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ABSTRACT 

Climate change impact modelling studies utilize an ensemble of climate model projections 

obtained from various Regional Climate Models (RCM). These climate projections, extracted 

under different emission scenarios (representative concentration pathways) are then bias-corrected 

using observed meteorological data and the resulting bias-corrected projections are forced through 

a hydrological model in order to assess the climate change impacts on future streamflow. 

Uncertainties arise from various sources like inputs, model structure, model parameters, choice of 

hydrological model, choice of climate models, bias correction, etc. along every step of the impact 

assessment study. Quantifying such uncertainties and further assessing the contribution of each 

factor under consideration leads the modellers to draft robust climate change adaptation and 

management policies. 

 The aim of this Thesis is to quantify and decompose the uncertainty contribution of three 

factors namely choice of Climate Model (CM), Representative Concentration Pathways (RCP) and 

Bias Correction Methods (BCM), and the uncertainties arising out of their factor interactions 

toward the total uncertainty using Analysis of Variance (ANOVA). To this extent, five sets of 

Climate Models (CM), two different emission scenarios (RCP 4.5 and RCP 8.5) and two non-

linear bias correction methods were used in conjunction with the Soil & Water Assessment Tool 

(SWAT) hydrological model for the headwater catchment of Little River Experimental Watershed 

in Georgia, USA. The results indicate the overall and seasonal uncertainty decomposition, and it 

is evident from the results that Climate Model choice (CM) is the biggest contributor toward the 

total uncertainty in this modelling process. 

Keywords: Regional Climate Models, bias correction, uncertainty, SWAT model, Analysis of 

Variance (ANOVA)  
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CHAPTER 1: INTRODUCTION 

1.1 Background 

The Intergovernmental Panel on Climate Change (IPCC) defines climate change as the 

change in the condition of the climate that can be detected by performic statistical study on the 

mean and/or variability of its attributes over time, generally decades or more (IPCC, 2001). The 

variation in climate over time, whether caused by natural variability or human activity, is 

referred to as climate change. Climate change has been at the forefront of the most challenging 

issues to the environment in recent years and there is an incessant need to gain an enhanced 

knowledge of how the changing climate will affect the hydrological processes around the world. 

This requirement is even more profound in case of understanding the streamflow projections. 

Over the last decade, studies investigating the uncertainty induced during streamflow forecasting 

using future climate forcings have grown increasingly common in the hydrologic literature. 

There is a huge problem in perfectly grasping the enormous spectrum of uncertainty that comes 

with our understanding of climate change (Kim et.al, 2019). Decisions we make now could have 

long-term consequences decades from now because of the timescales inherent in climatic and 

economic systems. Most decision-analysis systems recommend a policy based on the best-

estimated future predictions (Lempert et.al, 1996). 

Global climate change has already been shown to have long-term consequences on water 

resources that will last far into the next century (Bosshard et al., 2013). For decision makers, future 

streamflow estimates provide a significant foundation for assessing various hydrological extremes, 

such as floods and droughts (Giuntoli et al., 2018) on water management decisions. This 

information is useful for developing effective countermeasures for a changing climate (Addor et 

al., 2014). As a result of the high level of uncertainty in these climate change estimates, the 
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decision for suitable adaptation policies can be challenging (Whateley and Brown, 2016). Hence, 

in climate change impact studies, recognizing and quantifying projection-related uncertainty is 

critical. 

Climate change projections are prone to uncertainties mainly because of three factors: 

uncertainty in scenario, model uncertainty, and climate variability within the system (Deser et al., 

2010). Scenarios are representative concentration pathways like RCP4.5 and RCP8.5 and refer to 

the hypothetical, long-term situations wherein the changes in greenhouse gas emissions, short-

lived species and land-use-land-cover stabilize the radiative forcing at 4.5 and 8.5 Watts per metre 

squared, respectively. General circulation models (GCMs) are one of the main instruments for 

simulating how the global climate system will respond to rising levels of greenhouse gas (GHG) 

emissions and for making predictions about the future climate projections. GCMs are sophisticated 

mathematical models of the physical and dynamical processes that govern and drive the 

hydrological cycle. With the increasing complexity of a climate model, the higher the model 

accuracy and consequently, the higher is the computational prowess required. GCMs use a spatial 

grid with a coarse resolution in order to reduce the computational workload, which can be a 

considerable strain (IPCC, 2001). In case of finer scale climate impact studies, GCM projections 

cannot be directly used due to the scale requirements. Because of this resolution mismatch, 

statistical and dynamical downscaling techniques have been widely used. Recent studies show that 

bias correction has limited downscaling abilities, even if the scale difference is small (for instance, 

when using values averaged over watersheds) (Maraun, 2016). Dynamic downscaling, on the other 

hand, employs the use of high-resolution climate models known as regional climate models (RCM) 

which are computationally intensive models generated through using the projections from coarser-

resolution climate models, namely GCMs as boundary conditions. The RCM projections obtained 
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from the Coordinated Regional Climate Downscaling Experiment (CORDEX) are used to assess 

the climate change impacts. These RCMs are of 0.22-degree resolution, implying a grid size of 

roughly 25 km * 25 km. 

The climate projection outputs from RCMs have inherent biases which need to be corrected 

before using the climate forcings onto the hydrological model. Different bias correction techniques 

are available to perform this task. Bias correction can be a simple linear or the more sophisticated 

non-linear type. Linear bias correction methods employ a constant factor to add or multiply the 

RCM projections with, to bias correct the future data based on the difference or ratio between the 

observed and modelled data over a reference/historical period. Non-linear bias correction consists 

of trend-preserving operations performed on the modelled climate projections based on the 

quantile distributions and additional trends of both observed and modelled data over the reference 

period.  

In order to understand climate change impacts on hydrological processes, it is imperative 

to first understand the hydrologic cycle. (Donnelly et al., 2017). The hydrologic cycle is defined 

as the continuous water circulation and its interactions across various phases of nature i.e. 

atmosphere, land surface, open water, subsurface, etc. (Bedient et al., 2008). Hydrology in 

watersheds is affected by climate change, and this needs to be modelled using accurately calibrated 

and validated models with various climate scenarios to get a more solid estimate of uncertainty (Li 

et al. 2016). Some hydrological models can also predict agricultural productivity and river 

sediment under diverse land use scenarios and management scenarios over a long span of time in 

the future, while taking a historical time-period as the reference period. 

Uncertainty can be defined as the state of limited knowledge or data where it is not possible 

to perfectly describe an existing state or future outcomes. Uncertainty can arise out of various 
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sources like output uncertainty, input uncertainty, hydrological model uncertainty, climate model 

uncertainty, parameter uncertainty and parameter uncertainty. Uncertainty can be of two types 

namely, aleatoric/statistical uncertainty and epistemic/systemic uncertainty. Epistemic uncertainty 

stems out of incomplete understanding and representation of model structures, hydrological 

phenomena and parameters while aleatoric uncertainty stems from the probabilistic variations in 

any random event. Uncertainty is inherent in any prediction. Understanding the nature of the 

uncertainties and quantifying them will facilitate for robust climate change adaptation policies. 

Ignoring uncertainties is bound to conceal risks, in turn misrepresenting the climate change 

impacts. Uncertainty is one of the biggest challenges in the development of adaptation plans and 

needs to be carefully addressed. Quantifying and expressing in numbers and percentage, the 

uncertainty contribution of each source in the modelling process towards the total uncertainty is 

known as uncertainty decomposition. It may also include the contributions of uncertainty due to 

interactions between the sources. 

The uncertainty propagation in any climate change impact assessment framework needs 

to be thoroughly investigated. Understanding the nature of the uncertainties and quantifying 

them will make it easier to develop robust climate change adaptation plans in the future. Prior 

studies used statistical models like GLUE (Beven and Binley, 1992), SUFI-2 (Abbaspour et al., 

2007a), Monte-Carlo simulation (Wilby and Harris, 2006), cumulative distribution function 

analysis (Chen et al., 2010), variable control approach (Dobler et al., 2012), variance 

decomposition (Datta et al., 2013), signal-to-noise ration (Thober et al., 2018) were used to 

quantify uncertainty arising from different factors but such methods failed to consider the 

interactions between the factor levels. In this study, analysis of variance (ANOVA) statistical 

technique is used to achieve uncertainty decomposition. Using the ANOVA method, the total 
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variance of the predicted values is divided into components attributable to each individual 

sources and to the interactions between them. 

Most of the prior uncertainty assessment studies considered decomposing uncertainty of 

only one simple flow metric like mean flow or median flow. However, the uncertainty 

decomposition varies across different segments of a flow duration curve and therefore, there is a 

need to consider extreme (low & high flows) and a representative metric (mean flow). Breaking 

down the uncertainty arising due to factor interactions has only been explored in a very limited 

number of studies. Disregarding the further uncertainty breakdown between interactions obscures 

the actual importance of a factor (uncertainty source). 

 

1.2 Objectives of the study 

The main objective of this research is: 

To identify and decompose, the uncertainties arising from three sources namely, emission 

scenarios (RCP), bias correction methods (BCM) and climate models (CM) and their 

interactions by using a 3-way ANOVA while employing the use of mean flow (Qmean), low 

flow (Q5) and high flow (Q95) streamflow metrics. 

