstrained optimization problems. Therefore, a GA based 

optimization strategy is selected for multi-objective rotor bar optimization of a tractive IM.
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CHAPTER 3 Eliminating Function Bias in Multi-Objective Rotor Bar 

Optimization Through Novel Objective Function Modeling 

3.1. Significance of Objective Function Modeling 

 When dealing with complex multi-objective optimization problems such as IM 

optimization, the magnitude and search space of both input variables and output 

performance used to define objectives can vary greatly. A large difference in magnitude 

between objective function (OF) scores can lead to an imbalance between the weight and 

overall score of an individual as a result of one objective dominating the total OF score. In 

this case, the remaining objectives have little effect on the fitness of each individual, 

essentially limiting the optimization to the dominating objective. To ensure a high-quality 

balanced solution across all objectives, the use of OF modeling allows the optimizer to 

manipulate the target, magnitude, and contribution of each objective towards the total 

fitness score of an individual. OF scalars or weights may be applied to adjust the magnitude 

of objectives. However, the optimizer must be careful not to lose information about the 

true objective while applying any form of OF scaling. The addition of an offset to balance 

objectives is also possible. However, it can introduce reverse bias into the objective, 

especially when the magnitude of the global minimum is unknown. Lastly, OF modeling 

is used to formulate objectives to target either maximization or minimization of the OF. 

GAs and other multi-objective OAs must search for either the global maximum or 

minimum of a search space meaning all OFs must all be modeled as either a maximization 

or minimization problem. In the process of targeting OFs, once again, large differences in 

magnitudes between objectives may arise, leading to OF bias. In the following chapter, 
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several forms of conventional OF modeling are analyzed with respect to their ability to 

provide the algorithm with a balanced comparison between multiple objectives. The 

drawbacks of these conventional approaches are identified and discussed, leading to the 

development of a novel hyperbolic tangent based OF model that eliminates OF bias while 

optimizing the rotor bar geometry for maximal torque and minimal losses of a tractive IM. 

Lastly, the performance of a multi-objective GA using conventional OFs is compared to 

the performance of a GA using hyperbolic tangent based OFs to demonstrate the 

effectiveness of hyperbolic tangent based OF modeling at eliminating function bias. 

3.2. Conventional Objective Function Modeling  

 Torque and loss-oriented optimization of a tractive IM requires some form of OF 

modeling such that the torque OF is minimized while the true torque is maximized. A base 

design is often used as a reference in optimization functions as it is a constant and known 

combination of input variables and their corresponding performance. This can be used to 

offset or center OFs around a known starting point when applied correctly. The use of 

exponential based OFs can be used to exploit rapid changes in slope to amplify the global 

and local minimums and maximums. (18), (19), and (20) [36], [112], [113] are three 

examples of conventional approaches to OF modeling applied to maximize the torque. Fig. 

3.1 illustrates the behavior of each OF over a 60% variation of the base torque. 

OF୲୭୰౟

ଵ =
ଵ

୘౥౫౪౟

           (18) 

OF୲୭୰౟

ଶ = ൫T୰ୣ୤౟
− T୭୳୲౟

൯      (19) 

OF୲୭୰౟

ଷ = หT୰ୣ୤౟
− T୭୳୲౟

ห      (20) 

Conventional OF (18) uses the base torque as a reference point, linearly passing the error 

between the base torque and the output torque produced by the algorithm. Therefore, the  
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Fig. 3.1. Three conventionally used OFs given by (18), (19) and (20) are evaluated over a 60% range of the 
base design [36], [112], [113]. 

OF score is a decreasing positive integer if the output torque is less than the base torque, 

zero when the output torque is equal to the base torque, and an increasingly negative integer 

if the output torque is better than that of the base design. The drawback of this approach to 

OF modeling is that it introduces negative OF scores which increases algorithm complexity 

and may introduce OF bias negatively effecting solution quality. In addition to containing 

negative values, OF has an unbounded output meaning the range of possible OF scores is 

unknown. By taking the absolute value of the error between the base torque and the output 

torque in (19) eliminates the possibility of negative OF scores and bounds the minimum 

value of the OF to the base torque. Although the lower bound of the OF is now known, the 

minimum value corresponds to the base torque meaning the best possible OF score will 

result when the base torque is produced by the algorithm. This is useful when attempting 

to maintain output parameters however does not provide the GA with any incentive to 

improve the output torque. Finally, with the use of the base torque as a reference, an 
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exponential modification is applied to the output torque produced by the GA, to form (20). 

When the output torque of the GA is smaller than that of the base torque, the OF value 

rapidly increases, as soon as the base torque is achieved and the algorithm begins to 

produce output torque performance higher than that of the base torque, OF gradually 

approaches zero to allow for fine tuning of the objective. OF (20) strongly penalizes any 

individual with output torque less than the base torque, which quickly eliminates poor 

solutions from the population leading to quicker convergence. Once again, the lower bound 

of the OF is known. However, the major drawback of this type of OF modeling is that due 

to the slow decay of the OF after the base torque. As the output torque continues to 

improve, the OF value will continue to decrease at an increasingly slower rate losing its 

sensitivity to output torque improvement. This means that a 5% improvement over the base 

torque would yield an OF score 10% lower than the base design, while a 10% improvement 

in the output torque would only cause a 15% lower OF score despite improving the output 

torque by twice as much. This can lead to premature stalling of the algorithm due to a loss 

of sensitivity to objective change or OF bias due to a large fluctuation in magnitude in 

multi-objective applications. OF bias is when one objective contributes significantly more 

to the overall fitness score of an individual misleading the GA to favour the dominating 

objective over the other [114]. The result of OF bias is a low-quality optimal solution in 

which the performance of the dominated objective is essentially ignored, and the problem 

is optimized with respect to only the dominating objective. The torque and losses of a 

tractive IM are of different magnitude, and therefore careful OF modeling must be applied 

to ensure a fair comparison between both objectives. The conventional OF for torque 

maximization is represented by (21), in which an exponential decaying function is oriented 
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about the base torque ensuring poor fitness scores for individuals with low torque 

production. Equation (22) is the conventional OF for total loss minimization by simply 

passing the true losses as OF scores [115], [116]. 

OF୲୭୰౟
=

ଵ

ቚ୘౨౛౜౟
ି୘౥౫౪౟

ቚ
       (21) 

OF୪୭ୱୱ౟
= P୪୭ୱୱ౟

       (22) 

To demonstrate the effect of OF bias on an individual’s fitness score during multi-objective 

optimization of tractive IMs, Fig. 3.2 plots the OF score of (24) with respect to a 60% 

variation of the base torque and OF scores of (25) over the same range with respect to the 

total losses. Each plot contains three test points, the base point B represents the base torque 

and its associated OF score, A represents a 5% improvement in output torque with respect 

to the base torque, and its associated OF score, and C represents an output torque 5% lower 

than the base torque and its associated objective score. The same process is used to 

 

Fig. 3.2. Test points A to F have been placed on conventional OFs to demonstrate function bias. (a) Depicts 
the torque OF conventionally defined by (21). (b) Plots the total loss OF defined by (22). 
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determine points D, E and F with respect to the total losses. It is important to recall that 

each individual within a population will have one OF score for each objective which is then 

summed together to come up with the total fitness of the individual. To test conventional 

OFs for OF bias, Table 3.1 evaluates six possible individuals and their associated total 

fitness scores. Through observing the percentage change in total fitness score of individuals 

with various torques and total losses, the overall effect of each objective on the total fitness 

score can be determined. Analysis of the OF bias test verifies that the torque objective is 

clearly dominated by the loss objective as a result of a large difference in magnitude 

between OF scores. Any individual that saw an increase in torque was only assigned 

marginally lower total fitness scores. However, individuals that saw a reduction in losses 

were assigned 10% lower fitness scores than the base individual. Individual 6 shows an 

example of how the use of unbounded exponential functions can introduce reverse bias 

causing a poor torque to completely dominate an improvement of the same magnitude in 

the loss objective. 

TABLE 3.1 

FUNCTION BIAS TEST ON CONVENTIONAL OBJECTIVE FUNCTIONS 

Individual Base Design 1 2 3 4 5 6 

Torque (Nm) 36.34 39.97 32.71 36.34 36.34 39.97 32.71 

Total Losses (W) 1026.80 1026.80 1026.80 924.12 1129.48 1129.48 924.12 

Torque 
Objective Score 

0.06 0.05 0.08 0.06 0.06 0.05 0.08 

Loss Objective 
Score 

1026.80 1026.80 1026.80 924.12 1129.48 1129.48 924.12 

Total Fitness 
Score 

1026.86 1026.85 1026.88 924.18 1129.54 1129.53 924.20 

Change in 
Fitness 

0.00 0.00 0.00 10.00 -10.00 -10.00 10.00 
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3.3. Novel Hyperbolic Tangent Based Objective Functions 

When considering multiple objectives for optimization, the ideal OF assigns an 

objective score for each objective between equal and known upper and lower bounds, while 

using the base design as a reference providing an evenly weighted transition in OF score 

on both sides of the base performance. To attain an unbiased comparison between multiple 

objectives, a novel approach to OF modeling is proposed to eliminate OF bias between the 

output torque and total losses of a tractive IM. The output torque and total losses of an 

individual are passed to the multi-objective GA though hyperbolic tangent based OFs (23) 

and (24) to be minimized, constraining both OF scores to equal bounds. 

OF୲୭୰౟
(gen) =

ଵ

ଶ
× ൬1 − tanh ൬൤

୘౥౫౪౟
(୥ୣ୬)ି୘ౘ౗౩౛౟

(୥ୣ୬)

୘ౘ౗౩౛౟
(୥ୣ୬)

൨൰൰    (23) 

OF୪୭ୱୱ౟
(gen) =

ଵ

ଶ
× ൬1 + tanh ൬൤

୔ౢ౥౩౩౟
(୥ୣ୬)ି୔ౘ౗౩౛౟

(୥ୣ୬)

୔ౘ౗౩౛౟
(୥ୣ୬)

൨൰൰     (24) 

𝑂𝐹𝑡𝑜𝑟𝑖
 represents the OF score of an individual with respect to its output torque 

performance while 𝑂𝐹𝑙𝑜𝑠𝑠𝑖
 represents the total loss objective score. Evaluating torque and 

loss performance of each individual based on the base design performance ensures an 

equally weighted OF score with respect to an equal improvement in each objective. To 

demonstrate how function bias in multi-objective optimization of tractive IMs is 

eliminated, Fig. 3.3 depicts the plot of OF score with respect to a 30% range above and 

below the base performance for each objective. The objective score at the base torque is 

denoted by B, while E represents the total losses of the base design. To perform a function 

bias test, A represents a torque performance 5% lower than that of the base design, while 

C represents an output torque 5% higher than that of the base design. Similarly, D and F 

give OF scores for a total loss performance 5% below and 5% above the base design losses.  
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Fig. 3.3. Test points A to F have been placed on the proposed novel OFs to demonstrate the resilience to 
function bias. (a) Depicts the hyperbolic tangent-based torque OF defined by (23). (b) Plots the hyperbolic 
tangent-based total loss OF defined by (24). 

Table 3.2 evaluates OF scores and total fitness of six individuals with different objective 

performances. To analyze the impact of an increase or decrease in either objective on the 

total fitness of each individual, the percentage change in total fitness of a test individual is 

compared to the total fitness of the base design. If no function bias exists between opposing 

objectives, individuals with a 5% improvement in torque while maintaining the same losses 

as the base design should see the same percentage increase in fitness score as an individual 

with 5% lower losses while maintaining the base torque performance. It can be seen from 

the function bias test that, as predicted, individual 1 and individual 4 both saw a 5% 

increase in one objective while maintaining the base performance in the other objective 

and the percentage change in total fitness in both cases was 38.08%. The same can be seen 

for individuals 2 and 3, who saw a 5% decrease in one objective while maintaining base 

performance in the other. Lastly, individuals 5 and 6 demonstrate that a 5% increase in one  
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TABLE 3.2 FUNCTION BIAS TEST ON NOVEL OBJECTIVE FUNCTIONS 

Individual Base Design 1 2 3 4 5 6 

Torque (Nm) 36.34 39.97 32.71 36.34 36.34 39.97 32.71 

Total Losses (W) 1026.80 1026.80 1026.80 924.12 1129.48 1129.48 924.12 

Torque 
Objective Score 

0.50 0.12 0.88 0.50 0.50 0.12 0.88 

Loss Objective 
Score 

0.50 0.50 0.50 0.12 0.88 0.88 0.12 

Total Fitness 
Score 

1.00 0.62 1.38 0.62 1.38 1.00 1.00 

Change in 
Fitness 

0.00 38.08 -38.08 38.08 -38.08 0.00 0.00 

objective is offset by a 5% decrease in the opposite objective resulting in a fitness score 

equal to the base design. The results of the function bias test confirm that hyperbolic 

tangent based OFs (23) and (24) are extremely effective at eliminating OF bias when 

performing multi-objective design optimization of a tractive IM. To allow the optimizer to 

have more control over the hyperbolic tangent based OFs, (25) and (26) have been modified 

to incorporate a bias factor 𝐾஻௜௔௦ representing a scalar between 0 and 1 and scaling factors 

for each objective 𝐾௧௢௥ and 𝐾௟௢௦௦. The bias factor allows the optimizer to inject bias into 

the optimization problem in the case that one objective is more significant than the 

opposing objective. 

