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Abstract

Driven by the popularity of the Internet of Things, the emergence of a multitude of applica-

tions highly require computing and storage capacity. However, the Internet of Things users

are generally constrained with resources. Mobile edge computing is proposed whereby data

generated by Internet of Things devices could be offloaded to nearby edge servers instead

of remote cloud servers, thus their requests can be served locally and quickly.

One of the most important research issues in mobile edge computing is computation

offloading. Due to the dynamic and time-varying operating environments, there is an in-

creasing interest in applying deep reinforcement learning to decision-making in computation

offloading. It integrates neural network into reinforcement learning without labeled data

and formulates computation offloading problem as a decision-making process. Moreover,

offloading tasks to edge servers would raise serious security concerns. Physical-layer security

based on information theoretic methods could be leveraged to safeguard the data transmis-

sion. As an effective way in physical layer security, artificial jammer could be employed

to greatly degrade the reception performance of eavesdroppers while keeping the legitimate

users unaffected by means of beamforming techniques.

In this work, a deep reinforcement learning model is proposed for computation offloading

in dynamic mobile edge computing system. Our objectives include maximizing number

of completed tasks before tolerant time and minimizing energy consumption, subject to

security rate requirement. The proposed solution can learn to optimize edge server selection

for offloading a certain task, CPU allocation at selected edge servers for executing given task,

and friendly jammer selection. Simulations show that the developed model outperforms the

existing methods, including deep reinforcement learning models combined with optimization

methods, traditional reinforcement learning algorithm, and greedy algorithm.
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Chapter 1

Introduction

1.1 Internet of Things

Internet of Things (IoT) is a new paragon that is defined as a network of physical “things”

which are embedded with some technologies such as software, sensor, processing ability for

exchanging data and connecting with other systems or devices over Internet [1–3]. With

IoT, data can be collected and processed efficiently to support decision making for different

applications. Over the past few years, IoT has become one of the most emerging markets

globally. Driven by popularity of IoT, we have not only witnessed a rapid proliferation of

wireless devices and exponential growth of wireless data traffic, but also the emergence of

a multitude of useful applications.

With IoT technologies, many applications can be enabled, e.g., smart home, smart city,

intelligent transportation system, smart grids and smart factory. In smart home [4], there

is an internet-connected center with the responsibility to control various IoT devices, which

can be under control of a mobile application. With various control technologies, smart

home is becoming affordable and can be applied to control electrical and electronic home

devices including fire alarm, lights timer, conditioner and so on. Another advanced IoT

application is intelligent transportation system (ITS) [5, 6]. This technology is employed

worldwide for improving road efficiency and driving safety. It ensures a safer, more efficient

and coordinated utilization of transport networks in a variety of situations such as road

1
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transport, mobility and traffic management. For example, emergency calling services aim

to carry out the traffic signs or laws for indicating speed limit changes, as appropriate. By

employing IoT and other technologies, smart grid can better monitor the status of the grid

and provide an integral solution to ensure security, efficiency and reliability of electric grids.

According to the statistical data from statista (shown in Fig. 1.1), the number of con-

nected IoT devices worldwide continues to grow, and is predicted to exceed 29 billion by

2030, more than three times of the 8.6 billion in 2019. Moreover, based on the statistics

from DataProt, the consumer IoT market is expected to get to $142 billion by 2026 with

a CAGR of 17%. 94 percents of retailers approve IoT implement benefits far outweigh any

risks. By 2025, IoT devices are estimated to produce a volume of data as much as 73.1 ZB.

Figure 1.1: Number of IoT connected devices worldwide 2019-2030

IoT can provide many advantages, including reducing the need for human intervention

and efforts, improving data collection, promoting automation, making efficient use of re-

sources, and so on. However, IoT still faces many challenges such as privacy and security

concerns, high internet dependency, and limited devices’ capacity (storage, computational

power, battery).
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1.2 Mobile Cloud Computing

In order to support different quality of services (QoS) requirements of IoT applications, the

data collection and procession should be conducted efficiently. The computing and storage

capacity are highly demanded by most IoT applications. However, the end devices with

limited physical size are generally constrained in resources, such as energy, computational

power and storage.

To process the data collected by the IoT devices and meet the computing and storage

requirements, mobile cloud computing (MCC) residing in core networks can be leveraged

to better accommodate the emerging services [7]. From the MCC architecture provided by

DataFlair (Fig. 1.2), we can see MCC rents access to a virtualized computer in a remote

data center and uses cloud computing to deliver applications to mobile devices. Mobile

cloud applications are built or revised using cloud services. The computation and resources

are stored in the remote cloud where data processing and analysis are conducted for decision

making, so devices are directly connected to the cloud which is far away from data sources.

Figure 1.2: mobile cloud computing architecture

Although MCC has a lot of benefits such as data backup, cost efficiency, disaster recovery,

integrated data and multiple platforms, there are still some shortages in MCC:

Firstly, because of long distance, moving a large volume of data into and out of the

core network wirelessly requires substantial spectrum resources, and can incur long service
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latency, which might cause service failure to support real-time applications, such as au-

tonomous driving. High latency has problems such as slow performance, high error rates,

increased traffic, and more insecurity.

Secondly, moving massive data from IoT devices to the remote servers can cause network

congestion. When network congestion occurs, the QoS is deteroriated. There are some

typical effects such as packet loss, queuing delay, and new connections blocking.

1.3 Mobile Edge Computing

To address the above MCC issues, mobile edge computing (MEC) emerges, which is a new

paradigm where computing resources are deployed at network edge in close proximity of

end devices [8–10]. The architecture of MEC is shown in Fig. 1.3. By leveraging MEC,

computation-intensive tasks can be offloaded to edge servers for execution and the results

can be feedback to the end devices. Rather than the remote cloud through backhaul, mobile

edge could serve IoT users’ demands locally and quickly. The service latency for IoT users

and pressure on core network could be reduced and mitigated significantly [11–13].

MEC enables most of the market drivers such as business transformation, technology

integration, and industry collaboration. Moreover, it supports new innovative markets with

a wide variety of use cases such as e-Health, connected vehicles, industry automation, IoT

services. MEC performs computation-rich tasks from resource-constrained IoT devices,

has Lower-Latency computing, and could minimize backhaul congestion. Also, its location

awareness could make the services that are provided by applications much better suited to

device and user location. MEC is expected to improve response times and user experience.

Along with those benefits, MEC is still facing many challenges. Firstly, MEC usually has

less capacity than MCC. The coordination of multiple edge servers is required for serving

IoT devices’ tasks efficiently. Secondly, there are stringent latency requirements in some

IoT services, which depend on transmission and computation power allocation in offload-

ing. Also, with various service requirements, IoT users’ tasks are generated dynamically.

Moreover, the MEC operating environment changes over time, such as the varying channel,

edge workload, CPU allocation conditions. Therefore, the decision making in MEC system
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has to be adjusted accordingly. Finally, IoT devices are energy-constrained, and thus the

energy consumption should also be considered.

Figure 1.3: mobile edge computing architecture

1.4 Computation Offloading in Mobile Edge Computing

Limited computing resources and battery of IoT users may cause performance limitations

in MEC networks. Yang et al. presented the task offloading scenario as shown in Fig. 1.4.

In the computation offloading of MEC, resource-constrained IoT user’s compute-intensive

tasks are offloaded to edge servers with more computing resources for QoS enhancement.

Compared with being transferred to cloud in MCC, tasks can be transferred to mobile edge

server which are close to the end devices such that the latency can be reduced, and network

congestion can be mitigated [14].

As service latency is critical to applications for making real-time decision or control, it

is important to achieve low-latency computation offloading in MEC. The service latency

mainly consists of both the communication and computation latency, where the communi-
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cation latency is the latency of transmitting data required by computation tasks to edge

servers, and the computation latency is the time spent in processing the computation tasks

in edge servers [15]. Another, energy consumption consists of both communication and

computation energy consumption. Therefore, communication and computing resource man-

agement need to be jointly allocated. Compared to MCC, the advantage of proximity to

end-users in MEC greatly reduces the transmission delay and energy consumption of of-

floading computing tasks to edge servers.

Nonetheless, the computation offloading mechanisms in MEC are still facing several

challenges. Firstly, edge servers have time-varying network conditions and limited com-

puting resources, so the IoT users make offloading decision may not achieve lowest cost.

Secondly, computation offloading in MEC can also bring security challenges. Some privacy-

sensitive IoT users may be deterred away from using the MEC without proper protection

mechanisms.

Figure 1.4: Computation Offloading in MEC
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1.5 Motivation and Objective

As mentioned above, the computation offloading in MEC has two major challenges: security

and energy efficiency. Although there are lots of existing works done to minimize energy

cost and maximize the number of offloading tasks in offloading process in edge computing,

there are many limitations with the current approaches such as traditional approach, deep

learning (DL) or reinforcement learning (RL) methods. The detailed drawback of these

approaches is discussed in the literature review section later. Moreover, they seldom focus

on how to offload tasks to edge server in a secure and timely manner. Due to the broadcast

nature of wireless communications, there are security concerns during computation tasks

being offloaded from IoT users to edge servers. Without secure offloading, IoT users’ private

data such as health information and identity information could be overheard by the nearby

eavesdroppers.

Therefore, this thesis aims to design a novel method to enhance secure transmission

which is on physical layer assists other secure methods. A novel solution using deep rein-

forcement learning (DRL) approach is proposed to meet both security and energy efficiency

requirements in mobile edge computation offloading with multiple users, multiple MEC

servers, and an eavesdropper.

