
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

6-22-2022

Cooperative Adaptive Cruise Control using V2V Communication Cooperative Adaptive Cruise Control using V2V Communication

and Deep Learning and Deep Learning

Haoyang Ke
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Ke, Haoyang, "Cooperative Adaptive Cruise Control using V2V Communication and Deep Learning" (2022).
Electronic Theses and Dissertations. 9593.
https://scholar.uwindsor.ca/etd/9593

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F9593&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/9593?utm_source=scholar.uwindsor.ca%2Fetd%2F9593&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Cooperative Adaptive Cruise Control using V2V Communication and Deep

Learning

by

Haoyang Ke

A Thesis

Submitted to the Faculty of Graduate Studies

through the Department of Electrical and Computer Engineering

in Partial Fulfillment of the Requirements for

the Degree of Master of Applied Science

 at the University of Windsor

Windsor, Ontario, Canada

© 2022 Haoyang Ke

Cooperative Adaptive Cruise Control using V2V Communication and Deep

Learning

by

Haoyang Ke

APPROVED BY:

__

J. Ahamed

Department of Mechanical, Automotive & Materials Engineering

__

S. Erfani

Department of Electrical and Computer Engineering

__

M. Saif, Co-Advisor

Department of Electrical and Computer Engineering

__

S. Alirezaee, Co-Advisor

Department of Electrical and Computer Engineering

May 24, 2022

iii

Declaration of Co-authorship / Previous

Publication

I. Co-Authorship

I hereby declare that this thesis incorporates material that is result of joint

research, as follows:

Chapters 4 and 5 of this thesis were co-authored with Dr. Alirezaee, Dr. Saif, and Dr.

Mozaffari, who provided supervision and guidance during the research and writing

process. In all cases, the key ideas, primary contributions, experimental designs, data

analysis, interpretation, and writing were performed by the author

I am aware of the University of Windsor Senate Policy on Authorship and I certify

that I have properly acknowledged the contribution of other researchers to my thesis, and

have obtained written permission from each of the co-author(s) to include the above

material(s) in my thesis.

I certify that, with the above qualification, this thesis, and the research to which it

refers, is the product of my own work.

II. Previous Publication

This thesis includes [1] original papers that have been previously

published/submitted to journals for publication, as follows:

Thesis Chapter Publication title/full citation Publication status*

Chapter [4,5] H. Ke, S. Mozaffari, S.Alirezaee, and M.

Saif, “Cooperative Adaptive Cruise Control

using Vehicle-to-Vehicle communication

and Deep Learning,” 33rd IEEE Intelligent

Vehicles Symposium, June 2022.

Accepted for publication

iv

I certify that I have obtained a written permission from the copyright owner(s) to

include the above published material(s) in my thesis. I certify that the above material

describes work completed during my registration as a graduate student at the University of

Windsor.

III. General

I declare that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my thesis,

published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted material

that surpasses the bounds of fair dealing within the meaning of the Canada Copyright Act,

I certify that I have obtained a written permission from the copyright owner(s) to include

such material(s) in my thesis.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis has

not been submitted for a higher degree to any other University or Institution.

v

Abstract

This thesis presents a cooperative adaptive cruise control (CACC) system

with integrated lidar and vehicle-to-vehicle (V2V) communication. Firstly, an

adaptive cruise control system (ACC) is designed for the Q-Car electrical vehicle.

Secondly, a CACC system with V2V communication function are designed based

on a new algorithm for improving the ACC system traffic capacity performance.

Lastly, the CACC agent was trained by Double Deep Q learning (DDQN) and tested.

The proposed CACC system improved the stability of the vehicle. Experimental

results demonstrate that the CACC system can decrease the average inter-vehicular

distance of ACC by 44.74%, with an additional 40.19% when DDQN was utilized.

The DDQN system can match the relative distance with the safety distance to have

better distance control. In addition to simulation, experimental results on Q-cars

have confirmed the same results. By implementing and testing the ACC and CACC

system on the ego car, which follows a lead vehicle with an ACC system in a platoon,

the CACC system has a better performance both on following the front vehicle speed

and minimizing the difference between the safety distance and relative distance. As

a result, the traffic capacity of vehicles can be improved. The vehicles communicate

with each other through a WiFi module to transmit information with 2 ms latency.

vi

Acknowledgements

 Through my study journey, I have received much help, support, and advice.

Firstly, I would like to apricate all the support from my co-advisor, Dr. S.

Alirezaee, who guided me and provided access to Mechatronics Lav and its

facilities which was needed for the experimental part of this study. He supported

me mentally and financially and provided his expertise to help me finish my thesis.

Furthermore, I would like to thank my co-advisor, Dr. M. Saif, who gave me

valuable suggestions during my study. Then, I would like to thank Dr. J. Ahamed

and Dr. S.Erfani for participating in my seminar and giving me constructive

suggestion on my study.

 Additionally, I would like to thank all the help and support from members

of the Mechatronics Lab. A special thanks to Dr. S. Mozaffari, who helped me

prepare my paper and thesis and was there to discuss any the difficulties that I

faced.

 I would also like to thank my family, especially my mother, who supported

me all the way to finish my studies. Finally, I am grateful to my partner, Yidi Fu,

for supporting and staying up with me. She always encouraged me through

stressful and challenging periods.

vii

Table of Contents

Declaration of Co-authorship / Previous Publication .. iii

Abstract ... v

Acknowledgements .. vi

List of Tables .. x

List of Figures .. xi

List of Abbreviations ... xiv

Chapter 1 Introduction .. 1

1.1 Objectives and Motivations ... 1

1.2 Problem Definition, Methodology and Challenges ... 3

1.3 Contributions .. 4

1.4 Outline of Thesis ... 5

Chapter 2 Literature Review... 6

2.1 Relative Work in CACC .. 6

2.2 Relative Work in V2X Communication ... 11

2.3 Relative Work in CACC with Machine learning ... 14

2.4 Chapter Summary ... 15

Chapter 3 Theoretical Background ... 16

3.1 Markov Decision Processes .. 16

3.1.1 Policies and Values Function .. 17

3.2 Dynamic Programming ... 20

3.2.1 Policy Iteration .. 21

3.2.2 Value Iteration ... 22

3.3 Reinforcement Learning .. 23

3.3.1 Monte Carlo Methods .. 26

3.3.2 Temporal Difference Learning... 27

3.4 Deep Reinforcement Learning .. 30

3.5 Deep Q-Learning .. 34

viii

3.6 Chapter Summary ... 36

Chapter 4 Proposed Method ... 37

4.1 ACC system ... 38

4.1.1 Lidar and line detection ... 38

4.1.2 ACC Controller .. 40

4.1.3 Vehicle dynamic module and sensor .. 42

4.2 CACC .. 43

4.2.1 Vehicle to vehicle communication .. 44

4.2.2 CACC Controller ... 45

4.3 CACC with Deep Q-learning .. 46

4.3.1 State and Action Space ... 47

4.3.2 Reward Function .. 48

4.3.3 Neural Network Design .. 49

4.3.4 Training Model .. 50

4.3.5 Training Algorithm with Double Deep Q-learning (DDQN) 56

4.4 Chapter Summary ... 57

Chapter 5 Experimental Results ... 59

5.1 Simulation Model and Results .. 59

5.1.1 Simulation for ACC system .. 60

5.1.2 Simulation of CACC system ... 62

5.1.3 Simulation for CACC system with DDQN ... 65

5.2 Real Application Setup and Results .. 69

5.2.1 Experimental Result for ACC System ... 70

5.2.2 Experimental Result for CACC System .. 71

5.3 Chapter Summary ... 75

Chapter 6 Conclusion and Future Work ... 76

6.1 Contributions .. 76

6.2 Summary ... 76

6.3 Future Work .. 78

6.3.1 Wireless communication Security .. 78

6.3.2 Wireless communication Technology ... 78

ix

6.3.3 V2X communication-based Autonomous Driving .. 78

6.3.4 Platoon Forming and Control.. 78

6.3.5 Other Deep Learning Approaches for CACC .. 78

References ... 80

Vita Auctoris ... 87

x

List of Tables

Table 2.1: Wireless Technology Comparison ... 13

Table 5.1 The simulation result for distance error ... 68

Table 5.2 The experimental result for distance error in each system 74

xi

List of Figures

Figure 1.1 SAE Automation Grading [8] .. 2

Figure 1.2 Connected vehicles network communication modes [10] 3

Figure 1.3 ACC and CACC in platooning system [10] 4

Figure 2.1 System structure of the CACC and ACC system embedded vehicle

 .. 7

Figure 2.2 Vehicle platoon in 2011 GCDC [29] ... 8

Figure 2.3 Typical information flow topologies: (a)PF, (b)PLF, (c)TPF, (d)

TPLF, and (e) BD. [27] .. 10

Figure 2.4 5G communication between vehicles to other facilities and devices

[10] ... 12

Figure 3.1 Markov Decision Process Model ... 16

Figure 3.2 Finite MDP's decision network .. 18

Figure 3.3 Simple neural network structure .. 31

Figure 4.1 Q-Car platform components [70] ... 37

Figure 4.2 Architecture of ACC longitudinal control system 38

Figure 4.3 Lidar module for distance measurement .. 38

Figure 4.4 Line detection and steering calculation module 39

Figure 4.5 Steering calculation module ... 40

Figure 4.6 Longitudinal control module .. 40

Figure 4.7 ACC controller module .. 41

Figure 4.8 Vehicle dynamic module and motor sensor module 42

Figure 4.9 Architecture of CACC longitudinal control system 43

Figure 4.10 V2V communication module ... 44

Figure 4.11 CACC longitudinal control module ... 45

xii

Figure 4.12 CACC controller .. 45

Figure 4.13 Reward function ... 48

Figure 4.14 Four-layer neural network structure ... 50

Figure 4.15 The framework of the training environment 50

Figure 4.16 Training environment in MATLAB Simulink 51

Figure 4.17 Lead car and ego car model ... 52

Figure 4.18 Kinematics bicycle model [66] .. 52

Figure 4.19 Signal Processing module for DDQN CACC 54

Figure 4.20 Safety distance calculation by MATLAB Simulink 54

Figure 4.21 Velocity Difference module ... 55

Figure 4.22 Reward Function by MATLAB Simulink.................................... 55

Figure 4.23 isDone signal module ... 56

Figure 5.1 Simulation Model for ACC system in MATLAB Simulink 60

Figure 5.2 Signal Processing for ACC .. 60

Figure 5.3 Speed measurements for ACC simulation 61

Figure 5.4 Safety distance and relative distance for ACC simulation 61

Figure 5.5 Distance error for ACC simulation .. 62

Figure 5.6 Simulation model for CACC system in MATLAB Simulink 63

Figure 5.7 Signal Processing module for CACC system................................. 63

Figure 5.8 Speed measurements for CACC simulation 64

Figure 5.9 Safety distance and relative distance for CACC simulation 64

Figure 5.10 Distance error for CACC simulation.. 65

Figure 5.11 Speed measurements for CACC with DDQN simulation 66

Figure 5.12 Safety distance and relative distance for CACC with DDQN

simulation ... 66

xiii

Figure 5.13 Distance error for CACC with DDQN simulation 67

Figure 5.14 Acceleration of Ego Car using CACC with DDQN..................... 67

Figure 5.15 Experimental setup with two Q-Cars on a mini road 70

Figure 5.16 Speed measurements for ACC experimental result 70

Figure 5.17 Distance error for ACC experimental result 71

Figure 5.18 Experimental result for transmission delay testing 71

Figure 5.19 Speed measurements for CACC experimental result 72

Figure 5.20 Distance error for ACC experimental result 72

Figure 5.21 Simulation of speed measurements for ACC system in low-speed

condition ... 73

Figure 5.22 Simulation of distance error for ACC system in low-speed

condition ... 73

Figure 5.23 Simulation of speed measurements for CACC system in low-

speed condition ... 74

Figure 5.24 Simulation of distance error for CACC system in low-speed

condition ... 74

xiv

List of Abbreviations

ADAS - Advanced Driver-Assistance Systems

ACC – Adaptive Cruise Control

ANFPC - Adaptive Neuro-Fuzzy Predictor-based Control

AGV - Automated Guided Vehicle

BD - BiDirecttional

CACC - Cooperative Adaptive Cruise Control

CTH – Constant Time Headway

CLQR - Constrained Linear Quadratic Regulator

DMPC - Distributed Model Predictive Control

DSRC - Dedicated Short-Range Communication

D2D - Device-to-Device

DDPG-PID - Deep Deterministic Policy Gradient and Proportional-Integral-

Derivative

DQN - Deep Q-learning

DP - Dynamic Programming

DNN - Deep Neural Network

LQR - Linear Quadratic Regulator

LTE – Long-Term Evolution

LfD - Learning from Demonstrations

MDP - Makov Decision Process

xv

PF - Predecessor Following

PLF - Predecessor-Leader Following

RL - reinforcement learning

TPF - Two-Predecessors Following

TPLF - Two-Predecessor-Leader Following

TD - Temporal Difference

UAV - Unmanned Aerial Vehicles

V2V – Vehicle-to-Vehicle

V2I – Vehicle-to-Infrastructure

V2P – Vehicle-to-Pedestrian

V2X – Vehicle-to-Everything

VFA - Value Function Approximation

WAVE - Wireless Access in Vehicular Environments

Wi-Fi – Wireless Fidelity

1

Chapter 1

Introduction

1.1 Objectives and Motivations

This thesis demonstrates the application of a Cooperative Adaptive Cruise Control

(CACC) strategy in an actual application. As the electric car market expands to reduce

carbon emissions, many countries are encouraging their citizens to switch to electric cars.

According to statistics, in 2020, the global electric car stock hit the 10 million marks, a 43%

increase over 2019 [1]. In addition, major ride-hailing companies, who provide personal

drivers to send their customers to a destination, such as Lyft and Uber, have recently

committed to shifting to 100% electrical vehicle fleets by 2030 [2]. This is indicative of

the fact that this market has enormous potential, and its period of market growth has just

started. New vehicle manufacturers, such as Xiaopeng and Tesla, are building electric cars

to occupy the market. Traditional car manufacturers, mainly focusing on fuel engines, are

launching their new electric vehicle platform. As an example, take General Motors, which

published their new Ultium batteries and a flexible global platform in 2020 [3].

Meanwhile, with the development of autonomous driving and communication

technologies (5G), the market offers a product with a combination of communication

technologies, safer and more comfortable driving, and more energy efficiency.

Furthermore, all the car manufacturers around the world are implementing autonomous

driving in their future vehicle products. Nowadays, almost all the new current commercial

vehicles offer Advanced Driver-Assistant Systems (ADAS), which mainly include

Adaptive Cruise Control (ACC) system [4], Blind Spot Sensing system [5], Lane Change

Collision Avoidance systems [6], Automatic Parking system [7], radar, and cameras on

board to improve the energy efficiency, driving safety, and customer driving experience.

According to SAE Automation Grading (Figure 1.1), those systems provide an

autonomous driving experience between level 2 and level 3 [8], where the vehicle can only

sense a part of the environment and perform part of steering, acceleration, and deceleration.

By combining these current onboard systems and sensors with communication

2

technologies, the automation level of vehicles can be upgraded to complete level 3, where

the system can monitor the driving environment by itself through the communication

modules and onboard sensors to perform all aspects of the dynamic driving tasks. To reach

level 3, communication technologies are critical for the situation when vehicles need to

communicate in a highly complex environment in an urban area and on highways.

Especially, the 5G LTE technology significantly increases the capabilities of self-driving

vehicles by communicating with the environment around them, while 4G LTE does not

meet the mission-critical communications requirements, such as latency and capacity.

Although the 802.11 meets those requirements, the necessary investment in a base station

is a major obstacle for governments and manufacturers who are considering the cost and

product balance [9]. Finally, the vehicle network is a communication network that includes

everything around it, such as Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I),

Vehicle-to-Pedestrian (V2P), and Vehicle-to-Everything (V2X) [10].

Figure 1.1 SAE Automation Grading [8]

3

Figure 1.2 Connected vehicles network communication modes [10]

1.2 Problem Definition, Methodology and Challenges

This thesis will focus on implementing and testing a CACC, one of the platooning

systems that apply V2V communication to improve vehicles' ability to monitor the

environment and performance of their autonomous driving system.

CACC can be considered as an extension ACC system and is a subsystem within

ADAS. The most significant part of ADAS is a well-developed and widely applied onboard

system that uses onboard sensors and a speed control system to maintain the inter-vehicular

distance at its desired distance and compute the desired acceleration (Figure 1.2) [10].

Through decades of study by researchers and automotive manufacturers, CACC safety,

traffic flow stability and capacity have been investigated and developed [16] – [20].

However, certain limitations remain. Firstly, its performance is limited by the utilized

sensors' sensing range and delay, which requires the vehicles to maintain a conservative

inter-vehicular distance to ensure the vehicle's safety. However, the trade-off for this

conservativeness is reduced efficiency and stability of the platoon. Additionally, since the

ACC system requires many human interventions, traffic congestion is still a significant

problem due to unpredictable and uncontrollable human driving behavior. As a result,

4

additional advanced technology and autonomous intelligence need to be incorporated in

the system to address these issues.

Given that the CACC can be considered as a more intelligent and more

sophisticated ACC system, it not only provides all the functions of an ACC system, but

also, it would heavily rely on V2V communication to meet its additional objectives. In such

a scenario, as illustrated in Figure 1.3, the information on the vehicle's status (e.g., position,

velocity, steering, accelerations, and decelerations) is shared with other cars through the

communication system. Moreover, when necessary, certain emergency alerts can be sent

to others. In such a situation, since onboard sensors directly detect this information, there

will be more accurate with less latency, and the system can be adapted to more complicated

environments with better safety, capacity, and stability [21], [22]. The result would be

reduced traffic congestion and improved platooning efficiency through a reduction in

latency and inter-vehicular space. Furthermore, by enhancing the platooning efficiency,

there can be a saving in fuel consumption with a reduction in the emission of greenhouse

gases.

