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ABSTRACT 

Hydrological models are powerful tools that simulate the natural hydrological cycle and natural 

processes like surface runoff, groundwater flow, and evapotranspiration, which are needed to be 

understood and quantified for a wide range of applications like water resource management, 

climate change impact assessment, flood studies and water quality assessment. Errors and 

uncertainties are bound to creep into the modelling process because of various reasons like 

incomplete understanding and representation of the natural phenomena, model errors, 

approximation errors, and parameter uncertainties. This study aims to efficiently quantify the 

parameter uncertainty by making use of surrogate modeling techniques. There is an inherent trade-

off between model complexity and the parameter uncertainty i.e., parameter uncertainty usually 

increases if complex hydrological model with high model accuracy is employed, but the required 

computational effort would increase significantly. Considering this tradeoff, one lumped, 

conceptual model (HYMOD) and one semi-distributed, process-based model (SWAT) for a small 

(179 km2) and mid-sized (2318 km2) watershed are considered for this study. Hydrological 

modelling processes are frequently hampered by computationally costly simulations. 

Consequently, modellers can opt a surrogate model which is a machine learning model that 

approximates another model but requires less computational effort. This thesis uses Polynomial 

Chaos Expansion (PCE) method of surrogacy which represents an accurate approximation of the 

model as the sum of carefully selected polynomials, each separately weighted. The aim of this 

study is to use Polynomial Chaos Expansion to 1) Improve the calibration and uncertainty 

assessment procedure for HYMOD, and 2) Quantify parameter uncertainties in SWAT 

Keywords: Hydrological models, SWAT, parameter uncertainty, surrogate model, Polynomial 

Chaos Expansion (PCE)  
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Extreme events are occurring more frequently as a result of climate change, which calls for 

increased readiness to reduce risk and prevent catastrophic events (Xu, 1999). In the field of 

hydrology, designers, researchers, and decision-makers have been working to create more reliable 

daily (or sub-daily) probabilistic forecasting methods. Hydrological modelling is crucial for 

managing flood risks, allocating water resources, and operating and planning water infrastructure 

(Fowler et al., 2007). There are several different kinds of hydrological models for predicting flow. 

There are two commonly employed types of hydrological models: physically based models and 

conceptual models. Based on spatial variability, physically based models can be categorised into 

three groups: lumped, semi-distributed, and fully distributed models (Devia et al., 2015). Given 

that the catchment is viewed as a single entity and that there is no spatial variability within the 

watershed, the lumped model is also known as a conceptual model. The watershed is divided into 

sub-basins by the semi-distributed model, and each sub-basin has its own set of parameter values. 

The catchment is divided into grids in the fully distributed model, which is the most complex 

because each grid has unique properties and processes. Although fully distributed models appear 

to be the best, as the model gets more complex, more input data is needed. The model becomes 

more uncertain as there are more parameters added (Moges et al.,2021). On the other hand, 

physical laws are taken into account by conceptual models, but they are greatly simplified. A 

conceptual model is an accurate depiction of a hydrologic system that includes the modeler's 

knowledge of the pertinent physical, chemical, and hydrologic conditions. Conceptual models of 

rainfall-to-runoff generation are used to predict the size of streams by simulating internal variables 

like soil moisture using a variety of response functions (Jajarmizadeh et al., 2012). 
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1.1.1 Physically Based Models 

A system of hydrological and/or hydraulic processes that simulates the catchment's reaction to 

precipitation events is known as a physically-based model. There are some simplifications to the 

actual hydrological processes in physically based models. The type of physically-based model will 

determine how simplified the model is (Beven, 1989). The most simplified models are lumped, 

and fully distributed models contain the most information about the actual catchment response. 

Physically based models must first be calibrated in order to offer valid and trustworthy predictions 

(Fatichi et al., 2016). The number of parameters that must be calibrated can vary from less than 

ten to hundreds, depending on the type of model.  

To cut down on computational time and requirements, sensitivity analysis can be performed first. 

Non-sensitive parameters discovered through the sensitivity analysis can be disregarded during the 

calibration process. Local and global sensitivity analyses are two of the various types of sensitivity 

analysis. When determining local sensitivity, all parameters are fixed, and only one parameter is 

changed at a time near the value of interest to see how the output changes as a result (White and 

Chaubey, 2005). Local sensitivity analysis is simple, quick, which is a trade-off for its low 

accuracy. When computational resources are scarce, they are useful (Karkee and Steward, 2010; 

López-Cruz et al., 2012). The parameters that have the greatest impact on the model output are 

identified by global sensitivity analysis, which considers output change in relation to changes in 

all parameters throughout the entire parameter space (Dos Santos and Lu, 2015; López-Cruz et al., 

2012; Scire et al., 2001). Global sensitivity is becoming more widespread due to the quick 

advancement of high-performance computing technology and the fact that it yields more accurate 

results than local sensitivity.  
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Previous research has looked into various methods for enhancing physically based models. The 

first option is to develop new hydrological models or to enhance the simulation of hydrological 

and hydraulic processes within the model (Ehteram et al., 2018; Farzin et al., 2018). The second 

option is to improve the calibration algorithms in order to get more precise parameter values that 

can replicate the observed outflow (Singh et al., 2013; Yang et al., 2008). Investigating the trade-

off between accuracy and simplicity is the third option (Herman et al., 2013; Vos et al., 2010). 

Finding hydrological models with a structure as straightforward as lumped models but capable of 

producing outcomes as precise as fully distributed models when the data is available is the aim. 

Because there is a lack of data and fully distributed models take a long time to set up and calibrate, 

lumped and semi-distributed models are currently used more frequently than fully distributed 

models. With sufficient data, both lumped and semi-distributed models could deliver respectable 

predictions. There isn't a single model that works well across all watersheds. Hydrological model 

improvement is still a very active area of research. This thesis employs the use of SWAT 

hydrological model which is a semi-distributed, physically-based model. 

1.1.2 Conceptual Model 

The conceptual models are developed based on the development of relationships between input 

and output, without the complete explicit knowledge of the physical processes. Researchers and 

decision-makers can now gather more frequent and accurate data thanks to the advancement of 

technology (Montáns et al., 2019). Conceptual models have been widely researched and used in 

hydrological modelling as data availability and computational power have increased (Jothiprakash 

and Kote, 2011; Solomatine and Ostfeld, 2008; Taormina and Chau, 2015). The quantity and 

quality of the data have a significant impact on conceptual models. A specific percentage of the 

data must be used to train a conceptual model before the remaining data is used for validation and 
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testing when forecasting with the model. About 70% is typically used for training, with the 

remaining 30% being split equally between validation and testing (Wu and Chau, 2010; Zeroual 

et al., 2016). Depending on the amount of available data, the percentage may change. Conceptual 

models must have input data to function. The input variables that will be used in the model must 

be carefully chosen based on the conceptual model and the output that is required. This thesis 

employs the use of HYMOD which is a lumped, conceptual hydrological model. 

1.1.3 Uncertainty Analysis 

There are various types of uncertainties in all hydrological models, whether they are physically 

based, data-driven, or hybrid. First, a significant source of uncertainty is the model parameters 

(Moges et al., 2021). The parameter values may not accurately reflect the real values even after 

the model calibration is completed (Beven and Binley, 1992). The input data or observations are a 

further source of uncertainty. A further source of uncertainty is the model's structure. Different 

mathematical representations of hydrological relationships are used by various hydrological 

models and there may be various modelling approaches even for the same process in the same 

model (Talebizadeh et al., 2010; Tolessa et al., 2015). The analysis and measurement of parameter 

uncertainty have been the subject of numerous studies. Only the most sensitive parameters 

discovered through sensitivity analysis are typically used for the analysis of parameter uncertainty 

in order to minimise the computational requirement. Generalized likelihood uncertainty estimation 

(GLUE), Monte Carlo (MC), and bootstrap sampling are the commonly employed methods for 

assessing parameter uncertainty and producing probabilistic predictions (Li et al., 2009; Wu and 

Liu, 2012; Zhang et al., 2016). Finding algorithms for uncertainty quantification that can cut down 

on the amount of computational time and resources needed while maintaining the accuracy of the 

probabilistic prediction is a top priority. 
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1.1.4 Surrogate Models 

Studies on water resources and decision-making processes heavily rely on hydrological models, 

which simulate abstract representations of physically based systems using mathematical concepts 

and language. Hydrological models can be used to solve a variety of issues, such as prediction, 

optimization, sensitivity analysis, and uncertainty analysis. In order to improve simulation models' 

fidelity to the real-world system, there are additional issues like model calibration and model 

parameter sensitivity analysis. In the context of modelling, fidelity refers to the level of realism in 

a simulation model. According to Keating et al. (2010), Mugunthan et al. (2005), and Zhang et al. 

(2009), modern simulation models are typically computationally intensive because they accurately 

represent detailed scientific knowledge about real-world systems. These simulation models must 

be run thousands of times for many model-based engineering analyses, which makes them 

prohibitively expensive to run. A second level of abstraction called "surrogate modelling" is 

concerned with creating and using "surrogates" of the "original" simulation models that are easier 

to run.  

There are many different types of substitute models that can be effectively used in place of 

simulation models. Response surface modelling and lower-fidelity modelling are two broad 

families that fall under the broad category of surrogate modelling. Data-driven function 

approximation techniques are used by response surface surrogates to empirically approximation 

the model response. The objective of a surrogate modelling technique (response surface surrogates 

or lower-fidelity physically based surrogates) is to approximatively represent the response(s) of an 

original simulation model, which is typically computationally intensive, for different values of 

explanatory variables of interest. The terms "response surface" and "response landscape" refer to 

the surface that represents the model response with respect to the variables of interest (which is 
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typically a nonlinear hyper-plane). Different response surfaces must be fitted to each model 

response of interest for the majority of response surface surrogate modelling techniques (or each 

function aggregating multiple model responses). One technique that makes an exception and can 

fit multiple model responses is neural network technology. In contrast, one lower-fidelity surrogate 

model can typically approximate several important model responses because lower-fidelity 

surrogates still have some physically based characteristics of the original model. Making better 

use of the available, typically constrained, computational budget is the primary driver behind the 

development of surrogate modelling strategies. 

1.1.5 Polynomial Chaos Expansion (PCE) 

Recently, Polynomial Chaos Expansion (PCE) demonstrated the potential to quantify parameter 

uncertainties in an effective and efficient way (Fan et al., 2016, 2014; Wang et al., 2015). PCE has 

been employed for uncertainty quantification (UQ) in a wide range of fields (e.g., in solid 

mechanics, fluid flows, thermal sciences, etc.). Since the current PCE method depends on 

observations to quantify the propagation of parameter uncertainties within a model, it is unable to 

make hydrological forecasts under uncertainty. Furthermore, since most hydrological models' 

parameters interact with one another, independent model parameters are required for PCE to be 

able to quantify parameter uncertainties. 

The probabilistic technique called PCE projects the model's output onto the basis of orthogonal 

stochastic polynomials in the input data. The stochastic projection offers a compact and practical 

representation of the input-dependent output variability of the model. In other words, a surrogate 

model approximates a computationally expensive model. It mimics the behaviour of the original 

model and replicates the underlying physics. PCE can be used to efficiently and accurately perform 

parameterization, sensitivity analysis, and uncertainty quantification. A PCE represents the model 
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as a sum of carefully chosen polynomials each individually weighted to give an accurate 

approximation. Advantages of PCE lie in the fact that it is a non-intrusive method in the sense that 

it is based on the runs of the computational model, similar to Monte Carlo simulation. Additionally, 

PCE is suited to a high-performance computation. PCE also has disadvantages like its need for a 

rigorous validation. The PCE is highly efficient compared to Monte Carlo simulations by at least 

2-3 orders of magnitude (Sudret, 2007). This thesis uses the meta-modeling approach of surrogate 

modelling using polynomial chaos expansions (PCE) to approximate the model output. 

In the past, a PCE coupled with the Least Angle Regression method has not been linked with either 

HYMOD or SWAT. Applications of a surrogate model like PCE with a complex semi-distributed 

model has only been explored in a handful of studies. These are the research needs that this thesis 

aims to address. 