Specifically, physical layer security (PLS) [16, 17] built on information theoretic methods,

is be leveraged to safeguard the data transmission, where relays and artificial jammer will

be employed to greatly degrade the reception performance of eavesdroppers while keeping

the legitimate users unaffected. In addition, the offloading decisions in terms of which edge

servers to offload the task and how to allocate computing resources and communication

resources (e.g., transmission power) will be determined to meet the latency requirement as

well. Due to heterogeneity, high dynamics and multi-dimensional randomness in the system,

e.g., time-changing wireless channel conditions, varying workloads of edge servers, it is of

great challenge to find optimal or near optimal solution to this multi-objective optimization

problem.

The problem is formulated to a Markov Decision Process (MDP) with a continuous state

and large action spaces. The reward function is a weighted summation of multiple objectives

related to security issues, energy consumption, and the completed number of tasks before



Chapter 1. Introduction 8

deadlines. Artificial intelligence, especially an end-end DRL is adopted to deal with such

a complex problem based on dynamic network environment and current tasks information.

DRL is able to achieve all optimization targets in one step and the proposed learning

scheme could jointly optimizes long-time utility includes both maximizing the number of

completed tasks before their deadlines, reducing energy consumption and satisfying security

requirement.

1.6 Contributions and Organization of Thesis

In a nutshell, the main contributions of this work can be summarized as follows:

• A MDP with a continuous state and large action spaces is formulated. The reward

function can be adjusted according to network providers’ and users’ demands regard-

ing security concerns, energy consumption, and the completed number of tasks.

• An End-to-End DRL model is proposed to optimize multiple objectives, including

maximizing the number of completed tasks before expiration and saving energy con-

sumption constrained by security transmit rate.

• Extensive simulations show that the developed model outperforms the existing meth-

ods, including DRL models combined with optimization methods, traditional rein-

forcement learning algorithm, and the greedy algorithm.

The rest of the paper is organized as follows:

• Chapter 2 reviews the existing works.

• Chapter 3 presents our system model and problem formulation.

• Chapter 4 proposes deep reinforcement learning method and training processes.

• Chapter 5 provides the simulation and results analysis.

• Chapter 6 concludes this work.



Chapter 2

Literature Review

By offloading computations to edge servers with more resources in the proximity, IoT users

are able to support computation-intensive and energy-hungry mobile applications in MEC

systems. The energy-efficient MEC has attracted significant attention. In the past years, a

number of computation offloading frameworks in MEC have been proposed with optimiza-

tion approaches for IoT applications. Also, different optimization problems are formulated

and solved based on optimization techniques. Nonetheless, there are several limitations with

convectional approaches as these approaches for computation offloading are either classic

approach or optimization based approach which do not take intelligent decisions and suffer

from the fact that require lots of iterations. With the development of various AI techniques,

researchers are motivated to turn to solve these above problems by using some standard

supervised ML, DL or RL methods and they are successful in optimizing resource alloca-

tion. However, they are still facing challenges in the relatively dynamic and complex MEC

network environment.

2.1 Overview of Classic Approaches

By offloading resource-constrained IoT users’ compute-intensive tasks to edge servers nearby

with potential computation capability, MEC is an emerging computing pattern to augment

computational capabilities of IoT users. However, edge clouds still have limited computation

9
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resources and energy in general. In order to ensure satisfactory IoT users experience,

achieving energy efficiency is usually considered as the criterion for performance evaluation.

Energy-efficient computation offloading and wireless communication to be jointly de-

signed. Recent years have seen a number of classic methods with optimization techniques

developed for MEC resource allocation. The research progress focused on this topic is for

both single-user and multi-user MEC systems. For single user scenario, Mao et al. [18] inves-

tigated MEC systems with Energy Harvest (EH) mobile devices and deployed a Lyapunov

optimization-based dynamic computation offloading (LODCO) algorithm which is an online

algorithm with low complexity and little prior knowledge. Some others focused on multi-user

scenarios. In the research of Ren et al. [19], joint communication and computation resource

allocation for a time-division multiple access (TDMA)-based multiple users MEC system

was investigated for QoE improvement of IoT users by using a joint communication and

computation resource allocation algorithm for minimizing all devices’ weighted-sum delay.

Munoz et al. [20] reduced the MDs’ energy cost by jointly optimizing the time of transmis-

sion and the amount of offloading data to a femto AP. For multi-server MEC Networks,

Tran et al. [21] addressed resource allocation problem and proposed a heuristic algorithm

using convex and quasi-convex optimization techniques for optimal solution in polynomial

time. A game theoretic method was adopted by Chen et al. [22] for energy and latency

minimization at mobile devices. They formulated computation offloading decision making

problem as a multiple users’ game, and a distributed offloading algorithm was designed to

achieve a Nash equilibrium. In the works of Sardellitti et al. [23], the radio and computa-

tion resources were jointly allocated for multi-cell MEC system to reduce the mobile energy

consumption under offloading latency constraints. An iterative algorithmic framework was

proposed based on successive convex approximation method to converge to an optimal local

solution for original non-convex problem. Also, a parallel and distributed implementation

was achieved with limited cloud coordination/signaling requirement.

In the work of Wang et al. [24], computation offloading problem was formulated as a cost

minimization and energy efficiency problem with completion time consideration. They pro-

posed a distributed algorithm includes allocating transmission power, configuring clock fre-

quency, scheduling channel rate, and selecting offloading strategy to solve this optimization

problem. A resource allocation policy based on TDMA and orthogonal frequency-division
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multiple access (OFDMA) was proposed by You et al. [25] to minimize mobile energy

consumption for computation offloading in MEC system. Mazouzi et al. [26] formulated

the offloading cost minimization problem as a binary programming which is NP-hard, and

adopted a distributed linear relaxation based heuristic approach using Lagrangian decom-

position method to solve it. Moreover, for maximizing the sum of computation efficiency

among users with weighting factors, an optimization problem was formulated by Sun et

al. [27] and was solved efficiently with iterative and gradient descent methods. Guo et

al. [28] proposed a novel distributed eDors algorithm includes computation offloading selec-

tion, clock frequency control and transmission power allocation sub-algorithms to reduce

energy cost under completion time deadline and required task precedence.

For the tradeoff between execution latency and energy consumption, some research works

have been reported in the literature. In the work of Dinh et al. [29], both tasks’ execution

latency and MD’s energy consumption by jointly optimizing the task offloading decision

and MD’s CPU-cycle frequency have been minimized. Deng et al. [30] aimed to propose

an adaptive sequential offloading game approach in multi-cell MEC system for offloading

decision where the weighted sum of energy and computational time as the optimal objective

function. In order to investigate execution latency and energy consumption minimization,

Wang et al. [31] jointly optimized the computation speed and transmission power of mobile

devices, respectively. Hong et al. [32] developed a weighting factor for defining weighted

sum of energy cost and formulated a dynamic programming problem for data offloading

scheduling. By jointly optimizing channel resource allocation, transmission power and CPU-

cycle frequency, Zhang et al. [33] developed an energy-aware offloading scheme to exploit

the tradeoff between execution latency and energy consumption, which focused on defining

the weighting factor based on the residual energy of MD battery.

In practice, as MEC environment (MEC ENV) is extraordinarily dynamic and complex,

it is hard to model it. Almost all the optimization problems mentioned above are mainly

formulated based on network snapshots and have some shortcomings. Firstly, when the

environmental conditions change over time, it has to be reformulated. Secondly, these clas-

sical optimization methods require many iterations, and it is hard to find optimal solution

in a complex environment.



Chapter 2. Literature Review 12

2.2 Overview of Deep Learning Approach

In order to address above issues, some machine learning (ML) based solutions were intro-

duced. In the paper of Ismail et al. [34], with the Support Vector Machine (SVM) regression

model, a machine learning-based offloading algorithm was proposed for energy optimization

of the edge-cloud computing platform.

Although ML is helpful to solve offloading problems, there are more ongoing human

intervention requirements. Also, structured data and conventional algorithms are required

and used. Compared with it, DL methods [35, 36] with neural networks can be adopted,

which can perform better than some ML methods in almost all the artificial intelligence

(AI) fields, such as speech recognition, computer vision and natural language processing.

Compared with conventional ML based offloading schemes, DL scheme carries extreme

calculation speed for test and has accuracy capacity for making decision. In MEC system,

DL was used for resource demands prediction and resource allocation optimization with

requiring minimal intervention thereafter.

2.2.1 Neural Networks

AI aims to make computers able to think in a way mimic how humans learn new information.

ML focuses on how to make computers learn without being explicitly programmed. As a

subset of ML, DL creates more complex hierarchical models to mimic how humans do.

In the context of AI and ML, a model is a mathematical algorithm that is trained to

have the same result or prediction that a human expert would when provided the same

information. Many recent advances in AI were made possible by DL.

As a series of algorithms, a neural network aims to recognize underlying relationships in

a set of data. The algorithms are inspired by the structure of the human brain and known

as systems of neurons with multiple layers that do not require preprocessing the input

data in order to produce a result. As a working system at the heart of a DL algorithm, a

neural network helps to process raw data which is fed into the algorithm. System analyzes

raw data based on what it already knows and what it can infer from the new data, and

makes a prediction. There are three important types of neural networks with different
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characteristics that form the basis for most pre-trained models in deep learning (Shown

in Fig. 2.1): Artificial Neural Networks (ANN), Convolution Neural Networks (CNN) and

Recurrent Neural Networks (RNN).

Figure 2.1: Characteristics Comparison of ANN, CNN and RNN

ANNs are based on artificial neurons which model neurons in a biological brain loosely

and signal can be transmitted to other neurons by each connection. The knowledge in ANNs

is gathered by detecting data relationships and learning through experience. Hundreds of

single units, artificial neurons, connected with weights constitute ANN neural structure.

Specifically, an artificial neuron has weighted inputs, transfer function and one output. It

receives signals which are real numbers at a connection called edge, and then processes the

signals. Some non-linear functions of sum of inputs compute the output of each neuron.

