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Abstract 

This thesis presents a cooperative adaptive cruise control (CACC) system 

with integrated lidar and vehicle-to-vehicle (V2V) communication. Firstly, an 

adaptive cruise control system (ACC) is designed for the Q-Car electrical vehicle. 

Secondly, a CACC system with V2V communication function are designed based 

on a new algorithm for improving the ACC system traffic capacity performance. 

Lastly, the CACC agent was trained by Double Deep Q learning (DDQN) and tested. 

The proposed CACC system improved the stability of the vehicle. Experimental 

results demonstrate that the CACC system can decrease the average inter-vehicular 

distance of ACC by 44.74%, with an additional 40.19% when DDQN was utilized.  

The DDQN system can match the relative distance with the safety distance to have 

better distance control. In addition to simulation, experimental results on Q-cars 

have confirmed the same results. By implementing and testing the ACC and CACC 

system on the ego car, which follows a lead vehicle with an ACC system in a platoon, 

the CACC system has a better performance both on following the front vehicle speed 

and minimizing the difference between the safety distance and relative distance. As 

a result, the traffic capacity of vehicles can be improved. The vehicles communicate 

with each other through a WiFi module to transmit information with 2 ms latency. 
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Chapter 1  

Introduction  
 

1.1 Objectives and Motivations 

This thesis demonstrates the application of a Cooperative Adaptive Cruise Control 

(CACC) strategy in an actual application. As the electric car market expands to reduce 

carbon emissions, many countries are encouraging their citizens to switch to electric cars. 

According to statistics, in 2020, the global electric car stock hit the 10 million marks, a 43% 

increase over 2019 [1]. In addition, major ride-hailing companies, who provide personal 

drivers to send their customers to a destination, such as Lyft and Uber, have recently 

committed to shifting to 100% electrical vehicle fleets by 2030 [2]. This is indicative of 

the fact that this market has enormous potential, and its period of market growth has just 

started. New vehicle manufacturers, such as Xiaopeng and Tesla, are building electric cars 

to occupy the market. Traditional car manufacturers, mainly focusing on fuel engines, are 

launching their new electric vehicle platform. As an example, take General Motors, which 

published their new Ultium batteries and a flexible global platform in 2020 [3].   

Meanwhile, with the development of autonomous driving and communication 

technologies (5G), the market offers a product with a combination of communication 

technologies, safer and more comfortable driving, and more energy efficiency. 

Furthermore, all the car manufacturers around the world are implementing autonomous 

driving in their future vehicle products. Nowadays, almost all the new current commercial 

vehicles offer Advanced Driver-Assistant Systems (ADAS), which mainly include 

Adaptive Cruise Control (ACC) system [4], Blind Spot Sensing system [5], Lane Change 

Collision Avoidance systems [6], Automatic Parking system [7], radar, and cameras on 

board to improve the energy efficiency, driving safety, and customer driving experience. 

According to SAE Automation Grading (Figure 1.1), those systems provide an 

autonomous driving experience between level 2 and level 3 [8], where the vehicle can only 

sense a part of the environment and perform part of steering, acceleration, and deceleration. 

By combining these current onboard systems and sensors with communication 
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technologies, the automation level of vehicles can be upgraded to complete level 3, where 

the system can monitor the driving environment by itself through the communication 

modules and onboard sensors to perform all aspects of the dynamic driving tasks. To reach 

level 3, communication technologies are critical for the situation when vehicles need to 

communicate in a highly complex environment in an urban area and on highways. 

Especially, the 5G LTE technology significantly increases the capabilities of self-driving 

vehicles by communicating with the environment around them, while 4G LTE does not 

meet the mission-critical communications requirements, such as latency and capacity. 

Although the 802.11 meets those requirements, the necessary investment in a base station 

is a major obstacle for governments and manufacturers who are considering the cost and 

product balance [9]. Finally, the vehicle network is a communication network that includes 

everything around it, such as Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I), 

Vehicle-to-Pedestrian (V2P), and Vehicle-to-Everything (V2X) [10].  

 

Figure 1.1 SAE Automation Grading [8] 
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Figure 1.2 Connected vehicles network communication modes [10] 

1.2 Problem Definition, Methodology and Challenges 

This thesis will focus on implementing and testing a CACC, one of the platooning 

systems that apply V2V communication to improve vehicles' ability to monitor the 

environment and performance of their autonomous driving system.   

CACC can be considered as an extension ACC system and is a subsystem within 

ADAS. The most significant part of ADAS is a well-developed and widely applied onboard 

system that uses onboard sensors and a speed control system to maintain the inter-vehicular 

distance at its desired distance and compute the desired acceleration (Figure 1.2) [10]. 

Through decades of study by researchers and automotive manufacturers, CACC safety, 

traffic flow stability and capacity have been investigated and developed [16] – [20]. 

However, certain limitations remain. Firstly, its performance is limited by the utilized 

sensors' sensing range and delay, which requires the vehicles to maintain a conservative 

inter-vehicular distance to ensure the vehicle's safety. However, the trade-off for this 

conservativeness is reduced efficiency and stability of the platoon. Additionally, since the 

ACC system requires many human interventions, traffic congestion is still a significant 

problem due to unpredictable and uncontrollable human driving behavior. As a result, 
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additional advanced technology and autonomous intelligence need to be incorporated in 

the system to address these issues. 

Given that the CACC can be considered as a more intelligent and more 

sophisticated ACC system, it not only provides all the functions of an ACC system, but 

also, it would heavily rely on V2V communication to meet its additional objectives. In such 

a scenario, as illustrated in Figure 1.3, the information on the vehicle's status (e.g., position, 

velocity, steering, accelerations, and decelerations) is shared with other cars through the 

communication system. Moreover, when necessary, certain emergency alerts can be sent 

to others. In such a situation, since onboard sensors directly detect this information, there 

will be more accurate with less latency, and the system can be adapted to more complicated 

environments with better safety, capacity, and stability [21], [22]. The result would be 

reduced traffic congestion and improved platooning efficiency through a reduction in 

latency and inter-vehicular space. Furthermore, by enhancing the platooning efficiency, 

there can be a saving in fuel consumption with a reduction in the emission of greenhouse 

gases.  

 

Figure 1.3 ACC and CACC in platooning system [10] 

1.3 Contributions 

In this thesis, CACC is implemented and tested on two Q-Cars, electrical-driven 

vehicle models with onboard sensors, GPUs, and wireless communication systems (802.11) 
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provided by Quanser. Compared with the current work, the main contributions and 

challenges of this thesis are as follows: 

1) Based on lidar sensors and the V2V communication system, a new control 

algorithm is proposed for control accuracy. 

2) Implementing ACC and CACC system on Q-Car models by using MATLAB 

Simulink. 

3) A double Deep-Q-learning module is designed and trained based on the reward 

function and update policy on the MATLAB Simulink environment. 

1.4 Outline of Thesis 

The remainder of this thesis is organized as follows. Chapter 2 presents all the 

recent research in V2V communications, CACC and deep-learning techniques. Chapter 3 

includes the theoretical background about reinforcement learning, deep learning and Q-

learning. Chapter 4 presents the methods and algorithms that have been applied in this 

thesis, and all the experimental results are discussed in Chapter 5. Lastly, Chapter 6 

presents the conclusions to this thesis and possible future works.   
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Chapter 2  

Literature Review  

 

In 1986, the PATH program was initiated at the University of California Berkeley 

to study Intelligent Vehicle Highway System for improving traffic [23]. Research studies 

on the subject have continued ever since, e.g., for some recent work on spacing strategy 

and algorithm, see [12], [13]. Frederic Serge firstly proposed the definition and assessment 

of ACC in 1991 [11]. The objective of the ACC system is not only to maintain the vehicle 

at the preset velocity but also to change the velocity control to the headway time control 

by controlling the brake and throttle when the front vehicle is too close or too slow [52]. 

In the ACC study, the selection and design of spacing policy is a significant part of the 

study. Many spacing policies and breakdowns have been proposed for reliability, safety, 

and stability, such as constant distance, constant time headway, constant safety headway 

[14], and constant stability spacing policies [15]. Nowadays, manufacturers are mainly 

applying the constant time headway (CTH) spacing policy in their ACC systems due to its 

safety and performance stability [24]. The longitudinal control system of ACC in gasoline 

vehicles is separated into a hierarchical control strategy consisting of an upper-level 

controller and a lower-level controller [25]. The upper-level controller is responsible for 

measuring the desired acceleration and velocity. The lower-level controller is responsible 

for controlling the throttle and brake to execute the order and give feedback to the upper-

level controller. 

2.1 Relative Work in CACC 

CACC uses a V2V communication module to gather information for the ACC 

longitudinal controller with less delays than ACC. The first attempt to use V2V 

communication with IEEE 802.11p in platooning control was reported by Segate [28], who 

developed an integrated simulator called PLEXE for testing different platooning scenarios. 

Since the CACC system is the extension of the ACC system, sensors such as lidar or radar, 

and odometers are also installed on most vehicles with the CACC system. Additionally, 

the overall structure of the ACC and CACC systems, as illustrated in Figure 2.1, are similar 

[27]. Both ACC systems and CACC systems have a high-level controller, which 
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implements the longitudinal control algorithm, and a low-level controller, which 

implements the engine and break commands by following the instruction from the upper-

level controller. Many research studies have concluded that the CACC system has a better 

performance with more accurate information.  

 

Figure 2.1 System structure of the CACC and ACC system embedded vehicle 

To show the benefits that CACC can bring to the traffic flow, the authors in [59] 

used a traffic-flow simulation model MIXIC, designed to study the impact of the intelligent 

vehicles on traffic flow and data measured on a four-lane Dutch highway. The simulation 

is conducted for situations where different penetration rates exist between ACC and CACC 

vehicles and manually driven vehicles. They demonstrated that traffic-flow stability and 

efficiency could be enhanced by more CACC vehicles joining the traffic flow, especially 

in conditions with high-traffic volume. Additionally, authors in [62] developed an eco-

CACC system, which can receive signal phasing and timing data using V2I communication. 

By using those data, each vehicle can arrive at the intersection whenever the last vehicle in 
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the queue has left. The result demonstrates that the vehicles can save up to 40% fuel when 

the market penetration rate is 100% using the ECO-CACC system. 

 

Figure 2.2 Vehicle platoon in 2011 GCDC [29] 

In recent years, a number of research studies reported successful implementation of 

CACC. These include Grand Cooperative Driving Challenge (GCDC) [29], as shown in 

Figure 2.2, California's Partners for Advanced Transit (PATH) [30] and the Safe Road 

Trains for the Environment project (SARTRE) [31]. In 2011 GCDC, they focused on 

primary platooning control, such as forming a two-line platoon and maintaining a platoon 

(Figure 2.2). In 2016 GCDC, there were two challenges: the cooperative platoon merge 

and the other was cooperative intersection passing. The aim was to present a close-to-

reality scenario where cooperative and automated vehicles can perform complicated 

platooning operations. Even though vehicles in the platoon did not share the same 

algorithm, the competition still successfully demonstrated that cooperative driving was 

possible for different kinds of vehicles. The PATH is a comprehensive intelligent 

transportation system research in many subjects, such as CACC, Truck platoon, and 
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Cooperative Intersection Collision Avoidance Systems. Their systems simultaneously 

improved automotive safety and highway capacities. The SARTRE project aimed to 

minimize the environmental impact and traffic congestion and improve traffic efficiency 

and comfort for the driver in personal transportation in Europe [31]. They had applied the 

CACC system in the platooning of vehicles, where the lead vehicle with a professional 

driver controls all the following vehicles in a platoon. These platoons were estimated to 

cut 20% of the carbon emissions from private vehicles. In 2014, there was another real-

world CACC application. The CACC system was implemented on four production Infiniti 

M56s vehicles and tested on public roads by authors [32]. Driving vehicles with ACC and 

CACC demonstrates that the inter-vehicular distances were significantly reduced 

compared to the commercially available ACC system by taking advantage of wireless 

communication information.  

Additionally, many pieces of research about methodology and testing CACC under 

different scenarios were published. Lin used an adaptive neuro-fuzzy predictor-based 

control (ANFPC) with a Takagi-Sugeno fuzzy model to form the CACC system [33]. The 

Takagi-Sugeno fuzzy model is applied to estimate the preceding vehicle model and to 

obtain the predicted state sequence of it, and the following vehicle is controlled to maintain 

the inter-vehicular distance by using ANFPC. Their results from ANFPC are compared 

with performance under two other control algorithms: linear quadratic regulator (LQR) and 

constrained linear quadratic regulator (CLQR). Through comparison, they demonstrate that 

the string stability of vehicle platooning, comfort and fuel efficiency were improved 

significantly by the ANFPC-based CACC system. In a mixture of human-driven and 

autonomous vehicles, the platoon can maintain its stability by applying the Linear 

Quadratic Regulator (LQR) technique to a classic controller [35]. A stochastic, linear 

model predictive control strategy was present by [61]. They presented a simulation study 

in CarMaker and MATLAB about using this control strategy in the CACC system such 

that the fuel consumption was reduced by 11~15%. Moreover, Tugba applied the CACC 

algorithm to the vehicle platoons using distributed model predictive control (DMPC) based 

controller to improve the safety of a vehicle platoon [34]. A distributed consensus 

algorithm and protocol for the CACC system were designed for platoon formation, merging 

maneuvers, and splitting maneuvers [63]. 
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Meanwhile, with the development of wireless transmission technology, the 

information can be transmitted to many vehicles simultaneously to control the vehicle 

platooning. There were many information flow topologies for V2V communication in a 

platoon, such as Predecessor Following (PF), BiDirecttional (BD), Predecessor-Leader 

Following (PLF), Two-Predecessors Following (TPF), Two-Predecessor-Leader 

Following (TPLF) [26] as shown in Figure 2.3. The arrow indicates the data transmission 

flow between vehicles. Different topologies have different communication requirements, 

such as data transmission speed, range and latency. In the actual application example, 

authors in [34] applied PLF and TPLF methods for their study to compare their delay. 

Additionally, they switched the communication topology from PLF and TPLF to PF and 

TPF in a scenario where the wireless communication dropout of leader information.  