1.2 Objectives of the Study 

The objective of this study is to examine Polynomial Chaos Expansion surrogate model’s ability 

in capturing the behaviour of the conceptual hydrological model HYMOD and the physically-

based SWAT model. This thesis aims to demonstrate the applicability of PCE meta-models to 

quantify the parameter uncertainty in SWAT models. Additionally, investigating the applicability 

of PCE to create a generalized uncertainty quantification (UQ) framework for HYMOD, which 

can be used to optimize any UQ algorithm which is demonstrated by Markov Chain Monte Carlo 

(MCMC) in this study. 

1.3 Structure of the Thesis 

This thesis is organized into 5 chapters. Chapter 1 introduces the background information about 

hydrological models, both conceptual and physical, uncertainty assessment followed by surrogate 

models and polynomial chaos expansion (PCE). Chapter 2 presents the literature review on 
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hydrological model, both HYMOD and SWAT models, uncertainty assessment, surrogate models 

and finally PCE. Chapter 3 presents the data on study area and input data necessary for the current 

study followed by methodology for PCE, hydrological model and uncertainty analysis. Results 

and discussions on HYMOD, SWAT model and their surrogate modeling and uncertainty 

assessment and sensitivity analysis using PCE is presented in Chapter 4. Subsequent comments 

and conclusions along with suggestions for future work are presented in the final Chapter 5.  
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CHAPTER 2: LITERATURE REVIEW    

This chapter reviews the previous literature to provide an insight into hydrological models, 

uncertainty assessment, surrogate model and polynomial chaos expansion (PCE). 

2.1 Hydrological Model  

A hydrologic model is a simplified representation of a real-world system (e.g., surface water, soil 

water, or groundwater) that can be used to help understand, predict, and manage water resources. 

They conceptualise and aggregate the complex, spatially distributed, and highly interconnected 

water, energy, and vegetation dynamics in a watershed using relatively basic mathematical 

equations (Vrugt et al., 2005). Hydrological models serve as tools to estimate the quantities of 

water movement in different processes in the natural hydrological cycle. Estimating the availability 

of water resources is a direct example of a technical challenge brought about by a lack of historical 

data as well as issues related to the measurement of river discharge. To this extent, the models use 

a combination of various laws of physics like law of conservation of mass and law of conservation 

of energy and continuity equation.  

Natural hydrological processes are greatly heterogenous and have a high degree of spatial and 

temporal variance. To simulate the heterogeneity, the models can adopt a huge number of small-

sized spatial units and can consider infinitesimally small time steps but doing so will greatly 

heighten the computational power required for the simulation. Hence it is essential to choose a 

hydrological model after giving due consideration to the available computational power and the 

degree of heterogeneity in the model simulation. For this purpose, a wide variety of models are 

available, for instance, lumped (HYMOD), semi-distributed (SWAT) and fully distributed (WRF) 

hydrological models exist based on the spatial discretization. The models can also be classified 

into empirical (SVM, ANN), conceptual (HYMOD, NAM) and physical (SWAT, MIKE-SHE) 
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based on the complexity of natural hydrological process descriptions. According to Maier and 

Dandy (1997), Daniell (1991) was the first person to introduce ANNs to the field of hydrological 

modelling. Daniell used an ANN to anticipate monthly water intake and estimate the occurrence 

of floods at the time. ANNs have been applied to many different aspects of water resource 

management, such as time-series prediction for rainfall data (French et al., 1992), rainfall-runoff 

mechanisms (Minns and Hall, 1996; Shamseldin, 1997), and representing soil and water processes, 

such as soil moisture (Altenford, 1992).  

On the other hand, physically based models don't use parameterized equations to reflect these 

processes; rather, they use mathematical-physics equations that are based on real-world motion 

and quantum physics, hydrodynamics, and heat and mass transfer (Beven, 2001). For instance, the 

Institute of Hydrology Distributed Model (IHDM) (Beven et al., 1987) and MIKE SHE (Refsgaard 

and Storm, 1995) use physically based laws to solve different components within the model. These 

physically based laws include the St. Venant equations of channel flow and the 3D finite difference 

groundwater flow governed by the Darcian law, respectively. Distributed models have the 

capability to take into consideration, the spatial variation of each and every parameter and variable 

that exists within the catchment. Distributed models are typically physically based and discretize 

the basin into a network of grid cells or a large number of elements. These models then solve the 

parametric mathematical equation for each of the grid cells independently (Beven, 2002). Within 

the MIKE SHE model, the finite difference/grid mesh method is used to represent the surface and 

sub-surface flow equations within a regular spatial grid. This method can be found within the 

framework of the MIKE SHE model (DHI-WE, 2005 and Beven, 2002). 
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2.1.1 SWAT Model 

For modelling hydrological, sediment, nutrient, bacterial, and tile drainage processes, the USDA 

Agricultural Research Service created the semi-distributed, process-based SWAT model. Instead 

of simulating a single storm, SWAT simulates hydrological processes over time. It is frequently 

employed to comprehend the hydrology of various areas of interest. SWAT model is run on sub-

daily, daily, monthly and yearly time scales.  Extension of the SWRRB model is SWAT. Later 

additions to this advanced model allowed it to simulate chemicals, runoff, erosion, and 

groundwater using CREAMS, GLEAMS, and EPIC. Modules for reservoir and pond storage were 

added to test their effects on water flow. Regression equations from USGS were imported along 

with nutrient transport and loading components from SWMM. Before the SWAT2012 

hydrological model was used in this study, there were a number of uses for earlier, more basic 

SWAT models, some of which are listed below: For sub-daily water quality studies, ESWAT had 

an automatic calibration routine (Griensven and Bauwens, 2001); SWAT-G had enhanced 

transpiration mechanics (Eckhardt et al., 2002); and SWIM included crucial hydrological 

processes at both smaller and larger (> 10,000 sq. km) basin levels (Krysanova et al., 2005). The 

improved SWAT2012 used in this study was enhanced from the prior basic versions of the model. 

The most sensitive parameters for various water budget components, pollutants, and nutrients were 

reviewed along with calibration and validation techniques with a thorough explanation of the steps 

that should be taken for calibration and uncertainty analysis by Arnold et al. (2012). In most cases, 

SWAT is utilised in the analysis of large river basins, covering an area of close to thousands of 

square kilometres, provided that there is a high level of congruence between the simulated and 

actual data (Jayakrishnan et al., 2005). On the other hand, the SWAT model is also capable of 
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being validated and applied at the scale of smaller watersheds (Arnold et al., 1996; Arnold et al., 

1999; Arnold and Williams, 1987) 

2.1.2 HYMOD 

A lumped model is that hydrological model where the entire watershed is represented using a 

single spatial unit. The runoff is calculated at the sub-watershed scale in a conceptual rainfall-

runoff (CRR) model on the basis of governing hydrologic phenomena without taking into account 

the subtle processes but providing adequately optimum hydrologic response of the watershed 

system. The conceptual model HYMOD (Boyle 2001) has been used in the current study's 

catchment hydrologic simulation. The model is widely used for a variety of applications and across 

a wide range of hydrologic regimes (Chilkoti et al. 2017; Sikorska et al. 2014; Formetta et al. 2011; 

Gharari et al. 2013; Montanari 2005; Wagener et al. 2001). HYMOD is a strong, continuous-

process simulation-capable runoff generation model that is relatively easy to use. The model was 

selected primarily due to its broad acceptance, small number of parameters, and adequate process 

representation that takes into account both slow and fast responses. A nonlinear soil moisture 

component is included in the model and is computed using the Moore loss model (Moore, 1985). 

The five model parameters are the watershed storage capacity Cmax, the watershed's 

imperviousness percentage α, the recession coefficients for fast and slow flows/ base flow and Rq 

and Rs, respectively, and the degree of spatial variability of soil moisture capacity within a 

watershed Bexp. Boyle (2001) is a source that can be used to get more information about the model 

configuration. 

2.2 Uncertainty Assessment 

Uncertainty can be defined as the state of limited knowledge/data where it is not possible to 

perfectly describe an existing state or future outcomes. Uncertainty can be either 
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aleatoric/statistical or epistemic/systematic. Uncertainty decomposition refers to the breakdown of 

total uncertainty into the contributions of induvial sources. In this study, the total parameter 

uncertainty is broken down into contribution of induvial parameter expressed in Sobol indices, 

using PCE. Input uncertainty, uncertainty regarding the climate model, uncertainty regarding the 

simplification of the underlying physical processes, uncertainty regarding the output, uncertainty 

regarding the hydrological model, and uncertainty regarding the parameters all contribute to the 

overall uncertainty in the process of modelling climate change (Beven, 2016; Athira and Sudheer, 

2015). Because of the sources, there is always some degree of uncertainty in the modelling process; 

as a result, identifying those sources and then attempting to quantify them is one of the most 

difficult challenges that hydrologic modellers must overcome (Beven and Freer, 2001). Several 

studies on the effects of climate change have been carried out, with the goal of identifying and 

quantifying the various factors that contribute to the uncertainty in the results. These factors 

include the choice of climate model (Arnell, 2011; Chen et al., 2011; Dobler et al., 2012; Karlsson 

et al., 2016; Her et al., 2019); the hydrological model (Arnell, 2011; Karlsson et al., 2016; Wang 

et al., 2020; Tarek et al., 2021), bias correction methods (Aryal et al., 2019; Wang et al., 2020), 

land-use scenarios (Karlsson et al., 2016), hydrological parameters (Chilkoti, 2019), RCP 

scenarios (Wilby and Harris, 2006; Vetter et al., 2017; Chegwidden et al., 2019; Stojkovic et al., 

2020) among many other factors like internal variability (Deser at al., 2012). 

Defining uncertainty in hydrologic models is intensively crucial for a variety of water resources 

applications, including environmental protection, drought management, water utility operations, 

reservoir operation, and sustainable water resource management (Fan et al., 2012). Series of 

techniques for assessing the uncertainty in hydrologic projections have been developed previously, 

the most notable ones are: generalized likelihood uncertainty estimation (GLUE) (Beven and 
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Binley, 1992), Monte Carlo simulation (Ang and Tang, 1984), Bayesian recursive estimation 

(Thiemann et al., 2001), Metropolis algorithms – Shuffled complex (Vrugt et al., 2003) and 

differential evolution adaptive metropolis (DREAM) (Vrugt et al., 2009), Dual state estimation 

using Ensemble Kalman Filter (Moradkhani et al., 2005), Simultaneous Optimization and Data 

Assimilation (Vrugt et al., 2005). MC is the most extensively utilised of these because it offers the 

most degree of flexibility for uncertainty propagation. Stable estimates of the model output 

distribution can be easily obtained with a sufficiently large number of parameter samples (Mishra, 

2009). However, the primary disadvantage of these methodologies like the MC simulation and 

GLUE is that it requires a large number of model simulations to obtain appropriate estimates of 

the output statistics, which is a difficulty for models with a high computing demand (Y. Liu and 

Gupta, 2007; Tran and Kim, 2019). 

2.3 Surrogate Model 

Highly heterogeneous physical characteristics and processes govern how groundwater flows. 

Many groundwater management issues require complex, fully distributed models that can 

accommodate fields for the hydraulic properties and boundary conditions that vary in time and 

space in order to capture such heterogeneity. Fully distributed groundwater models typically 

solved using a finite difference approximation, like that implemented in MODFLOW (Harbaugh, 

2005) or a finite element method, like that used by FEFLOW (Diersch, 2005), have a tendency to 

include more physical processes, increase numerical resolution, and expand the model domain. 

However, more complicated conceptual models require more parameters and require longer model 

runs. 

Long runtimes prevent the use of models in many-run applications like inverse modelling, 

uncertainty analysis, sensitivity analysis, and integrated modelling (where groundwater flow 
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models are coupled with models of different processes). Additionally, slow runtimes prevent 

models from being used in real-time, which is essential for applications like decision support. The 

"curse of dimensionality" is also manifested in uncertainty analysis, sensitivity analysis, or 

calibration where the number of samples needed to cover the parameter space grows exponentially 

with the number of model parameters. In order to reduce runtime and make many model runs 

computationally tractable, numerical resolution must be decreased or physical processes must be 

disregarded when a model's runtime increases. Complex models may be accelerated using 

surrogate models without compromising precision or level of detail. 

