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ABSTRACT 

Simultaneous Localization and Mapping (SLAM) is the process of representing the spatial 

environment (mapping) while keeping track of position (localization) within the built map. SLAM 

is widely used in indoor navigation, where several types of objects and obstacles need to be 

mapped. Objects that pose an issue for laser or light-assisted indoor navigation include specular 

surfaces such as mirrors that cause light reflection. 

This thesis aims to understand the characteristics of mirror-like objects in various 

arrangements. Experiments were conducted using a lidar-mounted mobile robot navigating with 

respect to one or more mirrors and mapping the environment. Several observations were made to 

understand the inaccuracies of laser scans in mirrored environments. The outcomes of these 

observations suggest that laser scans may be fully reflected off mirrors, causing no range or 

intensity data to be provided back to the robot and causing the map to develop areas of negative 

space. Objects or boundaries within the range of the lidar may be mapped behind the surface of 

the mirror, and self-detection may occur on the surface of the mirror. Some uncertainties may 

occur when more than one mirror is present in the environment. 

As many different observations were noted, a potential solution approach is outlined, 

advising the use of clustering algorithms to identify and remove inconsistencies before building a 

map of an indoor environment. This research has applications in several industries. These could 

include autonomous robots navigating through the environment to perform specific tasks; mapping 

of malls, museums or office buildings where specular surfaces are common. Future work would 

include implementation of the solution approach and extension to different types of nondiffuse 

surfaces, including transparent and translucent surfaces. 

This research could be most practical when one or more mirrors are present. applied in the 

mapping of indoor spaces with high amounts of optically unique surfaces, including modern office 

buildings, hospitals, and museums 
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CHAPTER 1 

Introduction 

This thesis aims to study multiple mirrors and mirror-like object detection for indoor 

navigation applications using 2D LiDARs. This chapter introduces several important topics 

relevant to indoor navigation, including autonomous navigation, path planning, localization, and 

mapping. 

 

1.1. Autonomous Navigation 

Autonomous navigation is the ability for mobile objects to find their course to a specific 

destination without human interference [1]. There are numerous applications of this technology. 

For example, there is a large amount of research in the area of manned and unmanned aerial 

vehicles, spacecraft, marine vehicles, agriculture, trains, road vehicles and robotics [2]. 

Applications can be widespread, from education and transportation to surveillance [3] and 

customer support. 

Strategies for autonomous navigation range from aided through strategies such as 

teleoperation with some autonomous features to fully autonomous navigation. Some applications 

of indoor autonomous navigation include domestic robots such as vacuum or mopping robots that 

use simpler strategies such as turning a certain angle when detecting an obstacle to cover the entire 

area [4]. These types of strategies, although not necessarily the best way to cover an area, can be 

used in any type of area. A similar concept can be implemented for maze-solving robots. More 

strategized navigation technologies use environmental data to make safer and better navigation in 

circumstances where the surroundings are subject to change (for example, moving objects). These 

technologies can be used in emergency robots that need to navigate unsafe environments such as 

fires [5]; in semiautonomous and driverless automobiles in real-world situations [6]; in robots used 

in industrial or manufacturing environments, etc. 

To have a functioning autonomous navigation system, it is required to have hardware and 

software related to the physical propulsion of the vehicle; the ability to understand the position of 
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the robot with respect to its environment using information acquired using sensing and perception 

using various sensors; and the robot should have the ability to navigate itself in the environment 

using tracking, following a path or creating its own path. This comes with several challenges, 

including perception and object detection; localization and mapping; and navigation and path 

planning [7]. 

Localization is the process of estimating the position of a target in a known or unknown 

environment [8]. Mapping is the process of constructing a representation of the physical 

environment around the target. Navigation refers to controlling the course of a concerned object. 

Path Planning is the process of finding the best path between two points 

 

1.2. Path Planning and Navigation 

Path planning is a computational problem to find the shortest or the best path from source 

to destination that requires the minimum amount of work. Path planning has several problems 

associated with it, including self-localization and obstacle avoidance [9] [10]. Environmental 

information can be used to classify path planning methods into static and dynamic methods. Static 

path planning is used in static environments with static obstacles that do not change their position 

with respect to time [11], such as walls in indoor environments and buildings in outdoor 

environments [12]. Static path planning is best used when the map of the environment is known. 

The most classic static path planning algorithm is called Dijkstra’s algorithm, published in 

1959 [13]. This and other algorithms based on it are generally used in the telecommunication 

domain for telephone networks and navigation applications such as Google Maps [14] [15]. This 

algorithm uses the vertices and edges of a weighted connected graph to calculate the shortest path 

between the origin and destination. It does so by creating a web of weighted points from the origin 

to the destination. The points in the graph can be represented as nodes and edges, nodes as groups 

of data and edges as links that connect the nodes [16]. Consider an arbitrary node as the origin 

node and assign it a distance value of zero (SO = 0) with the remaining distance values equal to 

infinity. Each directly connected node will then be visited (v), providing it with a measured 

distance Si(v), with all indirectly connected unvisited (u) nodes remaining at infinity (Si(u) = ∞). The 
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distance for all unvisited nodes will be calculated from the origin node through a visited node with 

only the shortest distance considered. Through this iterative method, the shortest distance is 

determined. The Dijkstra algorithm is reliable but computationally expensive. There have been 

several modified and enhanced algorithms based on it [15] [17] [18]. Another algorithm for static 

path planning is the A* algorithm published shortly after [19], which uses information on the 

objects in the environment through a grid-based system using a heuristic function (h(n)) that 

estimates the most cost-effective path from any node (n) to the destination, minimizing the 

following formula, where g(n) is the cost of the current node from the origin [20]. 

 𝑓(𝑛) = ℎ(𝑛) + 𝑔(𝑛) (1) 

Dynamic path planning is a much more complex problem used in dynamic environments 

where obstacles have the possibility of changing their position and orientation with respect to time 

[12]. It is important in these environments to have the ability to continuously collect and compute 

environmental data [21]. The D* method is a classic dynamic path planning algorithm. It maintains 

an open list of valid locations/states that are used to transfer location and cost information, 

including the cost of moving between locations in the space [22]. The algorithm has two main 

functions: the first to compute the best path cost to the destination and the other to enter affected 

states into the list. The nodes in the open list are iteratively evaluated, and changes are applied to 

the neighboring states depending on the dynamic environment. In a mobile application, this allows 

the target to update its map and replan its path to the destination [22]. The D* lite algorithm is 

similar to this but decreases the computational load needed. The D* value, using the same terms 

as in A*, can be described by the following formula [23]. 

 𝑓(𝑛) = ℎ(𝑛) (2) 

The environmental information available to the target can be used to classify the navigation 

and path planning strategies into local and global. Global navigation strategies are used when the 

environment is known. Local navigation strategies are used when the immediate environmental 

data can be collected through sensor readings and are used to control the motion of the target to 

avoid collision with obstacles that may change their position with respect to time [24]. Global and 

local navigation strategies must be combined for adequate path planning. 
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There are several navigation approaches, and they can be classified in many ways, 

including geometric, topological, semantic [25]; deterministic, stochastic, evolutionary [26]; 

classical, and reactive [27]. The following are the most commonly documented and used 

navigation strategies in the literature. 

 

Figure 1: A list of some commonly documented navigation strategies in the literature 

The visibility graph method and Voronoi diagram method. Cell decomposition methods 

are graph search methods [28]. In the first two methods, a graph is constructed, and then a path is 

computed. The configuration space including all obstacles is divided into edges and vertices. The 

start and destination are vertices, and all connected vertices are joined as the shortest distance 

between any two vertices. The Voronoi diagram method improves performance by removing 

unnecessary turns. In cell decomposition, the configuration space is divided into cells and is 

classified depending on their level of occupancy, after which connectivity graphs are created [27, 

28]. 

 

Figure 2: Outline of the process of navigation through cell decomposition 

The road map approach uses the visibility graph method and the Voronoi diagram method 

to develop a set of curves also known as a roadmap [27] that could span the entirety of the free 

space, allowing for the solving of path planning problems. 
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The potential field approach uses the idea that the entire environment is filled with an 

artificial potential field, where the destination attracts the target, and the obstacles repel the target 

at a potential that is inversely proportional to the distance [27]. This approach can be relayed as in 

the following equation, where ‘U’ is the potential force. 

 𝑈 = 𝑈𝑎𝑡𝑡𝑟𝑎𝑐𝑡 + 𝑈𝑟𝑒𝑝𝑒𝑙 (3) 

The Rapidly-Exploring Random Tree (RRT) algorithm [29] is one of the most efficient 

path planning algorithms and works for high-dimensional dynamic environments [12]. This 

algorithm builds an expanding tree of points from the origin into the unexplored space [30] to the 

destination, increasing the node density to find the shortest path. 

 

Figure 3: Pictorial representation of Rapidly Exploring Rapid Trees where a tree of points expands to 

into unexplored space in search of the destination. 

Modifications and combinations of these traditional path planning and navigation methods 

are now commonly investigated in the literature [31] [32] [33] [34] [35]. 

 

1.3. Navigation and Localization 

Navigation can be defined as orienting a target object such that it would be able to control 

its course through a predetermined path or a route to the desired destination [36]. Navigation can 

also be further classified on the basis of the environment, as indoor and outdoor. Navigation 

techniques generally have different localization strategies associated with them. Localization or 

positioning allows the body to understand its position with respect to the environment using data 

collected through sensors. It is in and allows it to have the information required to perform further 

activities such as noise cancellation, mapping, and path planning. 
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In outdoor environments, straightforward localization and navigation methods can be used. 

Global Navigation Satellite Systems (GNSS) is a navigation technology that uses satellite 

networks. Receivers measure transmitted signals with orbit and position-related information that 

are broadcasted by satellites and use it to estimate position [37]. There are several positioning 

technologies that are encompassed by GNSS, including Global Positioning System (GPS), which 

is generally used by the US, and Galileo, which is used in the EU, among several others, on global 

and regional scales. 