OF୲୭୰౟
(gen) = (1 − K୆୧ୟୱ) × ቀ1 − tanh ቀK୲୭୰ × ቂ

୘౥౫౪౟
(୥ୣ୬)ି୘౨౛౜(୥ୣ୬)

୘౨౛౜(୥ୣ୬)
ቃቁቁ       (25) 

OF୪୭ୱୱ౟
(gen) = (K୆୧ୟୱ) × ቀ1 + tanh ቀK୪୭ୱୱ × ቂ

୔ౢ౥౩౩౟
(୥ୣ୬)ି୔౨౛౜(୥ୣ୬)

୔౨౛౜(୥ୣ୬)
ቃቁቁ   (26) 

Scaling factors allows the optimizer to tune the transition region of each respective OF 

short transition regions reward even the smallest increase in objective performance 

significantly. However, quickly loses its sensitivity of any further improvement. This is 
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ideal when the improvement in a specific objective is expected to be small as poor solutions 

are quickly extinct. Long transition regions allow the GA to gather more information for 

the fine tuning of objectives as larger changes in objective score result in significantly 

higher fitness when compared to individuals with smaller improvements in objective 

performance. If the transition region is too wide, however, the OFs will flatten out, and 

only a minimal change in fitness will be observed over the entire search space. The effect 

of bias and scaling factors on the OF scores are depicted in Fig. 3.4. Table 3.3, 3.4, and 3.5 

proposes the three cases. The first case applies no bias to either objective and small scaling 

factors and serves as a reference giving an even contribution to both objectives and a 

moderate transition region. The second case applies a bias toward the loss objective by 

25% while maintaining the same moderate scaling factor resulting in the loss 

 

Fig. 3.4. Nine test points have been placed on the proposed novel OFs to demonstrate bias and scaling factors. 
(a) Depicts the hyperbolic tangent-based torque OF defined by (25) under three cases. (b) Plots the hyperbolic 
tangent-based total loss OF defined by (26). 
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TABLE 3.3 

NOVEL OBJECTIVE FUNCTION BIAS AND SCALING TEST - CASE 1 

Case 1: No Bias and No Transition Scaling 

Individual Base Design 1 2 3 4 

Torque (Nm) 36.34 38.1570 39.9740 36.34 36.34 

Total Losses (W) 1026.80 1026.80 1026.80 975.46 924.12 

OF Tor Score 0.50 0.2689 0.1192 0.50 0.50 

OF Loss Score 0.50 0.50 0.50 0.2689 0.1192 

Total Fitness Score 1.00 0.7689 0.6192 0.7689 0.6192 

Change in Fitness 0 23.1059 38.0797 23.1059 38.0797 

Contribution of Torque 
Objective 

50.0 34.9755 19.2510 65.0245 80.7490 

Contribution of Loss 
Objective 

50.0 65.0245 80.7490 34.9755 19.2510 

TABLE 3.4 

NOVEL OBJECTIVE FUNCTION BIAS AND SCALING TEST - CASE 2 

Case 2: 50% Bias Towards Torque Objective and No Transition Scaling 

Individual Base Design 1 2 3 4 

Torque (Nm) 36.340 38.157 39.974 36.340 36.340 

Total Losses (W) 1026.80 1026.80 1026.80 975.460 924.120 

OF Tor Score 0.750 0.403 0.179 0.750 0.750 

OF Loss Score 0.250 0.250 0.250 0.134 0.060 

Total Fitness Score 1.0 0.653 0.429 0.884 0.810 

Change in Fitness 0 34.659 57.120 11.553 19.040 

Contribution of Torque 
Objective 

75.0 61.739 41.698 84.796 92.638 

Contribution of Loss 
Objective 

25.0 38.261 58.302 15.204 7.362 
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TABLE 3.5 

NOVEL OBJECTIVE FUNCTION BIAS AND SCALING TEST - CASE 3 

Case 3: No Bias with Positive Torque & Negative Loss Scaling 

Individual Base Design 1 2 3 4 

Torque (Nm) 36.34 38.1570 39.9740 36.34 36.34 

Total Losses (W) 1026.80 1026.80 1026.80 975.46 924.12 

OF Tor Score 0.50 0.0759 0.0067 0.50 0.50 

OF Loss Score 0.50 0.50 0.50 0.4013 0.310 

Total Fitness Score 1.0 0.5759 0.5067 0.9013 0.810 

Change in Fitness 0 42.4142 49.3307 9.8688 18.9974 

Contribution of Torque 
Objective 

50.0 13.1731 1.3209 55.4747 61.7265 

Contribution of Loss 
Objective 

50.0 86.8269 98.6791 44.5253 38.2735 

objective contributing 25% more to the total fitness of an individual. The third case applies 

no bias to either objective. However, it scales the transition region of the torque objective 

to be narrow while the loss objective’s transition region is extremely wide. Test points are 

taken at the base performance of each objective as well as at a performance 2% and 5% 

better than the base performance and represent a small improvement and a large 

improvement in objective performance, respectively. These test points can be seen for each 

case in figure 3.4 denoted by points A to E. In each case, four individuals are evaluated 

based on their objective performance, the contribution of each objective score to the total 

fitness of each individual is calculated, and the change in total fitness is then compared to 

the total fitness of the base design to determine the performance of OFs (25) and (26). Case 

one demonstrates that with no bias and moderate scaling, both OFs contribute equally to 

the overall fitness score of each individual. Individuals 1 and 3 who saw small 
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improvements in one objective saw small improvements in total fitness over the base 

design, while individuals 2 and 4 who saw large improvements in one objective were 

rewarded significantly lower OF scores resulting in a larger change in total fitness with 

respect to the base design. When bias is applied towards the loss objective, the base 

individual confirms that the torque objective is now only contributing 25% to the overall 

fitness score while the loss objective is contributing 75%. For this reason, individuals 3 

and 4 who saw an increase in loss performance are seen to have a greater change in total 

fitness than individuals 1 and 2 who saw an equal improvement in the torque objective. 

The effect of scaling on the OFs ability to differentiate between a small and large 

improvement in objective performance is demonstrated by the third case. The torque 

objective is seen to have a narrow transition region, and therefore the difference in 

percentage change between the fitness score of individual 1 and individual 2 is only 6% 

despite individual 2 having a 3% larger improvement in objective performance. The loss 

objective has been scaled to have an extremely wide transition region resulting in fitness 

scores of individuals 3 and 4 being very close. This case demonstrates the importance of 

tuning OFs to fit the application. A narrow transition region will quickly result in a low 

objective score however is not sensitive to larger improvements in objective performance, 

while a wide transition region may not converge to a low objective score because the 

function demands too much improvement from the objective. When tuned correctly, 

hyperbolic tangent based OFs are the ideal method for constraining the objectives of multi-

objective optimization of tractive IMs, ensuring an equal comparison between all 

objectives. 
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CHAPTER 4 Enhanced Solution Quality Multi-Objective Rotor Bar 

Optimization Through Adaptive Restart Capabilities 

 To further enhance the robustness, performance and solution quality of the non-

dominated multi-objective GA used for torque density and operating efficiency 

optimization, aspects of both conventional PS and particle swarm OAs are adapted and 

applied to the GA. To reduce the function tolerance, number of stall iterations, and the 

maximum number of generations required for the GA to converge, resulting in reduced run 

times and total function evaluations, an adaptive restart condition is applied prompting the 

GA to restart unless certain restart criteria are met. Adopting the local search space 

reduction method employed by PS algorithms, the local limits of the algorithm are 

decreased allowing the same number of individuals within the population to evaluate a 

smaller, more focused local search space centered about the best solution known to the 

algorithm. In addition to restricting the search space of the algorithm, the centroid of all 

OFs is updated each restart iteration, ensuring OFs maintain sensitivity to larger 

improvements in performance over numerous iterations. Similar to particle swarm-based 

optimization, updating the best know solution known as the centroid each restart iteration 

allows the OFs to learn from the precious best-known solution maintaining its effectiveness 

at offering unbiased OF scores. The iterative flow of the non-dominated adaptive restart 

GA can be seen in Fig. 4.1 and begins with the initialization of all parameters and the 

generation of the first population. In the case of the first iteration, the best know solution 

is the base performance of baseline tractive IM and the local limits are set to the global 

limits set by the design constraints. The initial population of individuals are fed to the 

permeance based equivalent circuit model to determine their tractive performance with  
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Fig. 4.1. The nested iterative flow of the proposed non-dominated, novel adaptive restart GA for to be 
implemented to optimize the rotor bar of the baseline IM. 
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through the hyperbolic tangent based OFs assigning a non-dominated total fitness value to 

each individual. The change in total fitness of the best know solution at each generation is 

evaluated, and if the function tolerance has not been met, the current population undergoes 

selection to create the next generation of individuals. If the function tolerance is met, the 

GA has converged to the best-known solution of the optimization problem and the restart 

tolerance is checked. The restart tolerance monitors the change in improvement between 

the base design and the optimal solution produced by the GA at each restart iteration. If the 

respect to the output torque and losses. Each individual’s tractive performance is then 

evaluated, and the restart tolerance or the maximum number of restarts are checked. If 

either is met, the adaptive restart algorithm converges to a global optimal solution that is 

displayed to the optimizer. If the restart tolerance is not met, the adaptive restart GA 

updates the upper and lower bounds of the algorithms search space with respect to each 

geometric input variable is reduced. The advantage of reducing input variable bounds with 

respect to the best-known performance of the centroid is that it gives the adaptive restart 

GA the ability to reduce the search space concentrating the population in an area where the 

current best-known combination of input variables is present while assigning an unbiased 

total fitness score to each individual of the current population. Every restart iteration is that 

the bounds of the search space are reduced by (27) and (28), in which the local limits are 

centered around the centroid and decreased by the reduction coefficient 𝐾𝑟𝑒𝑑. 

L୳ୠ୨
(iter) = c୨(iter − 1) + (1 − K୰ୣୢ) × ቚL୳ୠ୨

(iter − 1) − c୨(iter − 1)ቚ        (27) 

L୪ୠ୨
(iter) = c୨(iter − 1) − (1 − K୰ୣୢ) × ቚL୪ୠ୨

(iter − 1) − c୨(iter − 1)ቚ        (28) 

The best-known local solution is denoted by 𝑐𝑗 representing the best-known combination 

of input variables and their associated performance. Similar to the search space reduction 
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seen in PS algorithms, the reduction in search space focuses the adaptive restart GA on 

combinations of input variables that result in higher objective performance. The population 

examines smaller search spaces in less time while at a higher resolution resulting in a 

reduction in run time of the overall algorithm while increasing the quality of the global 

optimal centroid produced. To further reduce the run time of the adaptive restart GA, the 

function tolerance and stall iterations of the algorithm should be set higher than 

conventional GAs allowing the algorithm to converge quickly while sacrificing the solution 

quality of local centroids. The restart tolerance, however, should be set low forcing the 

algorithm to continue to iteratively restart until no more improvement over the base design 

is observed in either objective producing a high-quality local centroid is produced which 

is then considered the global centroid containing the geometry and objective performance 

of the optimal design. Each adaptive restart performed enhances the confidence that the 

global centroid produced is in fact, the global optimal solution producing the ideal rotor 

bar geometry for a tractive IM. 
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CHAPTER 5 Rotor Bar Optimization Considering Dynamic Operating 

Conditions Through Energy Center of Gravity Clustering 

5.1. Significance of Considering Dynamic Operating Conditions 

Industrial IMs designed to run at a single operating frequency under similar load 

conditions may be optimized to offer peak objective performance for a single specific 

operating point. The same is not true for tractive IMs must perform optimally across the 

extremely wide operating ranges required for vehicle applications. To truly arrive at the 

optimal rotor bar geometry for a tractive IM, optimization must be performed under various 

dynamic operating conditions since the best rotor bar geometry under one operating 

condition may negatively affect the objective performance under different operating 

conditions. Considering the dynamic operation of the motor to be optimized ensured a 

balanced objective improvement performance across all operating points guaranteeing the 

solution produced by the non-dominated adaptive restart GA is the optimal rotor bar 

geometry for all operating conditions. Dynamic optimization presents a number of 

challenges as it introduces a number of new performance points associated with each rotor 

bar design which need to be balanced between operating points and between multiple 

performance objectives in order to evaluate the total fitness of each individual without 

function bias. As the number of test operating points selected for optimization increases, 

the number of function evaluations also increases, causing longer run times and therefore, 

the number of test operating points selected must be mindfully chosen. Significant 

operating points must be identified to refine the number of operating test points required 

to generate a fair representation of the operating range based on performance objectives. 
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5.2. Core Loss Prediction Under Dynamic Operating Conditions 

To accurately simulate the performance objectives of a tractive IM, changes in the 

operating frequency and its effect on the magnetic loading represented by the flux density 

of the core must be considered. The core loss of induction machines corresponds to 

approximately 15% to 25% of its total losses when considering a combination of eddy 

current, hysteresis and excess losses [37], [117]–[119]. These losses are influenced by 

material properties such as the permeability and conductivity of the core and geometrical 

parameters such as the lamination thickness. The core loss is also directly influenced by 

the supply frequency and the flux density present during the current operating condition. 