Surrogate models are less expensive computationally and are used to approximate the main 

features of a complex model. They are also known as metamodels (Blanning, 1975), reduced 

models (Willcox and Peraire, 2002), model emulators (O'Hagan, 2006), proxy models (Bieker et 

al., 2007), lower fidelity models (Robinson et al., 2008), and model emulators (O'Hagan, 2006). 

In addition to increasing computational efficiency, there are other benefits to using a surrogate 

model (Razavi et al., 2012a). When numerical instability is reduced, calibration and uncertainty 

analysis are made easier (Doherty and Christensen, 2011). A complex model's irrelevant 

parameters and insensitive outputs may become apparent during the emulator building process 

(Young and Ratto, 2011). In order to analyse model simplification and the ways that models 

simplify reality, substitutes may be used as didactic tools (Watson et al., 2013). They can also be 

used to reduce the ill conditioning of a conjugate gradient optimizer by using eigenvector 

approximations (Vuik et al., 1999) or to smooth an objective function surface, enabling the use of 

gradient-based, nonlinear programming methods for optimization problems (Hemker et al., 2008; 

Kavetski and Kuczera, 2007). By simulating and calibrating different model structures 

simultaneously (Matott and Rabideau, 2008) or by including data and physical processes at various 
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scales (Weinan and Engquist, 2003), the increase in computational efficiency makes it possible to 

investigate the structural model uncertainty. Additionally, in interactive decision support 

environments, substitutes with sufficiently short runtimes have been used (Roach and Tidwell, 

2009). In order to increase accuracy, surrogates have been used in "complementary" modelling, 

which involves fitting a simple model to the residual of a complex model (Demissie et al., 2009; 

Xu et al., 2012).  

Utilizing a parallel computing approach is one way for compensating for the increased time 

necessary to perform uncertainty quantification. However, the disadvantage is that the 

requirements for computer hardware configuration result in high costs (Cintra and de Campos 

Velho, 2018). Possible solutions to the problem include: 1) utilising a more efficient sampling 

approach, such as the Latin hypercube method; 2) replacing the computationally demanding model 

with a faster surrogate model (Hu et al., 2019). The primary goal of a surrogate model is to produce 

results that are almost identical to those of the original model, to quantify uncertainty more rapidly, 

and to evaluate the model's sensitivity effortlessly (Blatman and Sudret, 2010; Xiu and 

Karniadakis, 2002). 

To bridge this issue and combine both solutions, surrogate modelling based on the polynomial 

chaos expansion (PCE) theory (Wiener, 1938; Xiu and Karniadakis, 2002) has received much 

attention in the literature as a highly efficient method to quantify uncertainty. 

2.4 Polynomial Chaos Expansion (PCE) 

In the recent past, studies focused on the propagation of parameter uncertainty into prediction 

uncertainty within a hydrological model demonstrated that the use of PCE can significantly reduce 

the computing costs associated with simulating a large number of ensemble runs (Fan et al., 2015; 

Ghaith and Li, 2020; Hu et al., 2019; Tran and Kim, 2019; Wang et al., 2015, 2017).  
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PCE, which originated with Wiener's homogeneous chaos theory (Wiener, 1938) and was 

generalised later on utilising Wiener-Askey polynomial chaos (Xiu and Karniadakis, 2002), 

provides an orthogonal polynomial-based spectral expression for any statistical distribution. It can 

be used to expand any random process of the second order (a process having finite variance across 

all time), which is applicable to most physical processes (Xiu and Karniadakis, 2002). PCE 

approximates the dynamic model by allowing the model output to have a fully probabilistic 

distribution. By sampling the random variable in PCE, statistical information (such as the mean, 

variance, covariance, and skewness) can be determined. By the virtue of being a surrogate model, 

PCE offers an efficient way of sampling without running the original model, which is appealing 

particularly to computationally expensive models (Hu et al., 2019). 

The efficiency of the surrogate model is dependent on the estimation of PCE coefficients from the 

response of an original model at design points in the input space. The two main non-intrusive 

methods used for the estimation of PCE coefficients are: regression and projection (Sudret, 2008). 

The projection approach can be formulated as a numerical integration problem using quadrature 

or sparse-grid methods, and the regression method uses least square regression to minimise the 

mean square error between the surrogate and original model outputs (Sudret, 2008). While it is 

worthwhile to investigate the utility of the generalised PCE approach for assessing the uncertainty 

associated with hydrological predictions caused by uncertain parameters, it has certain drawbacks 

which need to be addressed. Given the enormous number of model evaluations required, both 

techniques are ineffective at optimising a large number of PCE coefficients. The number of PCE 

coefficients exponentially increase with the increase in the number of uncertain inputs and the 

polynomial order (Blatman and Sudret, 2010; B. Liu et al., 2014; Razavi et al., 2012). This 
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"generalized" PCE necessitates an absurdly huge number of model assessments, significantly 

limiting engineering applications (Sargsyan et al., 2014). 

To address this issue, techniques for reducing the PCE coefficients have been developed such as 

least angle regression (LAR) (Blatman and Sudret, 2008), sparse collocation (Shi et al., 1996), and 

Bayesian compressive sensing (Sargsyan et al., 2014). Among them, LAR has gained recent 

attention due to its demonstrated ability to achieve large computational advantages over original 

PCE (Xiao et al., 2021; Xie et al., 2017). In general, the goal of LAR is to estimate just the 

coefficients for the significant PCE base components and to set the coefficients for the nonessential 

elements to zero (Blatman and Sudret, 2008). Hence, LAR permits the fitting of high-order 

polynomials to nonlinear complex models without significantly raising the computing cost of the 

surrogate model development. Even though the efficacy of LAR has been established, very few 

studies have focused on the use of LAR-PCE as a tool to quantify uncertainty, while reliably 

capturing the input-output relationship of a hydrological model. 

2.5 Summary 

This chapter enumerates various literary sources on hydrological models, uncertainty assessment, 

surrogate models, polynomial chaos expansion. SWAT 2012, a popular semi-distributed model 

and HYMOD, a popular conceptualized model is chosen in this study to emulate the watershed 

characteristics and obtain the streamflow. This chapter also provides an insight into uncertainty 

assessment and various techniques, especially the recently popular surrogate modelling 

techniques. It highlights the importance of data-driven models in today’s world of ever-increasing 

data and complexity of models. PCE serves as an excellent example of surrogate models as it 

requires minimal training data and computational power to simulate numerical models. In 

comparison with the other PCE meta-models available, LAR-PCE or Sparse PCE has been 
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recognized to simulate numerical models based on natural processes most efficiently. In the 

subsequent chapters, application and advantages of PCE at various stages of hydrological model 

development would be discussed.  
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CHAPTER 3: DATA AND METHODOLOGY 

Chapter 3 provides a detailed explanation of the data and methodology used in the current study. 

This chapter summarizes the study areas, geospatial data and meteorological and hydrometric input 

data required for the hydrological models followed by the methodology for Polynomial Chaos 

Expansion (PCE), hydrological modeling and Uncertainty Analysis.  

3.1 Study Area 

Two study areas are chosen to find out the effects of varying climatic, land use and area profiles 

on their SWAT calibration as well as uncertainty quantification results. These watersheds of 

varying sizes, namely Chehalis River watershed (large watershed, greater than 2000 sq. km) and 

Indian Creek watershed (small watershed, smaller than 200 sq. km) with different climatic 

profiles, as depicted in Figure 3-1, were chosen for this thesis. 

a) Indian Creek watershed 
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b) Chehalis River watershed 

 

Figure 3-1: Watersheds considered for the study (a) Indian Creek watershed, North Carolina, and 

(b) Chehalis River watershed, Washington, USA 

 

Indian Creek Watershed drains an area of 179 sq. km and is located in the Inner Piedmont belt of 

the Western Piedmont of North Carolina. The study area is spread over three counties, namely 

Catawba, Lincoln and Gaston Counties. The Indian Creek stream channel has a constant flow for 

roughly 32 km while descending approximately 100 m in elevation from its point of inception, 

with an average slope of 2.5 m/km (Daniel et al., 1997). The predominant land use in the watershed 

is agriculture (46%) followed by forest (41%), urban (12%) and the remaining is water bodies 

(Herrmann, 2008). The climate profile of the Indian Creek watershed is humid subtropical with 
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long, hot, humid summers and mild winters. The study area has a mean annual precipitation over 

the watershed is 1270 mm. The coldest month is January with 4.4ᵒ C mean monthly temperature 

while July is the hottest month with a mean monthly temperature of 25.7ᵒ C. NC State Climate 

Office Statistics from 1970-2000 indicates that drought has been intense around the watershed, 

particularly the Catawba county.  

The Chehalis River Watershed has a size of 2318 sq. km and is located in Northwest Washington 

originating from Willapa Hills region’s surface runoff. The study area is spread out over five 

counties namely Wakhiakum, Cowlitz, Pacific, Lewis and Thurston. The local residents and 

governments of the Chehalis River watershed have worked together with Federal, State, and Tribal 

authorities through the Chehalis Basin Partnership to produce a long-term watershed management 

plan as a result of the demand for water resources (Gendaszek, 2011). Chehalis river main stream 

runs through two large cities namely Chehalis and Centralia.  Land use in the Upper Chehalis basin 

is predominantly forested with 82% forests, 12% agricultural lands and around 6% urban areas 

using the NLCD 2001 land use classification. The watershed consists of underlying unconsolidated 

alluvial and glacio-fluvial aquifers, confined by hydrogeologic units consisting of fine alluvial 

sediments with low permeability (Gendaszek, 2011). Approximately 30% of the total precipitation 

converts into surface runoff, 30% percolates underground to recharge groundwater, 35% is lost to 

evapotranspiration and around 5% can be attributed to interception losses (Gendaszek et al., 2018). 

The climate profile of Chehalis River watershed is temperate Mediterranean with a mean annual 

precipitation over the watershed is 1205 mm.  The coldest month is December with 5ᵒ C mean 

monthly temperature while August is the hottest month with a mean monthly temperature of 19ᵒ 

C. In regards to Chehalis River Watershed, Department of Ecology for the State of Washington 

states that the trend of bigger, more frequent winter flooding occurrences will continue as a result 



 

23 

 

of climate change and the droughts are anticipated to occur more frequently throughout the basin, 

and hotter and dryer summers. 

3.2 Input Data 

A brief overview of the geo-spatial and hydrometric and meteorological data used in the current 

study is present in the following sections. 

3.2.1 GIS Data 

This study uses both HYMOD and SWAT hydrological models. While HYMOD is a conceptual 

model and does not require any geo-spatial inputs, SWAT is a physically-based model and requires 

GIS spatial inputs to enable the process-based simulations. These spatial inputs include a Digital 

Elevation Model (DEM), land use land cover (LULC) layer, soil layer, and watershed boundary 

shapefile. The DEM used for both the study areas of this thesis was a standard USGS 30 m 

resolution DEM which is a part of the National Elevation Dataset (NED), accessible through the 

USGS TNM download website (https://apps.nationalmap.gov/downloader/#/). Additionally, the 

required soil layers were obtained from Natural Resources Conservation Service (NRCS) website 

(https://websoilsurvey.sc.egov.usda.gov/). This study performs hydrologic modelling over the 

study areas over a period of (1993-2001), National Land Cover Database 2001 (NLCD) from the 

data gateway website of USDA (https://datagateway.nrcs.usda.gov/) was obtained and used as the 

LULC layer. The watershed shapefile for performing GIS operations for SWAT modeling is 

obtained directly for the Model Parameter Estimation Experiment (MOPEX) obtained from 

National Oceanic and Atmospheric Administration (NOAA) website 

(https://hydrology.nws.noaa.gov/pub/). 

https://apps.nationalmap.gov/downloader/#/
https://websoilsurvey.sc.egov.usda.gov/
https://datagateway.nrcs.usda.gov/
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3.2.2 Meteorological Data and Flow Data 

This thesis uses the Model Parameter Estimation Experiment, or MOPEX dataset for the 

meteorological and hydrometric data. It is an international project comprising a massive and 

comprehensive database of historical weather conditions and land surface characteristics for a 

variety of hydrologic basins located all over the world. Data from 438 catchments in the United 

States as well as data from several other catchments located all over the world are available as part 

of MOPEX. The data set for the United States includes daily time series of mean aerial values for 

a variety of climatic variables, including maximum temperature, minimum temperature, potential 

evaporation, and precipitation, amongst others. There is also a record of the daily streamflow 

available for each of the basins. For the model development and subsequent calibration and 

validation, the dataset from two MOPEX basins, namely Indian Creek watershed and Chehalis 

River watershed were used in this thesis.  