 

To this end, a SWAT hydrological model for the study area will be developed and water budget 

analysis will be performed. The same model will be analysed for parameter sensitivity before it is 

calibrated and validated. 
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1.3 Structure of the Thesis 

 This Thesis is divided into 5 chapters. The introductory chapter provides background 

information about climate change, bias correction, hydrological modelling and uncertainty 

decomposition. Chapter 2 contains the review of literature on the study area, hydrologic modelling, 

climate change impacts, uncertainty assessment and ANOVA. Chapter 3 consists of detailed 

description of the data and methodology used in the study for SWAT modelling, bias correction 

and 3-way ANOVA. Results and discussions on SWAT model, climate change impacts and 

ANOVA are presented in Chapter 4. Final remarks and conclusions along with suggestions for 

future work are all presented in the last Chapter 5.  
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CHAPTER 2: LITERATURE REVIEW    

This chapter provides an insight into the review of prior literature for Little River 

experimental watershed, SWAT model, climate change impacts, uncertainty assessment and 

ANOVA framework. 

2.1 Little River Experimental Watershed 

Little River Experimental Watershed (LREW) is a 334 sq.km watershed located in the 

Georgia coastal plains. It is one of the experimental watersheds monitored by the US Department 

of Agriculture-Agricultural Research Service Southeast Watershed Research Laboratories 

(SEWRL). Multiple studies have been performed on LREW and its sub watersheds since the 1980s 

(Sheridan et al., 1995; Shirmohammadi et al., 1986; Sheridan and Hubbard, 1987). In the recent 

years, Bosch et al., (2004) compared SWAT and BASINS model in simulating the total maximum 

daily loads (TMDLs).  An investigation was undertaken to observe and compare the performing 

capabilities and drawbacks of manual calibration to those of three automatic calibration methods 

(SSQauto6, SSQRauto6 and SSQauto11), of the SWAT model for the LREW (M.W. Van Liew et 

al., 2005). Changes in land use and conservation practices and their impacts on watershed 

hydrology was studied for 34 years of hydrologic data over LREW (Bosch et al., 2006). Long term 

climate, flow, sediment data, etc. databases were generated for the purpose of water-quality study 

of the streamflow, impact studies of changes in LULC and management practices, soil studies, etc. 

(Bosch et al., 2007). Long-term water chemistry database for chloride, nitrogen, phosphorus, etc.  

was prepared for the 8 sub watersheds of LREW (Feyereisen et al., 2007). Sahoo et al., (2008) 

conducted performance evaluation to gauge the reliability of NASA’s Advanced Microwave 

Scanning Radiometer (AMSR-E) soil moisture data by comparing it with in-situ data at the LREW. 

Cho et al., (2010) studied the effect of dividing sub watersheds on the SWAT model simulation 
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for the LREW. The effect of the most predominant conservation practices namely, tillage 

conservation and slope positioning on the watershed hydrology was studies (Bosch et al., 2012). 

Multiple water balance components like surface runoff, evaporation and groundwater flow were 

integrated for constraining multi-objective calibration for an improved performance of the SWAT 

model (Pfannerstill et al., 2017). Pisani et al., (2020) studied the influence of riparian land cover 

on the dissolved organic matter in the predominantly agricultural watershed of LREW. Hydrologic 

characteristics of the data intensive LREW were compared to those of surrounding watersheds to 

check if the former is representative of coastal plain watersheds (Bosch et al., 2021).  Choudhary 

and Athira, (2021) studied the effect of soil moisture on the surface and subsurface SWAT model 

simulations for LREW. 

2.2 Hydrological Model (SWAT Model) 

Hydrological models try to schematise the dynamic workings of the flow of water within 

the hydrological cycle. Models use basic laws such as conservation of mass and energy as well as 

Newton’s laws to represent (to a fair extent) the mathematical relationships between the dynamics 

of natural hydrological cycle. It is imperative to note that no model in existence ca simulate nature 

and its phenomenon fully because of the various complexities in nature. Hydrological models can 

be divided into lumped (HyMod), semi-distributed (SWAT) and fully distributed (MIKE-SHI) 

based on spatial discretization. Lumped models have only one unit representing the whole 

watershed, whereas the semi-distributed model has multiple units (HRUs in case of SWAT) to 

represent a single watershed and the modelling processes are simulated differently for each of 

these units. Fully distributed or distributed models have their watershed represented by a uniform-

sized grid. The modelling complexity and time increase from lumped to fully distributed. Based 

on the complexity of process description, models are classified into empirical (SVM, ANN), 
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conceptual (HyMod, NAM) and Physical (SWAT, MIKE-SHI). Oftentimes choosing a suitable 

model for a study involves considering the trade off between model complexity and the 

computational power required to run the model. SWAT is a continuous model which implies that 

it can be used for modelling a series of values over a given time period for the considered time 

scale (daily, monthly, etc) but it cannot be used to simulate a single event. SWAT is physically 

based signifying that it required actual ground data representation like topography (DEM), soils 

and land cover inputs apart from the climatic variable inputs. Prior to the SWAT2012 hydrological 

model used in this study, there were a various use cases of simpler and more versions of SWAT 

model some of which are as follows: ESWAT included an automatic calibration routine and was 

used for performing sub-daily water quality studies (Griensven and Bauwens, 2001); SWAT-G 

had improved transpiration mechanics and was used for modelling mountainous watersheds in 

Germany (Eckhardt et al., 2002); SWIM included key hydrological processes at both smaller and 

larger (> 10,000 sq. km) basin levels (Krysanova et al., 2005). 

Arnold et al. (2012) reviewed calibration and validation techniques, most sensitive 

parameters for different components of water budget, pollutants and nutrients. It also provided 

detailed description of steps to be followed for calibration and uncertainty analysis. 

2.3 Climate Change Impacts 

Climate change impacts arise out of the interactions between climate change and the 

vulnerability of an exposed system. Climate change impacts affects various sectors like decrease 

crop yield, lower nutritive quality, and increased crop diseases in agricultural sector; Increased 

erosion, high flooding risk to coastal settlements in infrastructure sector; Decline in steady water 

availability for hydropower generation impacting hydropower sector (Chilkoti, 2019). Studying 

the impacts of climate change on extremes is of utmost importance for sustainable ecosystem and 
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social functioning. Climate change and population increase have become major stumbling blocks 

to long-term natural resource conservation. Extreme features like floods and droughts should not 

be purely attributed to "natural hazards" because anthropogenic interventions strongly influence 

drought features (Haile et al., 2020). The impact of climate change on the environment and society 

grows in lockstep with global warming (Touma et al., 2015). Similarly, climate change has been 

shown to have a significant impact on global hydrological systems, with its consequences 

continuing into the next century (Bosshard et al., 2013; Addor et al., 2014). Future streamflow 

forecasts provide a useful foundation for assessing various hydrological extremes (Giuntoli et al., 

2018), which help in formulating effective climate-change responses (Addor et al., 2014). Any 

climate change impact study will involve the following steps, namely hydrological model 

calibration and validation followed by forcing the extracted future climate forcings, after bias 

corrections, onto the hydrological model to obtain and assess the climate change impacts. The 

uncertainty arising in such climate change impact modelling process is our primary focus in this 

thesis. Figure 2-1 depicts the steps in a typical climate change impact modelling study. 

 

 

Figure 2-1: Climate change impact modeling chain 
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2.4 Uncertainty Assessment 

 The focus of this study is mainly on climate model uncertainty, uncertainty due to RCP 

scenarios and uncertainty due to bias correction methods and their interactions but this section 

presents a brief overview of uncertainty assessment for multiple sources.  Input uncertainty, 

climate model uncertainty, simplification of the underlying physical processes, output uncertainty, 

hydrological model and parameter uncertainty all contribute to the overall uncertainty in the 

climate change modelling process (Beven, 2016; Athira and Sudheer, 2015). Uncertainty is 

inherently present in the modelling process because of the sources and hence their identification 

and subsequent quantification is on the forefront of challenges faced by hydrologic modellers 

(Beven and Freer, 2001). Different climate change impact studies were performed identifying and 

quantifying various factors as uncertainty contributors such as choice of climate model (Arnell, 

2011; Chen et al., 2011; Dobler et al., 2012; Karlsson et al., 2016; Chegwidden et al., 2019; Zhang 

et al., 2020; Her et al., 2019), hydrological model (Arnell, 2011; Karlsson et al., 2016; Wang et 

al., 2020; Tarek et al., 2021, Zhang et al., 2021), bias correction methods (Aryal et al., 2019; Wang 

et al., 2020), land-use scenarios (Karlsson et al., 2016), hydrological parameters (Chilkoti, 2019; 

Zhang et al., 2021), RCP scenarios (Wilby and Harris, 2006; Vetter et al., 2017; Chegwidden et 

al., 2019; Stojkovic et al., 2020) among many other factors like internal variability (Deser at al., 

2012), choice of precipitation datasets and initial conditions, downscaling techniques, etc. 

Datta, (2011) presented an intensive review of mainstream traditional uncertainty 

assessment techniques which were being employed for a modelling study. The earlier uncertainty 

assessment method–type 1 operated under the assumption that every uncertainty source/factor can 

be explained by means of parameter uncertainty. GLUE (Beven and Binley, 1992) and Sequential 
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Uncertainty Fitting (SUFI-2) algorithm are two Bayesian techniques that fall under this category. 