Neurons are aggregated into different layers that perform different transformations. Neurons

and edges have a weight that increases or decreases the strength of the signal at a connection

and adjusts as learning proceeds. A signal is sent only if the aggregate signal crosses the

threshold of neurons. Both literature-based and experimental data can be combined and

incorporated by ANNs to solve problems. As a promising modeling technique, especially

for data sets having non-linear relationships, ANN requires large training sets.
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As a specialized DNN models, CNNs appropriately handle high resolution and large

images [37], by using the mathematical convolutions for nearby samples weighted average

computation and data summary in a region with max-pooling or a similar operation [38].

RNNs models are used for function approximation and temporal sequences. The network

makes decisions for each step depending on the output of the previous time step [38]. Using

memory to recall information learned in previous steps, RNN performs gradient descent-

based training with “exploding gradients” issues that were corrected by LSTM models with

additional information flow structures.

2.2.2 Deep Learning-based Energy-efficient Computations Offloading

As a subset of ML, DL has been extensively researched and employed in almost every field

of life [39], especially, in fields of computer vision and natural language processing. It has

surpassed the performance of conventional ML (shallow learning) methods [35, 40].

In order to predict the time-series user requests and shorten service latency for users, Ale

et al. [41] developed a DL model based on bidirectional RNN for reducing the computational

cost and addressing the sparsity of data. A novel performance and energy efficient DL-

based offloading algorithm was proposed by Gong et al. [42] based on remaining energy

and an optimal part of components for offloading was selected. A DL algorithm for an

offloading decision-making process was designed by Ali et al. [43]. They used a trained deep

neural network with data generated by mathematical model to compute the energy efficient

offloading scheme. Yu et al. [44] formulated offloading decision problem as a multiple

label classification problem in MEC environment and developed a deep supervised learning

method to for reducing system cost. Also, some researchers in the paper [45] adopted a

secure and energy-efficient computational offloading scheme, and a long short-term memory

(LSTM) algorithm is used for a task’s prediction-based computation offloading strategy.

Although DL methods are markable successful in many supervised learning and opti-

mize resource allocation challenges. However, due to vast labeled datasets are required for

training models, DL performs not well in MEC networks. Thus, generating and labeling

data from a dynamic and complex MEC ENV using DL is considered a big challenge.
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2.3 Overview of Reinforcement Learning Approach

As mentioned above, it is challenging to generate and label data from dynamic and complex

MEC network with either classical methods which require a large volume of iterations, or

DL approach that requires labeled datasets for model training. In contrast, another ML

called reinforcement learning [46] is remarkably successful to be employed in computing

offloading control using Q-learning with Q-table in MEC networks [47] without labeled

data requirement for training.

As another branch of the AI field, RL is the subset of ML method. In RL, by interacting

with the environment continuously, an agent learns to take actions to have the most rewards

through dynamic learning process. Compared with other ML methods, RL does not rely

on labelled data, and it involves more objects, such as action, environment, state transition

probability and reward function. RL performs better to solve problems for dynamic systems.

2.3.1 Q-learning

As a model-free (no requirement of environment model) RL method, Q-learning learns the

value of an action in a particular state. Unlike standard ML, RL method has an agent to

learn from the evaluative and sequential feedback from MEC network environment through

interaction. The learning results are stored in a Q-table with tuples including the states,

actions, and values. It does not require to know the stochastic transitions or rewards

functions. For maximizing the expected value of total reward over successive steps from

the current state, an optimal action-selection policy can be identified during MDP. The

function computed by this algorithm called “Q” - the expected rewards for an action taken

in a given state.

2.3.2 Reinforcement Learning-based Energy-efficient Computation Of-

floading

For maximizing the long-term utility, RL agent can adjust strategies based on the reward

feedback from environment in future state [48]. RL is adopted by MEC researchers to
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address many issues for solving control problems without knowing MEC internal transition

mechanism.

In [49], a model-free Q-learning approach was adopted by Pan et al. It learns the

offloading decision and energy consumption optimization through interaction with MEC

network environment to minimize energy consumption and execution time. Liu et al. [50]

developed a resource allocation scheme based on RL for making request acceptance and

resources allocation decisions. However, because of the successive complex states and actions

of dynamic environment in offloading process, storing all the state-action value pairs in a

Q-table is considerable challenging and even impossible. Therefore, standard RL methods

cannot perform well.

2.3.3 Deep Reinforcement Learning Approach

Figure 2.2: The relationship between AI, ML, RL, DL and DRL

To address the above issues in offloading process in MEC, deep reinforcement learning

based method [51] is introduced by integrating deep Q-network (DQN) into reinforcement

learning and has been regarded as a suitable method for searching asymptotically opti-

mal solutions in time-varying MEC environment [52]. Ji et al. [39] shows the relationship

between AI, ML, RL DL and DRL in Fig. 2.2.

As one of the most effective types of DRL, Deep Q-learning (DQL) has its Q-function
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Figure 2.3: The Difference between Q learning and Deep Q-learning

that integrates with DQN (a deep convolutional neural network) and layers of tiled convo-

lutional filters for function value estimation. Critically, the DQN works as an approximator

of the state-action values in DRL, instead of establishing a Q table. With a random sample

is used of previous actions (not the most recent action) for proceeding, experience replay is

used in DQL for smoothing data distribution changes and removing observation sequence

correlations. Adjusted Q values are updated to target values with periodical updating, and

correlations with the target are reduced further. The difference between Q-learning with

Q-table and DQL with DQN is shown in Fig. 2.3).

In DQL, some parameters including model state s, action taken by agent a, and reward

value r are compositions of the Q-function. The agent in DQL can be represented as Q(s,a;θ)

and selects an action a and receives a reward for it correspondingly, where θ is the weights

related to each layer at time t in DQN. Moreover, the next state in DQL model is represented

by s′. The DQL agent may move to s′ depending on action a performed in previous state

s. DQN constructs a loop of feedback for estimation and target Q-value prediction so that

the target weights are periodically updated. Moreover, obtained on current and previous
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states, the Q-values determine the loss function of each learning activity.

2.3.4 Deep Reinforcement Learning-based Energy-efficient Computation

Offloading

The environment’s hidden dynamics can be captured better by enhancing the intelligence of

mobile edge networks and the best long-term goal could be realized by agent learning strate-

gies through repeated environment interaction [53, 54]. With the features and advantage,

DRL exhibits its particular potential for computation offloading and resource allocation

schemes designation in dynamic MEC system.

For an efficient computation offloading strategy, Zhan et al. [55] applied game theory

in designing the decentralized algorithm and adopted a policy gradient DRL approach to

solve the offloading decision-making problem. In order to greatly reduce computational

complexity due to dynamic and complex channel conditions, Huang et al. [56] proposed a

DRL-based online offloading approach to optimize the task offloading decisions and wireless

resource allocations. Alfakih et al. [57] developed a DRL-based state-action-reward-state-

action algorithm for making optimal offloading decision to save energy consumption and

computing time. In [58], DRL is used to minimize energy consumption by controlling com-

putation offloading for Internet of Vehicles. Li et al. [59] proposed a DRL based resource

allocation approach to improve the Quality-of-Service and reduce service delay. Moreover,

DQN is adopted by [60] in MEC system for minimizing energy consumption and response

latency. In [61], an online DRL-based offloading control method in MEC is developed. A

double DQN (DDQN)-based method was adopted, and a mixed-integer nonlinear program-

ming (MINLP) problem was formulated by Zhou et al. [62] to save energy consumption in

MEC system with delay constraint and uncertain resource requirements of heterogeneous

computation tasks. Also, DRL was utilized to design an optimal computation offloading

strategy in the work of Dai et al. [63] for minimizing system energy consumption. By ex-

ploiting non-orthogonal multiple access for computation offloading in MEC, Qian et al. [64]

adopted distributed online algorithm based on DRL to solve a joint optimization problem of

the multi-access multi-task computation offloading, NOMA transmission, and computation-

resource allocation, in order to save IoT user energy cost for completing tasks with required
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service latency. The Q-learning and DRL based schemes are proposed in the work of Li et

al. [65] to minimize sum energy consumption and jointly optimize the offloading decision

and computational resource allocation in a multi-user wireless MEC system. Moreover, in

the work of Yan et al. [66], a MEC system where an access point assists an IoT user to

execute applications was considered. They developed a DRL structure based on actor-critic

learning to jointly make offloading decision of tasks following a general task call graph and

the resource allocation under dynamic wireless channels and stochastic edge computing

capability, to achieve energy-time consumption minimization goals.

2.4 Security Challenges

In existing literature, researchers mainly focus on delay-optimal [67] or energy-optimal

offloading schemes in computation offloading in MEC systems [68–72], and the security

issue is seldom considered. However, due to the broadcast nature of wireless communi-

cations, security provisioning is essential [73]. The computation offloading in MEC may

face security challenges when the computation tasks could be overheard by malicious eaves-

droppers nearby during offloading process from IoT users to edge servers through wireless

channel [74, 75]. For example, the users’ private data (e.g., health information, identity

information) could be eavesdropped. The more devices are connected, the more data is

attractive for cybercriminals.

In order to address above problem, some conventional cryptography at upper layer tech-

niques [76] can be used, such as Elliptic Curve Cryptography [77], a steganographic protocol

using HTTP “control” messages [78]. As cryptosystems at upper layer are built on hardness

of computing problems such as Factoring (RSA) and Discrete logarithm (Diffie-Hellman),

and the assumption of limited computational capability of eavesdroppers. They have some

shortcomings: perfect secure channel for key exchange required, algorithms could be com-

promised and high computation complexity. They usually require high computational power

and need key management. Therefore, they might not be applicable to IoT network with

very limited capacity. In addition, they can only provide computational security and they

are vulnerable to various attacks as the adversary’s power keeps increasing. Although there

are some cryptographic techniques that can be employed, it is considered challenging to
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implement the traditional cryptographic techniques in IoT users with limited computing

capacities [79]. Moreover, those techniques often add extra-computational overheads to the

resource-limited IoT users inevitably. Novel solutions are urgently needed to protect the

security while not incurring too much overheads.