HYMOD requires daily precipitation and daily potential evapotranspiration (PET) data along with 

daily time series of outlet discharge data for both the study areas. All of this data is directly 

available form the MOPEX dataset. SWAT model requires mainly daily precipitation and 

maximum, minimum temperature data for the model simulations which are also available directly 

from the MOPEX dataset. SWAT also requires additional information like wind velocity, humidity 

and solar radiation in order to represent the physical processes of the hydrological cycle, but these 

data are supplemented using the data from SWAT weather generator in-built into the SWAT 

program itself. 
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3.3 Hydrological Model Setup 

Hydrological model is an extremely useful tool at a modeler’s disposal which simulates the natural 

hydrological processes. This section gives a brief explanation on the operational framework and 

subsequently, the methodologies of both HYMOD and SWAT models. 

3.3.1 HYMOD 

The HYMOD model of rainfall and runoff is based on conceptualized physical processes (Figure 

3-2) (Moore, 1985). Three steps can be used to divide the modelling process. To begin with, the 

amount of infiltration and runoff generated is determined using the excess infiltration method. 

After subtracting evapotranspiration and infiltration, runoff is defined as the remaining water. The 

input variable for this step is evapotranspiration, and the infiltration is calculated using the soil 

infiltration capacity, which is determined by the two parameters Cmax and Bexp as given in Table 

3-1. When addressing the spatial distribution of water storage, Bexp is used to determine the 

maximum storage capacity, or Cmax. Second, using a coefficient, surface runoff and base flow are 

created from the runoff (excess water). The surface runoff is computed by three consecutive, 

identical quick reservoirs with a travel time of Rq, and the base flow is computed by a slow 

reservoir with a travel time of Rs. The total of the discharges from the quick and slow reservoirs 

is then used to calculate the discharge’s schematic provides an overview of the modelling 

procedure. 
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Figure 3-2: HYMOD schematic (Quan et al., 2015) 

As previously mentioned, there are five parameters in the HYMOD model. The first three 

parameters – Cmax, Bexp, and α are used to calculate the generated runoff, whereas Rq and Rs are 

used in the routing process to calculate the discharge at the catchment outlet. The five parameters 

are not explicitly measured in the field because this is a lumped rainfall runoff model; rather, their 

ranges have been established in prior research (Quan et al., 2015; Vrugt et al., 2008) as shown in 

Table 3-1. The parameters' distribution is assumed to be uniform in this study (Quan et al., 2015; 

Vrugt et al., 2008).  

Table 3-1: HYMOD parameter description and ranges 

Parameter   Unit   Description  Lower Bound  Upper Bound  

Cmax  mm  Maximum soil moisture  1 500 

Bexp  -  Exponential parameter in soil 

routing  

0 2 

α  -  Partitioning factor  0.01 0.99 

Rs  day  Travel time of slow tank  0 0.1 

Rq  day  Travel time of quick reservoirs  0.1 1 

  



 

27 

 

3.3.2 SWAT Model 

In order to set up a SWAT model, streamlines are first burned onto the DEM to ensure the accuracy 

of the automatic delineation. The outlet points are then selected based on the desired flow gauges. 

Third, the process of delineation is conducted based on the selected outlets. To determine the 

hydrologic response units (HRUs) for each subcatchment, the study area is classified according to 

land-use, soil characteristics, and slope. Fifth, the model receives all weather data as a time-series 

table. Lastly, model parameters are estimated based on slope, land use, soil information, and 

weather conditions. SWAT is now prepared for calibration and validation, preferably after a 

warmup period to prevent initialization errors. There are a variety of methods for calibrating 

models. SWAT-CUP is one of the most popular toolkits due to its versatility in calibration 

techniques and its ease of use. 

SWAT-CUP contains three automatic calibration algorithms: SUFI, GLUE, and Para-Sol. In this 

study, SUFI is used to calibrate models for multiple reasons. SUFI is the quickest algorithm 

because it employs the LHS method to cover the parameter ranges. SUFI is dependent on running 

the model multiple times with progressively narrower parameter ranges. In addition, previous 

research has demonstrated that SUFI performs slightly better than the other two algorithms 

(Khatun et al., 2018; Singh et al., 2013). After defining the uniform distribution of each parameter, 

the number of iterations, and the objective function, calibration can be performed. The parameter 

ranges utilised in this study for both hydrological models are based on previous research and are 

presented in  

Table 3-2 (Xie et al., 2020). In order to maintain a relatively consistent spatial distribution, the 

values of spatially distinct parameters are modified by multiplying the original value by a ratio. 

Curve Number (CN2.mgt) is an example of spatial parameters, so it is denoted as "R" for relative 
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change. Other catchment-wide parameters with fixed values are modified by randomly selecting a 

value from the corresponding uniform distribution. These parameters are noted as "V" for re-

positioning change. The calibration's objective is to maximise the NSE value. After executing the 

automatic calibration tool, the optimal parameter set is selected, and the model can be re-executed 

in SWAT-CUP for validation or in SWAT for additional simulation. 

Table 3-2: SWAT Model Parameters 

Parameter Change Min. Max. Parameter Description 

v__ALPHA_BF.gw Replace 0 1 Baseflow alpha factor (days) 

v__ALPHA_BNK.rte Replace 0 1 Baseflow alpha factor for bank storage (days) 

r__CN2.mgt Ratio -0.35 0.35 SCS runoff curve number 

v__ESCO.hru Replace 0 1 Soil evaporation compensation factor 

v__SFTMP.bsn Replace -5 5 Snowfall temperature 

r__SOL_AWC(..).sol Ratio -0.3 0.3 Soil available water content 

v__GWQMN.gw Replace 0 5000 Threshold depth of water in the shallow aquifer 

required for return flow to occur (mm) 

v__RCHRG_DP.gw Replace 0 1 Deep aquifer percolation fraction 

v__CH_L2.rte Replace -0.05 500 Length of main channel 

v__SNO50COV.bsn Replace 0 0.9 Snow water equivalent that corresponds to 50% 

snow cover 

v__GW_REVAP.gw Replace 0.02 0.2 Groundwater "revap" coefficient 

v__REVAPMN.gw Replace 0 500 Threshold depth of water in the shallow aquifer for 

“revap” to occur (mm) 

r__SOL_K(..).sol Ratio -0.3 0.3 Saturated hydraulic conductivity 

r__SOL_BD(..).sol Ratio -0.5 0.5 Soil moist bulk density 
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During the calibration procedure, SWAT-CUP is able to generate a global sensitivity analysis 

report. The sensitivity report identifies the most sensitive parameters that should serve as the focus 

of uncertainty analysis. The report on sensitivity may be presented as scatter plots or in a statistical 

format (p-test and t-test). If the scatter plot is distributed uniformly along the range, the 

corresponding parameter is not sensitive. If the scatter points exhibit a distinct trend, then this 

parameter is sensitive. To avoid human bias, the statistical format is preferred over the scatter plot 

format. If the p-value is less than 0.05, which also indicates that the t-test values are high, the 

parameter is deemed sensitive (Khatun et al., 2018). When two parameters have identical p-values, 

a t-test can be used to distinguish between them. In this study, the five most significant parameters 

in two different hydrological models are identified by this method and are subjected to further 

uncertainty analysis. 

3.4 Polynomial Chaos Expansion (PCE) 

The generalized PCE and the LAR-PCE were compared by examining the ability to build a suitable 

surrogate model with a small training dataset, the degree of accuracy reflecting uncertainty in 

streamflow prediction, and the degree of improvement in efficiency of two surrogate models 

compared to the original hydrological models described in section 3.3. PCEs of degree 3 and 

several different experimental designs were considered with values ranging between N = 100 – 

2000 for the generalized PCE, and N = 100 – 500 for the LAR-PCE based on previous literature 

(Dwelle et al., 2019; Hampton and Doostan, 2014; Torre et al., 2018). The Leave-one-out (LOO) 

error values (section 3.4.3) for the PCE meta-models were compared and the best performing 

models from each generalized and LAR-PCE were considered for further analysis.  

After obtaining best performing generalized and LAR-PCE models, they were statistically 

analyzed by comparing with the SWAT model MC runs, utilizing performance characteristics such 
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as MUE, MUAE of mean, standard deviation, skewness, and kurtosis, along with the NSE, PBIAS, 

and RSR values. The most effective and accurate PCE model out of the two was then chosen for 

backward MCMC and sensitivity analysis of the SWAT models. This section details the 

methodologies of two types of surrogate PCE model namely fully polynomial chaos – Ordinary 

Least Square (OLS) regression and sparse polynomial chaos – LAR, followed by the leave-one-

out error estimation. 

3.4.1 Full Polynomial Chaos – Ordinary Least Square (OLS) Regression 

In general, a model’s output is a function of its input fields. As a result, the output can be expressed 

as a nonlinear function of the collection of random variables used to represent the stochasticity of 

the input (Huang et al., 2007). Typically, the polynomial chaos (PC) method is used to express the 

evolution of uncertainty in dynamical systems with randomly generated inputs. As first proposed 

by Wiener (1938), it was suggested that a second-order random process (which is applicable to the 

vast majority of physical processes) be expressed in terms of orthogonal polynomials. In the 

process, Hermite polynomials were used to decompose the model stochastic process into Gaussian 

random variables. However, the convergence of the Hermite polynomial expansion is not optimal 

for non-Gaussian random input variables (e.g., Beta and uniform) (Xiu and Karniadakis, 2002). 

Hence, Xiu and Karniadakis (2002) proposed a generalized form of PCE, in which according to 

the type of random input, the polynomials can be chosen from the Wiener-Askey family of 

polynomials (Table 3-3). They suggested that if the polynomial basis is chosen based on the 

distribution of the random inputs, an “optimal choice” is made. 
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Table 3-3: Correlation between random variables and Wiener-Askey polynomial chaos (Xiu and 

Karniadakis, 2002) 

 Random Variable Wiener-Askey chaos Support 

Continuous Gaussian Hermite-Chaos  (-∞, ∞) 

Gamma Laguerre-Chaos [0, ∞) 

Beta Jacobi-Chaos [a, b] 

Uniform Legendre-Chaos [a, b] 

Discrete Poisson Charlier-Chaos {0, 1, 2,… } 

Binomial Krawtchouk-Chaos  {0, 1,…,N} 

Negative-Binomial Meixner-Chaos {0, 1, 2,… } 

hypergeometric Hahn-Chaos {0, 1,…,N} 

 

Given a dynamic model Y = M(X), where X is an input vector comprising of N uncertain 

parameters and Y is the desired output response (e.g., simulated streamflow). The hydrological 

simulation model M converts the input X to the output Y; additionally, the model response Y can 

be estimated using the PCE meta-model MPC composed of a set of polynomial bases (Tran and 

Kim, 2021): 

 
𝒀 = 𝑴(𝑿) ≈ 𝑴𝑷𝑪(𝑿) = ∑ 𝑎𝑖𝛹𝑖(𝑿)

∞

𝑖=0

 
(3-1) 

where Ψ𝑖(𝑿) denotes corresponding multivariate polynomials in terms of N uncertain parameters; 

𝑖 is a multi-index identifying the components of the multivariate polynomials; and 𝑎𝑖 denotes 

unknown PCE coefficients. In Equation (3-1), the multivariate polynomials Ψ𝑖 are constructed as 

the tensor product of the univariate orthogonal polynomials Ψ𝛼𝑗

(𝑗)
(𝑿) with the degree 𝛼𝑗: 
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𝛹𝑖(𝑿) = ∏  

𝑁

𝑗=1

𝛹𝛼𝑗

(𝑗)
(𝑿𝑗) 

(3-2) 

Approximations are made in practise using a finite summation in a finite dimensional space. This 

is accomplished by truncating Equation (3-2) to obtain a low-order PCE (Sudret, 2008) as 

expressed in Equation (3-3), 

 

𝑌 = 𝑴(𝑿) ≈ 𝑴𝑃𝐶(𝑿) = ∑  

𝑃−1

𝑖=0

𝑎𝑖𝛹𝑖(𝑿) 

(3-3) 

where P denotes the number of PCE coefficients (i.e., the number of polynomial expansion basis 

terms), which is determined by the number of parameters N, and the degree of the polynomial p 

as: 

 
𝑃 =

(𝑁 + 𝑝)!