GLUE generates many random parameters sets and runs simulations within a model structure and 

then retains the “behavioural” parameter sets and provides a likelihood measure based on posterior 

distribution matching. SUFI-2 presents the parameter uncertainty as a multivariate uniform 

distribution wherein the model parameters are calibrated to conform so that most of the measured 

data points are encompassed by the 95 PPU band (Abbaspour et al., 2004, 2007). 

Uncertainty quantification related to the output is ascertained by employing the use of the 

statistical error models which show a bias in parameter estimation. Such biases, therefore 

simultaneously affect the parameter uncertainty and prediction uncertainty too (Schoups and 

Vrugt, 2010; Thyer et al., 2009). In cases where the model residuals are correlated (Laloy et al., 

2010; Schaefli et al., 2007; Yang et al., 2007a,b; Bates and Campbell, 2001; Duan et al., 1988; 

Kuczera, 1983; Sorooshian and Dracup, 1980), the correlations are removed by means of 

autoregressive (AR) models. Engeland et al., (2010) employed the use of Normal Quantile 

Regression in conjunction with AR model to achieve the same while factoring in the non-normality 

of the residuals.  

These primitive types of uncertainty assessment methods were limited in the sense that the 

individual effects of different sources of error on the model predictions cannot be isolated. To 

overcome this flaw, UA method-type 3 were introduced wherein different sources of uncertainty 

like input uncertainty, model structure uncertainty and parameter uncertainty could be isolated and 

individually accounted for. To assess the input, output and model structure uncertainty, the 

BATEA framework (Kavestki et al., 2006a) was employed (Renard et al., 2010). Vrugt et al., 2003 

suggested the use of Shuffled Complex Evolution Metropolis (SCEM–UA) an optimization 

algorithm and further developed the Differential Evolution Adaptive Metropolis (DREAM) 
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algorithm (Vrugt et al., 2008) for stronger optimisation of parameters to better represent error 

models with complex, multimodal target distributions. The simultaneous parameter optimization 

and data assimilation method (SODA) (Vrugt et al., 2005) was used to quantify different sources 

of uncertainty namely input, output, parameter and model structure uncertainties in the modelling 

process by making a representative stochastic model of the deterministic hydrological model and 

use parameter estimation to explain the state estimation. SODA was an advanced algorithm which 

encompassed the parameter search efficiency of the SCEM-UA method and computational 

efficiency of the ensemble Kalman filter. 

Predictive uncertainty and Variance Decomposition (VD) technique was used to quantify 

the uncertainty contribution of parameter uncertainty as a fraction of the total uncertainty in order 

to improve the reliability of predictive uncertainty (Datta et al., 2013). Yip et al., (2011) used the 

ANOVA framework to decompose the uncertainty in global mean surface temperature arising out 

of model uncertainty, scenario uncertainty and internal variability. ANOVA is superior to the 

variance decomposition method (Datta et al., 2013) because it considers the uncertainty arising out 

of interaction between the factors or sources while the latter ignores it when in actuality, interaction 

terms contribute to total uncertainty as per prior literature. In recent years, ANOVA framework 

has been increasingly used for uncertainty analysis and decomposition because of its ease of use 

and capability to quantify even the uncertainty arising out of interaction of sources. 

 

2.5 ANOVA 

The uncertainty propagation in any climate change impact assessment framework needs to be 

thoroughly investigated. Understanding the nature of the uncertainties and quantifying them will 

make it easier to develop robust climate change adaptation plans in the future. In this study, 
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analysis of variance (ANOVA) (Von Storch and Zwiers (2001, chapter 9)) statistical technique is 

used to achieve uncertainty decomposition. Using the ANOVA method, the total variance of the 

predicted values is divided into components attributable to each individual sources and to the 

interactions between them (Kim et al., 2019). According to Yip et al. (2011), the entire uncertainty 

in the surface air temperature prediction was split into uncertainties arising from natural variability, 

emission scenarios as well as GCMs and their interactions. The analysis of variance method 

(ANOVA) was employed by Bosshard et al. (2013) to determine the uncertainty contributions of 

global climate models, downscaling methodologies, hydrological model choice, and their 

interactions. Gaur et al. (2021) performed ANOVA to quantify uncertainty due to RCM, RCP 

scenarios, RCM-RCP interaction and Internal Variability and presented that internal variability 

has a considerable part of total variance. Meresa et al. (2022) performed a 3-way ANOVA between 

GCM, hydrological parameters and emission scenarios and concluded that GCM is the biggest 

contributor to uncertainties in extreme flows. Lee et al. (2022) studied the effect of hydrological 

model, climate simulation and bias correction methods and ascertained that hydrological models 

had the most contribution to total uncertainty for low flows over a Korean watershed. Tarek et al 

(2021) performed a 3-way ANOVA to study uncertainty of rainfall datasets in comparison to other 

factors namely hydrological models and GCMs and found that the choice in precipitation datasets 

contributed to about 10-20% of the total uncertainty. Troin et al. (2018) used a four-way ANOVA 

with seven snow models, five potential evapotranspiration techniques, three hydrologic models, 

and two ensemble members to quantify and breakdown the uncertainty of hydrological forecasts 

in two Canadian Nordic Quebec watersheds. Hydrological models were determined to be the 

primary source of uncertainty. For the Pacific Northwest, Chegwidden et al. (2019) used a four-

way ANOVA with two emission scenarios, ten GCMs, two downscaling approaches, and two 
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hydrological models to quantify and breakdown the uncertainty of hydrological forecasts in the 

area. This research demonstrated that the emission scenarios and GCMs were substantial 

contributors to the variation of annual streamflow volume uncertainty. In a similar manner, 

Dakhlaoui et al. (2022) performed a 3- way ANOVA between 11 climate models, 3 hydrological 

models and 2 emission scenarios for five Northern Tunisian watersheds and concluded that climate 

model choice was the dominant source of uncertainty. Zhang et al. (2021) performed a 5-way 

ANOVA between GCMs, hydrological models, model parameters, emission scenarios and bias 

correction methods and found that GCM is the leading contributor to uncertainty. Lemaitre-Basette 

et al. (2021) performed a slight variation of ANOVA known as QE-ANOVA to study uncertainty 

decomposition of 5 factors and found that GCM choice is the major contributor by a huge margin. 
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CHAPTER 3: METHODOLOGY 

Chapter 3 summarizes the data and methodology used in this study. It consists of a brief 

overview of study area, climate profile, GIS, meteorology and flow, and climate projections input 

data, and the methodology of hydrological model, bias correction methods and ANOVA 

framework. 

3.1 Study area 

The Little River Experimental Watershed (LREW) with an area of 334 km2, which is located in 

the Southern Atlantic Coastal Plains near Tifton in Georgia, USA is selected for this study (Figure 

3-1). The LREW is situated in the upper reaches of the Suwannee River basin and was established 

by the United States Department of Agriculture-Agricultural Research Service (USDA-ARS) to 

offer hydrologic, soil and natural resource data to be used for monitoring and research purposes 

(Cho et al., 2010.  LREW consists of a flat topography with gently ascending (2-5% slope) uplands. 

The predominant land use in the watershed are woodlands (50%), row crops (31% - with majority 

of the crop yield being peanut and cotton employing the use of crop rotation), pasture (10%) and 

water bodies (about 2%). The underlying soil formations are mostly made up of Tifton loamy sand 

(36%) followed by Alapaha loamy sand (12%) and other types of finer sandy loam soils (Wyatt et 

al., 2020).  The predominant soil in this region, sandy loam has a high infiltration rate of about 5 

cm/hr (Choudhary and Athira, 2021). The streamflow generation itself ranges between 30-40% of 

the yearly precipitation (Rajat and Athira, 2021). About 80% of the total streamflow is the lateral 

flow rejoining the streams through shallow aquifers rather than the direct surface runoff itself 

which accounts to about 20% of it (STEWARDS). From prior research of the LREW watershed, 

direct overland flow accounts for about 5-40% while shallow sub-surface flow accounts for about 

2-35% of the total annual precipitation over the watershed (Bosch et al., 2012). 
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The headwater catchment considered for the current study is an upstream part of the LREW 

with an area of 50 km2 and consists of LRI, LRJ, LRM and LRK sub-watersheds as depicted by 

Figure 3-1. 

 

Figure 3-1: Study Area: Headwater catchment of Little River Experimental Watershed (LREW) 

in Georgia, USA 

 

3.2 Climate profile 

The climatic profile of LREW is humid subtropical with average of 1200 mm of precipitation 

every year. The annual average temperature is 18.7 ᵒC, with mean monthly temperatures varying 

between 10.6 ᵒC for the coldest month of January and 26.8 ᵒC for the hottest month of July. 
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Precipitation events throughout the summer indicate lesser depths, decreased duration, greater 

intensity, and higher frequency of when compared to the rest of the seasons of the year (Bosch et 

al., 2017). The rainfall is scanty and unevenly distributed over the watershed which causes 

ephemeral streamflow, i.e., there is no continuous streamflow within the reaches and there are 

often no-flow days, especially during the dry seasons). 