Figure 1.3 ACC and CACC in platooning system [10]

1.3 Contributions

In this thesis, CACC is implemented and tested on two Q-Cars, electrical-driven

vehicle models with onboard sensors, GPUs, and wireless communication systems (802.11)

5

provided by Quanser. Compared with the current work, the main contributions and

challenges of this thesis are as follows:

1) Based on lidar sensors and the V2V communication system, a new control

algorithm is proposed for control accuracy.

2) Implementing ACC and CACC system on Q-Car models by using MATLAB

Simulink.

3) A double Deep-Q-learning module is designed and trained based on the reward

function and update policy on the MATLAB Simulink environment.

1.4 Outline of Thesis

The remainder of this thesis is organized as follows. Chapter 2 presents all the

recent research in V2V communications, CACC and deep-learning techniques. Chapter 3

includes the theoretical background about reinforcement learning, deep learning and Q-

learning. Chapter 4 presents the methods and algorithms that have been applied in this

thesis, and all the experimental results are discussed in Chapter 5. Lastly, Chapter 6

presents the conclusions to this thesis and possible future works.

6

Chapter 2

Literature Review

In 1986, the PATH program was initiated at the University of California Berkeley

to study Intelligent Vehicle Highway System for improving traffic [23]. Research studies

on the subject have continued ever since, e.g., for some recent work on spacing strategy

and algorithm, see [12], [13]. Frederic Serge firstly proposed the definition and assessment

of ACC in 1991 [11]. The objective of the ACC system is not only to maintain the vehicle

at the preset velocity but also to change the velocity control to the headway time control

by controlling the brake and throttle when the front vehicle is too close or too slow [52].

In the ACC study, the selection and design of spacing policy is a significant part of the

study. Many spacing policies and breakdowns have been proposed for reliability, safety,

and stability, such as constant distance, constant time headway, constant safety headway

[14], and constant stability spacing policies [15]. Nowadays, manufacturers are mainly

applying the constant time headway (CTH) spacing policy in their ACC systems due to its

safety and performance stability [24]. The longitudinal control system of ACC in gasoline

vehicles is separated into a hierarchical control strategy consisting of an upper-level

controller and a lower-level controller [25]. The upper-level controller is responsible for

measuring the desired acceleration and velocity. The lower-level controller is responsible

for controlling the throttle and brake to execute the order and give feedback to the upper-

level controller.

2.1 Relative Work in CACC

CACC uses a V2V communication module to gather information for the ACC

longitudinal controller with less delays than ACC. The first attempt to use V2V

communication with IEEE 802.11p in platooning control was reported by Segate [28], who

developed an integrated simulator called PLEXE for testing different platooning scenarios.

Since the CACC system is the extension of the ACC system, sensors such as lidar or radar,

and odometers are also installed on most vehicles with the CACC system. Additionally,

the overall structure of the ACC and CACC systems, as illustrated in Figure 2.1, are similar

[27]. Both ACC systems and CACC systems have a high-level controller, which

7

implements the longitudinal control algorithm, and a low-level controller, which

implements the engine and break commands by following the instruction from the upper-

level controller. Many research studies have concluded that the CACC system has a better

performance with more accurate information.

Figure 2.1 System structure of the CACC and ACC system embedded vehicle

To show the benefits that CACC can bring to the traffic flow, the authors in [59]

used a traffic-flow simulation model MIXIC, designed to study the impact of the intelligent

vehicles on traffic flow and data measured on a four-lane Dutch highway. The simulation

is conducted for situations where different penetration rates exist between ACC and CACC

vehicles and manually driven vehicles. They demonstrated that traffic-flow stability and

efficiency could be enhanced by more CACC vehicles joining the traffic flow, especially

in conditions with high-traffic volume. Additionally, authors in [62] developed an eco-

CACC system, which can receive signal phasing and timing data using V2I communication.

By using those data, each vehicle can arrive at the intersection whenever the last vehicle in

8

the queue has left. The result demonstrates that the vehicles can save up to 40% fuel when

the market penetration rate is 100% using the ECO-CACC system.

Figure 2.2 Vehicle platoon in 2011 GCDC [29]

In recent years, a number of research studies reported successful implementation of

CACC. These include Grand Cooperative Driving Challenge (GCDC) [29], as shown in

Figure 2.2, California's Partners for Advanced Transit (PATH) [30] and the Safe Road

Trains for the Environment project (SARTRE) [31]. In 2011 GCDC, they focused on

primary platooning control, such as forming a two-line platoon and maintaining a platoon

(Figure 2.2). In 2016 GCDC, there were two challenges: the cooperative platoon merge

and the other was cooperative intersection passing. The aim was to present a close-to-

reality scenario where cooperative and automated vehicles can perform complicated

platooning operations. Even though vehicles in the platoon did not share the same

algorithm, the competition still successfully demonstrated that cooperative driving was

possible for different kinds of vehicles. The PATH is a comprehensive intelligent

transportation system research in many subjects, such as CACC, Truck platoon, and

9

Cooperative Intersection Collision Avoidance Systems. Their systems simultaneously

improved automotive safety and highway capacities. The SARTRE project aimed to

minimize the environmental impact and traffic congestion and improve traffic efficiency

and comfort for the driver in personal transportation in Europe [31]. They had applied the

CACC system in the platooning of vehicles, where the lead vehicle with a professional

driver controls all the following vehicles in a platoon. These platoons were estimated to

cut 20% of the carbon emissions from private vehicles. In 2014, there was another real-

world CACC application. The CACC system was implemented on four production Infiniti

M56s vehicles and tested on public roads by authors [32]. Driving vehicles with ACC and

CACC demonstrates that the inter-vehicular distances were significantly reduced

compared to the commercially available ACC system by taking advantage of wireless

communication information.

Additionally, many pieces of research about methodology and testing CACC under

different scenarios were published. Lin used an adaptive neuro-fuzzy predictor-based

control (ANFPC) with a Takagi-Sugeno fuzzy model to form the CACC system [33]. The

Takagi-Sugeno fuzzy model is applied to estimate the preceding vehicle model and to

obtain the predicted state sequence of it, and the following vehicle is controlled to maintain

the inter-vehicular distance by using ANFPC. Their results from ANFPC are compared

with performance under two other control algorithms: linear quadratic regulator (LQR) and

constrained linear quadratic regulator (CLQR). Through comparison, they demonstrate that

the string stability of vehicle platooning, comfort and fuel efficiency were improved

significantly by the ANFPC-based CACC system. In a mixture of human-driven and

autonomous vehicles, the platoon can maintain its stability by applying the Linear

Quadratic Regulator (LQR) technique to a classic controller [35]. A stochastic, linear

model predictive control strategy was present by [61]. They presented a simulation study

in CarMaker and MATLAB about using this control strategy in the CACC system such

that the fuel consumption was reduced by 11~15%. Moreover, Tugba applied the CACC

algorithm to the vehicle platoons using distributed model predictive control (DMPC) based

controller to improve the safety of a vehicle platoon [34]. A distributed consensus

algorithm and protocol for the CACC system were designed for platoon formation, merging

maneuvers, and splitting maneuvers [63].

10

Meanwhile, with the development of wireless transmission technology, the

information can be transmitted to many vehicles simultaneously to control the vehicle

platooning. There were many information flow topologies for V2V communication in a

platoon, such as Predecessor Following (PF), BiDirecttional (BD), Predecessor-Leader

Following (PLF), Two-Predecessors Following (TPF), Two-Predecessor-Leader

Following (TPLF) [26] as shown in Figure 2.3. The arrow indicates the data transmission

flow between vehicles. Different topologies have different communication requirements,

such as data transmission speed, range and latency. In the actual application example,

authors in [34] applied PLF and TPLF methods for their study to compare their delay.

Additionally, they switched the communication topology from PLF and TPLF to PF and

TPF in a scenario where the wireless communication dropout of leader information.

Figure 2.3 Typical information flow topologies: (a)PF, (b)PLF, (c)TPF, (d) TPLF, and

(e) BD. [27]

11

2.2 Relative Work in V2X Communication

 As mentioned before, V2X communication is a crucial element for CACC

implementation, especially V2V communication. It decides whether vehicles can

successfully exchange sufficient information (such as speed, position, direction, and

acceleration) with each other. The U.S. National Highway Traffic Safety Administration

(NHTSA) suggested Dedicated Short-Range Communication (DSRC) as the standard

technology for V2V communication [36]. Due to the development of the technology, some

new wireless communication protocols, such as Wireless Access in Vehicular

Environments (WAVE), Long-Term Evolution (4G-LTE), and Fifth Generation (5G)

technologies, were applied to V2V communication.

The DSRC is a vehicular communication protocol based on the IEEE 802.11p

standard. There are many organizations involved in the formulation of DSRC standards,

such as the International Organization for Standards (ISO), the European Committee for

Standardization (CEN), the European Telecommunication Standards Institution (ETSI),

and the Japanese Association of Radio Industries and Business (ARIB). Two other DSRC

standards include TC204, which ISO published, and TC278, which CEN has published.

Many car manufacturers were already installing IEEE 802.11p equipment in their vehicles.

On top of that, WAVE (Wi-Fi) also uses IEEE 802.11 standard for its physical layer,

but it also supports V2I wireless communication by using WAVE Short Message Protocol

[37]. Wi-Fi is a wired Ethernet network that uses wireless technology for data transmission.

The radio frequency of Wi-Fi is the same as Bluetooth, and as such, the transmission range

is limited. As a result, this protocol is mainly applied to the V2I communication, which

requires a specific transmission data rate in short-range transmission. However, the Wi-Fi

can have access to the World Wide Web, making it easier to access the database worldwide

for getting information such as experience samples for deep learning. This worldwide

connection may cause the vehicle more vulnerable to attack. In [64], the authors applied

Wi-Fi and Zigbee networks for V2V communication in Bangkok, Thailand, and compared

their performance under the same condition. Zigbee is another old protocol for short-range

wireless communication with a low power consumption design such that its data

transmission rate is relatively lower than Wi-Fi. The research demonstrated that the Wi-Fi

12

could have a 55% successful transmission rate, whereas the Zigbee only has an 8%

successful transmission rate. Especially when the vehicle number increase, the Wi-Fi tends

to have much better performance than Zigbee.

Nowadays, 4G-LTE is the most used cellular technology supporting Device-to-

Device (D2D) to provide an ad hoc network service, which has a better performance on the

range and latency than WAVE (Table 2) [38]. Its lowest latency can reach 10 ms. On top

of that, it also has a maximum mobility speed of about 350 km/h. However, since it is

widely applied to D2D communications, its communication would be easier to be

interfered with by other mobile devices, especially in a metropolitan area. Additionally, the

proximity discovery delay would be another issue that negatively affects the data

transmission performance.

Figure 2.4 5G communication between vehicles to other facilities and devices [10]

The 5G technology is the best commercial wireless communication technology,

with the highest data rate and lowest latency [39]. Moreover, it can simultaneously support

around 1 million devices every square kilometer to exchange data [10]. As illustrated in

Figure 2.4, this communication capability provides a solution for integrated

communication between vehicles and other facilities and appliances within the vehicle

environment. It provides three different communication modes to communicate with other

13

devices: device-to-device, device-to-cell, and device-to network. The 5G network slicing

makes the end-to-end network possible to meet more specific wireless communication

requirements. These three modes provide the communication channel in V2V and V2I and

allow the vehicle to access the database from the cloud service. Especially in V2V

communications, the 5G technology can be helpful. Its 1 ms latency can meet any real-

time communication requirements, and its 1 Gbits/s downloading speed and 10 Mbits/s

uploading speed are suitable for any kind of data transmission. Furthermore, it allows

image data transformation between vehicles for future applications.

 Besides these general data transmission technologies, there are other technologies

in real applications. For example, in 2016 GCDC, they used the ITS-G5 specification for

the Cooperative ITS, which works on the dedicated 5.9 GHz frequency band [29].

Table 2.1: Wireless Technology Comparison

Communication Technology Transferring Data Rate Range Latency

Dedicate Short-Range

Communication (DSRC)
6-27 Mbits/s Medium > 5ms

Wireless Access in Vehicular

Environments (WAVE)
6-27 Mbits/s Medium 50-100ms

4G-LTE
10 Mbits/s with peak of

1Gbits/s
Long 10-30 ms

5G
1 Gbits/s with peak of 20

Gbits/s
Long >1ms

 For V2V communication algorithms and models, the authors of [40] developed an

application layer handoff method to enable heterogeneous network (Het-Net)

communication between Wireless Fidelity (WIFI), DSRC, and LTE. This method

increased the range of communication for V2V and V2I, but the latency limited its

applications. In [41], the authors implemented a shadow fading model targeting system

simulation, which separated the measurement data into three categories: line-of-sight(LOS),

obstructed line-of-sight(OLOS) by vehicles, and no-line-of-sight due to buildings.

Additionally, when a trusted vehicle cannot be reached, [42] proposed a Lidar-based

authentication mechanism to detect surrounding vehicles through onboard sensors. In [34],

the authors applied the DMPC algorithm to control a nonlinear vehicular platoon under

14

bidirectional topologies, demonstrating that the DMPC could process additional

information without violating string stability.

2.3 Relative Work in CACC with Machine learning

In recent years, many projects have been developed based on a machine learning

approach because it is a powerful tool that can be applied to many domains, such as data

mining, imaging processing and cyber security. In an unpredictable environment that

vehicle has to face, rather than re-programming the vehicle to be suitable for every kind of

scenario, it would be easier if vehicles could learn their task autonomously or semi-

autonomously through human interventions. Artificial intelligence is the most popular

approach for robots' autonomy, making machine learning one of the most popular areas of

study for automation.

There are many approaches and methods in machine learning, such as

reinforcement learning, supervised learning, unsupervised learning, and semi-supervised

learning [71]. Many were applied to robot systems, such as humanoid robots [72],

unmanned aerial vehicles (UAV) [71], remotely underwater vehicles [73] and robotic arms

[74]. In the field of intelligent vehicles, there are two kinds of learning approaches that can

control the vehicle to make the right decision: learning from demonstrations (LfD) and

reinforcement learning (RL) [75]. The LfD is an approach that agents can learn from the

examples of human demonstration to predict their output action based on input. Inverse

reinforcement learning is one of the learning algorithms representing the LfD methods.

However, in RL, the agent learns the policy by trying different actions in different scenarios

(state). From their different action and state pairs, the reward can be computed. By

maximizing their reward within Makov Decision Process, the agent can predict a policy

that can fit their situations.

 An adaptive control system that applies reinforcement learning was proposed in

2008 [47]. It uses Monte Carlo Reinforcement learning to develop a longitudinal adaptive

control system for a detailed nonlinear longitudinal vehicle model. In [48], the author

applied reinforcement Q-learning to the decision-making process during the automatic

driving and car following. Recently, [49] proposed a Deep Deterministic Policy Gradient

and Proportional-Integral-Derivative (DDPG-PID) controller to automate the PID weight

15

tuning process with longitudinal tracking control of vehicle platooning. Authors in [50]

implemented a deep neural network that generates multimodal predictions of traffic agents

around a truck platoon to improve the cut-in performance of trucks. Moreover, a multi-

agent RL method was applied to CACC to achieve higher performance and faster

convergence [51].

2.4 Chapter Summary

This chapter presented an overview of technologies that have been applied to

CACC. Firstly, the development from ACC to CACC was introduced where CACC is a

system developed from the ACC system through vehicle-to-vehicle communications. Then,

a study about the performance of CACC in both large traffic flow and a single platoon was

presented. Many research and projects demonstrated that the vehicle with a CACC system

could have better platoon stability and safety with better energy and traffic efficiency than

one which uses an ACC system and manual driving. Meanwhile, the methods that have

been applied to the CACC system were introduced. Secondly, different wireless

communications technologies were compared and discussed for real applications, which is

significant for practical CACC applications. Lastly, machine learning approaches were

discussed as potential candidates for use in an autonomous vehicle, and certain sample

studies in this direction were discussed.

Although some attempts have been directed toward implementing CACC and ACC

on cars via DSRC, no research has yet used Wi-Fi in real applications. Although Wi-Fi is

not a communication technology that could be applied in a city environment, it is applicable

for the transportation of autonomous driving vehicles and Automated Guided Vehicle

(AGV) [26] for package distribution within factories' environment. Additionally, the

proposed prototype helps demonstrate the data transmission process because other

communication technologies, such as 5G can transmit the same amount of data with the

same latency as Wi-Fi. This thesis attempts to fill this gap by developing a MATLAB

Simulink model on Q-Cars and to test its reliability and stability performance.

16

Chapter 3

Theoretical Background

 The ultimate object of this thesis is to apply deep Q-learning (DQN) to the CACC

system for the Q-Car application. Deep Q-learning is one of the deep reinforcement

learning algorithms from the machine learning field that apply deep learning models, such

as neural networks, to the reinforcement learning (RL) algorithm. This chapter presents

some of the most critical underlying structures of reinforcement learning, Q-learning and

deep Q-learning.

3.1 Markov Decision Processes

Figure 3.1 Markov Decision Process Model

To understand Q-learning, which is one of the reinforcement learning algorithms,

the Markov Decision Processes (MDP), which are foundational in an RL environment, are

discussed. MDP is a probabilistic temporal model which includes the agent's and

environment's actions and reactions. The object which makes decisions and learns from

decisions is called the agent. Everything else around it, which can be interacted with

continuously and compared with, is called the environment. As shown in Figure 3.1, on the

17

one hand, the agent selects actions and learns from the environment's reaction. On the other

hand, the environment takes action from the agent and responds to the agent by presenting

new situations. Meanwhile, the environment also gives the agent a specific reward for its

actions.