𝑁! 𝑝!
 

(3-4) 

For polynomial chaos methods, there are three essential steps. They are the determination of the 

orthogonal polynomial basis of model input parameters, the calculation of the coefficients of 

polynomial chaos, and the estimation of the accuracy of polynomial chaos approximations. For 

the determination of orthogonal polynomial basis, according to the Wiener–Askey polynomial 

chaos, there exist different optimal polynomials for various probability density functions (Table 

3-3) such as normalised Legendre (respectively Hermite) polynomials being associated with 

uniform (respectively Gaussian) probability density functions. In this study, it is assumed that the 

model parameters are uniformly distributed, and the Legendre polynomial chaos is selected. 

In the process of calculating coefficients of polynomial expansion, intrusive and non-intrusive 

approaches can be utilised (Xiu, 2010). The intrusive method must modify the code of the original 

model, whereas the non-intrusive method does not. Thus, the non-intrusive method is applicable 
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to the study of most of the models. The non-intrusive method consists of two primary methods: 

regression and projection (Blatman and Sudret, 2011). In this work, the regression-based 

nonintrusive method ordinary least square regression (OLS) is chosen. 

For the collection of multivariate polynomials 𝛹𝑖(𝑿), the following step is to compute the PCE 

coefficients 𝑎, using OLS. The OLS method seeks to identify the PCE coefficients that minimize 

the mean-square error of the surrogate model’s approximation of the model response (3-5). 

 

𝑎 = arg 𝑚𝑖𝑛𝑎 ∈ℝ𝑃 𝔼 [(𝑌 − ∑ 𝑎𝑖𝛹𝑖(𝑿)

𝑃−1

𝑖=0

)

2

] 

(3-5) 

The number of PCE coefficients that must be estimated is P, which can be determined using the 

Equation (3-4). Given an experimental design consisting of a collection of N sets of random 

parameters, 𝜲 =  {𝑋(1), 𝑋(2), … , 𝑋(𝑁)} followed by the corresponding model response 𝒀 =

 {𝑴(𝑋(1)), 𝑴(𝑋(2)), … , 𝑴(𝑋(𝑁))}, the estimated PCE coefficients are provided by: 

 

𝑎 = arg 𝑚𝑖𝑛𝑎 ∈ℝ𝑃

1

𝑁
∑ (𝑌(𝑘) −  ∑ 𝑎𝑖𝛹𝑖(𝑋(𝑘))

𝑃−1

𝑖=0

)

2𝑁

𝑘=1

 

(3-6) 

The OLS solution for Equation (3-6) is: 

 𝑎 = (𝑨𝑇𝑨)−1𝑨𝑇𝒀 (3-7) 

where 𝑨 = {𝐴𝑖𝑗 = 𝛹𝑗𝑋(𝑖), 𝑖 = 1, … , 𝑃; 𝑗 = 1, … , 𝑐𝑎𝑟𝑑 𝐴} consists of the values of all basis 

polynomials in the experimental design points and is referred to as the experimental matrix. 

3.4.2 Sparse Polynomial Chaos – Least Angle Regression (LAR) 

A complementary strategy for favouring sparsity in high dimension is to directly modify the least-

square minimization problem in Equation (3-5) by adding a penalty term of the form 𝜆||𝑎||1: 
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𝑎 = arg 𝑚𝑖𝑛𝑎 ∈ℝ𝑃 𝔼 [(𝑌 −  ∑ 𝑎𝑖𝛹𝑖(𝑿)

𝑃−1

𝑖=0

)

2

] + 𝜆||𝑎||1 

(3-8) 

where 𝜆 is a non-negative constant and the regularisation term ||𝑎||1 = ∑ |𝑎𝑖|𝑖∈𝐴  forces the 

minimization to favour sparse solutions with a low rank. 

The primary difference between LAR and OLS is the number of PCE coefficients, which is fewer 

in LAR. Specifically, LAR identifies only the multivariate polynomials 𝛹𝑖(𝑿) that have the 

greatest influence on the model response, while discarding all other polynomial terms. Estimates 

are made for the selected weighty PCE coefficients, while other insignificant coefficients are set 

to zero. Based on the sparse set of PCE terms, a surrogate model is constructed and can be 

described in Equation (3-9): 

 

𝑌 = 𝑴(𝑿) ≈ 𝑴𝑃𝐶(𝑿) = ∑  

𝑆−1

𝑖=0

𝑎𝑖
𝑠𝛹𝑖

𝑠(𝑿) 

(3-9) 

where 𝛹𝑖
𝑠(𝑿) = {𝛹0

𝑠(𝑿), … , 𝛹𝑆−1
𝑠(𝑿)} represent the set of significant polynomials, 𝑎𝑖 are the 

set of corresponding coefficients, and S are the number of PCE terms that are preserved. 

3.4.3 Leave-one-out (LOO) error estimation 

After the polynomial coefficients have been computed, the polynomial chaos-based model with 

the required degree of precision is successfully established through error estimation. In this work, 

the leave-one-out (LOO) method for error estimation is chosen. Cross-validation is used to create 

the leave-one-out (LOO) cross-validation error 𝜀𝐿𝑂𝑂. It involves constructing N meta-models 

𝑌𝑃𝐶/𝑖, each based on a reduced experimental design 𝑋(𝑖) =  {𝑋(𝑗), 𝑗 = 1, … , 𝑁, 𝑗 ≠ 𝑖}, and 

comparing each model’s prediction for the excluded point 𝑋(𝑖) to its actual value 𝑌(𝑖). The LOO 

cross-validation error can be represented as follows: 
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𝜀𝐿𝑂𝑂 =
∑ (𝑴(𝑋(𝑖)) − 𝑴𝑃𝐶\𝑖(𝑋(𝑖)))

2
𝑁
𝑖=1

∑ (𝑴(𝑋(𝑖)) − 𝜇𝑌)2𝑁
𝑖=1

 

(3-10)  

where 𝜇𝑌 represents the sample mean of the experimental design’s response. In practical 

application, when the results of a least-squares minimization are available, it is not necessary to 

explicitly calculate N distinct meta-models, as Equation (3-10) can be reduced to: 

 

𝜀𝐿𝑂𝑂 =

∑ (
𝑴(𝑋(𝑖)) − 𝑴𝑃𝐶(𝑋(𝑖))

1 − ℎ𝑖
)

2

𝑁
𝑖=1

∑ (𝑴(𝑋(𝑖)) − 𝜇𝑌)2𝑁
𝑖=1

 

(3-11)  

where ℎ𝑖 represents the diagonal term of the matrix 𝑨(𝑨𝑇𝑨)−1𝑨𝑇. The definition of information 

matrix 𝑨 is given in Equation (3-7). 

3.5 Uncertainty Analysis 

Three different types of approaches to uncertainty analysis are used in this study: the forward 

approach, the backward approach, and sensitivity analysis using the PCE metamodels. The forward 

method focuses primarily on sampling from parameter distributions and quantifying their effects 

on model outputs. The backward method focuses on determining parameter ranges or distributions 

based on the propagation of prediction errors in reverse. The primary objective of the forward 

approach is to identify the optimal model outcomes, whereas the backward approach serves 

primarily as a monitoring tool and an early warning system for extreme events. Uncertainty 

analysis can make use of global sensitivity analysis (GSA). A sensitivity analysis can be performed 

on a hydrological model to identify the parameters that have the greatest impact on the output 

responses and to determine the parameter ranges, so that the uncertainty of the most sensitive 

parameters can be evaluated. 
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3.5.1 SWAT Uncertainty Quantification 

After performing the automatic calibration and sensitivity analysis of the SWAT models using 

SWAT-CUP, five most sensitive parameters are chosen to perform the Monte Carlo (MC), 

generalized-PCE, and LAR-PCE analyses. To perform MC, the selected parameters are varied 

randomly within their physical range for 2,500 realisations to determine the period of uncertainty. 

To perform PCE, however, the selected parameters are assumed to be independent and transformed 

to standard normal distributions. Then, for each parameter, collocation points are selected from 

the normal distribution. The SWAT model is then executed with all possible parameter value 

combinations at the collocation points, and one output value is obtained for each combination at 

each time step. For each parameter combination at each time step, it is then possible to establish a 

linear equation in which the PCE coefficients serve as the unknowns. At this step, LAR 

differentiates from the generalized PCE approach by considering only the most significant and 

sparse set of meaningful coefficients. The PCE coefficients can be obtained by solving the system 

of linear equations. Using the obtained PCE coefficients, the PCE surrogate model for the specified 

time period is constructed.  

Sensitivity analysis (SA) is utilised to determine the extent to which each parameter contributes to 

the output uncertainty and permits the identification of crucial parameters that govern model 

behaviour. In general, SA can be divided into two categories: local and global. The local SA 

computes the changes to the simulation model by modifying one parameter while holding the 

remaining parameters constant. However, it is frequently incapable of producing meaningful 

outcomes (Saltelli et al., 2004). The global SA, on the other hand, investigates the model changes 

by adjusting all parameters at once. The Fourier amplitude sensitivity test (FAST) (Cukier et al., 

1973), the Morris one-at-a-time screening (MOAT), the Sobol’ sensitivity indices, and the 
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response surface methodology (RSM) are some of the commonly used global SA techniques in the 

literature. In this study, we used Sobol’s sensitivity indices to perform a global sensitivity analysis. 

As a ratio of partial and total variances, the Sobol’ indices can be calculated as given by: 

 
𝑆𝑖1…𝑖𝑠

=  
𝐷𝑖1…𝑖𝑠

𝐷
 

(3-15)  

Where D is the total variance of model 𝑴. The first-order indices can be expressed in the case of 

a single input variable as follows: 

 
𝑆𝑖 =  

𝐷𝑖

𝐷
 

(3-16)  

The total Sobol’ indices indicate the total contribution of an input variable to the output variance. 

These are determined by adding up all the indices pertaining to that variable: 

 𝑆𝑖
𝑇 =  ∑ 𝑆𝑖1…𝑖𝑠

 
(3-17)  

Finding the relative importance of each input variable in relation to the model’s output also makes 

it possible to identify the variables that can be discounted. 

This makes it possible to fix those variables to deterministic values after performing the Sobol’ 

analysis. There are numerous techniques that can be used to determine the values of the partial and 

total variances. Realizing that a PCE approximates the Sobol decomposition of a model into 

polynomials is one of them.  

The partial variances can also be expressed using the same notation used in the total variance 

estimation by expressing the total variance in terms of the PCE coefficients: 
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 𝜎(𝑀𝑣
𝑃𝐶𝑥𝑣)2 =  ∑ 𝑎𝑖

2

𝑖=1…𝑁𝑣

 
(3-18)  

Where 𝑀𝑣
𝑃𝐶 is the 𝑣 th PCE term and a is the 𝑖 th PCE coefficient, and 𝑣 stands for the index set of 

the PCE expansion terms that only depend on the subset of input variables 𝑥𝑣. It is possible to 

obtain the Sobol’ indices directly from post-processing of the PCE coefficients by calculating the 

ratio between Eqs. (3-20) and (3-9), which makes it possible to obtain all indices essentially for 

free.  

The first-order indices will have values between 0 and 1, since they allot a portion of the total 

variance to each individual model parameter. Since they also include the interaction terms, if any, 

the total indices will always be greater than or equal to the first-order indices. Repeating these 

among various total indices is possible (interaction between two parameters increases value of two 

total indices). Therefore, the sums will be: 

 

∑ 𝑆𝑖

𝑁

𝑖=1

≤ 1 ≤ ∑ 𝑆𝑖
𝑇

𝑁

𝑖=1

 

(3-19)  

These uncertainty quantification techniques are used to find the parametric uncertainties of the 

SWAT models for Indian Creek and Chehalis River watersheds. 