The positioning technique used by GNSS is trilateration. Here, the known positions of 

multiple satellites are used. Considering each satellite, a point in a cartesian space, they will each 

produce a spherical locus of position [38]. The position of the receiver at the target can then be 

estimated by solving for the intersection of the position loci. As the receiver moves, the distance 

from each satellite will change, allowing for a new position estimate. 

 

Figure 4: A pictorial representation of how GNSS uses trilateration for localization 

A similar positioning technique is triangulation, which uses a congruency of triangles to 

estimate the position of the target and is most commonly used in surveying applications. 

Outdoor applications generally use a combination of GNSS and INS (inertial navigation 

system) to increase position estimation accuracy [39] [40]. INS uses various sensor data to 

compute information such as position, velocity and attitude. The sensor data are collected by an 

inertial measurement unit (IMU). This unit is generally a microelectromechanical (MEMS) device 

consisting of some combination of gyroscopes, accelerometers and magnetometers; most 

commonly, three gyroscopes and three accelerometers. Gyroscopes measure rotation and work on 
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the principle of the conservation of angular momentum: L is angular momentum, I is the moment 

of inertia, and ω is angular speed. 

 𝐿 = 𝐼 × 𝜔 (4) 

There are now several types of gyroscopes. The most common are Gimballed, Vibrating 

Gyroscopes, MEMS-based gyroscopes, Fiber Optic Gyroscopes (FOG) and Ring Laser 

Gyroscopes (RLG), among others. A MEMS gyro generally contains a mounted proof mass made 

of silicone and uses Coriolis force to measure rotation. FOGs and RLGs generally use laser beams 

traveling in opposite directions and use the Sagnac effect to measure rotation. 

Accelerometers are used to measure linear movement by measuring the forces acting on a 

system. They generally work as a spring-mass-damper system and can be calculated as a sum of 

the inertial, damping and spring forces, where m is the mass, c is the damping coefficient, k is the 

spring coefficient, and x is the position. 

 𝐹 = 𝑚�̈� + 𝑐�̇� + 𝑘𝑥 (5) 

Magnetometers are sensors that are used to measure magnetic induction. In outdoor 

applications, they can be used to measure the intensity and direction of the magnetic field (for 

example, the Earth’s magnetic field) that the target is passing through. They are generally used in 

high-performance inertial navigation systems. 

 

Figure 5: A simplified algorithm for an inertial navigation system 
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INS can be categorized into two main types – Gimballed systems and Strapdown systems 

[41]. Gimballed systems are generally used in areal and marine applications. These suspended 

gyrostabilized systems maintain the vehicle’s equilibrium in unstable environments by allowing 

the vehicle to rotate around it, measuring yaw, pitch and roll at the gimbals [42]. Strapdown 

systems generally have the IMU rigidly attached to the vehicle, which is assumed to travel in a 

single plane of motion [43]. Strapdown applications are generally used on road applications as 

well as indoor and pedestrian applications [44]. 

INS is generally closely linked to dead reckoning. This method is a more straightforward 

localization method that can be used when the starting position and orientation of the vehicle or 

target are known. Dead reckoning uses the starting position and known velocity to approximate 

the new position based on the time taken at that velocity to the newly updated position. It has 

several applications; for example, it can be used for short ranges when the GPS signal is lost while 

driving through a tunnel [39] [45]. 

It can also be used for pedestrian navigation [44] [46]. Dead reckoning and INS are prone 

to errors and use concepts such as zero velocity updating for error correction [44], where the 

algorithm checks for zero velocity and resets the positions. INS generally will also use algorithms 

for state estimation, such as a variation of a Kalman filter [44] [45]. These algorithms will help the 

system estimate the bias and minimize error. 

Navigation techniques are also used for indoor applications or areas where GNSSs cannot 

be used, such as parking structures, airports, office buildings, etc. For example, applications could 

include indoor drones, mobile robots for vacuuming or mopping and pedestrian navigations using 

mobile phones. 

As previously stated, navigation methods generally need localization strategies associated 

with them. Localization strategies can be classified on several bases. Classification can be 

performed based on range-based positioning techniques for these applications. It can be classified 

based on the signal property [47] [48] and broadly into angle-based, distance-based and signal-

based. 
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Figure 6: Classification of range-based localization based on three characteristics: angle-based, 

ranging-based and signal-based 

The time of arrival (ToA) and time difference of arrival (TdoA) are distance-based 

localization techniques. They both use a time of flight (ToF) algorithm, which calculates the time 

taken for a measured signal to travel between the transmitter and the receiver. Trilateration, which 

was touched upon earlier for its use in GNSS, uses this type of localization algorithm and can also 

be used for indoor applications. 

 𝑑 =
𝑐

4𝜋𝑓
𝜑 

(6) 

While solving for distance, d; c is the speed of light at 3 x 108 m/s, and f is the modulation 

frequency of the signal [48] TOA generally uses the data from the node and the source and requires 

some synchronization between the two. TDOA uses a pair of nodes and restricts the 

synchronization between nodes to be high; hence, it does not need the node and the source to be 

synchronized. Due to this, it is more efficient and less prone to errors compared to TOA [49]. The 

angle of arrival (AOA) generally uses angle information from two or more nodes to draw 

intersecting lines to understand position information. There is generally a high computational cost 

associated with AOA algorithms. Triangulation generally uses AOA by using triangle properties 

and a few reference points. 



10 

 

 

Figure 7: This figure shows a pictorial representation of using triangulation for localization using the 

angle of arrival (AOA) 

Received signal strength (RSS) generally uses Wifi- or Bluetooth-enabled environments 

and uses the power of the signal received by the receiver to determine the position of the target 

considering the attenuation losses of the signal. where P is the reference power, which is the power 

of the signal in dB at one meter from the transmitter; d is the distance measured between the 

receiver and the transmitter; and α is the exponent of loss of power with respect to the path γ [49] 

[48]. 

 RSS =  P −  10α log10d –  γ (7) 

RSS is generally low in computational cost but is high in error accumulation. Two 

positioning techniques that commonly use RSS are proximity algorithms and fingerprinting. 

Proximity algorithms use a grid of nodes with known locations in the environment to deduce the 

connectivity [36] [48]. Similarly, fingerprinting can be used in a WiFi- or RF-enabled environment 

and uses a network of RSS values to determine the position of the target [36]. 

 

1.4. Localization and Mapping 

Mapping is the process of building a virtual map of the physical environment around the 

target. Mapping is generally done with no prior knowledge of the location and can be used for 

navigation. Simultaneous localization and mapping (SLAM) is the representation of the spatial 
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environment (mapping) while keeping track of position (localization) within the built map. The 

SLAM framework involves odometry, landmark prediction, landmark extraction, data association 

and matching, pose estimation, and continuous map updating. Conceptually, the location of the 

target can be simply determined based on prior knowledge of the position of landmarks in a global 

map and range and bearing measurement from the robot to the landmarks [50]. However, in 

practical implementation, this process is not trivial. Many issues must be overcome to obtain 

reliable and accurate localizations, such as identifying good landmarks, data association, effective 

calculation processes and many others [51]. 

Typical technologies that have been used for indoor mobile robot localization include 

infrared (IR), light detection and ranging (LIDAR), radio detection and ranging (RADAR), radio 

frequency (RF), sound navigation and ranging (SONAR) and visual sensors [36]. These 

technologies need to be able to deal with noisy observations and generate not only an estimate of 

the robot’s location but also a measure of the uncertainty of the location estimate. SLAM 

technologies are explicitly used to collect data to create a map. 

Most SLAM frameworks use probabilistic localization to build a map of the environment 

around the target. When a target changes position in an environment, probabilistic localization 

uses the information from all the previous position estimates along the path taken to approximate 

the target’s current position [52]. This concept is Markov’s assumption. In this process, they 

continuously assign probabilities to possible positions the target could move to. 

 

Figure 8: A simplified algorithm of simultaneous localization and mapping 

The Bayesian approach is a basic method to deal with conditional probability; more 

precisely, it relates the conditional probability of more than two events. Bayesian filtering is used 
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to estimate the state of a dynamic target given noisy observations. Considering Markov’s 

assumption, at each point in time, t, ut is the motion command to the target; xt is the state of the 

target; and zt is the measurement taken at the current state. Using the Bayes theorem, the 

probability distribution over the state, Bel(xt), can be illustrated as follows: 

 
𝐵𝑒𝑙(𝑥𝑡) = 𝜂𝑃(𝑧𝑡|𝑥𝑡) ∫ 𝑃(𝑥𝑡|𝑢𝑡−1, 𝑥𝑡−1)𝐵𝑒𝑙(𝑥𝑡−1)𝑑𝑥𝑡−1 (8) 

 

State estimation methods are used to ascertain the state of an anticipated system that is 

continuously changing, given some observations or measurements. Bayesian filtering 

implementations can be categorized based on belief distributions into discrete and continuous. 

(Probabilistic representations are included in Appendix A) 

 

Figure 9: A classification of localization techniques using a Bayes filter 

For continuous Bayes filters, belief distributions are generally represented as Gaussian 

curves. The linear Kalman filter method is a commonly adapted method of filtering and can remove 

redundancy in the system and predict the system’s state. The Kalman filter is an algorithm that 

estimates the state of a discrete time-controlled process described by the linear stochastic equation. 

The Kalman filter has a similar representation to a unimodal Gaussian model, where given 

a Gaussian, µt is the mean at a given time t, and ∑t is the uncertainty at the state characterized by 

a dxd covariance matrix [53]. Here, belief probability can be represented as follows: 
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 𝐵𝑒𝑙(𝑥𝑡) =
1

(2𝜋)
𝑑
2|∑𝑡|

1
2

𝑒[−
1
2

(𝑥𝑡−𝜇𝑡)𝑇 ∑  𝑡
−1(𝑥𝑡−𝜇𝑡)] = 𝑃(𝑥𝑡; 𝜇𝑡; ∑𝑡) (9) 

Kalman filtering is advantageous because it has a lower computational cost. This is mainly 

because they are only considered uncertainty for unimodel Gaussian distribution preventing 

Kalman filtering from being adequate for global localization problems [53] [54]. 