 The MDP operates in many discrete time steps, t = 0, 1, 2, …, n, and contains the

following information:

⚫ A set of finite n states, S, represents the different environments at different

times.

⚫ A set of finite n of actions, A, which is executed by the agent.

⚫ A transition probability function, T (s, a, s'), represents the state transition

probability from action, a, to the next state, s', such that T (s, a, s') = P (s' | s,

a)

⚫ A reward function r : S × A → ℝ, where R (s, a, s') represents the immediate

reward in each state that can be used in the next state.

⚫ A discount factor γ ∈ [0,1] represents the importance of each immediate

reward for the future.

As a result, the overall MDP consists of tuple M = (S, A, P, R, γ). At each time step,

t, the agent in the random state of the environment, 𝑠𝑡 ∈ 𝑆, takes action 𝑎𝑡 ∈ 𝐴. This action

can take the environment to a new state, 𝑠𝑡+1 ∈ 𝑆, at the time of t + 1. The probability

distribution of the states is given by the transition probability function 𝑇(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) =

𝑃(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡), where 𝑠𝑡+1 = 𝑠′ , 𝑠𝑡 = 𝑠 , and 𝑎𝑡 = 𝑎 . Then, the reward function

𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) can calculate the reward in the current state 𝑠𝑡. Furthermore, the agent can

execute an action 𝑎𝑡+1 to observe the next state 𝑠𝑡+1 and reward 𝑅𝑡+1 which can be used

for the next action and repeated during the process.

3.1.1 Policies and Values Function

 In reinforcement learning, the agent's action is selected based on either a

deterministic or stochastic policy of the action π(s) = a. In the deterministic stationary

policy, the action in a given state always results in the same next state. However, in the

stochastic stationary policy, the next state can be varied by the function that matches

18

different actions in probability distribution to each state. The optimal policy, π*, is the

theory such that the agent can maximize the expected reward by choosing different actions:

 𝑅 = ∑ 𝛾𝑡𝑅(𝑠𝑡)

∞

𝑡=0

 (3.1)

 The decision network of a finite MDP, as shown in Figure 3.2, demonstrates the

flow of the policy. At the very beginning, S0 is generated by the environment, and an action

A0 is chosen to perform by policy π, where A0 = π (S0). Then, everything can be transitioned

to S1, by receiving a transition probability T (S0, A0, S1) and a reward R1 (S0, A0, S1). The

process can be continued by repeating the steps above, and a sequence of S0, A0, R1, S1, A1,

R2, … can be produced by the policy.

Figure 3.2 Finite MDP's decision network

 As mentioned before, in all reinforcement learning applications the value functions,

tells the agent how good the action is in the given state. The notion of "how good" here is

defined in terms of future rewards that can be expected, or, to be precise, in terms of

expected return. Of course, the rewards the agent can expect to receive in the future depend

on what actions it will take. Accordingly, value functions are defined with respect to

particular policies [54].

 A policy π, is a mapping from each state, 𝑠 ∈ 𝑆 , and action, 𝑎 ∈ 𝐴 , to the

probability 𝜋 (𝑎|𝑠) of taking action a when in state 𝑠 [54]. As a result, a value function

19

𝑣𝜋 (𝑠) can represent the value of the state under the policy. For the MDPs, the state-value

function 𝑣𝜋 (𝑠) can be defined as follow:

 𝑣𝜋 (𝑠) = 𝔼𝜋 [∑ 𝛾𝑡𝑅(𝑠𝑡)

∞

𝑡=0

| 𝑠0 = 𝑆] (3.2)

where 𝔼𝜋[∙] is the expected value of a random variable for the policy that the agent follows.

 Based on this fundamental equation, the stationary policy's value function can be

defined as:

𝑉𝜋 (𝑠) = 𝔼𝜋 [∑ 𝛾𝑡𝑅(𝑆𝑡)

∞

𝑡=0

| 𝑆0 = 𝑠]

= 𝔼𝜋 [𝑅(𝑠0) + ∑ 𝛾𝑡𝑅(𝑆𝑡)

∞

𝑡=1

| 𝑆0 = 𝑠]

= 𝑅(𝑠) + 𝔼𝜋 [∑ 𝛾𝑡𝑅(𝑆𝑡)

∞

𝑡=1

| 𝑆0 = 𝑠]

(3.3)

Based on (3.3), by including the action a, state s, and transition probability function

T to the value function of the stationary policy π they follow, the action-value function,

𝑞𝜋 (𝑠, 𝑎) can be developed as follow:

𝑄𝜋(𝑠, 𝑎) = 𝔼𝜋 [∑ 𝛾𝑡𝑅(𝑆𝑡, 𝐴𝑡)

∞

𝑡=0

| 𝑆0 = 𝑠, 𝐴0 = 𝑎]

= 𝑅(𝑠, 𝑎) + 𝔼𝜋 [∑ 𝛾𝑡𝑅(𝑆𝑡, 𝐴𝑡)

∞

𝑡=1

| 𝑆0 = 𝑠, 𝐴0 = 𝑎]

= 𝑅(𝑠, 𝑎) + 𝛾𝔼𝜋 [∑ 𝛾𝑡𝑅(𝑆𝑡, 𝐴𝑡)

∞

𝑡=0

| 𝑆0 = 𝑠, 𝐴0 = 𝑎]

= 𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝑇(𝑠, 𝑎, 𝑠𝑡+1)𝑉𝜋(𝑠𝑡+1)

𝑠𝑡+1

= 𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝑃(𝑠𝑡+1|𝑠, 𝑎)𝑉𝜋(𝑠𝑡+1)

𝑠𝑡+1

(3.4)

20

In the finite MDPs, there is always an optimal policy π*, a policy π has a return that

is greater or equal to π' for all states. Since all the policies share the same state-value

function, the optimal state-value function can be defined as:

 𝑉∗(𝑠) = max
𝜋

𝑉𝜋(𝑠), 𝑠 ∈ 𝑆 (3.5)

Additionally, when the optimal policy shares the same action-value function, the

optimal action-value function can be formed:

 𝑄∗(𝑠) = max
𝜋

𝑄𝜋(𝑠, 𝑎), 𝑠 ∈ 𝑆 , 𝑎 ∈ 𝐴 (3.6)

Based on the Bellman Equations [54], which demonstrate the value function is an

immediate reward with the discounted sum of the future rewards, we have:

 𝑉𝜋 (𝑠) = 𝑅(𝑠, 𝜋(𝑠)) + 𝛾 ∑ 𝑇(𝑠, 𝜋(𝑠), 𝑠′)𝑉𝜋(𝑠′)

𝑠′

 (3.7)

 𝑄𝜋(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝑃(𝑠′|𝑠, 𝑎)𝑉𝜋(𝑠′)

𝑠′

 (3.8)

 The optimal value function for the state-value function and action-value function

can be arrived at:

 𝑉∗(𝑠) = max
𝜋

[𝑅(𝑠, 𝜋(𝑠)) + ∑ 𝑃(𝑠𝑡+1|𝑠, 𝑎)𝑉∗(𝑠𝑡+1)

𝑠𝑡+1

] (3.9)

 𝑄𝜋(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝑃(𝑠𝑡+1|𝑠, 𝑎) max
𝑏∈𝐴

𝑄∗ (𝑠𝑡+1, 𝑏)

𝑠𝑡+1

 (3.10)

3.2 Dynamic Programming

 Dynamic Programming (DP) is a tool that can be used for computing optimal

policies in a Markov decision process. The use of dynamic programming is based on the

21

assumption of a perfect environment. The perfect environment is a finite MDP, which

means all the states, actions, and rewards are finite. As a result, DP is classified as a model-

based learning algorithm. The object of dynamic programming is to use value functions to

help the agent to search for a good policy by bootstrapping the rest of the expected return

by the initial estimated value of the value function. Generally, there are two ways to

compute the optimal policy: policy iteration and value iteration [54].

3.2.1 Policy Iteration

The idea of policy iteration is that there always is a policy that has a known value

for the infinite horizon, and the policy has been incrementally improved by the algorithm.

The policy iteration involves two main steps: policy evaluation and policy improvement.

For the policy evaluation, the value, 𝑉𝜋𝑖, of the current policy πi is computed by the value

function. Based on the value from the policy evaluation, the new policy πi+1 can be

computed by the policy improvement step. By repeating these two steps, a sequence of

monotonically improving policies and value functions can be formed as [54]:

𝜋0

𝐸
→ 𝑉𝜋0

𝐼
→ 𝜋1

𝐸
→ 𝑉𝜋1

𝐼
→ 𝜋2

𝐸
→ 𝑉𝜋2

𝐸
→ ⋯

𝐼
→ 𝜋∗

𝐸
→ 𝑉∗

where E represents the policy evaluation process, and I represent the policy improvement

process.

By following the sequence, Algorithm 1 demonstrates the procedure of the policy

iterations. At the beginning of the policy iteration, the policy is randomly selected. The

policy evaluation calculates the action value 𝑉𝜋𝑖 of the policy 𝜋𝑖 by value functions that

satisfy the Bellman Equation (3.7 and 3.8). Then, the new policy 𝜋𝑖+1 can be formed by

the policy improvement process with the equation:

𝜋𝑖+1(s) = argmax

𝑎
[𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝑇(𝑠, 𝑎, 𝑠′)𝑉𝜋(𝑠′)

𝑠′

] (3.11)

where 𝜋𝑖+1(s) ≥ 𝑉𝜋𝑖(𝑠) . As a result, the optimal policy can be found when 𝜋𝑖+1(s) =

 𝑉𝜋𝑖(𝑠).

22

Algorithm 1: Policy Iteration [54]

1. Initialization:

 i = 0,

 𝑉(𝑠) ∈ 𝑅 arbitrarily for all 𝑠 ∈ 𝑆

 𝜋(𝑠) ∈ 𝐴(𝑠) arbitrarily for all 𝑠 ∈ 𝑆

2. Policy Evaluation

 repeat

 ∆ ← 0

 For each 𝑠 ∈ 𝑆
 v ← 𝑉𝜋𝑖(𝑠)

 𝑉𝜋𝑖(𝑠) = 𝑅(𝑠, 𝜋𝑖(𝑠)) + 𝛾 ∑ 𝑇(𝑠, 𝜋𝑖(𝑠), 𝑠′)𝑉𝜋𝑖(𝑠′)𝑠′ ;

 ∆ ← max(∆, |𝑣 − 𝑉𝜋𝑖(𝑠)|)
 until ∆< 0

3. Policy Improvement

 policy-stable ← true

 For each 𝑠 ∈ 𝑆

 𝑎 ← 𝜋𝑖(𝑠)

 𝜋𝑖+1(s) = argmax
𝑎

[𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝑇(𝑠, 𝑎, 𝑠′)𝑉𝜋(𝑠′)𝑠′]

 If 𝑎 ≠ 𝜋𝑖+1(𝑠), then policy-stable ← false

 If policy-stable, then stop and return 𝑉𝜋𝑖, and 𝜋𝑖+1; else go to 2

3.2.2 Value Iteration

Like the policy iteration, a value iteration is an alternative approach. It maintains

optimal value from the beginning of a state s if a finite number of steps k exists. The

advantage of the value iteration is that it can be literate to consider longer episodes for

policies. Instead of doing the policy evaluation and policy improvement separately, it

estimates the optimal value directly by turning the Bellman optimal equation into a backup

rule.

The Bellman equation can be seen as a backup operator because it not only can be

applied to an old value function but also can transform it into a new value function. Based

on the Bellman equation (3.7 and 3.8), the equation of the Bellman backup operator can be

formed as follow:

 𝐵𝑉 (𝑠) = max [
𝑎

𝑅(𝑠, 𝜋(𝑠)) + 𝛾 ∑ 𝑇(𝑠, 𝜋(𝑠), 𝑠′)𝑉𝜋(𝑠′)]

𝑠′

 (3.12)

23

Algorithm 2: Value Iteration [54]

 Initialize array V arbitrarily

 repeat

 ∆ ← 0

 For each 𝑠 ∈ 𝑆
 v ← 𝑉𝑘(𝑠)

 𝑉𝑘+1(𝑠) = max [
𝑎

𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝑇(𝑠, 𝑎, 𝑠′)𝑉𝑘(𝑠′)𝑠′];

 ∆ ← max(∆, |𝑣 − (𝑠)|)
 until ∆< 0

 Output a deterministic policy, 𝜋𝑖+1, such that

 𝜋𝑘+1(s) = argmax
𝑎

[𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝑇(𝑠, 𝑎, 𝑠′)𝑉𝑘(𝑠′)𝑠′]

Algorithm 2 describes the procedures of the value iteration with the Bellman

backup operator, which returns a new value function and improves the value if it is possible

in each iteration. Based on the Bellman backup operator, the main function in the second

step can be expressed as follow:

 𝑉𝑘+1(𝑠) = max [
𝑎

𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝑇(𝑠, 𝑎, 𝑠′)𝑉𝑘(𝑠′)

𝑠′

] (3.13)

which means the value of 𝑉𝑘+1 for that state is the sum of the best reward from the

immediate action and the discounted sum of future reward with the old value function from

the previous step, 𝑉𝑘.

In a real application, the operation terminates when there is only a small amount of

the changes in the value function, as shown in the last step of Algorithm 2. As a result, the

value iteration generates a sequence of value functions as:

𝑉0 → 𝑉1 → 𝑉2 → 𝑉3 → ⋯ → 𝑉∗

3.3 Reinforcement Learning

Machine learning is one of the techniques that people apply to an agent to make it

learn from a set of data such that it can solve a given problem that is related to the data. In

machine learning, supervised learning is one of the most common algorithms that has been

used to solve problems, such as in image classification. During supervised learning, each

example has a label, which is provided by supervisors, and the environment can tell the

24

learner what output is based on its input and labelled examples. However, in reinforcement

learning, as one of the machine learning algorithms, there is no such kind of examples for

the algorithm to learn from.

Reinforcement learning is a generic framework for representing and solving control

tasks, but within this framework, we are free to choose which algorithms we want to apply

to a particular control task that can be modelled as MDP [53]. The RL focuses on a bigger

picture, which is a problem of an agent for a specific object to interact with a changing

environment. In contrast to dynamic programming, which assumes a perfect model of the

environment, the RL does not have such an ideal environment available. As a result,

reinforcement learning is categorized as a model-free learning algorithm. The RL can

optimize the right track to reach the ultimate objects by giving each step reward. By

maximizing the reward, the RL algorithm can learn what kind of action helps it to build

reward and what kind of action lead to negative reward. As a result, the agent can

understand what action it should take in different situations.

The biggest challenge of reinforcement learning is the trade-off between

exploration and exploitation [54]. The reinforcement learning agent not only prefers

actions that happened in the past and are effective for reward, but it also tries actions that

have not been selected in the past. The agent must exploit what it already knows to obtain

the reward, but it also must explore to make better action selections in the future [54].

Therefore, the reinforcement learning agent must try many different actions to get a reliable

reward. As a result, to balance exploration and exploitation, an 𝜖 -greedy policy with

respect to an action-state value Q (s, a) is generated as:

𝜋(𝑎|𝑠) = argmax
𝑎

𝑄(𝑠, 𝑎) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − 𝜖 +
𝜖

|𝐴|

𝜋(𝑎|𝑠) ≠ argmax
𝑎

𝑄(𝑠, 𝑎) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦
𝜖

|𝐴|

(3.14)

where |𝐴| represents the number of actions.

25

There are four other significant elements for reinforcement learning besides the

environment and the agent: a policy, a value function, a reward signal, and a model of the

environment [54].

⚫ A policy maps the action that an agent takes and the state of the environment

when the action takes place. It could be a function, lookup table, and search

process.

⚫ A reward signal is a goal for the entire RL problem. During each iteration, the

environment sends a reward signal to the agent to help the agent understand

whether the action is good or bad at that specific state. Moreover, it also helps

the agent to maximize the total rewards in the entire process such that the agent

can learn which is the right set of actions that the agent should take for the best

result.

⚫ A value function is a function that helps the agent to cumulate the reward for

the long run. The result of the value function directly tells the agent whether a

set of actions is good in the long term and whether a set of states are involved.

In each state, the agent receives a different reward signal for that particular

state from the environment. In the end, all the reward signals will be cumulated

together by a value function to come up with a result to determine the overall

quality of the set of actions.

⚫ A model of the environment defines the reaction behaviour that the

environment would have based on each action. The model takes the state and

action information and predicts the reaction from the environment.

Furthermore, the reaction can be calculated as a reward signal to help the agent

to determine the results of its actions.

Reinforcement learning has a very similar process to the MDP process shown in

Figure 3.1. In each discrete time step, the agent, which is learning from the environment,

and the environment interact with each other. Then, the observation can be collected by the

agent from the environment, as well as the state 𝑠𝑡 and a reward 𝑟𝑡. According to all this

information, the agent takes an action 𝑎𝑡, which changes the environment. Lastly, the agent

collects a new observation from the environment, a new state 𝑠𝑡+1, and a new reward 𝑠𝑡+1.

26

There are two kinds of methods in reinforcement learning ensuring that the actions

selected by the agent are continuous: on-policy and off-policy. The off-policy methods are

learning about a policy that has experienced different action selection. However, on-policy

methods attempt to improve or evaluate the policy that the environment and agent currently

follow, such as the Monte Carlo methods.