 

Figure 2.3 Typical information flow topologies: (a)PF, (b)PLF, (c)TPF, (d) TPLF, and 

(e) BD. [27] 
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2.2 Relative Work in V2X Communication 

 As mentioned before, V2X communication is a crucial element for CACC 

implementation, especially V2V communication. It decides whether vehicles can 

successfully exchange sufficient information (such as speed, position, direction, and 

acceleration) with each other. The U.S. National Highway Traffic Safety Administration 

(NHTSA) suggested Dedicated Short-Range Communication (DSRC) as the standard 

technology for V2V communication [36]. Due to the development of the technology, some 

new wireless communication protocols, such as Wireless Access in Vehicular 

Environments (WAVE), Long-Term Evolution (4G-LTE), and Fifth Generation (5G) 

technologies, were applied to V2V communication.  

The DSRC is a vehicular communication protocol based on the IEEE 802.11p 

standard. There are many organizations involved in the formulation of DSRC standards, 

such as the International Organization for Standards (ISO), the European Committee for 

Standardization (CEN), the European Telecommunication Standards Institution (ETSI), 

and the Japanese Association of Radio Industries and Business (ARIB). Two other DSRC 

standards include TC204, which ISO published, and TC278, which CEN has published. 

Many car manufacturers were already installing IEEE 802.11p equipment in their vehicles.   

On top of that, WAVE (Wi-Fi) also uses IEEE 802.11 standard for its physical layer, 

but it also supports V2I wireless communication by using WAVE Short Message Protocol 

[37]. Wi-Fi is a wired Ethernet network that uses wireless technology for data transmission. 

The radio frequency of Wi-Fi is the same as Bluetooth, and as such, the transmission range 

is limited. As a result, this protocol is mainly applied to the V2I communication, which 

requires a specific transmission data rate in short-range transmission. However, the Wi-Fi 

can have access to the World Wide Web, making it easier to access the database worldwide 

for getting information such as experience samples for deep learning. This worldwide 

connection may cause the vehicle more vulnerable to attack. In [64], the authors applied 

Wi-Fi and Zigbee networks for V2V communication in Bangkok, Thailand, and compared 

their performance under the same condition. Zigbee is another old protocol for short-range 

wireless communication with a low power consumption design such that its data 

transmission rate is relatively lower than Wi-Fi. The research demonstrated that the Wi-Fi 
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could have a 55% successful transmission rate, whereas the Zigbee only has an 8% 

successful transmission rate. Especially when the vehicle number increase, the Wi-Fi tends 

to have much better performance than Zigbee.   

Nowadays, 4G-LTE is the most used cellular technology supporting Device-to-

Device (D2D) to provide an ad hoc network service, which has a better performance on the 

range and latency than WAVE (Table 2) [38]. Its lowest latency can reach 10 ms. On top 

of that, it also has a maximum mobility speed of about 350 km/h. However, since it is 

widely applied to D2D communications, its communication would be easier to be 

interfered with by other mobile devices, especially in a metropolitan area. Additionally, the 

proximity discovery delay would be another issue that negatively affects the data 

transmission performance. 

 

Figure 2.4 5G communication between vehicles to other facilities and devices [10] 

The 5G technology is the best commercial wireless communication technology, 

with the highest data rate and lowest latency [39]. Moreover, it can simultaneously support 

around 1 million devices every square kilometer to exchange data [10]. As illustrated in 

Figure 2.4, this communication capability provides a solution for integrated 

communication between vehicles and other facilities and appliances within the vehicle 

environment. It provides three different communication modes to communicate with other 
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devices: device-to-device, device-to-cell, and device-to network. The 5G network slicing 

makes the end-to-end network possible to meet more specific wireless communication 

requirements. These three modes provide the communication channel in V2V and V2I and 

allow the vehicle to access the database from the cloud service. Especially in V2V 

communications, the 5G technology can be helpful. Its 1 ms latency can meet any real-

time communication requirements, and its 1 Gbits/s downloading speed and 10 Mbits/s 

uploading speed are suitable for any kind of data transmission. Furthermore, it allows 

image data transformation between vehicles for future applications. 

 Besides these general data transmission technologies, there are other technologies 

in real applications. For example, in 2016 GCDC, they used the ITS-G5 specification for 

the Cooperative ITS, which works on the dedicated 5.9 GHz frequency band [29]. 

Table 2.1: Wireless Technology Comparison 

Communication Technology Transferring Data Rate Range Latency 

Dedicate Short-Range 

Communication (DSRC) 
6-27 Mbits/s Medium > 5ms 

Wireless Access in Vehicular 

Environments (WAVE) 
6-27 Mbits/s Medium 50-100ms 

4G-LTE 
10 Mbits/s with peak of 

1Gbits/s 
Long 10-30 ms 

5G 
1 Gbits/s with peak of 20 

Gbits/s 
Long >1ms 

 

 For V2V communication algorithms and models, the authors of [40] developed an 

application layer handoff method to enable heterogeneous network (Het-Net) 

communication between Wireless Fidelity (WIFI), DSRC, and LTE. This method 

increased the range of communication for V2V and V2I, but the latency limited its 

applications. In [41], the authors implemented a shadow fading model targeting system 

simulation, which separated the measurement data into three categories: line-of-sight(LOS), 

obstructed line-of-sight(OLOS) by vehicles, and no-line-of-sight due to buildings. 

Additionally, when a trusted vehicle cannot be reached, [42] proposed a Lidar-based 

authentication mechanism to detect surrounding vehicles through onboard sensors. In [34], 

the authors applied the DMPC algorithm to control a nonlinear vehicular platoon under 
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bidirectional topologies, demonstrating that the DMPC could process additional 

information without violating string stability. 

2.3 Relative Work in CACC with Machine learning 

In recent years, many projects have been developed based on a machine learning 

approach because it is a powerful tool that can be applied to many domains, such as data 

mining, imaging processing and cyber security. In an unpredictable environment that 

vehicle has to face, rather than re-programming the vehicle to be suitable for every kind of 

scenario, it would be easier if vehicles could learn their task autonomously or semi-

autonomously through human interventions. Artificial intelligence is the most popular 

approach for robots' autonomy, making machine learning one of the most popular areas of 

study for automation.  

There are many approaches and methods in machine learning, such as 

reinforcement learning, supervised learning, unsupervised learning, and semi-supervised 

learning [71]. Many were applied to robot systems, such as humanoid robots [72], 

unmanned aerial vehicles (UAV) [71], remotely underwater vehicles [73] and robotic arms 

[74]. In the field of intelligent vehicles, there are two kinds of learning approaches that can 

control the vehicle to make the right decision: learning from demonstrations (LfD) and 

reinforcement learning (RL) [75]. The LfD is an approach that agents can learn from the 

examples of human demonstration to predict their output action based on input. Inverse 

reinforcement learning is one of the learning algorithms representing the LfD methods. 

However, in RL, the agent learns the policy by trying different actions in different scenarios 

(state). From their different action and state pairs, the reward can be computed. By 

maximizing their reward within Makov Decision Process, the agent can predict a policy 

that can fit their situations.  

 An adaptive control system that applies reinforcement learning was proposed in 

2008 [47]. It uses Monte Carlo Reinforcement learning to develop a longitudinal adaptive 

control system for a detailed nonlinear longitudinal vehicle model. In [48], the author 

applied reinforcement Q-learning to the decision-making process during the automatic 

driving and car following. Recently, [49] proposed a Deep Deterministic Policy Gradient 

and Proportional-Integral-Derivative (DDPG-PID) controller to automate the PID weight 
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tuning process with longitudinal tracking control of vehicle platooning. Authors in [50] 

implemented a deep neural network that generates multimodal predictions of traffic agents 

around a truck platoon to improve the cut-in performance of trucks. Moreover, a multi-

agent RL method was applied to CACC to achieve higher performance and faster 

convergence [51]. 

2.4 Chapter Summary 

This chapter presented an overview of technologies that have been applied to 

CACC. Firstly, the development from ACC to CACC was introduced where CACC is a 

system developed from the ACC system through vehicle-to-vehicle communications. Then, 

a study about the performance of CACC in both large traffic flow and a single platoon was 

presented. Many research and projects demonstrated that the vehicle with a CACC system 

could have better platoon stability and safety with better energy and traffic efficiency than 

one which uses an ACC system and manual driving. Meanwhile, the methods that have 

been applied to the CACC system were introduced. Secondly, different wireless 

communications technologies were compared and discussed for real applications, which is 

significant for practical CACC applications. Lastly, machine learning approaches were 

discussed as potential candidates for use in an autonomous vehicle, and certain sample 

studies in this direction were discussed. 

Although some attempts have been directed toward implementing CACC and ACC 

on cars via DSRC, no research has yet used Wi-Fi in real applications. Although Wi-Fi is 

not a communication technology that could be applied in a city environment, it is applicable 

for the transportation of autonomous driving vehicles and Automated Guided Vehicle 

(AGV) [26] for package distribution within factories' environment. Additionally, the 

proposed prototype helps demonstrate the data transmission process because other 

communication technologies, such as 5G can transmit the same amount of data with the 

same latency as Wi-Fi. This thesis attempts to fill this gap by developing a MATLAB 

Simulink model on Q-Cars and to test its reliability and stability performance.  
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Chapter 3  

Theoretical Background 

 

 The ultimate object of this thesis is to apply deep Q-learning (DQN) to the CACC 

system for the Q-Car application. Deep Q-learning is one of the deep reinforcement 

learning algorithms from the machine learning field that apply deep learning models, such 

as neural networks, to the reinforcement learning (RL) algorithm. This chapter presents 

some of the most critical underlying structures of reinforcement learning, Q-learning and 

deep Q-learning.  

3.1 Markov Decision Processes 

 

Figure 3.1 Markov Decision Process Model 

To understand Q-learning, which is one of the reinforcement learning algorithms, 

the Markov Decision Processes (MDP), which are foundational in an RL environment, are 

discussed. MDP is a probabilistic temporal model which includes the agent's and 

environment's actions and reactions. The object which makes decisions and learns from 

decisions is called the agent. Everything else around it, which can be interacted with 

continuously and compared with, is called the environment. As shown in Figure 3.1, on the 
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one hand, the agent selects actions and learns from the environment's reaction. On the other 

hand, the environment takes action from the agent and responds to the agent by presenting 

new situations. Meanwhile, the environment also gives the agent a specific reward for its 

actions.  

 The MDP operates in many discrete time steps, t = 0, 1, 2, …, n, and contains the 

following information: 

⚫ A set of finite n states, S, represents the different environments at different 

times. 

⚫ A set of finite n of actions, A, which is executed by the agent.  

⚫ A transition probability function, T (s, a, s'), represents the state transition 

probability from action, a, to the next state, s', such that T (s, a, s') = P (s' | s, 

a) 

⚫  A reward function r : S × A → ℝ, where R (s, a, s') represents the immediate 

reward in each state that can be used in the next state. 

⚫ A discount factor γ ∈  [0,1] represents the importance of each immediate 

reward for the future. 

As a result, the overall MDP consists of tuple M = (S, A, P, R, γ). At each time step, 

t, the agent in the random state of the environment, 𝑠𝑡 ∈ 𝑆, takes action 𝑎𝑡 ∈ 𝐴. This action 

can take the environment to a new state, 𝑠𝑡+1 ∈ 𝑆, at the time of t + 1. The probability 

distribution of the states is given by the transition probability function 𝑇(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) =

𝑃(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡), where 𝑠𝑡+1 = 𝑠′ , 𝑠𝑡 = 𝑠 , and 𝑎𝑡 = 𝑎 . Then, the reward function 

𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) can calculate the reward in the current state 𝑠𝑡. Furthermore, the agent can 

execute an action 𝑎𝑡+1 to observe the next state 𝑠𝑡+1 and reward 𝑅𝑡+1 which can be used 

for the next action and repeated during the process.  

3.1.1 Policies and Values Function 

 In reinforcement learning, the agent's action is selected based on either a 

deterministic or stochastic policy of the action π(s) = a. In the deterministic stationary 

policy, the action in a given state always results in the same next state. However, in the 

stochastic stationary policy, the next state can be varied by the function that matches 
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different actions in probability distribution to each state. The optimal policy, π*, is the 

theory such that the agent can maximize the expected reward by choosing different actions: 

 𝑅 = ∑ 𝛾𝑡𝑅(𝑠𝑡)

∞

𝑡=0

 (3.1) 

 The decision network of a finite MDP, as shown in Figure 3.2, demonstrates the 

flow of the policy. At the very beginning, S0 is generated by the environment, and an action 

A0 is chosen to perform by policy π, where A0 = π (S0). Then, everything can be transitioned 

to S1, by receiving a transition probability T (S0, A0, S1) and a reward R1 (S0, A0, S1). The 

process can be continued by repeating the steps above, and a sequence of S0, A0, R1, S1, A1, 

R2, … can be produced by the policy.  

 

Figure 3.2 Finite MDP's decision network 

 As mentioned before, in all reinforcement learning applications the value functions, 

tells the agent how good the action is in the given state. The notion of "how good" here is 

defined in terms of future rewards that can be expected, or, to be precise, in terms of 

expected return. Of course, the rewards the agent can expect to receive in the future depend 

on what actions it will take. Accordingly, value functions are defined with respect to 

particular policies [54].   

 A policy π, is a mapping from each state, 𝑠 ∈ 𝑆 ,  and action, 𝑎 ∈ 𝐴 , to the 

probability 𝜋 (𝑎|𝑠) of taking action a when in state 𝑠 [54]. As a result, a value function 
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𝑣𝜋 (𝑠) can represent the value of the state under the policy. For the MDPs, the state-value 

function 𝑣𝜋 (𝑠) can be defined as follow: 

 𝑣𝜋 (𝑠) = 𝔼𝜋 [∑ 𝛾𝑡𝑅(𝑠𝑡)

∞

𝑡=0

| 𝑠0 = 𝑆] (3.2) 

where 𝔼𝜋[∙] is the expected value of a random variable for the policy that the agent follows.  