 

 

Extended Kalman filtering (EKF) is an extension of Kalman filtering. EFK accounts for 

nonlinear states by estimating nonlinear through linearization by approximating the mean to 

predict covariance and compute Kalman gain. Other enhancements to Kalman filtering include 

unscented Kalman filtering (UKF) [54]. UKF provides slightly better results than EKF by 

considering several sigma points in its approximation of nonlinear systems [55]. Limitations 

related to Kalman filtering can be mitigated through multihypothesis tracking (MHT). MHT 

represents the probability belief as a mixture of Gaussian models, where each Gaussian can be 

solved by EKF [53] [54]. Weights wt
(i) are set proportional to the likelihood of the measurements. 

 𝐵𝑒𝑙(𝑥𝑡) = ∑𝑤𝑡
(𝑖)

𝑃(𝑥𝑡
(𝑖)

; 𝜇𝑡
(𝑖)

; ∑𝑡
(𝑖)

) (10) 

In a discrete belief distribution, the belief distribution is often represented as a finite set of 

possible values. Grid-based approaches perform indoor localization by dividing the environment 

into small areas and reinforcing the belief probability that the target lies within the region. These 

approaches are advantageous because they have good noise reduction capabilities and can provide 

accurate results. However, this comes at a high computational cost. 

Figure 10: A simplified algorithm of Kalman Filtering used for position estimation 
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The particle filter (PF) method can approximate probability density functions. The 

sequential Monte Carlo (SMC) technique uses the sequential importance sampling (SIS) 

algorithm, including a resampling step at each instant. This method builds the consequent density 

function using several random samples called particles. Particles are propagated over time with 

the integration of sampling and resampling steps. At each iteration, the sampling step is employed 

to reject some particles, increasing the significance of regions with advanced posterior probability. 

The belief is represented by the following sets: 

 𝐵𝑒𝑙(𝑥𝑡) = {(𝑤𝑡
(𝑖)

; 𝑥𝑡
(𝑖)

)| 𝑖 = 1, … , 𝑛} (11) 

Although Kalman filtering is one of the most efficient localization methods due to its low 

computational cost, particle filtering methods are more reliable than Kalman filtering methods 

because they can be used in multimodal and dynamic environments without prior information. 

 

Figure 11: A simplified algorithm for particle filtering used for position estimation 

These filters can be used to solve probabilistic SLAM problems. Some examples of this 

include HectorSLAM, FastSLAM, GraphSLAM, EKF-SLAM, Cartographer and GMapping, 

among others. 

Mapping generally applies some type of odometry. Odometry is the concept of retrieving 

state or position, orientation, and the change in position over time using sensor data and wheel 

motions from an encoder [50]. Here, the position can be incrementally calculated through the 

distance rolled by the wheels of the robot: Distance (dw) traveled is proportional to the wheel 
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radius (rw) and angle of rotation (φ). If rotation sensors are available on both wheels, the 

odometrical reading can be calculated from the center of the robot and calculated accordingly. As 

error generally accumulates over time, encoder data can be coupled with other sensor data to 

provide more accurate results. 

 ∆𝑑𝑤 = 𝑟𝑤∆𝜑 (12) 

 

To create a representation of the environment, occupancy grid maps provide a discretized 

representation of an environment where each of the grid cells is classified into two categories: 

occupied or free. Considering each cell to be a binary variable, the map will be able to estimate 

the location of an obstacle in the space by computing a posterior approximation for any given cell 

within the range of the sensor collecting data [56]. 

SLAM frameworks can also be classified based on the sensor technology used for data 

acquisition, for example, acoustic and visual SLAM. Ranging sensors such as LiDAR and SONAR 

sensors containing only one scan plane can be used. They are beneficial, as they work well in a 

wide range of weather and ambient conditions. Cameras can also be used to record the image and 

the depth of information in every pixel, hence having the advantage of both vision and ranging 

sensors. 

A laser range finder or LiDAR is such a sensor. These sensors consist of a laser beam that 

rotates at a relatively high speed on the order of tens of revolutions per second and measures the 

distance to the obstacle that reflects it. If there is no obstacle within the sensor range, a reflection 

is not received, and the sensor typically is at a nominal maximum distance. Given an estimate of 

the robot location and the grid map, the expected value of a range measurement can be numerically 

obtained using ray casting. This makes it possible to evaluate the likelihood of a given pose, which 

is sufficient in some localization approaches, such as a particle filter. 
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CHAPTER 2 

Objectives and Motivation 

In the previous chapter, topics related to indoor navigation were introduced. In this chapter, 

the objectives and motivation behind the problem statement to characterize the behavior of 2D 

LiDARs in mirrored environments are discussed. Information about the effects of light reflection 

on various surfaces, the operation of laser-based sensors, limitations, and a summary of the 

literature addressing some optical challenges are included in the section. 

 

2.1. LiDARs for Mapping 

LiDAR (light detection and ranging) sensors are ranging sensors similar to SONAR (sound 

detection and ranging) and RADAR (radio detection and ranging). LiDARs work on the principle 

of light. A LiDAR uses laser light to measure the distance and reflective properties of the 

environment. This light is most commonly infrared but can also be in the visible or ultraviolet 

range of the spectrum. The LiDAR generally transmits a laser beam and is able to detect a barrier 

by using a sensor to catch the reflected beam. 

 

Figure 12: A schematic of the working principle of a laser-based sensor 
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𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =

𝑡𝑖𝑚𝑒 × 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑙𝑖𝑔ℎ𝑡

2
 

(13) 

 

The distance between the obstacle detected and the receiver and the target is calculated 

using time-of-flight (ToF). This calculates the distance using the amount of time taken for the 

emitted pulse to reach the object, reflects some portion of the emitted ray and returns to the receiver 

lens of the LiDAR, considering the emitted and reflected rays to be traveling at 3 x 108 m/s. 

LiDARs can take two or three-dimensional scans. A 2D LiDAR will generally spin around 

an axis, repeatedly emitting a single beam and taking 360° angle scans of the surroundings in a 

single plane. A 3D LiDAR will emit multiple beams while spinning around an axis, allowing it to 

take more detailed three-dimensional scans of the surrounding environment. These LiDARs used 

different types of beams for different outdoor applications. Topographical and terrestrial LiDARs 

are infrared beams for the mapping of land; bathymetric LiDARs are used for marine applications 

and green light. 

Both 2D and 3D LiDARs have several applications; however, due to the nature of data 

collected by 3D LiDARs, they are generally used in outdoor environments, while 2D LiDARs are 

more commonly used in indoor applications. 3D LiDARs are bulkier, priced significantly higher 

and computationally expensive compared to 2D LiDARs. 

LiDARs are advantageous in industry, as the data collected can be converted into 2D or 

3D point clouds and easily integrated with other sensor data. Multiple consecutive LiDAR readings 

allow for complex applications such as obstacle detection, localization and mapping. The width of 

the emitted beam can be made smaller, increasing the distance it can travel and allowing LiDARs 

to be capable of detecting obstacles over long ranges. Depending on the nature of the emitted 

beam, measurements could potentially be less sensitive to ambient conditions and could be used 

in a wide range of illuminations. Based on the application, LiDARs could be a cost-effective 

solution. 

There are also limitations associated with LiDARs. For small-scale applications, high 

operating costs are incurred. External sources that change visual properties will affect LiDAR data. 

Adverse weather effects, such as low-hanging clouds and heavy rain or fog, can have a negative 
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impact on LiDAR data collection. One study was performed on ten different LiDARs in different 

weather conditions, including simulated fog, rain and intense sunlight [57]. The findings 

determined that in fog, obstacles were only partially visible due to reflected light being scattered 

and attenuated by fog. Rain was detected as solid vertical pillars, while intense sunlight caused the 

experimental targets to not be visible through LiDAR data [57]. This can be explained by 

understanding the surface properties. 

Surface properties affect the way that reflected light will be scattered, which in turn will 

affect the way that LiDAR will receive light information. There are four key ways that surface 

properties affect incident light: specular reflection, diffuse reflection, absorption and transmission. 

 

Figure 13: Behavior of Light on various surfaces for Specular and Diffuse Reflection, Light Absorption 

and Light Transmission 

Specular reflection occurs on very smooth surfaces where light is reflected at predictable 

and consistent angles as it moves along the surface, which creates a mirror effect. Diffuse reflection 

occurs on rough surfaces due to inconsistent angles of reflection as the surface moves along the 

rough surface. Different material properties and surface characteristics have an impact on the 

absorption and transmission of light on or through a surface. A dark black wall would absorb most 

of the light as it meets the surface, whereas a glass wall would allow most of the light coming in 

contact with the wall to transmit through the surface. Most surfaces allow for a combination of 

reflective behaviors. Diffuse objects can be detected most accurately through LiDAR sensors. 

Some examples of how different surfaces allow for light reflection are listed below. 
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Table 1: Reflective behaviors for surface properties 

Surface Example 
Primary Light 

Characteristic 

Secondary Light 

Characteristic 

Reflective Surface Mirror Specular Absorption, Diffuse 

Diffuse Surface Concrete Diffuse Absorption, Specular 

Transparent Surface Glass Transmission Specular, Absorption, Diffuse 

Dark Surface Black Absorption, Diffuse Specular 

Light Surface White Specular, Diffuse Absorption 

 

2.2. Problem Statement 

As seen in the previous sections, LiDAR sensors work on the principle of light. Therefore, 

external sources that change visual properties will affect LiDAR data. As seen in table 1, specular 

and transparent surfaces that allow for large amounts of specular reflection and light transmission 

will distort LiDAR data. In the problem of simultaneous localization and mapping for autonomous 

navigation, current occupancy grid mapping algorithms assume that objects in the environment are 

detectable from all angles. 