 

3.3 Input data 

3.3.1 GIS data 

The spatial data prerequisites for the study area consist mainly of Digital Elevation Model (DEM), 

land use and soil data layers and other miscellaneous layers like stream shape layer and watershed 

boundary. The 30 m resolution USGS DEM available as National Elevation Datasets for the study 

area was obtained from USGS TNM download website 

(https://apps.nationalmap.gov/downloader/#/). The land use data layer was downloaded for the 

National Land Cover Database 2011 (NLCD) from the data gateway website of USDA 

(https://datagateway.nrcs.usda.gov/). The Soil Survey Geographic (SSURGO) database soils data 

layer was obtained from Natural Resources Conservation Service (NRCS) website 

(https://websoilsurvey.sc.egov.usda.gov/). The watersheds, stream shapefiles were obtained from 

from Sustaining the Earth’s Watersheds–Agricultural Research Data System (STEWARDS) 

website (https://www.nrrig.mwa.ars.usda.gov/stewards/stewards.html).   

 

3.3.2 Meteorological data and flow data 

Daily precipitation and temperature data are the two main weather inputs required in the 

specific study. There are other weather inputs, such as wind velocity, humidity, solar radiation, 

https://apps.nationalmap.gov/downloader/#/
https://datagateway.nrcs.usda.gov/
https://websoilsurvey.sc.egov.usda.gov/
https://www.nrrig.mwa.ars.usda.gov/stewards/stewards.html
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etc., required to simulate the hydrologic cycle. There are 43 rain gauges spread out over the study 

area out of which 31 rainfall gauges are still operational.  

The SWAT model used the precipitation data for 3 rain gauges (Figure 3-1) which were 

obtained from Sustaining the Earth’s Watersheds–Agricultural Research Data System 

(STEWARDS) website (https://www.nrrig.mwa.ars.usda.gov/stewards/stewards.html) and the 

archived Tifton website (http://radio.tiftonars.org/archived_data.html) provided by USDA-ARS. 

The temperature data, both maximum and minimum temperature, available from 1911 – 2022, for 

Ashburn and Tifton stations closest to the study area from the National Oceanic and Atmospheric 

Administration (NOAA) are accessed from their website (https://www.ncei.noaa.gov/). The 

missing temperature data from Ashburn is filled in using Multiple Imputation by Chained 

Equations (MICE) using Tifton data for missing data correlation and imputation.  

The missing data for precipitation were filled using simple arithmetic mean method for the 

station. The reason for choosing arithmetic mean method is because of the criteria of the 30-year 

annual climate normals of surrounding stations being within the range of 10% of the considered 

station with missing data. The 30-year climate normals were obtained using the PRISM satellite 

dataset of 800 x 800 m2 resolution obtainable from the PRISM climate group website 

(https://prism.nacse.org/).  

 

There are eight streamflow measuring stations in the study area operational. The daily observed 

streamflow data from 1968 – 2018 were obtained from Sustaining the Earth’s Watersheds–

Agricultural Research Data System (STEWARDS) website 

(https://www.nrrig.mwa.ars.usda.gov/stewards/stewards.html). There are four flow gauging 

https://www.nrrig.mwa.ars.usda.gov/stewards/stewards.html
http://radio.tiftonars.org/archived_data.html
https://www.ncei.noaa.gov/
https://prism.nacse.org/
https://www.nrrig.mwa.ars.usda.gov/stewards/stewards.html
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stations within the study area, each one corresponding to the outlet of the four subbasins (Figure 

3-1). 

The flow data from 1974-2003 was subset for the flow gauging station at the outlet at LRI 

(Figure 3-1) namely GALR4950. Missing data was filled as a mean of preceding and succeeding 

values of the missing date wherever applicable. 

 

3.3.3 Climate projection data 

All climate models used in this study were part of the Coordinated Regional Climate Downscaling 

Experiment (CORDEX) obtained from the CORDEX website (https://esg-

dn1.nsc.liu.se/search/cordex/). The climate projections, both historical and future for two 

representative concentration pathways (RCPs) as described in Table 3-1 are used. Regional 

Climate Models (RCMs) of 25 x 25 km2 were used for the North American domain (NAM-22) for 

extracting projected data for each climate model. A total of five RCM – General Circulation Model 

(GCMs) combinations were extracted under RCP 4.5 and RCP 8.5 emission scenarios for historical 

period (1983 - 2012) and future period (2070-2099). 

  

https://esg-dn1.nsc.liu.se/search/cordex/
https://esg-dn1.nsc.liu.se/search/cordex/
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Table 3-1: The 5 climate models used for the study 

No. RCM Resolution  

(Km) 

Driving GCM Scenarios 

1 CCCma-CanRCM4 25 CCCma-CanESM2 RCP 4.5, RCP 8.5 

2 OURANOS-CRCM5 25 CCCma-CanESM2 RCP 4.5, RCP 8.5 

3 OURANOS-CRCM5 25 CNRM-CERFACS-

CNRM-CM5 

RCP 4.5, RCP 8.5 

4 OURANOS-CRCM5 25 MPI-M-MPI-ESM-

LR 

RCP 4.5, RCP 8.5 

5 OURANOS-CRCM5 25 NOAA-GFDL-

GFDL-ESM2M 

RCP 4.5, RCP 8.5 

 

3.4 Methodology 

The methodological framework opted for assessing the climate change impacts for this study is 

presented in Figure 3-2. For this purpose, the step-wise propagation of uncertainty throughout the 

modelling process is taken into account encompassing five Climate Models (CM), two 

Representative concentration Pathways (RCP) and two non-linear Bias Correction Methods 

(BCM) for a total of 5x2x2 combinations. A single precipitation dataset (GALR dataset), for 

modelling and bias correcting, and a semi-distributed hydrological model (SWAT) are used for 

this uncertainty decomposition study since the focus is on uncertainty contribution from the CM, 

RCP and BCM on the impacts of climate change. From the prior literature, it is evident that the 

choice of climate model is one of the biggest sources of uncertainty (Prudhomme et al., 2013). 
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Hydrological modeling, bias correction and uncertainty analysis are described in detail in the 

following sections. 

 

 

 

Figure 3-2: Framework for the methodology proposed for the study 
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3.4.1 Hydrological Model 

Soil and Water Assessment Tool (SWAT) is a semi-distributed hydrological model 

developed by Dr. Jeff Arnold for the USDA ARS. It is a widely used robust model which is capable 

of simulating continuous processes of the watershed hydrology like streamflow and sediment 

transportation. The model requires climatic and geographical variables too because SWAT is a 

physically based model. Once the input variables are entered into the model, SWAT performs 

water balance calculations at the required timescale (daily, monthly, etc). This step is followed by 

sensitivity and the regionalization of parameters for calibration and validation of the model and 

subsequent performance evaluation, which if deemed necessary is then used to run the simulations 

to obtain the required output (Streamflow, ET, etc.). Figure 3-3 presents the framework of SWAT 

hydrological model.  

 

Figure 3-3: Operational framework of SWAT hydrological model 
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QSWAT (QGIS interface) was used to delineate the study area into 4 sub-basins and the 

sub-basins were further broken down into 73 HRUs (Hydrological response units) based on 5% 

threshold criteria for the slope, land use and soils.  

Initially, global sensitivity was run for 25 parameters out of which 9 parameters (CN_2, 

SOL_AWC, GW_REVAP, ALPHA_BF, SLSUBBSN, CH_K2, OV_N, SOL_K, HRU_SLP) 

were sensitive. But for the sake of consistency, a set of 15 parameters, with an additional 6 

parameters from prior literature were used for the calibration process. Baseflow.exe program 

provided by the SWAT TAMU official website was used for baseflow separation and the resulting 

value of Alpha was used for ALPHA_BF initiation. 
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Table 3-2: The SWAT model parameters and their calibrated values 

Parameters Description Unit 

Range 

type Min Max LREW 

CN2_F Curve Number % r 

-

0.25 0.25 -0.14625 

SOL_AWC Soil available water capacity % r -0.3 0.3 0.6425 

SOL_K 

Soil saturated hydraulic 

conductivity % r 

-

0.25 0.25 0.06375 

SURLAG Surface runoff lag coefficient – a 0.1 10 4.6045 

ESCO 

Soil evaporation compensation 

factor – a 0.01 1 0.24265 

EPCO 

Plant uptake compensation 

factor - a 0 1 0.131667 

HRU_SLP Average slope steepness % r -0.5 1 0.5625 

SLSUBBSN Average slope length % r -0.5 0.5 0.241667 

OV_N Manning’s 'n' for overland flow % r -0.1 0.3 0.924833 

GW_DELAY Delay time for aquifer recharge Days a 0 500 75.83333 

GW_REVAP Groundwater revap coefficient – a 0.02 0.2 0.1937 

GWQMN 
Threshold water level in shallow 

aquifer for baseflow 

mm 

H20 a 0 2000 1436.667 

ALPHA_BF Baseflow recession constant 1/days a 0 1 0.268333 

CH_K2 
Effective hydraulic conductivity 

in main channel alluvium mm/hr a 0.1 150 52.31517 

SOL_BD Moist bulk density % r 

-

0.06 0.06 -0.0198 

       

 

The SWAT model is set up for the 11-year period of 2005-2015. Calibration period is set 

to be from 2005-2010 and 2011-2015 is set as the validation period with a 3-year warm-up period. 