 Based on this fundamental equation, the stationary policy's value function can be 

defined as: 

 

𝑉𝜋 (𝑠) = 𝔼𝜋 [∑ 𝛾𝑡𝑅(𝑆𝑡)

∞

𝑡=0

| 𝑆0 = 𝑠] 

= 𝔼𝜋 [𝑅(𝑠0) + ∑ 𝛾𝑡𝑅(𝑆𝑡)

∞

𝑡=1

| 𝑆0 = 𝑠] 

= 𝑅(𝑠) + 𝔼𝜋 [∑ 𝛾𝑡𝑅(𝑆𝑡)

∞

𝑡=1

| 𝑆0 = 𝑠] 

(3.3) 

Based on (3.3), by including the action a, state s, and transition probability function 

T to the value function of the stationary policy π they follow, the action-value function, 

𝑞𝜋 (𝑠, 𝑎) can be developed as follow: 

 

𝑄𝜋(𝑠, 𝑎) = 𝔼𝜋 [∑ 𝛾𝑡𝑅(𝑆𝑡, 𝐴𝑡)

∞

𝑡=0

| 𝑆0 = 𝑠, 𝐴0 = 𝑎] 

= 𝑅(𝑠, 𝑎) + 𝔼𝜋 [∑ 𝛾𝑡𝑅(𝑆𝑡, 𝐴𝑡)

∞

𝑡=1

| 𝑆0 = 𝑠, 𝐴0 = 𝑎] 

= 𝑅(𝑠, 𝑎) + 𝛾𝔼𝜋 [∑ 𝛾𝑡𝑅(𝑆𝑡, 𝐴𝑡)

∞

𝑡=0

| 𝑆0 = 𝑠, 𝐴0 = 𝑎] 

= 𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝑇(𝑠, 𝑎, 𝑠𝑡+1)𝑉𝜋(𝑠𝑡+1)

𝑠𝑡+1

 

=  𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝑃(𝑠𝑡+1|𝑠, 𝑎)𝑉𝜋(𝑠𝑡+1)

𝑠𝑡+1

 

(3.4) 
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In the finite MDPs, there is always an optimal policy π*, a policy π has a return that 

is greater or equal to π' for all states. Since all the policies share the same state-value 

function, the optimal state-value function can be defined as: 

 𝑉∗(𝑠) = max
𝜋

𝑉𝜋(𝑠), 𝑠 ∈ 𝑆 (3.5) 

 

Additionally, when the optimal policy shares the same action-value function, the 

optimal action-value function can be formed: 

 𝑄∗(𝑠) = max
𝜋

𝑄𝜋(𝑠, 𝑎), 𝑠 ∈ 𝑆 , 𝑎 ∈ 𝐴 (3.6) 

 

Based on the Bellman Equations [54], which demonstrate the value function is an 

immediate reward with the discounted sum of the future rewards, we have: 

 𝑉𝜋 (𝑠) = 𝑅(𝑠, 𝜋(𝑠)) + 𝛾 ∑ 𝑇(𝑠, 𝜋(𝑠), 𝑠′)𝑉𝜋(𝑠′)

𝑠′

 (3.7) 

 𝑄𝜋(𝑠, 𝑎) =  𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝑃(𝑠′|𝑠, 𝑎)𝑉𝜋(𝑠′)

𝑠′

 (3.8) 

 

 The optimal value function for the state-value function and action-value function 

can be arrived at: 

 𝑉∗(𝑠) = max
𝜋

[𝑅(𝑠, 𝜋(𝑠)) + ∑ 𝑃(𝑠𝑡+1|𝑠, 𝑎)𝑉∗(𝑠𝑡+1)

𝑠𝑡+1

]  (3.9) 

 𝑄𝜋(𝑠, 𝑎) =  𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝑃(𝑠𝑡+1|𝑠, 𝑎) max
𝑏∈𝐴

𝑄∗ (𝑠𝑡+1, 𝑏)

𝑠𝑡+1

 (3.10) 

 

3.2 Dynamic Programming 

 Dynamic Programming (DP) is a tool that can be used for computing optimal 

policies in a Markov decision process. The use of dynamic programming is based on the 
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assumption of a perfect environment. The perfect environment is a finite MDP, which 

means all the states, actions, and rewards are finite. As a result, DP is classified as a model-

based learning algorithm. The object of dynamic programming is to use value functions to 

help the agent to search for a good policy by bootstrapping the rest of the expected return 

by the initial estimated value of the value function. Generally, there are two ways to 

compute the optimal policy: policy iteration and value iteration [54].  

3.2.1 Policy Iteration 

The idea of policy iteration is that there always is a policy that has a known value 

for the infinite horizon, and the policy has been incrementally improved by the algorithm. 

The policy iteration involves two main steps: policy evaluation and policy improvement. 

For the policy evaluation, the value, 𝑉𝜋𝑖, of the current policy πi is computed by the value 

function. Based on the value from the policy evaluation, the new policy πi+1 can be 

computed by the policy improvement step. By repeating these two steps, a sequence of 

monotonically improving policies and value functions can be formed as [54]: 

𝜋0

𝐸
→ 𝑉𝜋0

𝐼
→ 𝜋1

𝐸
→ 𝑉𝜋1

𝐼
→ 𝜋2

𝐸
→ 𝑉𝜋2

𝐸
→ ⋯

𝐼
→ 𝜋∗

𝐸
→ 𝑉∗ 

where E represents the policy evaluation process, and I represent the policy improvement 

process.  

By following the sequence, Algorithm 1 demonstrates the procedure of the policy 

iterations. At the beginning of the policy iteration, the policy is randomly selected. The 

policy evaluation calculates the action value 𝑉𝜋𝑖 of the policy 𝜋𝑖 by value functions that 

satisfy the Bellman Equation (3.7 and 3.8). Then, the new policy 𝜋𝑖+1 can be formed by 

the policy improvement process with the equation: 

 
𝜋𝑖+1(s) = argmax

𝑎
[𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝑇(𝑠, 𝑎, 𝑠′)𝑉𝜋(𝑠′)

𝑠′

]  (3.11) 

 

where 𝜋𝑖+1(s)  ≥  𝑉𝜋𝑖(𝑠) . As a result, the optimal policy can be found when 𝜋𝑖+1(s) =

 𝑉𝜋𝑖(𝑠). 
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Algorithm 1: Policy Iteration [54] 

1. Initialization: 

 i = 0, 

   𝑉(𝑠) ∈ 𝑅 arbitrarily for all 𝑠 ∈ 𝑆  

  𝜋(𝑠) ∈ 𝐴(𝑠) arbitrarily for all 𝑠 ∈ 𝑆 

2. Policy Evaluation 

  repeat  

   ∆ ← 0 

   For each 𝑠 ∈ 𝑆 
    v ← 𝑉𝜋𝑖(𝑠) 

    𝑉𝜋𝑖(𝑠) = 𝑅(𝑠, 𝜋𝑖(𝑠)) + 𝛾 ∑ 𝑇(𝑠, 𝜋𝑖(𝑠), 𝑠′)𝑉𝜋𝑖(𝑠′)𝑠′ ; 

    ∆ ← max(∆, |𝑣 − 𝑉𝜋𝑖(𝑠)|)  
  until ∆< 0 

3. Policy Improvement 

  policy-stable ← true 

  For each 𝑠 ∈ 𝑆 

   𝑎 ← 𝜋𝑖(𝑠) 

   𝜋𝑖+1(s) = argmax
𝑎

[𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝑇(𝑠, 𝑎, 𝑠′)𝑉𝜋(𝑠′)𝑠′ ]  

   If 𝑎 ≠ 𝜋𝑖+1(𝑠), then policy-stable ← false 

  If policy-stable, then stop and return 𝑉𝜋𝑖, and 𝜋𝑖+1; else go to 2 

3.2.2 Value Iteration 

Like the policy iteration, a value iteration is an alternative approach. It maintains 

optimal value from the beginning of a state s if a finite number of steps k exists. The 

advantage of the value iteration is that it can be literate to consider longer episodes for 

policies. Instead of doing the policy evaluation and policy improvement separately, it 

estimates the optimal value directly by turning the Bellman optimal equation into a backup 

rule. 

The Bellman equation can be seen as a backup operator because it not only can be 

applied to an old value function but also can transform it into a new value function. Based 

on the Bellman equation (3.7 and 3.8), the equation of the Bellman backup operator can be 

formed as follow:  

 𝐵𝑉 (𝑠) = max [
𝑎

𝑅(𝑠, 𝜋(𝑠)) + 𝛾 ∑ 𝑇(𝑠, 𝜋(𝑠), 𝑠′)𝑉𝜋(𝑠′)]

𝑠′

 (3.12) 
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Algorithm 2: Value Iteration [54] 

 Initialize array V arbitrarily 

 repeat  

  ∆ ← 0 

  For each 𝑠 ∈ 𝑆 
   v ← 𝑉𝑘(𝑠) 

   𝑉𝑘+1(𝑠) = max [
𝑎

𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝑇(𝑠, 𝑎, 𝑠′)𝑉𝑘(𝑠′)𝑠′ ]; 

   ∆ ← max(∆, |𝑣 − (𝑠)|)  
  until ∆< 0 

   

  Output a deterministic policy, 𝜋𝑖+1, such that 

   𝜋𝑘+1(s) = argmax
𝑎

[𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝑇(𝑠, 𝑎, 𝑠′)𝑉𝑘(𝑠′)𝑠′ ]  

Algorithm 2 describes the procedures of the value iteration with the Bellman 

backup operator, which returns a new value function and improves the value if it is possible 

in each iteration. Based on the Bellman backup operator, the main function in the second 

step can be expressed as follow: 

 𝑉𝑘+1(𝑠) = max [
𝑎

𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝑇(𝑠, 𝑎, 𝑠′)𝑉𝑘(𝑠′)

𝑠′

] (3.13) 

 

which means the value of 𝑉𝑘+1  for that state is the sum of the best reward from the 

immediate action and the discounted sum of future reward with the old value function from 

the previous step, 𝑉𝑘.  

In a real application, the operation terminates when there is only a small amount of 

the changes in the value function, as shown in the last step of Algorithm 2. As a result, the 

value iteration generates a sequence of value functions as:  

𝑉0 → 𝑉1 → 𝑉2 → 𝑉3 → ⋯ → 𝑉∗ 

3.3 Reinforcement Learning 

Machine learning is one of the techniques that people apply to an agent to make it 

learn from a set of data such that it can solve a given problem that is related to the data. In 

machine learning, supervised learning is one of the most common algorithms that has been 

used to solve problems, such as in image classification. During supervised learning, each 

example has a label, which is provided by supervisors, and the environment can tell the 
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learner what output is based on its input and labelled examples. However, in reinforcement 

learning, as one of the machine learning algorithms, there is no such kind of examples for 

the algorithm to learn from.  

Reinforcement learning is a generic framework for representing and solving control 

tasks, but within this framework, we are free to choose which algorithms we want to apply 

to a particular control task that can be modelled as MDP [53]. The RL focuses on a bigger 

picture, which is a problem of an agent for a specific object to interact with a changing 

environment. In contrast to dynamic programming, which assumes a perfect model of the 

environment, the RL does not have such an ideal environment available. As a result, 

reinforcement learning is categorized as a model-free learning algorithm. The RL can 

optimize the right track to reach the ultimate objects by giving each step reward. By 

maximizing the reward, the RL algorithm can learn what kind of action helps it to build 

reward and what kind of action lead to negative reward. As a result, the agent can 

understand what action it should take in different situations.  

The biggest challenge of reinforcement learning is the trade-off between 

exploration and exploitation [54]. The reinforcement learning agent not only prefers 

actions that happened in the past and are effective for reward, but it also tries actions that 

have not been selected in the past. The agent must exploit what it already knows to obtain 

the reward, but it also must explore to make better action selections in the future [54]. 

Therefore, the reinforcement learning agent must try many different actions to get a reliable 

reward. As a result, to balance exploration and exploitation, an 𝜖 -greedy policy with 

respect to an action-state value Q (s, a) is generated as: 

 

𝜋(𝑎|𝑠) = argmax
𝑎

𝑄(𝑠, 𝑎)  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 1 − 𝜖 +
𝜖

|𝐴|
 

𝜋(𝑎|𝑠) ≠ argmax
𝑎

𝑄(𝑠, 𝑎)  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 
𝜖

|𝐴|
 

(3.14) 

 

where |𝐴| represents the number of actions. 
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There are four other significant elements for reinforcement learning besides the 

environment and the agent: a policy, a value function, a reward signal, and a model of the 

environment [54]. 

⚫ A policy maps the action that an agent takes and the state of the environment 

when the action takes place. It could be a function, lookup table, and search 

process. 

⚫ A reward signal is a goal for the entire RL problem. During each iteration, the 

environment sends a reward signal to the agent to help the agent understand 

whether the action is good or bad at that specific state. Moreover, it also helps 

the agent to maximize the total rewards in the entire process such that the agent 

can learn which is the right set of actions that the agent should take for the best 

result. 

⚫ A value function is a function that helps the agent to cumulate the reward for 

the long run. The result of the value function directly tells the agent whether a 

set of actions is good in the long term and whether a set of states are involved. 

In each state, the agent receives a different reward signal for that particular 

state from the environment. In the end, all the reward signals will be cumulated 

together by a value function to come up with a result to determine the overall 

quality of the set of actions.  

⚫ A model of the environment defines the reaction behaviour that the 

environment would have based on each action. The model takes the state and 

action information and predicts the reaction from the environment. 

Furthermore, the reaction can be calculated as a reward signal to help the agent 

to determine the results of its actions.   

Reinforcement learning has a very similar process to the MDP process shown in 

Figure 3.1. In each discrete time step, the agent, which is learning from the environment, 

and the environment interact with each other. Then, the observation can be collected by the 

agent from the environment, as well as the state 𝑠𝑡 and a reward 𝑟𝑡. According to all this 

information, the agent takes an action 𝑎𝑡, which changes the environment. Lastly, the agent 

collects a new observation from the environment, a new state 𝑠𝑡+1, and a new reward 𝑠𝑡+1.  
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There are two kinds of methods in reinforcement learning ensuring that the actions 

selected by the agent are continuous: on-policy and off-policy. The off-policy methods are 

learning about a policy that has experienced different action selection. However, on-policy 

methods attempt to improve or evaluate the policy that the environment and agent currently 

follow, such as the Monte Carlo methods. 