2.4.1 Physical Layer Security with Friendly Jammer

Without replacing conventional security schemes, extensive studies have explored advan-

tages of one potential solution which is PLS [80]. As a viable solution to guarantee wireless

offloading security, PLS explores the physical layer characteristics (e.g., wireless channels)

and exploits the differences in channel conditions between each legitimate user and eaves-

dropper to enhance communication systems security [81]. PLS achieves perfect secrecy or

information-theoretical security during data transmission between legitimate terminals.

Unlike encryption-based algorithms, the secrecy level provided by PLS is not compro-

mised by the computation resources limitation of mobile devices and does not depend on

any encryption technologies which are computationally expensive [82].

Figure 2.4: Wiretap Channel Model

See the wiretap channel model shown in Fig. 2.4, in PLS, cryptosystem cannot be bro-

ken even when the adversary has unlimited computing power. Transmitted signal could be

protected from being decoded by eavesdroppers with maximizing secrecy capacity. Secrecy

capacity is the maximum rate at which the source sends information securely to the desti-

nation which can recover information without errors, while the eavesdropper gains nothing
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[80]. It is calculated by main channel capacity minus wiretap channel capacity as:

CSec = CM − CW (2.1)

Only when CM > CW , secrecy capacity becomes positive. However,in the case that channel

capacity of the destination is less or close to wiretap channel capacity (CM ≲ CW ), signal

could not be securely transmitted to destination.

To solve this problem, researchers have investigated some PLS techniques with jam-

mer [83, 84] for reinforcing the privacy and security of wireless communication systems.

When the source is sending signal, a jammer can generate artificial noise to degrade the

reception performance of the eavesdropper, thus improving the secrecy rate. In practical

computation offloading in MEC, eavesdropping attacks have been considered and wireless

channels nature in PLS has been exploited to enhance security [85, 86]. Moreover, IoT

users have great concerns in performance experiences regarding energy minimizing under

the premise of security provisioning. It is a nature idea to consider PLS applications in se-

cure computation offloading to MEC system [74]. It is critical to focus research on resource

management in MEC for optimizing offloading energy efficiency and ensuring offloading

security [85]. Therefore, a novel DRL approach was proposed in this work with the goals of

minimizing energy cost and enhancing security of offloading tasks using PLS technologies

with friendly jammer in a MEC system with an eavesdropper.
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System Model and Problem

Formulation

Motivated by pioneering research, a jammer assisted secure offloading scheme is proposed

in this work for MEC. In the system model, a friendly jammer is employed to assist IoT

users, which sends jamming signal to degrade the eavesdropper’s reception and enhances the

secure transmissions (increasing security rate) in offloading process. When the main channel

capacity is less or close to the eavesdroppers’ capacity, jammer generates noise signals, which

is transmitted to confuse or degrade the decoding capability of eavesdroppers (unintended

receivers). Therefore, it could significantly improve the secrecy capacity and enhance secure

communications between loT users and selected edge servers, while malicious eavesdroppers

obtain zero useful information.

In this study, similar to many existing works on PLS [74], the eavesdropping attack is

considered where an eavesdropper is a passive attacker. The eavesdropper’s interest is to

intercept the signal and learn the information transmitted between IoT devices and edge

servers. The jammer attack is not considered in this work. For potential jamming attack

from the adversaries, there are some anti-jamming techniques that can be used. One anti-

jamming technique is frequency hopping whereby the legitimate users rapidly change the

carrier frequency in a predetermined order (only known to the legitimate users) to avoid

jamming attack.

22
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3.1 System Model

Fig. 3.1 shows the system model, where IoT users offload their computation tasks to MEC

server with the aid of a friendly jammer and in presence of an eavesdropper.

Figure 3.1: System Model

Suppose that there exists an eavesdropper that can eavesdrop and receive the data

offloaded to edge servers. In order to reduce the data leakage, we choose other IoT user as a

friendly jammer to broadcast artificial noise called friendly jamming. The jammer produces

jamming signal to degrade the reception of the eavesdropper and thus improve the security.

For computation offloading, suppose there is a control agent which can communicate

with any of edge servers and coordinate MEC system. The system state information such

as tasks profile, each edge server status, and output of a learning model for optimizing

decisions for executing tasks, can be collected by agent. The action includes edge server

selection for offloading a certain task, recommended CPU frequency at edge servers for
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Table 3.1: Summary of Main Notations

u
(t)
n nth IoT user at at t time slot

m
(t)
k kth MEC server at t time slot

Qk kth MEC server mk tasks queue

f
(k)
max maximum recommended CPU frequency of kth edge server mk

T
(t)
i,j jth task of ith user at t time slot

di,j task T
(t)
i,j data size

ci,j requested CPU cycles to process task T
(t)
i,j

tmax
i,j maximum tolerate time of task T

(t)
i,j

tresk current task residual running time in selected kth MEC server

tquek task waiting time in queue before being serviced

ttrani,j security transmission time for offloading task Ti,j to MEC server

tcomp
i,j computing time of task Ti,j

ri,k transmission rate at kth MEC server

α
(B)
i,l bandwidth

Pi transmission power of ith IoT user

P ′
i transmission power of jammer

hi,l Rayleigh fading

Li,l path loss

ri,e eavesdropper’s transmission rate

rseci,k security transmission rate to target kth MEC server

Ei,j total energy consumption of offloading task Ti,j

Etran
i,j security transmission energy consumption

Ecomp
i,j computation energy consumption

executing task and friendly jammer selection. Tasks could be offloaded to the selected

edge servers under the aid of the selected friendly jammer for security purposes, and then

tasks are processed by servers with recommended CPU frequencies by following the agent’s

instructions.

In this system, a set of IoT users is denoted as Ut = {u1, u2, . . . , un}, where n is

the number of users at a given time slot t. A set of MEC servers is denoted as Mt =
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{m1,m2, . . . ,mk} with k as the number of edge servers at the given t time slot. Specifi-

cally, as MEC servers have different capacities, their heterogeneity is captured by Mt =

{(Q1, f
(1)
max), (Q2, f

(2)
max), . . . , (Qk, f

(k)
max)}, where Qk is task queue and f

(k)
max is maximum CPU

frequency of kth edge server. At a given time slot, more than one task could be generated for

offloading, and tasks also could be chosen to process remotely by an edge server or locally.

Each IoT user has computation tasks to be completed within a certain delay constraint.

Tt = {T0,0, T0,1, . . . , Ti,j , . . . , } is the set of tasks and the ithuser’s jth task is denoted as

Ti,j . Each computation task can be described in three terms as Ti,j = {di,j , ci,j , tmax
i,j } with

di,j denotes the data size, ci,j defines the requested CPU cycles and tmax
i,j represents the

maximum tolerant time of task Ti,j .

The task Ti,j service time includes tresk denotes current task residual running time in

selected edge server, the transmission time for offloading task to MEC server ttrani,j , the

waiting time in the queue before service tquek , and the computing time tcomp
i,j . When total task

service time is less than task maximum tolerant time tmax
i,j , a task is processed successfully.

Otherwise, the task fails. It is formed as

Ti,j =


1, if tresk + tquek + ttrani,j + tcomp

i,j ≤ tmax
i,j ;

0, otherwise.

(3.1)

tresk is the current executed-task’s residual running time in the target kth server and can

be computed by current running task’s total computing time tcomp
curr minus start running time

trun. Namely,

tresk = tcomp
curr − trun. (3.2)

In the queue of kth server, the task waiting time tquek is the aggregate computing time

of all the tasks before the current task. Namely,

tquek =

M∑
j=0

c∗,j
f∗,j

. (3.3)

where c∗,j is the required CPU cycles[33] and f∗,j is the recommended frequency.
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ttrani,j is the security transmission time which depends on the data size and the security

rate. It is the time spent to transmit the data to the edge server securely (i.e., the eaves-

dropper cannot gain nothing). It can be obtained by dividing the task data size di,j by the

security rate rseci,k , as

ttrani,j =
di,j
rseci,k

, (3.4)

The security transmission rate rseci,k to the target kth server is given by

rseci,k = ri,k − ri,e, (3.5)

where ri,k and ri,e are the transmission rate at the kth edge server and the eavesdropper’s

rate, respectively.

The transmission rate ri,k to the target kth server can be given as

ri,k = α
(B)
i,l log2(1 +

Pihi,kLi,k

N0 + P ′
ihi,kL

′
i,k

), (3.6)

where α
(B)
i,l is the bandwidth, Pi is i

th IoT user’s transmission power, P ′
i is jammer’s trans-

mission power, hi,l is Rayleigh fading and and Li,l is path loss. Similarly, the eavesdropper’s

rate ri,e can be given by

ri,e = α
(B′)
i,l log2(1 +

Pihi,eLi,e

N0 + P ′
ihi,eL

′
i,e

) (3.7)

The computing time tcomp
i,j of task which is offloaded to selected edge server is given as

tcomp
i,j =

ci,j

fk
i,j

, (3.8)

ci,j denotes the requested CPU cycles for task Ti,j computation and fk
i,j represents the

recommended CPU frequency.