SWAT CUP is used for calibration of the model for the watershed. Table 3-2 encompasses the 

SWAT model parameters used for calibration in this study. SWAT parameters can range among 

different scales like reach scale (e.g., CH_K2), HRU scale (e.g., CN2, ESCO, EPCO, etc.) and 

watershed scale (eg. GW_REVAP, GWQMN, etc.). The symbols ‘r’ and ‘a’ denote relative 

(percentage-based) and absolute(replacement) changes respectively. 
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3.4.1.1 Model evaluation 

 

Nash-Sutcliffe Efficiency (NSE), Percentage Bias (PBIAS) and Kling Gupta Efficiency (KGE) are 

the performance metrics to evaluate the hydrological model performance. These metrics are 

defined as follows: 

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑜 − 𝑄𝑠)2𝑛

𝑖=1

∑ (𝑄𝑜 − 𝑄𝑜(𝑎𝑣𝑔))2𝑛
𝑖=1

 (Eq. 3-1) 

 

Wherein Qo is observed discharge, Qs is simulated discharge and Qo(avg) is the average of all the 

observed discharge values and n is the number of observations. NSE ranges between -∞ to 1, where 

the closer to 1 it is, the perfect the simulation is. An NSE value > 0.5 is considered acceptable for 

SWAT model monthly flow simulation. NSE metric is sensitive to extremes, particularly discharge 

peaks. To overcome this limitation, it is used in conjunction with KGE which is less sensitive to 

the peaks which is expressed as below: 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (
𝑄𝑠𝑆𝐷

𝑄𝑜𝑆𝐷
− 1)2 + (

𝑄𝑠(𝑎𝑣𝑔)

𝑄𝑜(𝑎𝑣𝑔)
− 1)2 

 

(Eq. 3-2) 

Wherein r is the Pearson Correlation Coefficient, QsSD and QoSD are the standard deviations of the 

simulated and observed discharges respectively and Qs(avg) is the average of all the simulated 

discharge values. KGE value measures the Euclidian distance components corresponding to 

correlation, bias, and variability from the ideal point. KGE value also ranges from -∞ to 1, where 

1 represents a perfect simulation. It is expressed as follows: 
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𝑟 =  
∑ (𝑄𝑜 − 𝑄𝑜(𝑎𝑣𝑔))(𝑄𝑠 − 𝑄𝑠(𝑎𝑣𝑔))𝑛

𝑖=1

√∑ (𝑄𝑜 − 𝑄𝑜(𝑎𝑣𝑔))2𝑛
𝑖=1 √∑ (𝑄𝑠 − 𝑄𝑠(𝑎𝑣𝑔))2𝑛

𝑖=1

 (Eq. 3-3) 

 

And finally, PBIAS measures the net overestimation or underestimation of values by the model. 

A PBIAS value of 0% indicates perfect estimation of simulated values by the model when 

compared to the observed values. A value between -20% to 20% is considered acceptable for 

SWAT monthly model. 

 

𝑃𝐵𝐼𝐴𝑆 =  
∑ (𝑄𝑠 − 𝑄𝑜)𝑛

𝑖=1

∑ 𝑄0
𝑛
𝑖=1

× 100 (Eq. 3-4) 

 

3.4.2 Bias correction 

The climate data projections modeled by the General Circulation Models (GCMs) or the 

finer Regional Climate Models (RCMs) have innate biases due to a multitude of reasons like 

inability to perfectly replicate hydrological processes of nature (Maraun, 2012). These modeled 

climatic simulations have biases which are evident when compared to the ground-based 

observational data. Bias correction techniques are applied to correct the projected data for such 

biases. These techniques often consist of a deriving an equation or a function to represent the 

empirical distributions for climate projections for a control period (historical period with observed 

data) to map and conform with the empirical distributions of the observed dataset for the same 

period. This correction function is subsequently applied to the future climate projections of the 

models.  

 Bias correction methods of different types have their own pros and cons ranging from 

simple linear bias correction (like linear scaling) to non-linear bias correction methods (like 
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Quantile Mapping). Non-linear bias correction methods are further classified into Univariate bias 

correction where only one climate variable can be corrected at one time and multivariate bias 

correction wherein multiple climate variables like precipitation at different extraction points are 

bias corrected simultaneously. One univariate bias correction method namely Quantile Delta 

Mapping (QDM) method is used in the present study. The QDM method (Cannon et al., 2015) 

employs the use of quantiles to correct for the biases between the observed and modelled historical 

data and project the biases onto future modelled data. Usually, an additional function would be 

required to project the change in quantiles over the historical period into the future period. QDM 

bypasses this requirement using a two-step framework, wherein firstly the quantiles of the future 

model projections are detrended so that they can overlap the historical period and then the change 

in quantiles between the observed and modelled historical series’ quantiles is used to bias correct 

the detrended future projections.  

This study also uses a multivariate bias correction approach through Multivariate Bias 

Correction N-PDF transform (MBCn) for simultaneously correcting multiple ratio variables like 

precipitation, taking into account their interactions (Cannon, 2018). In this method, a random 

orthogonal rotation is applied to both source (modelled) and target (observed) data before QDM 

is used to correct the marginal distributions of the rotated source data. In this case, the QDM is 

applied not directly to each variable independently but to a linear combination of the original 

climate variables under consideration. Lastly, the corrected dataset is rotated back using inverse 

rotation and it is compared to the unchanged target data. This framework is repeated over multiple 

iterations for better fitting and bias correction. One hundred iterations were chosen to conduct the 

specific study. Figure 3-4 presents a brief overview of the steps involved in both QDM and the 

MBCn bias correction methods. 
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a)   b)  

Figure 3-4: Framework of a) Quantile Delta Mapping (QDM) and b) Multivariate Bias Correction 

N-pdf transformation (MBCn) methods of bias correction   

 

3.4.3 ANOVA framework 

The stagewise layout of the framework from Figure 3-2 makes it evident that different choices in 

each step cause a total of 5x2x2 (20) different hydrologic simulations for the estimation of 

uncertainty and its decomposition into source contributions for the considered climate change 

impact study. Monthly mean streamflow (Qmean), low flows (Q5) and peak flows (Q95) are the 

hydrological metrics used for the uncertainty assessment in this study.  

 Analysis of Variance (ANOVA) is a statistical technique employed for breaking down total 

uncertainty into uncertainty arising out of various sources and their interactions (Wang et al., 

2020). Interaction between sources is considered to show the variance caused by the sources which 

do not behave linearly. For instance, the variance between modelled streamflow metric because of 

multivariate bias correction of the climate models might be much lower than in case of bias 
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correcting with a univariate method and vice versa. ANOVA also facilitates sub-sampling of 

sources and allows us to observe in-depth the sub-sampled 2-way interactions between the sources.  

 

Assumptions of an ANOVA study: 

1) Dataset is normally distributed 

2) Data in each group is independent of the other 

3) Variance within each group is more or less the same 

 

The three uncertainty components under consideration for this study (CM, RCP and BCM) 

leads to the computation of 7 variance components namely 3 main effect components, 3 first-order 

components (2-way interactions) and 1 second-order component (3-way interaction) which can be 

shown as below: 

UTotal = URCM + UBCM + URCP + URCM:BCM + URCM:RCP + URCP:BCM + URCM:BCM:RCP                    (Eq. 3-5) 

 

The f-test performed along during ANOVA signifies the importance of each factor towards the 

total uncertainty by means of the p-values obtained from their corresponding f-values. The result 

of the ANOVA test is statistically significant when the p-value is greater than the chosen threshold 

(commonly taken as 0.05) which implies that at least one group (factor) differs from the other and 

the study will require further steps to quantify such effects. To quantify the percentage 

contributions of uncertainty from each source and interactions, variance measure (eta squared) η2 

is used. It is obtained from the ratio of sum of squares of the component to the sum of squares of 

total uncertainty and η2 varies between 0 indicating 0% contribution to total uncertainty and 1 

indicating a 100% contribution (Bosshard et al., 2013). To this end, the uncertainty decomposition 
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results are presented in the form of bands of variances for each factor, measured by η2 expressed 

in percentage. 
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CHAPTER 4: RESULTS AND DISCUSSIONS 

 

4.1 General 

 Chapter 4 presents the results and discussions for the present study. This chapter covers 

the model calibration and validation, including parameter sensitivity analysis followed by climate 

model projections for temperature and precipitation followed by bias correction. Climate change 

impacts are then presented as sensitivity of evapotranspiration to the temperature changes and as 

streamflow sensitivity as a result of precipitation changes followed by analysis of flow duration 

curves and water budget analysis for the study are for end century period. Lastly, Uncertainty 

decomposition due to ANOVA is presented as overall variance, monthly variance with interacting 

factors and a visual depiction of the interactions of the factors. 

4.2 Calibration and validation of hydrological model 

SWAT modeling process involves many parameters. Using all the available parameters is 

ineffective as it consumes enormous time and computational resources and most of the parameters 

are not sensitive or influential to the changes in outputs. For calibrating and validating the model 

using SUFI-2 algorithm, we first need to select the parameters to run the SWAT-CUP iterations. 