3.3.1 Monte Carlo Methods 

Monte Carlo methods are ways of solving the reinforcement learning problem 

based on averaging sample returns for episodic MDP tasks [54]. This method can be 

applied to the policy evaluation of the DP methods before. In the Monte Carlo method, the 

objective is to estimate 𝑉𝜋(𝑠) under policy π. Therefore, it defines and updates the 𝑉𝜋(𝑠) 

using a sample of the return to approximate an expectation by following policy π as: 

 𝑉𝜋(𝑠) = 𝔼𝜋[𝐺𝑡|𝑠𝑡 = 𝑠] (3.15) 

 

where 𝐺𝑡 is the discounted sum of the reward in MDP M under the policy as: 

 𝐺𝑡 = 𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 + 𝛾3𝑟𝑡+3 + ⋯ (3.16) 

 

Then, a simple every-visit Monte Carlo method for non-stationary cases can be generated 

as: 

 𝑉𝜋(𝑠) ← 𝑉𝜋(𝑠) + 𝛼 (𝐺𝑖,𝑡 − 𝑉𝜋(𝑠)) (3.17) 

 

Note that 𝛼 is a step-size parameter that measures the changes from one time step 

to another time step. Generally, the 𝛼 =
1

𝑁(𝑠)
  which refers to the case where the chance of 

every visit is equal, and 𝑁(𝑠) is the number of times that a state is visited. The sample 

episode is represented by 𝑖 = 𝑠𝑖,1 + 𝑎𝑖,1 + 𝑟𝑖,1 + 𝑠𝑖,2 + 𝑎𝑖,2 + 𝑟𝑖,2 + ⋯. 

Unlike dynamic programming, it is a model-free method which does not require to 

have a model of the reward and complete knowledge of the environment. It also does not 
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require bootstrapping because it is an average return of the sum of all the state-action pairs. 

Moreover, since it uses samples to make the approximation, the algorithm is not required 

to go to every state set for each evaluation. As a result, it is more efficient in the small 

subset of state. 

However, there are some limitations to Monte Carlo method. Firstly, it is a high 

variance estimator which requires a lot of data to reduce the variance because it uses 

samples to make the approximation, and it does not update 𝑉𝜋(𝑠) based on other 𝑉𝜋(𝑠). 

Additionally, the Monte Carlo methods can only be applied to episodic MDPs, where each 

episode can be terminated no matter what actions are selected.   

3.3.2 Temporal Difference Learning 

 Temporal Difference (TD) learning, one of the most important learning methods in 

reinforcement learning, combines Monte Carlo ideas and dynamic programming ideas [54]. 

It is a model-free learning method because dynamics models or reward models are not 

required in this method. TD learning not only can bootstraps, which updates estimates as a 

part of other estimates and approximates the future discounted sum of reward as dynamic 

programming, but also can sample to approximate the expectation in model-free conditions 

as the Monte Carlo method does. Additionally, it can be used in episodic or non-episodic 

settings and immediately updates the estimate of value function after each M = (s, a, r, s') 

tuple when a new observation is generated. The objective of TD learning is to 

estimate 𝑉𝜋(𝑠) for the given episodes under the policy, and all the actions are sampled 

from the policy. Therefore, the most straightforward TD learning estimation equation can 

be generated based on the Bellman operator (3.7 and 3.8) and every-visit Monte Carlo 

method (3.17): 

 𝑉𝜋(𝑠) = 𝑉𝜋(𝑠) + 𝛼[𝑟𝑡 + 𝛾𝑉𝜋(𝑠𝑡+1) − 𝑉𝜋(𝑠)] (3.18) 

 

This equation demonstrates that the TD learning updates the value estimate to 

approximate an expectation by using a sample of the next state and updates the estimation 

value by bootstrapping. Meanwhile, since TD learning is an estimation function, the TD 
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error can be generated as the difference between the new estimation and the current 

estimation value: 

 𝛿𝑡 = 𝑟𝑡 + 𝛾𝑉𝜋(𝑠𝑡+1) − 𝑉𝜋(𝑠𝑡) (3.19) 

 

where 𝑟𝑡 + 𝛾𝑉𝜋(𝑠𝑡+1) is the new estimation value from TD learning and 𝑉𝜋(𝑠𝑡) is the 

current estimation value. 

 In TD learning, there are two kinds of control methods that represent on-policy 

control and off-policy control. SARSA [55], which stands for state-action-reward-next-

state-next action, is one of the representations of on-policy, model-free control. It updates 

the state-action value 𝑄(𝑠𝑡, 𝑎𝑡) from the current state, action, and reward and the next state 

and action, (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1, 𝑎𝑡+1) using equation: 

 𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) +  𝛼(𝑟𝑡 + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡, 𝑎𝑡)) (3.20) 

 

Meanwhile, the policy improvement will be updated based on 𝜖-greedy policy: 

 𝜋(𝑠𝑡) = argmax
𝑎

𝑄(𝑠𝑡, 𝑎𝑡) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 1 − 𝜖 (3.21) 

 

Notice that the updates only happen after every transition from a non-terminal state. 

 Q-learning is another crucial method that represents off-policy TD control which 

also is a model-free RL algorithm as well. Instead of choosing a particular next action as 

SARSA does, the Q-learning is more optimistic by choosing the max action next to 

estimate future rewards. As a result, SARSA has a better performance where many negative 

rewards exist, and Q-learning has a better performance during the early convergence. The 

Q-value estimation equation can be updated as: 

 𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) +  𝛼(𝑟𝑡 + 𝛾 max
𝑎′

𝑄(𝑠𝑡+1, 𝑎′) − 𝑄(𝑠𝑡, 𝑎𝑡)) (3.22) 

 



 

29 
 

where  𝛼 is the learning rate, which indicates the updating frequency of the learning process 

between 0 and 1, and 𝛾 is the discount factor, which represents the weight of the future 

rewards is less than the immediate reward, between 0 and 1. This equation indicates that 

the optimal action-value function 𝑄∗ are directly approximated by the learned action 𝑄. By 

using substituting the Q-value estimation equation, the algorithm of the Q-learning can be 

expressed as: 

Algorithm 3: Q-learning algorithm [54] 

 Initialize 𝑄(𝑠, 𝑎) arbitrarily, t = 0 

 repeat (for each episode) 

  Initialize 𝑆 

  Repeat (for each step of episode) 
   Choose 𝑎 from 𝑠 using policy derived from Q (such as 𝜖-greedy) 

   𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) +  𝛼(𝑟𝑡 + 𝛾 max
𝑎′

𝑄(s′, 𝑎′) − 𝑄(𝑠, 𝑎)) 

   𝑠 ← 𝑠′ 
  until 𝑠  is terminal 

 until all episodes end 

 

 

When the number of times visiting each state goes to infinity, the Q-learning will 

converge with probability one by bounding the reward |𝑟𝑛| ≤ 𝑅 and the learning rates 0 ≤

𝛼𝑡 ≤ 1 [57]. Meanwhile, the learning rate 𝛼𝑡 need to satisfy the Robbins-Munro sequence 

such that: 

 

∑ 𝛼𝑡

∞

𝑡=1

= ∞ 

∑ 𝛼𝑡
2

∞

𝑡=1

< ∞ 

(3.23) 

  

On top of Q-learning, a Double Q-learning is another method using two different 

Q networks and one of the 𝑄(𝑠, 𝑎) as a target for the other, which is very helpful for 

maximizing the bias issue and saving computation time. Based on the Q-learning algorithm, 

the double Q-learning algorithm can be formed as: 
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Algorithm 4: Double Q-learning algorithm [65] 

 Initialize 𝑄1(𝑠, 𝑎), 𝑄2(𝑠, 𝑎) arbitrarily, t = 0 

 repeat (for each episode) 

  Initialize 𝑆 

  Repeat (for each step of episode) 
   Choose 𝑎 from 𝑠 using policy derived from Q (such as 𝜖-greedy) 

   if (with 0.5 probability true) then 

   𝑄1(𝑠, 𝑎) ← 𝑄1(𝑠, 𝑎) +  𝛼(𝑟𝑡 + 𝑄1(𝑠′, 𝑎𝑟𝑔max
𝑎′

𝑄2(s′, 𝑎′)) −

                                                              𝑄1(𝑠, 𝑎)) 

   else 

   𝑄2(𝑠, 𝑎) ← 𝑄2(𝑠, 𝑎) +  𝛼(𝑟𝑡 + 𝑄2(𝑠′, 𝑎𝑟𝑔max
𝑎′

𝑄1(s′, 𝑎′)) −

                                                              𝑄2(𝑠, 𝑎)) 

   end if 

   𝑠 ← 𝑠′ 
  until 𝑠  is terminal 

 until all episodes end 

 

 

3.4 Deep Reinforcement Learning 

Deep reinforcement learning is one of the learning methods that use the deep 

learning method to apply to the reinforcement learning algorithm. All the reinforcement 

learning methods mentioned before using a table that includes all the state-action pairs and 

values. However, for a huge data subset or complex sensations, it is nearly impossible to 

have all the information in a table. Besides the issue of the need for memory, generalization, 

which is the time and data needed to fill the table accurately, is the most significant issue. 

To solve this issue, value function approximation (VFA) is essential such that policy can 

still help the agent to make good decisions when it faces a state-action pair that has never 

occurred before but with many similarities with other learned state-action pairs. In VFA, 

instead of using a table, a parameterized function is used to represent the state or state-

action value function. The approximated value 𝑉𝜋(𝑠) ≈ �̂�(𝑠; 𝑤) of state s with vector w 

in the state value function. Meanwhile, the state-action value function can be written as  

𝑄(𝑠, 𝑎) ≈ �̂�(𝑠, 𝑎; 𝑤) . Through value function approximation, it not only reduces the 

memory that is needed to store but also reduces the computation time and number of 

experiences for the algorithm to find a good policy.  
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Figure 3.3 Simple neural network structure 

The function approximation includes many methods, such as linear feature 

representations, decision trees, neural networks, and nearest neighbours. The deep neural 

network (DNN) is now one of the most popular methods for function approximation of 

reinforcement learning. In the DNN, the function approximator is transferred as a 

composition of multiple functions. A deep neural network is an artificial neural network 

with many layers, which induces the model to learn layered representations of input data 

[53]. According to the example in Figure 3.3, the first layer is the input layer, and the last 

layer is the output layer. The layers between the first and the last layers are the hidden 

layers. The connection between two neurons is the weight of the connection strength 

between neurons. The network has parameters (𝑊, 𝑏) = (𝑊(1), 𝑏(1), 𝑊(2), 𝑏(2)) , where 

𝑊𝑖𝑗
(𝑙)

 represent the parameter associated with the connection between unit j in layer l, and 

unit i in layer l+1, and 𝑏𝑖
(𝑙)

  is the bias associated with unit i in layer l+1 [58]. Additionally, 

𝑎𝑖
(𝑙)

 is the activation of unit i in layer l, where 𝑎𝑖
(𝑙)

= 𝑥𝑖 for the i-th input. 

 For a fixed training set {(𝑥(1), 𝑦(1)), ⋯ , (𝑥(𝑚)𝑦(𝑚))} of m training examples, the 

neural network can be trained by using batch gradient decent. Firstly, the cost function for 

a single training example (x, y) can be defined as [58]: 

 𝐽(𝑊, 𝑏; 𝑥, 𝑦) =
1

2
‖ℎ𝑊,𝑏(𝑥) − 𝑦‖

2
 (3.24) 
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 Based on this squared-error cost function, the overall cost function can be defined 

as: 

 

𝐽(𝑊, 𝑏) = [
1

𝑚
∑ 𝐽(𝑊, 𝑏; 𝑥(𝑖)𝑦(𝑖))

𝑚

𝑖=1

] +
𝜆

2
∑ ∑ ∑(𝑊𝑖𝑗

(𝑙)
)

2
𝑠𝑙+1

𝑗=1

𝑠𝑙

𝑖=1

𝑛𝑙−1

𝑙=1

 

= [
1

𝑚
∑

1

2
‖ℎ𝑊,𝑏(𝑥(𝑖)) − 𝑦(𝑖)‖

2
𝑚

𝑖=1

] +
𝜆

2
∑ ∑ ∑(𝑊𝑖𝑗

(𝑙)
)

2
𝑠𝑙+1

𝑗=1

𝑠𝑙

𝑖=1

𝑛𝑙−1

𝑙=1

 

(3.25) 

 

 The 𝑠𝑙 represents the number of nodes in layer l. The first half of 𝐽(𝑊, 𝑏) equation 

represents an average sum-of-squares error, and the second half of it is a regularization 

term (weight decay term) that tends to decrease the magnitude of the weights and helps 

prevent overfitting [58]. 𝜆  is the weight decay parameter which controls the relative 

importance of two terms. 

 To train the neural network, firstly, each parameter 𝑊𝑖𝑗
(𝑙)

 and each 𝑏𝑖
(𝑙)

 is initialized 

randomly with a value near zero, and then an optimization algorithm, such as batch gradient 

descent, is applied to the algorithm. The purpose of random initialization is symmetry 

breaking, which means to prevent all the hidden layer units learn the same function of the 

inputs.  

 One iteration of gradient descent updates the parameter W, b as follows [58]: 

 

𝑊𝑖𝑗
(𝑙)

∶= 𝑊𝑖𝑗
(𝑙)

− 𝛼
𝜕

𝜕𝑊𝑖𝑗
(𝑙)

𝐽(𝑊, 𝑏) 

𝑏𝑖
(𝑙)

∶= 𝑏𝑖
(𝑙)

− 𝛼
𝜕

𝜕𝑏𝑖
(𝑙)

𝐽(𝑊, 𝑏) 

(3.26) 

where 𝛼 is the learning rate and partial derivatives terms can be computed by using the 

backpropagation algorithm, which can minimize the 𝐽(𝑊, 𝑏), as follow [58] : 
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1. Perform a feedforward pass, computing the activations for layers L2, L3, and so 

on up to the output layer Lnl. 