Therefore, we can get the sum energy consumption Ei,j as summation of security trans-

mission energy consumption and computation energy consumption which are denoted by

denoted by Etran
i,j and Ecomp

i,j , respectively
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Ei,j = Etran
i,j + Ecomp

i,j . (3.9)

3.2 Problem Formulation

The long-term utility of computation offloading process in MEC system is considered in

this work, and our objective is maximizing number of completed tasks before deadlines,

minimizing energy consumption and data leakage with enhanced transmission security in

the long run.

The optimization problem can be formulated theoretically as following:

min
aτ

N∑
τ=0

Etran
τ + Ecomp

τ

=
N∑
τ=0

[
di,j
rseci,j

Pi,j + 10−26(fk
i,j)

2ci,j

]

s.t. tresk + tquek + ttrani,j + tcomp
i,j ≤ tmax

i,j ,

rseci,j ≥ P,

fk
i,j ≤ fmax

k ,

aτ = {k, fk
i,j , Js}

(3.10)

where P is the security threshold, Js is selected jammer and fmax
k is maximum frequency

of kth MEC server, respectively. The Etran
τ and Ecomp

τ are security transmission energy

consumption and computation energy consumption which are calculated by

Etran
i,j = ttrani,j Pi,j =

di,j
rseci,j

Pi,j . (3.11)

Ecomp
i,j = 10−26(fk

i,j)
2ci,j , (3.12)

where fk
i,j is the frequency for computing task Ti,j in kth MEC server.

However, the above reward formulation has some drawbacks. Firstly, sometimes, the
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constraint tresk + tquek + ttrani,j + tcomp
i,j ≤ tmax

i,j might not be satisfied. Moreover, when there is

no solution in the feasible areas, control agent has to deal with it. Secondly, balancing the

energy cost and response delay is not flexible. Moreover, the computational cost may grow

dramatically due to the increase in variables and the problem scale.

3.2.1 Markov Decision Process Formulation

As mentioned previously, the long-term utility of the system is mainly considered in this

work. Therefore, the optimization problem is formulated as a Markov Decision Process

(MDP) for maximizing the expected long-term rewards. The interaction of agent and

environment in a MDP is shown in Fig. 3.2 [46].

Figure 3.2: Typical Reinforcement Learning Cycle

For RL problem, MDP is an idealized and mathematical form for evaluative feedback,

choosing different actions according to situations. In the agent-environment interface, MDP

is adopted for learning from interaction between agent and MEC network environment to

achieve the long-term goals. In this goal-directed interaction process, the agent is the learner

and decision maker, and environment is almost all the things agent tries to interact with

outside. Informally, we could consider that anything outside of the agent and cannot be
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arbitrarily altered is the environment. When actions are selected by the agent, responses

will rise for the actions accordingly, and then new situations in the environment will be

provided to the agent. The responses passing to the agent from the environment are called

rewards. In RL, the formulating goal of agent is maximizing its received cumulative rewards

over time instead of immediate ones. Simply, by choosing actions and receiving environment

responses, the cumulative numerical values kind of rewards have been maximized in a long

run by the agent.

As a discrete time stochastic control process, MDP models the computation offloading

decision process. The interaction between agent and environment in MDP is considered as

an episode that equals to an offloading period. We call the sub-sequences as episodes where

interactions naturally break into. An episode contains several discrete time slots denoted

by t. At each t time slot, a control agent is in some st state. The MDP episode starts at

a a standard random initial state or a standard distribution sample and ends at a special

state named terminal state. An episode could start independently whenever the previous

episodes ended at. Therefore, we can consider that almost all the episodes end at the

same terminal state. with different rewards for the different outcomes. Specifically, in this

work, an episode is considered to terminate at the time when one or more edge servers are

overloaded. when the MEC network environment current state is st, as a decision maker,

the agent has to choose any action at. Therefore, by forwarding the agent to the next new

state and rewarding the agent correspondingly, the MDP provides responses at the next

time step. When the MEC network environment current state is st, the action at taken by

the agent brings rewards. At, St and Rt represent the action space, state space and reward,

respectively. Our proposed MDP guarantees the memory-less Markov property. The future

states only rely on current state, not former ones.

Concretely, with time step in given time slot t, the states, actions, and reward of the

MDP formulation in the MEC network environment are formally defined with details as

below.

States: The states of the environment include the current arrived tasks, the workload

of edge servers, the wireless channel conditions.

• States={Tasks Info, Edge Servers, Security Speed Matrix}
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• Task ={user ID, data size, CPU cycles, maxi tolerant time}

• Edge Server ={server configuration, task queue}

• Security Speed Matrix: depends on channel and pass loss

At t time slot, states st is:

st = {s0, s1, sτ , . . . , sδ|
δ∑

τ=0

τ << t}, (3.13)

where the δ is the threshold of number of tasks received by the MEC servers at t. If

indices of tasks are larger than δ, tasks are assumed to be processed in the next time slot.

For sτ = {Tτ ,Mτ , r
tran
τ , r′τ}, m

(τ)
k is the state of kth edge server in Mτ , r

tran
τ denotes the

transfer speed to rtranτ edge servers, and r′τ is eavesdropper transmit speed.

Moreover, when the model takes action, tasks are added into queues at edge servers.

Before the task being served, its waiting time in target edge server is updated. To run

the task, its queues are derived in selected kth edge server with tasks information and

recommended CPU frequency represented as f
(k,τ)
r :

Qτ
k = {(T (1,τ)

1,1 , f (1,τ)
r ), . . . , (T

(k,τ)
i,j , f (k,τ)

r ), . . . }, (3.14)

where Ti,j is the jth task of ith IoT user.

Actions: the actions the agent can choose include which edge server to offload the tasks,

which intermediate node is selected as the friendly jammer among all possible nodes, and

how to allocate CPU cycles at the edge servers to execute the task. When the agent chooses

to take actions, factors in the actions includes task offloading target edge server’s index,

edge servers’ recommended CPU frequency, and selected friendly jammer, as following:

Action={⟨ Target Server ID, Recommended CPU Frequency, Selected Jammer ⟩, ...}

An action can be denoted as aτ = (k, fk
i,j , Js) with target offloading edge server k, kth

server’s recommended maximum CPU frequency for jth task of ith IoT user executing fk
i,j

which has range between 0% and 100%, and selected jammer Js.
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Within t, a set of actions can be taken by agent is:

at = {a0, a1, aτ , . . . , aδ|
δ∑

τ=0

τ << t}. (3.15)

Ideally, at a time slot t, received tasks can be distributed by a single action. When

the multi-tasks are distributed from multi-users to multi-edge servers with other action

control parameters, some RL model may be diverged due to action space explosion [46].

In order to address those challenges, the states transition could be assumed depend on the

control agent actions for collecting rewards of the tasks received in a task queue within

τ << t. During t time slot, we assume there is no change in some other MEC parameters

and channel distribution. Based on state transition with time step τ instead of t in MDP,

p(s′|s, a) presents the transition probability and can be formed follows:

p(s′|s, a) .
= Pr{sτ = s′|sτ−1 = s, aτ−1 = a}. (3.16)

∑
r∈R

p(s′τ , rτ |sτ , aτ ) = 1 (3.17)

Rewards: The reward function reflects the multiple objectives that I want to achieve,

including maximizing the number of completed tasks before deadlines and saving energy

consumption, while satisfying the security requirement. I plan to use a weighted sum

method for multi-objective optimization. Different weights can be assigned to the energy

consumption and number of completed tasks, so that they can be converted to the same

scale. The weights can be adjusted based on the interests of the operators or users in the

system.

A flexible reward function of DRL model is designed in our work for solving all afore-

mentioned optimization problems in an end-to-end manner at one time.

Rewards Function:

Rt(st, at) =

δ∑
τ=0

Rτ (sτ , aτ ) =

δ∑
τ=0

(1− η)β1Ti,j − ηβ2 log2(Eτ ) + C, (3.18)
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with
∑δ

τ=0 τ << t.

As reward is obtained in t time slot, all the rewards Rτ (sτ , aτ ) at τ time step are

collected in Rt(st, at). Rτ (sτ , aτ ) indicates completed tasks number and energy cost with

β1 is a term for reward normalization of completed tasks before deadline and β2 is for

energy consumption. For balancing the completed tasks number and energy cost, the weight

η ∈ [0, 1] is adjustable in different applications. A positive constant number C is used for

accumulative increasing.

Value Function for Policy: As the functions of state–action pairs or states, value func-

tions are used for agent performance estimation such as action choice from experience in

states. The agent performs good or not depends on the expected future rewards or re-

turn which depends on the chosen actions. Therefore, the value functions are restricted

with particular acting approach which is called policy. Concretely, as an ordinary function

that maps states to each possible selected action’s probability, π(a|s) (distribution is over

a ∈ A(s) for each s ∈ S) is followed by agent at time t. In RL methods, the agent changes

its policy based on the experiences.

Under a policy π, as an expected return, υπ(s) denotes the value of state s, so it is

defined as state-value function for all s ∈ S in MDP. Value υπ(s) can be presented as,

υπ(s) = Eπ

[
Gt | St = s

]
= Eπ

[ ∞∑
k=0

λk Rt+k+1 | St = s
]
. (3.19)

Where, the expected value Eπ is from a random variable, and indicated that policy π is

followed by the agent.