3.3.1 Monte Carlo Methods

Monte Carlo methods are ways of solving the reinforcement learning problem

based on averaging sample returns for episodic MDP tasks [54]. This method can be

applied to the policy evaluation of the DP methods before. In the Monte Carlo method, the

objective is to estimate 𝑉𝜋(𝑠) under policy π. Therefore, it defines and updates the 𝑉𝜋(𝑠)

using a sample of the return to approximate an expectation by following policy π as:

 𝑉𝜋(𝑠) = 𝔼𝜋[𝐺𝑡|𝑠𝑡 = 𝑠] (3.15)

where 𝐺𝑡 is the discounted sum of the reward in MDP M under the policy as:

 𝐺𝑡 = 𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 + 𝛾3𝑟𝑡+3 + ⋯ (3.16)

Then, a simple every-visit Monte Carlo method for non-stationary cases can be generated

as:

 𝑉𝜋(𝑠) ← 𝑉𝜋(𝑠) + 𝛼 (𝐺𝑖,𝑡 − 𝑉𝜋(𝑠)) (3.17)

Note that 𝛼 is a step-size parameter that measures the changes from one time step

to another time step. Generally, the 𝛼 =
1

𝑁(𝑠)
 which refers to the case where the chance of

every visit is equal, and 𝑁(𝑠) is the number of times that a state is visited. The sample

episode is represented by 𝑖 = 𝑠𝑖,1 + 𝑎𝑖,1 + 𝑟𝑖,1 + 𝑠𝑖,2 + 𝑎𝑖,2 + 𝑟𝑖,2 + ⋯.

Unlike dynamic programming, it is a model-free method which does not require to

have a model of the reward and complete knowledge of the environment. It also does not

27

require bootstrapping because it is an average return of the sum of all the state-action pairs.

Moreover, since it uses samples to make the approximation, the algorithm is not required

to go to every state set for each evaluation. As a result, it is more efficient in the small

subset of state.

However, there are some limitations to Monte Carlo method. Firstly, it is a high

variance estimator which requires a lot of data to reduce the variance because it uses

samples to make the approximation, and it does not update 𝑉𝜋(𝑠) based on other 𝑉𝜋(𝑠).

Additionally, the Monte Carlo methods can only be applied to episodic MDPs, where each

episode can be terminated no matter what actions are selected.

3.3.2 Temporal Difference Learning

 Temporal Difference (TD) learning, one of the most important learning methods in

reinforcement learning, combines Monte Carlo ideas and dynamic programming ideas [54].

It is a model-free learning method because dynamics models or reward models are not

required in this method. TD learning not only can bootstraps, which updates estimates as a

part of other estimates and approximates the future discounted sum of reward as dynamic

programming, but also can sample to approximate the expectation in model-free conditions

as the Monte Carlo method does. Additionally, it can be used in episodic or non-episodic

settings and immediately updates the estimate of value function after each M = (s, a, r, s')

tuple when a new observation is generated. The objective of TD learning is to

estimate 𝑉𝜋(𝑠) for the given episodes under the policy, and all the actions are sampled

from the policy. Therefore, the most straightforward TD learning estimation equation can

be generated based on the Bellman operator (3.7 and 3.8) and every-visit Monte Carlo

method (3.17):

 𝑉𝜋(𝑠) = 𝑉𝜋(𝑠) + 𝛼[𝑟𝑡 + 𝛾𝑉𝜋(𝑠𝑡+1) − 𝑉𝜋(𝑠)] (3.18)

This equation demonstrates that the TD learning updates the value estimate to

approximate an expectation by using a sample of the next state and updates the estimation

value by bootstrapping. Meanwhile, since TD learning is an estimation function, the TD

28

error can be generated as the difference between the new estimation and the current

estimation value:

 𝛿𝑡 = 𝑟𝑡 + 𝛾𝑉𝜋(𝑠𝑡+1) − 𝑉𝜋(𝑠𝑡) (3.19)

where 𝑟𝑡 + 𝛾𝑉𝜋(𝑠𝑡+1) is the new estimation value from TD learning and 𝑉𝜋(𝑠𝑡) is the

current estimation value.

 In TD learning, there are two kinds of control methods that represent on-policy

control and off-policy control. SARSA [55], which stands for state-action-reward-next-

state-next action, is one of the representations of on-policy, model-free control. It updates

the state-action value 𝑄(𝑠𝑡, 𝑎𝑡) from the current state, action, and reward and the next state

and action, (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1, 𝑎𝑡+1) using equation:

 𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼(𝑟𝑡 + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡, 𝑎𝑡)) (3.20)

Meanwhile, the policy improvement will be updated based on 𝜖-greedy policy:

 𝜋(𝑠𝑡) = argmax
𝑎

𝑄(𝑠𝑡, 𝑎𝑡) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 1 − 𝜖 (3.21)

Notice that the updates only happen after every transition from a non-terminal state.

 Q-learning is another crucial method that represents off-policy TD control which

also is a model-free RL algorithm as well. Instead of choosing a particular next action as

SARSA does, the Q-learning is more optimistic by choosing the max action next to

estimate future rewards. As a result, SARSA has a better performance where many negative

rewards exist, and Q-learning has a better performance during the early convergence. The

Q-value estimation equation can be updated as:

 𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼(𝑟𝑡 + 𝛾 max
𝑎′

𝑄(𝑠𝑡+1, 𝑎′) − 𝑄(𝑠𝑡, 𝑎𝑡)) (3.22)

29

where 𝛼 is the learning rate, which indicates the updating frequency of the learning process

between 0 and 1, and 𝛾 is the discount factor, which represents the weight of the future

rewards is less than the immediate reward, between 0 and 1. This equation indicates that

the optimal action-value function 𝑄∗ are directly approximated by the learned action 𝑄. By

using substituting the Q-value estimation equation, the algorithm of the Q-learning can be

expressed as:

Algorithm 3: Q-learning algorithm [54]

 Initialize 𝑄(𝑠, 𝑎) arbitrarily, t = 0

 repeat (for each episode)

 Initialize 𝑆

 Repeat (for each step of episode)
 Choose 𝑎 from 𝑠 using policy derived from Q (such as 𝜖-greedy)

 𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼(𝑟𝑡 + 𝛾 max
𝑎′

𝑄(s′, 𝑎′) − 𝑄(𝑠, 𝑎))

 𝑠 ← 𝑠′
 until 𝑠 is terminal

 until all episodes end

When the number of times visiting each state goes to infinity, the Q-learning will

converge with probability one by bounding the reward |𝑟𝑛| ≤ 𝑅 and the learning rates 0 ≤

𝛼𝑡 ≤ 1 [57]. Meanwhile, the learning rate 𝛼𝑡 need to satisfy the Robbins-Munro sequence

such that:

∑ 𝛼𝑡

∞

𝑡=1

= ∞

∑ 𝛼𝑡
2

∞

𝑡=1

< ∞

(3.23)

On top of Q-learning, a Double Q-learning is another method using two different

Q networks and one of the 𝑄(𝑠, 𝑎) as a target for the other, which is very helpful for

maximizing the bias issue and saving computation time. Based on the Q-learning algorithm,

the double Q-learning algorithm can be formed as:

30

Algorithm 4: Double Q-learning algorithm [65]

 Initialize 𝑄1(𝑠, 𝑎), 𝑄2(𝑠, 𝑎) arbitrarily, t = 0

 repeat (for each episode)

 Initialize 𝑆

 Repeat (for each step of episode)
 Choose 𝑎 from 𝑠 using policy derived from Q (such as 𝜖-greedy)

 if (with 0.5 probability true) then

 𝑄1(𝑠, 𝑎) ← 𝑄1(𝑠, 𝑎) + 𝛼(𝑟𝑡 + 𝑄1(𝑠′, 𝑎𝑟𝑔max
𝑎′

𝑄2(s′, 𝑎′)) −

 𝑄1(𝑠, 𝑎))

 else

 𝑄2(𝑠, 𝑎) ← 𝑄2(𝑠, 𝑎) + 𝛼(𝑟𝑡 + 𝑄2(𝑠′, 𝑎𝑟𝑔max
𝑎′

𝑄1(s′, 𝑎′)) −

 𝑄2(𝑠, 𝑎))

 end if

 𝑠 ← 𝑠′
 until 𝑠 is terminal

 until all episodes end

3.4 Deep Reinforcement Learning

Deep reinforcement learning is one of the learning methods that use the deep

learning method to apply to the reinforcement learning algorithm. All the reinforcement

learning methods mentioned before using a table that includes all the state-action pairs and

values. However, for a huge data subset or complex sensations, it is nearly impossible to

have all the information in a table. Besides the issue of the need for memory, generalization,

which is the time and data needed to fill the table accurately, is the most significant issue.

To solve this issue, value function approximation (VFA) is essential such that policy can

still help the agent to make good decisions when it faces a state-action pair that has never

occurred before but with many similarities with other learned state-action pairs. In VFA,

instead of using a table, a parameterized function is used to represent the state or state-

action value function. The approximated value 𝑉𝜋(𝑠) ≈ �̂�(𝑠; 𝑤) of state s with vector w

in the state value function. Meanwhile, the state-action value function can be written as

𝑄(𝑠, 𝑎) ≈ �̂�(𝑠, 𝑎; 𝑤) . Through value function approximation, it not only reduces the

memory that is needed to store but also reduces the computation time and number of

experiences for the algorithm to find a good policy.

31

Figure 3.3 Simple neural network structure

The function approximation includes many methods, such as linear feature

representations, decision trees, neural networks, and nearest neighbours. The deep neural

network (DNN) is now one of the most popular methods for function approximation of

reinforcement learning. In the DNN, the function approximator is transferred as a

composition of multiple functions. A deep neural network is an artificial neural network

with many layers, which induces the model to learn layered representations of input data

[53]. According to the example in Figure 3.3, the first layer is the input layer, and the last

layer is the output layer. The layers between the first and the last layers are the hidden

layers. The connection between two neurons is the weight of the connection strength

between neurons. The network has parameters (𝑊, 𝑏) = (𝑊(1), 𝑏(1), 𝑊(2), 𝑏(2)) , where

𝑊𝑖𝑗
(𝑙)

 represent the parameter associated with the connection between unit j in layer l, and

unit i in layer l+1, and 𝑏𝑖
(𝑙)

 is the bias associated with unit i in layer l+1 [58]. Additionally,

𝑎𝑖
(𝑙)

 is the activation of unit i in layer l, where 𝑎𝑖
(𝑙)

= 𝑥𝑖 for the i-th input.

 For a fixed training set {(𝑥(1), 𝑦(1)), ⋯ , (𝑥(𝑚)𝑦(𝑚))} of m training examples, the

neural network can be trained by using batch gradient decent. Firstly, the cost function for

a single training example (x, y) can be defined as [58]:

 𝐽(𝑊, 𝑏; 𝑥, 𝑦) =
1

2
‖ℎ𝑊,𝑏(𝑥) − 𝑦‖

2
 (3.24)

32

 Based on this squared-error cost function, the overall cost function can be defined

as:

𝐽(𝑊, 𝑏) = [
1

𝑚
∑ 𝐽(𝑊, 𝑏; 𝑥(𝑖)𝑦(𝑖))

𝑚

𝑖=1

] +
𝜆

2
∑ ∑ ∑(𝑊𝑖𝑗

(𝑙)
)

2
𝑠𝑙+1

𝑗=1

𝑠𝑙

𝑖=1

𝑛𝑙−1

𝑙=1

= [
1

𝑚
∑

1

2
‖ℎ𝑊,𝑏(𝑥(𝑖)) − 𝑦(𝑖)‖

2
𝑚

𝑖=1

] +
𝜆

2
∑ ∑ ∑(𝑊𝑖𝑗

(𝑙)
)

2
𝑠𝑙+1

𝑗=1

𝑠𝑙

𝑖=1

𝑛𝑙−1

𝑙=1

(3.25)

 The 𝑠𝑙 represents the number of nodes in layer l. The first half of 𝐽(𝑊, 𝑏) equation

represents an average sum-of-squares error, and the second half of it is a regularization

term (weight decay term) that tends to decrease the magnitude of the weights and helps

prevent overfitting [58]. 𝜆 is the weight decay parameter which controls the relative

importance of two terms.

 To train the neural network, firstly, each parameter 𝑊𝑖𝑗
(𝑙)

 and each 𝑏𝑖
(𝑙)

 is initialized

randomly with a value near zero, and then an optimization algorithm, such as batch gradient

descent, is applied to the algorithm. The purpose of random initialization is symmetry

breaking, which means to prevent all the hidden layer units learn the same function of the

inputs.

 One iteration of gradient descent updates the parameter W, b as follows [58]:

𝑊𝑖𝑗
(𝑙)

∶= 𝑊𝑖𝑗
(𝑙)

− 𝛼
𝜕

𝜕𝑊𝑖𝑗
(𝑙)

𝐽(𝑊, 𝑏)

𝑏𝑖
(𝑙)

∶= 𝑏𝑖
(𝑙)

− 𝛼
𝜕

𝜕𝑏𝑖
(𝑙)

𝐽(𝑊, 𝑏)

(3.26)

where 𝛼 is the learning rate and partial derivatives terms can be computed by using the

backpropagation algorithm, which can minimize the 𝐽(𝑊, 𝑏), as follow [58] :

33

1. Perform a feedforward pass, computing the activations for layers L2, L3, and so

on up to the output layer Lnl.

2. For each output unit 𝑖 in layer 𝑛𝑙 (the output layer), set

 𝛿𝑖
(𝑛𝑙)

=
𝜕

𝜕𝑧𝑖
(𝑛𝑙)

1

2
‖ℎ𝑊,𝑏(𝑥) − 𝑦‖

2
= −(𝑦𝑖 − 𝑎𝑖

(𝑛𝑙)
) ∙ 𝑓′(𝑧𝑖

(𝑙)
) (3.27)

3. For 𝑙 = 𝑛𝑙 − 1, 𝑛𝑙 − 2, 𝑛𝑙 − 3, … ,2

a) For each node i in layer l, set

 𝛿𝑖
(𝑛𝑙)

= (∑ 𝑊𝑗𝑖
(𝑙)

𝛿𝑗
(𝑛𝑙)

𝑠𝑙+1

𝑗=1

) 𝑓′(𝑧𝑖
(𝑙)

) (3.28)

4. Compute the desired partial derivatives, which are given as:

𝜕

𝜕𝑊𝑖𝑗
(𝑙)

𝐽(𝑊, 𝑏; 𝑥, 𝑦) = 𝑎𝑖
(𝑙)

𝛿𝑖
(𝑙+1)

𝜕

𝜕𝑏𝑖
(𝑙)

𝐽(𝑊, 𝑏; 𝑥, 𝑦) = 𝛿𝑖
(𝑙+1)

(3.29)

 By using the Hadamard product, where 𝑎 = 𝑏 ∘ 𝑐, then 𝑎𝑖𝑗 = 𝑏𝑖𝑗 ∙ 𝑐𝑖𝑗, the desired

partial derivatives for matrix-vectorial operation based on the algorithm above can be

computed as:

∇𝑊(𝑙)𝐽(𝑊, 𝑏; 𝑥, 𝑦) = 𝛿(𝑙+1)(𝑎(𝑙))𝑇

∇𝑏(𝑙)𝐽(𝑊, 𝑏; 𝑥, 𝑦) = 𝛿(𝑙+1)
(3.30)

 As a result, the full gradient descent algorithm can be expressed based on the (3.30).

One iteration of batch gradient descent can be implemented as follows [58]:

1. Set ∆𝑊(𝑙) ∶= 0, ∆𝑏(𝑙) ∶= 0 (matrix/vector of zeros) for all l.

34

2. For i = 1 to m,

a) Use backpropagation to compute ∇𝑊(𝑙)𝐽(𝑊, 𝑏; 𝑥, 𝑦) and

∇𝑏(𝑙)𝐽(𝑊, 𝑏; 𝑥, 𝑦).

b) Set ∆𝑊(𝑙) ∶= ∆𝑊(𝑙) + ∇𝑊(𝑙)𝐽(𝑊, 𝑏; 𝑥, 𝑦)

c) Set ∆𝑏(𝑙) ∶= ∆𝑏(𝑙) + ∇𝑏(𝑙)𝐽(𝑊, 𝑏; 𝑥, 𝑦)

3. Update the parameters:

𝑊(𝑙) ∶= 𝑊(𝑙) − 𝛼 [(
1

𝑚
∆𝑊(𝑙)) + 𝜆𝑊(𝑙)]

𝑏(𝑙) ∶= 𝑏(𝑙) − 𝛼 [
1

𝑚
∆𝑏(𝑙)]

(3.31)

where ∆𝑊(𝑙) is a matrix with the same dimension of 𝑊(𝑙), and ∆𝑏(𝑙) is a vector with the

same dimension of 𝑏(𝑙).

 The neural network can be trained by taking steps of gradient descent to reduce the

cost function 𝐽(𝑊, 𝑏).

3.5 Deep Q-Learning

 Deep learning models are a field in machine learning models. Deep neural networks

(DNN) that have been applied to this thesis are one of the popular models along with the

deep learning models. The reason for choosing this model is that it is the most accurate

parametric machine learning model, which has a fixed set of adjustable parameters for a

given task [53]. The DNN has the capability to break the complex data into atomic units

and handle complexity with units. When Q-learning combines with DNN, it can minimize

the mean-square error loss by stochastic gradient descent.

Additionally, it can solve problems that can be caused by other value function

approximation methods, such as the correlation between samples and non-stationary

targets. These two problems can have a negative effect when the learning agent estimates

the right policy. The correlation between samples can make the process very time-

consuming because the only way to get the observation is to try the action in different

policies. The non-stationary targets would cause the estimated policy to be highly biased

35

with respect to the optimal policy. The DQN solves these two problems by using

experience replay and fixed Q-targets.

 In order to remove the correlation between samples, the DQN stores the dataset

𝐷(𝑠, 𝑎, 𝑟, 𝑠′)from prior experience so that it can use the data more than once for training.

As a result, the target value for the sample s can be expressed as 𝑟 + 𝛾 max
𝑎′

�̂�(𝑠′, 𝑎′; 𝑤).