The objective of this thesis is - 

• To study and characterize the obstacle detection problem for reflective/mirror-like objects 

using a 2D LiDAR for indoor navigation applications through running experiments in 

multimirror environments 

• To propose a potential method for mirror-like obstacle detection using data collected by a 

2D LiDAR while navigating through a multiple-mirror environment. 

 

2.3. Summary of Literature 

 There have been several attempts to solve the problem of specular and transparent object 

detection using light emitting sensors such as laser range finders and LiDAR sensors. The oldest 

and most common attempts to solve for this problem are through sensor fusion. Sensor or data 
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fusion is the combination of data from various sensors to minimize error in retrieved information 

compared to retrieving information from individual sources. 

Diosi and Kleeman [58] used a sensor fusion strategy. They combined the sensor data of a 

sonar sensor and a laser. Sonar sensors are ranging sensors that pulse soundwaves and use the 

reflected echo to compute distance. Both sensors are used to increase the accuracy of their 

measurements. All surfaces are tracked by taking sonar readings six seconds before and after each 

laser scan, and data segmentation is used to create map features for SLAM implementation. 

Kalman filter-based sensor fusion was applied to the data collected by both sensors. Since 

ultrasonic sensors are not affected by light properties, all able objects that were not diffuse objects 

were able to be tracked while also minimizing the overall error of the data they collected. 

Yang and Wang [59] also detailed sensor fusion in attempts to deal with laser scan failure. 

An ultrasonic sensor was used to create two separate occupancy grid maps accounting for all types 

of surfaces. Assuming that mirrors are planar, the property of mirror symmetry is used to restore 

missing scan data, and an iterative closest point (ICP) algorithm is used for mirror prediction. 

Extended Kalman filtering is used to integrate mirror predictions at different time steps. 

In an extension of this research [60], an attempt was made to solve the mirror reflection 

problem using only LiDAR data. Assumptions were made based on detecting mirrors that were 

planar as well as framed. Data association is performed, and a Bayesian filter is used to estimate 

the endpoints of the mirror by detecting the change in properties while the LiDAR moves from a 

framed surface to a reflective surface and is related to mirror symmetry. They used this concept 

and integrated a Bayesian filter into an occupancy grid map algorithm. 

Peasley and Birchfield [61] developed an algorithm to detect specular objects resting on 

the floor using an IR camera as part of an obstacle detection algorithm. This algorithm consists of 

acquiring a point cloud, using segmentation to remove the ground plane from the point cloud and 

using the points to create an occupancy map to use. The approach to detect specular objects 

considers all pixels with an invalid depth reading. Using 8 neighbors, all adjacent pixels are 

examined, and if any point is a floor point, a vertical line is assumed at that floor point. Using this 

technique, they were able to create boundaries around standing specular objects. 
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Foster et al [62] developed an algorithm to detect transparent surfaces. It was found that 

when light travels through a transparent surface, there exists a subset of diffuse-like angles 

approximately 2 degrees from normal. An algorithm was developed to sweep through the widest 

range of angles at every cell of the occupancy grid map and match it to the LiDAR sweeps. 

Matched cells create a subset to map all surfaces now visible from any angle. 

Koch et al. [63] set up a prefiltering module that detected discrepancies in reflective scans 

of a 3D multiecho LiDAR by searching for mismatches in the measurements between 

corresponding echos. At these mismatches, the points behind the potential obstacle are also 

considered. The outliers identified were fitted using an ICP algorithm and classified into the type 

of surface. After the surface was identified, the points behind the surface were removed to provide 

a clean representation of the environment. 

This research was furthered [64] to include a postfiltering algorithm that could be used to 

identify and differentiate between different types of surfaces. Multiple experiments were carried 

out on a shiny surface (aluminum), glass and mirrors. The two echoes of the surface and the 

background of the surface were compared. For aluminum, it was found that the intensity of the 

first echo was greater than the second echo. For glass, it was found that the background in the 

second echo impacted the resulting curves more than the first echo, which showed low intensity. 

Echoes on mirrored surfaces showed a combination of both behaviors. Experiments were also 

performed on other transparent, translucent, and reflective objects, and it was concluded that it 

would be possible to map but would require a special algorithm for each type of surface. 

Zhao et al. [65] studied the reflection problem of glass by analyzing point cloud 3D LiDAR 

for mapping. Observations were made using a lidar with three modes of beam pulse processing, 

comparing diffuse objects, glass intensity and diffuse objects placed behind glass. It was observed 

here that perpendicular to the glass, the lidar will return the strongest intensity. This problem was 

addressed by processing each ask by detecting the intensity peak and dual return and identifying 

boundaries before integrating into a SLAM framework. 

Tibebu et al. [66] also studied the reflection problem of glass with no frames using LiDAR 

mounted on a mobile robot. They also made observations taking into consideration glass, direct 

diffuse obstacles, diffuse obstacles behind glass, free space and area outside the field of vision of 
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the robot. An approach for solving this problem was proposed using range data comparisons 

between neighboring point clouds. Using this information, the difference in standard deviation of 

the data, change in distance and intensity is used to create a filter to estimate the width profile of 

glass before incorporation into a map. 

Summarizing the literature review, it can be seen that there has been extensive research 

done on the mirror detection problem through solution approaches such as sensor fusion of 2D 

LiDARs and ultrasonic sensors to protect unpredictable light properties [58] [59]. Sensors that 

work on the principle of light were used for the detection and mapping of transparent obstacles 

[62] [65] [66] and specular objects resting on the ground [61]. Mirror detection for 2D mirrors has 

been conducted under the assumption that mirrors are planar and framed [60]. 3D LiDARs have 

been used to analyze, detect and map specular surfaces and transparent surfaces and collect 

intensity vs distance data for multiple surfaces [63] [64]. This derives the research potential that 

there is no detailed study of mirror location and path direction on LiDAR data. Research done with 

3D LiDARs cannot be easily translated to more cost-effective 2D LiDAR applications. No 

intuitive method exists for applying 2D LiDARs in an environment containing multiple specular 

and transparent surfaces. 
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CHAPTER 3 

Approach and Implementation 

In the previous section, the limitations of LiDARs and how limitations with respect to 

optical surfaces have been solved in the literature for mapping and navigation are outlined. In this 

section, the tools used to characterize the effect of mirrors on 2D LiDARs, the hardware used to 

run experiments and the configuration between the tools and the hardware are outlined. 

 

3.1. Tools 

ROS stands for Robot Operating System. Although it has the words in its name, ROS is 

not an actual operating system; rather, it acts as middleware between the operating system and 

robot programs. It is an open-source framework that can be used to build and reuse code between 

robotic applications. ROS has been maintained by the Open-Source Robotics Foundation (OSRF) 

since 2013 [67]. OSRF also releases a new version of ROS every year. As of 2020, ROS still runs 

primarily on Unix-based platforms, specifically Ubuntu. However, experimental versions have 

been released for other operating systems, including MacOS and Windows. 

Table 2: ROS Distributions [68] 

ROS Distribution Release Year Version Compatible Ubuntu Release 

ROS Kinetic Kame 2016 ROS 1 16.04 – Xenail Xerus 

ROS Melodic Morenia 2018 ROS 1 18.04 – Bionic Beaver 

Dashing Diademata 2019 ROS 2 18.04 – Bionic Beaver 

ROS Noetic Ninjemys 2020 ROS 1 20.04 – Focal Fossa 

Foxy Fitzroy 2020 ROS 2 20.04 – Focal Fossa 

 

ROS has many versions that have been released over the years. Some of the stable 

distributions and their compatible ubuntu versions are listed below. For the purpose of this thesis, 

we will use the ROS Kinetic Kame on Ubuntu 16.04 Xenial Xerus. 

http://wiki.ros.org/kinetic
http://wiki.ros.org/melodic
http://wiki.ros.org/melodic
https://index.ros.org/doc/ros2/Releases/Release-Dashing-Diademata/
https://index.ros.org/doc/ros2/Releases/Release-Dashing-Diademata/
http://wiki.ros.org/noetic
http://wiki.ros.org/noetic
https://index.ros.org/doc/ros2/Releases/Release-Foxy-Fitzroy/
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The current open-source design philosophy of ROS involves four sections: plumbing, 

tools, capabilities, and ecosystems [69]. Plumbing refers to process management and 

communication between processes through a publisher-subscriber messaging infrastructure. This 

method allows for easy access to device drivers and the construction of complex systems. ROS 

provides many tools, including graphical user interfaces (GUIs); tools for simulation, such as 

Gazebo; tools for plotting and visualization, such as RViz and graphical visualization diagnostics; 

and libraries, language support (C, C++, Python, etc.), and Linux tools, including compilers, 

debuggers, data loggers, etc. [69] [70] 

ROS not only broaden the current industry-standard capabilities but also provide a large 

range of algorithms for control, planning, perception, navigation, and manipulation, making it 

popular among research communities. Ecosystems refer to the large community supporting, 

developing, and collaborating within ROS. ROS is very well documented and organized. All 

available resources can be found at a single location, including the software distributions, package 

organization and tutorials [69] [71]. 

The following concepts are integral in understanding the inter-process communication 

within ROS. 

Nodes - Nodes can be defined as software processes that perform certain functions after 

registering with an ROS Master. These functions can include processing data, commanding 

hardware, and executing algorithms. Nodes are usually written in C++ or Python and allow for a 

modular approach while developing robotic projects [72]. Nodes can be represented as ellipses. 

Publisher nodes generate information, including sensor data, publish the processed data to a topic 

and use ROS topics to communicate with other nodes. Subscriber nodes monitor system states. 

They receive data by subscribing to the information in a topic and use a topic callback to process 

the information [72]. 

