
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

5-17-2022

Semantic Embedded Sequential Recommendation for E-Semantic Embedded Sequential Recommendation for E-

Commerce Products through Mining Customers’ Historical Commerce Products through Mining Customers’ Historical

Interactions and Products’ Data Interactions and Products’ Data

Mahreen Nasir Butt
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Butt, Mahreen Nasir, "Semantic Embedded Sequential Recommendation for E-Commerce Products
through Mining Customers’ Historical Interactions and Products’ Data" (2022). Electronic Theses and
Dissertations. 9605.
https://scholar.uwindsor.ca/etd/9605

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F9605&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.uwindsor.ca%2Fetd%2F9605&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/9605?utm_source=scholar.uwindsor.ca%2Fetd%2F9605&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Semantic Embedded Sequential
Recommendation for E-Commerce

Products through Mining Customers’
Historical Interactions and Products’ Data

By

Mahreen Nasir Butt

A Dissertation

Submitted to the Faculty of Graduate Studies

through the School of Computer Science

in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy

at the University of Windsor

Windsor, Ontario, Canada

2022

© 2022 Mahreen Nasir Butt

Semantic Embedded Sequential Recommendation for
E-Commerce Products through Mining Customers’

Historical Interactions and Products’ Meta Data

by

Mahreen Nasir Butt

APPROVED BY:

H. Viktor, External Examiner

University of Ottawa

D. Borisov

Department of Mathematics and Statistics

S. Saad

School of Computer Science

B. Boufama

School of Computer Science

C. I. Ezeife, Advisor

School of Computer Science

29 April 2022

Declaration of Co-Authorship and

Previous Publications

I. Co-authorship

I hereby declare that this thesis incorporates material that is result of joint research,

as follows: Chapter 6 briefly refers to the outcomes of publications co-authored with the

supervisor along with other undergraduate and graduate students at the WODD Lab, School

of Computer Science, University of Windsor. The details regarding contributions made by

each author towards the publications are provided as follows:

• For the publication titled "Improving e-commerce product recommendation using se-

mantic context and sequential historical purchases" co-authored with Ezeife, C. I.

Gidado, A., the key idea, main contributions, experimental designs, data analysis,

interpretation, and writing were performed by myself under the supervision of Ezeife,

C. I.

• For the publication titled "Semantic Enhanced Markov Model for Sequential E-commerce

Product Recommendation" co-authored with Ezeife, C. I., the key idea, main contribu-

tions, experimental designs, data analysis, interpretation, and writing were performed

by myself under the supervision of Ezeife, C. I.

• For the publication "Survey and Taxonomy of Sequential Recommender Systems for

E-commerce Product Recommendation" co-authored with Ezeife, C. I., the key idea,

main contributions, experimental designs, data analysis, interpretation, and writing

were performed by myself under the supervision of Ezeife, C. I.

iii

iv

• For the publication titled "Semantics Embedded Sequential Recommendation for E-

Commerce Products (SEMSRec)", co-authored with Ezeife, C. I., the key idea, main

contributions, experimental designs, data analysis, interpretation, and writing were

performed by myself under the supervision of Ezeife, C. I.

• For publication titled “The HSPRec E-Commerce System Open Source Code Imple-

mentation”, co-authored with Ezeife, C. I., Chaturvedi, R., and Veliz Castro, A.,

primary contributions are attributed to Ezeife, C. I, in terms of the key idea, exper-

imental designs, data analysis, interpretation, writing and feedback on refinement; I

provided assistance in experimentation and analysis, contributed in providing feed-

back on refinement of presentation of ideas and editing of the manuscript; Chaturvedi,

R assisted in manuscript editing and formatting for submission to the conference and

Veliz Castro, A., executed the experiments and initial analysis.

• For the publication titled “Extracting High Profit Sequential Feature Groups of Prod-

ucts using High Utility Sequential Pattern Mining” co-authored with Motwani, Priyanka

and Ezeife, C. I., the key idea, main contributions in experiments and analysis,

manuscript writing were executed by the student Motwani, Priyanka under the su-

pervision of Ezeife, C. I.; I contributed in providing feedback on refinement of the

manuscript in terms of formating and editing.

• For the publication titled “Mining sequential patterns of historical purchases for e-

commerce recommendation” co-authored with Bhatta, R. and Ezeife, C. I, the key

idea, main contributions in experiments and analysis, manuscript writing were exe-

cuted by the student Bhatta, R., under the supervision of Ezeife, C. I.; I provided

assistance in reviewing the experimental results and contributed in providing feedback

during the preparation of the manuscript and presentation of ideas.

I am aware of the University of Windsor Senate Policy on Authorship and I certify that

I have properly acknowledged the contribution of other researchers to my thesis, and have

obtained written permission from each of the co-author(s) to include the above material(s)

in my thesis.

I certify that, with the above qualification, this thesis, and the research to which it

refers, is the product of my own work.

v

II. Previous Publications

This thesis includes seven papers with four original papers (three Journal and one Con-

ference) stemming directly from this thesis and three conference papers (that resulted from

work as co-author with the supervisor and other graduate students at the WODD Lab,

School of Computer Science, University of Windsor). Details of publications along with

their status are as follows:

Publication Title Status

Chapter 5, 6 and

8

Nasir, M., Ezeife, C. I. & Gidado, A (2021).

Improving e-commerce product recommenda-

tion using semantic context and sequential

historical purchases. Springer’s International

Journal of Social Network Analysis Mining,

11, 82. https://doi.org/10.1007/s13278-021-

00784-6

Published

Chapter 6, 7 and

8

Nasir, M., Ezeife, C. I. Semantic Enhanced

Markov Model for Sequential Ecommerce

Product Recommendation. International Jour-

nal of Data Science and Analytics. Springer

Nature.

Accepted

Chapter 1 and 2 Nasir, M., Ezeife, C. I. A Survey and Taxon-

omy of Sequential Recommender Systems for

E-commerce Product Recommendation. SN

Computer Science. Springer Nature.

Accepted with

Revision (under

review)

Chapter 4, 6 and

8

Nasir, M., & Ezeife, C. I. (2020, December).

Semantics Embedded Sequential Recommen-

dation for E-Commerce Products (SEMSRec).

In 2020 IEEE/ACM International Conference

on Advances in Social Networks Analysis and

Mining (ASONAM) (pp. 270-274). IEEE.

Published

vi

Publications as co-author and related to thesis are as follows:

Publication Title Status

Ezeife, C. I., Nasir, M., Chaturvedi, R., Veliz

Castro, A. (2021, August). The HSPRec E-

Commerce System Open Source Code Imple-

mentation. In IEEE/ACIS 21st International

Fall Conference on Computer and Information

Science (ICIS 2021-Fall) in Xi’an, China

Published

Motwani, Priyanka., Ezeife, C. I., Nasir, M.,

(2021, September). Extracting High Profit

Sequential Feature Groups of Products using

High Utility Sequential Pattern Mining. In

International Conference on Advanced Data

Mining and Applications (ADMA) in Sydney,

Australia.

Published

Bhatta, R., Ezeife, C. I., & Nasir, M. (2019,

August). Mining sequential patterns of histori-

cal purchases for e-commerce recommendation.

In International Conference on Big Data An-

alytics and Knowledge Discovery (pp. 57-72).

Springer, Cham.

Published

I certify that I have obtained a written permission from the copyright owner(s) to include

the above published material(s) in my thesis. I certify that the above material describes

work completed during my registration as a graduate student at the University of Windsor.

III. General

I declare that, to the best of my knowledge, my thesis does not infringe upon anyone’s

vii

copyright nor violate any proprietary rights and that any ideas, techniques, quotations,

or any other material from the work of other people included in my thesis, published or

otherwise, are fully acknowledged in accordance with the standard referencing practices.

Furthermore, to the extent that I have included copyrighted material that surpasses the

bounds of fair dealing within the meaning of the Canada Copyright Act, I certify that I

have obtained a written permission from the copyright owner(s) to include such material(s)

in my thesis. I declare that this is a true copy of my thesis, including any final revisions,

as approved by my thesis committee and the Graduate Studies office, and that this thesis

has not been submitted for a higher degree to any other University or Institution.

Abstract

E-commerce Recommendation Systems (ERS) facilitate customers’ purchase decision by

recommending products or services of interest. Designing a recommender system targeted

towards an individual customer’s need is crucial for retailers to increase revenue and retain

customers’ loyalty. Collaborative Filtering (CF), a common recommendation technique,

takes user-item interaction matrix as input which represents interactions either explicitly

(users ratings) or implicitly (users’ browsing or buying behavior) and outputs top item

recommendations for each target user, by finding similarities among users or items. The

input matrix suffers from (i) sparsity (has low user item interactions), (ii) cold start (an

item cannot be recommended if no ratings exist). Content Based method, on the other

hand, generates recommendations based on the content (features) of the item and suffers

from content overspecialization (lack of diversity in recommended products) due to the use

of specific features only.

Furthermore users’ interests and preferences change with time. The time stamp of a user

interaction (click or purchase event) is an important characteristic. Learning the sequential

patterns of user interactions based on the timestamps are useful to understand their long

and short term preferences and predict the next items for recommendation. Sequential Pat-

tern Mining mines frequent or high utility sequential patterns from a sequential database

comprising of historical purchase or click sequences. Conventional recommendation sys-

tems (ChoiRec12, SuChen15, HPCRec18, HSPRec19) utilize mining techniques such as

clustering, frequent and sequential pattern mining along with click and purchase similarity

measures for next item recommendation. However, the performance of these systems is still

limited when the matrix is sparse, as the number of items keep increasing rapidly. Addi-

tionally, models utilizing sequential pattern mining suffer from (i) lack of personalization:

viii

ix

patterns are not targeted for a specific customer, as they infer decisions based on a global

view of sequences and (ii) lack of contextual similarities among recommended items: they

can only recommend items that exist as a result of a matching rule generated from frequent

sequential purchase pattern(s).

To better understand users’ preferences and to infer the inherent meaning of the items

(e.g., context in which they are used), this thesis, explores the effectiveness of utilizing

semantic knowledge (meaningful relationships between items) extracted from items’ meta

data (title, description and brand) and customers’ purchase histories to compute semantic

similarities between items according to their (a) usage (e.g., products co-purchased or co-

reviewed) and (b) textual features by finding similarity between products based on their

characteristics. The extracted semantic knowledge is then integrated into different phases of

recommendation process such as (i) pre-processing, to learn relationships between items, (ii)

candidate item generation and (iii) generating semantic rich and sequential next item recom-

mendations. During the candidate item generation phase, techniques developed include (a)

mining semantic rich sequential patterns, (b) enriching the item matrix in Collaborative Fil-

tering to select Top-N candidates that show semantic and sequential relationships between

items and (c) enhancing the Transition Probability Matrix in the Markov Model method.

The third phase of generating semantic rich sequential recommendations is accomplished

by using semantic rich (a) Sequential Pattern Rules, (b) item based Collaborative Filtering

or (c) Markov Model depending upon the method used to generate candidate items. Thus,

the inclusion of semantic knowledge into all phases of recommendation process can address

the issues of sparsity, coldstart, content overspecialization and provide recommendations

which are diverse, similar in context and better reflect user’s long and short term interests.

Experimental results on publicly available e-commerce data sets such as Amazon and Online

Retail has shown that the proposed model has improved performance over existing systems.

Keywords: Recommendation Systems, Sequential Pattern Mining, Semantics, Click-

stream data, Historical Purchases, RecSys, Collaborative Filtering, TF-IDF, Vector Space

Model, Cold Start, Sparsity, E-commerce

Dedication

Dedicated to my parents and my brother for their unconditional support, love, motivation,

wisdom and prayers which enabled me to complete this journey and fulfil my dreams.

x

xi

(1) In the name of Allah, the Beneficient, the Merciful.

(2) Praise be to Allah, Lord of the Worlds,

(3) the most Gracious, the most Merciful.

(4) The Master of the day of Judgement.

(5) You alone we worhsip and You alone we ask for help.

(6) Guide us to the straight path,

(7) the path of those upon whom You have bestowed favour, not of those who earned Your

anger, nor of those who went astray.

(Quran 1:1-7)

Acknowledgements

The journey of a thousand miles begin with one step (̃Lau Tzu)

Today when my journey towards Ph.D. is at the finish line, my mind is flushed with mem-

ories of each and every step that I undertook before and during this journey.

After Allah’s countless blessings upon me, I could not thank enough my parents and my

brother who are my role models, my source of inspiration and motivation. Their optimism,

unconditional support and confidence in me enabled me where I am today. Their wisdom

and encouragement has always been a beacon of light for me whenever I found myself

stuck in a dark tunnel seeing no light at the end. Being a first generation female student,

reaching to university level and graduating with a Doctor of Philosophy degree from a

foreign university as an international student brought a lot of challenges. During this time,

at certain points, I had to make hard choices to stay firm on my decision and I am truly

grateful to my family for supporting me in all my decisions and giving me the freedom to

fill the canvas of my life with my choice of colors.

I would also like to thank my professors at University of Windsor, my thesis supervisory

committee members, Dr. Dennis Borisov, Dr. Boubaker Boufama and Dr. Sherif Saad

for their valuable feedback, co-operation and continuous support throughout. I am much

grateful to my thesis supervisor, Dr. Christie Ezeife for her continuous support, thorough

feedback on my submissions and her timely response despite her busy schedules. I want

to thank her for all her efforts and pushing me to my limits. Her valuable advice at every

stage helped and guided me in shaping up this thesis. Thanks to Dr. Ezeife as well for all

the research assistantship financial support through her NSERC and other grants.

xii

xiii

I also want to thank my friends and colleagues at the University of Windsor for their

support and best wishes.

I also acknowledge that this research was supported by the Natural Science and Engi-

neering Research Council (NSERC) of Canada under an operating grant (OGP-0194134)

and a University of Windsor grant received by Dr. Christie Ezeife, an Ontario Graduate

Scholarship and Doctoral Entrance Scholarship.

Last but not the least, thank you to each and everyone at University of Windsor for

being a part of this journey.

I would like to end by sharing a stanza from one of my favourite poems “The Road Not

Taken” by Robert Frost, which pretty much describes my emotions towards this journey.