By plugging in this target value function, the network weight can be updated by using

stochastic gradient descent as:

 ∆𝑤 = 𝛼(𝑟 + 𝛾 max
𝑎′

�̂�(𝑠′, 𝑎′; 𝑤) − �̂�(𝑠, 𝑎; 𝑤))∇𝑤�̂�(𝑠, 𝑎; 𝑤) (3.32)

 Additionally, the stability can be improved by fixing the target weights. In DQN, a

set of weights used in the target 𝑤− and weights that are being updated 𝑤 can be applied

together to update the network weights. The target value for the sample s can be expressed

as 𝑟 + 𝛾 max
𝑎′

�̂�(𝑠′, 𝑎′; 𝑤−). By plugging in this target value function, the network weight

can be updated by using stochastic gradient descent as:

 ∆𝑤 = 𝛼(𝑟 + 𝛾 max
𝑎′

�̂�(𝑠′, 𝑎′; 𝑤−) − �̂�(𝑠, 𝑎; 𝑤))∇𝑤�̂�(𝑠, 𝑎; 𝑤) (3.33)

 As a result, the algorithm of DQN can be written as:

36

Algorithm 5: Deep Q-learning algorithm [65]

 Input 𝐶, 𝛼, 𝐷 = {}, initialize 𝑤, 𝑤− = 𝑤, t = 0

 Get initial state 𝑠0

 loop

 Sample action 𝑎𝑡 given ε-greedy policy for current �̂�(𝑠𝑡, 𝑎; 𝑤)

 Observe reward 𝑟𝑡 and next state 𝑠𝑡+1

 Store transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in replay buffer D

 Sample random minibatch of tuples (𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠𝑖+1) from D

 for j in minibatch do

 if episode terminated at step, 𝑖 + 1 then
 𝑦𝑖 = 𝑟𝑖
 else
 𝑦𝑖 = 𝑟𝑖 + 𝛾 max

𝑎′
�̂�(𝑠𝑖+1, 𝑎′; 𝑤−)

 end if
 Do gradient descent step on (𝑦𝑖 − �̂�(𝑠𝑖, 𝑎𝑖; 𝑤−))2 for parameters

 𝑤: ∆𝑤 = 𝛼(𝑦𝑖 − �̂�(𝑠𝑖, 𝑎𝑖; 𝑤−))∇𝑤�̂�(𝑠𝑖, 𝑎𝑖; 𝑤)

 end for

 𝑡 = 𝑡 + 1

 if mod (t, C) == 0 then

 𝑤 ← 𝑤−

 end if

 end loop

 More information about how to implement DQN will be introduced in the following

chapter.

3.6 Chapter Summary

 This chapter introduced the essential knowledge that is needed to understand and

implement deep Q-learning. The foundation of all of the techniques discussed is the

Markov Decision Process. Moreover, several classical MDP algorithm is introduced as

well as the fundamental concepts of reinforcement learning and Q-learning. Lastly, the

basic theory, advantages, and disadvantages of Deep RL and DQN were presented.

37

Chapter 4

Proposed Method

This thesis uses two Q-Cars, as illustrated in Figure 4.1, as models for

implementing the CACC system. The Q-Cas is an electrically driven model with onboard

CPU and sensors, including Lidar, RGB-D camera, and 360° CSI camera suite. The 2D

planar lidar, which the CACC system uses for measuring inter-vehicular distance, supports

up to 8000 samples per second, with scanning frequency up to 15Hz, and a sensing range

of up to 18m [70]. The 360° CSI camera suite has four 8MP 2D CSI cameras, which can

be applied to capture the image for line detection. Meanwhile, for using MATLAB to

maneuver the Q-Cars, blocks from the QUANSER Simulink toolbox are used to build the

Simulink Model.

Figure 4.1 Q-Car platform components [70]

In order to present a CACC system in Q-Cars by MATLAB Simulink, an ACC

system is designed first. Then, a communication channel is built up for Q-Cas to exchange

information such as their speed and inter-vehicular distance. Moreover, a CACC system is

designed based on the ACC and communication systems. Lastly, I built a CACC system

based on deep Q learning on top of the original CACC system, and the performance of the

three systems can be compared together.

38

4.1 ACC system

The core of an ACC system is its longitudinal control system. The architecture of

the longitudinal control system is illustrated in Figure 4.1. In an autonomous vehicle with

an ACC system, the ACC controller combines with its vehicle dynamics to perform a

prototype of an ACC system. At the beginning of each step, the ACC controller module

will read the inter-vehicular distance between the host vehicle and the vehicle in front of

it. It will also read the host vehicle's speed through its onboard sensor. Based on these

inputs, the ACC Controller will be able to calculate its desired speed and send it to the

Vehicles Dynamics module to execute. The objective of the controller is to maintain the

inter-vehicular distance as the preset tracking distance. Based on the flow chart, the ACC

system of Q-Car can be designed and tested by the MATLAB Simulink.

Figure 4.2 Architecture of ACC longitudinal control system

4.1.1 Lidar and line detection

Figure 4.3 Lidar module for distance measurement

 The objective of the Lidar system is to measure the inter-vehicular distance between

the front car and the ego car, where the front car is the leading car in the platoon and the

39

ego car is the one that follows it. Figure 4.3 demonstrates the whole system that captures

the lidar information around the vehicle and sends the distance information as an input for

the ACC controller module. By using the captureLIDAR block from the QUANSER

toolbox, the lidar data can be captured and transferred to the computer. The LIDAR on the

car scans in a clockwise direction, and its 0 heading is a 270-degree clockwise direction of

the actual Q-Cars' heading. To align the reference point of both Q-Car and LIDAR sensors,

+270 degrees is added to the lidar sensor's default heading reference, and the heading signal

is converted to radians for further calculation. Meanwhile, since the entire ACC system is

required to respond to the environment frequently, the distance measurement should be

updated frequently as well. Therefore, only 400 samples per revolution are collected to

maximize the scanning frequency to 15Hz, which means the lidar can have 15 revolution

scans per second.

 An extra function block is added to the Lidar system to get the actual inter-vehicular

distance. Since the measured distance is the distance between the objects and the lidar

sensor, the distance between the front bumper of the Q-Car and the Lidar sensor, which is

0.26m, is reduced from the sensor's measurements to get a more accurate measurement that

fits the Q-Car application. Meanwhile, in this function, it takes nine distance measurements,

which include the measurements at 0 heading, four measurements beyond 0 heading

clockwise, and four measurements beyond 0 headings counterclockwise. This function can

find the minimum distance measurements from these measurements and send them as an

input for the ACC controller module because the minimum value of these measurements

can make the Q-Car operate based on the safest strategy. Additionally, since the lidar will

return 0 if it does not sense any object, the 0 value will be excluded from the algorithm.

Figure 4.4 Line detection and steering calculation module

40

 As shown in Figure 4.4, the line detection and steering calculation module is an

additional module besides the ACC system. The objective of this module is to maintain the

vehicle at the center of the road. This module uses four 360°CSI cameras to capture the

images on the road. The colorThresholdingHSV blocks are responsible for detecting the

yellow line in different lighting conditions, and the steeringCalcuation will generate the

desired steering angle based on the threshold image.

Figure 4.5 Steering calculation module

 Figure 4.5 demonstrates the process of the steering calculation. The linearPolyFit

uses polyfit function from MATLAB to generate a slop and y-intercept on the equation:

 𝑦 = 𝑚𝑥 + 𝑏 (4.1)

where m is the slope, and b is the y-intercept value of the line. The MATLAB function

after linearPolyFit uses m and b values to calculate the steering command up to ±0.5 rad,

which is the steering limitation of the Q-Car.

4.1.2 ACC Controller

Figure 4.6 Longitudinal control module

41

Figure 4.7 ACC controller module

The most common spacing policy applied to the ACC and CACC system by vehicle

manufacturers and researchers is the Constant Time Headway (CTH) spacing policy [43],

[44]. There are many studies about CACC or ACC systems that applied CTH spacing

policy to their system [33], [45], [46], which illustrate its stability and reliability. The

desired distance based on CTH is an increasing function of host vehicle speed, which can

be expressed as follow:

 𝑑𝑟(𝑡) = 𝑟 + ℎ𝑣(𝑡) (4.2)

where dr(t) is the desired distance, r is the standstill distance, and h is the constant time

headway time.

As shown in Figure 4.6 and Figure 4.7, the core module is the

adaptive_cruise_control, which is included in the automatedDriving block. This module

will take the obstacle distance measured by the lidar system, preset nominal speed, stop

distance, and nominal tracking distance to compute the desired speed as a speed command

to send to the trunSpeedHeading block. The equation of desired speed is expressed as

follows:

 𝑉𝐷𝑒𝑠𝑖𝑟𝑒𝑑 =
𝑉𝑛𝑜𝑚𝑖𝑛𝑎𝑙

𝑑𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 − 𝑑 𝑑𝑒𝑟𝑠𝑖𝑟𝑒𝑑
(𝑑𝑜𝑏𝑠𝑡𝑖𝑐𝑎𝑙 − 𝑑𝑠𝑡𝑜𝑝) (4.3)

where Vnominal is a preset nominal speed which is the desired speed that a vehicle would

maintain when there is nothing in front of it, as known as its cruise speed, dtracking is a preset

tracking distance such that the speed of the vehicle will decrease when the inter-vehicular

42

distance is less than it, ddesired is the desired distance calculated by equation (4.2). dstop is a

preset distance that the vehicle needs to stop, and n is the measured value from the onboard

Lidar sensor.

The turnSpeedHeading block and speedContoller module are two functional

modules which are provided by QUANSER. The turnSpeedHeading block is responsible

for reducing the vehicle speed during the turning process. The Q-Car will go in the vertical

direction of the centrifugal force due to the effect of inertia when the speed of the vehicle

is too fast during turning. The speed reduction is limited between 50% and the cosine of

the steering multiplied by the speed command calculated by the adaptive_cruise_control

block so that the vehicle will not skid during the turning process. Finally, the desired

velocity will be sent to the speedController module of the vehicle as input after each

iteration. This module is a combination of feedforward and feedback controllers. The

throttle command based on the PWM duty cycle and duty cycle bias of the electric motor

will be sent to the Vehicles Dynamic module.

4.1.3 Vehicle dynamic module and sensor

Figure 4.8 Vehicle dynamic module and motor sensor module

 In Figure 4.8, the Vehicles Dynamic module and Sensor module of Q-Car, from

QUANSER toolbox, are demonstrated. The throttle command, in percentage value, from

speedContorller block and steering, in radiance value, from turnSpeedHanding block are

combined and sent to indicatorAndLamps and basicQCarIO separately. The

43

indicatorAndLamps block sends a signal to the LED lights on the car during turning or

braking based on the motor command. The baiscQCarIO is responsible for transferring the

throttle command to the motor speed that the Q-Car platform can read.

 The sensor module converts the motor speed to longitudinal car speed by using the

gear ratios and wheel radius (0.0342m). The motor speed, measured by an encoder, is

converted to shaft speed by multiplying the gear ratios. Then, the shaft speed can be

computed to longitudinal car speed by using the equation:

𝑣 = 2 ∗ 𝜋 ∗ 𝑟 ∗ 𝛺

(4.4)

where r is the wheel radius and Ω is the shaft speed (rots/s).

4.2 CACC

Figure 4.9 Architecture of CACC longitudinal control system

CACC system as an extension of the ACC system, an additional wireless

communication module is required, which is responsible for the exchanging information

between vehicles. In this case, an onboard Wi-Fi module is responsible for exchanging

information. The architecture of the longitudinal control system is illustrated in Figure 4.9.

In an autonomous vehicle with a CACC system, its CACC Controller works with its

Vehicle Dynamics module to perform a prototype of a CACC system. At the beginning of

each step, the Lidar sensor will send the obstacle distance (or inter-vehicular distance) to

the CACC Controller. The onboard motor sensor will also send the current speed of the

vehicle to it as well. Meanwhile, the Wi-Fi module will receive information from the front

44

vehicle, such as its speed and the obstacle distance from its lidar sensor. The desired speed

can be calculated and sent to the front vehicle with obstacle distance through the Wi-Fi

module according to these measured values. At the same time, its Vehicles Dynamics

module will receive the command for further execution. As with the ACC system, the

controller's objective is to realize and maintain the inter-vehicular distance with the

calculated desired speed as well. Therefore, in the MATLAB Simulink platform design,

the Lidar, Vehicle Dynamics, and the Sensor module are the same as the ACC system.

4.2.1 Vehicle to vehicle communication

Figure 4.10 V2V communication module

Vehicle to vehicle(V2V) communication is one of the most significant functions of

the CACC system. The Q-Car has onboard WIFI chips which support IEEE 802.11

a/b/g/n/ac protocols with dual antennas. Therefore, the V2V communication between Q-

Cars can be established through the private router's wireless connection, as shown in Figure

4.10, which supports both 802.11 ac and 802.11 g. The Q-Car can use either the 2.4 GHz

or 5GHz band, where the 5GHz band will have a better transmission rate but lower

reliability due to the signal degradation. As a result, the 2.4 GHz channel is utilized in the

CACC application. In order to send and receive the data through the ethernet, the block

provided by QUANSER, which is called a steam client and steam server, is used to

establish the communication. These blocks can send and receive data simultaneously and

send it to other blocks in the system. The basic CACC system requires obstacle distance

and vehicle speed data for further calculation, where the obstacle distance is measured by

the onboard lidar sensor, and the vehicle speed is measured and calculated by the onboard

motor speed sensor. Therefore, two sets of client and server blocks are used to send and

receive these two sets of data, respectively.

45

4.2.2 CACC Controller

Figure 4.11 CACC longitudinal control module

Figure 4.12 CACC controller

As shown in Figure 4.11, the CACC controller is very similar to the ACC controller

except for the automatedDriving block, which is shown in Figure 4.12. On top of the ACC

controller, it takes the host vehicle speed and front vehicle speed as two additional inputs

to compute the desired speed of the host vehicle and sends it to the turnSpeedHeading

block, where the front vehicles speed is directly transformed to the host vehicle through

the V2V communication module and the host vehicle's speed is measure by its onboard

motor speed sensor. The speed control algorithm not only involves the speed of the front

and host vehicle but also is computed based on a new spacing policy.

The real-time front car and host car's speed can be used to compute a speed

coefficient based on their value as follow:

 ω = 𝑉𝑓𝑟𝑜𝑛𝑡 − 𝑉𝑒𝑔𝑜 (4.5)

where Vfront and Vego are the speed of the car in front and the host car respectively.

46

The CACC system also applied CTH for distance control. Based on equation (4.2)

and (4.3), a new equation of desired speed for Q-Car application is expressed as follow:

 𝑉𝐷𝑒𝑠𝑖𝑟𝑒𝑑 = 𝑉𝑛𝑜𝑚𝑖𝑛𝑎𝑙

(𝑑𝑜𝑏𝑠𝑡𝑖𝑐𝑎𝑙 − r)

ℎ ∗ ω
 (4.6)

where Vnominal is a preset nominal speed which is the desired speed that a vehicle would

maintain when there is nothing in front of it, as known as its cruise speed, dobstical is the

measured value from the onboard Lidar sensor, r is the standstill distance, h is the constant

time headway time, which is set to 0.3s in my case,ω is a car speed coefficient based on

the real-time front and host vehicle speed. Additionally, the follower vehicle would follow

the same speed as the front vehicle while the inter-vehicular distance is within ±10% range

of the desired distance or the ω equals zero.

Like the ACC system, the desired speed of the CACC system, that computed by

automatedDriving module, will be sent to the tunrSpeedHanding module to finalize a final

desired speed that is compromised with steering. Then, the turnSpeedHanding module will

send the finalized desired Speed to the speedController to finalize a throttle command to

the Vehicle Dynamics module to execute.

4.3 CACC with Deep Q-learning

The Q-learning is one of the RL algorithms that I choose for the CACC control task

on the Q-Car. The reason why the RL algorithm is applied to this application is that in each

step of the CACC problem, it is not known what the right decision is. However, by using

the RL and giving each step rewards, it is possible to still come up and optimize the right

track to reach the ultimate objective, which is to maintain the longitudinal distance between

the vehicles. Q-learning is an off-policy model-free RL method that can handle stochastic

problems. Q-learning algorithm is based on the Markov Decision Process (MDP), where a

set of states (S) describes the position of the vehicle, a set of actions (A) indicates the

acceleration or deacceleration action of the vehicle, and a set of observations (O) describes

the inter-vehicular distance that is measured by lidar. A stochastic policy 𝜋 (𝑠𝑡, 𝑎𝑡) =

 𝑂𝑡 × 𝐴𝑡, is used to select actions to produce the next state. Then, the reward function r :

47

S × A → ℝ can be obtained from the state and vehicle's action. Based on the states, actions,

observations and reward, the update of state-action value can be defined as:

 𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼 [𝑟𝑡 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎𝑡) − 𝑄(𝑠𝑡 , 𝑎𝑡)] (4.7)

where α is the learning rate and can be set between 0 and 1. rt is the reward, and γ is the

discount factor that shows the weight of the previous reward.

4.3.1 State and Action Space

Since Q-learning is based on the MDP, the state and action space should be defined

first. In the state space, three state variables are defined as follows:

 𝐻 =
𝑆𝑙𝑒𝑎𝑑 − 𝑆𝑒𝑔𝑜

𝑉𝑒𝑔𝑜
 (4.8)

where H is the headway time which defines the inter-vehicular distance in the time domain.

Sego and Slead are the position of the following vehicle and leading vehicle, respectively,

and Vego is the velocity of the following vehicle. Instead of measuring the inter-vehicular

distance directly from their position, transforming the distance difference into time

difference helps the ego car (the car follows the front car in a platoon) measure the inter-

vehicular distance based on its current velocity.