Service - A ROS Service is defined using two message types: a request message type and 

a response message type. ROS services generally block the flow of the program and provide event-

based execution. They are, hence, useful when designing sequential behaviors. ROS services are 

made available to other ROS nodes via a service server. Service clients can send requests once 

they are available [72]. 
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Actions - Actions can be defined using three message types: the goal, which is the request 

message; the result, which is the response message; and the feedback, which provides continuous 

feedback regarding processing the goal. An action server allows all nodes to request action goals 

to be processed, and an active client sends the goal requests to the action server [72]. 

Topics - Topics can be defined as buses that transport information between nodes. The 

information passing through a topic is organized in a data structure, which could include multiple 

datatypes. Each topic is identified by a name and a standard or custom type. The type of topic, 

however, depends only on the information that the node requires it to carry. Topics are graphically 

represented as rectangles [72]. 

 

Figure 14: Representation of Communication between ROS nodes and topics 

Catkin is a build tool that compiles source files into executable binaries. A catkin 

workspace is an ROS workspace where catkin is used as a build tool. There are four major sections 

of the workspace: Build, which is used by the build tool to store intermediate files; Devel, which 

contains all the setup and executable files for the project; Logs, which contains the debug 

information; and Src, which contains the code. There are two files that turn a normal file into an 

ROS package CMakeLists.txt and pakckage.xml, which contain the functionality of the script [72]. 

 

Figure 15: ROS tools for simulation and visualization: Gazebo and RViz 
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Gazebo is a physics-based robot simulation tool that can be set up with an ROS plugin to 

simulate projects. It can be thought of as a node that acts as both a publisher and a subscriber. It 

can also support the integration of several sensors and test them through simulation before real-

world implementation [73] [74]. Gazebo provides many robot models and can generate sensor data 

that can be used by RViz. 

RViz is a 3D data visualization tool that is used to analyze robot transforms. It can visualize 

data from both simulations and real-world robots. It can capture data individually from all sensors 

present on the robot or robot simulation [73] [75]. 

 

3.2. Hardware 

The Turtlebot is a standard ROS Platform robot. It is an open-source and low-cost research 

robot with the capabilities of teleoperation, Simultaneous Localization and Mapping (SLAM), 

Manipulation and Navigation, Artificial Intelligence and Autonomous research. As of 2020 there 

have been three versions of the Turtlebot. 

 

Figure 16: Indoor Mobile Robot - Turtlebot3 Waffle-Pi [76] 

Turtlebot1, developed on top of a Roomba-based mobile robot, using an onboard computer, 

in use since 2011. The Turtlebot2 developed over a Yujin Robot base using an onboard computer 
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has been in use since 2012. The Turtlebot3 released in 2017 used Dynamixel smart actuators and 

an onboard SBC (Single Board Computer). It has three variations: burger, waffle and waffle-pi. 

Turtlebot 4 is now released [77]. Here, a Turtlebot3 Waffle pi is used. 

Table 3: Turtlebot3 Specifications [78] 

 

The Main Controller board is an OpenCR, which is an open-source control module made 

specifically for ROS applications. It also contains an inbuilt IMU (Inertial Measurement Unit) with 

a 3-axis accelerometer, gyroscope and magnetometer. 

 

Figure 17: Micrrocontroller - OpenCR [78] 

Accelerometer – Sensors that measure linear, nongravitational acceleration (specific force) 

by detecting a change in capacity due to the displacement of a hinged proof mass or the change in 

frequency of a vibrating element (principle of a mass-damper system) 

Turtlebot 3 – Waffle Pi: Specifications 

SBC Raspberry Pi 3 

Embedded Controller OpenCR 

Sensors Raspberry Pi 3 Camera 

360 LiDAR 

IMU (3-axis gyroscope, accelerometer, magnetometer) 
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Gyroscope – Sensors that measure the rate of rotation of an object by sensing the Coriolis 

force induced by rotation. This causes energy transfer to the sense mode proportional to the angular 

input (principle of a mass damper system) 

Magnetometer – Sensors that measure the direction, strength, or relative change of a 

magnetic field at a particular location 

 

Figure 18: SBC - Raspberry Pi 3 [79] 

The SBC present on Turtlebot3 is a Raspberry Pi 3. The Waffle Pi also contains a 360° 

LiDAR and a Raspberry Pi camera. The raspberry pi has Quad Core 1.2 GHz Broadcom BCM2837 

64-bit CPU; 1 GB RAM, BCM43438 wireless LAN and Bluetooth Low Energy (BLE) on board; 

100 Base Ethernet; 40-pin extended GPIO; composite video port; CSI camera port for connecting 

a Raspberry Pi camera; DSI display port for connecting a touchscreen display; a Micro SD port 

for loading the operating system and storing data and Micro USB power source up to 2.5A [79]. 

 

Figure 19: Raspberry Pi Camera [79] 
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LiDAR - LiDAR uses laser light (typically infrared light) to measure the distance and 

reflective properties of the environment. It is also less sensitive to ambient conditions and hence 

can work in poor illumination. 2D LiDAR sensors (2D laser scanners as well) are suitable for 

performing detection and ranging tasks on surfaces. Regardless of the angle of installation, it can 

be used both indoors and outdoors. 

 

Figure 20: 2D Laser Scanner - LDS – 01 [80] 

For navigation, detection, or measurement: 2D LiDAR sensors supply reliable 

measurement data for a whole host of tasks. The LDS-01 is a 2D laser scanner capable of sensing 

360 degrees that collects a set of data around the robot to use for SLAM (Simultaneous 

Localization and Mapping 

Table 4: LDS Specifications [80] 

LDS Specifications 

Detection Distance 120 ~ 3,500 mm 

Distance Precision ± 15 mm 

± 5.0% 

Distance Accuracy ± 10 mm 

± 3.5% 

Scan Rate 300 ± 10 rpm 

 

Turtlebot 3 also has two smart servo motors from the Dynamixel X-series (XM430-W210-

T). The servos are at the wheels and have an absolute encoder and use a PID control algorithm. 

They also have several control modes, including current, velocity, position and voltage (PWM) 

control [81]. 
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3.3. Setup 

The Turtlebot is an ROS platform robot that interfaces as shown in the figure below. As 

mentioned in the previous sections, the Turtlebot has both an SBC (raspberry pi) and a controller 

(OpenCR). The microcontroller is used for communication with simpler sensors and actuators. In 

this case, the OpenCR interacts with the IMU and the Dynamixel Servo motors. This setup is 

particularly useful for odometry. SBCs are essentially small-scale, fully functioning computers 

that can run an operating system. This is desirable for use with ROS, as it needs an operating 

system to run on, so using a raspberry pi allows for ROS to be used directly on the robot. 

 

Figure 21: Setup of communication between the mobile robot and remote PC 
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Secure Shell Protocol (SSH) is used to communicate with the SBC of the mobile robot 

from a PC using remote access. It uses a client-server architecture to allow communication 

between the two entities by providing a secure connection over a nonsecure network such as Wi-

fi [82]. In this setup, a Linux command used to establish the connection between the remote PC 

and the 

Once the robot is accessible remotely, ROS-related packages can be brought up through 

roscore. These packages are a collection of programs and nodes, including an ROS Master and 

ROS parameter server [83]. Enabling the ROS master is a prerequisite to use the system, as it 

allows nodes to be located and locate other nodes [84]. Roscore is initiated on the remote PC. 

Before initiating Roscore, all network settings should be configured correctly such that the remote 

PC is able to communicate with the robot. The package that keeps track of and maintains 

relationships between different coordinate frames is called tf and is short for the word “transform” 

[85]. An rqt plug in can be used to visualize the tf relations as a tree using the following command. 

(An image of this is included in Appendix C) 

After ROS packages are brought up, to interface with the turtlebot, the turtlebot packages 

need to be brought up as well. These packages are provided through Robotis. Teleop, which is 

short for “teleoperation”, provides the ability to control movement of the robot through the 

keyboard of the remote PC. With respect to the Turtlebot, this node allows a general range of 

motion in 4 directions and allows for the robot to move with a range of linear and angular speeds. 

More information about the setup of the remote PC (master) and the turtlebot (host) is included in 

Appendix B. 

To understand how LiDARs work in multiple-mirror environments, the robot travels 

through the environment running a SLAM node. The figure above shows the experimental process 

for the robot to do so. The SLAM node can only run after SSH is set up and roscore is enabled. It 

then uses IMU and LiDAR data to build a continuous map of the environment. GMapping is a 

grid-based SLAM algorithm that uses particle filter-based adaptive Monte Carlo localization and 

local pose estimation to create a grid-based map of the environment. 
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Figure 22: Process of data collection by the mobile robot to build a map using ROS tools 

The particle filter used in this algorithm is a Rao Blackwell particle filter. This filter sets 

the initial belief that in a set of uniform Gaussian distributions, every sample has a weight 

associated with it. Random weights will decide which states are evaluated, where higher weights 

are more probable and lower weights are less likely. The joint posterior probability of the position 

and map will be estimated. Sampling will occur to generate new particles, where weighting will 

be recalculated and then resampled, and a map update will occur [86]. 

In Gmapping, the system subscribes to the sensor “msgs/LaserScan” message and 

publishes the “nav msgs/OccupancyGrid”, tf transformation as shown below in the topic. While 

running a SLAM node, to obtain the most accurate data, the robot should be run slowly to obtain 

as many laser samples as the LiDAR can pick up in a particular area. It is also not recommended 

to drive over the same area more than once while mapping as doing so will increase the noise in 

the map. 
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Figure 23: RQT graph of the SLAM - GMapping Topic 

To visualize the LiDAR data, Rviz is initiated, and the robot is moved through the system 

through a teleoperation node. It can alternatively be done through remote control or an object 

detection and automation strategy. After executing the test strategy, the built map is saved for 

further analysis. To test the functioning of the node along with mirror detection problems, the robot 

was placed in a new environment with irregularly shaped boundaries along with one obstacle and 

one mirror, as seen in figure 24. 