Two roads diverged in a wood, and I—

I took the one less traveled by,

And that has made all the difference

Table of Contents

Declaration of Co-Authorship and Previous Publications iii
Abstract viii
Dedication x
Acknowledgements xii
List of Tables xvii
List of Figures xx
List of Abbreviations xxii

1 Introduction 1
1.1 Recommendation Systems . 1

1.1.1 E-commerce Recommendation Systems 1
1.1.2 Challenges in E-Commerce Recommendation Systems 3
1.1.3 How E-commerce Recommendation is Different from Recommenda-

tion in other Domains . 4
1.2 Components of a Recommendation Framework 6

1.2.1 Input Phase (Data Sources) . 6
1.2.2 Candidate Generation Phase . 7
1.2.3 Output Phase (Recommendation) 9

1.3 Motivation . 10
1.3.1 Why need a Sequential Recommendation System 10
1.3.2 Extracting Sequential Patterns from user interactions using Sequen-

tial Pattern Mining . 11
1.3.3 Why use Semantics in Sequential Recommendation Systems? 12

1.4 Thesis Contributions . 14
1.4.1 Feature Contributions . 15
1.4.2 Procedural Contributions . 15

1.5 Thesis Outline . 17
2 Related Work 19

2.1 Classification of Recommendation Systems based on Input Data 19
2.2 Classification of Recommendation Systems according to Candidate Genera-

tion (Recommendation Techniques) . 22

xiv

Table of Contents xv

2.2.1 Traditional Approaches for Recommendation 26
2.2.2 Sequential Recommendation Techniques 35
2.2.3 Semantics Based Recommendation Techniques 76

3 Problems Identified and Research Questions 101
3.1 Problems . 101
3.2 Research Questions . 103

4 Proposed Semantic Embedded Sequential Recommender for E-commerce

Products (SEMSRec) 107
4.1 Problem Formulation . 107
4.2 Proposed Solution and System Architecture 108

4.2.1 Data Pre-processing Phase . 110
4.2.2 Items (Products’) Semantic Representation Learning Phase 111
4.2.3 Candidate (Users’ and Items’) Generation Phase 113
4.2.4 Semantic and Sequential Next Item Recommendation Phase 113

5 Semantic Representation Learning of E-commerce Products 115
5.1 Walk through Examples for learning Products Semantic Feature Vector Rep-

resentation . 115
6 Semantic Based Candidate Generation 127

6.1 Semantics based Sequential Pattern Mining 127
6.1.1 Computing Products’ Semantic Similarity and item Semantic Simi-

larity Matrix . 128
6.1.2 Aggregate Vector Representation of Vector Sequences 129
6.1.3 Extracting Top-N Semantically Similar Neighbors 130
6.1.4 Mining Semantic Embedded Sequential Patterns and Rules 130

6.2 Semantic Enhanced Transition Probability Matrix in

Markov Models . 132
6.2.1 Product Pairs’ Frequency Matrix Creation 134
6.2.2 Transition Probability Matrix Creation 135
6.2.3 Score Computation for Products . 135
6.2.4 Semantic and Sequentially Rich Transition Probability Matrix . . . 136

7 Semantic & Sequential Next Item Recommendation 138
7.1 Recommendation Using Semantic Based Sequential Pattern Mining and Col-

laborative Filtering . 138
7.1.1 Score Computation for Products . 139
7.1.2 Semantic and Sequentially Rich Item to Item Similarity Matrix . . . 141
7.1.3 Semantically Rich and Sequential Top-K Recommendation 141

7.2 Recommendation Using Semantic Enhanced Transition Probability Matrix

in Markov Model . 142

Table of Contents xvi

8 Experiments and Analysis 150
8.1 Evaluation of Proposed System with Semantic Integrated Sequential Patterns

and Collaborative Filtering Method . 150
8.1.1 Datasets and Implementation Details 150
8.1.2 Pre-processing and Hyper-parameter Tuning 151
8.1.3 Evaluation Metrices . 153
8.1.4 Complexity Analysis . 154
8.1.5 Baseline Methods for Comparison 155
8.1.6 Results and Analysis . 157

8.2 Evaluation of Proposed System with Semantic Enhanced Transition Proba-

bility Matrix in Markov Models . 160
8.2.1 Datasets and Implementation Details 161
8.2.2 Pre-processing and Hyper-parameter Tuning 162
8.2.3 Evaluation Metrices . 163
8.2.4 Complexity Analysis . 164
8.2.5 Baseline Methods for Comparison 164
8.2.6 Results and Analysis . 167

9 Conclusion, Limitations and Future Research Directions 173
9.1 Conclusion . 173
9.2 Limitations . 177
9.3 Future Research Directions . 178

Bibliography 182
Vita Auctoris 201

List of Tables

1.1 Sample historical product purchase record of customers 8
1.2 Sample product meta data . 8
1.3 A sequence database (SDB) . 11

2.1 Recommendation Systems categorization on the basis of information sources

(input) . 23
2.2 Recommendation Systems categorization on the basis of information sources-

Input (Continued from Table 2.1) . 24
2.3 Recommendation Systems categorization on the basis of information sources-

input (Continued from Table 2.2) . 25
2.4 Categorization of books into different genres 29
2.5 Frequency count of common terms occurring in the articles 30
2.6 Term Frequency computation . 31
2.7 Inverse Document Frequency (IDF) computation 31
2.8 TF-IDF of terms in articles . 31
2.9 User-Item rating matrix . 33
2.10 User-Item rating matrix with mean ratings and similarity scores for user

based CF . 33
2.11 User-Item rating matrix with mean ratings and similarity scores for item

based CF . 34
2.12 Implicit user-item rating matrix . 39
2.13 Customer’s transaction database . 41
2.14 A sequence database (SDB) . 43
2.15 A sample sequential database (SDB) . 43
2.16 Projected Database of item < 21239 > . 43
2.17 User click sessions . 55
2.18 One-N hot vector encoding . 55
2.19 Scores and items’ rank . 57
2.20 Summary of Sequential Recommendation System Approaches 65

xvii

List of Tables xviii

2.21 Summary of Sequential Recommendation System Approaches (continued from

Table 2.20) . 66
2.22 Summary of Sequential Recommendation System Approaches (Continued

from Table 2.21) . 67
2.23 Single dimensional sequence data base . 68
2.24 Multidimensional sequence database . 68
2.25 Multidimensional Extension Sequence Database Created from Table 2.24 . . 69
2.26 Historical Purchase Records of Customers 70
2.27 Classification of Sequential Recommender Systems According to Features . 77
2.28 Classification of Sequential Recommender Systems According to Features

(Continued from Table 2.27) . 78
2.29 Classification of Sequential Recommender Systems According to Features

(Continued from Table 2.28) . 79
2.30 WordNet structure . 81
2.31 Synsets obtained from WordNet . 83
2.32 Term-Context matrix . 86
2.33 Entity/concept-context matrix . 87
2.34 ESA matrix . 88
2.35 Computation for semantic vector representation of term t1 90
2.36 WordSpace and DocSpace . 91

5.1 Sample historical product purchase records 116
5.2 Sample of product meta data . 116
5.3 A purchase sequence database (Purchase Sequences) 117
5.4 Purchase sequences in list format . 118
5.5 Frequency Count of Unique Tokens occurring in the Product Descriptions . 123
5.6 Term Frequencies (TF-Computation) . 123
5.7 IDF Computation . 123
5.8 TF-IDF of Tokens in Product Descriptions (Product Vectors Using TF-IDF) 123

6.1 Purchase sequence database of Top-N customers 131
6.2 Sample purchase sequences of customers . 133

7.1 Product recommendation using semantically enhanced Sequential Pattern

Mining and Collaborative Filtering Matrix 142
7.2 Product recommendation by proposed semantic enhanced Transition Proba-

bility Matrix in Markov method . 146
7.3 Product Recommendation by our proposed method 149

8.1 Data set statistics (product reviews and meta data) 152

List of Tables xix

8.2 Results of Proposed System SSHRec on different datasets with K=10 159
8.3 Prediction performance of SSHRec with different embedding dimension d . 160
8.4 Prediction performance of proposed model with different train and test split

strategies . 161
8.5 Data set statistics . 162
8.6 Performance Comparison of proposed Model (SEMMRec) with the baselines 165
8.7 Effect of different order of L in Markov Chain in SEMMRec 170

List of Figures

1.1 Implicit and explicit user-item rating in CF based recommendation systems 3
1.2 Example of a Sequential Recommendation System: After Smith has pur-

chased a camera, memory card and a camera case, what item he will purchase

next? . 11
1.3 Thesis layout . 18

2.1 Classification of Recommendation Systems according to candidate generation

(Recommendation Techniques) . 27
2.2 An example of rank-2 (k=2) Matrix Factorization (Ricci et al., 2015) 48
2.3 Example to compute probability for transitioning to next state from current

state (e.g., buying an item) from time t to t + 1 using first order Markov Model 50
2.4 Architecture of an RNN Model . 54
2.5 Recommended items (output) through RNN model for example 2.8 58
2.6 A sample taxonomy of animals (Mammal) 82
2.7 Wikipedia page for the book “The invisible Man” 83
2.8 Text to entity and concept identification through Babelfy 85
2.9 Text to entity identification through TAG.ME 85
2.10 Wordspace . 87
2.11 Matrix for Random Indexing . 90
2.12 Word2vec neural model . 93
2.13 Online Retail data set sample records . 97
2.14 Online Retail data set after preprocessing 97

4.1 Architecture of the proposed system . 109

5.1 Product Vectors by Prod2Vec Model . 118
5.2 Glove Model’s Co-ocurrence Matrix . 120
5.3 Product vectors by Glove model . 121
5.4 Product Vectors obtained from TF-IDF Model 125
5.5 Product Vectors by Doc2vec Model . 126
5.6 Hybrid Product Vectors by Prod2vec and Glove Model 126
5.7 Hybrid Product Vectors by Doctovec and TF-IDF Model 126

xx

List of Figures xxi

6.1 Item to Item Semantic Similarity Matrix . 129
6.2 Product Frequency Matrix (PF) . 134
6.3 Transition Probability Matrix P . 135
6.4 Semantic and Sequentially rich updated Transition probability Matrix P1 . 136
6.5 Normalized semantic and sequentially rich Transition probability Matrix P 137

7.1 Semantic and Sequentially rich updated item to item matrix M1 142

8.1 Performance comparison of proposed SSHRec with other models 158
8.2 Performance comparison of proposed SEMMRec with baseline models on

Five Datasets on the basis of (a) Recall and (b) NDCG 169
8.3 Effects of Different order of L on proposed Model (SEMMRec) Performance

based on (a) Recall and (b) NDCG . 171
8.4 Performance comparison of proposed model using sparse datasets (two vari-

ants of each data set) . 172

List of Abbreviations

CB Content Based

CF Collaborative Filtering

MM Markov Model

PS Purchase Sequences

RS Recommendation Systems

SRecSys Sequential Recommendation System

SPM Sequential Pattern Mining

SID Sequence ID

SKE Semantic Knowledge Extraction

SKI_SPM Semantic Knowledge Integration into Sequential Pattern Mining

SKI_CF Semantic Knowledge Integration into Collaborative Filtering

SKI_MM Semantic Knowledge Integration into Markov Model

SPP Sequential Purchase Patterns

SSR_SPM Semantic and Sequential Recommendation using Sequential Pattern Mining

SSIR_CF Semantic and Sequential Knowledge Integration and Recommendation using

Collaborative Filtering

SSR_MM Semantic and Sequential Recommendation using Markov Models

TID Transaction ID

xxii

Chapter 1

Introduction

This chapter is an introduction to Recommendation Systems (RS) with e-commerce product

recommendation as application domain, its components (input phase, candidate generation

and output phases). It will also highlight the motivation behind designing an RS that

leverages the use of sequential and semantic associations between items and users into all

phases of an RS for the purpose of generating useful recommendations. It will also describe

the main contributions.

1.1 Recommendation Systems

1.1.1 E-commerce Recommendation Systems

A Recommendation System (RS) provides suggestions to users according to their interests

(Aggarwal, 2016, Ricci et al., 2015). For example, many companies and service providers

such as Amazon1, Facebook2, Netflix3and career builders4 are providing recommendations

to users for products, friends, movies and jobs respectively (Schafer et al., 2001). E-

Commerce Recommendation systems assist customers in decision making by recommending

items that are likely to be in their interest (Jannach et al., 2010). They facilitate the cus-
1https://www.amazon.com/
2https://www.facebook.com/
3https://www.netflix.com/ca/
4https://www.careerbuilder.ca/

1

Chapter 1. Introduction 2

tomers’ search process and narrow down the choices out of thousands of available products

to save customers’ time. Top technology e-commerce companies (e.g., Amazon, Alibaba)

deploy customized recommendation systems to cater to the needs of their growing customers

and maintain their market share.

One of the most widely-used recommendation technique is Collaborative Filtering (CF)

which recommend users’ products that they might be interested in based on the taste of

other similar users (Schafer et al., 2007). In CF, customer’s interest in a product is saved in

a user-item rating matrix. For example, we have a list of m users U = {u1, u2, , um}

and n items P = {p1, p2, . . . , pn}. The system constructs an m×n user-item matrix, where

each entry ri,j denotes user interactions (clicks, purchases, views) ui for an item pj , CF algo-

rithm then either predicts a rating for an item or recommends a list of most likable Top-K

items for user ui. The rating matrix can be (a) implicit- in which ratings are collected based

on clickstream or historical purchase data such as tracking users’ navigational behavior on

a site or (b) explicit where customers provide ratings, for example, users rating movies on

a scale of 1 to 5. Figure 1.1 shows an illustration of an implicit and explicit rating matrix

created from user’s browsing and reviews’ history from an e-commerce site. The entries

“1” or “0” in the implicit matrix shows that the user has interacted with those items and

similarly an explicit rating provided by the customer for an item is recorded in the explicit

matrix. A “0” or a “?” indicates absence of users’ interaction with that particular item.

Content based on the other hand generate recommendations based on the content (fea-

tures) of the item (Adomavicius and Tuzhilin, 2011). The system creates user profiles based

on item features (key words) extracted from items which the user has consumed in the past.

Different models (e.g., TF-IDF) are then used to compute similarity (relationship) between

already consumed items and the items available in the catalog. Items with higher similarity

score are then recommended to the customer.

While Collaborative Filtering based recommendation does not consider items’ properties

and only uses user interactions with items, it suffers from some limitations such as (1) sparse

rating matrix- as users only rate a small number of items out of tens of thousands of available

products and (2) cold start- new item cannot be recommended initially when it is introduced

to a Collaborative Filtering system with no ratings. Alternately, content based approaches

suffer from (1) content overspecialization (lack of diversity in recommended products) due

Chapter 1. Introduction 3

Figure 1.1: Implicit and explicit user-item rating in CF based recommendation systems

to the use of specific item features only (Adomavicius and Tuzhilin, 2011).

Hybrid recommendations systems were introduced to address the limitations of both CF

and content based systems. The idea is to generate recommendations by considering user

preferences (implicit or explicit) on items along with the content (product features).

1.1.2 Challenges in E-Commerce Recommendation Systems

E-commerce Recommendation Systems face certain challenges including:

1. Cold Start problem- In cold start problem items cannot be recommended due to the

lack of information about the user and/or the item. Cold-start problem presents a

collective issue of new item and new user to RSs. There are two types of cold start

(i) New Item: A new item cannot be recommended initially when it is introduced to

a Collaborative Filtering system with no ratings. For instance, MovieLens (movie-

lens.org) cannot recommend new movies until these have got some initial ratings. (ii)

New User: When a new user enters the system, it is bit hard to find similar users

or to create a content based profile as previous preferences (such as browsing history,

likes/dislikes) of user are not available.

Chapter 1. Introduction 4

2. Sparsity – Sparsity occurs when majority of the users do not rate most of the items

and consequently the ratings matrix becomes very sparse which limits the chances of

finding a set of users with similar ratings. In other words, this problem arises when

there are many items to be recommended but only few recommendations are provided

(because of fewer available ratings on items).

3. Lack of Sequential information in Recommendation

These traditional recommender systems (Collaborative Filtering and Content based

methods) model users’ interactions with items (e.g., clicks, add to cart, views or

purchases) in a static way and can only capture users’ general preferences without

considering the sequential behaviour of users’-item interactions. As users’ interests

and preferences change with time, learning the sequential behaviour in users’ interac-

tions based on the timestamps are useful to (i) understand their long and short term

preferences and (ii) predict the next items for purchase based on finding the sequential

dependency of an event (e.g., click or purchase) on its preceding event as the time in-

terval between any such interactions provide useful insights about users’ behavior. So,

a Sequential Recommendation System views the interactions of a user as a sequence

and aims to predict which item the user will interact with next. Hence, the problem

of Sequential Recommendation System can be stated as: Given past item interactions

(e.g., clicks, views, purchases) of a user, the goal of a Sequential Recommendation

System is to predict the future item(s) that are of interest to the user.

1.1.3 How E-commerce Recommendation is Different from Recommen-

dation in other Domains

1. Increased Number of Products

Retailers and vendors keep on adding new products to their catalog to attract cus-

tomers. As this addition in products is good to provide more choices to customers, at

the same time it brings the challenge of sparsity (as customers do not interact with

all products out of millions of available products).

2. Long and Short Term User Preferences

Users browsing and purchasing preferences change with time. For example, one of

Chapter 1. Introduction 5

the scenarios can be where user has a long term preference towards a particular

dairy product preferences, but recently due to certain dietary restrictions, they shift

towards other brands/dairy products. Another scenario could be change in user’s

browsing and purchase preferences due to Covid’19 pandemic. For example, we can see

high demand in purchase of sanitizing products, masks and other such products. So,

monitoring these static (long term) preferences (e.g., a particular clothing brand/style)

and dynamic short term intent(e.g., purchase of sanitizing products) are important to

generate tailored recommendations to customers.

3. Regular Buyers and Temporary Buyers

It is both important and challenging to differentiate between regular and temporary

customers. The target should be to retain regular customers while at the same time

convert the temporary customers to regular customers (e.g., by offering them incen-

tives, cash back offers etc). For example, we have seen in recent times during the

Covid’19 pandemic, due to the forced lockdowns people turned to online shopping

even if they never preferred it. However, after the ease in lockdown restrictions, these

customers might prefer in-store shopping from their regular store of choice.

4. Huge Diversity across Various Product Categories

Big e-commerce platforms like Amazon, Alibaba have a diverse collection of product

categories ranging from digital devices, books, video games, electronics, home décor,

furniture, office supplies, grocery, health and beauty, clothing sports to name a few.

These product categories are then further sub classified into several categories which

creates huge diversity among all available products.

5. Availability of Substitute Products

Due to ever increasing number of products, a lot of substitutes exists for products. For

example, in case of house hold (e.g., kitchen items), if the user is looking for a non-stick

cook-ware set, there will be lots of substitutes available (e.g., similar products from

other brands). So, if the customer is not looking for product from a specific brand, she

may likely to choose from the shown substitute products. Additionally, cook-wares

with other specifications (e.g., ceramic) can also be available as a substitute.