Therefore, the relation between core loss, flux density and frequency must be taken into 

account in the equivalent circuit model. Conventionally, this relationship between core 

loss, frequency and flux density was modeled using core loss coefficients generated at 

several known frequencies and corresponding flux densities. During intermediate operating 

frequencies and flux densities, core loss coefficients of the closest known frequencies and 

flux densities are used influencing the accuracy of the simulated motor performance. To 

improve the accuracy of the permeance based equivalent circuit model further under 

dynamic operating conditions, a single objective adaptive restart GA is used to predict the 

core loss coefficients associated with a specific operating frequency and flux density. As a 

result of the increased accuracy of the permeance based equivalent circuit model, the 

solution quality of the global optimal solution is higher. 
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5.2.1. Core Loss Prediction Using Adaptive Restart Genetic Algorithm 

A two-stage approach is taken to predict the core loss and respective core loss 

coefficients under any operating conditions to improve the accuracy of core loss modeling. 

An adaptive restart GA performs a surface fit in the first stage of the prediction algorithm 

to generate an equation relating the total core loss to various supply frequency and flux 

density levels [120]. The second stage uses the adaptive restart GA and curve fitting 

techniques to tune the core loss coefficients with respect to various supply frequencies. The 

results produced by this two-step prediction algorithm will then be applied to the 

permeance based equivalent circuit model at the test operating points selected for 

optimization. Starting from this set of reference core loss points taken at known frequencies 

and flux densities, the first stage of the process is to create a surface on which all test points 

are contained. The adaptive restart GA minimizes the error between the core loss surface 

and the reference points in the first stage, as seen in Fig. 5.1. This fitted surface and 

associated equation can then be used to predict the core loss at any arbitrary combination 

of frequency and flux density. The surface is represented by (29) where 𝑃௦௨௥௙(𝑓௡, 𝐵௠) is 

the total core loss with respect to any arbitrary frequency, 𝑓
𝑛
, and flux densities, 𝐵𝑛, the 

coefficients 𝛼ଵ to 𝛼଻ are combined to create the input variable vector tuned by the adaptive 

restart GA. The OF (30) to be minimized by the adaptive restart GA represents the root 

mean squared error of the reference core loss points 𝑃௥௘௙ and those calculated using (29), 

where (n) and (m) represent total reference frequencies and flux densities, respectively. 

Pୱ୳୰୤(f୬, B୫) = αଵf୬B୫
஑మ + αଷf୬

ଶB୫
ଶ(1 + αସB୫

஑ఱ) + α଺f୬
ଵ.ହB୫

ଵ.ହ + α଻      (29) 

ε୰ୱ୫ = ට∑ ∑ ൫୔౩౫౨౜(୤౤,୆ౣ)ି୔౨౛౜(୤౤,୆ౣ)൯
మ

ౣ౤

୬∙୫
                  (30) 
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Fig. 5.1. The iterative flow of the two-stage core loss prediction method under dynamic operating 
conditions using a single objective adaptive restart GA. 

When the adaptive restart GA converges producing optimal coefficients for (29), the 

algorithm moves into stage two. Specific test frequencies are selected that correspond to 

significant operating points that fall into frequencies not represented by the reference 

frequencies. At each of these test frequencies, several core loss points are taken at varying 
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flux densities using the fitted surface. These new test points will be used as a reference for 

a curve fit performed at this stage. The core loss coefficients 𝐾௔, 𝐾௛, 𝐾௘ and 𝛤 in (31) make 

up the input variable vector to be tuned by the adaptive restart GA. Once one set of core 

loss coefficients has been determined, the algorithm moves to the next test frequency 

generating new sets of coefficients that corresponding to test frequencies. 

Pୡ୳୰୴ୣ(f୬ ୲ୣୱ୲, B୫) = K୦f୬ ୲ୣୱ୲B୫
୻ + Kୣf୬ ୲ୣୱ୲

ଶB୫
ଶ + Kୟf୬ ୲ୣୱ୲

ଵ.ହB୫
ଵ.ହ    (31) 

The significance of this approach is through generating a specific set of core loss 

coefficients at each test frequency, the permeance based equivalent circuit model is capable 

of accurately consider dynamic operating coefficients Improving the solution quality of the 

global optimal design. 

5.2.2. Adaptive Restart Genetic Algorithm Performance 

In stage one of the prediction algorithm, the final fitted surface evaluated over a 

wide range of operating frequencies and flux densities is depicted in Fig. 5.2(a). The 

reference points are depicted on the surface showing a close correlation between the core 

loss at reference points and the predicted core loss using fitted (29). The adaptive restart 

GA was able to minimize the total RMS error at all reference points to 0.9576 W producing 

a combination of coefficients 𝛼ଵ  to 𝛼଻  with the maximum error of 3.0647 W at one 

operating point. The error response surface depicts the true error in watts between the 

reference and calculated core loss at each reference frequency and flux density after the 

first stage of the prediction algorithm is shown in Fig. 5.2(b). The accuracy of the fitted 

equation generated by stage one of the algorithm is essential to the prediction of core loss 

coefficients at desired operating points the fitted equation is used to calculate the predicted  
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Fig. 5.2. Results of stage one of the core loss prediction is visualized. (a) Depicts fitted surface created during 
stage one of core loss prediction algorithm with respect to test points in red. (b) Depicts the error between 
the reference and calculated core loss. 

core loss at desired operating points which can then be used as a reference by the adaptive 

restart GA during the second stage. Fig. 5.3(a) depicts the test points in red and the fitted 

curve generated by the adaptive restart GA at each respective operating frequency. The 

average RMS error across all test frequencies was minimized to 0.1738 W, with the 

maximum error at any operating point being 0.3632 W, as seen from the error response 

curves in Fig. 5.3(b). The algorithm converges once the function tolerance is reached, 

 

Fig. 5.3. Results of stage two of the core loss prediction algorithm. (a) Depicts fitted curves of core loss 
prediction algorithm with respect to test points in red. (b) Depicts the error between the reference and 
calculated core loss of each curve. 
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displaying the core loss coefficients 𝐾௔, 𝐾௛, 𝐾௘ and 𝛤 that correspond to each operating 

frequency, allowing these coefficients to be considered as variable with respect to the 

supply frequency and flux density, enhancing the capability the permeance based 

equivalent circuit model to predict the performance under dynamic conditions. 

5.3. Considering Dynamic Operation Through Drive Cycle Based Testing  

 To analyze the dynamic performance of any tractive vehicle under true road 

conditions, common road test conditions must be established, capturing the speed, distance 

and duration of the road test, ensuring an equal comparison between vehicle performance 

results can be made. For this reason, common speed profiles called drive-cycles have been 

created to represent the speed profile of the test vehicle over the total test duration [121]. 

As a result of different traffic and vehicle laws in different countries around the world, the 

selected drive cycle must be based on the specific application of the vehicle. The United 

States commonly utilize the FTP-75 drive cycle representing urban driving conditions with 

frequent stops and low to moderate speeds while including two high speed sections 

simulating highway driving. To simulate exclusively high-speed highway driving 

conditions, the highway fuel economy test cycle (HWFET) to determine the fuel 

consumption of combustion engines or the energy consumption in the case of EVs. To 

normalize a drive cycle across all countries, the global harmonized drive cycles (WLTC) 

were created. Three classes defined by the vehicles power to mass ratio were defined to 

unify the results produced by dynamic vehicle simulation. The WLTC Class 3 drive cycle 

shown in Fig. 5.4 may be used to simulate a tractive EV found in the North American and 

European markets. The WLTC Class three drive cycle incorporates two different urban 

driving sections, a rural driving section and one high speed highway section to encompass 
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Fig. 5.4. The speed profile of the WLTC Class 3 drive cycle is shown over the total cycle time. 

all operating ranges encountered by the vehicle under real world conditions. To segregate 

urban, rural and highway-based drive cycles, a statistical study called the Artemis Project 

performed in Europe created the three drive cycle configurations. One Artemis Cycle 

represents urban, rural and highway driving respectively and offers a more detailed analysis 

of one specific driving condition. The total distance covered, total duration and average 

speed of each of these drive cycles are displayed in Table 5.1, providing an overview of 

the average driving conditions encountered during each respective cycle. To measure the  

TABLE 5.1 

OVERVIEW OF VARIOUS DRIVE CYCLES 

Drive Cycle 
Total Distance 
Traveled (km) 

Total Drive Cycle 
Time (s) 

Average Vehicle 
Speed (km/h) 

FTP-75 23.262 1800 46.5 

WLTC 17.77 1874 34.1 

Artemis Urban 4.87 993 17.6 

Artemis Rural 17.272 1082 57.5 

Artemis 
Highway 150 

29.545 1068 99.6 

Artemis 
Highway 130 

28.735 1068 96.9 
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performance of a tractive IM prototype under controlled lab conditions with respect to 

dynamic performance, expensive experimental test equipment including a dynamometer 

and power electronic control modules for both the tractive IM and the dynamometer is 

required to perform drive cycle based experimental testing [122]–[124]. Depending on the 

purpose of the drive cycle test, and the measurement equipment used during the duration 

of the test, the results produced by experimental drive cycle testing can be used to evaluate 

and validate motor models, control algorithms and vehicle dynamics models as well as 

identify significant operating points for design optimization purposes. The IM is 

considered the device under test (DUT), which is aligned opposite the dynamometer and 

coupled through a torque transducer, as seen in Fig. 5.5. The torque transducer measures 

the real torque applied on the shaft at any instance in time which is used by the torque-

oriented control strategy of the dynamometer control module. An encoder measures the 

true rotor speed of the DUT, which is recorded and used by the speed-oriented control 

 

Fig. 5.5. The experimental test setup required to perform drive cycle testing of tractive IMs is depicted. 



 

85 
 

strategy of the DUT’s control module. The dynamometer control algorithm measures the 

difference in the measured torque and the torque profile generated by a vehicle dynamics 

model with respect to the baseline IM in an attempt to maintain a minimum error over the 

course of the test, ensuring the WLTC Class 3 drive cycle profile is followed. The Speed 

oriented control strategy used to control the DUT works in a similar fashion using the speed 

profile of the WLTC Class 3 drive cycle as a reference [125]. The dynamometer imitates 

the load applied to the axel of the vehicle specified by the vehicle dynamic model-based 

drive cycle simulation. As the DUT’s control strategy follows the speed profile of the 

WLTC Class 3, operating regions in which the vehicle experiences high dynamic resistive 

forces such as rapid acceleration or an inclined road, the dynamometer applies the 

equivalent resistive torque opposing the DUT’s ability to maintain the reference speed, 

increasing the error between reference and actual speed prompting the control strategy of 

the DUT to increase the power injected into the motor. As a result of the extensive test 

setup and smaller size of the baseline IM, a vehicle dynamics model must be developed in 

order to allow for simulated drive cycle-based testing, which can then be experimentally 

validated at specific operating conditions determined by the simulated motor performance. 

5.3.1. Electric Vehicle Dynamics Modeling 

 The vehicle dynamic model considers numerous vehicle specific parameters 

simulating the resistive forces acting on the vehicle during the simulated drive cycle [126]. 

These resistive forces must be matched by the drive system of the vehicle in order to 

maintain the current velocity and acceleration of the vehicle, therefore, representing the 

load on the wheels over the course of the WLTC Class three cycle. To derive the load 

demanded by the vehicle with respect the tractive IM, several vehicle specific parameters 
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must be considered. The tire radius, drive train configuration, and torque split ratio of the 

test vehicle are used to define how much of the total vehicle load is distributed to the motor 

being analyzed. Considering a simple vehicle dynamic model depicted in figure 5.6. [127], 

[128], modeling the vehicle weight, 𝐺௖௨௥௕, with respect to the road gradient, 𝛼, the vehicles 

current speed, 𝑣, and acceleration, 𝑎. Four dynamic resistive forces oppose the tractive 

force produced by vehicles motor at the wheels. Equation (32) is used to determine the 

Rolling Resistance, 𝐿௥, which is a result of tire deformation at the contact point with the 

road resisting forward motion. 

L୰ = K୰୭୪୪ Gୡ୳୰ୠ cos(α)      (32) 

The rolling resistance depends on the total weight of the vehicle, the slope of the road and 

the rolling resistance coefficient, 𝐾௥௢௟௟, which depends on the road quality, tire pressure 

and vehicle speed. The aerodynamic resistance, 𝐿௔, depends on the frontal cross-sectional 

area of the vehicle, 𝑆𝐴, vehicle speed, air density, ρ, and the crag coefficient 𝑐ௗ௥௔௚ in (33). 

𝐿௔ =
ଵ

ଶ
 𝜌𝑐ௗ௥௔௚ ∙ 𝑆𝐴 ∙ 𝑣ଶ      (33) 

 

Fig. 5.6. Vehicle dynamics model used to determine the torque requirements of the WLTC Class 3 drive 
cycle. 
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The drag coefficient depends on a number of factors, including elevation, vehicle shape, 

weather conditions and other dynamic resistive effects. To model the increased load on the 

vehicle when travelling uphill, the gradient resistance, 𝐿௚, is given by (34), which depends 

on the vehicles weight and the slope of the road over the course of the drive cycle. 