 𝑉𝑑𝑖𝑓𝑓 = 𝑉𝑙𝑒𝑎𝑑 − 𝑉𝑒𝑔𝑜 (4.9)

where Vdiff is the velocity difference between the front and the following vehicle,

combining it with the headway time can demonstrate whether the vehicle is close or far

away from the previous state. Based on the velocity difference, the difference between the

displacement of two vehicles, which illustrates if the ego car is getting closer or getting far

away from the front car, can be computed by integration:

 𝑑𝑑𝑖𝑓𝑓
̇ = 𝑉𝑑𝑖𝑓𝑓 (4.10)

48

The third variable in state-space is the front car acceleration:

𝑆 = {𝐻, 𝑑𝑑𝑖𝑓𝑓, 𝑎𝑙𝑒𝑎𝑑}

(4.11)

Similarly, the action space can be defined with three actions: acceleration (AC),

deacceleration (DAC), and no operation (NO). Acceleration and deacceleration are

specified by two different levels, respectively: ACa, ACs, DACa, and DACs, such that the

vehicle can have different strategies, which are aggressive and smooth, to respond to the

action of the front vehicle to make a smoother control. The aggressive strategy has a larger

acceleration or deacceleration compared to the soft strategy. Eventually, the action space

can be described as follow:

 𝐴 = {𝐴𝐶, 𝐷𝐴, 𝑁𝑂} (4.12)

 𝐴 = {𝐴𝐶𝑎, 𝐴𝐶𝑠, 𝐷𝐴𝑎, 𝐷𝐴𝑠, 𝑁𝑂} (4.13)

4.3.2 Reward Function

Figure 4.13 Reward function

49

After defining state and action spaces, the reward function should be determined to

evaluate the performance of each action in the action space. Based on the state space and

constant time headway time value in our case, the reward was designed as shown in Figure

4.13. The objective of the reward function is to force the agent to stick to the safety distance

as close as possible. Positive reward values are given to the agent's actions at a safe inter-

vehicular distance.

Different reward values are assigned to the different headway time ranges based on

the ratio of constant headway time values, and they are also given to the positive and

negative Vdiff in different headway time zones. The pre-defined headway time is 0.3

seconds, which is ten times smaller than the pre-defined headway time in real-world (3 s),

because the length of the Q-Car is 0.425 m, which is around ten times smaller than a general

Sedan in the real world (4 m). A larger positive reward is given to the Q-Car when it enters

the zone that is within ± 10% of the headway time, and more rewards are given when the

Q-Car enters a more accurate zone, which is within ± 5% of the headway time. On the

contrary, a negative reward is given when the inter-vehicular distance is too close or too

far away from the safety distance. The negative reward is also given when the ego car is

faster than the lead car and the relative distance is smaller than the safety distance, or when

the ego car is slower than the lead car and the relative distance is larger than the safety

distance. Additionally, an extra punishment is given to the situation where the inter-

vehicular distance is out of sensing range and smaller than the standstill distance, as shown

in (4.14).

 𝑟 = −500 𝑑𝑜𝑏𝑠𝑡𝑖𝑐𝑎𝑙 > 5 𝑜𝑟 𝑑𝑜𝑏𝑠𝑡𝑖𝑐𝑎𝑙 < 0.2 (4.14)

4.3.3 Neural Network Design

In reinforcement Q-learning, a Q-table was applied to store all the states and action

values. In this complicated case, the size of the Q-table will be too large to store and search.

Therefore, a three-layer neural network with an additional input layer was designed for this

application (Figure 4.14). The neural network includes an input layer, an output layer, and

two hidden layers. Hidden layers have 120 neurons in each layer, which is a fully connected

layer with the rectified linear unit (ReLU) activation function.

50

(4.)

Figure 4.14 Four-layer neural network structure

4.3.4 Training Model

Figure 4.15 The framework of the training environment

51

A DQN training environment is set up on MATLAB Simulink (Figure 4.16) based

on (Figure 4.15). In each state iteration, the lead car sends its position and acceleration to

the signal processing module, where the Observation, Reward and Isdone results can be

computed. The Learning Agent receives those data, updates the �̂�(𝑠, 𝑎; 𝑤) and select an

action according to the stochastic policy. The action selected from the action space will be

sent to the ego car and Signal Processing module. Meanwhile, the learning agent is

expected to adjust ego car speed according to the front vehicle speed variation to maintain

a safe distance. To this end, the MATLAB Reinforcement Learning toolbox has been used.

Lastly, the ego car module executes the action and sends its position and velocity to the

Signal Processing Module.

Figure 4.16 Training environment in MATLAB Simulink

x0_lead and x0_ego represent the initial position of the lead car and ego car,

respectively. By taking the difference between these two values, the inter-vehicular

distance can be calculated. In the training process, the initial position for the lead car is

randomly generated between 10 and 11 meters, and the initial position for the ego car is set

to 9.6 meters. Therefore, in each episode, the initial inter-vehicular distance would be

randomly generated between 0.4 m to 1.4 m to cover more different scenarios that the agent

can learn from. Similarly, the v0_lead and v0_ego represent the initial speed of the lead car

and ego car, respectively. The term a_lead represents the acceleration of the lead car.

52

Figure 4.17 Lead car and ego car model

As shown in Figure 4.17 and Figure 4.18, the lead and ego cars are designed based

on a vehicle kinematics bicycle model to simulate their acceleration, velocity, and positions

[66]:

�̇� = 𝑣 cos (𝜓 + 𝛽)

�̇� = 𝑣 sin (𝜓 + 𝛽)

�̇� =
𝑣

𝑙𝑟
 sin (𝛽)

�̇� = 𝑎

𝛽 = tan−1 (
𝑙𝑟

𝑙𝑓 + 𝑙𝑟
tan(𝛿𝑓))

(4.15)

Figure 4.18 Kinematics bicycle model [66]

53

where the x and y are the positions of the center of mass of the vehicle in the frame of (X,

Y) in Figure 4.18, 𝜓 is the initial heading of the vehicle, 𝛽 is the angle of the current

velocity with respect to the longitudinal axis of the car, and 𝑎 is the acceleration in the

same direction of velocity. The variables 𝑙𝑟 and 𝑙𝑓 are the distance from the center of mass

of the vehicle to the rear axles and front axels, respectively. 𝛿𝑓 and 𝛿𝑟 are the steering

angles of the front and rear wheel, respectively. Since the Q-Car application simulation

only considers the longitudinal control of the vehicle moving straight forward, the 𝜓, 𝛽,

and x are zero, and the equation of the kinematics bicycle model can be written as:

�̇� = 𝑣

�̇� = 𝑎
(4.16)

The acceleration of the lead car is assumed to be in the form of a sine wave with

0.03 amplitude and 30 seconds wavelength, which is the environment in that the front

vehicle is moving. Additionally, a transform function is applied to represent the execution

delay between the higher-level control and the lower-level control of the vehicle:

 𝐻(𝑆) =
𝑉(𝑆)

𝐴(𝑆)
=

1

0.1𝑠2 + 𝑠
 (4.17)

The Signal Processing module (Figure 4.19) is designed to calculate the

observations, including the relative distance and headway time between two vehicles, the

signal flag to ending a set of states, and the reward value based on the reward function.

This module is mainly combined with four different modules for this purpose: Distance

Calculation, Velocity Difference, IsDone, and Reward function. The v_ego and v_lead are

the velocity of the ego car and lead car, respectively. v_set is the preset cruising speed the

ego car would reach if there were no other objects in front of it. The term d_rel is the

relative distance between the ego car and the lead car, which can be measured by lidar

sensors in the real application. d_err represents the difference between safety distance and

actual relative distance, and v_err represents the velocity difference between the ego car

and lead car.

54

Figure 4.19 Signal Processing module for DDQN CACC

Figure 4.20 Safety distance calculation by MATLAB Simulink

The safety distance is calculated by the Distance Calculate module (Figure 4.20),

which uses the CTH policy and satisfies equation (4.2), where the t_gap is the preset

constant time headway time (0.3s), and D_default is the preset standstill distance (0.3 m).

55

Figure 4.21 Velocity Difference module

The Velocity Difference module (Figure 4.21) is responsible for calculating the

velocity difference, v_err, between the lead car and ego car and sending the result to the

observation space, IsDone and Reward Function Module. To simulate the condition where

there is no object in front of the ego car, the preset cursing speed, v_set, can replace the

v_lead as its desired speed through this module.

Figure 4.22 Reward Function by MATLAB Simulink

56

The Reward Function module (Figure 4.22) is implemented based on the reward

function, which is designed in the Reward Function section of this chapter by using the

MATLAB Simulink function block. The extra punishments are given by the equation

(4.14), when the headway time is too short, which might lead to crushing, or it is too large

that would be out of the vehicle’s sensing range.

Figure 4.23 isDone signal module

Additionally, the isDone value is calculated by using IsDone module (Figure 4.23)

for the learning agent to understand when a set of training should be terminated. This

module demonstrates that episodes would be terminated when the relative distance is too

small or too big, and the velocity of the ego car becomes a negative value, which means

the ego car starts to move backward. Moreover, it can reduce the unnecessary training

episodes that are too far away from the right policy.

4.3.5 Training Algorithm with Double Deep Q-learning (DDQN)

 The training algorithm is another important aspect of training because its efficiency

relies on the efficiency of using state-action pairs and their Q-values. Some of the new

research [67] demonstrate that the DDQN can have a better performance by finding better

policies and obtaining new state-of-the-art results. The double DQN is a learning algorithm

combined with DNN and a double Q-learning algorithm without requiring additional

networks and parameters. Instead of using a function:

𝑦𝑖 = 𝑟𝑖 + 𝛾 max

𝑎′
�̂�(𝑠𝑖+1, 𝑎′; 𝑤−)

𝑤: ∆𝑤 = 𝛼(𝑦𝑖 − �̂�(𝑠𝑖, 𝑎𝑖; 𝑤−))∇𝑤�̂�(𝑠𝑖, 𝑎𝑖; 𝑤)

(4.18)

The double DQN replaced 𝑦𝑖 as:

57

 𝑦𝑖 = 𝑟𝑖 + 𝛾 �̂�(argmax
𝑎′

�̂�(𝑠𝑖+1, 𝑎′; 𝑤); 𝑤−) (4.19)

As a result, the DDQN algorithm that can be applied to train the Q-Car model can

be written as:

Algorithm 6: Double Deep Q-learning algorithm

 Input 𝐶, 𝛼, 𝐷 = {}, initialize 𝑤, 𝑤− = 𝑤, t = 0

 Get initial state 𝑠0

 loop

 Sample action 𝑎𝑡 given ε-greedy policy for current �̂�(𝑠𝑡, 𝑎; 𝑤)

 Observe reward 𝑟𝑡 and next state 𝑠𝑡+1

 Store transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in replay buffer D

 Sample random minibatch of tuples (𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠𝑖+1) from D

 for j in minibatch do

 if episode terminated at step, 𝑖 + 1 then
 𝑦𝑖 = 𝑟𝑖
 else
 𝑦𝑖 = 𝑟𝑖 + 𝛾 �̂�(argmax

𝑎′
�̂�(𝑠𝑖+1, 𝑎′; 𝑤); 𝑤−)

 end if
 Do gradient descent step on (𝑦𝑖 − �̂�(𝑠𝑖, 𝑎𝑖; 𝑤−))2 for parameters

 𝑤: ∆𝑤 = 𝛼(𝑦𝑖 − �̂�(𝑠𝑖, 𝑎𝑖; 𝑤−))∇𝑤�̂�(𝑠𝑖, 𝑎𝑖; 𝑤)

 end for

 𝑡 = 𝑡 + 1

 if mod (t, C) == 0 then

 𝑤 ← 𝑤−

 end if

 end loop

4.4 Chapter Summary

This chapter presented all the implementation methods and procedures used in this

thesis. Firstly, the hardware of the Q-Car model was introduced with its technical

specifications. Then, an ACC model and algorithm were presented and designed using

MATLAB Simulink. Additionally, a CACC model was built based on the ACC model with

an extra communication module and a different algorithm. Lastly, a training model for Q-

Car was established by using the MATLAB Simulink Reinforcement Learning Toolbox

58

with a designed neural network, and a DDQN training algorithm for this model was

presented in the end.

59

Chapter 5

Experimental Results

Vehicle models with essential sensors are necessary for the implementation and

testing. The objective of this section is to compare the performance of the ACC and CACC

system on Q-Cars and to compare the performance of the ACC, CACC and CACC with

Double DQN through MATLAB simulation. The simulation result is introduced first

because the simulation results can give a good indication of the performance of the system

in an actual experimental application. In the simulation part, the experimental setup for

simulating the vehicle’s longitudinal control by using the ACC system is presented. Next,

the result for the ACC simulation is also presented. Then, a simulation model of the vehicle

using the CACC system is established with the results. Lastly, the simulation for the CACC

system using DDQN is formed by using the same environment as the training model, and

the result is discussed.

5.1 Simulation Model and Results

For the consistency of simulation results in three different systems, the initial

parameters are set as and are maintained in the experiments. The initial velocity of the ego

car and lead car were set to 0.5 m/s and 0.6 m/s, respectively. Also, the initial inter-

vehicular distance, which is the difference between their actual position, was set to 0.55 m.

The standstill distance, which is the distance needed to be maintained by the ego car when

its speed is zero, is set to 0.3 m. To make the simulation closer to the reality, where the

vehicle movement involves in both acceleration and deacceleration in the tour, the

acceleration of the lead car is assumed to occur by a step-changed sine wave with 0.03

amplitude and 30 seconds wavelength, which is to represent the environment in which the

front vehicle is moving. This acceleration wave generator is very similar to the one that

other researchers applied for real vehicle and traffic flow simulation for other CACC

algorithms [68]. All the simulations use the kinematic bicycle model (4.16), which is a

widely applied model for trajectory planning, such as in [67], to simulate the longitudinal

changes of two vehicles.

60

5.1.1 Simulation for ACC system

 As shown in Figure 5.1, the ACC simulation module is similar to the learning

module built for the DDQN. Figure 5.2 demonstrates the Signal Processing module, which

generates the Safety distance for the Desired distance, Obstacle Distance, Nominal Speed

and Car Speed of the ego car as the input of the ACC controller function. Meanwhile, all

the simulation results are plotted within this module. The ACC controller function is

designed as the ACC controller from the previous chapter (4.3).

Figure 5.1 Simulation Model for ACC system in MATLAB Simulink

Figure 5.2 Signal Processing for ACC

61

The simulation results for the ego car with the ACC system and lead car’s speed,

inter-vehicular distance and distance error are demonstrated in Figure 5.3, Figure 5.4, and

Figure 5.5, respectively.

Figure 5.3 Speed measurements for ACC simulation

In Figure 5.3, the speed of the lead car and ego car, where v_lead is the speed of

the car leading the platoon, and the v_ego is the speed of the ego car, which is trying to

maintain a safe distance with the lead car is displayed. It demonstrated here that the ego

car with the ACC system could follow of the lead car with the same speed only after a

transient period of only 1.4 seconds where there is a speed overshoot, and afterward, it will

maintain the lead car speed for the remainder of the tour.

Figure 5.4 Safety distance and relative distance for ACC simulation

62

 In Figure 5.4, inter-vehicular distance (relative_distance) is plotted with the safety

distance (safe_distance) calculated by the Signal processing module. This figure shows

that the ego car with the ACC system is able to maintain the inter-vehicular distance by

following a similar waveform with the changing of the safety distance and keeping the

inter-vehicular distance always greater than the safety distance. However, since there is

always a gap between the relative distance and safety distance, it is not that efficient with

respect to distance maintenance.

Figure 5.5 Distance error for ACC simulation

The plot in Figure 5.5 shows the distance error, which is the difference between the

relative distance and safety distance. Notice that all the data in this plot is considered as

absolute value for future comparison. This plot demonstrates the performance of

maintaining the inter-vehicular distance for the ego car with the ACC system. It indicates

that the distance between two vehicles varies between -0.1150 and -0.0169m. As a result,

its peak-to-peak difference is 0.1319 m. However, it never reaches zero, which means that

the relative distance is never equal to the safety distance during the whole tour.

5.1.2 Simulation of CACC system

As shown in Figure 5.6, the CACC simulation module is similar to the ACC

simulation module, except for the Signal Processing module and the control algorithm.

Besides the function provided in the ACC system, the Signal Processing module for the

CACC system, in Figure 5.7, delivers the FrontCarSpeed, which simulates the direct data

63

transformation from the lead car to the ego car as the input of the CACC controller as well.

Meanwhile, all the simulation results are plotted within this module. The CACC controller

function is designed as the CACC controller from the previous chapter.

Figure 5.6 Simulation model for CACC system in MATLAB Simulink

Figure 5.7 Signal Processing module for CACC system

64

The simulation results for the ego car with the CACC system and lead car’s speed,

inter-vehicular distance and distance error are demonstrated in Figure 5.8, Figure 5.9, and

Figure 5.10, respectively.

Figure 5.8 Speed measurements for CACC simulation

In Figure 5.8, similar to the ACC system plots, the speed of the lead car and ego

car are displayed while all the parameters measured the same variable as in the ACC system

simulation. It is clearly demonstrated that the ego car with the CACC system could follow

the same speed as the lead car with 0.9 seconds of transient time and thereafter maintains

the speed during the remainder of the tour. The mismatch during the transient is due to the

fact that initially, the vehicle speed is not high, and the controller is trying to find the best

algorithm to follow the lead car.

Figure 5.9 Safety distance and relative distance for CACC simulation

65

The plot in Figure 5.9 also shows that the ego car with the CACC system also is

able to maintain the inter-vehicular distance by following a similar waveform with the

changing of the safety distance. There are two intersections between two lines, which

indicates that the CACC system’s relative distance sometimes is smaller than the safety

distance. However, the gap between the relative distance and safety distance is smaller

than the one with the ACC system.

Figure 5.10 Distance error for CACC simulation

The distance error plot in Figure 5.10 for the CACC system shows the performance

of maintaining the inter-vehicular distance for the ego car with the CACC system. It

demonstrates that the distance between two vehicles varies between -0.1050 m and

0.0013m. As a result, its peak-to-peak difference is 0.1037 m. However, it only has two

intersections with zero, which means that relative distance barely equals the safety distance

during the whole tour.