Moreover, under the policy π, qπ(s, a) is called action-value function and presents the

value of choosing action a in state s. It is defined as,

qπ(s, a) = Eπ

[
Gt | St = s,At = a

]
= Eπ

[ ∞∑
k=0

λk Rt+k+1 | St = s,At = a
]
. (3.20)

Optimal Value Function for Optimal Policy: In RL, for achieving the goal that obtains
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as much reward as possible over long run, finding the optimal functions includes optimal

state-value function and optimal action-value function for policies are significant. As there

always exists a policy that is not worse than others. Theoretically, the number of this

kind of policy is more than one. We call them all the optimal policies which share the

same optimal state-value function and optimal action-value function. Separately, these two

optimal value functions are denoted as,

υ∗(s) = max
π

υπ(s) (3.21)

and

q∗(s, a) = max
π

qπ(s, a) (3.22)

Theoretically, an optimal policy can be learned very well. However, it can not be

computed by solving Bellman optimality equation simply in practice, even if there is an

accurate and complete model for the dynamics in environment. Thus, the agent can only

approximate to varying degrees. For approximating the value functions and policies, a large

amount of memory is required. It is possible to build up the optimal policies approximation

in RL with on-line nature to make better decisions. This makes RL distinguished from

other traditional approaches.
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Figure 4.1: Developed end-to-end Deep Reinforcement Learning Model

34



Chapter 4.Proposed Method 35

In this work, we propose a developed end-to-end DRL method (shown in Fig. 4.1)

concerned with how the agent takes actions in the MEC environment in order to maxi-

mize the long-term reward (achieve multiple objectives) includes maximizing the number

of completed tasks before deadline and saving energy consumption constrained by security

transmit rate at the same time.

Without assuming the knowledge of any MDP mathematical models exactly, the MEC

network environment is considered as a RL environment and a MDP is satisfied with internal

transition probability P (r, s′|s, a). We consider the proposed DRL model as a learning agent

that can learn from the experience through interacting with MEC network.

First, we assume that the decision of the nth IoT user for choosing an action in a given

state s is determined by a policy:

π(s) = a,∀s ∈ S, a ∈ A. (4.1)

In the offloading system of MEC network, a coordinator plays a role for collecting and

placing offloading tasks profiles into the queue in MEC ENV firstly. Then, input states are

represented by DQN for probabilities computation PA = {p1, . . . , pk} of all possible actions

at one time. As the backbone of the proposed method, DRL agent takes actions depending

on this probabilities and environment interactions. The tasks offloading is executed by

coordinator to the target server, in where tasks are run with recommended CPU frequencies.

The experience replay buffer works for storing data information includes action, current and

next states, and reward. The data is fed into the DRL model for training purposes. Then,

the sample data is withdrawn from the buffer by DRL agent. The learning network is

trained by reducing the loss function which is determined by Mean Square Error (MSE).

After every episode, the target network is updated accordingly, finally.

In this work, in order to learn from an unknown MEC ENV, balancing exploration and

exploitation (Fig 4.2) with a ϵ− greedy algorithm is critical for the DRL agent (the greedy

algorithm is shown in Fig 4.3), where ϵ is designed for decreasing over episodes. The reason ϵ

is decay over time because the agent needs to explore and learn more about the environment

in the earlier episodes; further, it can leverage those explored data and learn to take better

actions over the episodes. As the agents collect more data and learn enough about the MEC
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ENV, we should decrease the explore actions because those explore may take actions that

leads to poor performance. Exploration is the agent takes actions randomly for knowledge

acquiring and learn from the unknown MEC network environment, and exploitation allows

the agent to leverage what it has learned by exploring the search space associated with Q

value [? ]. In other words, the exploration process is a phase to collect training data for

the agent to train the model, whereas the exploitation is to choose optimal policies based

on the collected information. In the early episodes, due to no knowledge of MEC network

environment for agent, it should take actions randomly to explore the MEC ENV. When

the agent acquires enough knowledge gradually, learned knowledge will start to be exploited

for generating the goal which is optimal policies, namely,

π(s) = a = argmax
a′∈A

Q
(
s, a′; θ

)
, (4.2)

Figure 4.2: Epsilon-Greedy Action Selection

The optimal policy π∗ is the policy for optimizing the action-value Q∗(s, a; θ) to maxi-

mize the long-term accumulative rewards. Agent takes action a with state s, and following

policy π to generate action-value Q(s, a; θ). It is computed with Bellman equation (Eq.4.4),
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Figure 4.3: Greedy Algorithm for Balancing Exploration and Exploitation

which is the summation of an immediate reward R and the expected return with discounted

by the factor λ. Q∗(s, a; θ) denotes the optimal action-value which is the maximum value of

all possible values of Q(s, a; θ). To derive optimal action-value, the DRL gent takes action a′

from all possible actions, and this is for the next step of Q(s, a; θ) in order to maximize the

R+Q(s′, a′; θ). This is a repeat step for generating the optimal policies over all the states.

The optimal action-value could be derived by iterative updating of Bellman equation, and

the value of Q(s, a; θ) has continuous improvement in iterations. Qτ → Q∗ with τ → ∞ is

shown as below,

Q∗(s, a; θ) = max
π

E [Rτ |sτ = s, aτ = a, π] . (4.3)

Q(s, a; θ) = Es′

[
R+ λmax

a′∈A
Q
(
s′, a′ ; θ)|s, a

]
. (4.4)

Qτ+1(s, a; θ) = Es′

[
R+ λmax

a′∈A
Qτ

(
s′, a′ ; θ)|s, a

]
, (4.5)
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In this proposed DRL model, a Deep Q-network with parameter θ is the approximate

function and introduces fixation methods for oscillation mitigation and divergence preven-

tion in training process. Specifically, there is a copy with fixed parameters θ− from main

network at the same intervals named target network of the approximator neural network

(weights keep unchanged). The other copy called the primary network with copied weights

to target network. The target network is considerably important to stabilize the training

process. Unlike the standard deep learning training processes have labels of the training

data, DRL models only have feedback from the environments, which indicate the perfor-

mances of the decisions made by the DRL agent but not label data. In addition, the

feedback from the environments could extremely noisy due to the environment and random

actions taken by the agents. Therefore, the weights of target network are fixed for certain

number of episodes to avoid noisy weights update for the Q-Network. The primary network

is trained with data sampled from the memory buffer. Thus, through back propagation,

only the main network is trained truly. (s, a, r, s′) represents a special structure called

experience replay. It is used for storing agent’s every step. In the process of each network

training iteration, a cluster of experience will be extracted from experience replay randomly

for learning purpose. As an off-policy algorithm, Q-learning could learn from both past and

current experience. In the process of learning, the neural network will be more efficient due

to the random addition of previous experience, and the correlation between training samples

will be broken down also. The loss function for updating DQN updates with iteration i is

as below,

Lτ (θτ ) = E(s,a,r,s′)

[
(F ′ −Q (s, a; θτ ))

2] + Es,a,r

[
Vs[F

′]
]
. (4.6)

where θ−τ is the MSE of current action-value Q(s, a; θ−τ ) and optimal value Q∗(s′, a′).

For minimizing the loss function, θ−τ is updated in previous iterations, and can be replaced

with F ′=r + λmaxa′ Q
∗ (s′, a′; θ−τ ) which is fixation term.

By keeping interacting with the environments and receiving the feedback (rewards), the

DRL agent can learn optimal decisions (i.e., for a given task, which edge server to offload

the task, how to select the friendly jammer, and how to allocate CPU cycles at the edge

servers) without knowing its internal transition to maximize the long-term rewards which
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is the accumulative rewards over time. The reward function is defined as a weighted sum

method for multi-objective optimization includes maximizing the number of completed tasks

before deadlines and saving energy consumption, while satisfying the security requirement.

The security rate is used in the data transmission phase from IoT devices to the edge servers

to calculate the transmission time. According to the physical meaning of security rate, the

data size of the task divided by the security rate equals to the time needed to offload the

data to the edge server securely without any information leakage to the eavesdropper. In

this work, the security rate is improved by using a friendly jammer which is selected from

one of the IoT users. Different weights are assigned to the number of completed tasks and

energy consumption so that they can be converted to the same scale. The weights can be

adjusted based on the interests of the operators or users in the system.

4.1.1 Data Prepossessing

In this proposed DRL method, the DRL agent does not require any dataset prior to training

the model, which is different from supervised learning. The agent learns to make optimal

decisions through interacting with the MEC network environment and gain some experience.

Those experiences will be put into a so-called replay buffer. The replay buffer is used to

train the neural network. Those noisy and complicated raw data would increase the training

effort for this DRL model due to the dynamic raw features such as users’ tasks, channels

and servers’ workload. Raw data (real world data) is always incomplete and cannot be sent

through a model.

To deal with the above presence of unformatted real-world data issues, data prepossess-

ing is necessary and critical. Without data prepossessing, the essential features with raw

data may be overlooked by DRL agent, and optimal or non-optimal solutions may be con-

verged too slowly. Our data has variable scales, and its feature distribution does not follow

a Gaussian (bell curve) distribution. In order to improve the accuracy and performance

of our model, we adopt a normalization method to concatenate and re-scale the features

in a desirable format in this work. Consisting of hierarchical components, the features are

stored in a tree-like data structure. Specifically, there is a root node, and features from MEC

servers are presented by a branch with three sub-branches such as states of edge server Mτ ,

secure transfer rate matrix rsecτ , and tasks Tτ . Further, every sub-branch involves several
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components in leaf-level that should be normalized and concatenated together.

First, the Frobenius norm (Eq.4.7) is computed as a matrix norm of an m × n matrix

A, and determined as a square root of the sum of the absolute squares of its elements. It is

for all leaf-level components in feature Rm×n.

Then, in an element-wise manner, the normal is divided for computing the matrix Rm×n
N

(Eq.4.8) normalization.

Finally, a single feature from the concatenating of all sub-features is used to feed the

learning model.

∥A∥F =

√√√√ m∑
i=1

n∑
j=1

|aij |2, aij ∈ Rm×n (4.7)

Rm×n
N =

Rm×n

∥A∥F
. (4.8)

4.1.2 Training Process and Implementation Details

This subsection presents the DRL model training process with training process algorithm

shown in Fig 4.4 for the proposed DRL method to accomplish maximizing the cumulative

reward (achieve multiple objectives).