Chapter 1. Introduction 6

1.2 Components of a Recommendation Framework

A recommender system aims at recommending items to users that match their interest.

Recommender systems work by creating a user profile which represents a user’s preference

on items she has interacted with or consumed in the past. This user profile (input) can be

created in a number of ways such as (i) explicit- by observing users’ behavior in terms of

ratings or reviews they provided on items or (ii) implicit- by monitoring customers’ buying

or browsing behavior. Other auxiliary information such as user demographics or item at-

tributes (content) can also be used to enrich the user profile for better recommendations.

For example, to capture characteristics of an item, an item profile can be created either

based on its features (descriptive) such as movie genre, actor, and director information or

in the form of numeric ratings (quantitative) given to an item by the user. Once the user

and item profile are available, the recommendation system aims to find candidate items for

recommendation to the target user. A typical recommendation system framework consists

of three phases which are i) input, ii) candidate generation and iii) output (recommenda-

tion)(Aggarwal, 2016).

1.2.1 Input Phase (Data Sources)

This phase records user-item interactions (explicit or implicit). This facilitates the process

of creating user and item profile which are then used in the next phase during the process

of generating candidates, that is, filtering items that will be of interest to the user. The

quality of the input (information sources) can significantly improve the selection of suitable

candidates. Various types of information sources are available including (traditional and

auxiliary) which are used as an input to the recommendation framework to enrich the

recommendation process. In the next subsections, we will discuss about these types. Section

2.1 provides a classification of RS on the basis of input data sources used.

Traditional Data Sources- Traditional information sources consist of gathering users’

interest on items by monitoring their implicit or explicit behaviors where Implicit actions

are captured by inferring how a user responds to an item. For example, on an E-commerce

site, which items a user has browsed, clicked, added to his favourite items’ list, added to cart

or purchased. These implicit actions indicate a user’s interest on an item and are helpful in

Chapter 1. Introduction 7

determining their future preferences. One way of expressing implicit behaviors is by storing

binary values in the user item rating matrix where a “1” indicates behavior on an item such

as clicked or purchased and a “0” otherwise. A disadvantage is that it cannot fully reflect

users’ preference on the item as a value of “0” does not necessarily mean that a user is not

interested in the item. Since there are millions of products, it is very likely possible that

the user is unaware of the existence of such items. Explicit behaviors on the other hand

are recorded when users’ explicitly provide feedback on the item. A common example is

rating an item on a five star scale where “1” is the lowest rating and “5” is the highest.

Another way of extracting users’ explicit feedback is from text reviews. In this case, if the

review is positive, a value of “1” is stored in the user-item matrix, “0” for a neutral review

and “-1” for a negative feedback. A common example is extracting user’s preferences from

the reviews they provide after consuming a product.

Auxiliary Input Sources- These information sources complement the traditional in-

formation sources and can better reflect user’s interest by capturing more insights about

users’ behavior. These information can be classified as (a) user and item information (e.g.,

meta data), (b) information contributed by users (e.g., tags, geotags, multimedia content,

free comments and reviews) and (c) information associated with user-item interaction also

known as context. An example of such information can be when a user is interacting with

an item, such as purchasing an item, watching a movie or listening to a song (Adomavicius

and Tuzhilin, 2011).

Consider Table 1.1 showing a sample of customers’ historical purchase records containing

information about the purchase (Invoice No.), products purchased (Stock Code), date and

time of purchase (Invoice Date), and customer id who made the purchase (Customer ID).

For example, Customer with ID 17850 purchased products “20674” and “21242” on January

12th, 2010 at 8:26 am. Additionally, Table 1.2 shows product meta data (description of pur-

chased products along with other product attributes such as title and brand information).

1.2.2 Candidate Generation Phase

This step involves the creation of user and item profiles from the user-item interactions and

other auxiliary information sources obtained from the input phase. The processing in this

Chapter 1. Introduction 8

Table 1.1: Sample historical product purchase record of customers

Invoice No. Stock Code Invoice Date Customer ID
536365 20674 12/1/10 8:26 17850
536365 21242 12/1/10 8:26 17850
536365 20675 14/1/10 9:26 17851
536365 20675 15/1/10 11:28 17852
536365 20674 12/1/10 11:28 17852
536365 21242 12/1/10 11:30 17852
536365 21242 12/1/10 11:30 17852

Table 1.2: Sample product meta data

Stock
Code Title Description Brand

20674 Green polka
Dot bowl Earthenware, largest measures 5.5 inch

h x 12 inch l x 11.25 inch hand wash Tag limited

21242 Red retrospot
Plate These beautiful plates are composed of

high-rated heavyweight plastic materials
rendering the plates leak-free,
soak resistant, cut proof and unbreakable. Silver Spoons

20675 Blue Polka
Dot bowl This polka dot bowl is fun and festive

and perfect for that bowl of cereal in
the morning or bowl of ice cream in the
evening. It is finished in a blue celadon
glaze with a sprinkling of matte
black polkadots. Dish washer safe. Creative innovations

Chapter 1. Introduction 9

step includes generating the set of candidate(s), that is, set of (i) users (neighbors) having

similar interests to the target user or (ii) items which are similar in characteristics to the

items the user has already interacted with. Various techniques can be used at this stage

for the process of generating candidates. Section 2.2 provides classification of RS according

to various techniques used for candidate generation by finding associations between items

and users such as Similarity Based Associations (Content based and Neighborhood based),

Sequential Associations (Traditional Approaches, Model Based and Neural Network Based)

and Semantics Based Associations (Top down and Bottom up approaches) (Sect. 2.2).

1.2.3 Output Phase (Recommendation)

In this phase, final recommendations for items are provided to the target user based on the

output from the candidate generation phase. The output of the recommendation task can

be formulated as rating or a ranking problem.

(a) Recommendation as Rating Problem: In this scenario, the process of recommen-

dation is formulated as a matrix completion task where the goal is to predict the missing

ratings in the user-item rating matrix to infer user’s preference for unseen items (unknown

item ratings). A higher predicted rating for an item will show that user is most likely to

show interest in the item. The observed entries in the user-item rating matrix are used

as training data to predict the missing ratings for users. However, in most cases, it is not

necessary to predict a rating for an item before making recommendation. In this setting,

the input to the system will be the sparse user item matrix and the output will be user’s

predicted ratings for the unseen items.

(b) Recommendation as Ranking Problem: In this setting, instead of predicting

missing ratings on unseen items for the target user, the goal is to find top-n users or items

(neighbors) similar to target user’s preference. This is also referred to as top-n recommen-

dation where the top-n items similar to the target user’s interests are recommended. Here,

the input to the system will be the sparse user item matrix (with missing ratings) and the

output will consist of the set of top-n items that are likely to be of interest to the user. To

compute the set of similar (neighbor) users or item, different similarity measures are used

such as cosine similarity or pearson correlation. However, in some settings top-n recommen-

dations are generated by first predicting ratings on unseen items and then recommending

Chapter 1. Introduction 10

list of top-n items with high ratings to the target user.

1.3 Motivation

1.3.1 Why need a Sequential Recommendation System

Sequential Recommendation Systems suggest items which may be of interest to a user by

modelling the sequential dependencies over the user-item interactions (e.g., clicking, viewing

or purchasing items on an online shopping platform) in a sequence (Wang et al., 2021).

Learning sequential dependencies between items for next item recommendation assist in

modeling user preferences by reflecting the sequential dependency of an event (e.g., click

or purchase) on its preceding event. A Sequential Recommender views user interactions

as a sequence and predicts the next items with which the user will interact. Items with

which a user interacts (e.g., clicked, rated or purchased) can provide a strong indication

of her interests and facilitate in learning a good user profile leading to recommendations

that match her interests. However, users’ interests and preferences change with time. The

time stamp of a user interaction (click or purchase event) is an important attribute and

learning the sequential patterns of user interactions based on the timestamps are useful to

(i) understand the long and short term preferences of user and (ii) predict the next items for

purchase by users as the time interval between any such interactions provide useful insights

about users’ behavior.

In the real world, user-item interactions (e.g., shopping behaviours) are mostly sequen-

tially dependent. For example, in Figure 1.2, we can see the sequential dependencies be-

tween purchased items by a user Smith. After Smith has purchased a camera, memory

card and a camera case, what item he will purchase next?. Such kind of sequential de-

pendencies commonly exist in transaction data but traditional Collaborative filtering and

Content Based recommender systems are unable to capture these sequential dependencies

which necessitates the need for developing Sequential Recommendation Systems.

Chapter 1. Introduction 11

Figure 1.2: Example of a Sequential Recommendation System: After Smith has pur-
chased a camera, memory card and a camera case, what item he will purchase next?

Table 1.3: A sequence database (SDB)

SID Sequences
1 {a,b},{c},{f,g},{g},{e}
2 {a,d},{c},{b},{a.b,e,f}
3 {a},{b},{f,g},{e}
4 {b},{f,g}

1.3.2 Extracting Sequential Patterns from user interactions using Se-

quential Pattern Mining

Sequential Pattern Mining mines frequent or high utility sequential patterns from a

sequential database such as historical purchase or click sequence database of customers. The

problem of Sequential Pattern Mining can be stated as: Given (i) a set of sequential records

(called sequences) representing a sequential database SDB = {s1, s2, s3, , sn} with

sequence identifiers 1, 2, 3, , n, (ii) a minimum support threshold called min sup ξ

and (iii) a set of k unique items or events I = {i1, i2, , ik}, the problem of mining

sequential patterns is to find the set of all frequent sub-sequences S in the given sequence

database SDB of items I at the given min sup ξ, that are interesting for the user. For

example, consider Table 1.3 showing a sequence database containing sequences representing

five transactions made by a customer at a retail store. Each single letter in a sequence

represents an item. Items between curly brackets represent an itemset. The sequence with

SID 1 indicates that a customer purchased items a and b at the same time, then bought

item c, then purchased items f and g at the same time, then purchased item g, and finally

purchased item e. So, the goal of sequential pattern mining is to find frequent sequence

items based on a minimum support threshold. A sequence s is said to be a frequent sequence

or a sequential pattern if and only if sup(s) > = minsup, e.g., in this example some of the

frequent sequences are < a >, < a, g > , < a, c >, < a, f > and so on. These sequences are

Chapter 1. Introduction 12

frequent as they meet the minimum support (user defines) which is set to 2. So, sequence

< a > is frequent as it occurs in three sequences in the sequence database, that is, in

sequences with SID 1, 2, and 3. Chapter 2 sec. 2.2.2.1.2 provides algorithmic details

on extracting sequential patterns through a sequential pattern mining algorithm such as

PrefixSpan (Jian Pei et al., 2001) using a walk through example. Many Sequential Pattern

Mining algorithms were introduced in the literature including GSP (Agrawal and Srikant,

1995), SPAM (Ayres et al., 2002), Prefix Span (Jian Pei et al., 2001) and PLWAP (Ezeife

et al., 2005).

So, in this thesis, we want to further exploit the effectiveness of sequential relationships

between (a)items and (b) users’ various interactions by extracting complex sequential pat-

terns of customer clicks and/or purchases and then integrating those learned patterns into

the Collaborative Filtering’s user-item rating matrix to address its limitations such as (i)

cold start- when no ratings are available for a user/item and (ii) sparsity- when there is less

user-interaction data. The frequent sequential purchase patterns derived from customers’

historical data, can lead to better next item recommendations for the target user by cap-

turing users’ short and long term preferences and can improve the accuracy and diversity

of recommendations by finding the sequential relationship between frequently purchased

items.

1.3.3 Why use Semantics in Sequential Recommendation Systems?

Semantics (meanings) are required to have a deep comprehension of the information con-

veyed by the textual content and to achieve the goal of improving the quality of user profiles

and the effectiveness of intelligent information access platforms. Semantic Aware recom-

menders (de Gemmis et al., 2015) infer the semantic (meaning) of the words by exploring

meanigfull relationships between items through the use of concepts extracted either from

knowledge sources (ontologies, encyclopedic resources) or distributional hypothesis (con-

text in which the words are used). It uses implicit semantic representation of item and user

profiles (based on the usage of words).

Item profiles created from key words extracted from item descriptions or meta data as-

sociated with the item are insufficient to infer user’s interests. Content is required to extend

Chapter 1. Introduction 13

and improve user modeling (preferences) and more importantly to address the limitations

of Collaborative Filtering systems such as (i) sparsity- when there is less user-interaction

data, (ii) cold start- when no ratings are available for a user/item and (iii) lack of trans-

parency and poor recommendation explanation – it is not clear why a particular item such

as a movie or a product is recommended to the user. Content extracted from textual fea-

tures (item descriptions) to learn key-word based user profiles, limits the performance of

recommendation systems due to the ambiguities in the natural language representations.

Some of them include (i) polysemy – when multiple meanings are associated with the same

word such as Turkey (represents a food and a country), (ii) synonymy- when different words

represent the same meanings, (iii) multi-word concepts- which is a collection of two or more

words whose meanings are interpreted separately when they are used independently, for

example, New York refers to a city in USA, but if used individually both terms yield a

different meaning, or for example, “hot dog” which when used together refers to steamed

sausage sandwich in the context of eating whereas the individual words refer to completely

different meanings and (iv) entity named recognition or entity identification- the difficulty

to locate and classify elements in text into pre-defined categories such as the names of

persons, organizations, locations, expressions of times, quantities, monetary values, etc.

Furthermore, while generating candidate item(s) by mining the frequent sequential pat-

terns for next item recommendation, Sequential Pattern Mining techniques suffer from some

draw backs which include (i) absence of contextual similarities among recommended prod-

ucts, that is, they recommend items based on a match with the sequential rules generated

from sequential patterns and do not consider relationships between items according to their

context. For example, if there are two sequential rules for chocolate purchase such as:

(a)Ferrero Rocher, Ferrero Rondnoir→ Rafeallo and

(b) Kinder Chocolate Bar, Kinder Surprise→ Kinder Beuno,

where rule (a) (indicating that a purchase of Ferrero Rocher, Ferrero Rondnoir will most

likely lead to the purchase of Rafeallo), so for a new purchase sequence where a customer

bought Nutella and Rafeallo, he can be recommended to purchase “Ferrero Collection” as

they all belong to same brand and have “similar” characteristics such as their ingredients,

however if there is no rule for the product “Nutella”, the customer will not be recommended

with a product. Conventional sequential rules fail to capture such semantic relationships

Chapter 1. Introduction 14

between products and will only recommend products that exist as a result of a matching

rule with products “Nutella and Rafeallo”. Therefore, it cannot recommend products that

are similar in semantics as they are based only on the frequent sequential occurrence. i.e.,

frequency count based on a minimum support threshold. Additionally, they (ii) lack per-

sonalization, rules are not targeted for a specific customer, as they infer decisions based on

a global view of sequences.

Therefore, semantics (meanings) are required to have a deep comprehension of the

information conveyed by the textual content and to achieve the goal of improving the

quality of user profiles. More specifically, semantics are needed to (i) better understand

the associations between items and therefore recommend diverse items, (ii) avoid typical

issues of natural language representations (polysemy, synonymy, multi-word concepts, etc.),

(iii) model user preferences in an effective way and (iv) better understand the information

spread on social media.

So, in this thesis, we want to further enrich the recommendation process in terms of ac-

curacy by exploring semantic relationships between items according to their (i) usage (e.g.,

products co-purchased or co-reviewed) and their (ii) textual features by finding similarity

between products based on their characteristics and then integrating this semantic knowl-

edge into the sequential recommendation process for generating candidate items (such as

while mining sequential patterns), finding Top-N neighbors (such as in Collaborative Filter-

ing) and in Transition Probability Matrix of Markov Model to address the limitations of (i)

content overspecialization (lack of diversity in recommendations), (ii) lack of personaliza-

tion, (iii) sparsity, (iv) cold start and (v) unambiguous prediction problem (when multiple

items have same probabilities of purchase after the current purchase). The learnt semantic

relationships between items extracted from customers’ historical data and products’ meta

data can better represent users’ preferences and hence can provide diverse and tailored

recommendations.