Based on the previous literature, a set of twenty-five parameters were initially considered and 

global sensitivity analysis was performed which resulted in the parameters being limited to nine 

sensitive parameters. For the sake of consistency and brevity with prior studies on LREW, a set of 

fifteen parameters were selected, adding six more parameters to the highly sensitive parameters 

(CN_2, SOL_AWC, GW_REVAP, ALPHA_BF, SLSUBBSN, CH_K2, OV_N, SOL_K, 

HRU_SLP). The t-stat and the p-value of the chosen parameters are presented in Table 4-1. 
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Table 4-1: Sensitivity analysis for the selected parameters  

Parameter Name t-Stat P-Value Sensitivity 

SCS runoff curve number (CN2) 31.76 0 HIGH 

Available water capacity of the soil layer (SOL_AWC) 14.63 0 HIGH 

Groundwater "revap" coefficient (GW_REVAP) 6.89 0 HIGH 

Baseflow alpha factor (ALPHA_BF) -6.88 0 HIGH 

Average slope length (SLSUBBSN) 4.41 0 HIGH 

Effective hydraulic conductivity in the main channel (CH_K2) 3.56 0 HIGH 

Manning's "n" value for overland flow (OV_N) 3.42 0 HIGH 

Soil conductivity (SOL_K) -2.82 0.005 HIGH 

Average slope steepness (HRU_SLP) -2.21 0.028 HIGH 

Threshold depth of water in the shallow aquifer required for return 

flow to occur (GWQMN) 1.73 0.085 MEDIUM 

Soil evaporation compensation factor (ESCO) -1.72 0.086 MEDIUM 

Groundwater delay (GW_DELAY) -1.03 0.305 LOW 

Plant uptake compensation factor (EPCO) 0.91 0.361 LOW 

Surface runoff lag time (SURLAG) -0.81 0.416 LOW 

Soil moist bulk density (SOL_BD) 0.26 0.793 LOW 

Threshold depth of water in the shallow aquifer required for 

"revap" flow to occur (REVAPMN) 0.17 0.863 LOW 
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SWAT model was calibrated and validated using the Sequential Uncertainty Fitting (SUFI-

2) algorithm of SWAT-CUP program. From the prior literature review, a list of 15 model 

parameters presented in Table 4-1 were chosen to calibrate and validate the SWAT model. The 

parameter sets were optimized after 3 iterations of 500 runs each. Model calibration and validation 

were performed at the outlet gauge GALR 4950 of the LRI watershed. The Figure 4-1 corresponds 

to the time series of Observed Vs Simulated monthly flows for the calibration and validation 

period.  

 

a)  

b)  

Figure 4-1: Observed VS simulated streamflow hydrographs for a) Calibration and b) Validation 

periods 
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The SWAT model was calibrated for a period of six years, from 2005 to 2010. The observed Vs 

simulated plot depicted in Figure 4-1 a) is used for qualitative evaluation while three objective 

functions, namely NSE, KGE and PBIAS are used for quantitative evaluation. From Figure 4-1 a), 

there is an overall good agreement between the observed and simulated flows excluding a few 

months. Simulated flows were higher for certain months like November 2005, November 2006, 

November 2007, August, September, October, November 2008. This seasonal overprediction 

during the winter corresponds to the precipitation during those months with zero streamflow 

measured. The model consistently underpredicted the flow corresponding to huge peaks like the 

ones corresponding to March, April 2005, February, March 2008, April 2009. This might be 

attributed to the model overpredicting the soil available moisture content, while lowering the actual 

value of the curve number. The performance metric values for the calibration period at the outlet 

were NSE = 0.82, KGE = 0.70 and PBIAS = 1.7. A positive value of PBIAS indicates the 

overestimation of simulated streamflows for the calibration period. 

The SWAT model was validated for a period of five years, from 2011 to 2015. The 

observed Vs simulated plot depicted in Figure 4-1 b) is used for qualitative evaluation while three 

objective functions, namely NSE, KGE and PBIAS are used for quantitative evaluation. There is 

a good overall correlation between observed and simulated values except for a few months. 

Simulated flow was visibly higher for the month of July 2012, February 2013 and January 2014 

and lower during the months of July 2013, continuous period of February, March, April, May of 

2014. The overprediction of simulated flows are in correspondence to high values of precipitation. 

For instance, the precipitation measured for January 2014 was over 180 mm, but the observed flow 

was less than 1 m3/sec. The continued lower simulation covering the spring 2014 might be a 

random modeling occurrence attributed to failure of the model in accurately predicting the lateral 
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flow, which is mostly parameterized by baseflow, groundwater delayed flow and ESCO 

parameters.  For the validation period, the performance measures were NSE = 0.65, KGE = 0.73 

and PBIAS = - 5.3. The negative PBIAS value in this case indicates the overall underestimation 

of streamflows during the validation period.  

Table 4-2 indicates the performance evaluation criteria of calibration and validation period 

according to Moriasi et al., (2015) and Kouchi et al., (2017). 

Table 4-2: Performance evalation for calibration and validation period 

Period Objective Function Value Performance Evaluation 

Calibration 

(2005-2010) 

NSE 0.82 Very Good 

KGE 0.7 Satisfactory 

PBIAS 1.7 Very Good 

Validation  

(2011-2015) 

NSE 0.65 Satisfactory 

KGE 0.73 Satisfactory 

PBIAS -5.3 Good 

 

 

4.3 Climate model projection 

The rise in harmful greenhouse gas emissions and CO2 levels causes the radiative forcing 

of the earth to increase. Radiative forcing is the net energy flux retained by earth’s atmosphere, 

measured in Watts per square metre. This increase in the net energy flux causes change in climatic 

conditions like increased temperatures and increased severity of storms among other adverse 

changes. For this Thesis, two separate emission scenarios/representative concentration pathways 

were considered namely RCP 4.5 and RCP 8.5 corresponding to net energy flux of 4.5 Watts/m2 

and 8.5 Watts/m2 respectively. This section presents the changes in temperature and precipitation 

for the end-century period followed by bias correction for mean precipitation for the same. 
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4.3.1 Temperature projections 

 

Figure 4-2:  Projected Mean Temperatures for the end century period (2071-2100) 

Figure 4-2 corresponds to the temperature increase under RCP 4.5 and 8.5 scenarios over 

the end century period (2071-2100) for the watershed wherein different climate models are 

illustrated using different colour with the lighter shade indicating RCP 4.5 while the darker shade 

indicates RCP 8.5 respectively. From the figure, it is evident that CM1 and CM2 have good 

correlation among the five climate models. The other climate models have significant variations 

in projecting the mean annual temperatures for the end century period causing a widely spread 

ensemble of model projections. There is a mean increase of up to 0.6 degrees Celsius from 2071 

to 2100 for the temperature projection ensemble spread.  Increased temperature projections 

indicate increased dry spells and/or increased evapotranspiration as a result. 
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4.3.2 Precipitation projections 

a)

 

b)

 

Figure 4-3: Projected mean precipitation for the end century period under a) RCP 4.5 and b) RCP 

8.5 emission scenario 

 Global warming causes warmer oceans and an increase in evaporation into the air causing 

more intense storms. In this section, the precipitation projections are presented for two different 

emission scenarios, namely RCP 4.5 and RCP 8.5 for the end-century period (2071-2100). From 

Figure 4-3, it is evident that none of the climate models have good correlation among themselves. 

The ensemble of model projections forms a wide band, which goes to prove that the choice of 

climate model selection has a large effect on precipitation projections. The modeled precipitation 
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ensemble shows a sudden increase near the year 2089 indicating the occurrence of an extreme 

precipitation (with high intensity rainfall and/or large return period) event in that year.  

4.3.3 Bias correction 

The climate model simulated outputs so not conform statistically to the observed data for 

the control period and have some inherent biases. These biases arise out of various reasons like 

incomplete conceptualization of natural phenomena, discretization, parameterisations, reanalyses, 

etc. which need to be corrected before proceeding with the climate change impact assessment. Bias 

correction is a prerequisite for correcting future model projections based on the observed historical 

data. Many studies only consider univariate bias correction techniques like linear scaling, quantile 

mapping wherein the climatic variables like temperature and precipitation are bias-corrected 

independently.  But in actuality, temperature and precipitation are correlated (Tarek et al., 2021). 

To prevent improper representation of the climate data for the impact assessment framework, this 

Thesis considers one univariate (Quantile Delta Mapping) and one multivariate (Multivariate Bias 

Correction – N pdf Transformation) bias correction method.                                                                                                                  
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Figure 4-4: Observed, raw and QDM and MBCn bias corrected precipitation data 

  

Initially, the raw data of future simulations is vastly different as compared to that of the 

observed historical data. This shows the presence of biases in the climate model precipitation and 

temperature data.  Figure 4-4 depicts the observed, raw and bias-corrected average monthly values 

for both Quantile Delta Mapping and Multivariate Bias Correction N-pdf transformation methods. 

The graph illustrates the huge bias in raw and observed values. The raw model projections were 

severely under predicting the precipitation values. The bias-corrected values are closer to the actual 

observed values after applying both non-linear bias correction methods. This reinforces the fact 

that bias correction must be done before proceeding to the next steps in a climate change impact 

assessment study. 
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4.4 Climate change impacts 

 Climate change impacts are the consequences of climate change occurring across various 

sectors. Climate change has adverse effects like hotter temperatures, rise in oceanic levels, scarcity 

of food, loss of species, droughts among many others affecting many sectors. This Thesis 

emphasizes climate change impacts on hydrology. Generally, climate change causes an unnatural 

speeding up of the hydrological cycle. Warmer temperatures lead to higher rates of evaporation 

and transpiration and precipitation itself by increasing convectional currents. This section assesses 

the impacts of climate change on hydrology by observing the changes in hydrological components 

such as evapotranspiration, streamflow and/or the water budget itself. 

4.4.1 Evapotranspiration 

 

Figure 4-5: Ensemble for model projections of evapotranspiration for the end century. 