𝐿௚ = 𝐺௖௨௥௕ sin(𝛼)            (34) 

Lastly, the effect of inertial forces that represent the force required to accelerate an object 

with respect to its mass is calculated using (35). 

L୧ =
ୋౙ౫౨ౘ

୥
∙ a            (35) 

The mass of the vehicle is calculated by dividing the total vehicle weight by the force of 

gravity, 𝑔, and is multiplied by the current acceleration of the vehicle to determine the 

inertial resistance, 𝐿௜. When summed together, these four resistive forces determine the 

load profile demanded by the WLTC Class 3 with respect to the wheels of the vehicle. To 

determine the load profile of the baseline tractive IM, the load is split with respect to the 

torque split ratio of the EV and then converted to the load on the axel of the vehicle 

determining the baseline tractive IM load profile demanded by the WLTC Class 3. Finally, 

the energy consumption associated with each operating point can be derived from the 

power required by the tractive IM, which can be calculated by multiplying the torque and 

speed at ever operating point. The complexity of the vehicle dynamics model depends on 

the application and purpose of the simulation and can integrate control algorithms and IM 

simulations. However, for the requirements of this application, a simple vehicle dynamics 

model is sufficient. 
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5.3.2. Simulated Dynamic Operating Points Over WLTC Class 3 Drive Cycle 

 The use of drive cycle simulation through a vehicle dynamics model can be used to 

analyze many aspects of vehicle level as well as motor level performance depending on the 

accuracy and complexity of the dynamic model, motor simulation and control algorithm 

used to evaluate the drive cycle. Since the objective of this dive cycle simulation is to 

determine the associated load torque profile with respect to the speed profile given by the 

WLTC Class 3 drive cycle and the associated energy consumed at each operating point, 

the drive cycle simulation does not require any control algorithm or electric motor 

simulation. Instead, the speed, 𝑣(𝑡), given by the drive cycle with respect to time, 𝑡, is 

input to the conventional vehicle dynamics model as seen in Fig. 5.7. The current 

acceleration required to calculate the inertial resistance of the vehicle is calculated, as seen 

in (36), using the change in velocity from the current and previous time step over time 

change. 

a(t) =
୴(୲)ି୴(୲ି୲౩౪౛౦)

୲౩౪౛౦
       (36) 

The vehicle dynamics model calculates the total resistive load acting on the vehicle 

at the given time and converts the vehicle torque to the axle torque with respect to the 

torque split ratio of the EV. The current speed and torque are multiplied together to find 

the current power to plot the torque, and energy consumption is plotted against time.  

 

Fig. 5.7. Iterative flow of drive cycle simulation to determine the torque profile with respect to the vehicle. 
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The algorithm iterates, updating the drive cycle time by time step, 𝑡௦௧௘௣ , which is 

determined by the resolution setting the quality of the results generated by the simulation. 

When all speed points have been simulated and the maximum time has been reached, full 

speed and torque profiles with respect to the WLTC Class 3 drive cycle are produced, as 

seen in Fig. 5.8. The entire torque speed range encompassing all operating points generated 

over the duration of the WLTC Class 3 drive cycle and their corresponding energy 

consumption is depicted in Fig. 5.9. The torque and energy consumption profiles generated 

through this simple drive cycle simulation can be used to determine significant operating 

points for design optimization purposes as well as experimentally validated by the baseline 

prototype tractive IM. The number of operating points collected during the drive cycle test 

represents a large set of numbers, making it impossible to optimize on all operating points. 

A strategy to reduce the number of operating points while identifying the most significant 

operating points for dynamic optimization must be developed. 
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Fig. 5.8. Results of WLTC drive cycle simulation. (a) Depicts the rotor speed profile of the simulated 
baseline IM. (b) The resulting load torque profile over the WLTC drive cycle. 

 

Fig. 5.9. The torque-speed profile generated over the WTLC drive cycle simulation and the associated energy 
consumption at each operating point. 
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5.4. Operating Point Reduction Through Energy Center of Gravity Method 

 The data sets collected by drive cycle-based simulation and experimental testing 

contain extremely large sets of operating points with respect to the torque and speed of the 

tractive IM. Therefore, a data processing method must be developed to represent the 

average operating point with respect to a subregion of the total operating range [129]. The 

operating points contained within each subregion are considered a cluster and are then 

represented by a single average operating point called the centroid. The number of 

centroids produced is determined by the number of subregions that represent the entire 

operating range. The simplest method to generate the centroid is through calculating the 

mean torque and speed of all operating points contained in the cluster. Although this 

method provides the true mean operating point to represent the cluster, the purpose of the 

WLTC Class 3 drive cycle simulation and experimental testing of baseline tractive IM was 

to identify operating points with high energy consumption for use in targeted, dynamic 

optimization [130]–[133]. The use of Energy Center of Gravity Clustering considers the 

energy consumption at each operating point while calculating the centroid of each cluster, 

ensuring the centroids produced to provide a better representation of the subregion with 

respect to areas of high energy consumption than the true mean (37) is used to calculate 

the total energy consumption, 𝐸௖ೝ
, of each respective cluster, 𝑟 , using the energy 

consumption, 𝐸௜௥ and velocity, 𝑣௜௥, of every individual within the cluster denoted by 𝑖. 

Eୡ౨
= ∑ E୧୰v୧୰

୒౟
୧ୀଵ,ଶ,ଷ…        (37) 

When the total energy of the cluster is known, (38) and (39) calculate the weighted centroid 

speed, 𝑣௖ೝ
 and torque, 𝑇௖ೝ

, respectively. 

vୡ౨
=

ଵ

୉ౙ౨

∑ E୧୰v୧୰
୒౟
୧ୀଵ,ଶ,ଷ…       (38) 
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Tୡ౨
=

ଵ

୉ౙ౨

∑ E୧୰T୧୰
୒౟
୧ୀଵ,ଶ,ଷ…       (39) 

When applied to the operating points produced by the WLTC Class 3 drive cycle 

simulation, the total operating region is split into nine equal sub regions creating nine 

clusters of operating points to be analyzed with respect to the energy consumption of each 

point. The Energy Center of Gravity Clustering algorithm iterates through all subregions 

resulting in the centroids depicted in Fig. 5.10, among the sub-region each centroid 

represents. A comparison between the centroid produced by the energy center of gravity 

clustering algorithm and the true mean can be drawn from Fig. 5.11, demonstrating a 

significant difference between centroid locations of with respect to the torque-speed range. 

The energy consumption of each cluster’s centroid listed in Table 5.2 clearly indicates that 

the centroid location produced by the energy center of gravity clustering algorithm was 

selected based on higher energy consumption. The significance of using energy center of 

gravity clustering to represent operating points of higher energy consumption as they carry 

 

Fig. 5.10. The centroid of each sub-region is highlighted in red among the measured operating points from 
the WLTC drive cycle test. 
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Fig. 5.11. The centroid position on the torque-speed sub-region with respect to the conventional mean 
demonstrates the effect of energy center of gravity clustering. 

TABLE 5.2 

CONVENTIONAL MEAN AND ENERGY CENTER OF GRAVITY CLUSTERING 

Clustering 
Method 

Conventional Mean 
Energy Center of Gravity 

Centroid 
Normalized 

Energy 

Sub-
Region 

Mean Torque Mean Speed 
Centroid 
Torque 

Centroid 
Speed 

(%) 

1 789.1866 5.1581 1053.4309 7.3832 3.4568 

2 2286.6940 6.6177 2403.9938 7.8528 18.2779 

3 3570.7375 8.6276 3561.3429 9.9367 8.8947 

4 974.8661 17.9718 1120.3805 18.6103 7.9422 

5 2240.0364 16.3047 2322.4715 16.8170 11.4676 

6 4059.8764 17.8372 4138.2247 18.5539 38.8926 

7 906.6508 28.7649 1053.5298 29.0700 4.8411 

8 2125.7289 27.6165 2217.6596 27.7165 4.3020 

9 4040.5779 24.5042 4041.3998 24.5075 1.5873 
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more significance when optimizing the energy losses of baseline tractive IM. The dynamic 

rotor bar optimization will be carried out with respect to the performance of the baseline 

IM on all 9 operating points produced, ensuring the full scope of possible operating 

conditions over the WLTC Class 3 drive cycle is considered. 

5.5. Optimization Considering Multiple Operating Points 

 To optimize the rotor bar geometry with respect to dynamic operating conditions, 

each possible rotor bar represented by an individual must be evaluated at all 9 operating 

conditions with respect to both the output torque and the losses. To avoid overwhelming 

the GA by passing a total of 18 OF scores for each individual within the population or 

adding unnecessary steps by optimizing each operating point individually, modifications 

need to be made to the evaluation of the PECM and the OFs of the non-dominated adaptive 

restart GA to allow for dynamic optimization through (40) and (41). 

OF୲୭୰౟
(gen) = ∑ (Eୡ) × ൬1 − tanh ൬K୲୭୰ × ൤

୘౥౫౪౟౨
(୥ୣ୬)ି୘ౘ౛౩౪౨(୥ୣ୬)

୘ౘ౗౩౛౨(୥ୣ୬)
൨൰൰

୒౨
୰ୀଵ,ଶ,ଷ…       (40) 

OF୪୭ୱୱ౟
(gen) = ∑ (Eୡ) × ൬1 + tanh ൬K୲୭୰ × ൤

୔ౢ౥౩౩౟౨
(୥ୣ୬)ି୔ౘ౛౩౪౨(୥ୣ୬)

୔ౘ౗౩౛౨(୥ୣ୬)
൨൰൰

୒౨
୰ୀଵ,ଶ,ଷ…      (41) 

Rather than passing the torque and loss performance under each operating condition as its 

own objective score, the performance with respect to the torque, 𝑇௢௨௧೔ೝ
, produced by an 

individual, 𝑖, under each operating conditions, 𝑟, is assigned a torque objective fitness 

score, 𝑂𝐹௧௢௥೔
, and a loss objective fitness is assigned as 𝑂𝐹௟௢௦௦೔

. The use of hyperbolic 

tangent based OFs ensure an equal contribution to the overall objective fitness with respect 

to each operating point is maintained. The contribution to the objective fitness at each 

operating point is then scaled by the normalized energy consumption, 𝐸௖ೝ
, under the current 

operating conditions produced by the energy center of gravity clustering algorithm. By 
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applying weights with respect to energy consumption, the objective fitness will place a 

higher value on individuals that result in objective improvements under operating 

conditions that demand higher energy consumption. The torque and loss objective fitness 

scores are then passed as the two objective scores to the non-dominated adaptive restart 

GA, which are then combined to produce the total fitness of the individual. The iterative 

performance calculation carried out under every operating condition by the permeance 

based equivalent circuit model add a significant number of computations to the algorithm 

resulting in longer run times. The benefit of targeted dynamic optimization justifies the 

increased run time as the global optimal rotor bar design produced represents an improved 

design with respect to the base design across every significant operating condition. The 

proposed non-dominated adaptive restart GA is now capable of geometric rotor bar 

optimization for improved torque and minimized losses considering a dynamic operation. 
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CHAPTER 6 Tractive Induction Motor Rotor Bar Optimization Using a 

Novel Non-dominated Adaptive Restart Genetic Algorithm 

Considering Dynamic Operating Conditions 

6.1. Novel Adaptive Restart Genetic Algorithm Performance 

The adaptive restart GA has been modified to improve the algorithm’s robustness 

against stalling and local solutions while improving the overall confidence and quality of 

the final optimal solution produced. The PECM is capable of rapidly predicting the 

performance at specifically chosen operating points and relay the weighted objective score 

through novel hyperbolic tangent based objective functions ensuring a balanced 

improvement with respect to both objectives. Through limit reduction, the overall runtime 

of the algorithm is maintained at considerably low levels while the solution quality has 

been further enhanced as the search space is more thoroughly explored each restart 

iteration. The non-dominated adaptive restart GA can now be implemented to optimize the 

rotor bar of the baseline IM for improved output torque and reduced total losses at every 

operating point identified by the energy center of gravity clustering of the WLTC Class 3 

drive cycle-based torque-speed profile of the baseline IM. The adaptive restart GA 

parameters are listed in Table 6.1, the restart tolerance and function tolerance have both 

been set to 10-4, and the minimum and the maximum number of restarts are two and ten, 

respectively. The GA parameters limit each run to 500 generations of a population of 200 

individuals while allowing a maximum number of 150 stalls to analyze the effect of restart 

parameters in improving the OA’s resistance to excessive stalling. The algorithm is limited 

to a 300 second maximum run time to ensure the optimal rotor bar is produced quickly  
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TABLE 6.1 

ADAPTIVE RESTART GENETIC ALGORITHM PARAMETERS AND TOLERANCES 

GA Parameters Restart Parameters 

Parameter Value Parameter Value 

Maximum Generations 500 Maximum Restart Iterations 10 

Maximum Stall Generations 150 Minimum Restart Iterations 2 

Function Tolerance 10-4 Restart Tolerance 10-4 

Population Size 200 Reduction Factor 10% 

Pareto Fraction 50% Maximum Run Time (s) 300 

Crossover Rate 20%   

Mutation Rate 10%   

while maintaining a high solution quality. The pareto fraction represents the number of 

high scoring individuals of the population are kept at the end of each iteration, in this case. 