3.5.2 HYMOD Uncertainty Framework using MCMC 

Once HYMOD is set up and ran, the surrogate model calculates a mathematical relationship 

between the input HYMOD parameter values and the streamflow output using it’s output database. 

The UQLab tool was used to select and create polynomial chaos expansion (PCE) metamodels for 

this study (Sudret, 2008). Due to its widespread use in uncertainty quantification for streamflow 

estimation and hydrological applications, this type of metamodel was chosen.  
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The next step is to figure out how to build the PCE surrogate by calculating the values of the 

polynomial coefficients Eq. (3-9). There are numerous ways to approach this issue, including 

projection techniques (like Gaussian quadrature), conventional least-square techniques, subspace 

pursuit, Bayesian compression, or least angle regression, the latter of which is the approach taken 

in this study. In order to promote sparsity in high-dimensional problems, the least angle regression 

modifies the traditional least square minimization by including a penalty term (Blatman and 

Sudret, 2011). Additionally, compared to other methods, least angle regression offers a quick 

computation time. The leave-one-out (LOO) cross-validation error is the metric used 

while training the PCE model for HYMOD. By creating multiple PCE metamodels, each with a 

smaller training set, and evaluating each model's prediction on the excluded point, this metric 

prevents the PCE model from being overfit to the training data. This might make it easier for the 

PCE model to generalise to new data. 

An experimental design of 500 HYMOD parameter sets, within their physical parameter ranges 

was considered for building the LAR-PCE metamodel with a degree of 3. The experimental design 

and degree of the polynomials were based on previous PCE studies conducted with HYMOD (Hu 

et al., 2019; Wang et al., 2015). The uniform distribution over a specific (prior) range was assumed 

to govern the prior distributions for the uncertain parameters. Latin hypercube sampling (LHS) 

was used due to its efficiency to determine parameter sets from their distribution. 

 The goal of MCMC is to create an invariant distribution that is as close as possible to the target 

posterior distribution by building a Markov chain over the prior distribution. The transition 

probability 𝐾(𝑥𝑡+1|𝑥𝑡), which determines the likelihood of moving from the current step t at each 

iteration to the following step at a time t+1 when the condition in Eq. (3-1) is satisfied, is a crucial 

part of MCMC. 
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 𝜋(𝑥𝑡+1|𝐷)𝐾(𝑥𝑡|𝑥𝑡+1) = 𝜋(𝑥𝑡|𝐷)𝐾(𝑥𝑡+1|𝑥𝑡) (3-20) 

   

Where 𝐷 is the measured data and 𝜋(𝑥) represents our fundamental understanding of the 

hydrological watersheds and is the prior distribution of the input parameters 𝑥 at time t. 

This requirement guarantees the chain's reversibility, or, alternatively, that the probability of 

moving from 𝑥𝑡 to 𝑥𝑡+1 is equal to the probability of moving from 𝑥𝑡+1 to 𝑥𝑡. It is possible to 

demonstrate in Eq.  that the resulting distribution is equal to the posterior by integrating Eq. (3-1) 

over the support of the parameters R. 

 
(𝜋(𝑥𝑡+1|𝐷) = ∫ 𝜋(𝑥𝑡|𝐷)

𝑅

𝐾(𝑥𝑡|𝑥𝑡+1))𝐾(𝑥𝑡+1|𝑥𝑡)𝑑𝑥𝑡 
(3-21) 

Afterwards, a post-processing on the MCMC samples can be done to calculate the posterior 

distribution moments (mean, standard deviation, etc.), or fit the distribution to the closest defined 

distribution shape (normal, lognormal, gamma, etc.). 

The Metropolis-Hastings algorithm, Adaptive Metropolis algorithm, and Hamiltonian Monte 

Carlo algorithm are some of the most popular MCMC algorithms. The affine invariant ensemble 

algorithm (AIES) (Goodman and Weare, 2010) is more resistant to sampling from posterior 

distributions that show strong correlation between its parameters, according to Goodman and 

Weare (2010) and Wagner et al., (2019). As a result, unlike the recommended classical MCMC 

algorithms, AIES is able to sample from both types of distributions with or without correlation 

without explicitly requiring the target distribution to undergo an affine transformation. As a result, 

in this study, samples from the posterior distribution are taken using AIES. It is important to note 

that AIES requires more computation than other MCMC algorithms because it is slower. Before 

reaching the posterior distribution, MCMC algorithms typically require hundreds of thousands of 



 

41 

 

model evaluations. This is why the introduction of PCE is beneficial in the context of calibration 

of hydrological models. 

By using the MCMC's sampling option from the posterior, each calibrated parameter in x receives 

a random distribution of potential values rather than a single value. However, in the context of this 

study we are looking for a single set of parameter values to use in practise that maximises the 

posterior distribution. With this method, known as Maximum A Posteriori (MAP), the x value that 

maximises the posterior distribution is reported in Eq. 

 𝑥𝑀𝐴𝑃 =  𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝜋(𝑥|𝐷) (3-22) 

   

In this study, we present the MAP values for each HYMOD parameter along with the MCMC-

discovered random distributions for each parameter. 
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CHAPTER 4: RESULTS AND DISCUSSIONS 

 

4.1 General 

Chapter 4 offers organized results and their subsequent discussion. This chapter covers the results 

pertaining to HYMOD and SWAT model separately. For HYMOD, Markov Chan Monte Carlo 

algorithm is used for parameterization and subsequent calibration followed by an enhanced 

calibration achieved through the use of a surrogate model, PCE. For SWAT model, in-built SUFI2 

was used to calibrate and validate followed by using PCE to quantify the parameter uncertainty. 

4.2 HYMOD 

This section provides description of the results pertaining to HYMOD modeling and it includes 

parameterization and the results of using surrogate model for improved calibration. Table 3-1 

provides the parameter settings for the MCMC UQ analysis. Along with other climatological 

inputs, MOPEX streamflow data that have been observed are used for both the study areas. The 

AIES sampler employs 100 parallel chains altogether. The total number of generated samples from 

the posterior distribution is 20,000 samples, with each chain consisting of 200 steps. We 

postprocess the other half of the samples and discard the first 5,000 samples, or 25% of the total. 

Since the first samples in the chain typically have lower quality before the sampler starts to 

converge, this burn-in period is a common practise in MCMC. Finally, the point estimates or 

MAPs (𝑥𝑀𝐴𝑃) are presented. 

4.2.1 Indian Creek Watershed 

After building the PCE surrogate with the help of the  parameters, it was discovered that the PCE 

model had a low enough LOO value of 0.02 to support sensitivity analysis and UQ applications. 
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It is important to note that since we are not using the surrogate for point-wise predictions but rather 

as a tool to speed up MCMC analysis, the PCE model is not supposed to be very accurate. As we 

will ultimately validate the MCMC results using real computer code, capturing the trend of the 

data could therefore be sufficient for the surrogate. All things considered, this metric increases the 

trustworthiness of the PCE surrogate model when it is used in place of the HYMOD model in 

MCMC analysis. 

We postprocess the posterior samples by eliminating the initial 25% burn-in samples, and then in 

Table 4-1 we present summary statistics of the calibrated parameters. The statistics consist of the 

mean value, standard deviation, the 95% confidence interval (CI), which includes lower and upper 

bounds, and lastly the MAP estimate of Eq . (3-20). The small standard deviation and the close 

confidence intervals in Table 4-1 indicate that the inverse UQ results once more show a significant 

reduction in parametric uncertainty in the two model parameters (Rs and alpha). Figure 4-1 shows 

that the major issue in the HYMOD model for Indian Creek watershed is the prediction of peak 

flows. While the MCMC does well in capturing the baseflow scenarios, the extreme flood 

scenarios are not simulated well. 

Table 4-1: Posterior marginals for the Indian Creek watershed 

Parameter  𝑥𝑀𝐴𝑃    SD     (0.05-0.95) Quant.   Type         

Cmax       3.30E+02 35 (2.8e+02 - 3.9e+02)  Model        

Bexp       0.77 0.16  (0.54 - 1)          Model        

alpha      0.14 0.042 (0.1 - 0.23)         Model        

Rs         0.0037 0.0031 (0.00049 - 0.0096)   Model        

Rq         0.31 0.16 (0.23 - 0.84)        Model        

sigma2     23 1.6 (21 - 26)            Discrepancy  
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Figure 4-1: 95% confidence interval band streamflow graph for Indian Creek watershed 

 

Similar to the uncertainty captured by the 95 PPU, Figure 4-2 shows a plot of the marginal (also 

known as univariate) posterior distribution of the five model parameters (residual discrepancy is 

excluded since it is not a model parameter). Three parameters exhibit a skewed distribution, while 

the posteriors of the two model parameters (Cmax, Bexp) resemble a normal distribution. 

Additionally, four out of the five parameters' distribution ranges where the Maximum a Posterei 

(MAP) estimate falls indicate high accuracy of the MCMC sampling in capturing the posterior 

marginal. Based on Figure 4-2, it can be seen that MCMC does a great job in narrowing down the 

uncertainty band for all five parameters. 
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Figure 4-2: Prior (left) and posterior (right) parameter distribution for the MCMC analysis 

When sampling posteriors with a high degree of parameter correlation, the AIES sampler is 

advantageous. The correlation matrix between the five parameters is displayed in Table 4-2. Next, 

there is not a strong (generally >-0.5) negative correlation between the model parameters Rq and 

alpha. The largest positive correlation between travel times for quick reservoirs and slow tanks can 

be attributed to the Indian Creek watershed's predominantly well-drained subsoil. 
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Table 4-2: Correlation matrix of HYMOD parameters for Indian Creek watershed 
 

Cmax Bexp alpha Rs Rq 

Cmax 1 -0.37 -0.082 0.2 0.33 

Bexp -0.37 1 0.17 -0.21 -0.29 

alpha -0.082 0.17 1 0.074 -0.31 

Rs 0.2 -0.21 0.074 1 0.61 

Rq 0.33 -0.29 -0.31 0.61 1 

 

4.2.2 Chehalis River Watershed 

It was found that the PCE model had a low enough LOO value of 0.03 after using the Table 3-1 

parameters to build the PCE surrogate to support sensitivity analysis and UQ applications. After 

removing the initial 25% burn-in samples from the posterior samples, we present summary 

statistics for the calibrated parameters in Table 4-3. The 95 percent confidence interval (CI), which 

includes lower and upper bounds, the mean value, standard deviation, and finally the MAP 

estimate of Eq. (3-20) comprises the statistics. Table 4-3’s tight confidence intervals and small 

standard deviation show that the inverse UQ results once more demonstrate a sizable reduction in 

parametric uncertainty in the two model parameters (Rs and alpha).  
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Table 4-3: Posterior marginals for the Chehalis River watershed 

Parameter Mean Std (0.05-0.95) Quant. Type 

Cmax 4.10E+02 60 (3e+02-4.9e+02)) Model 

Bexp 0.64 0.18 (0.38-0.98) Model 

alpha 0.14 0.058 (0.1-0.21) Model 

Rs 0.0061 0.0054 (0.0024-0.01) Model 

Rq 0.37 0.29 (0.18-0.88) Model 

sigma2 3.00E+02 4.2 (2.9e+02-3e+02) Discrepancy 

 

Figure 4-3 shows that the HYMOD model for Chehalis River watershed does a better job at 

representing the peak flow scenarios than the Indian Creek Model. However, in a broader context, 

peak flow simulation is still an issue in this case, along with a slight over-prediction of baseflows. 