 

Due to global warming, there is a rise in evapotranspiration which subsequently indicates 

the redirecting a portion of precipitation that is supposed to run off as surface flow or infiltrate into 

the subsurface as groundwater recharge. Evapotranspiration projections presented in Figure 4-5  

show a narrow ensemble band for the ET projections which implies that ET sensitivity to 
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temperature is relatively lower. Regardless of the sensitivity, it is evident that in accordance with 

the temperature projections from Figure 4-2, ET projections also follow an upward, increasing 

trend. For an average 0.6 degrees Celsius increase of temperature between 2071-2100, ET 

relatively increases by a small degree of around 0.1 mm based on the trendline slope. 

4.4.2 Streamflow climate sensitivity 

a)   b)  

 

c)   d)  

Figure 4-6: Streamflow Climate Sensitivity under RCP 4.5: a) Between Q5 and Pmean b) Between 

Q95 and Pmean; Streamflow Climate Sensitivity under RCP 8.5: c) Between Q5 and Pmean d) Between 

Q95 and Pmean 
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Streamflow climate sensitivity is a comparison between change in precipitation to the 

change in streamflow values. Figure 4-6 indicates the percentage changes in High flows (Q5) and 

Low flows (Q95) against the percentage changes in (Pmean) for both RCP 4.5 and RCP 8.5 scenarios 

for the end century period (2071-2100). These percentage changes are calculated relative to the 

baseline period (1974-2003) values of Q5, Q95 and Pmean. It is evident from the figure that the 

streamflow is highly sensitive to the precipitation and holds a somewhat linear relation. For the 

watershed under consideration, the streamflow climate sensitivity can be considered high. In other 

words, a small shift in the precipitation regime will cause an enormous shift in the streamflow 

regime.  The low flows in particular, are extremely sensitive to the precipitation changes. For 

instance, an average 20% increase in annual precipitation causes up to an average 150% increase 

in annual low flows (Q95) while an average 25% increase in annual precipitation cause an average 

of 80% increase in the annual high flows (Q5). 

 

4.4.3 Analysis of flow duration curves (FDC) 

a)   b)  
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Figure 4-7: Flow Duration Curves (FDC) for observed and end century projections under a) RCP 

4.5 and b) RCP 8.5 scenarios 

 

Flow duration curves (FDC) for the GALR4950 outlet of LREW are plotted for comparing the 

exceedance probability of streamflow, between the base period (1974-2003) and the end-century 

period (2071-2100) to infer the change in streamflow patterns in the end-century period. Figure 

4-7 depicts the FDC for RCP 4.5 and RCP 8.5 for baseline observed (1974-2003) and end-century 

periods (2071-2100) for the study area. The projected FDC values predict a slight decrease in high 

flows, but an increase in medium and low flows during the end century period. The increase in 

low flows is comparatively higher than medium flows. Increase in low flows (flow exceedance > 

70%) indicate the decrease in drought events in the end century period when compared to the 

baseline period. The slight decrease in the high flows (flow exceedance < 20%) indicates the 

reduced susceptibility of the flooding in the study area for the end century period in comparison 

to the baseline period. The flow duration curve flattens during Q20-Q70 (medium flows), which 

usually indicates an increase in the contribution of groundwater towards the river flow which is 

instrumental in sustaining the flow throughout the year. Some unpredictable factors like change in 

LULC and/or unprecedented extreme climatic events can influence these inferences. 

4.4.4 Water budget analysis 

Water budget analysis can be considered as a tool to help the modeller understand different 

hydrological processes and the water cycle components like evapotranspiration, total water yield 

and surface runoff occurring within the watershed. The average annual, monthly and seasonal 

water budget breakdowns for end-century period (2071-2100) are given below. 

4.4.4.1 Average annual water budget 
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Average annual precipitation for the study area for end century period was 1251 mm, out of which 

approximately 22%, i.e., 273 mm was lost as evapotranspiration. The remaining 75% constituted 

the total water yield (946 mm) out of which 326 mm was attributed to surface runoff and 574 mm 

was attributed to groundwater. Lower rates of evaporation can be attributed to quick percolation 

of water into the soils. The study area is predominantly sandy loam with high infiltration rate of 

about 5 cm/hr (Choudhary and Athira, 2021).  

Table 4-3 presents the average annual water budget for 2071-2100 is presented. In accordance with 

prior research, streamflow generation ranges up to about 30% of the yearly precipitation (Rajat 

and Athira, 2021).  

 

Table 4-3: Average annual water budget 

Precipitation (mm) 1251 

Evapotranspiration(mm) 273 

Total water yield (mm) 946 

Surface runoff (mm) 326 

Groundwater (mm) 574 

 

4.4.4.2 Average monthly water budget 

 

The average monthly water budget analysis is presented in Table 4-4 and shows the 

variations in the hydrological components throughout the year. It is evident that the surface runoff 

is lowest is summer (July) due to relatively high values of evapotranspiration under the peak 

summer heat. Surface runoff then increases abruptly in August due to increased precipitation. 
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Evapotranspiration is at its highest during June due to increased solar radiation, hotter temperatures 

and agricultural growth. 

Table 4-4: Average monthly water budget 

Month 
Precipitation 

(mm) 

Evapotranspiration 

(mm) 

Surface 

runoff (mm) 

Total water 

yield (mm) 

Groundwater 

(mm) 

1 89 4 25 81 76 

2 131 6 46 104 67 

3 115 8 38 109 71 

4 120 14 40 111 59 

5 77 54 18 82 62 

6 99 81 13 57 34 

7 116 54 11 47 27 

8 160 19 44 85 34 

9 75 13 13 60 40 

10 60 8 16 61 40 

11 85 6 23 61 40 

12 123 5 39 86 55 

 

4.4.4.3 Seasonal water budget 

 

 Seasonal water budget analysis was performed to obtain insight into the variation of the 

hydrological components across seasons. The division of seasons in this case follows: winter 

(December, January, February, and March), spring (April and May), summer (June, July, August 

and September) and fall (October and November). Table 4-5 presents the average values of the 

hydrological components followed by the percentage breakdowns for each. Summer has the 

maximum evapotranspiration (47% of annual evapotranspiration), while winter months 

demonstrated the lowest (5% of annual evapotranspiration). The highest surface runoff occurred 

in winter months (35% of the annual surface runoff) while summer and fall had low runoff values 

(about 19% of the annual surface runoff). 
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Table 4-5: Seasonal water budget values 

Season Precipitation  

(mm) 

% 

Evapotranspiration  

(mm) 

% 

Surface 

runoff  

(mm) 

% 

Total 

water 

yield  

(mm) 

% 

Groundwater  

(mm) 

% 

Winter 

115  

(29) 

6  

(6) 

37  

(35) 

95  

(30) 

67  

(33) 

Spring 

98  

(25) 

34  

(39) 

29  

(27) 

97  

(31) 

60  

(30) 

Summer 

112 

(28) 

42 

(47) 

20  

(19) 

62 

(20) 

34  

(17) 

Fall 

73  

(18) 

7  

(8) 

20  

(19) 

61  

(19) 

40  

(20) 
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4.5 Uncertainty decomposition 

 This subsection presents the breakdown of uncertainty as percentage of variance. The 

uncertainty decomposition is presented as overall variance as well as monthly variance breakdown 

for mean flow, low flow and high flow. 

4.5.1 Overall variance 

 

  

Figure 4-8: Overall uncertainty decomposition for Qmean, Q5 and Q95 for the end century (2071-

2100) period 

The results in Figure 4-8 show that the Climate Model (CM) uncertainty is the biggest contributor 

toward the total uncertainty. The sum total of all the interaction uncertainties (CM:RCP + 

CM:BCM + BCM:RCP + CM:BCM:RCP) almost always have a higher mean relative contribution 

than the other uncertainty components (namely RCP and BCM), but in all cases, much lower than 

that of CM uncertainty. The relative contribution of BCM is negligible in case of extreme flows 

but visibly significant in case of mean flow. 
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4.5.2 Monthly variance 

a)  

b)  

c)  

Figure 4-9: Month-wise Variance Decomposition of a) Q5, b) Q95 and c) Qmean for the end century 

period (2071-2100) 
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From Figure 4-9, it is evident that in case of High flows (Q5), there is a wide range of fluctuation 

for the CM uncertainty. CM being the biggest uncertainty contributor varies from 55% in June to 

around 98% in May. The interaction between CM and RCP is the second biggest contributor 

followed by RCP scenario. All the other factors and their interactions are insignificant in 

comparison to the total uncertainty. For Low flows (Q95), the uncertainty contribution of CM 

remains relatively constant, except for the dry season, where the interaction between CM and RCP 

becomes significant. CM remains the largest uncertainty contributor varying from around 50% in 

October to 95% in June. RCP scenario also notably contributes to the total uncertainty in this case. 

In case of Mean Flow (Qmean) however, the interaction between CM and BCM is one of the 

predominant uncertainty contributors. The choice of BCM also strongly affects the total 

uncertainty. CM is still the largest contributor toward total uncertainty ranging between 

approximately 55% in April to 90% in January. The proportional contribution of Climate Model 

(CM) uncertainty for high flow (Q5) is typically consistent with that for mean flow for the future 

period (end-century), especially during the dry season. CM is the most important source of 

uncertainty in the end-century projections. 