The non-dominated adaptive restart GA converged to a global optimal solution after seven 

restart iterations, during which an average of 356 generations were evaluated during each 

iteration before the function tolerance was reached. The total run time of the adaptive  

TABLE 6.2 

ADAPTIVE RESTART GENETIC ALGORITHM PERFORMANCE 

Adaptive Restart GA Performance 

Performance Parameter Value Performance Parameter Value 

Total Number of Restarts 7 
Centroid Output Torque OF 
Score 

0.279 

Algorithm Run Time (s) 98.91 Centroid Total Loss OF Score 0.483 

Average Number of Generations 357 Total Centroid OF Score 0.742 

Maximum Number of Stall 
Generations 

32   
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restart GA was 98.91 seconds which is well below the maximum run time, ensuring a rapid 

optimal design. Table 6.2 indicates that the maximum number of stall generations in which 

no improvement in objective function score is noticed, was only 32 generations which 

indicates the adaptive restart GA is incredibly resistant to stalling despite a high pareto 

fraction and maximum stall generation limit. From the objective function scores of the 

torque and losses after converging. The loss objective score of 0.483 is very close to the 

baseline losses of 0.5, indicating that the losses were only slightly reduced. This does not 

indicate the presence of a dominant objective, however, as there is no bias between 

objectives. The torque produced by the optimal solution increased by such a large amount 

that despite only a small reduction in the loss objective score, the optimal rotor bar 

produced saw a greater reduction in total objective function score and was therefore 

selected as the global solution. The local limits with respect to the centroid evolution over 

the seven restart iterations is depicted in Fig. 6.1 with respect to one input variable. Through 

 

Fig. 6.1. The local upper and lower bound with respect to one input variable and centroid evolution with 
respect to each restart iteration. 
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reducing the search space each iteration, the population becomes crowded in a more 

focused area allowing for a refined search and improving the overall solution quality of the 

global optimal rotor bar geometry produced. It should be noted that until the minimum 

number of restart iterations is reached, the local bounds remain at initial global bounds. 

This ensures the initial iterations are allowed to explore the largest possible search space. 

The torque and loss performance of the best individual across all cumulative generations 

is depicted in Fig. 6.2 and shows the spike in both objective targets is seen when the 

algorithm resets and the population is once again randomly initialized. The normalized 

torque and loss performance is based on the performance of the optimal rotor bar as a per 

unit value of the base design and the normalized energy consumption of each sub-region. 

The local optimal set of input variables, assigned as the centroid at each restart iteration, 

 

Fig. 6.2. Normalized torque and losses of the best-known solution at each generation across all restart 
iterations and the respective centroids. 
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represents the current best-known solution and is seen to change slightly between restart 

iterations as better solutions are found. The input variables may greatly vary between 

restart iterations. However, the torque and loss performance must remain competitive, and 

therefore only small increases in centroid performance occur. The centroid produced by 

the seventh restart iteration represents the global optimal solution and optimal rotor bar 

geometry which must be validated and compared to the baseline rotor bar. 

 The proposed novel, non-dominated adaptive restart GA is capable of rapid, 

unbiased, multi-objective optimization, as seen in the results presented in this section. The 

algorithm was able to resist stalling, while considering dynamic operating conditions, 

quickly resulting in an optimal rotor bar geometry with greater torque performance and a 

considerable reduction in total losses. From the results presented in this section, it can be 

confirmed that the algorithm level objectives are met by the proposed method. The 

following section will analyze the optimal bar produced, validating and comparing the 

optimized rotor bar performance to that of the base design. 

6.2. Comparison of Optimal Rotor Bar Geometry and Validation 

To analyze the solution quality and effectiveness of the proposed adaptive restart 

GA, the optimal rotor bar produced must be compared to that of the baseline design. Some 

preliminary conclusions were drawn based on the objective function scores of the centroid, 

which through the validation and evaluation of the optimal rotor bar must be confirmed to 

achieve motor and vehicle level objectives. The optimal rotor bar depicted in figure 6.3 

over the baseline bar geometry shows that the rotor bar has decreased in overall height and 

width, resulting in a lower cross-sectional area. The torque region at the top of the rotor 

bar had become elongated to produce a higher output torque causing higher losses at the 
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Fig. 6.3. A rotor section of both the baseline rotor and optimal rotor depicted the relative size of the rotor 
bara with respect to the rotor while an overlay compares the change in size and shape to one another. 

tooth tops and the upper portion of the bar. However likely balanced out by the increased 

width in the lower portion of the bar. With the expected increase in torque and reduction 

in losses expected to bring an increase in efficiency and torque density, the optimal rotor 

bar will be evaluated under the same operating conditions measured during the 

experimental tests conducted on the baseline IM. This not only ensures a direct comparison 

between the baseline rotor bar performance and the optimal geometry produced by the 

proposed method, this also ensures different operating points than the significant operating 

points produced by the energy center of gravity method and used by the adaptive restart 

GA. Comparing the performance on a different set of operating points ensures that the 

optimal rotor bar geometry produced, in fact, represents the global optimal solution across 

all operating conditions experienced by the baseline tractive IM both in the constant torque 

and power regions. Fig. 6.4 plots the measured torque, losses and efficiency of the baseline 

IM against the performance of the optimal rotor bar calculated using the PECM and FEA. 
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Fig. 6.4. Torque, total loss and operating efficiency validation on 5 test points of the optimal rotor bar 
produced by the novel, non-dominated adaptive restart GA. (a) Depicts the large torque improvement. (b) 
Validates the total losses produced by the optimized rotor IM. (c) Depicts the efficiency validation of the 
optimized rotor bar design. 
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The PECM was able to predict the torque with an average error of 7.16%, the total 

losses within an average error of 7.89% and the efficiency to 1.12% average error, which 

are consistent with the baseline validation and within acceptable margins. FEA also 

revealed that the even under high loading conditions, the flux density in the tooth tops was 

maintained below the maximum flux density of 1.7 T, satisfying the optimization problems 

constraint. The figure also indicates only small reductions in the losses while the torque is 

seen to have increased substantially at every operating test point compared to the measured 

performance of the baseline IM. The output torque and total losses of the baseline and 

optimal IM are displayed in Table 6.3. The output torque was increased at every operating 

test point by a minimum of 6% and an average of 7.5%, while the total losses were also 

successfully reduced at every operating point by an average of 0.5%. Although the losses 

were reduced by the desired 3%, the torque was increased by such a large factor, that the 

overall increase in output power while the total losses are similar, both the torque density 

and efficiency have been increased. As the weight of the IM has not changed significantly, 

the torque density can be assumed to also increase by a factor of 7.5%, while Table 6.4 

displays the efficiency calculated at each operating point for the baseline and optimal 

design. The operating efficiency was also successfully increased by 1.3%. 

The optimal rotor bar has been validated against FEA, and the performance 

improvement at every operating test point analyzed, it can be concluded that the optimal 

rotor bar produced by the proposed novel, non-dominated adaptive restart GA is capable 

of producing 7.5% higher output torque while offering 0.56% lower total losses resulting 

in an optimized IM with improved torque density and 1.3% higher operating efficiency 

achieving the motor, and vehicle level objectives.   
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TABLE 6.3 

TORQUE AND LOSS PERFORMANCE OF BASELINE AND OPTIMAL ROTOR BAR 

Baseline IM Performance 
Optimized IM 
Performance 

Performance Improvement 

Output 
Torque (Nm) 

Total Losses 
(W) 

Output 
Torque (Nm) 

Total Losses 
(W) 

Torque 
Increase 

Total Loss 
Reduction 

25.2191 1,346.2986 26.9349 1,339.8836 6.8036 -0.4765 

25.5091 1,331.4606 27.4203 1,326.8101 7.4921 -0.3493 

23.7204 955.5482 25.1636 944.7842 6.0843 -1.1265 

11.9630 632.0332 13.0545 630.9877 9.1241 -0.1654 

11.5548 510.5318 12.4846 507.2355 8.0469 -0.6457 

25.2191 1,346.2986 26.9349 1,339.8836 6.8036 -0.4765 

25.5091 1,331.4606 27.4203 1,326.8101 7.4921 -0.3493 

  Average Change 7.5102 -0.5527 

TABLE 6.4 

THE EFFICIENCY PERFORMANCE OF BASELINE AND OPTIMAL ROTOR BAR 

Baseline vs. Optimal Efficiency Performance 

Baseline IM (%) Optimized IM (%) Percent Increase (%) 

66.2348 67.7951 2.3558 

75.0589 76.4498 1.8531 

90.0975 90.7080 0.6777 

89.0431 89.8815 0.9415 

91.5984 92.2218 0.6805 

66.2348 67.7951 2.3558 

75.0589 76.4498 1.8531 

 Average Change 1.3017 
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CHAPTER 7 Research Summary  

7.1. Conclusions 

In conclusion, to develop an algorithm capable of dynamic multi-objective 

optimization of a tractive induction machine rotor bar for higher torque and lower losses, 

a novel, robust non-dominated adaptive restart GA was proposed and developed to ensure 

high quality solutions and low run times while eliminating function bias between 

objectives. Through the incorporation of drive cycle based operating points, the non-

dominated adaptive restart GA is able to optimize the rotor bar geometry of a tractive IM 

with respect to output torque and total losses under dynamic operating conditions. The 

optimal rotor bar produced by the newly proposed non-dominated adaptive restart GA is 

capable of producing an average of 7.51% higher torque and 0.553% lower losses across 

all significant operating points resulting in a tractive IM with an equal increase in torque 

density as the machine weight remained constant and an operating efficiency increase of 

an average 1.3%. Although the losses were not improved by the target 3%, the optimal 

rotor bar design produced offers more than 5.51% large improvement in the output torque 

than the target 3%. Therefore, the smaller improvement in losses is justified by the overall 

IM performance. The optimized tractive IM with higher torque density and operating 

efficiency may now be used in a commercially available EV resulting in better tractive 

performance and extended rangers. Through the proposed method, objectives at every level 

of the optimization problem were met by the proposed deliverables resulting in the global 

objective being achieved. 
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7.2. Future Research on Rotor Bar Optimization of Tractive IMs 

To pursue geometric rotor bar optimization further, the permeance based equivalent 

circuit model may be modified to incorporate the effects of rotor bar skewing and pitching, 

allowing the rotor skew and rotor slot pitch to be an input to the OA. This increases the 

number of possible rotor bar designs the algorithm can generate. However, it would 

introduce complex mathematics into the analytical model and increase the run time of the 

algorithm, which will need to be addressed. The incorporation of double caged rotor bar 

geometries would also greatly increase the number of possible solutions. However, the 

analytical model would likely need to be modified to toggle between single and double 

cage-based models depending on the input of the OA, greatly increasing the complexity of 

the model. Lastly, rotor bar optimization should be expanded to incorporate major stator 

components into the optimization as well, allowing both the rotor and stator to be optimized 

simultaneously. This may require reducing the number of rotor-based input variables in 

order to maintain a reasonable number of inputs to the OA, while a large number of 

additional constraints and limitations will be introduced into the optimization problem. 



 

107 
 

REFERENCES 

[1] Total greenhouse gas emissions. Our World in Data. [Online]. Available: 
https://ourworldindata.org/grapher/total-ghg-
emissions?tab=chart&country=~OWID_WRL 

[2] D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wagner, and R. Gorini, “The 
role of renewable energy in the global energy transformation,” Energy Strategy 
Reviews, vol. 24, pp. 38–50, April 2019. doi: 10.1016/J.ESR.2019.01.006. 

[3] H. Ritchie, M. Roser, and P. Rosado. (2020). Greenhouse gas emissions. Our World 
in Data. [Online]. Available: https://ourworldindata.org/co2-and-other-greenhouse-
gas-emissions 

[4] (2022, May) “Facility Greenhouse Gas Reporting: Overview of 2020 Reported 
Emissions’. Government of Canada. Canada. [Online]. Available : 
https://www.canada.ca/en/environment-climate-change/services/climate-
change/greenhouse-gas-emissions/facility-reporting/overview-2020.html#shr-pg0 

[5] A. Bellini, F. Filippetti, C. Tassoni, and G. A. Capolino, “Advances in diagnostic 
techniques for induction machines,” IEEE Trans. Industrial Electronics, vol. 55, no. 
12, pp. 4109–4126, 2008. doi: 10.1109/TIE.2008.2007527. 

[6] Global EV outlook 2021 - Introduction. IEA. [Online]. Available: 
https://www.iea.org/reports/global-ev-outlook-2021/introduction#overview  

[7] Audi MediaCenter (2017) Audi e-tron Sportback concept. [Online]. Available: 
https://www.audi-mediacenter.com/en/photos/detail/audi-e-tron-sportback-
concept-44496 

[8] H. de Keulenaer, “Energy efficient motor driven systems,” Energy and 
Environment, vol. 15, no. 5, pp. 873–905, 2004. doi: 10.1260/0958305042886688. 