 

Figure 24: SLAM behavioral-check environment 
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Figure 25: RViz Visualization for SLAM behavioral-check environment 

As seen in figure 25, the robot is able to detect all the boundaries and the obstacle. It is also 

able to estimate its own position in the space while building a map of the environment. Here, it 

can be seen that the mirror placed on the right side of the robot provides irregular readings and 

creates an inconsistent map of the boundary. 
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CHAPTER 4 

Experimentation and characterization 

In the previous section, the hardware for the mobile robot, ROS and related tools such as 

Gazebo and RViz, the setup used to facilitate the communication, and the process of data collection 

were outlined. In this chapter, the experimental environment, experiments run, and observations 

to characterize this behavior are mentioned. 

 

4.1. Experiments 

 

Figure 26: Constructed Experimental Setup 

To test the behavior in a more standardized setup, an environment was constructed as a 12 

ft x 6 ft rectangular box with three potential mirror locations. 
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Figure 27: Representation of the experimental setup with mobile robots A, B and C 

The experimental runs had four separate tests with three mirrors that were four feet in 

length. These mirrors were placed in one or more locations, as seen in figure 27, and the robot was 

driven in the same direction from one end to the other end of the setup from the start position “A” 

to the end position C. 

 

Figure 28: Representation of Tests 1-4 with single or multiple mirrors 
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Table 5: List of Experiments 

Test Number Procedure 

Test 1 Mirror Placement 2 

Turtlebot from A →C 

Test 2 Mirror Placement 1 

Turtlebot from A →C 

Test 3 Mirror Placement 1; 3 

Turtlebot from A →C 

Test 4 Mirror Placement 1; 2; 3 

Turtlebot from A →C 

The first two tests use only one mirror. The third and fourth methods use multiple mirrors. 

This strategy was used to understand how LiDAR data collection would be impacted by the 

direction of travel of the LiDAR. 

4.1.1. Test #1 

In the first test, we drive the robot from position A to C toward a single mirror. 

 

Figure 29: RViz map of Test 1 – Driving toward a mirror; Position A – Bottom of the experimental setup 

TurtleBot 

Mirror 
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At position A, the top borders of the environment have not yet been formed. This is due to 

the LiDAR range being approximately 10-11 feet. The top boundary that is not yet formed is still 

out of bounds. There is a large empty space seen in the area of the LiDAR where the mirror is 

located. 

 

Figure 30 RViz Map of Test 1 – Driving toward a mirror; Position B – Middle of the experimental setup 

At position B, it can be seen that the upper boundary is now in range, and the entire 

experimental area should be mapped. However, the mirror location is still not detected, and the 

area within the field of view between the mirror location tapered to the LiDAR is still unaccounted 

for, showing up as an unmapped area in the RViz visualization tool. 

 

Figure 31: RViz Map of Test 1 – Driving toward a mirror, Position C – Top of the experimental setup 
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At position C, the robot has completed its course. Although the mirror should be a solid 

boundary, the LiDAR has mapped past the region of the mirror. This is likely through the detection 

of the reflection of the test environment. As the mirror is a plane mirror, it can be seen that the 

reflections of some parts of the boundaries are equidistant from the surface of the mirror as the 

physical boundary. Another interesting observation is that the turtlebot itself was detected on the 

surface of the mirror when the robot was in the range normal to the mirror. Some parts of the 

mirror remained undetected. 

To summarize test 1, when the Turtlebot moved toward a plane mirror, the mirror was not 

detected. Some boundary reflections were observed. The Turtlebot itself was detected when it 

moved within the detection range of the LiDAR normal to the mirror. 

4.1.2. Test #2 

In the second test, the robot travels alongside a single mirror from A to C 

 

Figure 32: RViz Map of Test 2 – Driving alongside a mirror, Position A – Bottom of the experimental 

setup 

At position A, it can be seen that the top of the boundary is still out of range, and some of 

the areas between the LiDAR and the mirror within the field of view of the LiDAR are undetected. 

A small amount of boundary reflection is seen on the other side of the mirror. 

TurtleBot 

Mirror 
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Figure 33: RViz Map of Test 2 – Driving alongside a mirror, Position B – Middle of the experimental setup 

At position B, there is no more negative space within the test boundary. A significant 

amount of the reflection of the left boundary wall is now detected behind the surface of the mirror 

at the same distance from the mirror as the physical wall. An expected observation would have 

been to see the robot detected on the surface of the mirror as it passed. This observation was seen 

in some runs of this test. 

 

Figure 34: RViz Map of Test 2 – Driving alongside a mirror, Position C – Top of the experimental setup 



41 

 

At position C, the reflection of the left wall boundary is detected behind the mirror and is 

well defined on the RViz visualization tool. Some of the bottom boundary reflection is also seen. 

The robot does travel slowly to increase the number of LiDAR scans it is able to take per distance 

traveled. However, observing the amount of boundary reflection detected, it is possible that if the 

robot was slowed down further, a complete boundary reflection would have been seen. 

To summarize test 3, when the Turtlebot moved alongside a plane mirror, it was observed 

that the SLAM node mapped false boundaries behind the mirror. Reruns of the test showed that 

the robot was continuously mapped on the surface of the mirror when traveling normally to the 

mirror. This is likely due to inconsistent lighting conditions in the test environment. 

4.1.3. Test #3 

In the third test, the mobile robot travels between two plane mirrors placed parallel to each 

other while traveling from point A to point C. 

 

Figure 35: RViz Map of Test 3 – Driving between mirrors, Position A – Bottom of the experimental setup 

At position A, it can be seen that the top of the boundary is out of the range of the LiDAR, 

and some of the areas between the LiDAR and the mirrors within the field of view of the LiDAR 

are undetected on both sides. 

Mirror 

TurtleBot 

Mirror 
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Figure 36: RViz Map of Test 3 – Driving between mirrors, Position B – Middle of the experimental setup 

At position B, it is seen that the reflection of the boundary walls can be seen on both sides 

behind both mirrors. It can be assumed that both mirrors map the reflection of the opposite walls. 

Another interesting observation is that the robot is detected on only one of the mirrors. This was 

continuously corrected as the robot traveled along the mirror and did not leave a map boundary 

after crossing the mirror. 

 

Figure 37: RViz Map of Test 3 – Driving between mirrors, Position C – Top of the experimental setup 
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At position C, solid boundaries can be seen behind both mirrors. The mirror reflections of 

the bottom boundaries are partially formed as well. The left boundary reflection map is slightly 

less prominently mapped than the right side. A potential cause for this could be the disturbance 

caused by the moving turtlebot map. Inconsistent lighting could also cause the difference in 

mapping between the two boundary reflection maps. 

To summarize test 3, when the Turtlebot traveled in a straight line between two parallel 

mirrors, it was observed that the maps of the boundary wall were seen on both sides behind both 

parallel mirrors; however, one mapped reflection was lower in density of map points than the other. 

The Turtlebot was also continuously detected on the surface of one of the mirrors normal to the 

target. 

4.1.4. Test #4 

In the fourth test, all three mirrors are placed in the environment, and the robot is driven 

from point A to point C. 

 

Figure 38: RViz Map of Test 4 – Multiple mirror environment, Position A – Bottom of the experimental 

setup 

At point A, similar to the first three experiments, it was seen that there was negative space 

in the field of view between the LiDAR and the mirror locations. 

TurtleBot 

Mirror Mirror 

Mirror 
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Figure 39: RViz Map of Test 4 – Multiple mirror environment, Position B – Middle of the experimental 

setup 

At point B, it was seen that the reflections of the boundaries of the 12-foot sides of the 

environment were mapped behind the mirrors as in previous tests. With respect to the mirror at the 

top of the environment, there is only negative space in the field of view between the LiDAR and 

the mirror. Additionally, unlike test 3, where the turtlebot was continuously mapped in the left 

mirror, in test 4, the turtlebot was continuously mapped in the right mirror. 

 

Figure 40: RViz Map of Test 4 – Multiple mirror environment, Position C – Top of the experimental setup 
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At Position C, it can be seen that the top mirror also allows for some of the reflections of 

the side boundaries to be mapped while also mapping the robot reflection on the surface of the 

mirror, normal to the robot. It also leaves some negative space where no boundaries are in range. 

There is also a solid reflection of the left and right boundaries mapped behind both mirrors. The 

right reflected boundary map is less dense than the left. This is likely due to disturbance caused by 

the robot mapping and correction as it passed through the parallel mirrors. 

To summarize, this test reinforces the observations of the first three experiments where 

negative space is seen where no boundary reflections are in range. When boundary reflections are 

in range, they map behind the mirror at the distance of the boundary from the surface of the mirror. 

The robot is detected on the surface of the mirror. 

4.1.5. Test #5 

To reinforce the understanding of detecting the robot on the surface of the mirror, a 

stationary test was performed by placing the robot in front of a single mirror, running the SLAM 

algorithm and viewing the map on the Rviz visualization tool. 

 

Figure 41: Single mirror stationary test representation 

As seen in figure 42, a solid collection of map points is mapped on the surface of the mirror. 

The remaining length of the mirror is not mapped, but the reflected portion of the opposite 

boundary is mapped behind the mirror. 
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Figure 42: RViz Map of the stationary single mirror test 

 

4.2. Characterization of Results 

The experimental tests conducted with mirrors located at various locations along the 

navigation path of the robot showed that mirrors in the environment cause inconsistencies in 

mapping using LiDAR data. Several important observations were noted. 

4.2.1. Observation #1 

Detection of negative space where mirrors or present was seen consistently over multiple 

experiments both before and after mirror a fully in the range of the mirrors. This could be consistent 

with the uniform reflection of all LiDAR scan points from the start to end length of the mirror. It 

is possible that the total reflection causes any boundary reflections that could potentially be 

detected to be out of the LiDAR range. Alternatively, perhaps the LiDAR was unable to receive 

any intensity from any other reflected points. 
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Figure 43: Observation of negative space in mirrored environments 

Figure 44 shows the classification of the LiDAR scan datapoints when the LiDAR rotates within 

the range of a plane mirror. All scans that lie outside the length of the mirror are unaffected by 

having a mirror in the environment. The points between the mirror and the LiDAR and the mirror 

are affected. Beyond the mirror, all LiDAR readings are false. 