4.5.3 Interaction plots for uncertainty decomposition of Qmean 

 Interaction effect between the factors correspond to the combined effects of the considered 

factors (CM, BCM and RCP) on the dependent measure. One of the major advantages of ANOVA 

apart from being easy to apply is its capability to consider and assess interaction effects. In this 

study, a 3-way ANOVA was performed and Figure 4-10 interactions that help us in understanding 

the combined effect of factor interactions for every month of the year for Qmean for 2071-2100. 
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Figure 4-10: Interaction plots for each month corresponding to (CM: RCP), (BCM: RCP) and 

(CM: BCM) from left to right  
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 From Figure 4-10, multiple types of interactions are observed as follows. The interaction 

cases where the lines do not meet are called “ordinal interactions”. In such cases, if the two lines 

are almost parallel, it indicates that there is no significant interaction effect between the considered 

factors. If the lines are not touching, but still significantly skewed, then there is a chance of 

interaction effects being prevalent, given enough statistical power. In the case of plots with lines 

crossing each other, they indicate “disordinal interactions” (Stevens et al., 2016). These 

interactions are hard to infer. In the case of disordinal interactions with heavy irregularities, the 

respective main interaction effects should not be inferred. An f-test should be performed to directly 

ascertain if the main factors are effective towards total variance. 

 In this study, the interactions between BCM and RCP and the interactions between CM 

and RCP are mostly ordinal and they can be safely read to infer the extent of influence the 

interactions contribute while the interactions between CM and BCM are highly disordinal. In this 

case a separate f-test can be run to check if the main factors CM and BCM and their interactions 

CM: BCM hold significant contribution towards the total variance of the modelled metric (Qmean 

in this case).  
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CHAPTER 5: CONCLUSIONS 

This study evaluates the overall uncertainty and uncertainty contributions from three sources in 

the quantification of hydrological impacts of climate change based on the ANOVA method. For 

this extent, a semi-distributed, physically based hydrological model (SWAT) was used to simulate 

the 50 sq.km head catchment of the Little River Experimental Watershed (LREW) located in 

Georgia, USA. Choice of Climate Model projections (CM), Bias Correction methods (BCM) and 

Representative Concentration Pathway scenarios (RCP) are chosen as factors to investigate their 

contribution towards the total uncertainty in the modelling process. In order to further investigate 

the impacts of the factors and their interactions on the streamflow, the flow was expressed in three 

different metrics namely high flows(Q5), low flows (Q95) and mean flows (Qmean). The main 

conclusions are as follows.  

1. The contributions of the main factors toward the total uncertainty are most significant in case of 

extreme indicators (Low flow and peak flow) when compared to the mean flow wherein the 

uncertainties arising out of interactions between the factors account for a significant (>25%) 

portion of the total uncertainty.  

2. For the changes in low, high and mean flows, the choice of Climate Models (CM) remains the 

leading source of uncertainty. Therefore, considering the influences of CM should be a prerequisite 

while evaluating climate change impacts on mean, low and high flows. 

3. Unlike low and high flows, the choice of Bias Correction Method (BCM) is a major contributor 

toward uncertainty for the mean flows. Hence, special consideration should be given to BCM and 

its interacting components in this case. 
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Regardless of the streamflow metric chosen, CM remained the biggest contributor to total 

uncertainty in the Climate Change Impact Assessment process. This shows that any positive 

technological advancement in the field of climate modelling has a scope to greatly decrease the 

total uncertainty.  

ANOVA framework has its own disadvantages like the assumption that the simulated data 

points are truly gaussian-like i.e., the test is not truly representative if there are outliers present. 

Additionally, the uncertainty contribution of the interaction between factors is oftentimes difficult 

to clearly infer (Kim et al., 2019). In this particular study, four out of 5 climate models had the 

same driving GCM while having a different RCM. This limitedness in true GCM variability is also 

a limitation, in the sense that true state of the climate variability might not have been represented 

strictly. 

From the prior literature, it is evident that ANOVA was used mainly to decompose 

uncertainty in climate change impacts measured through simple streamflow metrics like Qmean, 

Qmedian and other straightforward output variables. Although these streamflow variables like mean 

flow confirm the model ability to reproduce runoff volume (Todorovic et al., 2019), they are not 

truly representative of the catchment response under varied flow segments. To address this issue, 

hydrologic signatures which are the features of a catchment's hydrologic reaction (Sawicz et al., 

2011) are used. Flow duration curves (FDC) and their derivative streamflow metrics can be used 

for diagnostic evaluation of model and can be truly representative of the catchment under 

consideration. For a storm event, the FDChigh and FDClow are used to understand the catchment 

response, driven by quick (direct runoff) and slow (groundwater discharge) streamflow generation 

processes respectively. Also, slope of FDC mid-segment can be used as a streamflow diagnostic 
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metric. A high slope value indicates a variable flow regime, while a low slope value means a more 

damped response.  

Apart from diagnostic evaluation of the model (Yilmaz et al., 2008; Westerberg et al., 

2011; Andréassian et al., 2012; Chilkoti et al. 2019), FDC and their derivative metrics were also 

employed for grouping catchments (Carrillo et al. 2011; Sawicz et al. 2011). In this regard, the 

LREW study area considered for this study is deemed to be a “keystone” for understanding coastal 

plain watersheds (Bosch et al., 2021) and hence, the use of diagnostic and superior representative 

hydrological signatures which capture the hydrological response of the catchment will give us 

better insight into climate change impacts measured through the said signatures for a coastal plain 

watershed in the USA. 

There are a lot of sources of uncertainty and hence a wider umbrella study encompassing 

an n-way ANOVA including not only BCM, CM, RCP but also other factors like hydrological 

model choice, precipitation datasets, hydrological parameters, internal variability, etc. and their 

effect on the total uncertainty should be investigated. 

Finally, an integrated modelling system which encompasses various phases/methodologies 

also covering the model structure uncertainties, input uncertainties etc. which is a bundled 

framework and can be transferable from one variable to another (for instance, the same 

methodology or system should be effective in uncertainty decomposition of factors for one variable 

like any streamflow metric should be transferable to another variable like ground flow, ET, etc.)  

should be the focus of future research. 
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APPENDICES 

A-1 Trends in temperature timeseries 

 

Figure A-1: Trends in mean temperature timeseries (TS) and decomposition for the end century 

period (2071-2100) 
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Figure A-2: Temperature trends for 5 CM under QDM bias correction for RCP 4.5 (2071-2100) 
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Figure A-3: Temperature trends for 5 CM under MBCn bias correction for RCP 4.5 (2071-2100) 
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Figure A-4: Temperature trends for 5 CM under QDM bias correction for RCP 8.5 (2071-2100) 
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Figure A-5: Temperature trends for 5 CM under MBCn bias correction for RCP 8.5 (2071-2100)  
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A-2 Changes in hydrological components 

a)  

b)  

Figure A-6 Monthly streamflow variation (2071-2100) under a) QDM and b) MBCn bias 

correction methods 
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Table A-1: Annual water budget for the end century period (2071-2100) 

Year 
Precipitation 

(mm) 

Surface 

runoff 

(mm) 

Groundwater 

(mm) 

Evapotranspiration 

(mm) 

Total 

water yield 

(mm) 

2071 1353.146 366.0552 639.3971 274.0932 1007.084 

2072 918.8235 187.2396 408.7688 252.6863 597.0741 

2073 963.2385 174.1608 412.6964 274.0932 580.8951 

2074 1629.086 502.6212 680.1668 294.0094 1205.728 

2075 980.6265 177.3036 653.4847 262.2311 796.3208 

2076 1237.572 306.0936 458.8383 274.5852 783.434 

2077 1780.286 543.7908 1049.091 281.8274 1575.668 

2078 1150.821 262.5696 715.954 268.6369 951.5396 

2079 1268.568 358.452 486.332 271.2593 871.2209 

2080 1105.745 257.7528 611.8061 248.4944 853.3638 

2081 1409.562 369.2196 870.0416 279.1559 1206.138 

2082 1311.566 388.5408 523.7583 277.7881 939.6007 

2083 1517.67 500.2668 836.5267 278.2703 1335.455 

2084 880.173 157.4748 458.4001 255.658 601.8907 

2085 1470.798 479.898 590.0254 277.0403 1102.288 

2086 1079.757 215.5464 632.2883 254.7182 822.6838 

2087 1676.336 559.7964 808.8058 286.4621 1386.836 

2088 1416.083 367.794 771.4281 301.3352 1124.808 

2089 1765.071 519.9984 1050.341 293.542 1546.18 

2090 1377.905 454.4856 862.1051 260.7698 1303.251 

2091 1035.437 203.5476 445.1727 273.5864 649.5439 

2092 1129.842 267.1056 482.5341 263.1068 755.2776 

2093 863.919 129.654 435.6457 252.4255 546.6796 

2094 1246.361 357.048 576.7331 276.8582 941.9321 

2095 1171.328 261.8568 510.4822 274.7033 774.6335 

2096 1255.244 347.7492 672.1979 267.6234 1012.759 

2097 1433.66 427.7556 624.5953 276.9911 1071.147 

2098 1023.908 188.0604 439.622 276.4548 624.3466 

2099 923.265 146.4372 517.9155 279.2002 635.7475 

2100 1162.256 299.7756 429.0563 265.9654 750.2433 
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Figure A-7: Flow duration curves for 5 CM under RCP 4.5 scenario (2071-2100) 
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Figure A-8: Flow duration curves for 5 CM under RCP 8.5 scenario (2071-2100) 
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