[9] P. C. Krause, O. Wasynczuk, and S. D. Sudhoff. (2002). Analysis of Electric 
Machinery and Drive Systems. [Online]. Available: 
https://ieeexplore.ieee.org/book/5265638 

[10] F. Blaabjerg, H. Wang, I. Vernica, B. Liu and P. Davari, "Reliability of Power 
Electronic Systems for EV/HEV Applications," in Proceedings of the IEEE, vol. 
109, no. 6, pp. 1060-1076, June 2021, doi: 10.1109/JPROC.2020.3031041 

[11] L. Yan and X. Song, “Design and implementation of Luenberger model-based 
predictive torque control of induction machine for robustness improvement,” IEEE 
Trans. Power Electronics, vol. 35, no. 3, pp. 2257–2262, Mar. 2020. doi: 
10.1109/TPEL.2019.2939283. 

[12] M. Karamuk, “A survey on electric vehicle powertrain systems,” in Proc. Int. 
Aegean Conf. Electr. Mach. Power Electron. Electromotion Joint Conf., 2011, pp. 
315–324. doi: 10.1109/ACEMP.2011.6490617. 

[13] H. E. Jordan, R. C. Zowarka, T. J. Hotz, and J. R. Uglum, “Induction motor 
performance testing with an inverter power supply: Part 1,” IEEE Trans. Magnetics, 
vol. 43, no. 1, pp. 242–245, Jan. 2007. doi: 10.1109/TMAG.2006.887671. 



 

108 
 

[14] R. C. Zowarka, T. J. Hotz, J. R. Uglum, and H. E. Jordan, “Induction motor 
performance testing with an inverter power supply: Part 2,” IEEE Trans. Magnetics, 
vol. 43, no. 1, pp. 275–278, Jan. 2007. doi: 10.1109/TMAG.2006.887599. 

[15] Global EV outlook 2021 - Policies to promote electric vehicle deployment. IEA. 
[Online]. Available: https://www.iea.org/reports/global-ev-outlook-2021/policies-
to-promote-electric-vehicle-deployment 

[16] G. K. Singh, “Multi-phase induction machine drive research - A survey,” Electric 
Power Systems Research, vol. 61, no. 2, pp. 139–147, Mar. 2002. doi: 
10.1016/S0378-7796(02)00007-X. 

[17] EV30@30 campaign. Clean Energy Ministerial [Online]. Available: 
https://www.cleanenergyministerial.org/initiatives-campaigns/ev3030-campaign 

[18] Global plug-in electric vehicle market share in 2021, by main producers. Statista. 
[Online]. Available: https://www.statista.com/statistics/541390/global-sales-of-
plug-in-electric-vehicle-manufacturers 

[19] Global Electric car registrations and market share, 2015-2020. IEA. [Online]. 
Available: https://www.iea.org/data-and-statistics/charts/global-electric-car-
registrations-and-market-share-2015-2020 

[20] Transport sector CO2 emissions by mode in the Sustainable Development Scenario, 
2000-2030. IEA. [Online]. Available: https://www.iea.org/data-and-
statistics/charts/transport-sector-co2-emissions-by-mode-in-the-sustainable-
development-scenario-2000-2030  

[21] List of eligible vehicles under the iZEV Program. Transport Canada. [Online]. 
Available: https://tc.canada.ca/en/road-transportation/innovative-
technologies/zero-emission-vehicles/list-eligible-vehicles-under-izev-program  

[22] “Stellantis plants in Windsor, Brampton to get $3.6B in upgrades for EV 
production,” CBC News, May 2, 2022. [Online]. Available: 
https://www.cbc.ca/news/canada/windsor/prime-minister-ontario-premier-
stellantis-windsor-announcement-1.6437954 

[23] Electric Vehicle Database. [Online]. Available: https://ev-
database.org/#sort:path~type~order=.rank~number~desc|range-slider-
range:prev~next=0~1200|range-slider-acceleration:prev~next=2~23|range-slider-
topspeed:prev~next=110~450|range-slider-battery:prev~next=10~200|range-slider-
towweight:prev~next=0~2500|range-slider-
fastcharge:prev~next=0~1500|paging:currentPage=0|paging:number=9 

[24] EVSpecifications - Electric vehicle specifications, electric car news, EV 
comparisons. [Online]. Available: https://www.evspecifications.com 

[25] Mark Kane. (2022, Feb). Compare Electric Cars: EV Range, Specs, Pricing & More. 
INSIDEEVs. [Online]. Available: https://insideevs.com/reviews/344001/compare-
evs 

[26] B. Bilgin and A. Emadi, “Electric motors in electrified transportation: A step toward 
achieving a sustainable and highly efficient transportation system,” IEEE Power 



 

109 
 

Electronics Magazine, vol. 1, no. 2, pp. 10–17, Jun. 2014. doi: 
10.1109/MPEL.2014.2312275. 

[27] J. Zhang, B. Wang, Y. Yu, H. Cai, X. Zhang, and D. Xu, “Angle compensation-
based voltage redistribution for induction motor drives in the field-weakening 
windup region,” in Proc. 22nd Int. Conf. Electr. Mach. Syst., (ICEMS), Aug. 2019. 
pp. 1-6. doi: 10.1109/ICEMS.2019.8921483. 

[28] C. S. N. Shiau, C. Samaras, R. Hauffe, and J. J. Michalek, “Impact of battery weight 
and charging patterns on the economic and environmental benefits of plug-in hybrid 
vehicles,” Energy Policy, vol. 37, no. 7, pp. 2653–2663, July 2009. doi: 
10.1016/J.ENPOL.2009.02.040. 

[29] C. Lai, G. Feng, Z. Li, and N. C. Kar, “Computation-efficient decoupled 
multiparameter estimation of PMSMs from massive redundant measurements,” 
IEEE Trans. Power Electronics, vol. 35, no. 10, pp. 10729–10740, Oct. 2020. doi: 
10.1109/TPEL.2020.2980315. 

[30] A. Vagati, G. Pellegrino, and P. Guglielmi, “Comparison between SPM and IPM 
motor drives for EV application,” in Proc. Int. Conf. Electri. Mach., (ICEM), 2010, 
pp. 1-6. doi: 10.1109/ICELMACH.2010.5607911. 

[31] Y. Guan, Z. Q. Zhu, I. A. A. Afinowi, J. C. Mipo, and P. Farah, “Comparison 
between induction machine and interior permanent magnet machine for electric 
vehicle application,” 17th Int. Conf. Electr. Mach. Syst., (ICEMS), 2014, pp. 144-
150. doi: 10.1109/ICEMS.2014.7013454. 

[32] K. Kim, J. Bae, W. H. Kim, S. H. Ham, S. Cho, and J. Lee, “Design and comparison 
between IM and PMSM for hybrid electrical vehicles,” in Proc. Digests. 2010 14th 
Biennial IEEE Conf. Electromagnetic Field Computation, (CEFC), 2010, pp. 1-1. 
doi: 10.1109/CEFC.2010.5481798. 

[33] Viktor Bobek, “PMSM electrical parameters measurement,” F. Semiconductor Inc., 
AN4680, 2013. [Online]. Available: 
https://wenku.baidu.com/view/f1e90d56f7ec4afe04a1df4d.html 

[34] G. Bramerdorfer, G. Weidenholzer, S. Silber, W. Amrhein, and S. Lanser, 
“Measurement-based nonlinear modeling of PMSMs,” in Proc. IECON 2015 - 41st 
Annu. Conf. IEEE Ind. Electron. Soc., 2015, pp. 2036–2041. doi: 
10.1109/IECON.2015.7392400. 

[35] G. Bramerdorfer, A. Cavagnino, and S. Vaschetto, “Cost-optimal machine designs 
fulfilling efficiency requirements: A comparison of IMs and PMSMs,” in Proc. 
IEEE Int. Electr. Mach. Drives Conf., (IEMDC), 2017, pp. 1-8, doi: 
10.1109/IEMDC.2017.8002044. 

[36] S. Mallik et al., “Efficiency and cost optimized design of an induction motor using 
genetic algorithm,” IEEE Trans. Industrial Electronics, vol. 64, no. 12, pp. 9854–
9863, Dec. 2017, doi: 10.1109/TIE.2017.2703687. 

[37] Y. C. Zhuang, H. Yu, and J. Xia, “A novel adaptive genetic algorithm applied to 
optimizing linear induction machines.” in Proc. Int. Conf. Electr. Mach. Syst., 2008, 
pp. 3435-3438. 



 

110 
 

[38] M. A. Kabir, M. Z. M. Jaffar, Z. Wan, and I. Husain “Design, optimization, and 
experimental evaluation of multilayer ac winding for induction machine,” IEEE 
Trans. Ind. Appl., vol. 55, no. 4, pp. 3630-3639, July-Aug. 2019. doi: 
10.1109/TIA.2019.2910775. 

[39] O. Dobzhanskyi, E. Amiri and R. Gouws, "Comparison analysis of electric motors 
with two degrees of mechanical freedom: PM synchronous motor vs induction 
motor," 2016 II International Young Scientists Forum on Applied Physics and 
Engineering (YSF), 2016, pp. 14-17, doi: 10.1109/YSF.2016.7753750. 

[40] E. Gary, A. Magno and R. Jorge, “Design, analysis and validation of a six-phase 
induction machine from a commercial three-phase for academic research,” IEEE 
Latin America Transactions, vol. 18, no. 11, pp. 1943-1952, Nov. 2020. doi: 
10.1109/TLA.2020.9398636. 

[41] M. J. Akhtar and R. K. Behera, “Optimal design of stator and rotor slot of induction 
motor for electric vehicle applications,” IET Electr. Syst. Transp., vol. 9, no. 1, pp. 
35–43, Mar. 2019, doi: 10.1049/iet-est.2018.5050. 

[42] A. Mollaeian, E. Ghosh, H. Dhulipati, J. Tjong, and N. C. Kar, “3-D sub-domain 
analytical model to calculate magnetic flux density in induction machines with semi-
closed slots under no-load condition,” IEEE Trans. Magnetics, vol. 53, no. 6, pp. 1-
5, June 2017, Art no. 7206905. doi: 10.1109/TMAG.2017.2658543  

[43] H. Tang, M. Zhang, Y. Dong, W. Li, and L. Li, “Influence of the opening width of 
stator semi-closed slot and the dimension of the closed slot on the magnetic field 
distribution and temperature field of the permanent magnet synchronous motor,” 
IET Electr. Power Appl., vol. 14, no. 2, pp. 1642–1652, Sep. 2020. doi: 10.1049/iet-
epa.2019.0736. 

[44] A. S. Abdel-Khalik, M. I. Daoud, S. Ahmed, A. A. Elserougi, and A. M. Massoud, 
“Parameter identification of five-phase induction machines with single layer 
windings,” IEEE Trans. Industrial Electronics, vol. 61, no. 10, pp. 5139–5154, 
2014. doi: 10.1109/TIE.2013.2297294. 

[45] Y. Xu, Z. Xu, and M. Ai, “Application of ring winding in induction motor,” IEEE 
Trans. Applied Superconductivity, vol. 31, no. 8, pp. 1-5, Nov. 2021. doi: 
10.1109/TASC.2021.3107809. 

[46] S. Mallampalli, Z. Q. Zhu, J. C. Mipo, and S. Personnaz, “Six-phase pole-changing 
winding induction machines with improved performance,” IEEE Trans. Energy 
Conversion, vol. 36, no. 1, pp. 534–546, Mar. 2021. doi: 
10.1109/TEC.2020.3009190. 

[47] J. M. Apsley and S. Williamson, “Analysis of multiphase induction machines with 
winding faults,” IEEE Trans. Industry Applications, vol. 42, no. 2, pp. 465–472, 
Mar. 2006. doi: 10.1109/TIA.2005.863915. 

[48] A. S. Abdel-Khalik, M. S. Abdel-Majeed, and S. Ahmed, “Effect of winding 
configuration on six-phase induction machine parameters and performance,” IEEE 
Access, vol. 8, pp. 223009–223020, 2020. doi: 10.1109/ACCESS.2020.3044025. 



 

111 
 

[49] G. Rezazadeh, F. Tahami, G. A. Capolino, S. Vaschetto, Z. Nasiri-Gheidari, and H. 
Henao, “Improvement of concentrated winding layouts for six-phase squirrel cage 
induction motors,” IEEE Trans. Energy Conversion, vol. 35, no. 4, pp. 1727–1735, 
Dec. 2020. doi: 10.1109/TEC.2020.2995433. 

[50] D. J. Kim, J. W. Jung, J. P. Hong, K. J. Kim, and C. J. Park, “A study on the design 
process of noise reduction in induction motors,” IEEE Trans. Magnetics, vol. 48, 
no. 11, pp. 4638–4641, 2012. doi: 10.1109/TMAG.2012.2197187. 

[51] M. A. Khoshhava, H. A. Zarchi, and G. A. Markadeh, “Optimal design of a dual 
stator winding induction motor with minimum rate reduction level,” IEEE Trans. 
Industrial Electronics, vol. 68, no. 2, pp. 1016–1024, Feb. 2021. doi: 
10.1109/TIE.2020.2967690. 

[52] K. Sedef, A. Maheri, M. Yilmaz, and A. Daadbin, “Performances of AC induction 
motors with different number of poles in urban electric cars,” in Proc. 3rd Int. Symp. 
Environ. Friendly Energies. Appl., (EFEA), 2014, pp. 1-5. doi: 
10.1109/EFEA.2014.7059946. 