5.1.3 Simulation for CACC system with DDQN

The simulation model for the CACC system with DDQN is the same model with a

similar setup that is applied for the training (Figure 4.16). After the training, all the Q values

are stored in the neural network within the RL leaning agent from the MATLAB

Reinforcement Learning toolbox. Then simulation is based on running the preset

parameters through the model without the learning process.

66

The simulation results for the ego car with the DDQN CACC system and lead car’s

speed, inter-vehicular distance and distance error are illustrated in Figure 5.11, Figure 5.12,

and Figure 5.13, respectively.

Figure 5.11 Speed measurements for CACC with DDQN simulation

In Figure 5.11, the speed of the lead car and ego car and all the parameters measured

the same variable as in the ACC system, and the CACC simulation is presented. The figure

illustrates demonstrated that the ego car with the CACC system could follow the same

speed as the lead car with 12.8 seconds of transient time, and thereafter it can maintain the

speed of the lead car for the remainder of the tour.

Figure 5.12 Safety distance and relative distance for CACC with DDQN simulation

The plot in Figure 5.12 also shows that the ego car with the CACC system also can

maintain the inter-vehicular distance by following a similar waveform with the changing

67

of the safety distance. These two lines have more overlapping than the ACC and the CACC

system, which indicates that the DDQN CACC system’s ability to maintain the relative

distance with that of the safety distance is better than those methods.

Figure 5.13 Distance error for CACC with DDQN simulation

The distance error plot in Figure 5.13 for the CACC system with DDQN shows the

performance of maintaining the inter-vehicular distance for the ego car with the DDQN

CACC system. It demonstrates that the distance between two vehicles varies between

0.08087 m and -0.1128m. As a result, its peak-to-peak difference is 0.1935 m.

Figure 5.14 Acceleration of Ego Car using CACC with DDQN

 Figure 5.14 shows the acceleration profile of the ego car throughout the time of

interest. Based on the designed action space (4.13), actions include ACa , ACs, DACa, DACs,

and NO are signed with acceleration value as 0.2 m/s2, 0.1 m/s2, -0.05 m/s2, -0.1 m/s2, and

0 m/s2, respectively. This plot demonstrates all the actions involved in finding the best

policy for the system.

68

Table 5.1 The simulation result for distance error

Methods
Absolute

Median (m)

Absolute

Average (m)

Peak-to-peak

(m)

ACC 2.897e-2 2.832e-2 1.319e-1

CACC 1.470e-2 1.565e-2 1.037e-1

CACC with DDQN 8.70e-3 9.36e-3 1.935e-1

According to the measurements of distance error (see Table 5.1), the average

distance error from the ACC system, the CACC system, and the CACC system with DQN

are 0.02832 m, 0.01565 m, and 0.00936 m, respectively. The smaller the error is, the better

performance in the scenario of maintaining the relative distance as the safety distance.

Therefore, the CACC system improves the performance of distance maintenance by 44.74%

from the ACC system. Additionally, the CACC system with DDQN further enhances the

performance of the CACC system by 40.19%. The median value comparison is another

way to compute the performance. The median value of distance error from the ACC system,

the CACC system, and the CACC system with DQN are 0.02897 m, 0.01470 m, and

0.00870 m, respectively. Therefore, the CACC system improves the performance of

distance maintenance by 49.25% from the ACC system.

Additionally, the CACC system with DDQN further enhances the performance of

the CACC system by 40.81%. In both comparisons, the CACC with DDQN has better

performance in maintaining the safety distance by matching the relative distance to it. Even

though the DDQN agent requires around 35 hours to be trained, depending on the hardware

setup, the system is still the best choice when safety and efficiency are essential for the

vehicles. Additionally, according to the speed plot for all three systems, the ACC and

CACC system has a smoother speed profile than the CACC system with DDQN. The

reason is that both the ACC and CACC control algorithm computes the desired velocity

directly and send it to the vehicle dynamics, but the CACC with DDQN has to calculate

the acceleration as an action for sending to the vehicle dynamics. Therefore, the ACC and

CACC system have a better performance in tracking the vehicle speed of the front vehicle,

especially the CACC system.

69

In summary, according to the simulation result for all three systems. The CACC

system and the ACC system are good at tracking the vehicle speed, but the CACC system

with DDQN has a better performance in distance control and tracking to improve the traffic

capacity by reducing the average difference between safety distance and relative distance.

5.2 Real Application Setup and Results

This research study uses two Quanser's Q-Cars as models for implementing both

systems. The Q-Cas is an electrically driven model with onboard CPU and sensors,

including Lidar, RGB-D camera, and 360° CSI camera suite. Additionally, Q-Cars can

implement the module built by MATLAB Simulink models, and it has libraries to drive all

the sensors and actuators. Therefore, both autonomous driving systems are constructed and

implemented on Q-Cars using MATLAB Simulink. Additionally, the onboard Lidar sensor

is set to 10 Hz sampling rate, and the CSI cameras are applied for the line detection to keep

the vehicle in the centre of the road.

In the experiment, in order to restore the actual traffic situation and maintain the

same status as the simulation, the preset value of Q-cars is proportional to a regular sedan.

Since the length of a Q-car is 40cm and the size of a typical sedan is around 4 m, the

standstill distance for equation (4.2) is set to 20 cm to represent the average standstill

distance for a sedan is 2 to 3 m. Additionally, the constant time headway time for equation

(4.2) is set to 0.3s to represent the 3s constant time headway time in real traffic situations.

Lastly, the initial speed for both cars is set to zero, and the initial relative distance is set at

around 0.1 m.

The front car can be driven manually or with ACC automated driving system, and

the follower car can use ACC or CACC automated driving system to follow the front car.

In image 5.14, both cars are driving on a mini road, which simulates the car on a real road.

In order to compare the performance of the two systems, both systems are tested with the

same car on the same route. Firstly, the lead Q-Car is using the ACC system to compute a

simple autonomous driving condition. Then, the ego Q-Car is tested with the ACC system

and CACC system onboard, respectively.

70

Figure 5.15 Experimental setup with two Q-Cars on a mini road

5.2.1 Experimental Result for ACC System

For the ACC system implementation on Q-Car, Figure 5.16 presents the speed of

the lead car and ego car. Figure 5.17 demonstrates and distance error between the relative

distance and safety distance.

Figure 5.16 Speed measurements for ACC experimental result

71

Figure 5.17 Distance error for ACC experimental result

Since both the lead car and ego car uses the ACC system to control the distance,

their speed plot has a similar shape with transmission and execution delay. The distance

error (relative distance subtract the safety distance) between two vehicles is between

0.0914 m to -0.6604 m.

5.2.2 Experimental Result for CACC System

Figure 5.18 Experimental result for transmission delay testing

For the CACC system in the Q-Car application, the V2V communication is done

by connecting both cars to a local area network. In the Simulink model, the V2V

communication is established using the Stream block from Quanser's library. Before

implementing the CACC system in the Q-Car, the V2V communication module was tested

72

for its latency. As Figure 5.18, the delay of data transmission is 2 ms, which is calculated

by the time difference of the speed's peak value.

For the CACC system implementation on Q-Car, Figure 5.19 presents the speed of

the lead and ego car. Figure 5.20 demonstrates and distance error between the relative

distance and safety distance. The variance is mainly due to the fact that lead and ego cars

use different systems to control the distance. The distance error (relative distance

subtracted from the safety distance) between two vehicles is between 0.07764 m to -0.2331

m.

Figure 5.19 Speed measurements for CACC experimental result

Figure 5.20 Distance error for ACC experimental result

73

The simulation result for the two cars’ speed and distance error for ACC and CACC

are illustrated in Figures 5.21, 5.22, 5.23, 5.24. During this simulation, the acceleration of

the lead car is assumed to be a step-changed sine wave with 0.06 amplitude, 30 seconds

wavelength, with the initial distance of 0.1 m, and initial speeds of both cars set to zero,

both the ACC and CACC systems have a great deal of variances when they are operating

in the low-speed condition. Additionally, due to this scenario, many commercial vehicles

embedded with the ACC system have the lowest speed limit for enabling the cruise control

system, such as 30 km/h for VOLVO XC90 [69].

This simulation result matches the results in the Q-Car actual application. Firstly,

the CACC system is more variant than the ACC system, but the CACC has a better

performance on following the front car speed and maintaining the relative distance to the

safety distance as closer as possible.

Figure 5.21 Simulation of speed measurements for ACC system in low-speed

condition

Figure 5.22 Simulation of distance error for ACC system in low-speed condition

74

Figure 5.23 Simulation of speed measurements for CACC system in low-speed

condition

Figure 5.24 Simulation of distance error for CACC system in low-speed condition

Table 5.2 The experimental result for distance error in each system

Methods
Absolute

Median (m)

Absolute

Average (m)

Peak-to-peak

(m)

ACC 2.167e-1 2.869e-1 7.518e-1

CACC 2.600e-2 4.799e-2 3.108e-1

According to Table 5.2 above, it is hard to compare the performance of the two

strategies accurately because the operating conditions cannot be precisely the same in a

real-world application. Nevertheless, it still demonstrates that the ego car with a CACC

75

system which gathers information directly from the lead car has a better performance on

distance control. In [49], authors have reached a similar conclusion when applying the

DDPG-PID controller, which is a deep learning based PID controller, to a platoon of the

vehicle using CACC. They conclude that the method involves deep learning to improve

60.94% of the performance of the distance error control by comparing the performance of

the conventional PID controller.

5.3 Chapter Summary

This chapter presented the simulation result for the ego car using the ACC, the

CACC, and the CACC with DDQN. Additionally, the experimental result by implementing

both ACC and CACC systems on the actual Q-Cars is presented. Firstly, based on the

simulation, in a vehicle platoon, the capacity would be increased by using both CACC and

CACC with the DDQN method compared to the ACC system. The CACC system has the

best performance in following the speed of the front vehicle, and the CACC with DDQN

can minimize the difference between the safety distance and relative distance to increase

the traffic capacity as well as traffic efficiency. Then, the experimental results conclude in

the same way as the simulation results, that the CACC system has a better performance

both on the following the front vehicle speed and minimizing the difference between the

safety distance and relative distance.

76

Chapter 6

Conclusion and Future Work

6.1 Contributions

In this thesis, a CACC system on two Q-Cars with a new control algorithm and

DDQN was built and tested based on the lidar sensor and V2V information exchanges. A

training model and simulation environment were built by using MATLAB Simulink.

Furthermore, the CACC and ACC system was implemented on two Q-Cars, which is a real

mockup of an autonomous vehicle, to test its performance on traffic capacity. This work

aims to demonstrate the benefits of the CACC system and the possibility of applying Wi-

Fi in indoor and short-range V2V communication. Although WiFi has been used to V2V

and V2I communication before, it is not an ideal communication technology in real-world

applications. However, it still can demonstrate the data transmission process of AGV and

other automated vehicles navigating in indoor and small areas. The challenge of this thesis

is to compute an algorithm for increasing the traffic capacity and maintaining the safety

requirements.

6.2 Summary

Firstly, by researching the relative field of the CACC, V2V communication, and

CACC with deep learning, it was concluded that the CACC system has a considerable

advantage compared to the ACC system in traffic capacity, traffic efficiency,energy

efficiency, safety, customer comfort, and platooning control. These studies were completed

in both real applications and simulations. Many algorithms, policies and V2V

communication technology were applied to the CACC system to make it a hot field to study.

Additionally, they also indicate that the CACC has a strong place in the future of the

autonomous driving of intelligent vehicles with the development of communication

technologies.

Deep learning and reinforcement learning theories were developed from the

Markov Decision Process, which is the foundation of reinforcement learning, followed by

relative learning algorithms in reinforcement learning, such as temporal difference learning,

77

SARSA, and Q-learning. Meanwhile, one of the most popular deep learning algorithms,

the neural network, was introduced. By combining the theories of both reinforcement

learning and deep learning, theories and algorithm of deep Q-Learning and double deep Q-

learning that had been applied to this thesis were introduced and explained with their

advantages and disadvantages. The most important advantage of using DDQN instead of

DQN is to reduce the computation time to improve the efficiency of using state-action pairs.

From all these pieces of research and theories, the methodology to face those

challenges was chosen. Firstly, the algorithm of the ACC system was computed， and the

ACC module was designed and implemented on the Q-Car by using a lidar sensor for

distance measurements and MATLAB Simulink. Then, based on the ACC module, the

CACC system was designed and implemented on the Q-Car with an additional wireless

communications module (WiFi). Lastly, the training module for CACC with DDQN was

developed based on the bicycle model, which is a widely applied model for the vehicle’s

trajectory planning simulation, proper state-space action, reward functions and neural

networks. Meanwhile, the training algorithm was implemented in the model by using the

Reinforcement Toolbox in MATLAB Simulink.

Lastly, in the experimental result, the performance of the CACC system with a new

control algorithm and the CACC system with DDQN was compared to the performance of

the ACC system by simulation. The acceleration input for the lead car is generated as a

step-changed sine wave, which also has been applied to the simulation of platoon control

in many studies. The results demonstrate that the CACC system maintains the distance

44.74 % better than the ACC system by collecting more accurate information through low

latency wireless communication. Additionally, the CACC system with DDQN improves

the performance of maintaining distance by an additional 40.19%. The CACC system can

reduce the inter-vehicular distance and respond more quickly to the front vehicle's action

with accurate information.

Meanwhile, the DDQN system can match the relative distance with the safety

distance to have better distance control. As a result, the traffic capacity of vehicles can be

improved. On top of the simulation, the experiments on Q-cars confirmed the same results.

By implementing and testing the ACC and CACC system on the ego car, which follows a

78

lead car with an ACC system, the CACC system has a better performance both on following

the front vehicle speed and minimizing the difference between the safety distance and

relative distance.

6.3 Future Work

6.3.1 Wireless communication Security

Implementing an additional wireless communication module makes the vehicle

more vulnerable to attack. There are slight changes in the acceleration when the algorithm

is combined with multiple vehicle speeds. Information safety during the communication

process should also be considered in the future for massive public applications.

6.3.2 Wireless communication Technology

 Nowadays, 5G communication protocol is developing rapidly with faster and more

stable connections and transmission capacity. This thesis did not apply this technology

because wireless communication is not the main objective of this thesis. However, the issue

should be explored

6.3.3 V2X communication-based Autonomous Driving

 As mentioned before, V2V is only a part of the V2X communication. By vehicle

communicating with more elements around it, such as infrastructures and mobile devices,

it can gather more accurate information for it to sense the environment around it. As a

result, a level 4 or level 5 autonomous driving can be reached more safely and efficiently.

6.3.4 Platoon Forming and Control

 The work in this thesis could be explored further by expanding the current two-car

situation into a platoon scenario involving more vehicles, further development and

evaluation of the CACC control policy will be required. This thesis did not extend to the

multiple cars problem due to the limitations on the availability of the hardware.

6.3.5 Other Deep Learning Approaches for CACC

 Recently, many research studies have focused on different deep learning algorithms

to improve the performance of CACC, such as control, policy evaluation, and wireless

79

communication. New algorithms can be developed, and other deep learning methods for

the CACC system can be compared to the existing ones in future work.

80

References

[1] Iea, "Trends and developments in Electric Vehicle Markets – Global EV outlook 2021 –

analysis," IEA. [Online]. Available: https://www.iea.org/reports/global-ev-outlook-

2021/trends-and-developments-in-electric-vehicle-markets. [Accessed: 15-Sep-2021].

[2] K. Stricker, T. Wendt, W. Stark, M. Gottfredson, R. Tsang, and M. Schallehn, “Electric and

autonomous vehicles: The future is now,” Bain, 29-Oct-2020. [Online]. Available:

https://www.bain.com/insights/electric-and-autonomous-vehicles-the-future-is-now/.

[Accessed: 15-Sep-2021].

[3] “GM reveals new Ultium batteries and a flexible global platform to rapidly grow its EV

portfolio," media.gm.com, 04-Mar-2020. [Online]. Available:

https://media.gm.com/media/us/en/gm/home.detail.html/content/Pages/news/us/en/2020/mar

/0304-ev.html. [Accessed: 15-Sep-2021].

[4] A. Vahidi and A. Eskandarian, "Research advances in intelligent collision avoidance and

adaptive cruise control," in IEEE Transactions on Intelligent Transportation Systems, vol. 4,

no. 3, pp. 143-153, Sept. 2003, doi: 10.1109/TITS.2003.821292.

[5] Bin-Feng Lin et al., "Integrating Appearance and Edge Features for Sedan Vehicle Detection

in the Blind-Spot Area," in IEEE Transactions on Intelligent Transportation Systems, vol.

13, no. 2, pp. 737-747, June 2012, doi: 10.1109/TITS.2011.2182649.

[6] H. Muslim and M. Itoh, "Effects of Human Understanding of Automation Abilities on Driver

Performance and Acceptance of Lane Change Collision Avoidance Systems," in IEEE

Transactions on Intelligent Transportation Systems, vol. 20, no. 6, pp. 2014-2024, June

2019, doi: 10.1109/TITS.2018.2856099.

[7] Jin Xu, Guang Chen and Ming Xie, "Vision-guided automatic parking for smart car,"

Proceedings of the IEEE Intelligent Vehicles Symposium 2000 (Cat. No.00TH8511), 2000,

pp. 725-730, doi: 10.1109/IVS.2000.898435.

[8] “SAE J3016 automated-driving graphic,” SAE International, 15-May-2020. [Online].

Available: https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic.

[Accessed: 15-Sep-2021].

[9] sight Technologies. (2018). How 5G will influence autonomous driving systems, white paper.