In our DRL model, as neural networks are used, RL is more unstable to represent the

action-values. Moreover, a lot of data is required for the network training, and converging on

the optimal value function is still not guaranteed. Due to there is high correlation between

actions and states, the network weights have oscillation or divergence risks.

For addressing above issues, we will introduce two techniques in this section: Experience

Replay and Target Network in DQN:

Experience Replay and Experience Replay Buffer: Q(s, a), a nonlinear function

with a neural network, is the function we are trying to approximate. Therefore, targets

should be calculated using Bellman equation. However, the independent and identically

distributed training data is one of the key requirements of Stochastic gradient descent
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(SGD) optimization. When the agent interacts with environment and data is fed into the

model sequentially, the experience tuples sequence can have high correlation. The effects of

the high-correlation may affect and vacillate the Q-learning algorithm when it learns from

each of those experiences tuples in a sequential order.

The experience replay is used to store the past experiences, and then the Q-network is

updated by a subset of those experiences instead of just considering the single most-recent

experience. By using these past experiences and sample training data, we can prevent

action values from calamitous oscillation or divergence. This large buffer for storing is

called experience buffer or replay buffer. A number of experience tuples are collected in

this buffer and denoted by (S, A, R, S′). During the MEC ENV interaction, these tuples

are added into the buffer gradually. When the buffer with fixed size is full, the new data

is added to the buffer end, and the oldest data is deleted from buffer in order to make

room for later new ones. The training data is drawn uniform randomly from experiences

buffer. For learning purposes, as an act of sampling a small batch of tuples from the replay

buffer, experience replay makes model to sample multiple data samples for leveraging batch

normalization and reducing the swaying.

The actual loss function with random samples and experiences replay is shown as

Lτ (θτ ) = E(s,a,r,s′)∼U(D)

[(
F ′ −Q(s, a; θτ )

)2]
. (4.9)

There are several benefits that experience replay and experience replay buffer brings

to the training process. First, not only break harmful correlation down, experience replay

also make it available for learning more from the individual tuples with multiple times.

Secondly, it can recall rare occurrences for model get rid of over fitting and the affect from

bias of training sample distribution, and it could make the use of experience better in

general. Thirdly, instead of feeding the sample one by one, the sampled training data from

the experience buffer could decouple the sequential order correlation. Third, by using batch

samples, oscillation or divergence could be mitigated.

Target Networks: In Q learning, updating guess by guess may cause harmful correla-

tions potentially. Although, the value of Q(s, a) is provided by Bellman equation via Q(s′,
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a′). There is only one step between the states s and s′, and it is hard for a Neural Network

to distinguish between s and s′ due to their similarity. In order to make Q(s, a) closer to

the desired result, the Neural Networks’ parameters are updated gradually. Actually, other

nearby states and the value produced for Q(s’, a’) can modified indirectly. However, this

could lead to unstable training.

To solve this problem, the stability of the training could be enhanced by employing

the Q values of target network for main Q-network training. By target network, primary

network is used to Q(s′, a′) value in the Bellman equation to back-propagate through main

Q network training. The parameters of the target network are synchronous with main

Q-network parameters regularly. Note that they are not trained.

Figure 4.4: Deep Q-Learning Training Algorithm

There are two main phases (not directly dependent on each other) that are interleaved

in my proposed algorithm. First, environment is sampled by actions taken, and then a

replay memory D stores the observed experienced tuples. Second, D selects a small batch
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of tuples randomly, and a SGD update step is used for learning from that batch. Multi-

sampling steps and one/multi-learning steps could be performed with different batches. In

practice, the learning step could not be run immediately untill D stores enough experiences

tuples. Simplify, the process starts with an initialization and preparation. Then, the agent

fully explores environment and training data is generated. Finally, it moves to the learning

process.

Initialization

From the Fig 4.4, it can be seen that the initializing of an empty replay memory D

and the exploration proportion ϵ, and also neural networks (i.e., the target and learning

network) establishment are required at the beginning of algorithm. When the DRL agent

interacts with MEC network environment, all experiences obtained by agent are stored in

replay buffer. The replay memory D is finite, so a circular queue is used to retain the most

recent experience tuples d. Also, a learning network with random weights is initialized and

copied to target network. Then, in the algorithm, data is generated and a DRL model is

trained over all episodes. An episode may end when there is at least one overloaded MEC

servers (indication of a finish flag returned by MEC ENV), or at the time step which equal

or over time threshold Tmax. After each episode, the memory is not cleared out to recall

and build batches of experiences from across episodes.

Data Collection

The DRL agent does not require any dataset prior to training the model. Instead, the

training dataset is generated by the interaction between DRL agent and the MEC network

environment. Concretely, by using ϵ− greedy method, DRL agent obtains the knowledge.

In epsilon-greedy action selection, the agent uses both exploration to look for new options

and exploitation to take advantage of prior knowledge. With a probability of ϵ, greedy

actions are explored and produced by agent randomly. Then, the optimal action is taken

most of the time with probability of 1 − ϵ. In each interaction, a tuple contains current

state sτ , action aτ , reward rτ and next state sτ+1 are generated as data that be stored

into the experience buffer for further learning purposes. Although the training samples are

stored in queue-like memory buffer, they will be sampled randomly to reduce the sequential

correlation during the training process.
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Learning

Unlike training a conventional deep learning model requires the availability of a large

amount of pre-existing human-created, labeled, or verified data, which is difficult to obtain

for real-life scenarios, the motivates DRL technique lets the system learn by itself and solves

sequential decision-making problems relies on “trial and error”.

When a policy is executed in an environment, the experience replay buffer is used to

store trajectories of experience. In the training process, replay buffer is to be solicited for a

subset of the paths (a sequential subset) to “replay” the experience of agent. In the forward

propagation firstly, a number of training samples are drawn by DRL model from the buffer

and then fed to the local learning neural network and also the target network. Then, we

compute the loss (Eq. 4.6) between the learning neural network Q values and target network

Q values. During the learning process, the error estimated by the loss function is minimized

by optimizing the weights θ. The standard neural network computes the loss function as

the error between labels and outputs for evaluating how well algorithm model’s dataset is.

However, as evaluative feedback rather than true label data is learned by agent, the DRL

model loss function is computed by the difference outputs from the learning network and

target network. The partial derivative with respect to θ is computed as Eq. 4.10. The term

Es,a,r

[
Vs[F

′]
]
in the loss function could be ignored when computing partial derivative as it

does not depend on learning network parameters θ. Therefore, we got the simplified partial

derivative as Eq. 4.11.

Further, the gradient of L (θτ ) could be derived by employing chain rule and replacing

F ′ with F ′ = r+λmaxa′ Q
∗ (s′, a′; θ−τ ). Therefore, we got the gradient of L (θτ ) as Eq. 4.12,

where θ−τ = θτ−1.

In the back propagation, the parameters θ of local learning neural network are updated

based on the received rewards to produce an output that matches the target Q values as

close as possible. They are updated in Adam optimization function by the multiplication

of learning rate α and partial derivative loss function about θ (Eq.4.13). We use the target

network’s predicted Q values to back propagate through and train the main Q-network

for improving the stability of the training. Note that, the target network’s parameters are

not trained but are synchronous with the main Q-network’s ones regularly. In every N
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episodes, updated parameters θ in learning network are replicated to the parameters in

target network to overwrite the θ−.

∇θτL (θτ ) = ∇θτEs,a,r,s′

[(
F ′ −Q (s, a; θτ )

)2]
+∇θτEs,a,r

[
Vs[F

′]
]
. (4.10)

∇θτL (θτ ) = ∇θτEs,a,r,s′

[(
F ′ −Q (s, a; θτ )

)2]
. (4.11)

∇θτL (θτ ) = Es,a,r,s′

[(
r + λmax

a′
Q∗ (s,′ , a′; θ−τ )−Q (s, a; θτ )

)
∇θτQ (s, a; θτ )

]
. (4.12)

θ ← Adam(θ, α∇θτL (θτ )). (4.13)

Reward Clipping

As a common practice in DQN, rewards can be clipped for promoting the convergence

and optimal policies generating successfully. While applying DQN to the complex and

uncertain MEC network environment setting, where reward points are not on the same

scale, the training becomes inefficient. Even with a small alter of feature, rewards obtained

are significantly different. Also, due to the high variance in training samples’ features, such

as channel distributions, DRL model may be misrepresented back and forth. Converging to

the optimal polices in the learning process may slow down or never happen. As a practical

but straightforward technique, the clip can adress and mitigate above issues. With clips,

min will replace the element in Rm×n that less than it, and max will replace those ones

greater than it (Eq.4.14). Clipping the rewards to lie in the [min, max] interval reduces the

impact of extreme observations, so to make the model more robust. Also, this avoids large

weight updates and allows our DQN to update parameters smoothly.

Rm×n
clipped = clip(Rm×n,min,max). (4.14)
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Simulation Results

In this section, the simulation results are presented in detail to evaluate the performance of

our proposed DRL model for secure computation offloading with multiple IoT users, multiple

edge servers, and one eavesdropper in MEC. The simulation environment is mainly based

on Python as the programming language. PyTorch (a deep learning library) and NumPy

are chosen to build the DRL model to reduce implementation efforts. In this simulation,

we compare our proposed DRL model with a classical algorithm, the greedy algorithm,

canonical reinforcement learning, and the existing deep reinforcement learning. To construct

the simulation as close as a real-world scenario, we simulate the MEC network elements

including various IoT users, MEC servers, control agent and DRL agent as independent

processors.

According to the the proposed DRL model architecture in the previous proposed meth-

ods part, there are two major parts in our simulation system which are the MEC network

environment and DRL agent.