 

Figure 44: Affected area of LDS Scan in the presence of a mirror 
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4.2.2. Observation #2 

False detection within the mirror was seen consistently when the opposite boundary was in 

range. Observing this behavior, it can be assumed that any other diffuse object placed at a distance 

from the mirror where the reflection of the object would be within the range of the LiDAR would 

also be mapped. 

 

Figure 45: Observation of the reflected boundary detected behind the surface of the mirror 

This behavior seen in figure 2 is consistent with the law of reflection for a plane mirror. 

The law of reflection states that for reflection off a plane reflective surface, the angle of incidence 

is equal to the angle of reflection. 
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Figure 46: Schematic of object reflection in a plane mirror 

The reflection off a plane mirror is shown in figure 46. For a plane mirror, this would 

further infer that the distance of the object from the mirror (do) is equal to the distance of the image 

from the mirror (di) 

 𝑑𝑖 = 𝑑𝑜 (14) 

 𝑑𝑙𝑖𝑑/𝑖 = 𝑑𝑙𝑖𝑑/𝑚𝑖𝑟 + 𝑑𝑜 (15) 

Therefore, the distance of the image from the LiDAR (dlid/i) is equal to the sum of the 

distance between the LiDAR and the mirror (dlid/m) and the object from the mirror. 

4.2.3. Observation #3 

The robot detected itself on the surface of the mirror. According to the previous 

observation, all obstacles detected have been detected at the correct location of the mirror image; 

however, in the case of the robot itself, from the data collected, it can be inferred that the robot is 

being detected on the surface of the mirror rather than a few feet behind the mirror where their 

mirror image should have been. 
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Figure 47: Observation of the robot detecting itself on the surface of the mirror 

From this information, it can be inferred that the mirror acts as a diffuse surface when the location 

of the robot LiDAR scans is normal to the mirror. Although this behavior is inconsistent with 

observation 2, this observation is consistent with [62], where a similar behavior was found for 

glass surfaces. However, this may not be the only observation to rely on, as although it was 

consistently seen in at least one of the mirrors in all the tests run; there were some inconsistencies 

found during different runs of the robot through parallel mirrors. The diffuse behavior was only 

seen normal to the mirror (figure 48). 

 

Figure 48: Representation of specular surface acting as a diffuse surface at normal 
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CHAPTER 5 

Future work and Conclusions 

In the previous section, experiments were run, and observations were made related to the 

mirror detection problem. This thesis studied and characterized the effects of 2D LiDAR scan data 

for mapping indoor environments. An introduction to indoor navigation was provided, which 

included covering concepts of autonomous navigation, path planning, localization, and mapping. 

The scope of the problem was outlined, providing a review of the literature, experiments were run 

to understand the problem and observations were made. In this chapter, potential solution approach 

to the problem has been discussed, potential future work and the conclusion will be provided. 

 

5.1. Data Collection 

Shown in Figures 49, 51, and 53, LiDAR scan points are plotted on an XY plot as seen in 

experiment three. LDS-01 has a 1° resolution. Each rotation of the laser will thus take 360 scan 

points. As seen in the figures, several of those scan points are unique with respect to range. The 

robot receives both range and intensity data to use for the process of map building.  

 
𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 =

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑠𝑒𝑛𝑡

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒2
  

(16) 

The unit of range is metres (m) and the unit of intensity is Watts/metre (W/m). In Figure 

50, 52, 54 the intensity has been scaled down by a fraction of 600 to compare the plot size. These 

intuitively show that the range is inversely proportional to the received intensity back to the 

receiving element after detecting an element. 

From this information, there are two entire sets of data to categorize and work with. Based 

on the experimental observations, the next step is to develop a modification to the SLAM algorithm 

for mirror detection using a combination of the four distinct categories of types of data collected. 
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The following figures show some data collected for Test 2. This is a good example to show 

some normal boundary conditions as well as some negative space when the robot position is close 

to the start position of the test. Normal detection for intensity depends on the distance of the LiDAR 

from the boundary. This can be in the range of 3000 to 4000 W/m when the range is around 0.5m 

from the boundary.  

 

Figure 49: 360 laser scan points for range mapping radially around the robot (Test #2) 

 

Figure 50: 360 laser scan points for received intensity mapped linearly (Test #2)  

In the case of a single mirror and the travel of the robot in a single direction, a very clear 

distribution of data is seen where there is no range data. However, some intensity data is still 

collected, which is inconsistent with equation 16.  
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The following figures show some data collected for Test 3. This is a good example to show 

some normal boundary conditions, some negative space as well as some false detection when the 

robot position is close to the start position of the test.  

 

Figure 51: 360 laser scan points for range mapping radially around the robot (Test #3) 

 

Figure 52: 360 laser scan points for received intensity mapped linearly (Test #3) 

 For both normal detection and false detection, the data collected shows some noise 

inconsistencies in intensity data. 
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The following figures show some data collected for Test 4. This is a good example to show 

some normal boundary conditions in comparison to false boundary detection and robot self-

detection when the robot is in the middle position of the test.  

 

Figure 53: 360 laser scan points for range mapping radially around the robot (Test #4) 

 

Figure 54: 360 laser scan points for received intensity mapped linearly (Test #4) 

As this data was collected at a different robot location and environment, different range 

and intensity data is seen for normal detection through data patterns is similar. High intensity was 

seen for self-detection and inconsistent readings with respect to range data were seen at mirror 

locations. 
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Normal detection or the detection of diffuse boundaries that are detected and mapped 

correctly by the LiDAR. Negative space or the lack of detection and lack of mapping in the range 

between the LiDAR and mirror at various ranges and directions of motion with respect to the 

mirror. 

Reflective detection or detection of mirror reflection of various diffuse surfaces where the 

mirror reflection of the surface is in range of the LiDAR. Self-detection of the robot on the mirror 

surface can also be considered. 

5.2. Potential Approach - Concepts 

This provides the opportunity to use a classification-type algorithm to work alongside the 

SLAM algorithm to map out mirrored boundaries. A high-level process is highlighted in the figure 

below. 

 

Figure 55: High-level solution approach for mirror detection issues 

Machine learning algorithms are considered for outlier detection. In recent times, 

applications of machine learning span several industries, including healthcare, retail, and 

education. Artificial intelligence and machine learning have become very popular in robotics and 

related problems. Machine learning is the study and application of systems and algorithms that use 

data to continuously learn and update on their own through experience [87]. 

Machine learning can be divided broadly into three categories depending on the goal of the 

learning algorithm and the information available to it. 



56 

 

 

Figure 56: Classification of types of Machine Learning 

Supervised learning algorithms are data-driven techniques that use known labeled data to 

teach the system how to perform a prediction on a future scenario [88]. Supervised learning is 

useful for problems that require prediction or regression (such as weather/behavior prediction) or 

classification (such as image search) where large amounts of data exist for training. 

 

Figure 57: Simplified algorithm for supervised learning 

Supervised learning has several algorithms associated with it, including linear classifiers, 

such as naïve Bayes classifier and support vector machine; random forest decision trees; neural 

networks, etc. [88]. 

Unsupervised learning does not require a labeled dataset to teach the system; rather, it 

learns through its own experience using data collected in real time. It is very useful to find 

unknown patterns and can take place in real time. Clustering models allow for the input data to be 

divided by similarity into clusters. Association models are used to identify sequences in the data. 
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Figure 58: Simplified Algorithm for Unsupervised Learning 

Reinforcement learning uses the concept of rewarding preferred behavior and will penalize 

the system for unexpected or incorrect behavior. This is used to teach the system come up with a 

solution for a problem through trial and error. 

 

Figure 59: Simplified Algorithm of Reinforcement Learning 

There are several other machine classifications, including hybrid types such as 

semisupervised learning and statistical learning methods. 

Given the mirror data collected and the types of machine learning algorithms, the type of 

machine learning that would be most suitable for the mirror problem application would be an 

unsupervised learning algorithm performing clustering. Clustering is chosen because there is no 

learning period for mirror data classification that can be provided to teach the model prior to 

mapping. It can also be implemented in real time. 
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Figure 60: Pictorial representation of Clustering 

Clustering can be performed based on several topics, including distribution, partition, and 

density [89]. A few of the more common clustering algorithms are detailed below. 

Table 6: Comparison of Clustering Algorithms (K-Means, GMM and DBSCAN) 

Algorithm Advantages Disadvantages 

K-Means 
- Less Complex 

- Can be extended 

- Form circular clusters 

- Difficult to cluster 

outliers. 

Gaussian 

Mixture Models 

(GMM) 

- Soft Classification 

- Flexible for more data 

scans 

- Highly scalable 

- Highly Complex 

- Lack of Flexibility 

 

DBSCAN 
- Does not require a 

specification on clusters 

- Noise identifiable 

- Can be used with various 

sized and shaped clusters 

- Poor with highly 

dimensional data 

An example of partition-based clustering is K-Means. This is one of the simplest 

unsupervised learning algorithms. In K-means, k represents the target number of centroids around 
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which clusters are grouped. The k-number of randomly selected centroids will be iterated until 

they stabilize [90]. These clusters assume circular shapes. 

The Gaussian Mixture model (GMM) is a distribution type clustering algorithm. It works 

similarly to k-means; however, it assumes that the datapoints follow Gaussian distributions, and it 

soft assigns the datapoints in the cluster to consider and can therefore account for more uncertainty. 

Density-based spatial clustering of applications with noise (DBSCAN), as seen in the 

name, is a density-based clustering algorithm. This algorithm works by visiting each point in the 

dataset and determining which cluster each of them belongs to depending on the distance. 

There are several other clustering algorithms with different properties (picture included in 

Appendix D). Comparing the three common clustering algorithms [89], the proposed chosen 

algorithm for the mirror problem application is DBSCAN. 