Retrieved August 30, 2019

[10] S. Zeadally, J. Guerrero, and J. Contreras, "A tutorial survey on vehicle-to-vehicle

communications," Telecommunication Systems, vol. 73, no. 3, pp. 469–489, 2019.

[11] F. S. Brogua, "Cooperative Driving: Basic Concepts and a First Assessment of 'Intelligent

Cruise Control' Strategies," 1991.

[12] L. Yang, J. Mao, K. Liu, J. Du and J. Liu, "An Adaptive Cruise Control Method Based on

Improved Variable Time Headway Strategy and Particle Swarm Optimization Algorithm," in

IEEE Access, vol. 8, pp. 168333-168343, 2020, doi: 10.1109/ACCESS.2020.3023179.

81

[13] Z. S. Jiang, H. H. Zhang, and B. Yang, "An improved variable time headway strategy for

ACC," Proceedings of the 2019 International Conference on Robotics, Intelligent Control

and Artificial Intelligence - RICAI 2019, 2019.

[14] D. MacKinnon, "High capacity personal rapid transit system developments," in IEEE

Transactions on Vehicular Technology, vol. 24, no. 1, pp. 8-14, Feb. 1975, doi: 10.1109/T-

VT.1975.23591.

[15] Junmin Wang and R. Rajamani, "Should adaptive cruise-control systems be designed to

maintain a constant time gap between vehicles?," in IEEE Transactions on Vehicular

Technology, vol. 53, no. 5, pp. 1480-1490, Sept. 2004, doi: 10.1109/TVT.2004.832386.

[16] J. Zhao, M. Oya and A. El Kamel, "A safety spacing policy and its impact on highway traffic

flow," 2009 IEEE Intelligent Vehicles Symposium, 2009, pp. 960-965, doi:

10.1109/IVS.2009.5164410.

[17] R. Rajamani and Chunyu Zhu, "Semi-autonomous adaptive cruise control systems,"

Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251), 1999, pp.

1491-1495 vol.2, doi: 10.1109/ACC.1999.783618.

[18] J. Piao and M. McDonald, "Advanced Driver Assistance Systems from autonomous to

cooperative approach," Transport Reviews, vol. 28, no. 5, pp. 659–684, 2008.

[19] L.-hua Luo, H. Liu, P. Li, and H. Wang, "Model predictive control for adaptive cruise

control with multi-objectives: Comfort, fuel-economy, safety and car-following," Journal of

Zhejiang University SCIENCE A, vol. 11, no. 3, pp. 191–201, 2010.

[20] G. Marsden, M. McDonald, and M. Brackstone, "Towards an understanding of adaptive

cruise control," Transportation Research Part C: Emerging Technologies, vol. 9, no. 1, pp.

33–51, 2001.

[21] C. L. Melson, M. W. Levin, B. E. Hammit, and S. D. Boyles, "Dynamic traffic assignment of

Cooperative Adaptive Cruise Control," Transportation Research Part C: Emerging

Technologies, vol. 90, pp. 114–133, 2018.

[22] M. A. S. Kamal, M. Mukai, J. Murata and T. Kawabe, "Ecological Vehicle Control on Roads

With Up-Down Slopes," in IEEE Transactions on Intelligent Transportation Systems, vol.

12, no. 3, pp. 783-794, Sept. 2011, doi: 10.1109/TITS.2011.2112648.

[23] M. Michaelian and F. Browand, "Quantifying platoon fuel savings: 1999 Field

Experiments," SAE Technical Paper Series, 2001.

[24] D. SWAROOP, J. K. HEDRICK, C. C. CHIEN, and P. IOANNOU, "A comparison of

spacing and headway control laws for automatically controlled vehicles1," Vehicle System

Dynamics, vol. 23, no. 1, pp. 597–625, 1994.

[25] R. Rajamani, Vehicle Dynamics and control. New York: Springer Science, 2006.

[26] J. Ploeg, A. F. Serrarens, and G. J. Heijenk, "Connect & Drive: Design and Evaluation

of Cooperative Adaptive Cruise Control for congestion reduction," Journal of Modern

Transportation, vol. 19, no. 3, pp. 207–213, 2011.

82

[27] Z. Wang, G. Wu and M. J. Barth, "A Review on Cooperative Adaptive Cruise Control

(CACC) Systems: Architectures, Controls, and Applications," 2018 21st International

Conference on Intelligent Transportation Systems (ITSC), 2018, pp. 2884-2891, doi:

10.1109/ITSC.2018.8569947.

[28] M. Segata, F. Dressler, R. Lo Cigno, and M. Gerla, "A simulation tool for automated

platooning in mixed highway scenarios," Proceedings of the 18th annual international

conference on Mobile computing and networking - Mobicom '12, 2012.

[29] "The Grand Cooperative Driving Challenge 2016: Boosting the introduction of Cooperative

Automated Vehicles," IEEE Xplore. [Online]. Available:

https://ieeexplore.ieee.org/document/7553038. [Accessed: 2-Oct-2021].

[30] "California Partners for Advanced Transportation Technology," Home | California Partners

for Advanced Transportation Technology. [Online]. Available: https://path.berkeley.edu/.

[Accessed: 02-Oct-2021].

[31] “Verdict media limited,” Verdict Traffic. [Online]. Available: https://www.roadtraffic-

technology.com/projects/the-sartre-project/. [Accessed: 02-Oct-2021].

[32] V. Milanés, S. E. Shladover, J. Spring, C. Nowakowski, H. Kawazoe and M. Nakamura,

"Cooperative Adaptive Cruise Control in Real Traffic Situations," in IEEE Transactions on

Intelligent Transportation Systems, vol. 15, no. 1, pp. 296-305, Feb. 2014, doi:

10.1109/TITS.2013.2278494.

[33] Y. Lin and H. L. T. Nguyen, "Adaptive Neuro-Fuzzy Predictor-Based Control for

Cooperative Adaptive Cruise Control System," in IEEE Transactions on Intelligent

Transportation Systems, vol. 21, no. 3, pp. 1054-1063, March 2020, doi:

10.1109/TITS.2019.2901498.

[34] T. Tapli and M. Akar, "Cooperative Adaptive Cruise Control Algorithms for Vehicular

Platoons Based on Distributed Model Predictive Control," 2020 IEEE 16th International

Workshop on Advanced Motion Control (AMC), Kristiansand, Norway, 2020, pp. 305-310,

doi: 10.1109/AMC44022.2020.9244429.

[35] C. Anayor, W. Gao and A. Odekunle, "Cooperative Adaptive Cruise Control of A Mixture of

Human-driven and Autonomous Vehicles," SoutheastCon 2018, 2018, pp. 1-3, doi:

10.1109/SECON.2018.8479268.

[36] “FMVSS No. 150 vehicle-to-vehicle communication technology ...” [Online]. Available:

https://www.nhtsa.gov/sites/nhtsa.gov/files/documents/v2v_pria_12-12-16_clean.pdf.

[Accessed: 02-Oct-2021].

[37] B.-young Kang, B. JeongKyu, W.-C. Seo, Y. EunJu, and D.-W. Seo, "Performance analysis

of wave communication under high-speed driving," ICT Express, vol. 3, no. 4, pp. 171–177,

2017.

83

[38] G. Fodor et al., "Design aspects of network assisted device-to-device communications," in

IEEE Communications Magazine, vol. 50, no. 3, pp. 170-177, March 2012, doi:

10.1109/MCOM.2012.6163598.

[39] T. Fisher, "What does 5G mean and how fast is it?," Lifewire, 1-Oct-2021. [Online].

Available: https://www.lifewire.com/5g-wireless-4155905. [Accessed: 02-Oct-2021].

[40] K. C. Dey, A. Rayamajhi, M. Chowdhury, P. Bhavsar, and J. Martin, "Vehicle-to-vehicle

(V2V) and vehicle-to-infrastructure (V2I) communication in a heterogeneous wireless

network – performance evaluation," Transportation Research Part C: Emerging

Technologies, vol. 68, pp. 168–184, 2016.

[41] T. Abbas, K. Sjöberg, J. Karedal, and F. Tufvesson, "A measurement based shadow fading

model for vehicle-to-vehicle network simulations," International Journal of Antennas and

Propagation, 14-Jun-2015. [Online]. Available: https://doi.org/10.1155/2015/190607.

[Accessed: 28-Oct-2021].

[42] K. Lim and K. M. Tuladhar, "LIDAR: Lidar Information based Dynamic V2V

Authentication for Roadside Infrastructure-less Vehicular Networks," 2019 16th IEEE

Annual Consumer Communications & Networking Conference (CCNC), 2019, pp. 1-6, doi:

10.1109/CCNC.2019.8651684.

[43] Jing Zhou and Huei Peng, "Range policy of adaptive cruise control vehicles for improved

flow stability and string stability," in IEEE Transactions on Intelligent Transportation

Systems, vol. 6, no. 2, pp. 229-237, June 2005, doi: 10.1109/TITS.2005.848359.

[44] J. Wang and R. Rajamani, "The impact of adaptive cruise control systems on highway safety

and traffic flow," Proceedings of the Institution of Mechanical Engineers, Part D: Journal of

Automobile Engineering, vol. 218, no. 2, pp. 111–130, 2004.

[45] G. Marsden, M. McDonald, and M. Brackstone, "Towards an understanding of adaptive

cruise control," Transportation Research Part C: Emerging Technologies, vol. 9, no. 1, pp.

33–51, 2001.

[46] J. Ploeg, A. F. Serrarens, and G. J. Heijenk, "Connect & Drive: Design and Evaluation

of Cooperative Adaptive Cruise Control for congestion reduction," Journal of Modern

Transportation, vol. 19, no. 3, pp. 207–213, 2011.

[47] L. Ng, C. M. Clark, and J. P. Huissoon, "Reinforcement learning of Adaptive Longitudinal

Vehicle Control for dynamic collaborative driving," 2008 IEEE Intelligent Vehicles

Symposium, 2008.

[48] Z. Gao, T. Sun, and H. Xiao, "Decision-making method for vehicle longitudinal automatic

driving based on reinforcement Q-learning," International Journal of Advanced Robotic

Systems, vol. 16, no. 3, p. 172988141985318, 2019.

[49] J. Yang, X. Liu, S. Liu, D. Chu, L. Lu, and C. Wu, "Longitudinal tracking control of vehicle

platooning using DDPG-based PID," 2020 4th CAA International Conference on Vehicular

Control and Intelligence (CVCI), 2020.

84

[50] S. P. Douglass, S. Martin, A. Jennings, H. Chen and D. M. Bevly, "Deep Learned Multi-

Modal Traffic Agent Predictions for Truck Platooning Cut-Ins," 2020 IEEE/ION Position,

Location and Navigation Symposium (PLANS), 2020, pp. 688-697, doi:

10.1109/PLANS46316.2020.9109809.

[51] A. Peake, J. McCalmon, B. Raiford, T. Liu and S. Alqahtani, "Multi-Agent Reinforcement

Learning for Cooperative Adaptive Cruise Control," 2020 IEEE 32nd International

Conference on Tools with Artificial Intelligence (ICTAI), 2020, pp. 15-22, doi:

10.1109/ICTAI50040.2020.00013.

[52] L. Xiao and F. Gao, "A comprehensive review of the development of Adaptive Cruise

Control Systems," Vehicle System Dynamics, vol. 48, no. 10, pp. 1167–1192, 2010.

[53] B. Brown and A. Zai, Deep reinforcement learning in action. Shelter Island, NewYork:

Manning Publications Co., 2020.

[54] R. S. Sutton, F. Bach, and A. G. Barto, Reinforcement learning: An introduction. Cambridge,

Massachusetts: MIT Press Ltd, 2018.

[55] G. A. Rummery and M. Niranjan, On-line Q-learning using Connectionist Systems.

Cambridge, England: Cambridge University, Engineering Dept., 1994.

[56] C. J. Cornish and H. Watkins, "(PDF) learning from delayed rewards - researchgate."

[Online]. Available:

https://www.researchgate.net/publication/33784417_Learning_From_Delayed_Rewards.

[Accessed: 21-Mar-2022].

[57] C. J. Watkins and P. Dayan, "Q-learning," Machine Learning, vol. 8, no. 3-4, pp. 279–292,

1992.

[58] A. Ng, “Sparse autoencoder - stanford university,” CS294A Lecture notes, 2011. [Online].

Available: https://web.stanford.edu/class/cs294a/sparseAutoencoder_2011new.pdf.

[Accessed: 30-Mar-2022].

[59] B. van Arem, C. J. G. van Driel and R. Visser, "The Impact of Cooperative Adaptive Cruise

Control on Traffic-Flow Characteristics," in IEEE Transactions on Intelligent

Transportation Systems, vol. 7, no. 4, pp. 429-436, Dec. 2006, doi:

10.1109/TITS.2006.884615.

[60] J. Madiba, P. A. Owolawi and T. Mapayi, "Wi-Fi Enabled Speech Automated Guided

Vehicle using Android and NodeMCU," 2019 International Multidisciplinary Information

Technology and Engineering Conference (IMITEC), 2019, pp. 1-4, doi:

10.1109/IMITEC45504.2019.9015846.

[61] D. Moser, H. Waschl, H. Kirchsteiger, R. Schmied and L. del Re, "Cooperative adaptive

cruise control applying stochastic linear model predictive control strategies," 2015 European

Control Conference (ECC), 2015, pp. 3383-3388, doi: 10.1109/ECC.2015.7331057.

[62] H. Yang, H. Rakha and M. V. Ala, "Eco-Cooperative Adaptive Cruise Control at Signalized

Intersections Considering Queue Effects," in IEEE Transactions on Intelligent

85

Transportation Systems, vol. 18, no. 6, pp. 1575-1585, June 2017, doi:

10.1109/TITS.2016.2613740.

[63] Z. Wang, G. Wu, and M. J. Barth, "Developing a distributed consensus-based cooperative

adaptive cruise control system for heterogeneous vehicles with predecessor following

topology," Journal of Advanced Transportation, vol. 2017, pp. 1–16, 2017.

[64] P. Eamsomboon, P. Keeratiwintakorn and C. Mitrpant, "The performance of Wi-Fi and

Zigbee networks for inter-vehicle communication in Bangkok metropolitan area," 2008 8th

International Conference on ITS Telecommunications, 2008, pp. 408-411, doi:

10.1109/ITST.2008.4740296.

[65] E. Brunskill, “Lecture 6: CNNs and Deep Q Learning,” CS234: Reinforcement Learning

Winter 2022, 2022. [Online]. Available: https://web.stanford.edu/class/cs234/. [Accessed:

03-May-2022].

[66] J. Kong, M. Pfeiffer, G. Schildbach and F. Borrelli, "Kinematic and dynamic vehicle models

for autonomous driving control design," 2015 IEEE Intelligent Vehicles Symposium (IV),

2015, pp. 1094-1099, doi: 10.1109/IVS.2015.7225830.

[67] P. Polack, F. Altché, B. d'Andréa-Novel and A. de La Fortelle, "The kinematic bicycle

model: A consistent model for planning feasible trajectories for autonomous vehicles?,"

2017 IEEE Intelligent Vehicles Symposium (IV), 2017, pp. 812-818, doi:

10.1109/IVS.2017.7995816.

[68] Y. Liu and W. Wang, “A safety reinforced cooperative adaptive cruise control strategy

accounting for dynamic vehicle-to-vehicle communication failure,” Sensors, vol. 21, no. 18,

p. 6158, Sep. 2021.

[69] Volvo Cars, “Changing Adaptive Cruise Control (ACC) speed: Adaptive Cruise Control

(ACC): Driver support: XC90 twin engine 2017: Volvo Support,” Volvo Cars, 2020.

[Online]. Available: https://www.volvocars.com/en-ca/support/manuals/xc90-twin-

engine/2016w46/driver-support/adaptive-cruise-control-acc/changing-adaptive-cruise-

control-acc-speed. [Accessed: 07-May-2022].

[70] “Courseware & Resources,” Quanser, 27-Jan-2020. [Online]. Available:

https://www.quanser.com/courseware-

resources/?fwp_resource_types=manuals&fwp_resource_related_products=9706.

[Accessed: 27-Oct-2021].

[71] P. S. Bithas, E. T. Michailidis, N. Nomikos, D. Vouyioukas, and A. G. Kanatas, “A survey

on machine-learning techniques for UAV-based communications,” Sensors, vol. 19, no. 23,

p. 5170, 2019.

[72] D. Katic and M. Vukobratovic, “Reinforcement learning algorithms in Humanoid Robotics,”

Humanoid Robots: New Developments, 2007.

[73] K. Katija et al., "Visual tracking of deepwater animals using machine learning-controlled

robotic underwater vehicles," 2021 IEEE Winter Conference on Applications of Computer

Vision (WACV), 2021, pp. 859-868, doi: 10.1109/WACV48630.2021.00090.

86

[74] Y. hao Li, Q. jiang Lei, C. P. Cheng, G. Zhang, W. Wang, and Z. Xu, “A review: Machine

learning on robotic grasping,” Eleventh International Conference on Machine Vision (ICMV

2018), 2019.

[75] L. C. Cobo, K. Subramanian, C. L. Isbell, A. D. Lanterman, and A. L. Thomaz, “Abstraction

from demonstration for efficient reinforcement learning in high-dimensional domains,”

Artificial Intelligence, vol. 216, pp. 103–128, 2014.

87

Vita Auctoris

NAME: Haoyang Ke

PLACE OF BIRTH:

Haikou, Hainan, China

YEAR OF BIRTH:

1997

EDUCATION:

Maple Leaf International School, Chongqing,

Chongqing, 2015

University of Windsor, B.A.Sc., Windsor, ON, 2019

University of Windsor, M.A.Sc, Windsor, ON, 2022

	Cooperative Adaptive Cruise Control using V2V Communication and Deep Learning
	Recommended Citation

	tmp.1731687122.pdf.DzBIa