1.4 Thesis Contributions

The contributions of this study are to improve the performance of recommendation system

in terms of accuracy in the context of sparse user-item interactions by integrating seman-

Chapter 1. Introduction 15

tic knowledge (relationship) of items extracted from customers’ purchase histories based

on items’ co-occurrence from customers’ purchase histories and items’ meta data into the

candidate generation and recommendation phases of a sequential e-commerce recommenda-

tion system. The main contributions of this study are divided into feature and procedural

contributions as:

1.4.1 Feature Contributions

The main features proposed in this study are to (i) extract semantic knowledge of items from

items’ meta data (title, description and brand) and customers’ purchase histories to compute

semantic similarities between items according to their (a) usage (e.g., products co-purchased

or co-reviewed) and (b) textual features by finding similarity between products based on

their characteristics, (ii) integrate items’ semantic knowledge to generate candidate items

using (a) Sequential Pattern Mining Process by mining semantic rich frequent sequential

patterns, (b) Collaborative Filtering item similarity matrix with semantic relationships

between items, (c) Transition Probability Matrix in the Markov Model method and, (iii)

generate semantic rich and sequential next item recommendations either by using semantic

rich (a) Sequential Pattern Rules, (b) item based Collaborative Filtering or (c) Markov

Model depending upon which method is used in step (ii)to generate candidate items.

1.4.2 Procedural Contributions

To address the above limitations and achieve the research goals, the procedural contribu-

tions according to the feature contributions are:

(i) Propose a model which first learns products’ semantic representations in the form of mul-

tidimensional semantic feature vectors (embeddings) through various distribution models

such as Prod2Vec (Grbovic et al., 2015), Glove(Pennington et al., 2014), Doc2vec(Mikolov

et al., 2013), TF-IDF(Salton, 1988) and their hybrids by using customers’ purchase histo-

ries and product meta data (title, description and brand) as explained in Chapter 5, Sect.

5.1 (Algorithm 2-Semantic Knowledge Extraction (SKE)). Next, cosine similarity between

the obtained product feature vectors through these models is used to compute semantic

similarity between products as products with similar vectors will be similar in semantics

Chapter 1. Introduction 16

and mapped closely in the vector space (Section 6.2.3). This semantic similarity is used to

create an item-item similarity matrix for CF.

(ii) Next, to generate candidate items which are similar in semantics (in terms of their

features or concept), we proposed to use any of these methods (Sequential Pattern Mining,

Collaborative Filtering and Markov Model) by enriching these methods with the integration

of the items’ semantic knowledge in terms of (a) mining frequent semantic and sequential

purchase patterns during the sequential pattern mining process by pruning patterns where

items’ similarity is less than the specified semantic similarity threshold in addition to the

traditional pruning method of using minimum support (Chapter 6, Sect. 6.1, Algorithm

3-Semantic Knowledge Integration into SPM (SKI_SPM)), (b) enriching the item based

Collaborative Filtering method with items’ semantic and sequential relationships based on

the proposed weighted score measure of products’ score which considers semantic and se-

quential relationship along with confidence and lift measures between a pair of products and

(c) enhancing the Transition Probability Matrix of the Markov Model based on proposed

weighted product score measure which considers semantic and sequential relationships be-

tween a pair of products extracted from customers’ purchase histories and products’ meta

data (Chapter 6, Sect. 6.2, Algorithm 4-Semantic and Sequential Knowledge Integration

into Markov Model (SSKI_MM)).

(iii) In the recommendation phase, depending on which approach in step (ii) is used to gener-

ate candidate items, we recommend items that are similar in semantics and can be purchased

in sequential order either by using (a) semantic rich frequent sequential rules (Chapter 7,

Sect. 7.1, Algorithm 5-Semantic and Sequential Recommendation using Sequential Pat-

tern Mining (SSR_SPM)) , (b) semantic and sequentially enhanced Collaborative Filtering

matrix (Chapter 7, Sect. 7.1, Algorithm 6-Semantic Sequential Recommendation using

Collaborative Filtering (SSR_CF)) or (c) semantic enhanced Markov Model’s Transition

Probability Matrix (Chapter 7, Sect. 7.2, Algorithm 7-Semantic Sequential Recommenda-

tion using Markov Model (SSR_MM)).

(iv) Furthermore, we also present a taxonomy of Sequential Recommendation Systems

(SRecSys) with a focus on e-commerce product recommendation as an application, based on

the techniques used to build these systems, along with the classification of surveyed systems

Chapter 1. Introduction 17

according to eight important key features supported by the techniques, their limitations and

future research directions.

1.5 Thesis Outline

The thesis is structured in the following way. Chapter 2 of this thesis presents the back-

ground relevant to achieve the research goals. It provides classification of RS based on (i)

the input data sources used at the input phase and (ii) the techniques used for generat-

ing candidate items (users and items) by finding relationships between items and users at

the candidate generation phase. Chapter 3 presents the problems identified in the existing

systems, leading to the motivation behind this research. Chapter 4 states thesis problem

statement along with the proposed system. Chapter 5, 6 and 7 each present details for

an individual phase in the proposed system with Chapter 5 focused on learning semantic

representation of e-commerce products, Chapter 6 presents details on extracting candidate

items and users utilising item’ semantic knowledge and Chapter 7 explains the process of

generating semantic and sequential next item recommendations. Chapter 8 discusses the

experiments performed, results obtained and their analysis. The thesis is concluded in

Chapter 9 with possible future research directions to embark upon. Fig. 1.3 presents the

flow and layout of Chapters 1 to 9 of this thesis.

Chapter 1. Introduction 18

Figure 1.3: Thesis layout

Chapter 2

Related Work

This chapter discusses the background and the relevant work. Section 2.1 of this chapter

provides classification of Recommendation Systems according to the usage of various input

types, elaborating the pros and cons of each of these systems. Section 2.2 provides clas-

sification of RS according to various techniques used for candidate generation by finding

relationships between items and users such as Similarity Based relationships (Content based

and Neighborhood based), Sequential relationships (Traditional Approaches, Model Based

and Neural Network Based) and Semantics Based relationships (Top down and Bottom

up approaches). Each of these methods are discussed with running examples along with

highlighting their pros and cons.

2.1 Classification of Recommendation Systems based on In-

put Data

Based on different types of information sources used to create user and item profile as

discussed under traditional and auxiliary input sources (Section 1.2) we can classify recom-

mendation systems into the following categories:

-Content Based- In these systems, recommendations are generated by using the de-

scriptive attributes of items referred to as “content” along with user’s implicit or explicit

behavior (Lops et al., 2011). Consider an example of a customer Mary who highly rated the

19

Chapter 2. Related Work 20

movie “Star Track” but we do not know the ratings of other users on this movie. However,

we do know from the item description of “Star Track” that it has similar keywords from the

science fiction genre as other movies like “Matrix” and “Terminator”, so we can recommend

these movies to Mary. These systems are well suited in scenarios where ratings of other

users’ are not available to find users with similar interests. The task is to create a vector

based user profile on likes/dislikes or tags for the items she rated or consumed. Items’

profile vector is also created for the same set of key words (descriptive features). Similarity

is then computed between the user profile and items’ profile to recommend items that a

user may like. Algorithmic details and a walk through example for content based systems

is provided in Section 2.2.1.

-Collaborative Filtering- These methods work on “collective” behavior to find similar

users or items to predict ratings on an unseen item for the target user. In a user-item rating

matrix R of size u× i where u represents users and i represents items and each entry in the

matrix Rui represents rating of user u on item i, (Bobadilla et al., 2013, Ekstrand et al.,

2011, Schafer et al., 2007, Su and Khoshgoftaar, 2009). A row in the matrix represents a

user profile vector representing user’s explicit or implicit preferences towards items and each

column represents an item profile vector representing interest of all users in the item. A

user- based CF approach searches for neighbor users with similar preferences as the target

user by computing row wise similarities between target user vector and each user vector,

whereas item-based CF finds set of neighbor items by computing column wise similarity

between target item vector and other item vectors. They model the user as a vector of item

ratings (items with which the user interacted) and an item is modeled as a vector of user

ratings (all users’ who rated that item). Algorithmic details and walk through example is

provided in Section 2.2.2.1.2.

-Knowledge Based- Knowledge based systems depend on domain knowledge for rec-

ommending items to users (Jannach et al., 2010). They are useful in domains where items

are not purchased frequently such as automobiles, real estate and financial services. In

such scenarios, user item ratings do not provide meaningful information for generating cus-

tomized recommendations as it is very less likely to obtain sufficient ratings on an item

which meets requirements of most users. For example, a car can have several features such

as its make, engine, color and other interior features and a user’s preference can depend

Chapter 2. Related Work 21

on a specific combination of any of these available options. So, it is difficult to obtain

sufficient ratings on the large number of item’s available feature combinations. Hence, do-

main knowledge such as knowledge from experts in the automobile or finance sector can be

helpful.

-Semantic Aware- Item profiles created from key words extracted from item descrip-

tions or meta data associated with the item are insufficient to infer user’s interests. Content

extracted from textual features (item descriptions) can be misleading while learning a user

profile due to ambiguity in natural language. For example, “hot dog” when used together

refers to steamed sausage sandwich in the context of eating whereas the individual words

refer to completely different meanings. Semantic Aware recommenders (de Gemmis et al.,

2015) infer the semantic (meaning) of the words by exploring semantic relationships between

items through the use of concepts extracted either from knowledge sources (ontologies) or

distributional hypothesis (context in which the words are used). For example, in case of

e-commerce products items co-purchased or co-viewed together. Section 2.2.3.1 and 2.2.3.2

are dedicated to provide algorithmic details on top down and bottom up approaches for

learning semantic representation of user and item profiles.

-Context Aware-Unlike the traditional recommendation systems which collects users’

preferences as ratings, context aware systems also include the “contextual information”

to understand users’ preferences. Context represents a set of factors or situations under

which a user interacted with an item. For example, time, location, surroundings, purpose

of purchase, device and occasion while interacting with an item (Adomavicius and Tuzhilin,

2011). Each context factor can be characterized by a structure such as the time factor

can be described as seconds, minutes, hours, days, months and years. Such contextual

information can be gathered from users’ implicit or explicit feedback. For example, a user’s

rating for a hotel during her summer vacation stay.

-Demographic Based –These systems utilize user’s demographic information to rec-

ommend items. Common demographic characteristics are location, gender, age, education,

work experience and family history. For example, many websites generating recommenda-

tions according to user’s demographic profile such as recommendations for restaurants near

you by considering user’s location, recommending online courses by taking user’s current

education and areas of interest.

Chapter 2. Related Work 22

-Time Aware- These systems integrate temporal knowledge (timestamps) into the

recommendation process. For example, the time when the item was purchased, time when

an item was rated. Incorporating temporal knowledge is important to consider the freshness

of users’ preferences and how they have evolved over time (Wang et al., 2012).

-Social Recommender- Users tend to trust more on the recommendations from their

friends (social network) than recommendations by unknown people. These systems collect

social information of users such as facebook friends, followers on twitter, gather preferences

of their friends from social networks and then utilize their ratings on items to generate

recommendations for the target user (Carrer-Neto et al., 2012, Morris et al., 2010). A

common example could be recommending movie to watch based on the movies recently

watched by target user’s friends or recommending products by collecting information on

products bought by target users’ friends and are similar to her interest.

-Hybrid- Hybrid systems are created by (a) combinations of various input sources

and/or (b) composition of different mechanism such as combining two or more recommen-

dation systems. This is done to overcome the limitations of one recommender system with

the other. For example, hybridising collaborative filtering systems with content based sys-

tems to address the item cold start issue (Burke, 2007). Tables 2.1, 2.2 and 2.3 show

summary of recommendation systems on the basis on information sources (input) along

with sample examples and their pros and cons.

2.2 Classification of Recommendation Systems according to

Candidate Generation (Recommendation Techniques)

This section discusses various methods available for generating candidate item(s) for rec-

ommendation by finding associations between items and users. How these associations are

modeled, depends on the choice of a particular recommendation method. In this section,

we will discuss about (i) Traditional Approaches (keyword based and neighborhood based),

(ii) Sequential Approaches (traditional approaches, Factorization and Latent representa-

tion based and neural network based), and (iii) Semantic Based Approaches (Top down

approaches and Bottom up Approaches). Table 2.1, 2.2 and 2.3 represents the classification

Chapter 2. Related Work 23

T
ab

le
2.

1:
R

ec
om

m
en

da
tio

n
Sy

st
em

s
ca

te
go

riz
at

io
n

on
th

e
ba

sis
of

in
fo

rm
at

io
n

so
ur

ce
s

(in
pu

t)

C
at

eg
or

y
In

pu
t

T
yp

e
Ex

am
pl

e
C

om
m

on
/E

xi
st

in
g

Sy
s-

te
m

s/
Ex

am
pl

e
Pr

os
an

d
C

on
s

C
on

te
nt

B
as

ed

.U
se

r
ra

tin
gs

.I
te

m
fe

at
ur

es
(C

on
te

nt
)

.I
te

m
co

nt
en

t,
e.

g.
,

m
ov

ie
ge

nr
es

,p
ro

du
ct

de
sc

rip
tio

ns
.U

se
r

Fe
ed

ba
ck

-li
ke

s
or

di
sli

ke
s,r

at
in

gs
,

ite
m

pu
rc

ha
se

fr
eq

u
en

cy

B
oo

ks
-

A
m

az
on

-S
im

ila
r

ge
nr

es
-S

im
ila

r
au

th
or

s
M

ov
ie

s
-

N
et

fli
x

-S
im

ila
r

ac
to

rs
an

d
di

re
ct

or
s

C
lo

th
in

g
-S

tit
ch

Fi
x

-S
im

ila
r

st
yl

e

.N
o

ne
ed

fo
r

ot
he

r
us

er
’s

ra
tin

gs
.D

o
no

t
su

ffe
r

fr
om

ite
m

co
ld

st
ar

t
as

us
es

ite
m

s’
co

nt
en

t
fo

r
re

co
m

-
m

en
da

tio
n

.C
an

no
t

re
co

m
m

en
d

di
ve

rs
e/

no
ve

l
ite

m
s

.D
iffi

cu
lt

to
co

m
bi

ne
fe

at
ur

es
fr

om
m

ul
tip

le
ite

m
s

to
ge

th
er

C
ol

la
bo

ra
tiv

e
Fi

lte
rin

g

.U
se

r
ra

tin
gs

.C
om

m
un

ity
ra

t-
in

gs
(o

th
er

us
er

s’
ra

tin
gs

)

.I
m

pl
ic

it
or

ex
pl

ic
it

ra
t-

in
gs

fo
r

pr
od

uc
ts

,li
ke

s
or

di
sli

ke
s

fo
r

m
ov

ie
s

A
m

az
on

-U
se

rs
w

ho
bo

ug
ht

th
is

ite
m

al
so

bo
ug

ht
..

.
(u

se
r

ba
se

d
C

F)
-O

th
er

ite
m

s
sim

ila
r

to
w

ha
t

yo
u

bo
ug

ht
ar

e.
..

..
.

(I
te

m
ba

se
d

C
F)

.I
te

m
fe

at
ur

es
ar

e
no

t
re

qu
ire

d
.C

an
pr

od
uc

e
di

ve
rs

e
re

co
m

m
en

da
-

tio
ns

(b
as

ed
on

ot
he

r
ne

ig
hb

or
us

er
s’

in
te

re
st

)
.S

uff
er

fr
om

co
ld

st
ar

t
an

d
sp

ar
ci

ty
iss

ue
s

(d
ue

to
le

ss
nu

m
be

r
of

ra
tin

gs
av

ai
la

bl
e

on
ite

m
s)

K
no

w
le

dg
e

B
as

ed

.U
se

r
ra

tin
gs

,
co

ns
tr

ai
nt

s
.I

te
m

at
tr

ib
ut

e,
do

m
ai

n
kn

ow
-

le
dg

e

D
om

ai
n

kn
ow

le
dg

e
ab

ou
t

re
al

es
ta

te
in

a
pa

rt
ic

ul
ar

ci
ty

to
ad

d-
re

ss
fe

at
ur

es
lik

e
lo

ca
-

tio
n,

siz
e,

ne
ig

hb
or

ho
od

C
om

m
on

A
pp

lic
at

io
ns

:
-R

ea
lE

st
at

e,
A

ut
om

ob
ile

s
Tr

av
el

R
ec

om
m

en
da

tio
ns

.D
om

ai
n

K
no

w
le

dg
e

is
re

qu
ire

d
.K

no
w

le
dg

e
ba

se
ne

ed
to

be
m

ai
nt

ai
ne

d
an

d
up

da
te

d
re

gu
la

rly
fo

r
ne

w
ru

le
s

Chapter 2. Related Work 24

T
ab

le
2.