A plot of the posterior distribution of the five model parameters is shown in Figure 4-4. One model 

parameter, Bexp, has a posterior that resembles a normal distribution, while all other parameters, 

with the exception of that one, have skewed distributions. We observe that two parameters (alpha, 

Rs) are tightly confined within a small uncertainty band. Furthermore, the MAP estimate falls 

within the distribution ranges of four out of the five parameters, indicating high accuracy of the 

MCMC sampling in capturing the posterior marginal. It's interesting to note that in neither of the 

two scenarios has MAP passed through Rq. 
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Figure 4-3: 95% confidence interval band streamflow graph for Chehalis River watershed 
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Figure 4-4: Prior (left) and posterior (right) parameter distribution for the MCMC analysis 

Table 4-4 shows the correlation matrix between the five parameters. Next, the model's soil water 

storage (Cmax) and time of flow in the slow tank have a strong negative correlation (-0.54). (Rs). 

This can be explained by the large alluvial floodplain that makes up the Chehalis River watershed, 

which has a propensity to absorb and hold moisture. The partitioning factor for quick and slow 

tanks (alpha) and the time of flow in slow tanks have a strong positive correlation, which makes 

sense given that the former can affect the latter. 
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Table 4-4: Correlation matrix of HYMOD parameters for Chehalis River watershed 
 

Cmax Bexp alpha Rs Rq 

Cmax 1 -0.35 0.038 -0.051 -0.54 

Bexp -0.35 1 0.23 0.15 0.26 

alpha 0.038 0.23 1 0.74 -0.29 

Rs -0.051 0.15 0.74 1 0.017 

Rq -0.54 0.26 -0.29 0.017 1 

 

4.3 SWAT model 

This section presents results of parameter sensitivity and calibration of the SWAT model along 

with uncertainty assessment using PCE, followed by sensitivity analysis using PCE.  

4.3.1 SWAT Calibration and Parameter Sensitivity 

A total of 14 parameters were calibrated for the SWAT model over the historical period from 1993 

to 1998 for both the SWAT models. Four parameters were updated by a specific ratio to maintain 

spatial consistency during the automatic calibration process, while the remaining parameters were 

replaced using values drawn at random from uniform distributions over their respective physical 

ranges as shown in . The observed vs simulated streamflows are displayed in Figure 4-5 for both 

the watersheds, as simulated by SWAT. 
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a)  

b)  

Figure 4-5: Observed vs Simulated flow for calibration and validation periods for a) Indian Creek 

and b) Chehalis River 

The fitted values are extracted and displayed in Table 4-6 for Indian Creek watershed and Table 

4-7 for the Chehalis River watershed after two automatic calibration processes with 2,000 

iterations each were run. The SWAT-CUP calibration process produces the following results as 

described in Table 4-5. 
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Table 4-5: Calibration and Validation results 

Watershed Calibration (1993-1998) Validation (1999-2001) 

Indian Creek Watershed 0.64 0.61 

Chehalis River Watershed 0.77 0.82 

 

Table 4-6: Indian Creek Calibrated Values 

Parameter Name Best Fit t-Stat P-Value 

R__CN2.mgt 0.31 -3.01 0.00 

R__SOL_AWC(..).sol 0.11 2.79 0.01 

R__SOL_BD(..).sol 0.43 2.17 0.03 

V__ALPHA_BNK.rte 0.99 0.88 0.38 

V__GWQMN.gw 971.61 -0.81 0.42 

V__ESCO.hru 0.45 -0.74 0.46 

R__REVAPMN.gw 336.20 -0.56 0.57 

V__SNO50COV.bsn 0.55 0.33 0.74 

R__SOL_K(..).sol -0.24 0.30 0.76 

V__SFTMP.bsn -0.92 -0.26 0.79 

R__GW_REVAP.gw 0.09 -0.12 0.91 

V__RCHRG_DP.gw 0.72 -0.06 0.95 

V__CH_L2.rte 96.11 0.01 0.99 

V__ALPHA_BF.gw 0.04 0.00 1.00 
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Table 4-7: Chehalis River Calibrated Values 

Parameter Name Best Fit t-Stat P-Value 

R__CN2.mgt -0.33 -70.46 0.00 

R__SOL_BD(..).sol 0.24 40.48 0.00 

V__GWQMN.gw 51.25 -24.80 0.00 

V__RCHRG_DP.gw 0.25 -19.75 0.00 

V__SFTMP.bsn 4.51 17.22 0.00 

R__SOL_K(..).sol 0.30 11.26 0.00 

R__SOL_AWC(..).sol -0.08 8.51 0.00 

V__GW_REVAP.gw 0.18 -6.07 0.00 

V__ALPHA_BF.gw 0.58 4.81 0.00 

V__ESCO.hru 0.78 0.89 0.37 

V__REVAPMN.gw 144.93 -0.67 0.50 

V__SNO50COV.bsn 0.56 -0.50 0.62 

V__ALPHA_BNK.rte 0.50 -0.23 0.81 

V__CH_L2.rte 154.43 0.10 0.92 

 

The results suggest that SWAT can reliably predict daily flow for the study area (Li et al., 2010; 

Zhang et al., 2016). It is important to note that the models’ performance was also validated for 

three years, which did not change significantly from the calibration period, further proving 

SWAT’s capability to simulate both Indian Creek and Chehalis River catchments. 
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Table 4-6 and Table 4-7 also include the results of the sensitivity analysis as the t- and p-values. 

Table 4-6 demonstrates 6 sensitive parameters for the Indian Creek watershed model, and Table 

4-6 gives 10 sensitive parameters for the Chehalis River watershed based on the p-significance 

value's level (p-value less than 0.05). According to the t-stat, CN is the parameter that is most 

sensitive in both watersheds. The remaining sensitive parameters can be divided into three groups. 

The first group discusses channel properties, which are directly measurable through stream and 

watershed surveys and weren't regarded as uncertain parameters because they can be measured in 

this way. The second group of parameters includes those related to soil moisture and density, which 

are the most sensitive ones because they significantly affect the infiltration, runoff, and 

evapotranspiration processes. The third set of sensitive parameters relates to baseflow, which 

establishes how much infiltrated water contributes to streamflow and how long it takes for water 

to leave the watershed to reach the outlet. This study evaluated how five parameters' uncertainties 

spread over time. The five parameters are composed of CN and two each from the second and third 

groups. To represent the evaporation process and the degree of infiltration, respectively, the soil 

evaporation compensation factor (ESCO) and available water content (SOL_AWC) were chosen 

from the second group for both the watersheds. From the third group, shallow aquifer’s threshold 

depth for return flow to occur (GWQMN) was chosen for both watersheds, whereas the fifth 

parameter considered was, threshold of water in the shallow aquifer for deep percolation to occur 

(REVAPMN) for Indian Creek watershed, and deep aquifer’s percolation fraction (RCHRG_DP) 

for the Chehalis River watershed. 
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4.3.2 Uncertainty Assessment – PCE 

This section provides an insight into the results of experimental design selection followed by the 

accuracy and uncertainty quantification of OLS-PCE Model and LAR-PCE Model, respectively. 

4.3.2.1 Selection of Experimental Design 

We examine how the size of the experimental design affects the precision of surrogate models 

built by OLS-PCE and LAR-PCE, thereby offering recommendations for selecting the right size 

of experimental design and proving superiority of LAR-PCE's over OLS-PCE. As mentioned in 

section 3, several PCE models were built with experimental designs ranging from 100-2000 for 

OLS-PCE and 100-500 for LAR-PCE. It can be observed from Figure 4-6, that the Leave one-out 

(LOO) error estimate becomes constant after a certain number of runs. The accuracy achieved by 

LAR-PCE for both the SWAT models has a faster convergence than the OLS-PCE models for 

similar results.  

 

Figure 4-6: Leave-one-out error estimates of LAR-PCE and OLS-PCE for Indian Creek and 

Chehalis River watersheds for different runs (N) 

 

The best experimental designs without compromising on both computational efficiency and 

accuracy were considered from Figure 4-6 upon visual inspection; OLS-PCE with an experimental 

design of 1000 was suggested for Indian Creek, and 1500 for Chehalis River watershed. An 
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experimental design of 500 was considered for LAR-PCE for both the watersheds, as it provided 

the least LOO values based on previous literature (Dwelle et al., 2019; Hampton and Doostan, 

2014; Torre et al., 2018). 

4.3.2.2 OLS-PCE Model – Accuracy and Uncertainty Quantification 

OLS-PCE surrogate models were created for the Indian Creek Watershed and the Chehalis River 

Watershed with an experimental design of 1000 and 1500 runs, respectively. A total of 56 

coefficients in the polynomials representing SWAT were estimated through linear regression by 

running SWAT on the number of sensitive parameter sets given by the experimental design. The 

surrogate models then created were tested for their ability to simulate the SWAT outputs by 

running them through realizations of 2,500 random parameter sets. 

The comparison of the mean streamflow values obtained using the OLS-PCE and MC simulation 

methods is shown in Figure 4-7 and Figure 4-8. They show that the mean values obtained through 

OLS-PCE and the outcomes of the MC simulation are nearly identical. This means that in order to 

reflect the temporal variations for the streamflow, the OLS-PCE can typically replace the 

hydrologic model (i.e., SWAT). 
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a)  

b)  

Figure 4-7: A comparison of mean values of streamflow obtained through MC and OLS-PCE 

simulations for a) Indian Creek Watershed and b) Chehalis River Watershed 

a) b)  

Figure 4-8: Scatter plots of mean values of streamflow of MC vs OLS-PCE simulation for a) 

Indian Creek Watershed and b) Chehalis River Watershed 

The standard deviation of the streamflow at each time step as determined by the OLS-PCE and 

MC simulation methods are compared in Figure 4-9 and Figure 4-10, respectively. They propose 
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that at both low and high uncertain flows, the standard deviation of OLS-PCE and MC simulation 

be the same. Thus, it can be said that both the means and variances of the OLS-PCE results would 

fit well with the outcomes of the MC simulation. 

a)  

b)  

Figure 4-9: A comparison of standard deviation of streamflow obtained through MC and OLS-

PCE simulations for a) Indian Creek Watershed and b) Chehalis River Watershed 



 

61 

 

a) b)  

Figure 4-10: Scatter plots of standard deviation of streamflow values of MC vs OLS-PCE 

simulation for a) Indian Creek Watershed and b) Chehalis River Watershed 

 

The in-depth statistical characteristics would be examined at some particular time periods in order 

to further compare the accuracy between the results of OLS-PCE and MC simulation. Table 4-8 

lists the estimates of statistical characteristics, such as mean, standard deviation, kurtosis, and 

skewness. Low, medium, and high streamflow levels are present during those particular times. In 

general, the probability density distributions obtained by OLS-PCE and those obtained by MC 

simulation would be similar in low flows in both the watersheds, as shown in Table 4-8. However, 

the OLS-PCE results are a bit more skewed, and the probability density function is heavier at the 

outliers than the MC counterpart – which has a higher peak, represented by a higher skewness and 

kurtosis during the high flow day in the Indian Creek Watershed. Generally, the OLS-PCE 

simulations have a steeper probability density function than the MC simulations for the Indian 

Creek Watershed. The probability density function for OLS-PCE represents the heavily tailed 

streamflow metric of the Chehalis River Watershed during the high and median flow day. 

However, the OLS-PCE probability density functions for both the watersheds are adequately able 

to simulate the MC runs, with Chehalis River Watershed being a bit better to replicate. 
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Table 4-8: Comparison of OLS-PCE and MC simulation results at specific times 

Indian Creek 

Watershed 

OLS-

PCE 

MC OLS-

PCE 

MC OLS-

PCE 

MC OLS-

PCE 

MC 

Mean SD Kurtosis Skewness 

High Flow (Day - 

435) 

3.28 3.28 0.99 1.05 2.48 1.95 0.75 0.56 

Median Flow 

(Day - 157) 

1.56 1.57 1.16 1.18 1.63 1.75 0.03 0.08 

Low Flow (Day - 

177) 

1.48 1.49 1.1 1.13 1.64 1.76 0.04 0.11 

Chehalis River 

Watershed 

OLS-

PCE 

MC OLS-

PCE 

MC OLS-

PCE 

MC OLS-

PCE 

MC 

Mean SD Kurtosis Skewness 

High Flow (Day - 

128) 

88.47 88.52 8.77 8.99 2.9 3.06 -0.21 -0.24 

Median Flow 

(Day - 137) 

21.42 21.47 7.96 8.17 2.36 2.58 -0.21 -0.16 

Low Flow (Day - 

510) 

10.37 10.37 7.78 7.87 1.86 1.83 0.22 0.2 

 

The histograms of the OLS-PCE and MC simulation results at the chosen time periods are 

displayed in Figure 4-11. Additionally, it suggests that Chehalis River watershed might be better 
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represented by OLS-PCE when compared to Indian Creek watershed based on visual correlation 

between the histograms. 