[53] T. Gundogdu, Z. Q. Zhu, and J. C. Mipo, “Influence of stator slot and pole number 
combination on rotor bar current waveform and performance of induction 
machines,” in Proc. 20th Int. Conf. Electr. Mach. Syst., (ICEMS), 2017. pp. 1-6. doi: 
10.1109/ICEMS.2017.8055937. 

[54] K. Gyftakis, J. Kappatou, and A. Safacas, “FEM study of asynchronous cage motors 
combining NEMA’s classes A and D slot geometry,” in Proc. 19th Int. Conf. Electr. 
Mach., (ICEM ), 2010, pp. 1-6. doi: 10.1109/ICELMACH.2010.5607691. 

[55] K. W. Jeon, T. K. Chung, and S. C. Hahn, “NEMA class A slot shape optimization 
of induction motor for electric vehicle using response surface method,” in Proc. Int. 
Conf. Electr. Mach. Syst., (ICEMS), 2011, pp. 1-4. doi: 
10.1109/ICEMS.2011.6073692. 

[56] V. F. Syvokobylenko and S. N. Tkachenko, “Bar diagnostics of double cage or deep 
bar rotor of an induction motor,” in Proc. Int. Conf. Ind. Eng. Appl. Manuf., 
(ICIEAM), 2020, pp. 1-7. doi: 10.1109/ICIEAM48468.2020.9111880. 

[57] C. G. Heo, H. M. Kim, and G. S. Park, “A design of rotor bar inclination in squirrel 
cage induction motor,” IEEE Trans. Magnetics, vol. 53, no. 11, pp. 1-4, Nov. 2017. 
doi: 10.1109/TMAG.2017.2696977. 

[58] J. Marault, A. Tounzi, F. Gillon, and M. Hecquet, “Efficient approach based on 
equivalent electric circuit model to determine rotor bar currents of squirrel cage 
induction machines,” IEEE Trans. Magnetics, vol. 57, no. 2, pp. 1-5, Feb. 2021. doi: 
10.1109/TMAG.2020.3011612. 

[59] D. Zhang, C. S. Park, and C. S. Koh, “A new optimal design method of rotor slot of 
three-phase squirrel cage induction motor for NEMA class D speed-torque 
characteristic using multi-objective optimization algorithm,” IEEE Trans. 
Magnetics, vol. 48, no. 2, pp. 879-882, 2012. doi: 10.1109/TMAG.2011.2174040. 

[60] H. K. Kwan. (2018, March 13). Global Optimization Algorithms and Design 
Applications. (1.2 ed.). ISBN13: 9781988307046 



 

112 
 

[61] A. P. Yadav, R. Madani, N. Amiri, J. Jatskevich, and A. Davoudi, “Induction 
machine parameterization from limited transient data using convex optimization,” 
IEEE Trans. Industrial Electronics, vol. 69, no. 2, pp. 1254–1265, Feb. 2022. doi: 
10.1109/TIE.2021.3060668. 

[62] N. Taran, D. M. Ionel, and D. G. Dorrell, “Two-level surrogate-assisted differential 
evolution multi-objective optimization of electric machines using 3-D FEA,” IEEE 
Trans. Magnetics, vol. 54, no. 11, Nov. 2018. doi: 10.1109/TMAG.2018.2856858. 

[63] C. López-Torres, A. G. Espinosa, J. R. Riba, and L. Romeral, “Design and 
optimization for vehicle driving cycle of rare-earth-free SynRM based on coupled 
lumped thermal and magnetic networks,” IEEE Trans. Vehicular Technology, vol. 
67, no. 1, pp. 196–205, Jan. 2018. doi: 10.1109/TVT.2017.2739020. 

[64] N. Zhao and N. Schofield, “An induction machine design with parameter 
optimization for a 120-kW electric vehicle,” IEEE Trans. Transportation 
Electrification, vol. 6, no. 2, pp. 592–601, Jun. 2020. doi: 
10.1109/TTE.2020.2993456. 

[65] G. Bramerdorfer, A. C. Zavoianu, S. Silber, E. Lughofer, and W. Amrhein, “Speed 
improvements for the optimization of electrical machines - A survey,” in Proc. IEEE 
Int. Electr. Mach. Drives Conf., (IEMDC), 2015, pp. 1748–1754. doi: 
10.1109/IEMDC.2015.7409300. 

[66] L. Alberti, N. Bianchi, and S. Bolognani, “A very rapid prediction of IM 
performance combining analytical and finite-element analysis,” IEEE Trans. 
Industry Applications, vol. 44, no. 5, pp. 1505–1512, 2008. doi: 
10.1109/TIA.2008.2002185. 

[67] T. Garbiec, M. Jagiela, and M. Kulik, “Application of nonlinear complex 
polyharmonic finite-element models of high-speed solid-rotor induction motors,” 
IEEE Trans. Magnetics, vol. 56, no. 4, pp. 1-4, Apr. 2020, doi: 
10.1109/TMAG.2019.2953987. 

[68] T. Schuhmann, B. Cebulski, and S. Paul, “Comparison of time-harmonic and 
transient finite element calculation of a squirrel cage induction machine for electric 
vehicles,” in Proc. Int. Conf. Electr. Mach., (ICEM), 2014, pp. 1037–1043. doi: 
10.1109/ICELMACH.2014.6960309. 

[69] D. K. Kim and B. il Kwon, “A novel equivalent circuit model of linear induction 
motor based on finite element analysis and its coupling with external circuits,” IEEE 
Trans. Magnetics, vol. 42, no. 10, pp. 3407–3409, 2006, doi: 
10.1109/TMAG.2006.879078. 

[70] L. Montier, T. Henneron, S. Clenet, and B. Goursaud, “Model order reduction 
applied to a linear finite element model of a squirrel cage induction machine based 
on POD approach,” IEEE Trans. Magnetics, vol. 57, no. 6, pp.1-4, Jun. 2021. doi: 
10.1109/TMAG.2021.3066678. 

[71] T. A. Lipo, “Magnetic circuits,” Introduction to AC Machine Design, IEEE, 2018, 
pp. 1–50. doi: 10.1002/9781119352181.CH1. 



 

113 
 

[72] T. M. Wolbank, R. Woehrnschimmel, and H. Hauser, “Transient magnetic modeling 
and measurements of sensorless controlled induction machines,” IEEE Trans. 
Magnetics, vol. 38, no. 5, pp. 3279–3284, Sep. 2002. doi: 
10.1109/TMAG.2002.803312. 

[73] J. Brudny, J. Lecointe, F. Morganti, F. Zidat, and R. Romary, “Use of the external 
magnetic field for induction machine leakage inductance distinction,” IEEE Trans. 
Magnetics, vol. 46, no. 6, pp. 2205–2208, Jun. 2010. doi: 
10.1109/TMAG.2010.2049005. 

[74] A. Repo, P. Rasilo, A. Niemenmaa, and A. Arkkio, “Identification of 
electromagnetic torque model for induction machines with numerical magnetic field 
solution,” IEEE Trans. Magnetics, vol. 44, no. 6, pp. 1586–1589, Jun. 2008. doi: 
10.1109/TMAG.2007.916143. 

[75] F. Sarapulov, S. Sarapulov, and I. Smolyanov, “Compensated linear induction motor 
characteristics research by detailed magnetic equivalent circuit,” in Proc. Int. Conf. 
Ind. Eng. Appl. Manuf., (ICIEAM), 2017. doi: 10.1109/ICIEAM.2017.8076314. 

[76] M. Amrhein and P. T. Krein, “Induction machine modeling approach based on 3-D 
magnetic equivalent circuit framework,” IEEE Trans. Energy Conversion, vol. 25, 
no. 2, pp. 339–347, Jun. 2010. doi: 10.1109/TEC.2010.2046998. 

[77] M. Tezcan, A. G. Yetgin, A. I. Canakoglu, B. Cevher, M. Turan, and M. Ayaz, 
“Investigation of the effects of the equivalent circuit parameters on induction motor 
torque using three different equivalent circuit models,” MATEC Web of 
Conferences, vol. 157, 2018. doi: 10.1051/matecconf/201815701019. 

[78] A. Boglietti, A. Cavagnino, and M. Lazzari, “Computational algorithms for 
induction motor equivalent circuit parameter determination-Part II: Skin effect and 
magnetizing characteristics,” IEEE Trans. Industrial Electronics, vol. 58, no. 9, pp. 
3734–3740, Sep. 2011, doi: 10.1109/TIE.2010.2084975. 

[79] A. Boglietti, A. Cavagnino, and M. Lazzari, “Computational algorithms for 
induction-motor equivalent circuit parameter determination-Part I: Resistances and 
leakage reactances,” IEEE Trans. Industrial Electronics, vol. 58, no. 9, pp. 3734–
3740, Sep. 2011. doi: 10.1109/TIE.2010.2084974. 

[80] N. Ullah, F. Khan, W. Ullah, M. Umair, and Z. Khattak, “Magnetic equivalent 
circuit models using global reluctance networks methodology for design of 
permanent magnet flux switching machine,” 15th Int. Bhurban Conf. Appl. Sci. 
Technol., (IBCAST), 2018, pp. 397-404. doi: 10.1109/IBCAST.2018.8312255. 

[81] A. Fatima et al., “Permeance-based equivalent circuit modeling of induction 
machines considering leakage reactances and non-linearities for steady-state 
performance prediction,” in Proc. 47th Annu. Conf. IEEE Ind. Electron. Society, 
2021, pp. 1-6. doi: 10.1109/IECON48115.2021.9589909. 

[82] J. Marault, A. Tounzi, F. Gillon, and M. Hecquet, “Efficient approach based on 
equivalent electric circuit model to determine rotor bar currents of squirrel cage 
induction machines,” IEEE Trans. Magnetics, vol. 57, no. 2, pp. 1-5, Feb. 2021. doi: 
10.1109/TMAG.2020.3011612. 



 

114 
 

[83] A. Boglietti, A. Cavagnino, and M. Lazzari, “Computational algorithms for 
induction-motor equivalent circuit parameter determination-Part I: Resistances and 
leakage reactances,” IEEE Trans. Industrial Electronics, vol. 58, no. 9, pp. 3723–
3733, Sep. 2011. doi: 10.1109/TIE.2010.2084974. 

[84] A. Boglietti, A. Cavagnino, and M. Lazzari, “Computational algorithms for 
induction motor equivalent circuit parameter determination-Part II: Skin effect and 
magnetizing characteristics,” IEEE Trans. Industrial Electronics, vol. 58, no. 9, pp. 
3734–3740, Sep. 2011. doi: 10.1109/TIE.2010.2084975. 

[85] K. Hafiz, G. Nanda, and N. C. Kar, “Performance analysis of aluminum- and copper-
rotor induction generators considering skin and thermal effects,” IEEE Trans. 
Industrial Electronics, vol. 57, no. 1, pp. 181–192, Jan. 2010. doi: 
10.1109/TIE.2009.2034177. 

[86] A. C. Zǎvoianu, G. Bramerdorfer, E. Lughofer, S. Silber, W. Amrhein, and E. Peter 
Klement, “Hybridization of multi-objective evolutionary algorithms and artificial 
neural networks for optimizing the performance of electrical drives,” Eng. Appl. 
Artif. Intell., vol. 26, no. 8, pp. 1781–1794, Sep. 2013. doi: 
10.1016/J.ENGAPPAI.2013.06.002. 

[87] J. le Besnerais, V. Lanfranchi, M. Hecquet, R. Romary, and P. Brochet, “Optimal 
slot opening width for magnetic noise reduction in induction motors,” IEEE Trans. 
Energy Conversion, vol. 24, no. 4, pp. 869–874, Dec. 2009. doi: 
10.1109/TEC.2009.2025421. 

[88] G. Joksimović, E. Levi, A. Kajević, M. Mezzarobba and A. Tessarolo, "Optimal 
Selection of Rotor Bar Number for Minimizing Torque and Current Pulsations Due 
to Rotor Slot Harmonics in Three-Phase Cage Induction Motors," in IEEE Access, 
vol. 8, pp. 228572-228585, 2020, doi: 10.1109/ACCESS.2020.3045766. 

[89] S. P. Han and O. L. Mangasarian, “Exact penalty functions in nonlinear 
programming,” Mathematical Programming, vol. 17, no. 1, pp. 251–269, Dec. 1979. 
doi: 10.1007/BF01588250. 

[90] J. B. Lasserre, “A globally convergent algorithm for exact penalty functions,” 
European Journal of Operational Research, vol. 7, no. 4, pp. 389–395, 1981. doi: 
10.1016/0377-2217(81)90097-7. 

[91] E. Rosenberg, “Exact penalty functions and stability in locally Lipschitz 
programming,” Mathematical Programming, vol. 30, no. 3, pp. 340–356, Oct. 1984. 
doi: 10.1007/BF02591938. 

[92] Z. Meng, M. Jiang, and C. Dang, “Evolutionary algorithm for zero-one constrained 
optimization problems based on objective penalty function,” in Proc. Int. Conf. 
Comput. Intell. Security, (CIS), 2010, pp. 132–136. doi: 10.1109/CIS.2010.36. 

[93] Z. Wang and S. Liu, “A new smooth method for the l1 exact penalty function for 
inequality constrained optimization,” in Proc. 3rd Int. Joint Conf. Comput. Sciences. 
Optimization, (CSO) 2010, pp. 110–113. doi: 10.1109/CSO.2010.157. 