2:
R

ec
om

m
en

da
tio

n
Sy

st
em

s
ca

te
go

riz
at

io
n

on
th

e
ba

sis
of

in
fo

rm
at

io
n

so
ur

ce
s-

In
pu

t
(C

on
tin

ue
d

fr
om

Ta
bl

e
2.

1)

C
at

eg
or

y
In

pu
t

T
yp

e
Ex

am
pl

e
C

om
m

on
/E

xi
st

in
g

Sy
s-

te
m

s/
Ex

am
pl

e

Pr
os

an
d

C
on

s

C
on

te
xt

Aw
ar

e

.U
se

r
ra

tin
gs

.C
om

m
un

ity
ra

tin
g

C
on

te
xt

ua
lk

no
w

-
le

dg
e

C
on

te
xt

in
fo

rm
at

io
n

su
ch

as
lo

ca
tio

n,
da

y
of

w
ee

k
(w

ee
k-

en
d

or
w

ee
kd

ay
,s

ea
so

na
l

sh
op

pi
ng

be
ha

vi
or

du
rin

g
ho

lid
ay

s

.P
ur

ch
as

e
re

co
m

-
m

en
da

tio
ns

,p
ro

m
o

off
er

s
du

rin
g

C
hr

is
tm

as
ho

lid
ay

s
w

ill
be

di
ffe

re
nt

th
an

re
co

m
m

en
da

tio
ns

ot
he

rw
ise

.C
an

im
pr

ov
e

m
or

e
cu

st
-

om
iz

ed
an

d
ta

ilo
re

d
re

co
m

-
m

en
da

tio
ns

.D
iffi

cu
lt

to
ob

ta
in

da
ta

co
nt

ai
ni

ng
co

nt
ex

tu
al

in
fo

rm
at

io
n

.C
an

no
t

ad
dr

es
s

th
e

co
ld

st
ar

t
pr

ob
le

m
fo

r
th

e
ne

w
us

er

T
im

e
Aw

ar
e

.U
se

r
ra

tin
gs

.C
om

m
un

ity
ra

tin
g

.T
em

po
ra

lk
no

w
-

le
dg

e

Te
m

po
ra

l
as

pe
ct

su
ch

as
tim

es
ta

m
ps

w
he

n
a

us
er

-it
em

in
te

ra
ct

io
n

to
ok

pl
ac

e

Tr
ip

pl
an

ni
ng

re
co

m
m

en
da

tio
ns

fo
r

su
m

m
er

se
as

on
m

os
tly

in
cl

ud
e

sig
ht

s
w

ith
be

ac
he

s
C

us
to

m
er

s’
pu

rc
-

ha
se

re
co

rd
s

U
se

r
ra

tin
gs

du
rin

g
ho

te
ls

ta
y

in
va

ca
tio

ns

.T
em

po
ra

li
nf

or
m

at
io

n
is

he
lp

fu
lt

o
ge

ne
ra

te
se

qu
en

tia
lr

ec
om

m
en

da
tio

ns
.C

an
no

t
ad

dr
es

s
th

e
sp

ar
sit

y
iss

ue
in

th
e

m
at

rix
.

So
ci

al
R

ec
-

om
m

en
de

r

.U
se

r
ra

tin
gs

.C
om

m
un

ity
ra

tin
gs

.K
no

w
le

dg
e

fr
om

us
er

s’
so

ci
al

ne
tw

or
k

G
at

he
rin

g
da

ta
fr

om
so

ci
al

ne
tw

or
ks

,
fo

r
ex

am
pl

e
ta

rg
et

us
er

’s
fr

ie
nd

s
fr

om
fa

ce
bo

ok
,

tw
ee

ts
fr

om
fo

llo
w

er
s

on
tw

it-
te

r

Fo
r

ex
am

pl
e,

us
er

lik
es

to
w

at
ch

ac
tio

n
m

ov
ie

s,
by

lo
ok

in
g

at
he

r
fr

ie
nd

s
po

st
ab

ou
t

re
ce

nt
ly

w
at

ch
ed

ac
tio

n
m

ov
ie

s,
th

os
e

m
ov

ie
s

ca
n

be
re

co
m

m
en

de
d

to
th

e
us

er

.D
ep

en
ds

la
rg

el
y

on
da

ta
fr

om
us

er
ne

tw
or

k
.C

an
no

t
ad

dr
es

s
th

e
co

ld
st

ar
t

an
d

sp
ar

sit
y

iss
ue

s
.C

an
pr

ov
id

e
di

ve
rs

e
re

co
m

-
m

en
da

tio
ns

Chapter 2. Related Work 25

T
ab

le
2.

3:
R

ec
om

m
en

da
tio

n
Sy

st
em

s
ca

te
go

riz
at

io
n

on
th

e
ba

sis
of

in
fo

rm
at

io
n

so
ur

ce
s-

in
pu

t
(C

on
tin

ue
d

fr
om

Ta
bl

e
2.

2)

C
at

eg
or

y
In

pu
t

T
yp

e
Ex

am
pl

e
C

om
m

on
/E

xi
st

in
g

Sy
s-

te
m

s/
Ex

am
pl

e
Pr

os
an

d
C

on
s

Se
m

an
tic

Aw
ar

e

.U
se

r
ra

tin
gs

.C
om

m
un

ity
ra

tin
gs

U
se

r/
It

em
se

m
an

tic
kn

ow
-

le
dg

e

In
co

rp
or

at
in

g
se

m
an

tic
(c

on
ce

pt
ua

l)
m

ea
ni

ng
fo

r
ite

m
s

su
ch

as
th

e
se

m
an

tic
re

la
tio

ns
hi

p
be

tw
ee

n
ite

m
s

by
us

in
g

ex
te

rn
al

kn
ow

le
dg

e
so

ur
ce

s
(o

nt
ol

og
ie

s)
or

di
st

rib
ut

io
na

lh
yp

ot
h-

es
is

(c
o-

oc
cu

rr
en

ce
of

ite
m

s
in

a
co

nt
ex

t)

Fo
r

ex
am

pl
e,

a
se

m
an

tic
re

p-
re

se
nt

at
io

n
of

pr
od

uc
ts

w
ill

pr
ed

ic
t

th
at

lo
w

fa
t

m
ilk

an
d

sk
im

m
ed

m
ilk

ar
e

se
m

an
tic

al
ly

sim
ila

r
an

d
m

or
e

cl
os

er
th

an
lo

w
fa

t
m

ilk
an

d
ch

oc
ol

at
e.

.C
an

pr
ov

id
e

m
or

e
de

ta
ile

d
in

sig
ht

s
by

ex
tr

ac
tin

g
se

m
an

tic
s

(m
ea

ni
ng

s)
fo

r
ite

m
s

in
te

rm
s

of
th

ei
r

us
ag

e
or

co
nc

ep
tu

al
re

la
tio

ns
hi

ps
.

.C
an

pr
ov

id
e

m
or

e
ta

ilo
re

d
re

co
m

m
en

da
tio

ns
by

in
fe

rr
in

g
se

m
an

tic
s

fr
om

us
er

pr
ofi

le
s

an
d

ite
m

s’
ch

ar
ac

te
ris

tic
s

H
yb

rid
C

om
bi

na
tio

n
of

va
rio

us
in

pu
ts

or
co

m
po

sit
io

n
of

di
ffe

re
nt

m
ec

ha
-

ni
sm

C
om

bi
ni

ng
in

pu
t

fr
om

va
rio

us
so

ur
ce

s
su

ch
as

ra
tin

gs
an

d
us

er
de

m
og

ra
ph

ic
s

C
om

bi
ni

ng
di

ffe
re

nt
re

co
m

m
en

de
rs

su
ch

as
C

F
sy

st
em

s
w

ith
co

nt
en

t
ba

se
d

sy
st

em
s

Fo
r

ex
am

pl
e,

ha
vi

ng
in

fo
r-

m
at

io
n

ab
ou

t
us

er
’s

de
m

o-
gr

ap
hi

cs
su

ch
as

ge
nd

er
,a

ge
,

m
ar

ita
ls

ta
tu

s
an

d
lo

ca
tio

n
ca

n
pr

ov
id

e
m

or
e

cu
st

om
iz

ed
pr

od
uc

t
re

co
m

m
en

da
tio

ns

.C
an

pr
ov

id
e

di
ve

rs
e

re
co

m
m

en
-

da
tio

ns
.C

an
ov

er
co

m
e

co
ld

st
ar

t
iss

ue
s

.D
iffi

cu
lt

to
m

ai
nt

ai
n

th
e

rig
ht

ba
la

nc
e

(c
om

bi
na

tio
n)

of
m

ul
tip

le
m

od
el

s,
e.

g.
,t

he
ch

oi
ce

of
op

tim
al

pa
ra

m
et

er
s

(w
ei

gh
ts

)
fo

r
di

ffe
re

nt
m

od
el

s

Chapter 2. Related Work 26

of various recommendation techniques as presented in this chapter.

2.2.1 Traditional Approaches for Recommendation

These techniques generate recommendations either by using the descriptive attributes of

items referred to as “content” along with user’s implicit or explicit behavior or by working

on “collective” behavior to find similar users or items to predict ratings on an unseen item for

the target user. In this section we will discuss about (i) keyword based methods (TF-IDF)

and (ii) neighborhood based methods (collaborative filtering). The subsequent sections will

discuss each of these techniques in detail.

2.2.1.1 Term Frequency-Inverse Document Frequency (TF-IDF)

This approach uses keyword matching or Vector space Model (VSM) (Lee et al., 1997) for

representing items (documents, products, videos, music). VSM refers to spatial representa-

tion of items in which each item is represented as an n-dimensional vector. A dimension in

the vector represents a term from the vocabulary obtained from a given collection of items.

For example, in case of a large collection of text documents, a vocabulary will comprise of

all possible unique words or consists of words (terms) that are more related to the content

of the document. So, n will represent the number of unique terms for the whole document

collection.

More specifically, each item (for example, a document) is represented as an n-dimensional

vector of term weights, where each weight shows an association between the document and

the term. If d = {d1, d2,, dN} denote a set of documents and T = {t1, t2, , tN}

be the vocabulary, that is the set of words in the documents where T is obtained by applying

some standard natural language processing operations. Some of these operations include

(a) tokenization (the process of segmenting text into words, clauses or sentences such as sep-

arating words and removing punctuations), (b) stop words removal (removal of commonly

used words unlikely to be useful for learning such as a, the, of), and (c)stemming which

involves reducing related words to a common stem such as reducing the words loved, loving

and lovely to the word love obtained from customer’s review about a product expressing

her likeliness towards the product. Each document dj is then represented as a vector in a

Chapter 2. Related Work 27

F
ig

ur
e

2.
1:

C
la

ss
ifi

ca
tio

n
of

R
ec

om
m

en
da

tio
n

Sy
st

em
s

ac
co

rd
in

g
to

ca
nd

id
at

e
ge

ne
ra

tio
n

(R
ec

om
m

en
da

tio
n

Te
ch

ni
qu

es
)

Chapter 2. Related Work 28

n-dimensional vector space, such that dj =< w1j , w2j ,, wnj > where wkj is the weight

for term tk in document dj .

After the creation of vocabulary also known as the features, next task is to represent

each item (document in this case) in the VSM by weighting the terms and then measuring

the similarities between feature vectors of items in order to find items similar to the tar-

get. TF-IDF weighting (Term Frequency-Inverse Document Frequency) is a term weighting

scheme (Salton, 1988) which computes weight of a term as product of tf weight and idf

weight, where tf is number of times the term occurs in the document and idf depends on

rarity of a term in a collection. The advantage of this approach is tf-idf increases with the

number of occurrences within a document, and with the rarity of the term in the collection.

In other words, terms that occur frequently in one document (TF=term frequency), but

rarely in the rest of the collection (IDF=inverse-document-frequency), are more likely to be

relevant to the topic of the document. The TF-IDF of a term is computed using Eq. 2.1.

TF − IDF (tk, dj) = TF (tk, dj). log N/nk (2.1)

where N represents the number of documents in the collection, and nk denotes the

number of documents in the collection in which the term tk occurs at least once. Frequency

of term tk in document dj is represented as ftk,dj and the maximum is computed over the

frequencies fz,j of all terms tz that occur in document dj using Eq. 2.2.

TF (tk,dj) =
ftk,dj

maxz fz,j
(2.2)

To adjust the weights for falling in the interval [0, 1] interval and for the documents to

be represented by equal length vectors, weights are usually normalized. Next, to determine

the closeness between documents, similarity between their feature vectors is computed using

cosine similarity by using Eq. 2.3.

sim (di, dj) =
∑

k wki · wkj√∑
k w2

ki ·
√∑

k w2
kj

(2.3)

Chapter 2. Related Work 29

Table 2.4: Categorization of books into different genres

Book Title\Genre Literature Comedy Autobiography Science Fiction
King Lear 1 0 0 0
Macbeth 1 0 0 0

The invisible man 0 0 0 1
Long Walk to Freedom 0 0 1 0

Pride and Prejudice 1 0 0 0

In a similar fashion, in content-based recommender systems where both user profiles

and items are represented as weighted term vectors using VSM, a user’s interest in a partic-

ular item can be predicted by calculating the cosine similarity between them. Walk through

examples (Example 2.1 and Example 2.2) explains the similarity computation by vector dot

product and TF-IDF methods.

Example 2.1. TF-IDF (With Binary Values):

Consider an example, a user purchased the books “King Lear”, “Macbeth” and “The

invisible man” and provided ratings on a 0 to 5 scale as 3, 4, and 2 respectively. Considering

the genre of books, their corresponding feature vectors can be represented in the binary form

where a ‘1’ shows that the book belongs to a particular genre and ‘0’ means it does not.

Assume, we have four genres which can be represented as four dimensions and shown in

Table 2.4.

User’s profile vector on these genres according to his ratings on the books will be

(4,0,0,2) where ‘4’ represents his interest in books from literature, ‘0’ shows that he is not

interested in reading books from comedy and romance genre and ‘2’ shows his level of in-

terest in science fiction books. Now, if we have to decide which new book to recommend

to user from the books “Long Walk to Freedom” which is an autobiography and “Pride

and Prejudice” which is a novel, we will compute the dot product (vector multiplication)

between the user profile vector and the item (book) profile vector as follows:

dot product (user, Long Walk to Freedom)=(4,0,0,2) . (0,0,1,0) = (4*0 + 0*0 + 0*1 +

2*0)= 0

dot product (user, Pride and Prejudice) = (4,0,0,2) . (1,0,0,0) = (4*1 + 0*0 + 0*0 + 2*0)

= 4.

Chapter 2. Related Work 30

Table 2.5: Frequency count of common terms occurring in the articles

Terms User Ratings
Articles Big Data Python R ML C++ Total U1 U2
Article 1 0 24 0 2 2 28 1 -1
Article 2 24 0 2 1 0 27 -1 1
Article 3 0 35 8 10 19 72 1 0
Article 4 4 0 5 0 1 10 1 0
Article 5 0 48 4 3 4 59 0 1
Article 6 0 0 8 0 5 13 0 0

The result of the dot product is “0” for the book “Long Walk to the Freedom” which

shows that the user is not interested in reading autobiographies and the dot product result

for “Pride and Prejudice” is 4 which shows that user will likely enjoy this literary novel

by Jane Auston, so this will be recommended to the user. Another possibility can be to

represent the contents of each book by extracting key words from their description and then

computing similarities based on those key-word based profiles.

Problem: Given a collection of documents and a set of features (terms), find the asso-

ciation (weight) between the document and the features.

Example 2.2. TF-IDF (With Frequency Count):

Consider another example, representing a collection of articles related to programming

languages, representing the frequency count (occurrence) of terms across each document.

The steps to create the item and user profiles using TF-IDF and then computing the simi-

larities between user and item profiles for article recommendation are given below:

Table 2.5. shows frequency count of five terms occurring in the articles related to

programming languages. For example, the term Python appears 24 times in Article 1 and

48 times in Article 5. The table also shows the ratings of user u1 and u2 on these articles,

such as, a rating of ‘1’ shows that the user liked the article and ‘-1’ means she disliked it.

Step 1: Term Frequency Computation (TF)

Term Frequency (TF) will be computed by using Eq 2. For example term frequency

for Python in Article 1 is computed as : TF (Python, Article 1) = 24/28 =0.86. Table 2.6.

Chapter 2. Related Work 31

Table 2.6: Term Frequency computation

Terms
Articles Big Data Python R ML C++
Article 1 0 0.86 0.00 0.07 0.07
Article 2 0.89 0 0.07 0.04 0
Article 3 0 0.49 0.11 0.14 0.26
Article 4 0.40 0 0.50 0 0.10
Article 5 0 0.81 0.07 0.05 0.07
Article 6 0 0 0.62 0 0.38

Table 2.7: Inverse Document Frequency (IDF) computation

Terms Big Data Python R ML C++
IDF 0.48 0.30 0.08 0.18 0.08

shows the term frequencies computed for all the terms.