2. For each output unit 𝑖 in layer 𝑛𝑙 (the output layer), set  

 𝛿𝑖
(𝑛𝑙)

=
𝜕

𝜕𝑧𝑖
(𝑛𝑙)

1

2
‖ℎ𝑊,𝑏(𝑥) − 𝑦‖

2
= −(𝑦𝑖 − 𝑎𝑖

(𝑛𝑙)
) ∙ 𝑓′(𝑧𝑖

(𝑙)
) (3.27) 

 

3. For 𝑙 = 𝑛𝑙 − 1, 𝑛𝑙 − 2, 𝑛𝑙 − 3, … ,2    

a) For each node i in layer l, set 

 𝛿𝑖
(𝑛𝑙)

= (∑ 𝑊𝑗𝑖
(𝑙)

𝛿𝑗
(𝑛𝑙)

𝑠𝑙+1

𝑗=1

) 𝑓′(𝑧𝑖
(𝑙)

) (3.28) 

 

4. Compute the desired partial derivatives, which are given as: 

 

𝜕

𝜕𝑊𝑖𝑗
(𝑙)

𝐽(𝑊, 𝑏; 𝑥, 𝑦) = 𝑎𝑖
(𝑙)

𝛿𝑖
(𝑙+1)

 

𝜕

𝜕𝑏𝑖
(𝑙)

𝐽(𝑊, 𝑏; 𝑥, 𝑦) = 𝛿𝑖
(𝑙+1)

 

(3.29) 

 

 By using the Hadamard product, where 𝑎 = 𝑏 ∘ 𝑐, then 𝑎𝑖𝑗 = 𝑏𝑖𝑗 ∙ 𝑐𝑖𝑗, the desired 

partial derivatives for matrix-vectorial operation based on the algorithm above can be 

computed as: 

 
∇𝑊(𝑙)𝐽(𝑊, 𝑏; 𝑥, 𝑦) = 𝛿(𝑙+1)(𝑎(𝑙))𝑇 

∇𝑏(𝑙)𝐽(𝑊, 𝑏; 𝑥, 𝑦) = 𝛿(𝑙+1) 
(3.30) 

 

 As a result, the full gradient descent algorithm can be expressed based on the (3.30). 

One iteration of batch gradient descent can be implemented as follows [58]: 

1. Set ∆𝑊(𝑙) ∶= 0, ∆𝑏(𝑙) ∶= 0 (matrix/vector of zeros) for all l. 
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2. For i = 1 to m, 

a) Use backpropagation to compute ∇𝑊(𝑙)𝐽(𝑊, 𝑏; 𝑥, 𝑦) and 

∇𝑏(𝑙)𝐽(𝑊, 𝑏; 𝑥, 𝑦). 

b) Set ∆𝑊(𝑙) ∶= ∆𝑊(𝑙) + ∇𝑊(𝑙)𝐽(𝑊, 𝑏; 𝑥, 𝑦) 

c) Set ∆𝑏(𝑙) ∶= ∆𝑏(𝑙) + ∇𝑏(𝑙)𝐽(𝑊, 𝑏; 𝑥, 𝑦) 

3. Update the parameters: 

 

𝑊(𝑙) ∶= 𝑊(𝑙) − 𝛼 [(
1

𝑚
∆𝑊(𝑙)) + 𝜆𝑊(𝑙)] 

𝑏(𝑙) ∶= 𝑏(𝑙) − 𝛼 [
1

𝑚
∆𝑏(𝑙)] 

(3.31) 

 

where ∆𝑊(𝑙) is a matrix with the same dimension of 𝑊(𝑙), and ∆𝑏(𝑙) is a vector with the 

same dimension of 𝑏(𝑙). 

 The neural network can be trained by taking steps of gradient descent to reduce the 

cost function 𝐽(𝑊, 𝑏). 

3.5 Deep Q-Learning 

 Deep learning models are a field in machine learning models. Deep neural networks 

(DNN) that have been applied to this thesis are one of the popular models along with the 

deep learning models. The reason for choosing this model is that it is the most accurate 

parametric machine learning model, which has a fixed set of adjustable parameters for a 

given task [53]. The DNN has the capability to break the complex data into atomic units 

and handle complexity with units. When Q-learning combines with DNN, it can minimize 

the mean-square error loss by stochastic gradient descent. 

Additionally, it can solve problems that can be caused by other value function 

approximation methods, such as the correlation between samples and non-stationary 

targets. These two problems can have a negative effect when the learning agent estimates 

the right policy. The correlation between samples can make the process very time-

consuming because the only way to get the observation is to try the action in different 

policies. The non-stationary targets would cause the estimated policy to be highly biased 
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with respect to the optimal policy. The DQN solves these two problems by using 

experience replay and fixed Q-targets. 

 In order to remove the correlation between samples, the DQN stores the dataset 

𝐷(𝑠, 𝑎, 𝑟, 𝑠′)from prior experience so that it can use the data more than once for training. 

As a result, the target value for the sample s can be expressed as 𝑟 + 𝛾 max
𝑎′

�̂�(𝑠′, 𝑎′; 𝑤). 

By plugging in this target value function, the network weight can be updated by using 

stochastic gradient descent as: 

 ∆𝑤 = 𝛼(𝑟 + 𝛾 max
𝑎′

�̂�(𝑠′, 𝑎′; 𝑤) − �̂�(𝑠, 𝑎; 𝑤))∇𝑤�̂�(𝑠, 𝑎; 𝑤) (3.32) 

 

 Additionally, the stability can be improved by fixing the target weights. In DQN, a 

set of weights used in the target 𝑤− and weights that are being updated 𝑤 can be applied 

together to update the network weights. The target value for the sample s can be expressed 

as 𝑟 + 𝛾 max
𝑎′

�̂�(𝑠′, 𝑎′; 𝑤−). By plugging in this target value function, the network weight 

can be updated by using stochastic gradient descent as: 

 ∆𝑤 = 𝛼(𝑟 + 𝛾 max
𝑎′

�̂�(𝑠′, 𝑎′; 𝑤−) − �̂�(𝑠, 𝑎; 𝑤))∇𝑤�̂�(𝑠, 𝑎; 𝑤) (3.33) 

 As a result, the algorithm of DQN can be written as: 
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Algorithm 5: Deep Q-learning algorithm [65] 

 Input 𝐶, 𝛼, 𝐷 = {}, initialize 𝑤, 𝑤− = 𝑤, t = 0 

 Get initial state 𝑠0 

 loop 

  Sample action 𝑎𝑡 given ε-greedy policy for current �̂�(𝑠𝑡, 𝑎; 𝑤) 

  Observe reward 𝑟𝑡 and next state 𝑠𝑡+1 

  Store transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in replay buffer D 

  Sample random minibatch of tuples (𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠𝑖+1) from D 

  for j in minibatch do 

   if episode terminated at step, 𝑖 + 1 then 
    𝑦𝑖 = 𝑟𝑖 
   else  
    𝑦𝑖 = 𝑟𝑖 + 𝛾 max

𝑎′
�̂�(𝑠𝑖+1, 𝑎′; 𝑤−) 

   end if 
   Do gradient descent step on (𝑦𝑖 − �̂�(𝑠𝑖, 𝑎𝑖; 𝑤−))2 for parameters 

   𝑤: ∆𝑤 = 𝛼(𝑦𝑖 − �̂�(𝑠𝑖, 𝑎𝑖; 𝑤−))∇𝑤�̂�(𝑠𝑖, 𝑎𝑖; 𝑤) 

  end for 

  𝑡 = 𝑡 + 1 

  if mod (t, C) == 0 then 

   𝑤 ← 𝑤− 

  end if 

 end loop 

 

 

 More information about how to implement DQN will be introduced in the following 

chapter. 

3.6 Chapter Summary 

 This chapter introduced the essential knowledge that is needed to understand and 

implement deep Q-learning. The foundation of all of the techniques discussed is the 

Markov Decision Process. Moreover, several classical MDP algorithm is introduced as 

well as the fundamental concepts of reinforcement learning and Q-learning. Lastly, the 

basic theory, advantages, and disadvantages of Deep RL and DQN were presented.  
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Chapter 4  

Proposed Method 

 

This thesis uses two Q-Cars, as illustrated in Figure 4.1, as models for 

implementing the CACC system. The Q-Cas is an electrically driven model with onboard 

CPU and sensors, including Lidar, RGB-D camera, and 360° CSI camera suite. The 2D 

planar lidar, which the CACC system uses for measuring inter-vehicular distance, supports 

up to 8000 samples per second, with scanning frequency up to 15Hz, and a sensing range 

of up to 18m [70]. The 360° CSI camera suite has four 8MP 2D CSI cameras, which can 

be applied to capture the image for line detection. Meanwhile, for using MATLAB to 

maneuver the Q-Cars, blocks from the QUANSER Simulink toolbox are used to build the 

Simulink Model.  

 

Figure 4.1 Q-Car platform components [70] 

In order to present a CACC system in Q-Cars by MATLAB Simulink, an ACC 

system is designed first. Then, a communication channel is built up for Q-Cas to exchange 

information such as their speed and inter-vehicular distance. Moreover, a CACC system is 

designed based on the ACC and communication systems. Lastly, I built a CACC system 

based on deep Q learning on top of the original CACC system, and the performance of the 

three systems can be compared together.  
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4.1 ACC system 

The core of an ACC system is its longitudinal control system. The architecture of 

the longitudinal control system is illustrated in Figure 4.1. In an autonomous vehicle with 

an ACC system, the ACC controller combines with its vehicle dynamics to perform a 

prototype of an ACC system. At the beginning of each step, the ACC controller module 

will read the inter-vehicular distance between the host vehicle and the vehicle in front of 

it. It will also read the host vehicle's speed through its onboard sensor. Based on these 

inputs, the ACC Controller will be able to calculate its desired speed and send it to the 

Vehicles Dynamics module to execute. The objective of the controller is to maintain the 

inter-vehicular distance as the preset tracking distance. Based on the flow chart, the ACC 

system of Q-Car can be designed and tested by the MATLAB Simulink.  

 

Figure 4.2 Architecture of ACC longitudinal control system 

4.1.1 Lidar and line detection 

 

Figure 4.3 Lidar module for distance measurement 

 The objective of the Lidar system is to measure the inter-vehicular distance between 

the front car and the ego car, where the front car is the leading car in the platoon and the 
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ego car is the one that follows it. Figure 4.3 demonstrates the whole system that captures 

the lidar information around the vehicle and sends the distance information as an input for 

the ACC controller module. By using the captureLIDAR block from the QUANSER 

toolbox, the lidar data can be captured and transferred to the computer. The LIDAR on the 

car scans in a clockwise direction, and its 0 heading is a 270-degree clockwise direction of 

the actual Q-Cars' heading. To align the reference point of both Q-Car and LIDAR sensors, 

+270 degrees is added to the lidar sensor's default heading reference, and the heading signal 

is converted to radians for further calculation. Meanwhile, since the entire ACC system is 

required to respond to the environment frequently, the distance measurement should be 

updated frequently as well. Therefore, only 400 samples per revolution are collected to 

maximize the scanning frequency to 15Hz, which means the lidar can have 15 revolution 

scans per second.  

 An extra function block is added to the Lidar system to get the actual inter-vehicular 

distance. Since the measured distance is the distance between the objects and the lidar 

sensor, the distance between the front bumper of the Q-Car and the Lidar sensor, which is 

0.26m, is reduced from the sensor's measurements to get a more accurate measurement that 

fits the Q-Car application. Meanwhile, in this function, it takes nine distance measurements, 

which include the measurements at 0 heading, four measurements beyond 0 heading 

clockwise, and four measurements beyond 0 headings counterclockwise. This function can 

find the minimum distance measurements from these measurements and send them as an 

input for the ACC controller module because the minimum value of these measurements 

can make the Q-Car operate based on the safest strategy. Additionally, since the lidar will 

return 0 if it does not sense any object, the 0 value will be excluded from the algorithm.  

 

Figure 4.4 Line detection and steering calculation module 



 

40 
 

 As shown in Figure 4.4, the line detection and steering calculation module is an 

additional module besides the ACC system. The objective of this module is to maintain the 

vehicle at the center of the road. This module uses four 360°CSI cameras to capture the 

images on the road. The colorThresholdingHSV blocks are responsible for detecting the 

yellow line in different lighting conditions, and the steeringCalcuation will generate the 

desired steering angle based on the threshold image.  

 

Figure 4.5 Steering calculation module 

 Figure 4.5 demonstrates the process of the steering calculation. The linearPolyFit 

uses polyfit function from MATLAB to generate a slop and y-intercept on the equation: 

 𝑦 = 𝑚𝑥 + 𝑏 (4.1) 

 

where m is the slope, and b is the y-intercept value of the line. The MATLAB function 

after linearPolyFit uses m and b values to calculate the steering command up to ±0.5 rad, 

which is the steering limitation of the Q-Car.  

4.1.2 ACC Controller 

 

Figure 4.6 Longitudinal control module 
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Figure 4.7 ACC controller module 

The most common spacing policy applied to the ACC and CACC system by vehicle 

manufacturers and researchers is the Constant Time Headway (CTH) spacing policy [43], 

[44]. There are many studies about CACC or ACC systems that applied CTH spacing 

policy to their system [33], [45], [46], which illustrate its stability and reliability. The 

desired distance based on CTH is an increasing function of host vehicle speed, which can 

be expressed as follow: 

 𝑑𝑟(𝑡) = 𝑟 + ℎ𝑣(𝑡) (4.2) 

 

where dr(t) is the desired distance, r is the standstill distance, and h is the constant time 

headway time.  

As shown in Figure 4.6 and Figure 4.7, the core module is the 

adaptive_cruise_control, which is included in the automatedDriving block. This module 

will take the obstacle distance measured by the lidar system, preset nominal speed, stop 

distance, and nominal tracking distance to compute the desired speed as a speed command 

to send to the trunSpeedHeading block. The equation of desired speed is expressed as 

follows: 

 𝑉𝐷𝑒𝑠𝑖𝑟𝑒𝑑 =
𝑉𝑛𝑜𝑚𝑖𝑛𝑎𝑙

𝑑𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 − 𝑑 𝑑𝑒𝑟𝑠𝑖𝑟𝑒𝑑
(𝑑𝑜𝑏𝑠𝑡𝑖𝑐𝑎𝑙 − 𝑑𝑠𝑡𝑜𝑝) (4.3) 

 

where Vnominal is a preset nominal speed which is the desired speed that a vehicle would 

maintain when there is nothing in front of it, as known as its cruise speed, dtracking is a preset 

tracking distance such that the speed of the vehicle will decrease when the inter-vehicular 
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distance is less than it, ddesired is the desired distance calculated by equation (4.2). dstop is a 

preset distance that the vehicle needs to stop, and n is the measured value from the onboard 

Lidar sensor.  

The turnSpeedHeading block and speedContoller module are two functional 

modules which are provided by QUANSER. The turnSpeedHeading block is responsible 

for reducing the vehicle speed during the turning process. The Q-Car will go in the vertical 

direction of the centrifugal force due to the effect of inertia when the speed of the vehicle 

is too fast during turning. The speed reduction is limited between 50% and the cosine of 

the steering multiplied by the speed command calculated by the adaptive_cruise_control 

block so that the vehicle will not skid during the turning process. Finally, the desired 

velocity will be sent to the speedController module of the vehicle as input after each 

iteration. This module is a combination of feedforward and feedback controllers. The 

throttle command based on the PWM duty cycle and duty cycle bias of the electric motor 

will be sent to the Vehicles Dynamic module.  