 

115 
 

[94] A. Mallick, S. Roy, S. S. Chaudhuri, and S. Roy, “Study of parametric optimization 
of the Cuckoo Search algorithm,” Int. Conf. Control, Instrum. Energy. 
Communication, (CIEC), 2014, pp. 767–772. doi: 10.1109/CIEC.2014.6959194. 

[95] S. Halgas and M. Tadeusiewicz, “Improvement of the search method for parametric 
fault diagnosis of analog integrated circuits,” in Proc. 23rd Int. Conf. Mixed Design 
of Integrated Circuits and Systems, (MIXDES) 2016, pp. 359–362. doi: 
10.1109/MIXDES.2016.7529765. 

[96] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. Int. Conf. 
Neural Networks, 1995, vol. 4, pp. 1942–1948. doi: 10.1109/ICNN.1995.488968. 

[97] Y. Shi and R. C. Eberhart, “Empirical study of particle swarm optimization,” in 
Proc. Congress on Evolutionary Computation, (CEC), 1999, vol. 3, pp. 1945–1950. 
doi: 10.1109/CEC.1999.785511. 

[98] V. P. Sakthivel, R. Bhuvaneswari, and S. Subramanian, “An improved particle 
swarm optimization for induction motor parameter determination,” International 
Journal of Computer Applications, vol. 1, no. 2, pp. 71–76, Feb. 2010. doi: 
10.5120/44-150. 

[99] K. T. Chaturvedi, M. Pandit, and L. Srivastava, “Particle swarm optimization with 
time varying acceleration coefficients for non-convex economic power dispatch,” 
International Journal of Electrical Power and Energy Systems, vol. 31, no. 6, pp. 
249–257, Jul. 2009. doi: 10.1016/J.IJEPES.2009.01.010. 

[100] M. G. Bijan and P. Pillay, “Efficiency estimation of the induction machine by 
particle swarm optimization using rapid test data with range constraints,” IEEE 
Trans. Industrial Electronics, vol. 66, no. 8, pp. 5883–5894, Aug. 2019. doi: 
10.1109/TIE.2018.2873121. 

[101] A. Trentin, P. Zanchetta, P. Wheeler, J. Clare, R. Wood, and D. Katsis, “A New 
Method for Induction Motors Parameter Estimation Using Genetic Algorithms and 
Transient Speed measurements,” Conference Record of the 2006 IEEE Industry 
Applications Conference Forty-First IAS Annual Meeting, 2006, pp. 2435-2440. 
doi: 10.1109/IAS.2006.256881.  

[102] A. Trentin, P. Zanchetta, P. Wheeler, and J. Clare, “Improved Vector Control of 
Induction Motor Drives Using Genetic Algorithms-based Machine and Control 
Parameters Estimation,” European Conf. Power Electron. Applications, 2007, pp. 
1-8. doi: 10.1109/EPE.2007.4417732.  

[103] X. S. Yang and S. Deb, “Engineering optimisation by cuckoo search,” Int. J. 
Mathematical Modelling and Numerical Optimisation, vol. 1, no. 4, pp. 330–343, 
2010. doi: 10.1504/IJMMNO.2010.035430. 

[104] M. T. Goodrich and P. Pszona, “Cole’s parametric search technique made practical,” 
Cornell University, 2013. [Online]. Available: 
https://doi.org/10.48550/arXiv.1306.3000 

[105] A. Chatterjee and P. Siarry, “Nonlinear inertia weight variation for dynamic 
adaptation in particle swarm optimization,” Computers and Operations Research, 
vol. 33, no. 3, pp. 859–871, Mar. 2006. doi: 10.1016/J.COR.2004.08.012. 



 

116 
 

[106] C. Guangyi, G. Wei, and H. Kaisheng, “On line parameter identification of an 
induction motor using improved particle swarm optimization,” in Proc. 26th 
Chinese Control Conference, (CCC), 2007, pp. 745–749. doi: 
10.1109/CHICC.2006.4347151. 

[107] Y. Shi and R. C. Eberhart, “Parameter selection in particle swarm optimization,” 
Lecture Notes in Computer Science , Berlin, Springer, 2005, vol. 1447, pp. 591–600, 
1998, doi: 10.1007/BFB0040810. 

[108] M. Rayyam and M. Zazi, “Particle swarm optimization of a non-linear Kalman filter 
for sensorles control of induction motors,” 7th Int. IEEE Conf. Renewable Energy 
Research. Appl., (ICRERA), 2018, pp. 1016–1020. doi: 
10.1109/ICRERA.2018.8566984. 

[109] A. Gupta, R. Machavaram, T. Kshatriya and S. Ranjan, "Multi-Objective Design 
Optimization of a Three Phase Squirrel Cage Induction Motor for Electric 
Propulsion System using Genetic Algorithm," 2020 IEEE First Int. Conf. Smart 
Technologies for Power, Energy and Control, (STPEC), 2020, pp. 1-6, doi: 
10.1109/STPEC49749.2020.9297776. 

[110] F. Alonge, F. D’Ippolito, and F. M. Raimondi, “Least squares and genetic algorithms 
for parameter identification of induction motors,” Control Engineering Practice, 
vol. 9, no. 6, pp. 647–657, Jun. 2001, doi: 10.1016/S0967-0661(01)00024-7. 

[111] S. Surjanovic and D. Bingham, “Schwefel Function.” Simon Fraser University. 
[Online]. Available: https://www.sfu.ca/~ssurjano/schwef.html  

[112] M. di Nardo, A. Marfoli, M. Degano, C. Gerada, and W. Chen, “Rotor design 
optimization of squirrel cage induction motor-Part II: results discussion,” IEEE 
Trans. Energy Conversion, vol. 36, no. 2, pp. 1280–1288, Jun. 2021. doi: 
10.1109/TEC.2020.3020263. 

[113] A. Marfoli, M. di Nardo, M. Degano, C. Gerada, and W. Chen, “Rotor design 
optimization of squirrel cage induction motor-Part I: problem statement,” IEEE 
Trans. Energy Conversion, vol. 36, no. 2, pp. 1271–1279, Jun. 2021. doi: 
10.1109/TEC.2020.3019934. 

[114] K. Bitsi, O. Wallmark, and S. Bosga, “Many-objective optimization of IPM and 
induction motors for automotive application,” in Proc. 21st European Conf. Power 
Electron. Appl., (EPE 2019 ECCE Europe), Sep. 2019, pp.1-10. doi: 
10.23919/EPE.2019.8914848. 

[115] L. A. Pereira, S. Haffner, G. Nicol, and T. F. Dias, “Multiobjective optimization of 
five-phase induction machines based on NSGA-II,” IEEE Trans. Industrial 
Electronics, vol. 64, no. 12, pp. 9844–9853, Dec. 2017. doi: 
10.1109/TIE.2017.2701768. 

[116] K. Postoyankova, V. Polishchuk and A. Shuvalova, "Research of a Genetic 
Algorithm for Identification of Induction Motor Parameters," 2021 International 
Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), 
2021, pp. 334-338, doi: 10.1109/ICIEAM51226.2021.9446342. 



 

117 
 

[117] Y. Chen and P. Pillay, “An improved formula for lamination core loss calculations 
in machines operating with high frequency and high flux density excitation,”. in 
Proc. Conf. Record. 2002 IEEE Ind. Appl. Conf. 37th IAS Annu. Meeting. (Cat. 
No.02CH37344), 2002, pp. 759-766. doi: 10.1109/IAS.2002.1042645. 

[118] M. Nour and P. Thirugnanam, “Investigation of voltage and frequency variation on 
induction motor core and copper losses,” 7th Int. Conf. Modeling, Simulation. 
Applied Optimization, (ICMSAO), 2017, pp. 1-5. doi: 
10.1109/ICMSAO.2017.7934894. 

[119] O. Laldin, E. Dlala, and A. Arkkio, “Circuit models for predicting core losses in the 
stator and rotor of a caged induction machine with sinusoidal supplies,” IEEE Trans. 
Magnetics, vol. 47, no. 5, pp. 1054–1057, May 2011. doi: 
10.1109/TMAG.2010.2097582. 

[120] B. D. S. G. Vidanalage, M. S. Toulabi, T. Stachl, A. Lombardi, J. Tjong, and N. C. 
Kar, “Winding function-based analytical modeling of core loss in an induction 
machine considering slotting effects and the frequency-dependent B-H curve 
characteristics,” IEEE Trans. Magnetics, 2022. doi: 10.1109/TMAG.2022.3148759. 

[121] “The different driving cycles,” Car Engineer. [Online]. Available: https://www.car-
engineer.com/the-different-driving-cycles 

[122] A. K. Atalay, D. A. Kocabas, M. Imeryuz, and M. O. Gulbahce, “Analysis of 
problems in a load system driven by multiple tandem induction motors,” in Proc. 
15th Int. Conf. MECHATRONIKA, 2012, pp. 1-5. 

[123] M. Kitzberger, G. Bramerdorfer, S. Silber, H. Mitterhofer, and W. Amrhein, 
“Influence of hysteresis and eddy current losses on electric drive energy balance in 
driving cycle operation,” in Proc. 8th Int. Electr. Drives Prod. Conf., (EDPC), 2018, 
pp. 1-7. doi: 10.1109/EDPC.2018.8658302. 

[124] V. Ruuskanen, J. Nerg, J. Pyrhonen, S. Ruotsalainen, and R. Kennel, “Drive cycle 
analysis of a permanent-magnet traction motor based on magnetostatic finite-
element analysis,” IEEE Trans. Vehicular Technology, vol. 64, no. 3, pp. 1249–
1254, Mar. 2015. doi: 10.1109/TVT.2014.2329014. 

[125] Y. Zhang, H. Peng, and W. Hofmann, “Load cycle-based design optimization of 
induction motor drives for highly dynamic applications,” in Proc. IEEE Int. Conf. 
Ind. Technology, vol. 2019, pp. 286–291. doi: 10.1109/ICIT.2019.8754948. 

[126] F. Gao, Q. Hu, J. Ma, and X. Han, “A simplified vehicle dynamics model for motion 
planner designed by nonlinear model predictive control,” Applied Sciences, vol. 11, 
no. 21, Nov. 2021. doi: 10.3390/app11219887. 

[127] K. Reeves, A. Montazeri and C. J. Tayor, "Validation of a Hybrid Electric Vehicle 
dynamics model for energy management and vehicle stability control," 2016 IEEE 
25th International Symposium on Industrial Electronics (ISIE), 2016, pp. 849-854, 
doi: 10.1109/ISIE.2016.7745000. 

[128] S. Oman, “Dynamic characteristics of vehicles,” [Online]. Available: 
https://web.fs.uni-



 

118 
 

lj.si/kserv/images/upload/2_Pedagoska_dejavnost/2_Stopnja/Dinamika_vozil/Dok
umenti/Vaje/Dynamic-characteristics-of-vehicle.pdf 

[129] B. Asad, T. Vaimann, A. Belahcen, A. Kallaste, A. Rassõlkin, and M. N. Iqbal, “The 
cluster computation-based hybrid fem– analytical model of induction motor for fault 
diagnostics,” Applied Sciences, vol. 10, no. 21, pp. 1–15, Nov. 2020. doi: 
10.3390/app10217572. 

[130] L. Chen, J. Wang, P. Lazari, and X. Chen, “Optimizations of a permanent magnet 
machine targeting different driving cycles for electric vehicles,” in Proc. IEEE Int. 
Electr. Mach. Drives Conf., (IEMDC), 2013, pp. 855–862. doi: 
10.1109/IEMDC.2013.6556198. 

[131] E. Carraro, M. Morandin, and N. Bianchi, “Optimization of a traction PMASR 
motor according to a given driving cycle,” in Proc. IEEE Transp. Electrifi. Conf. 
Expo, (ITEC), 2014, pp. 1-6. doi: 10.1109/ITEC.2014.6861838. 

[132] P. Korta, L. V. Iyer, C. Lai, K. Mukherjee, J. Tjong, and N. C. Kar, “A novel hybrid 
approach towards drive-cycle based design and optimization of a fractional slot 
concentrated winding SPMSM for bevs,” IEEE Energy Convers. Congr. Expo., 
(ECCE), 2017, pp. 2086–2092. doi: 10.1109/ECCE.2017.8096415. 

[133] D. Sitaram, H. L. Phalachandra, S. Gautham, H. V. Swathi, and T. P. Sagar, “Energy 
efficient data center management under availability constraints,” in Proc. 9th Annu. 
IEEE Int. Syst. Conf., (SysCon), 2015, pp. 377–381. doi: 
10.1109/SYSCON.2015.7116780. 

 

 



 

119 
 

VITA AUCTORIS  

 

 

 

 

 

 

 

NAME:  Tim Stachl 
 

PLACE OF BIRTH: 
 

Braunau am Inn, AUT  

YEAR OF BIRTH: 
 

1997 

EDUCATION: 
 
 
 

Riverside Secondary School, Windsor, ON, 2015 
 
University of Windsor, B.A.Sc., Windsor, ON, 2019 

 


	Non-Dominated Adaptive-Restart Genetic Algorithm Optimization of Tractive Induction Motor Rotor Bar Considering Dynamic Operation Through Center of Gravity Method
	Recommended Citation

	Microsoft Word - Stachl_Tim_Thesis