Step 2: Inverse Document Frequency Computation (IDF)

IDF for all the terms is computed using the formula (log N/nk) where N is the total

number of articles and nk represents the number of documents in which the term appears

at least once. Table 2.7.shows the IDF of all terms.

Step 3: TF- IDF Computation

The TF-IDF is computed using Eq. 2.1., that is, taking the product of Term Frequency

of each term in the article with Inverse Document Frequency of the term in that article.

For example, the TF-IDF of the term Python will be:

TF-IDF (Python, Article 1) = TF (Python) * IDF (Python, Article 1) = 0.86 * 0.30 = 0.26

After the computation of TF-IDF (Table 2.8), we can represent each article as an n-

dimensional feature vector, where each dimension represents a feature (term). For our

Table 2.8: TF-IDF of terms in articles

Terms
Articles Big Data Python R ML C++
Article 1 0 0.26 0 0.01 0.01
Article 2 0.42 0 0.01 0.01 0.00
Article 3 0 0.15 0.01 0.02 0.02
Article 4 0.19 0 0.04 0 0.01
Article 5 0 0.24 0.01 0.01 0.01
Article 6 0 0 0.05 0 0.03

Chapter 2. Related Work 32

example, we have five features which are Big Data, Python, R , ML and C++. Article 1

can be represented as term weighted vector as:

Article 1 = [0, 0.26, 0, 0.01, 0.01]

which shows that Article 1 talks more about the Python programming language and is

weighted more towards the Python language.

Step 4: Similarity Computation between Articles

After we have each article represented in the vector form (each row in Table 2.8. rep-

resents vector for the corresponding article), we can compute the closeness between the

articles by computing the cosine similarities using Eq. 2.3 between their vectors. For ex-

ample, some cosine similarities are Cos (A1, A2) = 0.00013, Cos (A1, A3)= 0.0221, which

shows Article 3 is more closely related to Article 1. In the similar way, we can compute

the similarity between the user profile and the article’s profile to predict which article to

recommend to the user.

2.2.1.2 Neighborhood Based

These methods work on “collective” behavior to find similar users or items to predict ratings

on an unseen item for the target user. Collaborative Filtering (CF) is the most common

type of recommendation systems which takes users’ interest in an item as input and store

it in a matrix known as user-item rating matrix. The system outputs top recommendations

for the target user by finding users with the similar interest (Ekstrand et al., 2011). In

CF recommendation systems, the users only rate a small number of items, therefore, the

rating matrix is very sparse and it is necessary to predict the missing ratings to seek more

accurate recommendation results for users. In a user-item rating matrix R of size u × i

where u represents users and i represents items and each entry in the matrix Rui represents

rating of user u on item i. Common Collaborative Filtering systems are (a) user-to-user

and (b) item-to-item. In the next subsection we will discuss each of these approaches along

with a walk through example.

-User based CF- Each row in the user-item matrix represents a user vector repre-

senting user’s explicit or implicit preferences towards items and each column represents an

item vector representing interest of all the users in the item. A user- based CF approach

Chapter 2. Related Work 33

Table 2.9: User-Item rating matrix

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6
User A 7 6 7 4 5 4
User B 6 7 ? 4 3 4

User C (Alice) ? 3 3 1 1 ?
User D 1 2 2 3 3 4
User E 1 ? 1 2 3 3

searches for neighbor users with similar preferences as the target user by computing row

wise similarities between target user vector and each user vector, whereas item-based CF

finds set of neighbor items by computing column wise similarity between target item vector

and other item vectors. Consider the below examples (Aggarwal, 2016) to understand user

based (Example 2.3) and item based CF (Example 2.4). Table 2.9. shows the user-item

rating matrix containing ratings of five users on five items. User C (Alice) is the target user

and we are interested to predict rating for her on item 1 which she has not consumed/rated

before.

Problem: Given a user-item rating matrix R, predict the unknown ratings on items for

the user .

Example 2.3. User-to-User CF

Table 2.10: User-Item rating matrix with mean ratings and similarity scores for user
based CF

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Mean
Ratings Similarity Score

User A 7 6 7 4 5 4 33/6 =5.5 0.95
User B 6 7 ? 4 3 4 24/5 =4.8 0.98
User C
(Alice) ? 3 3 1 1 ? 8/4= 2

User D 1 2 2 3 3 4 15/6= 2.5 0.78
User E 1 ? 1 2 3 3 10/5 =2 0.64

1. Compute the mean rating for each user uj using all of their rated items. Mean rating

of User A = ((7 + 6 + 7 + 4 + 5 + 4))/6 = 33/6 = 5.5. Similarly, User B=4.8, User

C=2, User D= 2.5 and User E=2. Mean ratings are shown in Table 9.

2. Calculate the similarity between a target user v and all other users uj . Similarity can

Chapter 2. Related Work 34

Table 2.11: User-Item rating matrix with mean ratings and similarity scores for item
based CF

Users\Items Item 1 Item 2 Item 3 Item 4 Item 5 Item 6
User A 7 6 7 4 5 4
User B 6 7 ? 4 3 4
User C
(Alice) ? 3 3 1 1 ?

User D 1 2 2 3 3 4
User E 1 ? 1 2 3 3

Mean Item Ratings 3.75 4.5 3.25 2.8 3 3.75
Similarity score 0.99 0.99 0.91 0.83 0.839

be computed with CosineSimilarity(v, uj) or other similarity functions.

SIM(u, v) = ru1 ∗ rv1 + ru2 ∗ rv2 + . . . + run ∗ rvn√
r2

u1 + r2
u2 + · · ·+ r2

un ∗
√

r2
v1 + r2

v2 + · · ·+ rvn

(2.4)

Where, ru1 represents rating given by user u on item 1 and rv1 represents rating given

by user v on item 1. In our case, SIM (Alice, User A) = (6 ∗ 3 + 7 ∗ 3 + 4 ∗ 1 + 5 ∗

1)/(
√

(62 + 72 + 42 + 52) ∗
√

(32 + 3 + 12 + 12)) = 0.956. Similarly, SIM (Alice, User

B) =0.981, SIM (Alice, User D) =0.789 and SIM (Alice, User E) =0.645.

3. Find similar users of target user v as their Top-N users. For example, if we want to

select Top-2 users to Alice, then in our case, User A and User B have the highest

similarity with Alice compared to other users.

4. Predict rating for target user v for item i using only ratings of v’s Top-N peer group.

Predict rating of Alice on Item 1 using rating of Top-2 users (User A and User B) on

Item 1.

ruserC,item1 =

ruserA,item1 ∗ SIM(Alice, UserA) + rUserB,Item1 ∗ SIM(Alice, UserB)
SIM(Alice, UserA) + SIM(Alice, UserB) (2.5)

-Item Based CF-

Problem: Given a user-item rating matrix R, predict the unknown ratings on items for

the user.

Example 2.4. Item-to-Item CF

Chapter 2. Related Work 35

1. Compute the mean rating for each item ij .

Mean rating of Item 1= ((7 + 6 + 1 + 1))/4 = 3.75. Similarly, for other items as shown

in Table 2.11.

2. Calculate the similarity between a target item i for target user Alice and all other

items jn. Similarity can be computed with CosineSimilarity(i, jn) or other similarity

functions.

Sim(i, j) =
ri1 ∗ rj1 + ri2 ∗ rj2 + . . . + rin ∗ run√

r2
i1 + r2

i2 + · · ·+ r2
in ∗

√
r2

j1 + r2
j2 + · · ·+ r2

jn

(2.6)

Where, ri1 by user A and rj1 represents rating on item 2 given by user A. In our case,

SIM(item1, item2) = (7∗6+6∗7+1∗2)/(
√

(72 + 62 + 12)∗
√

(62 + 72 + 22)) = 0.99.

Other scores are shown in Table 2.11.

3. Find similar items of target item 1 as its Top-N items. For example, if we want to

select Top-2 similar items to item 1, then in our case, item 2 and item 3 have the

highest similarity with item 1.

4. Predict rating for target item 1 for user Alice using only ratings of item j’s Top-N

peer group. Predict rating of item 1 for Alice using ratings of Top-2 items (Item 2

and Item 3).

ruserC,item1 =

rAlice,Item2 ∗ SIM(Item1, item2) + rAlice,Item3 ∗ SIM(item1, item3)
SIM(item1, item2) + SIM(item1, item3) (2.7)

= (3 ∗ 0.99 + 3 ∗ 0.99)/(0.99 + 0.99) = 3.04

2.2.2 Sequential Recommendation Techniques

This section will review related approaches for learning sequential relationships between

items for next item recommendation. The sequential relationships assist in modeling user

preferences by reflecting the sequential dependency of an event (e.g., click or purchase) on its

preceding event. The approaches are categorized as (i) Traditional Approaches (Sequence

Similarity, Frequent Pattern Mining and Sequential Pattern Mining), (ii) Factorization and

Chapter 2. Related Work 36

Latent Representation Approaches (Matrix Factorization and Markov Models) and (iii)

Neural Network Based Approaches (Deep Neural Network, Advanced Models). The subse-

quent sections will thoroughly discuss each of these techniques along with providing details

on their theoretical aspects, potential for solving problems and their limitations.

2.2.2.1 Traditional Approaches for Sequential Recommendation Systems

To learn sequential relationships between items, these approaches work either by comput-

ing similarities between sequences of items (e.g., click or purchase sequences) according to

a similarity measure (similarity based) or by mining sequential patterns that occur fre-

quently in the data. Section 2.2.2.1.1 discuss about sequence similarity based approaches

while Sections 2.2.2.1.2 and 2.2.2.1.3 will review pattern mining based methods includ-

ing frequent pattern mining and frequent sequential pattern mining methods respectively.

We also present a classification of traditional approaches for Sequential Recommendation

Systems on the basis of eight key features as discussed in Sect. 2.2.2.4

2.2.2.1.1 Sequence Similarity Based Methods The objective of these approaches

is to find relationships between items or sequences by computing similarity based on a simi-

larity measure and then utilizing sequences similar to the target user sequence for next item

recommendation. These relationships reflect the sequential dependency of an event (e.g.,

click or purchase) on its preceding event. The granularity of sequential dependency can be

at item level (single item) or sequence level (comprising of multiple item sets, where each

item set can be a single item or collection of items).

Problem: Find relationships between item sequences by computing similarity using a sim-

ilarity measure and then utilizing sequences similar to the target user sequence for next

item recommendation.

Problem: Find relationships between item sequences by computing similarity using a

similarity measure and then utilizing sequences similar to the target user sequence for

next item recommendation. For example, consider a purchase sequence of a customer as

< (a, b), (b, c, a, d), (a), (c, d, d) > which shows items purchased by customer on different

Chapter 2. Related Work 37

timestamps. The sequence consists of four item sets which are (a, b), (b, c, a, d), (a) and

(c, d, d). The item set (a, b) consists of two items a and b which were purchased together

and the item set a just represents single item which was purchased individually in another

transaction. Sequence similarity can be computed by finding the longest common sub-

sequence (LCS) rate between the two sequences and then utilizing the obtained rate to

recommend items from the sequence with the highest rate to the target sequence. Consider

purchase sequences of two customers as X = < (a, b), (b, c, a, d), (a), < (c, d, d) > and Y

= < (a, a, b), (b, c, c),(a, b) >, the LCS rate (Bhatta et al., 2019, Hunt and MacIlroy, 1976)

between sequence X and Y can be computed as:

LCSR(X, Y) = LCS(X, Y)
max(X, Y)

= (a, b), (b, c), (a)
(a, b), (b, c, a, d), (a), (c, d, d) >

= 5
10 = 0.5

(2.8)

where LCS (Yap et al., 2012) can be computed as:

LCS(X, Y) =


ϕ if i = 0 or j = 0

LCS (Xi−1, Yj−1) ∩Xi if xi = yi

longest (LCS (Xi, Yj−1) , LCS (Xi−1, Yj) if xi ̸=yi

(2.9)

Another method of computing similarity between sequences is by representing each

sequence as a vector of events (e.g., item’s purchased). Considering the same purchase

sequences X and Y, their corresponding vectors in terms of the frequency of items purchased

will be −→X= [a b c d] = [3 2 1 3] and −→Y = [a b c d] = [3 3 2 0] . The similarity between
−→
X,
−→
Y is calculated by using cosine similarity as:

sim(X, Y) = cos(X⃗, Y⃗) =
∑n

i=1 XiYi√∑n
i=1 X2

i

√∑n
i=1 Y 2

i

= (3 ∗ 3) + (2 ∗ 3) + (1 ∗ 2) + (3 ∗ 0)√
32 + 22 + 12 + 32 ∗

√
32 + 32 + 22 + 02

= 0.87
(2.10)

A sequential recommendation system, ChenRec15 (Su and Chen, 2015) finds the simi-

larity between two users based on their clickstream sequences. They measure indicators like

Chapter 2. Related Work 38

category visiting path, category browsing frequency and category access time, then clus-

ter users into different clusters, by selecting top-N similar users, and then provide better

top-N recommendations. However, they only focus on the category level visits, and their

technique for mining the whole dataset is not very efficient. To improve the effectiveness of

recommendation systems by incorporating the sequence information about user’s item rat-

ings, a system is proposed (Cheng et al., 2016). To depict users’ dynamic interest evolution

patterns, (Cheng et al., 2016) uses the concept of “interest sequences” (IS) which takes the

sequences of users’ behaviors based on the time of their interactions (ratings). Assume two

users u and v. User u rated items C, E and D at timestamps t1, t2 and t3 with ratings 4.0,

3.5 and 2.0 respectively. User v rated the same items but in different order as items E, D,

C at timestamp t1, t2 and t3 with ratings 2.0, 4.5, 2.5. So, IS of user u (isu) according to

timestamp t1, t2 and t3 = (C, 4.0), (E, 3.5), (D, 2.0). Similarly, IS of user v at these time

stamps will be isv = (E, 2.0), (D, 4.5), (C, 2.5). Next, an Interest Sequence Match (ISM) be-

tween users is calculated if (a) the rated items between them are same and (b) the deviation

between the ratings given by the user u and user v for the same item should be less than a

specified threshold θ. Using these interest sequences, they computed the length of Longest

Common Sub-IS (LCSIS) (which refers to an Interest Sequence Match (ISM) between two

interest sequences if and only if there is no other longer ISM detected between them) and

the count of All Common Sub-IS (ACSIS) which is used to count all the ISM between two

interest sequences, including empty ISM. Considering the length of LCSIS and the count of

ACSIS, users’ similarities are computed based on IS, which are then used to find the Top-K

nearest neighbors for the target user.

HPCRec18 (Xiao and Ezeife, 2018) used normalized purchased frequency matrix to

improve the quality of ratings by mining the consequential bond (similarity between click

and purchase sequences) in each session to predict the ratings for next possible purchase.

The proposed system (Xiao and Ezeife, 2018) enriched the quantity (finding the value

for unknown ratings) and quality (finding precise value for already rated items) of user-

item rating matrix. However, the main limitation was that customers’ historical sequential

behavior patterns were not integrated into the item rating matrix and during the mining

process of consequential bond. This limitation was addressed by HSPRec19 (Bhatta et al.,

2019) which incorporated sequential information while mining the consequential bond and

Chapter 2. Related Work 39

Table 2.12: Implicit user-item rating matrix

User\Items Apple Orange Banana Bread Butter Milk
User1 0 0 0 1 1 1
User2 0 1 0 0 1 1
User3 0 0 0 1 1 0
User4 1 1 1 1 1 1
User5 1 0 1 0 0 0
User6 1 1 1 0 0 0
User7 1 1 0 0 1 0

enriching the user-item matrix.

2.2.2.1.2 Frequent Pattern Mining The objective of frequent pattern mining is to

find relationships (patterns) between items that occur frequently in the transaction database

and then utilizing the mined patterns to guide the subsequent next item recommendations.

Association rules (Agrawal and Srikant, 1995) were first introduced to discover relationship

between items in supermarket data. Consider a transaction database of customer purchases,

T = {T1, T2, . . . , Tm}, containing m transactions, which are defined on items I. Each

transaction Ti is a subset of the items in I. To find these relationships between items,

two measures, support and confidence are used. The support of an item is the measure of

the frequency (occurrence) of the item in the transaction database. A minimum support

threshold s is used to determine if the item is frequent or not. An item is said to be a frequent

item if its support is greater than or equal to the minimum support s. These frequent items

or frequent patterns can be useful in providing valuable insights about customers’ buying

behavior. For example, consider the data from customers’ purchase in Table 2.12. The rows

correspond to customers and columns correspond to items. The 1s refer to the situation in

which a particular customer has bought an item.