4.1.3 Vehicle dynamic module and sensor 

 

Figure 4.8 Vehicle dynamic module and motor sensor module 

 In Figure 4.8, the Vehicles Dynamic module and Sensor module of Q-Car, from 

QUANSER toolbox, are demonstrated. The throttle command, in percentage value, from 

speedContorller block and steering, in radiance value, from turnSpeedHanding block are 

combined and sent to indicatorAndLamps and basicQCarIO separately. The 
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indicatorAndLamps block sends a signal to the LED lights on the car during turning or 

braking based on the motor command. The baiscQCarIO is responsible for transferring the 

throttle command to the motor speed that the Q-Car platform can read.  

 The sensor module converts the motor speed to longitudinal car speed by using the 

gear ratios and wheel radius (0.0342m). The motor speed, measured by an encoder, is 

converted to shaft speed by multiplying the gear ratios. Then, the shaft speed can be 

computed to longitudinal car speed by using the equation: 

 
𝑣 = 2 ∗ 𝜋 ∗ 𝑟 ∗ 𝛺 

 
(4.4) 

where r is the wheel radius and Ω is the shaft speed (rots/s). 

4.2 CACC 

 

Figure 4.9 Architecture of CACC longitudinal control system 

CACC system as an extension of the ACC system, an additional wireless 

communication module is required, which is responsible for the exchanging information 

between vehicles. In this case, an onboard Wi-Fi module is responsible for exchanging 

information. The architecture of the longitudinal control system is illustrated in Figure 4.9. 

In an autonomous vehicle with a CACC system, its CACC Controller works with its 

Vehicle Dynamics module to perform a prototype of a CACC system. At the beginning of 

each step, the Lidar sensor will send the obstacle distance (or inter-vehicular distance) to 

the CACC Controller. The onboard motor sensor will also send the current speed of the 

vehicle to it as well. Meanwhile, the Wi-Fi module will receive information from the front 
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vehicle, such as its speed and the obstacle distance from its lidar sensor. The desired speed 

can be calculated and sent to the front vehicle with obstacle distance through the Wi-Fi 

module according to these measured values. At the same time, its Vehicles Dynamics 

module will receive the command for further execution. As with the ACC system, the 

controller's objective is to realize and maintain the inter-vehicular distance with the 

calculated desired speed as well. Therefore, in the MATLAB Simulink platform design, 

the Lidar, Vehicle Dynamics, and the Sensor module are the same as the ACC system.  

4.2.1 Vehicle to vehicle communication 

 

Figure 4.10 V2V communication module 

Vehicle to vehicle(V2V) communication is one of the most significant functions of 

the CACC system. The Q-Car has onboard WIFI chips which support IEEE 802.11 

a/b/g/n/ac protocols with dual antennas. Therefore, the V2V communication between Q-

Cars can be established through the private router's wireless connection, as shown in Figure 

4.10, which supports both 802.11 ac and 802.11 g. The Q-Car can use either the 2.4 GHz 

or 5GHz band, where the 5GHz band will have a better transmission rate but lower 

reliability due to the signal degradation. As a result, the 2.4 GHz channel is utilized in the 

CACC application. In order to send and receive the data through the ethernet, the block 

provided by QUANSER, which is called a steam client and steam server, is used to 

establish the communication. These blocks can send and receive data simultaneously and 

send it to other blocks in the system. The basic CACC system requires obstacle distance 

and vehicle speed data for further calculation, where the obstacle distance is measured by 

the onboard lidar sensor, and the vehicle speed is measured and calculated by the onboard 

motor speed sensor. Therefore, two sets of client and server blocks are used to send and 

receive these two sets of data, respectively.  
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4.2.2 CACC Controller 

 

Figure 4.11 CACC longitudinal control module 

 

Figure 4.12 CACC controller 

As shown in Figure 4.11, the CACC controller is very similar to the ACC controller 

except for the automatedDriving block, which is shown in Figure 4.12. On top of the ACC 

controller, it takes the host vehicle speed and front vehicle speed as two additional inputs 

to compute the desired speed of the host vehicle and sends it to the turnSpeedHeading 

block, where the front vehicles speed is directly transformed to the host vehicle through 

the V2V communication module and the host vehicle's speed is measure by its onboard 

motor speed sensor. The speed control algorithm not only involves the speed of the front 

and host vehicle but also is computed based on a new spacing policy.  

The real-time front car and host car's speed can be used to compute a speed 

coefficient based on their value as follow: 

 ω = 𝑉𝑓𝑟𝑜𝑛𝑡 − 𝑉𝑒𝑔𝑜 (4.5) 

 

where Vfront and Vego are the speed of the car in front and the host car respectively.  
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The CACC system also applied CTH for distance control. Based on equation (4.2) 

and (4.3), a new equation of desired speed for Q-Car application is expressed as follow: 

 𝑉𝐷𝑒𝑠𝑖𝑟𝑒𝑑 = 𝑉𝑛𝑜𝑚𝑖𝑛𝑎𝑙

(𝑑𝑜𝑏𝑠𝑡𝑖𝑐𝑎𝑙 − r)

ℎ ∗ ω
 (4.6) 

 

where Vnominal is a preset nominal speed which is the desired speed that a vehicle would 

maintain when there is nothing in front of it, as known as its cruise speed, dobstical is the 

measured value from the onboard Lidar sensor, r is the standstill distance, h is the constant 

time headway time, which is set to 0.3s in my case,ω is a car speed coefficient based on 

the real-time front and host vehicle speed. Additionally, the follower vehicle would follow 

the same speed as the front vehicle while the inter-vehicular distance is within ±10% range 

of the desired distance or the ω equals zero. 

Like the ACC system, the desired speed of the CACC system, that computed by 

automatedDriving module, will be sent to the tunrSpeedHanding module to finalize a final 

desired speed that is compromised with steering. Then, the turnSpeedHanding module will 

send the finalized desired Speed to the speedController to finalize a throttle command to 

the Vehicle Dynamics module to execute. 

4.3 CACC with Deep Q-learning 

The Q-learning is one of the RL algorithms that I choose for the CACC control task 

on the Q-Car. The reason why the RL algorithm is applied to this application is that in each 

step of the CACC problem, it is not known what the right decision is. However, by using 

the RL and giving each step rewards, it is possible to still come up and optimize the right 

track to reach the ultimate objective, which is to maintain the longitudinal distance between 

the vehicles. Q-learning is an off-policy model-free RL method that can handle stochastic 

problems. Q-learning algorithm is based on the Markov Decision Process (MDP), where a 

set of states (S) describes the position of the vehicle, a set of actions (A) indicates the 

acceleration or deacceleration action of the vehicle, and a set of observations (O) describes 

the inter-vehicular distance that is measured by lidar. A stochastic policy 𝜋 (𝑠𝑡, 𝑎𝑡)  =

 𝑂𝑡  ×  𝐴𝑡, is used to select actions to produce the next state. Then, the reward function r : 
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S × A → ℝ can be obtained from the state and vehicle's action. Based on the states, actions, 

observations and reward, the update of state-action value can be defined as: 

 𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼 [𝑟𝑡 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎𝑡) − 𝑄(𝑠𝑡 , 𝑎𝑡)] (4.7) 

 

where α is the learning rate and can be set between 0 and 1. rt is the reward, and γ is the 

discount factor that shows the weight of the previous reward.  

4.3.1 State and Action Space  

Since Q-learning is based on the MDP, the state and action space should be defined 

first. In the state space, three state variables are defined as follows: 

 𝐻 =
𝑆𝑙𝑒𝑎𝑑 − 𝑆𝑒𝑔𝑜

𝑉𝑒𝑔𝑜
 (4.8) 

 

where H is the headway time which defines the inter-vehicular distance in the time domain. 

Sego and Slead are the position of the following vehicle and leading vehicle, respectively, 

and Vego is the velocity of the following vehicle. Instead of measuring the inter-vehicular 

distance directly from their position, transforming the distance difference into time 

difference helps the ego car (the car follows the front car in a platoon) measure the inter-

vehicular distance based on its current velocity.  

 𝑉𝑑𝑖𝑓𝑓 = 𝑉𝑙𝑒𝑎𝑑 − 𝑉𝑒𝑔𝑜 (4.9) 

 

where Vdiff is the velocity difference between the front and the following vehicle, 

combining it with the headway time can demonstrate whether the vehicle is close or far 

away from the previous state. Based on the velocity difference, the difference between the 

displacement of two vehicles, which illustrates if the ego car is getting closer or getting far 

away from the front car, can be computed by integration: 

 𝑑𝑑𝑖𝑓𝑓
̇ = 𝑉𝑑𝑖𝑓𝑓 (4.10) 

 



 

48 
 

The third variable in state-space is the front car acceleration: 

 
𝑆 = {𝐻, 𝑑𝑑𝑖𝑓𝑓, 𝑎𝑙𝑒𝑎𝑑} 

 

(4.11) 

Similarly, the action space can be defined with three actions: acceleration (AC), 

deacceleration (DAC), and no operation (NO). Acceleration and deacceleration are 

specified by two different levels, respectively: ACa, ACs, DACa, and DACs, such that the 

vehicle can have different strategies, which are aggressive and smooth, to respond to the 

action of the front vehicle to make a smoother control. The aggressive strategy has a larger 

acceleration or deacceleration compared to the soft strategy. Eventually, the action space 

can be described as follow: 

 𝐴 = {𝐴𝐶, 𝐷𝐴, 𝑁𝑂} (4.12) 

 

 𝐴 = {𝐴𝐶𝑎, 𝐴𝐶𝑠, 𝐷𝐴𝑎, 𝐷𝐴𝑠, 𝑁𝑂} (4.13) 

 

4.3.2 Reward Function  

 

Figure 4.13 Reward function  
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After defining state and action spaces, the reward function should be determined to 

evaluate the performance of each action in the action space. Based on the state space and 

constant time headway time value in our case, the reward was designed as shown in Figure 

4.13. The objective of the reward function is to force the agent to stick to the safety distance 

as close as possible. Positive reward values are given to the agent's actions at a safe inter-

vehicular distance.  

Different reward values are assigned to the different headway time ranges based on 

the ratio of constant headway time values, and they are also given to the positive and 

negative Vdiff in different headway time zones.  The pre-defined headway time is 0.3 

seconds, which is ten times smaller than the pre-defined headway time in real-world (3 s), 

because the length of the Q-Car is 0.425 m, which is around ten times smaller than a general 

Sedan in the real world (4 m).  A larger positive reward is given to the Q-Car when it enters 

the zone that is within ± 10% of the headway time, and more rewards are given when the 

Q-Car enters a more accurate zone, which is within ± 5% of the headway time. On the 

contrary, a negative reward is given when the inter-vehicular distance is too close or too 

far away from the safety distance. The negative reward is also given when the ego car is 

faster than the lead car and the relative distance is smaller than the safety distance, or when 

the ego car is slower than the lead car and the relative distance is larger than the safety 

distance.  Additionally, an extra punishment is given to the situation where the inter-

vehicular distance is out of sensing range and smaller than the standstill distance, as shown 

in (4.14).  

 𝑟 = −500      𝑑𝑜𝑏𝑠𝑡𝑖𝑐𝑎𝑙 > 5 𝑜𝑟 𝑑𝑜𝑏𝑠𝑡𝑖𝑐𝑎𝑙 < 0.2   (4.14) 

 

4.3.3 Neural Network Design 

In reinforcement Q-learning, a Q-table was applied to store all the states and action 

values. In this complicated case, the size of the Q-table will be too large to store and search. 

Therefore, a three-layer neural network with an additional input layer was designed for this 

application (Figure 4.14).  The neural network includes an input layer, an output layer, and 

two hidden layers. Hidden layers have 120 neurons in each layer, which is a fully connected 

layer with the rectified linear unit (ReLU) activation function. 
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(4.)  

Figure 4.14 Four-layer neural network structure 

4.3.4 Training Model 

 

Figure 4.15 The framework of the training environment 
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A DQN training environment is set up on MATLAB Simulink (Figure 4.16) based 

on (Figure 4.15). In each state iteration, the lead car sends its position and acceleration to 

the signal processing module, where the Observation, Reward and Isdone results can be 

computed. The Learning Agent receives those data, updates the �̂�(𝑠, 𝑎; 𝑤) and select an 

action according to the stochastic policy. The action selected from the action space will be 

sent to the ego car and Signal Processing module. Meanwhile, the learning agent is 

expected to adjust ego car speed according to the front vehicle speed variation to maintain 

a safe distance. To this end, the MATLAB Reinforcement Learning toolbox has been used. 

Lastly, the ego car module executes the action and sends its position and velocity to the 

Signal Processing Module.  

 

Figure 4.16 Training environment in MATLAB Simulink 

x0_lead and x0_ego represent the initial position of the lead car and ego car, 

respectively. By taking the difference between these two values, the inter-vehicular 

distance can be calculated. In the training process, the initial position for the lead car is 

randomly generated between 10 and 11 meters, and the initial position for the ego car is set 

to 9.6 meters. Therefore, in each episode, the initial inter-vehicular distance would be 

randomly generated between 0.4 m to 1.4 m to cover more different scenarios that the agent 

can learn from. Similarly, the v0_lead and v0_ego represent the initial speed of the lead car 

and ego car, respectively. The term a_lead represents the acceleration of the lead car.  
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Figure 4.17 Lead car and ego car model 

As shown in Figure 4.17 and Figure 4.18, the lead and ego cars are designed based 

on a vehicle kinematics bicycle model to simulate their acceleration, velocity, and positions 

[66]: 

 

�̇� = 𝑣 cos (𝜓 + 𝛽) 

�̇� = 𝑣 sin (𝜓 + 𝛽) 

�̇� =
𝑣

𝑙𝑟
 sin (𝛽) 

�̇� = 𝑎 

𝛽 =  tan−1 (
𝑙𝑟

𝑙𝑓 + 𝑙𝑟
tan(𝛿𝑓))   

(4.15) 

 

 

Figure 4.18 Kinematics bicycle model [66] 
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where the x and y are the positions of the center of mass of the vehicle in the frame of (X, 

Y) in Figure 4.18, 𝜓 is the initial heading of the vehicle, 𝛽 is the angle of the current 

velocity with respect to the longitudinal axis of the car, and 𝑎 is the acceleration in the 

same direction of velocity. The variables 𝑙𝑟 and 𝑙𝑓 are the distance from the center of mass 

of the vehicle to the rear axles and front axels, respectively. 𝛿𝑓  and 𝛿𝑟  are the steering 

angles of the front and rear wheel, respectively. Since the Q-Car application simulation 

only considers the longitudinal control of the vehicle moving straight forward, the 𝜓, 𝛽, 

and x are zero, and the equation of the kinematics bicycle model can be written as: 

 
�̇� = 𝑣  

�̇� = 𝑎 
(4.16) 

 

The acceleration of the lead car is assumed to be in the form of a sine wave with 

0.03 amplitude and 30 seconds wavelength, which is the environment in that the front 

vehicle is moving. Additionally, a transform function is applied to represent the execution 

delay between the higher-level control and the lower-level control of the vehicle: 

 𝐻(𝑆) =
𝑉(𝑆)

𝐴(𝑆)
=

1

0.1𝑠2 + 𝑠
 (4.17) 

 

The Signal Processing module (Figure 4.19) is designed to calculate the 

observations, including the relative distance and headway time between two vehicles, the 

signal flag to ending a set of states, and the reward value based on the reward function. 