As shown in Fig. 5.1, the MEC ENV contains three components: IoT users (include

friendly jammer), coordinator and MEC servers as local-based stations. Various states in-

clude signal channel distribution, CPU allocation and transmission rate distribution. First,

as the task generator, each of IoT users creates multiple tasks with a random waiting time

which is around 0.001 seconds. Second, the multiple MEC servers are responsible for status

information maintaining, tasks processing and rewards computing. They are generated by

46



Chapter 5. Simulation Results 47

MEC EnvironmentMEC Environment

-task_list<>
-userlist<>
- edge_server list<>

Ege serversEge servers

- task_queue<>
- queue_time
- max_frequency 
- state
...

-update_waiting_time():
- receive_task(...)
- energy_consumption()
- excute_tasks()

UsersUsers

-ID
-max_tasks_number

-create_tasks()

TasksTasks

- data_size
- cycles
- delta_max

DRL AgentDRL Agent

-state_size
-acation_size
-memory_buffer
- primary_network
- target_network
...

-step()
-act()
-learn()
-soft_update()

Neural Network ModelsNeural Network Models

-state_size
-action_size
....

-initial()
-forward()

-step()
-get_current_transfer_speed()
-get_mec_states()
-reset()

InteractInteract

Memory BufferMemory Buffer

-size
-batch_size
-experience

-add()
-sample()

Figure 5.1: Summary of simulation UML

simulator based on parameter settings such as minimum and maximum frequencies, size of

task queues, and overload thresholds. When the task queue is empty, MEC status is idle

with minimum frequency. When a MEC server receives a task, it runs with recommended

frequency. The reward includes the number of tasks finished before the deadline and con-

sumed energy. Both of them can be computed based on required CPU cycles and this

recommended frequency. The environment provides interface that allows the DRL agent

to control the MEC networks and offloading the tasks. Specifically, the environment is the

main process in the simulator, and it generates other processes that present MEC servers

and users. The users create tasks given the configuration and put the task profiles into

a queue maintained by the environment process so that the DRL agent can access those
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information. Further, the DRL or other agents can take action according to the observed

information which is also simulated by a process. Once the environment receives the agent’s

decision, the agent distributes the tasks according to recommended actions. In other words,

the environment process transfers the tasks from its queue to the target servers with recom-

mended frequencies. And then, the MEC servers start to process tasks from the tasks queue.

However, the environment will be restarted and all of the task queues in the environment

and MEC servers will be clean when one of the server are overloaded, which indicates end

of an episode.

The DRL agent maintains the experience replay buffer. The DRL agent learns and

generates the optimal policy and actions to interact with the MEC network environment

through the coordinator and rewards it for every action it takes, then saves the result into

the experience replay buffer. In this simulation, we construct the local learning network and

the target network with three types of layers: input layer, hidden layer and output layer.

Input layer works for data initialization for neural network; all the computation will be done

in the hidden layer which is used as the inter-media between input layer and output layer;

and the result of given inputs is produced in output layer. Each network has an input layer

with the numbers of neurons that equal to the sizes of state space. The five hidden layers

with the number of neurons are 256, 512, 512, 512 and 256 from layer one to layer five. For

the output layer, the size of action space is equal to the numbers of neurons. We set the

discount rate as 0.9 and learning rate as 5 × 10−4; the IoT users number is considered as

500, the batch size is 256 and signal to noise ratio is 100 dB; the range of some other main

parameters such as max frequency of server, data size and computing size of task are set as

from 2× 109 to 8× 109 Hz, from 2× 105 to 2× 107 bits and from 8× 106 to 1× 107 cycles.

Fig. 5.2 shows the rewards performance of our proposed DRL (DQN-E2E) model, and

other methods, including the existing DRL model (DQN-CVX), standard RL (Q-learning)

model and traditional greedy algorithm. As we can see from the figure, the Q-learning

converges faster than other DRL models because Q-learning method has to discretize con-

tinuous space into discrete Q-table, and it has required less episodes to explore to its optimal

policy. The DQN-CVX model converges to optimal policy around 10, 000 episodes, which is

relatively faster than end-to-end model because partial of the decisions are optimized CVX.

Although the proposed model converges relative slower than other models because it has
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Figure 5.2: Rewards

to learn optimize all the decisions respect to maximize long-term expected reward, it can

achieve the best performance. We can also observe all learning methods are performs poorer

than conventional at the early episodes because they trail random actions to explore and

collect training data. In contrast, the greedy algorithm does not learn over the episodes.

Overall, compared with existing DRL models and other models, the end-to-end model we

adopted in the proposed method has more freedom to take actions. Therefore, our proposed

end-to-end DRL approach presents a much better performance and results.

Note that the completed task means the security transmission rate is greater than the

pre-setting security threshold, considered safe enough to transmit the tasks to the tar-

geted edge server as defined problem formulation (Eq.3.10). The security constraint holds

throughout the simulation. For the sake of simplicity of the augment, we will not repeat

the security constraint in the following analysis.

As shown in Fig. 5.3, with respect to the number of tasks completed, the proposed DRL

model is compared with the greedy algorithm, RL and existing DRL model. In terms of
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Figure 5.3: Completed Number of Tasks

the rewards, our proposed method outperforms the other models because the deep learning

models can seize the complex MEC networks states and make decisions via RL. Due to

the historical data which is kept in buffer is learned by the DRL models continuously,

performance of DRL models and the Q-learning is improving until reach the convergence of

optimal policies. Although the proposed end-to-end model takes the most episodes to learn

and find its optimal polices, it can process the most tasks before the expired time while

minimizing the energy consumption. Otherwise, the greedy algorithm keeps no change

because it does not have a learning process to improve its performance over episodes. The

Q-learning method has a limited capacity to hold the vast states of the MEC networks, and

it only provides considerably low resolution to capture the states and learn to optimize the

policy; therefore, it is outperformed by the DRL models.

For energy consumption, the Q-learning and DRL models have more energy cost in

the early episodes due to the ϵ − greedy which model take actions with and parameters

are initialized randomly in those episodes (shown in Fig. 5.4). As the learning models

learn from the acquired data and decrease random actions, it can reduce more energy
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Figure 5.4: Energy Consumption.

consumption. Although the goal of the proposed DRL model is maximizing long-term

accumulated rewards, this model also learns how to reduce the energy consumption over

all time steps. The number of tasks can also be increased by the DRL model with CVX

significantly. However, it does not save energy consumption as much as the proposed model

due to only part of its actions space can be controlled, and the CVX optimization methods

optimize the other parts of the actions space.

Similarly, Fig. 5.5 presents the completed tasks number and energy cost ratio, and the

results are very similar to the rewards shown in Fig. 5.2 or completed number of tasks in

Fig. 5.3. However, we can see that DQN-CVX outperforms the Q-learning and proposed

methods because the CVX optimization starts work in the early episodes and does not learn

over the episodes. As we can see from Fig. 5.5, the DQN models can use the energy more

efficiently than traditional RL models, and all the learning models can do save more energy

than the greedy algorithm. In Fig. 5.5, we can see the proposed model can complete a

greater number of tasks than the rest of the models when consuming the same amount of

energy because the end-to-end model can access and control over the optimization process
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Figure 5.5: Ratio of Completed Tasks Number to Energy Cost (104)

so that it can optimize the decision process.

Further, to compare the capacity of the model, Fig. 5.6 shows the performance of the

model with respect to the number of users. The learning method can complete more tasks

before expiration than the greedy algorithm. The DRL model can perform better than

the Q-learning model because it can capture the MEC network states and make better

decisions than the Q-learning model when more tasks are offloaded quickly. The MEC

networks always have limited resources compared to the resource demanded from the IoT

users. In addition, the learning agents need to choose targeted server according to the task

information and security status in the network, which pose more restrictions on exploiting

the limited resource. Fortunately, the proposed method can choose optimal polices that can

use limited resources maximally and serve maximum number of users without delay.

Finally, we compared the proposed model with configuration different values of explo-

ration. Fig. 5.7 indicates that when the ϵ is smaller, there is less exploitation but faster

convergence to local optimal for the model. In this simulation, we can see that the model
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catch the highest performance at ϵ = 0.99. On the contrary, the model ends up with the

lowest rewards when ϵ = 0.7. These as results of with larger ϵ values, model should take

more time for environment exploration compared with other ones with smaller ϵ. However,

when ϵ is larger, it is not the best choice usually. This is because more exploration may take

longer time for convergence to the optimal policies, and more computational power may be

cost also. For conclusion, ϵ = 0.99 is chosen in our work due to its best rewards collection

performance.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this work, we investigated the computation offloading problem in a dynamic MEC net-

work in a secure and timely manner. An end-to-end deep reinforcement learning method

was proposed to optimize multiply objectives such as number of completed tasks maximiza-

tion before their deadlines and saving energy consumption, subject to the security transmit

rate requirements. The proposed developed method focuses on maximizing the accumu-

lated long-term rewards. To prevent the DRL model from being oscillated and diverged,

experience replay with buffer and clip techniques are adopted to boost the training process

in model. Finally, simulation results are provided, which demonstrate the proposed DRL

method is effective and outperforms other methods.

6.2 Future Work

In the future work, two aspects of task offloading will be considered: (1). Green energy

powered MEC systems. The MEC servers are powered by renewable energy. Due to the

randomness of energy harvesting and task arrivals, it is crucial to study offloading in such

a system to ensure service quality and make efficient use of renewable energy. (2). Task

partitioning in dynamic MEC systems. A computation task can be partitioned into multi-

55
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independent sub-tasks and each sub-task can be offloaded to an edge server for processing.

In a multi-edge server environment, it is necessary to study how to partition the tasks and

coordinate edgers to meet the service requirements efficiently.
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