These are partitioned into two sets of closely related items. One of these sets is

{Apple, Orange, Banana} and the other is {Bread, Butter, Milk}. These are the only

itemsets with at least 3 items, which also have a support of at least 0.2. Therefore, both of

these itemsets are frequent itemsets or frequent patterns. Finding such patterns with high

support is useful to the merchant, because he can use them to make recommendations and

other targeted marketing decisions. For example, it can be concluded that User2 is likely

to eventually buy Bread, because he has already bought {Butter, Milk}. Similarly, User5

Chapter 2. Related Work 40

is likely to buy oranges because he has also bought {Apple, Banana}. Such inferences

are very useful from the point of view of a Sequential Recommendation System. Another

insight can be obtained in terms of the directions of these correlations by using the concept

of association rules and confidence. An association rule is denoted in the form X → Y ,

which shows the correlation between the set of items X and Y . For example, a rule such as

{Butter, Milk} → {Bread} would be very useful to recommend Bread to User2, because

it is already known that he has bought Milk and Butter. The strength of such a rule is

measured by its confidence. The confidence of the rule X → Y is the “conditional prob-

ability that a transaction in T contains Y , given that it also contains X”. Higher values

of the confidence are always indicative of greater strength of the rule. An association rule

is defined on the basis of a minimum support s and minimum confidence c. One of the

earliest works in frequent pattern mining and association rule mining is Apriori algorithm

(Agrawal and Srikant, 1995). Given a transaction database, a minimum support threshold

s, the algorithm mines the transaction database to find frequent itemsets for association

rules. The algorithm is based on two important steps which are (a) join and (b) prune.

Below are the steps for generating candidate items using Apriori algorithm (Agrawal and

Srikant, 1995).

1. Generate all singleton (one-item) candidate items (Ck) from the transaction database.

2. Prune any items that do not meet the minimum support threshold s. This gives the

frequent Lk items.

3. Generate 2- item set candidate items Ck+1 by using the apriori property of Lk join

Lk.

4. Repeat step 2 to generate Lk+1 frequent item sets.

5. The process is repeated until there are no further candidate itemsets. The apriori

algorithm works on the apriori property, that is, any (k − 1)-itemset that is not

frequent cannot be a subset of a frequent k-itemset.

6. The set of frequent itemsets L will be the union of all Lk, Lk+1, . . . Ln. The above

steps can be explained with the help of a running example (Example 2.5).

Chapter 2. Related Work 41

Table 2.13: Customer’s transaction database

TID Items
001 {Bread, Butter, Jam}
002 {Bread, Eggs, Butter}
003 {Bread, Eggs}
004 {Milk, Tea}
005 {Bread, Butter, Eggs, Cheese}

Example 2.5.Association Rule Mining Using Apriori Algorithm

Consider Table 2.13. which shows four transactions by customers. Each transaction is

represented by a transaction id (TID) and the set of items purchased in that transaction.

For example, transaction 001 shows that Bread, Butter and Jam were purchased. Given

these transactions and a minimum support s = 2, which means an item should appear

at least twice to be considered as frequent, the algorithm works by finding all singleton

candidate items. The one-items candidate items Ck with their support count are {Bread :

4, Butter : 2, Eggs : 2, T ea : 1, Milk : 1, Jam : 1, Cheese : 1}. After the pruning step, that

is, elements not meeting the minimum support which are {Tea, Milk, JamandCheese},

we have the frequent Lk items as {Bread : 3, Butter : 3, Eggs : 3}. Next to create 2-

items set candidate items Ck+1, we will join each Lk with itself which gives the items

{Bread, Butter : 3}, {Bread, Eggs : 3}, {Butter, Eggs : 2}. Repeating the steps, we will

get the final set of 3-item frequent items as {Bread, Butter, Eggs : 2}. Since, we do not

have any more candidate items to join, the algorithm will terminate. The set of frequent

item sets is L = {{Bread}, {Butter}, {Eggs}, {Bread, Butter},

{Bread, Eggs}, {Butter, Eggs},

{Bread, Butter, Eggs}}.

Generating rules from frequent items:

The rules are generated by following these steps:

1. For each frequent itemset l, generate all nonempty subsets of l.

2. For every nonempty subset s of l, output the rule s→ (l−s) if support_count (l) / sup-

port_count(s) >= min_conf , where min_conf is the minimum confidence thresh-

old. From our example, if we take the itemset I = {Bread, Butter, Eggs}, its all non-

empty subsets are {Bread, Butter}, {Bread, Eggs}, {ButterEggs},{Bread},{Butter},

Chapter 2. Related Work 42

{Eggs}. Given a minimum confidence of 0.5, some of the rules can be:

(a) {Bread, Butter} → Eggs and

(b) {Bread, Eggs} → Butter with a confidence of 0.6.

Kim11Rec (Kim and Yum, 2011), a recommendation system used association rule mining

and calculated confidence between products at different levels such as clicks, basket place-

ment and purchases. The main idea is to find the most relevant clicked item. This is

repeated for all the other stages i.e., basket places and purchases. A final score is calculated

by assigning weights to the scores of the above mentioned three stages. The disadvantage of

association rule methods is that it does not include connections between different users who

share special interests (Kim and Yum, 2011). These systems simply measure the interest

by browsing paths from the clickstream data.

2.2.2.1.3 Frequent Sequential Pattern Mining These techniques mine patterns

which occur frequently in a sequential database and then use the mined sequential patterns

for generating subsequent recommendation. A common application is mining customers’

purchase sequence database for generating frequent sequential purchase patterns which can

predict next item recommendations. A sequence database consists of ordered elements or

events (Bhatta et al., 2019, Mabroukeh and Ezeife, 2010). Formally stated,

Given (i) a set of sequential records (called sequences) representing a sequential database

SDB= {s1, s2, s3, . . . , sn} with sequence identifiers 1,2,3,. . . .n; (ii) a minimum support

threshold called min sup ξ and (iii) a set of k unique items or events I = {i1, i2, ..., ik}.

The goal of mining sequential patterns is to find the set of all frequent sub-sequences S in

the given sequence database SDB of items I at the given min sup ξ, that are interesting

for the user. Consider the example in Table 2.14. showing a sequence database containing

sequences representing four transactions made by four customers at a retail store in a week.

Items between curly brackets represent an item set purchased in one market visit. For

example, the sequence with SID 3 indicates that a customer first purchased bread in one

transaction, then milk, followed by the purchase of egg and butter in the same transaction

and lastly cream was purchased in another transaction.

Problem: Given an input of a sequential database (SDB) and a minimum support, the

goal of sequential pattern mining algorithms such as GSP (Agrawal and Srikant, 1995) is

Chapter 2. Related Work 43

Table 2.14: A sequence database (SDB)

SID Sequence
1 {bread, milk},{salt},{egg, butter},{butter}
2 {bread, cheese},{salt},{milk},{bread, milk, cream}
3 {bread},{milk},{egg, butter},{cream}
4 {milk},{egg, butter}

to mine all frequent sequential patterns from a sequence database having the support count

greater than or equal to the user defined threshold of minimum support.

A sequence s is said to be a frequent sequential pattern if and only if the support

(number of occurrence of s) is greater than or equal to a given minimum support. One of

the earliest sequential pattern mining algorithm GSP (Agrawal and Srikant, 1995) which

works on the apriori principle while maintaining the order of items will generate some of the

frequent sequences as < {bread} >, < {salt}, < {bread},{butter} >, < {bread, cream} >,

< {bread, milk} >, if the given minimum support is 2. So, sequence < {bread, milk} >

is frequent as it occurs in two sequences (SID 1 and 2) in the sequence database. In this

case, the sequence < {bread, milk} > and < {milk, bread} > will be considered different,

as their order is different in the sequences.

Table 2.15: A sample sequential database (SDB)

SID Sequences
1. < 21239, (21239, 20655, 21242), (21239, 21242), (21366), (21242, 22246) >
2. < (21239, 21366), 21242, (20655, 21242), (21239, 21377) >
3. < (21377, 22246), (21239, 20655), (21366, 22246), (21242, 20655) >
4. < 21377, 22198, (21239, 22246), 21242, 20655, 21242 >

Table 2.16: Projected Database of item < 21239 >

Pattern Projected Database of prefix < 21239 >

< 21239 >

< (21239, 20655, 21242), (21239, 21242), (21366), (21242, 22246) >
<_, 21366), 21242, (20655, 21242), (21239, 21377) >

<_, 22246), (21239, 20655), (21366, 22246), (21242, 20655) >
<_, 22198, (21239, 22246), 21242, 20655, 21242 >

Example 2.6. Mining Sequential Patterns using PrefixSpan (Jian Pei et al.,

2001)

With purchase sequential database Table 2.15 and a min_ sup=1, PrefixSpan (Jian Pei

Chapter 2. Related Work 44

et al., 2001) generates frequent sequential patterns as :

1. Scan the database to generate frequent sequences (s) of length one (L1) by matching

the support of each item with the minimum support. Prune any item whose support

is less than the min_sup. Here L1= {<21239>, <20655>,<21242>, <21366>,

<21377>, <22246> }.

2. Divide the search space such that the complete set of sequential patterns can be par-

titioned into subsets. In our case, we will have six subsets (according to items in L1),

for example, one with prefix <21239>, then with prefix <20655> and so on.

3. Create a projected database for each prefix. For example, Table 2.16 shows pro-

jected database of item <21239>. Next, to generate length-2 sequential patterns of

s, scan the projected database of s (if it is not null) and find the set of frequent

items x such that: (a) x can be assembled to the last element of s to form a se-

quential pattern or, (b) can be appended to s to form a sequential pattern. For

each frequent item x, append it to s to form a sequential pattern s’, and output

s’. For example, some of the frequent length-2 sequences for s = <21239> are:

<(21239,21239),<21239,20655>,<(21239,20655)>, <21239,21242>,<21239,21366>,

<21239,22246>.

4. Continue the process of creating projected database for each s’ to generate Lk+1 se-

quences until there is an empty set. Repeat the process for the remaining items (s) in

L1 and output the set of all frequent sequences. In our running example, some of the

frequent sequential patterns are:<21239,21242>, <21242,22246>, <20655,21242>,

<(21366,22246)>, <21242,20655,21242>, <(21239,29655,21242)>.

Many Sequential Pattern Mining algorithms were introduced in the literature including

GSP (Agrawal and Srikant, 1995), SPAM (Ayres et al., 2002), Prefix Span (Jian Pei et al.,

2001) and PLWAP (Ezeife et al., 2005). An extensive surveys on various Sequential Pat-

tern Mining algorithms for next item prediction is presented in (Fournier-Viger and Lin,

Mabroukeh and Ezeife, 2010, Mooney and Roddick, 2013).

Other research works (Choi et al., 2012, Saini et al., 2017) also use Sequential Pat-

tern Mining to explore the sequential relationship between purchase sequences for items

Chapter 2. Related Work 45

recommendations. These models are hybrid as they combine Collaborative Filtering with

Sequential Pattern Mining for providing recommendations. The idea is to find neighbor

users not just on the basis of ratings on similar items but also considering the sequential

relationship between purchase sequences which can lead towards more accurate recommen-

dations. Some of the recent works (Bhatta et al., 2019, Choi et al., 2012, Saini et al., 2017,

Salehi and Nakhai Kamalabadi, 2013, Yap et al., 2012) have utilized sequential pattern min-

ing techniques in e-commerce recommendation systems for mining customers’ purchase pat-

terns and recommending next items for purchase. A hybrid online product recommendation

system (HOPE) (Choi et al., 2012) was proposed, which integrates Collaborative Filtering

(CF) based recommendations using implicit rating and sequential pattern mining based

recommendations. The systems uses implicit rating information instead of explicit rating

information by computing implicit rating information from the transaction dataset. The

recommendation quality was improved by integrating Collaborative Filtering and sequential

pattern analysis of customer purchases each of which considers the rating information of

users on items and the associations among items (Choi et al., 2012).

In another study, Yap et al. (Yap et al., 2012) stated that most of the existing sequential

pattern mining methods are not user-specific and proposed a personalized sequential pattern

mining based approach using a novel Competence Score to overcome such disadvantages.

More weight was assigned to sequences that had similar items/products as the target user

(e.g., user’s purchasing/viewing the same books as the target user). To mine sequences

in the purchase patterns of customer transactions, a framework is proposed (Saini et al.,

2017) which aims to find the time gap between products purchased to help improve the

recommendation of next products in sequence. SPADE (Zaki, 2001) algorithm was used

to mine sequences of all products which are 1) bought regularly e.g., every month and 2)

bought one after another in a sequence, e.g., most users find mobile phones and mobile

covers as common purchase sequence.

HSPRec19 (Bhatta et al., 2019) mined frequent sequential purchase patterns and aug-

ment the item rating matrix with sequential purchase patterns of customers for next item

recommendation. It mined frequent sequential click and purchase behavior patterns using

the consequential bond between click and purchase sequences and then used this quantita-

tively and qualitatively rich matrix for Collaborative Filtering to provide better recommen-

Chapter 2. Related Work 46

dations. The results (Bhatta et al., 2019) have showed significant improvement over the

systems without using sequential pattern mining methods such as (Kim and Yum, 2011,

Kim et al., 2005, Su and Chen, 2015, Xiao and Ezeife, 2018). Therefore, mining sequential

patterns from customers’ historical transactions can be very beneficial for retailers and can

increase revenue and customer satisfaction by recommending tailored products to customers.

In summary, rule based approaches suffer from some limitations in terms of generating

patterns including deciding an optimal value for the minimum support threshold ξ, setting

it to a value which is too low will result in unnecessary patterns and setting it too high may

lead to very few patterns which may not be very useful. Furthermore, the patterns are not

personalised, that is they do not take into account an individual’s preferences while they are

generated as they are based on the historical data of transactions from all customers. This

also limits the capability of these systems as they can only recommend items which exist in

the historical data (for example, items purchased by the customers) and meet the minimum

support threshold ξ thereby not exploring thousands of products available in the catalog for

recommendation. Additionally, the generated patterns and subsequent rules lack semantics,

that is, the relationship between items is based on their co-occurrence (frequency count)

only, hence these approaches cannot infer the underlying relationships between items, for

example, based on our common knowledge, we can understand that “low fat milk” and

“skimmed milk” have same properties. So, if a user is conscious about her calorie intake

and consumes low fat milk, then by inferring these semantic relationships between items, we

can recommend her other low calorie products. Existing work utilizing sequential pattern

mining approaches are unable to address these requirements.

2.2.2.2 Factorization and Latent Representation Based Approaches

These techniques create a model from the training data (observed user ratings) and then

predict the ratings for users on unseen items based on the observations learned from the

trained model. Model-based methods apply machine learning techniques during the model

training process. Model-based methods are assumed to capture underlying relations from

the data. In the next subsections, review of model based techniques for sequential recom-

mendation such as (i) Matrix Factorization and (ii) Markov Models will be presented.

Chapter 2. Related Work 47

2.2.2.2.1 Matrix Factorization Matrix factorization (Koren, 2009) is used to discover

latent features (concepts) underlying the interactions between two different kinds of entities

such as users and items. The idea is to decompose the rating matrix into two smaller matri-

ces in such a way that when multiplied together (by taking dot product), they approximate

the original matrix and predict the unknown ratings. In the basic matrix factorization

model, the mÖn ratings matrix R is approximately factorized into an m× k matrix P and

an n× k matrix Q, as follows:

R ≈ P ×QT = R̂ (2.11)

Where m is the number of users, n is the number of items, k represents the number of

latent features. Each column of P (or Q) is referred to as a latent vector or latent component

(concepts), whereas each row of P (or Q) is referred to as a latent factor. The ith row pi of

P is referred to as a user factor, and it contains k entries corresponding to the association

of user i towards the k concepts in the ratings matrix. Similarly, the ith row qi of Q is

referred to as item factor, and it contains k entries corresponding to the association of item

i towards the k concepts in the ratings matrix. The concept behind matrix factorization is

that there should be some latent features which determine the preference of a user towards

an item. For example, two users may give high ratings to a certain book if they both like

the writer of the book, or if the book is based on an historical event. In this case, the latent

feature can be the "genre" which both users like. So, the latent feature "historic genre" can

be used to describe both the user and the item. Thus, the discovery of such latent features

can help to predict the rating of a particular user on a particular item because the features

associated with both the user and the item are same. While determining those different

features, an assumption is also made that the number of features (k) would be less than

the number of users and the number of items. To get the prediction of a rating of an item

qj by ui, we can calculate the dot product of the two vectors using Eq. 2.12.

r̂lj = pT
i qj =

k∑
k=1

pikqkj (2.12)

Fig. 2.2 which shows a conceptual view of matrix factorization of the rating matrix

Chapter 2. Related Work 48

Figure 2.2: An example of rank-2 (k=2) Matrix Factorization (Ricci et al., 2015)

R into two matrices U and V . In the matrix U , ui is a 2-dimensional vector containing

the association of user i towards the history and romance genres in the ratings matrix.