This module is mainly combined with four different modules for this purpose: Distance 

Calculation, Velocity Difference, IsDone, and Reward function. The v_ego and v_lead are 

the velocity of the ego car and lead car, respectively. v_set is the preset cruising speed the 

ego car would reach if there were no other objects in front of it. The term d_rel is the 

relative distance between the ego car and the lead car, which can be measured by lidar 

sensors in the real application. d_err represents the difference between safety distance and 

actual relative distance, and v_err represents the velocity difference between the ego car 

and lead car.  
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Figure 4.19 Signal Processing module for DDQN CACC 

 

Figure 4.20 Safety distance calculation by MATLAB Simulink 

The safety distance is calculated by the Distance Calculate module (Figure 4.20), 

which uses the CTH policy and satisfies equation (4.2), where the t_gap is the preset 

constant time headway time (0.3s), and D_default is the preset standstill distance (0.3 m). 
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Figure 4.21 Velocity Difference module 

The Velocity Difference module (Figure 4.21) is responsible for calculating the 

velocity difference, v_err, between the lead car and ego car and sending the result to the 

observation space, IsDone and Reward Function Module. To simulate the condition where 

there is no object in front of the ego car, the preset cursing speed, v_set, can replace the 

v_lead as its desired speed through this module.  

 

Figure 4.22 Reward Function by MATLAB Simulink 
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The Reward Function module (Figure 4.22) is implemented based on the reward 

function, which is designed in the Reward Function section of this chapter by using the 

MATLAB Simulink function block. The extra punishments are given by the equation 

(4.14), when the headway time is too short, which might lead to crushing, or it is too large 

that would be out of the vehicle’s sensing range. 

 

Figure 4.23 isDone signal module 

Additionally, the isDone value is calculated by using IsDone module (Figure 4.23) 

for the learning agent to understand when a set of training should be terminated. This 

module demonstrates that episodes would be terminated when the relative distance is too 

small or too big, and the velocity of the ego car becomes a negative value, which means 

the ego car starts to move backward. Moreover, it can reduce the unnecessary training 

episodes that are too far away from the right policy.  

4.3.5 Training Algorithm with Double Deep Q-learning (DDQN) 

 The training algorithm is another important aspect of training because its efficiency 

relies on the efficiency of using state-action pairs and their Q-values. Some of the new 

research [67] demonstrate that the DDQN can have a better performance by finding better 

policies and obtaining new state-of-the-art results.  The double DQN is a learning algorithm 

combined with DNN and a double Q-learning algorithm without requiring additional 

networks and parameters. Instead of using a function: 

 
𝑦𝑖 = 𝑟𝑖 + 𝛾 max

𝑎′
�̂�(𝑠𝑖+1, 𝑎′; 𝑤−) 

𝑤: ∆𝑤 = 𝛼(𝑦𝑖 − �̂�(𝑠𝑖, 𝑎𝑖; 𝑤−))∇𝑤�̂�(𝑠𝑖, 𝑎𝑖; 𝑤) 

(4.18) 

The double DQN replaced 𝑦𝑖 as: 
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 𝑦𝑖 = 𝑟𝑖 + 𝛾 �̂�(argmax
𝑎′

�̂�(𝑠𝑖+1, 𝑎′; 𝑤); 𝑤−) (4.19) 

 

As a result, the DDQN algorithm that can be applied to train the Q-Car model can 

be written as: 

Algorithm 6: Double Deep Q-learning algorithm  

 Input 𝐶, 𝛼, 𝐷 = {}, initialize 𝑤, 𝑤− = 𝑤, t = 0 

 Get initial state 𝑠0 

 loop 

  Sample action 𝑎𝑡 given ε-greedy policy for current �̂�(𝑠𝑡, 𝑎; 𝑤) 

  Observe reward 𝑟𝑡 and next state 𝑠𝑡+1 

  Store transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in replay buffer D 

  Sample random minibatch of tuples (𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠𝑖+1) from D 

  for j in minibatch do 

   if episode terminated at step, 𝑖 + 1 then 
    𝑦𝑖 = 𝑟𝑖 
   else  
    𝑦𝑖 = 𝑟𝑖 + 𝛾 �̂�(argmax

𝑎′
�̂�(𝑠𝑖+1, 𝑎′; 𝑤); 𝑤−) 

   end if 
   Do gradient descent step on (𝑦𝑖 − �̂�(𝑠𝑖, 𝑎𝑖; 𝑤−))2 for parameters 

   𝑤: ∆𝑤 = 𝛼(𝑦𝑖 − �̂�(𝑠𝑖, 𝑎𝑖; 𝑤−))∇𝑤�̂�(𝑠𝑖, 𝑎𝑖; 𝑤) 

  end for 

  𝑡 = 𝑡 + 1 

  if mod (t, C) == 0 then 

   𝑤 ← 𝑤− 

  end if 

 end loop 

 

 

4.4 Chapter Summary 

This chapter presented all the implementation methods and procedures used in this 

thesis. Firstly, the hardware of the Q-Car model was introduced with its technical 

specifications. Then, an ACC model and algorithm were presented and designed using 

MATLAB Simulink. Additionally, a CACC model was built based on the ACC model with 

an extra communication module and a different algorithm. Lastly, a training model for Q-

Car was established by using the MATLAB Simulink Reinforcement Learning Toolbox 



 

58 
 

with a designed neural network, and a DDQN training algorithm for this model was 

presented in the end.  
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Chapter 5  

Experimental Results  

 

Vehicle models with essential sensors are necessary for the implementation and 

testing. The objective of this section is to compare the performance of the ACC and CACC 

system on Q-Cars and to compare the performance of the ACC, CACC and CACC with 

Double DQN through MATLAB simulation. The simulation result is introduced first 

because the simulation results can give a good indication of the performance of the system 

in an actual experimental application. In the simulation part, the experimental setup for 

simulating the vehicle’s longitudinal control by using the ACC system is presented. Next, 

the result for the ACC simulation is also presented. Then, a simulation model of the vehicle 

using the CACC system is established with the results. Lastly, the simulation for the CACC 

system using DDQN is formed by using the same environment as the training model, and 

the result is discussed.  

5.1 Simulation Model and Results 

For the consistency of simulation results in three different systems, the initial 

parameters are set as and are maintained in the experiments. The initial velocity of the ego 

car and lead car were set to 0.5 m/s and 0.6 m/s, respectively. Also, the initial inter-

vehicular distance, which is the difference between their actual position, was set to 0.55 m. 

The standstill distance, which is the distance needed to be maintained by the ego car when 

its speed is zero, is set to 0.3 m. To make the simulation closer to the reality, where the 

vehicle movement involves in both acceleration and deacceleration in the tour, the 

acceleration of the lead car is assumed to occur by a step-changed sine wave with 0.03 

amplitude and 30 seconds wavelength, which is to represent the environment in which the 

front vehicle is moving. This acceleration wave generator is very similar to the one that 

other researchers applied for real vehicle and traffic flow simulation for other CACC 

algorithms [68]. All the simulations use the kinematic bicycle model (4.16), which is a 

widely applied model for trajectory planning, such as in [67], to simulate the longitudinal 

changes of two vehicles. 
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5.1.1 Simulation for ACC system 

 As shown in Figure 5.1, the ACC simulation module is similar to the learning 

module built for the DDQN. Figure 5.2 demonstrates the Signal Processing module, which 

generates the Safety distance for the Desired distance, Obstacle Distance, Nominal Speed 

and Car Speed of the ego car as the input of the ACC controller function. Meanwhile, all 

the simulation results are plotted within this module. The ACC controller function is 

designed as the ACC controller from the previous chapter (4.3). 

 

Figure 5.1 Simulation Model for ACC system in MATLAB Simulink 

 

Figure 5.2 Signal Processing for ACC 
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The simulation results for the ego car with the ACC system and lead car’s speed, 

inter-vehicular distance and distance error are demonstrated in Figure 5.3, Figure 5.4, and 

Figure 5.5, respectively.  

 

Figure 5.3 Speed measurements for ACC simulation 

In Figure 5.3, the speed of the lead car and ego car, where v_lead is the speed of 

the car leading the platoon, and the v_ego is the speed of the ego car, which is trying to 

maintain a safe distance with the lead car is displayed. It demonstrated here that the ego 

car with the ACC system could follow of the lead car with the same speed only after a 

transient period of only 1.4 seconds where there is a speed overshoot, and afterward, it will 

maintain the lead car speed for the remainder of the tour.  

 

Figure 5.4 Safety distance and relative distance for ACC simulation 
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 In Figure 5.4, inter-vehicular distance (relative_distance) is plotted with the safety 

distance (safe_distance) calculated by the Signal processing module. This figure shows 

that the ego car with the ACC system is able to maintain the inter-vehicular distance by 

following a similar waveform with the changing of the safety distance and keeping the 

inter-vehicular distance always greater than the safety distance. However, since there is 

always a gap between the relative distance and safety distance, it is not that efficient with 

respect to distance maintenance.  

 

Figure 5.5 Distance error for ACC simulation 

The plot in Figure 5.5 shows the distance error, which is the difference between the 

relative distance and safety distance. Notice that all the data in this plot is considered as 

absolute value for future comparison. This plot demonstrates the performance of 

maintaining the inter-vehicular distance for the ego car with the ACC system. It indicates 

that the distance between two vehicles varies between -0.1150 and -0.0169m. As a result, 

its peak-to-peak difference is 0.1319 m. However, it never reaches zero, which means that 

the relative distance is never equal to the safety distance during the whole tour.  

5.1.2 Simulation of CACC system 

As shown in Figure 5.6, the CACC simulation module is similar to the ACC 

simulation module, except for the Signal Processing module and the control algorithm. 

Besides the function provided in the ACC system, the Signal Processing module for the 

CACC system, in Figure 5.7, delivers the FrontCarSpeed, which simulates the direct data 
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transformation from the lead car to the ego car as the input of the CACC controller as well.  

Meanwhile, all the simulation results are plotted within this module. The CACC controller 

function is designed as the CACC controller from the previous chapter. 

 

Figure 5.6 Simulation model for CACC system in MATLAB Simulink 

 

Figure 5.7 Signal Processing module for CACC system 
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The simulation results for the ego car with the CACC system and lead car’s speed, 

inter-vehicular distance and distance error are demonstrated in Figure 5.8, Figure 5.9, and 

Figure 5.10, respectively.  

 

Figure 5.8 Speed measurements for CACC simulation 

In Figure 5.8, similar to the ACC system plots, the speed of the lead car and ego 

car are displayed while all the parameters measured the same variable as in the ACC system 

simulation. It is clearly demonstrated that the ego car with the CACC system could follow 

the same speed as the lead car with 0.9 seconds of transient time and thereafter maintains 

the speed during the remainder of the tour. The mismatch during the transient is due to the 

fact that initially, the vehicle speed is not high, and the controller is trying to find the best 

algorithm to follow the lead car.  

 

Figure 5.9 Safety distance and relative distance for CACC simulation 
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The plot in Figure 5.9 also shows that the ego car with the CACC system also is 

able to maintain the inter-vehicular distance by following a similar waveform with the 

changing of the safety distance. There are two intersections between two lines, which 

indicates that the CACC system’s relative distance sometimes is smaller than the safety 

distance.  However, the gap between the relative distance and safety distance is smaller 

than the one with the ACC system.  

 

Figure 5.10 Distance error for CACC simulation 

The distance error plot in Figure 5.10 for the CACC system shows the performance 

of maintaining the inter-vehicular distance for the ego car with the CACC system. It 

demonstrates that the distance between two vehicles varies between -0.1050 m and 

0.0013m.  As a result, its peak-to-peak difference is 0.1037 m. However, it only has two 

intersections with zero, which means that relative distance barely equals the safety distance 

during the whole tour.  

5.1.3 Simulation for CACC system with DDQN 

The simulation model for the CACC system with DDQN is the same model with a 

similar setup that is applied for the training (Figure 4.16). After the training, all the Q values 

are stored in the neural network within the RL leaning agent from the MATLAB 

Reinforcement Learning toolbox. Then simulation is based on running the preset 

parameters through the model without the learning process.  
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The simulation results for the ego car with the DDQN CACC system and lead car’s 

speed, inter-vehicular distance and distance error are illustrated in Figure 5.11, Figure 5.12, 

and Figure 5.13, respectively. 

 

Figure 5.11 Speed measurements for CACC with DDQN simulation 

In Figure 5.11, the speed of the lead car and ego car and all the parameters measured 

the same variable as in the ACC system, and the CACC simulation is presented. The figure 

illustrates demonstrated that the ego car with the CACC system could follow the same 

speed as the lead car with 12.8 seconds of transient time, and thereafter it can maintain the 

speed of the lead car for the remainder of the tour.   

 

Figure 5.12 Safety distance and relative distance for CACC with DDQN simulation 

The plot in Figure 5.12 also shows that the ego car with the CACC system also can 

maintain the inter-vehicular distance by following a similar waveform with the changing 
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of the safety distance. These two lines have more overlapping than the ACC and the CACC 

system, which indicates that the DDQN CACC system’s ability to maintain the relative 

distance with that of the safety distance is better than those methods.   