 

a) Indian Creek Watershed 

  

 

 

 

  

  

High Flow High Flow 

Mid-Flow Mid-Flow 

Low Flow Low Flow 
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b) Chehalis River Watershed 

  

  

 

Figure 4-11: Histograms comparing OLS-PCE and MC simulations for a) Indian Creek 

watershed and b) Chehalis River watershed 

 

  

High Flow High Flow 

Mid-Flow Mid-Flow 

Low Flow Low Flow 
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4.3.2.3 LAR-PCE Model – Accuracy and Uncertainty Quantification 

With an experimental design of 500 runs, LAR-PCE surrogate models were developed for both 

the Indian Creek Watershed and the Chehalis River Watershed. A total of 26 important coefficients 

were truncated out of the total 56 coefficients by the LAR-PCE method. The polynomial 

coefficients were then calculated by regressing the values of the polynomials to the known SWAT 

outputs, which is run over a random set of sensitive parameters. Then, using realisations of 2,500 

random parameter sets, the surrogate models were evaluated for their capability to simulate the 

SWAT outputs. 

In Figure 4-12 and Figure 4-13, similar with the OLS-PCE simulations, the mean streamflow 

values obtained by the LAR-PCE and MC simulation methods are compared. They also 

demonstrate that there is almost no difference between the mean values obtained using LAR-PCE 

and the results of the MC simulation. This means that in most cases, the LAR-PCE can replace the 

hydrologic model in order to reflect the temporal variations for the streamflow (i.e., SWAT). 
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a)  

b)  

Figure 4-12: A comparison of mean values of streamflow obtained through MC and LAR-PCE 

simulations for a) Indian Creek Watershed and b) Chehalis River Watershed 

a) b)  

Figure 4-13: Scatter plots of mean values of streamflow of MC vs LAR-PCE simulation for a) 

Indian Creek Watershed and b) Chehalis River Watershed 
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Figure 4-14 and Figure 4-15 show that the values of standard deviation for LAR-PCE and both the 

SWAT MC models are an order of magnitude closer than those of OLS-PCE. There is no variance 

between the two simulations, with LAR-PCE reflecting the model runs even at high and low flow 

uncertain conditions. As a result, the LAR- PCE does a good job of describing the degree of 

uncertainty in the SWAT predictions. 

 

a)  

b)  

Figure 4-14: A comparison of standard deviation of streamflow obtained through MC and LAR-

PCE simulations for a) Indian Creek Watershed and b) Chehalis River Watershed 
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a) b)  

Figure 4-15: Scatter plots of standard deviation of streamflow values of MC vs LAR-PCE 

simulation for a) Indian Creek Watershed and b) Chehalis River Watershed 

The statistic characteristics at some particular time periods would be thoroughly examined in order 

to compare the accuracy between the results of the LAR-PCE and MC simulations in more detail. 

The results of the LAR-PCE and MC simulations are shown in Table 4-9 along with their 

respective means, standard deviations, kurtosis, and skewness values. They suggest that the 

probability density distributions obtained by LAR-PCE and MC simulation would be fairly similar. 
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Table 4-9: Comparison of LAR-PCE and MC simulation results at specific times 

Indian Creek 

Watershed 

LAR-

PCE 

MC LAR-

PCE 

MC LAR-

PCE 

MC LAR-

PCE 

MC 

Mean SD Kurtosis Skewness 

High Flow (Day - 

435) 

3.27 3.28 1 1.05 2.47 1.95 0.83 0.56 

Median Flow 

(Day - 157) 

1.56 1.57 1.15 1.18 1.6 1.75 0 0.08 

Low Flow (Day - 

177) 

1.49 1.49 1.1 1.13 1.6 1.76 0.01 0.11 

Chehalis River 

Watershed 

LAR-

PCE 

MC LAR-

PCE 

MC LAR-

PCE 

MC LAR-

PCE 

MC 

Mean SD Kurtosis Skewness 

High Flow (Day - 

128) 

88.42 88.52 8.59 8.99 2.83 3.06 -0.2 -0.24 

Median Flow 

(Day - 137) 

21.39 21.47 7.88 8.17 2.44 2.58 -0.28 -0.16 

Low Flow (Day - 

510) 

10.35 10.37 7.72 7.87 1.81 1.83 0.19 0.2 

 

However, as can be seen from Figure 4-16, there are certain peaks in the Indian Creek probability 

density function, which are not present in the LAR-PCE simulation. This can be corroborated by 

the fact that there is some difference in the kurtosis values, which can be seen as the tails of the 
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LAR-PCE probability density function being heavier than it’s MC counterpart, making it well 

spread out. That being said, the errors are minimal in the practical context. The LAR-PCE model 

for the Chehalis River watershed definitely does a better job at giving a similar probability density 

function as the MC simulations, with closer SD, kurtosis, and skewness values. 

      

      

a)   

  

Low Flow Low Flow 

Mid-Flow Mid-Flow 

High Flow High Flow 
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b)   

Figure 4-16: Histograms comparing LAR-PCE and MC simulations for a) Indian Creek 

watershed and b) Chehalis River watershed 

4.3.3 Sensitivity Analysis using PCE 

As described in the section 3.5.1, Sobol indices of any model can be directly found from the PCE 

coefficients built from the model. In this section, Sobol indices calculated from the OLS-PCE and 

LAR-PCE are used to find out the contribution of variability of each sensitive parameter to the 

variability of streamflow over low, median, and high flow days.  

Low Flow 
Low Flow 

Mid-Flow 
Mid-Flow 

High Flow High Flow 
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The first order indices in Figure 4-17 show a dominant dependence (>95%) of flow on the curve 

number (CN2) for the Indian Creek watershed. The results are consistent with both PCE 

metamodels, giving similar Sobol indices, representing that the curve number is a major factor in 

streamflow variability. On the other hand, for the Chehalis River watershed, the PCE models 

calculate that GWQMN, which is the threshold of water in deep aquifer, and RCHRG_DP, which 

is the deep aquifer percolation fraction, are the most sensitive parameters during high flow days. 

The flow has a major dependence on these two parameters, and their interactions with the other 

parameters, based on high total Sobol indices. 

High flow day: 

a) Sobol Indices based on OLS-PCE for Indian Creek

  

b) Sobol Indices based on LAR-PCE for Indian Creek 
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c) Sobol Indices based on OLS-PCE for Chehalis River 

  

d) Sobol Indices based on LAR-PCE for Chehalis River 

 

Figure 4-17: Sobol Indices corresponding to high flow days 

 

The flow simulations on median flow day shown in Figure 4-18 give almost a similar pattern of 

dependencies of streamflow on the curve number for Indiana creek river; and GWQMN and 

RCHRG_DP for Chehalis River watershed. It can be concluded that the change of flow values 

from high to median, does not affect the sensitivity of parameters for both the watersheds. 

  

RCHRG_DP.gw 

RCHRG_DP.gw 
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Median flow day: 

a) Sobol Indices based on OLS-PCE for Indian Creek

 

b) Sobol Indices based on LAR-PCE for Indian Creek

 

c) Sobol Indices based on OLS-PCE for Chehalis River 

 
RCHRG_DP.gw 



 

75 

 

d) Sobol Indices based on LAR-PCE for Chehalis River 

 

Figure 4-18: Sobol Indices corresponding to median flow days 

 

In all flow conditions, curve number has the most impact on the streamflow of Indian Creek 

watershed. While it can be observed that the deep aquifer percolation fraction has the most 

significance amongst all parameters, during low flow days at the Chehalis River watershed, 

indicated in Figure 4-19. 

Low flow day: 

a) Sobol Indices based on OLS-PCE for Indian Creek 

 

RCHRG_DP.gw 
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b) Sobol Indices based on LAR-PCE for Indian Creek 

 

c) Sobol Indices based on OLS-PCE for Chehalis River 

  

d) Sobol Indices based on LAR-PCE for Chehalis River 

 

Figure 4-19: Sobol Indices corresponding to low flow days 

 

It can be concluded that Polynomial Chaos Expansion (PCE) were efficiently able to simulate 

SWAT and HYMOD models. Prior and posterior distributions for HYMOD parameters were 

achieved by quantifying the uncertainty of it’s surrogate LAR-PCE model. Obtaining the posterior 

RCHRG_DP.gw 

RCHRG_DP.gw 
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distributions of HYMOD parameters helped narrow down their range over which they are 

uncertain. LAR-PCE and OLS-PCE were rigorously validated and used to find out the sensitive 

parameters for SWAT models. It was found that curve number (CN2.mgt) is the major contributor 

towards uncertainty for the Indian creek watershed, irrespective of the quantity of flow. While for 

the Chehalis River Watershed, the major contribution is from the groundwater parameters. 
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CHAPTER 5: CONCLUSIONS AND 

RECOMMENDATIONS 

5.1 Conclusions 

Hydrologic models conceptualise and combine the intricate, spatially distributed, and intricately 

entwined water, energy, and vegetation processes in a watershed into comparatively 

straightforward mathematical equations in order to simulate the rainfall-runoff processes. The 

model parameters' significant uncertainties, which have a big impact on hydrologic forecasts, are 

a significant result of process conceptualization. This study put forth a comprehensive framework 

for PCE-based hydrologic models to quantify uncertainty.  

PCE was used with HYMOD, to simulate the hydrological model responses by a polynomial, for 

express calibration by running PCE tens of thousands of times for MCMC analysis, rather than 

running HYMOD again and again. The uncertainties and prior distribution associated with the 

HYMOD parameters were calculated in express pace by utilizing the PCE surrogate. 

In order to efficiently build a surrogate model and quickly quantify its uncertainty for hydrological 

predictions, this study combined PCE with LAR. To the author’s best knowledge, unlike prior 

studies this study is one of the first ones to use LAR-PCE with a semi-distributed model like 

SWAT.  

As a result of learning and remembering only the most important polynomial basis terms, LAR 

produces a sparse set of PCE coefficients that can be more easily estimated. Comparing the 

performance of a surrogate model created using ordinary least square regression to the benefits of 

LAR-PCE (OLS). In order to quantify the uncertainties of hydrological models of a small and 
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medium scale watershed, the surrogate SWAT models OLS-PCE and LAR-PCE were created. The 

PCE models were then utilized to directly obtain Sobol indices for the sensitive SWAT parameters. 

The key findings of this study are as follows: 

1. Polynomial Chaos Expansion is an effective technique to surrogate a model, particularly if too 

many model runs are required or the model requires a long time to run. 

2. Once a PCE surrogate model is built for a certain model, the Sobol indices of the input 

parameters of the model are automatically calculated. 

3. LAR-PCE performs better than OLS-PCE using a fewer number of runs to calculate its 

coefficients, providing the same or a better magnitude of accuracy. 

4. The application of PCE has been highlighted in this study to improve hydrological models, from 

their calibration, to forward uncertainty assessment by MC, or backward uncertainty assessment 

by MCMC, or sensitivity analysis by Sobol indices. 

The contribution made by this thesis is to apply LAR-PCE to a complex semi-distributed 

hydrological model (SWAT) to quantify parameter uncertainty, which is not yet performed 

according to the author’s best knowledge. A framework was proposed to effectively calibrate and 

quantify the uncertainty of a conceptual hydrological model, HYMOD using Markov Chain Monte 

Carlo. The framework can be later implemented to other complex models, which needs more data 

and has more parameter uncertainty. 

5.2 Recommendations and Future Work 

As the model complexity increases, it is anticipated that PCE's advantage in terms of computational 

efficiency will become more significantly advantageous. The PCE should be evaluated in the 
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future for additional intricate hydrological models and for a greater variety of watersheds. 

Applying PCE directly to field data could also be a solution to real-time forecasting and prediction 

scenarios. One of the limitations that PCE faces is that the parameters are assumed to be 

independent. Future studies are necessary in this field to address these issues.  
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