DBSCAN is a density clustering algorithm. This is mostly due to the type of data seen in 

the mirror experiments. The clusters created by DBSCAN can be arbitrarily shaped and therefore 

should likely fit. 

Two main parameters are used in the DBSCAN algorithm that need to be configured for 

optimal clustering. 

Epsilon (ε) is a specified distance that allows the algorithm to understand how close 

together data points can be to be considered part of the same cluster. Therefore, if the distance 

between two data points is d12, 

 𝜀 ≥ 𝑑12  → 𝑝𝑜𝑖𝑛𝑡𝑠 1 𝑎𝑛𝑑 2 𝑎𝑟𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (17) 

ε needs to be chosen optimally, as if the eps value is too small, several points that do not 

fit into that distance will be considered outliers. However, if the epsilon value is too large, optimal 

clustering will not take place, as too many points may fall into the same neighborhood. The 

distance of the dataset can be used to find the ε value. 
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MinPoints is another parameter used for DBSCAN. This parameter specifies the minimum 

number of data points required to create a cluster. It is based on the number of dimensions (D) of 

the dataset. 

 𝑚𝑖𝑛𝑃𝑜𝑖𝑛𝑡𝑠 ≥ 𝐷 + 1 (18) 

 

Therefore, the minimum value of minPoints is 3. Larger datasets would likely have larger 

values of minPoints. Datasets with considerable noise should also use larger minPoint values. 

 

5.3. Potential Solution Approach 

Figure 57 shows the sequence of events to enable clustering through DBSCAN. Here, 

density connected points refer to two clusters having one or more points that have neighbors within 

the ε distance of both clusters. 

 

 

Figure 61: Simplified algorithm of DBSCAN Clustering 
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Machine learning algorithms can be used on the ROS platform and the Turtlebot. Anaconda 

can be used with a compatible version of Python. For example, Anaconda 5.2.0 can be used for 

Python 2.7. 

ROS packages need to be installed as well as dependency packages between ROS and 

Anaconda. Through Anaconda, TensorFlow and Keras can also be used. After this installation, 

NymPy libraries can be installed, and Pandas can be used to bring in DBSCAN algorithms to the 

environment. 

The proposal to solve the mirror problem is to combine the Rao Blackwell Particle Filter 

that is used in the GMapping node along with DBSCAN to cluster mirrored points and proceed to 

remove them in a post filtering process. In the prefiltering process, lidar scan readings are used as 

input to the DBSCAN clustering algorithm. As seen in the characterization of the results, all 

behaviors affected by mirrors have distinct separations from normal scan data on diffuse objects. 

 

Figure 62: Proposed Preprocessing Algorithm 
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Each outlier property can be categorized based on range and intensity readings. Diffuse 

surface properties will remain within a normal range of range and intensity. Negative space 

properties should provide no range readings and very low or no intensity readings. Self-detection 

properties can be characterized with very high-intensity readings. Mirror reflection properties will 

mostly include an area of no range or intensity. These properties can be fed into the algorithm to 

remove clusters that are affected by mirror reflection. 

The next step would be to implement a postprocessing algorithm. Considering all mirrors 

to be plane mirrors, in this algorithm, border conditions of all empty map scans will be considered. 

Using ROS parameters to update the SLAM node, the new map should connect the boundary 

points. 

 

Figure 63: Proposed Postprocessing Algorithm 

Implementing the pre- and postprocessing algorithms along with the continuous map 

update should enable all mirrors to be mapped as diffuse objects in real-time. 
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5.4. Future Work 

This work can be applied in the mapping of indoor spaces with high amounts of optically 

unique surfaces, including modern office buildings, hospitals, museums, heritage sites, etc. The 

current proposal is to use a combination mirror properties and outlier identification through a 

DBSCAN clustering algorithm. Implementation of the proposal and experimentation with 

different types of classification and learning algorithms would be in the scope of future work. 

Solutions to this problem can also likely be implemented for 3D LiDAR applications, 

including perhaps autonomous vehicles in urban environments with highly reflective surfaces as 

well as through monocular or camera-based SLAM. Camera-based systems also use principles of 

light. Therefore, specular and transparent obstacles would pose an absolute issue in obstacle 

avoidance, SLAM and autonomous systems. 

In the future, this research could be extended to apply a separate layer of mapping for 

reflective systems. The research done here only outlines multiple mirror conditions for the case of 

plane mirror light properties that are reasonably predictable. It would be interesting to examine the 

behavior of LiDAR data collection and slam mapping for different types of optical environments, 

including environments with transparent and translucent boundaries such as glass, which are 

commonly used as dividing walls in office buildings, spherical or curved mirrors, etc. 

Concave and convex mirrors have very different image buildings than plane mirrors. Plane 

mirrors create an imaginary image at an equal distance from the mirror as the object. However, 

concave mirrors always create inverted images that can vary in size according to the distance of 

the object from the mirror and the radius of curvature of the mirror. Convex mirrors always provide 

erect images but will have a different pattern of reflection than plane mirrors. Gridded mirrors, 

cracked mirrors and reflection properties from angled mirrrors can also be tested.  

Although using a 2D LiDAR may limit the reflection problem, running similar tests with 

a 3D LiDAR or camera may be more advantageous for a larger scope of applications. These 

possibilities can also be future research considerations. 



64 

 

5.5. Conclusion 

A potential fully autonomous robot was implemented using Turtlebot along with the ROS 

ecosystem to run experiments, and the SLAM node tested was Gmapping. Several other SLAM 

algorithms exist and can be used in future work. Conducting tests with mirror objects at various 

locations along the navigation path yielded several important observations. 

• Negative space: When a mirror was in the range of the LiDAR, negative space or 

undetected area was seen in the range between the LiDAR and mirror due to 

complete reflection of all the laser scans. This occurs in Position A of all tests. 

• False detection: while traveling alongside a mirror, detection was seen behind the 

surface of the mirror when diffuse surfaces were in the range of the LiDAR. The 

robot detected and mapped the mirror reflection of the opposite wall to the mirror 

in Tests 2-4. 

• Self Detection: The robot detected itself in the mirror at all points where it was 

normal to the mirror. This suggests that the mirror acts as a diffuse object when it 

is normal to the laser scan. This was seen in all tests. 

• Noise: It was noticed that in the case of two mirrors, several times the robot was 

only detected in one mirror. This infers that those inconsistencies in light reflection 

on the mirror may affect laser scans as well. This was seen in tests 3 and 4. 

From these observations, a proposed way of solving the mirror reflection problem is by 

incorporating the data into a clustering algorithm, DBSCAN. Applying DBSCAN prefiltering to 

remove inconsistencies and a postprocessing algorithm for mapping could be a solution method. 
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APPENDICES 

Appendix A 

 

Bayes Theorem 

Where P(A) is the probability of event C without any effect on any other event. P(B) is the 

probability of event B without any effect on any other event, and P(A|B) is the probability of event 

B given that event A is true, providing a probability between 0-1. 

𝑃(𝐴|𝐵) =
𝑃(𝐴│𝐵)𝑃(𝐴)

𝑃(𝐵)
 

The following figure shows different probabilistic representations: 

 

 

Figure 64: Probabilistic representations for hypothesis beliefs - Gaussian and discrete 

distribution 



76 

 

 

Appendix B 

 

Steps for setting up the remote PC and Turtlebot. 

1. Download preferred Ubuntu package on Remote PC 

• In this thesis, Ubuntu 16.04 was used because it was the most stable. 

 

2. Install preferred ROS version on remote PC 

• In this thesis, ROS 1 was used to be compatible with Ubuntu 16.04 

 

3. Install all dependent ROS packages, which includes several packages: 

• Teleoperation-related files 

• Laser Scan perception Packages 

• Image Perception and Transport Packages 

• Launch files for RGB-D devices 

• Arduino Packages compatible with ROS 

• Python Packages compatible with ROS 

• ROS Serial Packages 

i. rosserial server 

ii. roserial client 

iii. rosserial messages 

• AMCL (adaptive Monte Carlo localization) packages 

• Map-related packages (Server/Saver) 

• URDF (unified visual robot model) packages 

• Xacro (XML macro language) Packages 

• Rqt-related packages (rqt is for GUI plugins) 

• Navigation packages 

• Interactive Marker Packages (used in tools such as RViz) 
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4. Install Turtlebot Packages and configure system to match the model being used. 

• In this thesis, the Turtlebot 3 Waffle-Pi was used 

5. Configure the network for the remote PC 

• The remote PC is the ROS Master 

• IP URI should be in the form of: https://IP_remotePC:11311 

• The IP address can be found by: 

$ ifconfig 

• Update ROS IP settings 

$ nano ~/.bashrc 

• Source bashrc with 

$ source ~/.bashrc 

 

6. On the Raspberry Pi, download the correct ROS image and burn the image 

• Here, Raspberry Pi 3 is used, and Raspberry Pi 4 onward is no longer compatible 

with Ubuntu 16.04 

7. Configure the network for the Raspberry Pi 

• The Raspberry Pi of the Turtlebot is the host 

• IP URI should be in the form of: https://IP_remotePC:11311 

• The IP address can be found by: 

$ ifconfig 

• Update ROS IP settings 

$ nano ~/.bashrc 

• Source bashrc with 

$ source ~/.bashrc 

 

8. Install OpenCR packages onto the Raspberry Pi 

 

9. Upload Firmware to OpenCR 

 

 

https://ip_remotepc:11311/
https://ip_remotepc:11311/
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Appendix C 

Turtlebot/Ros nodes and topics in use 

 

Figure 65: SLAM node data collection as seen in the Ubuntu command window 
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Figure 66: Odometry-position estimation as seen in the Ubunty command window during SLAM 
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Figure 67: ROS RQT Map retrieved 
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Appendix D 

This image shows how various unsupervised clustering algorithms work. 

 

Figure 68: Clustering for various algorithms [91] 
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