 

Figure 5.13 Distance error for CACC with DDQN simulation 

The distance error plot in Figure 5.13 for the CACC system with DDQN shows the 

performance of maintaining the inter-vehicular distance for the ego car with the DDQN 

CACC system. It demonstrates that the distance between two vehicles varies between 

0.08087 m and -0.1128m.  As a result, its peak-to-peak difference is 0.1935 m.  

 

Figure 5.14 Acceleration of Ego Car using CACC with DDQN 

 Figure 5.14 shows the acceleration profile of the ego car throughout the time of 

interest. Based on the designed action space (4.13), actions include ACa , ACs, DACa, DACs, 

and NO are signed with acceleration value as 0.2 m/s2, 0.1 m/s2, -0.05 m/s2, -0.1 m/s2, and 

0 m/s2, respectively. This plot demonstrates all the actions involved in finding the best 

policy for the system. 
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Table 5.1 The simulation result for distance error 

Methods 
Absolute 

Median (m) 

Absolute 

Average (m) 

Peak-to-peak 

(m) 

ACC 2.897e-2 2.832e-2 1.319e-1 

CACC 1.470e-2 1.565e-2 1.037e-1 

CACC with DDQN 8.70e-3 9.36e-3 1.935e-1 

 

According to the measurements of distance error (see Table 5.1), the average 

distance error from the ACC system, the CACC system, and the CACC system with DQN 

are 0.02832 m, 0.01565 m, and 0.00936 m, respectively. The smaller the error is, the better 

performance in the scenario of maintaining the relative distance as the safety distance. 

Therefore, the CACC system improves the performance of distance maintenance by 44.74% 

from the ACC system. Additionally, the CACC system with DDQN further enhances the 

performance of the CACC system by 40.19%. The median value comparison is another 

way to compute the performance. The median value of distance error from the ACC system, 

the CACC system, and the CACC system with DQN are 0.02897 m, 0.01470 m, and 

0.00870 m, respectively.  Therefore, the CACC system improves the performance of 

distance maintenance by 49.25% from the ACC system. 

Additionally, the CACC system with DDQN further enhances the performance of 

the CACC system by 40.81%. In both comparisons, the CACC with DDQN has better 

performance in maintaining the safety distance by matching the relative distance to it. Even 

though the DDQN agent requires around 35 hours to be trained, depending on the hardware 

setup, the system is still the best choice when safety and efficiency are essential for the 

vehicles.  Additionally, according to the speed plot for all three systems, the ACC and 

CACC system has a smoother speed profile than the CACC system with DDQN. The 

reason is that both the ACC and CACC control algorithm computes the desired velocity 

directly and send it to the vehicle dynamics, but the CACC with DDQN has to calculate 

the acceleration as an action for sending to the vehicle dynamics. Therefore, the ACC and 

CACC system have a better performance in tracking the vehicle speed of the front vehicle, 

especially the CACC system. 
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In summary, according to the simulation result for all three systems. The CACC 

system and the ACC system are good at tracking the vehicle speed, but the CACC system 

with DDQN has a better performance in distance control and tracking to improve the traffic 

capacity by reducing the average difference between safety distance and relative distance. 

5.2 Real Application Setup and Results 

This research study uses two Quanser's Q-Cars as models for implementing both 

systems. The Q-Cas is an electrically driven model with onboard CPU and sensors, 

including Lidar, RGB-D camera, and 360° CSI camera suite. Additionally, Q-Cars can 

implement the module built by MATLAB Simulink models, and it has libraries to drive all 

the sensors and actuators. Therefore, both autonomous driving systems are constructed and 

implemented on Q-Cars using MATLAB Simulink. Additionally, the onboard Lidar sensor 

is set to 10 Hz sampling rate, and the CSI cameras are applied for the line detection to keep 

the vehicle in the centre of the road.  

In the experiment, in order to restore the actual traffic situation and maintain the 

same status as the simulation, the preset value of Q-cars is proportional to a regular sedan. 

Since the length of a Q-car is 40cm and the size of a typical sedan is around 4 m, the 

standstill distance for equation (4.2) is set to 20 cm to represent the average standstill 

distance for a sedan is 2 to 3 m. Additionally, the constant time headway time for equation 

(4.2) is set to 0.3s to represent the 3s constant time headway time in real traffic situations. 

Lastly, the initial speed for both cars is set to zero, and the initial relative distance is set at 

around 0.1 m.  

The front car can be driven manually or with ACC automated driving system, and 

the follower car can use ACC or CACC automated driving system to follow the front car. 

In image 5.14, both cars are driving on a mini road, which simulates the car on a real road. 

In order to compare the performance of the two systems, both systems are tested with the 

same car on the same route. Firstly, the lead Q-Car is using the ACC system to compute a 

simple autonomous driving condition. Then, the ego Q-Car is tested with the ACC system 

and CACC system onboard, respectively.  
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Figure 5.15 Experimental setup with two Q-Cars on a mini road 

5.2.1 Experimental Result for ACC System 

For the ACC system implementation on Q-Car, Figure 5.16 presents the speed of 

the lead car and ego car. Figure 5.17 demonstrates and distance error between the relative 

distance and safety distance. 

 

Figure 5.16 Speed measurements for ACC experimental result 
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Figure 5.17 Distance error for ACC experimental result 

Since both the lead car and ego car uses the ACC system to control the distance, 

their speed plot has a similar shape with transmission and execution delay. The distance 

error (relative distance subtract the safety distance) between two vehicles is between 

0.0914 m to -0.6604 m. 

5.2.2 Experimental Result for CACC System 

 

Figure 5.18 Experimental result for transmission delay testing 

For the CACC system in the Q-Car application, the V2V communication is done 

by connecting both cars to a local area network. In the Simulink model, the V2V 

communication is established using the Stream block from Quanser's library.  Before 

implementing the CACC system in the Q-Car, the V2V communication module was tested 
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for its latency.  As Figure 5.18, the delay of data transmission is 2 ms, which is calculated 

by the time difference of the speed's peak value.  

For the CACC system implementation on Q-Car, Figure 5.19 presents the speed of 

the lead and ego car. Figure 5.20 demonstrates and distance error between the relative 

distance and safety distance. The variance is mainly due to the fact that lead and ego cars 

use different systems to control the distance. The distance error (relative distance 

subtracted from the safety distance) between two vehicles is between 0.07764 m to -0.2331 

m.  

 

Figure 5.19 Speed measurements for CACC experimental result 

 

Figure 5.20 Distance error for ACC experimental result 
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The simulation result for the two cars’ speed and distance error for ACC and CACC 

are illustrated in Figures 5.21, 5.22, 5.23, 5.24. During this simulation, the acceleration of 

the lead car is assumed to be a step-changed sine wave with 0.06 amplitude, 30 seconds 

wavelength, with the initial distance of 0.1 m, and initial speeds of both cars set to zero, 

both the ACC and CACC systems have a great deal of variances when they are operating 

in the low-speed condition. Additionally, due to this scenario, many commercial vehicles 

embedded with the ACC system have the lowest speed limit for enabling the cruise control 

system, such as 30 km/h for VOLVO XC90 [69].  

This simulation result matches the results in the Q-Car actual application. Firstly, 

the CACC system is more variant than the ACC system, but the CACC has a better 

performance on following the front car speed and maintaining the relative distance to the 

safety distance as closer as possible. 

 

Figure 5.21 Simulation of speed measurements for ACC system in low-speed 

condition 

  

Figure 5.22 Simulation of distance error for ACC system in low-speed condition 



 

74 
 

 

Figure 5.23 Simulation of speed measurements for CACC system in low-speed 

condition  

 

Figure 5.24 Simulation of distance error for CACC system in low-speed condition 

Table 5.2 The experimental result for distance error in each system 

Methods 
Absolute 

Median (m) 

Absolute 

Average (m) 

Peak-to-peak 

(m) 

ACC 2.167e-1 2.869e-1 7.518e-1 

CACC 2.600e-2 4.799e-2 3.108e-1 

 

According to Table 5.2 above, it is hard to compare the performance of the two 

strategies accurately because the operating conditions cannot be precisely the same in a 

real-world application. Nevertheless, it still demonstrates that the ego car with a CACC 
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system which gathers information directly from the lead car has a better performance on 

distance control. In [49], authors have reached a similar conclusion when applying the 

DDPG-PID controller, which is a deep learning based PID controller, to a platoon of the 

vehicle using CACC. They conclude that the method involves deep learning to improve 

60.94% of the performance of the distance error control by comparing the performance of 

the conventional PID controller.  

5.3 Chapter Summary 

This chapter presented the simulation result for the ego car using the ACC, the 

CACC, and the CACC with DDQN. Additionally, the experimental result by implementing 

both ACC and CACC systems on the actual Q-Cars is presented. Firstly, based on the 

simulation, in a vehicle platoon, the capacity would be increased by using both CACC and 

CACC with the DDQN method compared to the ACC system. The CACC system has the 

best performance in following the speed of the front vehicle, and the CACC with DDQN 

can minimize the difference between the safety distance and relative distance to increase 

the traffic capacity as well as traffic efficiency.  Then, the experimental results conclude in 

the same way as the simulation results, that the CACC system has a better performance 

both on the following the front vehicle speed and minimizing the difference between the 

safety distance and relative distance. 
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Chapter 6  

Conclusion and Future Work 

 

6.1 Contributions 

In this thesis, a CACC system on two Q-Cars with a new control algorithm and 

DDQN was built and tested based on the lidar sensor and V2V information exchanges. A 

training model and simulation environment were built by using MATLAB Simulink. 

Furthermore, the CACC and ACC system was implemented on two Q-Cars, which is a real 

mockup of an autonomous vehicle, to test its performance on traffic capacity. This work 

aims to demonstrate the benefits of the CACC system and the possibility of applying Wi-

Fi in indoor and short-range V2V communication. Although WiFi has been used to V2V 

and V2I communication before, it is not an ideal communication technology in real-world 

applications. However, it still can demonstrate the data transmission process of AGV and 

other automated vehicles navigating in indoor and small areas. The challenge of this thesis 

is to compute an algorithm for increasing the traffic capacity and maintaining the safety 

requirements.  

6.2 Summary 

Firstly, by researching the relative field of the CACC, V2V communication, and 

CACC with deep learning, it was concluded that the CACC system has a considerable 

advantage compared to the ACC system in traffic capacity, traffic efficiency,energy 

efficiency, safety, customer comfort, and platooning control. These studies were completed 

in both real applications and simulations. Many algorithms, policies and V2V 

communication technology were applied to the CACC system to make it a hot field to study. 

Additionally, they also indicate that the CACC has a strong place in the future of the 

autonomous driving of intelligent vehicles with the development of communication 

technologies. 

Deep learning and reinforcement learning theories were developed from the 

Markov Decision Process, which is the foundation of reinforcement learning, followed by 

relative learning algorithms in reinforcement learning, such as temporal difference learning, 
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SARSA, and Q-learning. Meanwhile, one of the most popular deep learning algorithms, 

the neural network, was introduced. By combining the theories of both reinforcement 

learning and deep learning, theories and algorithm of deep Q-Learning and double deep Q-

learning that had been applied to this thesis were introduced and explained with their 

advantages and disadvantages. The most important advantage of using DDQN instead of 

DQN is to reduce the computation time to improve the efficiency of using state-action pairs.  

From all these pieces of research and theories, the methodology to face those 

challenges was chosen. Firstly, the algorithm of the ACC system was computed， and the 

ACC module was designed and implemented on the Q-Car by using a lidar sensor for 

distance measurements and MATLAB Simulink. Then, based on the ACC module, the 

CACC system was designed and implemented on the Q-Car with an additional wireless 

communications module (WiFi). Lastly, the training module for CACC with DDQN was 

developed based on the bicycle model, which is a widely applied model for the vehicle’s 

trajectory planning simulation, proper state-space action, reward functions and neural 

networks. Meanwhile, the training algorithm was implemented in the model by using the 

Reinforcement Toolbox in MATLAB Simulink.  

Lastly, in the experimental result, the performance of the CACC system with a new 

control algorithm and the CACC system with DDQN was compared to the performance of 

the ACC system by simulation. The acceleration input for the lead car is generated as a 

step-changed sine wave, which also has been applied to the simulation of platoon control 

in many studies. The results demonstrate that the CACC system maintains the distance 

44.74 % better than the ACC system by collecting more accurate information through low 

latency wireless communication. Additionally, the CACC system with DDQN improves 

the performance of maintaining distance by an additional 40.19%. The CACC system can 

reduce the inter-vehicular distance and respond more quickly to the front vehicle's action 

with accurate information. 

Meanwhile, the DDQN system can match the relative distance with the safety 

distance to have better distance control. As a result, the traffic capacity of vehicles can be 

improved. On top of the simulation, the experiments on Q-cars confirmed the same results. 

By implementing and testing the ACC and CACC system on the ego car, which follows a 
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lead car with an ACC system, the CACC system has a better performance both on following 

the front vehicle speed and minimizing the difference between the safety distance and 

relative distance. 

6.3 Future Work 

6.3.1 Wireless communication Security 

Implementing an additional wireless communication module makes the vehicle 

more vulnerable to attack. There are slight changes in the acceleration when the algorithm 

is combined with multiple vehicle speeds. Information safety during the communication 

process should also be considered in the future for massive public applications. 

6.3.2 Wireless communication Technology 

 Nowadays, 5G communication protocol is developing rapidly with faster and more 

stable connections and transmission capacity. This thesis did not apply this technology 

because wireless communication is not the main objective of this thesis. However, the issue 

should be explored 

6.3.3 V2X communication-based Autonomous Driving 

 As mentioned before, V2V is only a part of the V2X communication. By vehicle 

communicating with more elements around it, such as infrastructures and mobile devices, 

it can gather more accurate information for it to sense the environment around it. As a 

result, a level 4 or level 5 autonomous driving can be reached more safely and efficiently.  

6.3.4 Platoon Forming and Control 

 The work in this thesis could be explored further by expanding the current two-car 

situation into a platoon scenario involving more vehicles, further development and 

evaluation of the CACC control policy will be required. This thesis did not extend to the 

multiple cars problem due to the limitations on the availability of the hardware.  

6.3.5 Other Deep Learning Approaches for CACC 

 Recently, many research studies have focused on different deep learning algorithms 

to improve the performance of CACC, such as control, policy evaluation, and wireless 
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communication. New algorithms can be developed, and other deep learning methods for 

the CACC system can be compared to the existing ones in future work.  
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