Similarly, each row vi of V is referred to as an item factor, and it represents the association

of the ith item towards these k concepts. In the matrix Q, the item factor contains the

association of the item towards the two categories of books.

2.2.2.2.2 Markov Models Markov chain based models (Bernhard et al., 2016, Braf-

man et al., Rendle et al., 2010, Shani et al., 2005) are an early approach to Top-N sequential

recommendation. Markov chain (MC) model based RS utilize sequential data by predicting

the users’ next action based on the last actions. The model detects sequential patterns

through stochastic transitions between states. Therefore a transition matrix is estimated

that gives the probability of transitioning to the next state based on the previous state (for

example, buying an item based on the last purchase of the user). The transition matrix

of the MC models is assumed to be the same over all users. An L − order Markov chain

makes recommendations based on L previous actions. The first order Markov chain is an

item-to-item transition matrix learnt using maximum likelihood estimation (MLE).

Markov chain contains three components which are (i) the set of states (where a state

can represent, an item, stock trends, weather conditions etc.,), (ii) the process function that

directs transition from one state to another, and (iii) a start state s (Rubino and Sericola,

2014). For a given set of states S = {s1, s2, s3, ..., sn}, the process initiates from one of

these states, and it moves successively one step towards another state. The probability of

moving from a current state si to the next state sj is denoted by probability p(i, j). The

Chapter 2. Related Work 49

probabilities are called transition probabilities. Therefore a transition matrix is estimated

that gives the probability of transitioning to the next state based on the current state (for

example, buying an item based on the last purchase of the user). In the transition matrix

P, the rows represent the current state, i.e., from si, the columns represent the next state,

i.e., going to sj . Each entry pi,j in the matrix is the conditional probability of going to the

next state sj , given the current state si, i.e., the probability of going from state i to state

j (Rubino and Sericola, 2014). The transition matrix of the MC models is assumed to be

the same over all users which is a draw back as it does not include an individual users’

preference (personalization) into account while generating recommendations. Furthermore,

it suffers from the problem of ambiguous prediction where two or more states (where a state

is representing an item in this case) have the same transition probability from the current

state (Li et al., 2019, Rubino and Sericola, 2014, Sarukkai, 2000). The process can remain

in the state and this occurs with probability p(i, i). An initial probability is assigned to the

state which is designated as a start state.

Example 2.7. Next Item Recommendation using Markov Model

Consider an example to understand the process of Markov Model for next item recom-

mendation by computing transition probabilities for transitions from current state to the

next state.

Input: Finite set of states, S = {s1, s2, , sn}, Initial Probabilities ps for every s spec-

ifying the probability of starting from state s.

Output: Transition Matrix Pt+1 with Transition Probabilities P (sj |si) defining the prob-

ability of going from state si to state sj .

Figure 2.3 shows a state diagram and computation process to compute probability for

transitioning to next state from current state (e.g., buying the next item after the purchase

of a recent item) from time t to t + 1 using first order Markov Model. Consider we have

three states representing three products A, B and C and the transition probabilities of

moving from one state to the next (probabilities of purchasing these products). Assume an

initial transition matrix Pt with transition probabilities defining the probability of going

from one state to another (based on analysis of customers’ purchase data), in this case the

probability of purchasing the next product. The column indicates the start state (si) and

Chapter 2. Related Work 50

the rows indicate the end state (sj). For example, at current time t, the probability of going

from state A to B is 0.1 (probability of purchasing product B after product A). An initial

probability vector ps for each state to be the start state (chosen randomly) is also provided.

For example, for the given vector ps with values [0.40 0.24 0.36], the probability that the

customer will start its purchasing journey from product A is 40% (0.40) (based on analysis

from historic purchases on the company’s site), whereas the probability that product B will

be purchased first is 24% (0.24). To predict the transition probabilities from each of these

states to next states at time t+1, we compute product of the transition matrix Pt with the

initial probabilities vector ps. For example, as can be seen from the new probabilities Pt+1

(at time t+1), the probability of purchasing product B after product A is 0.31 (second row

in the probability transition matrix Pt+1).

Figure 2.3: Example to compute probability for transitioning to next state from current
state (e.g., buying an item) from time t to t + 1 using first order Markov Model

The limitation of first order Markov model is that the next state prediction depends

only on the current state. Using Markov models for prediction suffers from some limitations.

An increase in the order of Markov Model also increases the number of states and the

model complexity. Alternately, reducing the number of states leads to inaccurate transition

probability matrix and limits the predictive power. To address this trade off, the All-lth-

Order Markov model was proposed, such that if the lth-order Markov model cannot make

the prediction then the (l− 1)th-order Markov model is used. However, this model involves

large number of states. Selective Markov models SMM (Deshpande and Karypis) that

only store some of the states within the model, were proposed as a better solution to the

mentioned trade off problem. However, this solution may fail when the data sets are very

large.

Other works utilizing Markov Chains for sequential recommendation involve the work

Chapter 2. Related Work 51

by Shani et al. (Shani et al., 2005) who introduced a recommender based on Markov decision

processes (MDP) and also a MC based recommender. A sequential recommender based on

Markov model is presented (Zimdars et al., 2013) to extract sequential patterns and learn

the next state with a standard predictor, e.g., a decision tree. Rendle et al. (Rendle et al.,

2010) proposed a factorized personalized Markov chains (FPMC) that outperforms tradi-

tional recommendation models by combining sequential information with user preference

information. Despite the successful results of the FPMC, this model considers only the

previous order information of the user, and the calculation is complicated due to the sep-

aration of the sequential pattern matrix and the user preference matrix. Similarly, (He

and McAuley, 2016) presented a factorized sequential prediction with item similarity model

(Fossil) which includes the advantages of the aforementioned approach. Besides, it adds

the high-order Markov chains concept, and considers the item similarity model approach

proposed by Kabbur et al. (Kabbur et al., 2013). Although Fossil surpassed the other pre-

vious methods, it only relies on the user’s log information, so there is a limit to identifying

similarity between items. Some other works (Li et al.) proposed to use a model based

on topic-based hidden Markov Model to analyze temporal dynamics of users’ preference

which identifies the groups to which the users’ belong and recommend what topic user will

be mostly interested in reading. Scholarswalk, another Markov Model random-walk-based

approach (Polyzou and Karypis, 2019) was proposed for generating sequential next course

recommendation for students by capturing the sequential relationships between different

courses.

In summary, Markov chain-based RS’s have some limitations, they can only capture the

short-term dependencies while ignoring long-term ones due to the Markov property which

assumes that the current interaction depends on one or several most recent interactions

only; on the other hand, they can only capture the point-wise dependencies while ignoring

the collective dependencies over user-item interactions.

2.2.2.3 Neural Network Based

Neural networks (Nielsen, 2015) have natural strength to model and capture the compre-

hensive relations over different entities (e.g., users, items, interactions) in a sequence. Many

deep neural networks for modeling sequential behavior have been studied including Recur-

Chapter 2. Related Work 52

rent Neural Networks (RNN), Convolutional Neural Networks and Graph Neural Networks.

In the next subsections, we provide a review of neural network based sequential recommen-

dation methods sub-classified as deep neural networks (Multi layer Perceptrons, Recurrent

Neural Networks, convolutional Neural Networks, Graph Neural Networks) and advanced

models (Attention Models, Memory Models, Mixture Models, Adversarial Networks).

2.2.2.3.1 Deep Neural Network Methods

Deep learning has its origins from the field of artificial neural networks (Silver et al., 2016).

It deals with training multi-layer artificial neural networks. Deep learning is an evolving field

in machine learning research (Zhu et al., 2017) and it aims to interpret data (e.g., sounds,

images and texts) (Guo et al., 2017) by mimicking the function of human brain. Hinton

et al. (Hinton et al., 2006) proposed the idea of deep learning in 2006. In deep learning,

low level features are combined to generate a high level abstract representation of features

(e.g., attribute categories). This high level feature representation facilitates the discovery

of distributed representation of features in the data. Multi Layer Perceptrons- A fully

connected multi-layer neural network is called a Multilayer Perceptron (MLP). It has three

layers, input layer, output layer and one or more hidden layer(s). The inclusion of more

than one hidden layer in the architecture makes it a deep neural network. MLPs can also

be interpreted as multiple layers stacked together performing non-linear transformations to

learn hierarchical feature representations. A Multilayer perceptron begins with the input

layer and forwards the data to the output layer after going through processing at the hidden

layer(s). Depending on the output, the error (difference between the actual outcome and

the predicted outcome) is computed and to minimize the error, it is back propagated to

the model. The weights at each layer are adjusted after computing the derivate and the

model is updated. This process is repeated until the ideal weights are learned and error

is minimized (i.e., models’ prediction accuracy improves). The number of layers and the

number of neurons are the hyper-parameters of the model and can be tuned (to find ideal

values) for optimized performance.

For next basket recommendation, NNrec (Wan et al., 2015) utilised neural network. It

predicts a user’s next basket by capturing the local context in user’s last k baskets. The

proposed model has four layers as: (1) input layer, which inputs a one hot vector encoding of

Chapter 2. Related Work 53

user id and item id’s present in user’s recent k baskets, (2) embedding layer, which performs

an average pooling operation (down-sampling the input by extracting important features)

to product user’s basket vector representations, (3) hidden layer, inputs the concatenated

k basket vectors and user vector from the embedding layer and finally the (4) output layer,

which predicts the probabilities (using a Softmax function) of each candidate item to be in

user’s next basket.

HRM (Wang et al., 2015) is another MLP based model for next basket recommendation.

It aims to find correlations between users’ long term and short term preferences. The model

has two aggregation layers where each layer performs any of the max pooling or average

pooling operation to extract important features from the input. The first layer finds item

correlations in user’s recent basket (short term preferences) by forming transaction level

item vector representations and the second layer models users’ general interests (long term

preferences) by learning user representation among all users. The next items in the basket

are then predicted on the basis of this learnt hybrid representations.

2.2.2.3.2 Recurrent Neural Networks Recurrent Neural Networks (RNNs) are type

of neural networks that are suitable for sequence problems. Given a sequence of historical

user-item interactions, an RNN-based RS tries to predict the next possible interaction

by modelling the sequential dependencies over the given interactions. A basic RNN is

a standard feed-forward Multilayer Perceptron Network (MLP) architecture (a network

with single input, multiple hidden and single output layer) with addition of loops to the

architecture. RNN’s have internal memory which helps the model to store important things

about the input and enables it to predict precisely about what is coming next. For this

reason, RNN’s are preferred for sequential data like time series, speech, text, financial data,

audio, video and weather. They are designed to handle variable length sequence data.

Figure 2.4 shows architecture of an RNN model.

A walk through example for next item prediction using RNN is provided in (Example

2.8).

Problem : Given a sequence of historical user-item interactions, predict the next pos-

sible interaction by modelling the sequential dependencies over the given interactions.

Chapter 2. Related Work 54

Figure 2.4: Architecture of an RNN Model

Example 2.8. Walk Through Example for next item prediction using RNN

A sample example is shown to explain the working of RNN based on (Hidasi et al.,

2016c). A Gated Recurrent Unit (GRU)-based RNN for session-based recommendation

(GRU4Rec) was proposed. The main contribution was to propose modification to GRU by

introducing session parallel mini batches (to handle variable length sequences) and mini-

batch based output sampling (to provide ranking on a subset of items). The input is the

actual state of session with 1-of-N encoding, where N is the number of items. The coordi-

nate will be 1 if the corresponding item is active in this session, otherwise 0. The output is

the likelihood of the item being next in the session for each item. It starts by taking input of

user click sessions and then creating an order for the sessions. The first event of each of the

first X sessions forms the input of the first mini-batch. The second mini-batch is formed

from the second events and so on. If any of the sessions end, the next available session

is put in its place. The desired output is the second events of active sessions. Sessions

are considered to be independent, thus the appropriate hidden state (GRU) is reset to zero

when this switch occurs. A user click session consists of session id, item id and time stamps.

Actual vocabulary size is in 100 and millions, but for the example, here, small vocabulary

size of three items is used.

Input: User click sessions, hidden unit dimension=3, input layers=3, output layer=3,

mini-batch size=3, weight vectors (U,V,W) as U =


−0.75 0.50

−0.25 0.00

0.25 0.25

, W =

0.10 −0.25

0.50 0.50

 ,

V =

−0.90 0.45 0.00

0.15 0.25 0.10

, item vocabulary = purse, wallet, mobile, laptop

Output: likelihood of item being next in the sequence

Chapter 2. Related Work 55

Table 2.17: User click sessions

Session No. Click Sequences
S1 purse,wallet,laptop,mobile
S2 wallet,laptop,mobile
S3 mobile,purse,wallet,wallet,laptop,laptop
S4 mobile,purse
S5 wallet,laptop,mobile

Table 2.18: One-N hot vector encoding

Timestep Input (Parallel -mini batches) (1-N hot vector encoding)
1 (purse,wallet,mobile) (1,0,0,0,1,0,0,0,1)
2 (wallet,laptop,purse) (0,1,0,0,0,1,1,0,0)
3 (mobile,mobile,wallet) (0,0,1,0,0,1,0,1,0)

Step 1: Parallel Mini batch creation

The mini batch will be created by taking the first event of each of the first X ses-

sions to form the input of the first mini-batch (the desired output is the second events

of active sessions). Table 2.17. shows sample click sessions. Here we use batch size

=3. So, mbtch1=(purse,wallet,mobile), mbtch2= (wallet,laptop,purse), mbtch3= (mo-

bile,mobile,wallet). Then create encodings as shown in Table 2.18, where presence of 1

indicates item position in the vector.

Step 2: Hidden layer Processing (Score calculation on items)

Pass the input word vector X0 (input) at each timestep into the RNN cell to compute

the next hidden state st using equation:

st = σ (xtU + st−1W) .

So, after substituting the values,we get the states as follows:

s1 = σ

[
1 0 0

]
∗


−0.75 0.50

−0.25 0.00

0.25 0.25

 +
[

0 0
]

= σ[−0.75 0.50] =
[

0.32 0.62
]

s2 = σ

[
0 1 0

]
∗


−0.75 0.50

−0.25 0.00

0.25 0.25

 +
[

0.32 0.62
]
∗

 0.10 −0.25

0.50 0.50

 = σ

[
0.9 0.23

]

=
[

0.71 0.55
]

Chapter 2. Related Work 56

s3 = σ

[
0 0 1

]
∗


−0.75 0.50

−0.25 0.00

0.25 0.25

 +
[

0.71 0.55
]
∗

 0.10 −0.25

0.50 0.50

 = σ

[
0.59 0.7

]

=
[

0.64 0.66
]

s4 = σ

[
0.64 0.66

]
∗

 0.10 −0.25

0.50 0.50

 = σ

[
0.39 0.17

]
=

[
0.59 0.54

]
, similarly,

s5 =
[

0.57 0.52
]

,

s6 =
[

0.57 0.52
]

Step 3: Prediction at timestep t

Calculating the output at each timestep using ot = softmax(Vst), where V are the

weights at output layer and st is the previously calculated hidden state.

o4 = softmax
[

0.59 0.54
]
∗

 −0.90 0.45 0.00

0.15 0.25 0.10

 = softmax
[
−0.45 0.40 0.05

]
Now using formula for calculating Softmax which is:

S(yi) = eyi∑
eyj , hence,

S(−0.45) = e−0.45

e−0.45+e0.40+e0.05 ,

similarly Softmax for 0.40 and 0.05 are also computed which gives us the output at this layer as o4,

o4 =
[

0.07 0.18 0.12
]

, similarly,

o5 =
[

0.20 0.46 0.33
]

,

o6 =
[

0.20 0.46 0.33
]

Step 4: Item Ranking From output o4, o5 and o6, the results show likelihood for

items to be next in the sequence.e.g., we have the output from the layers as:

Chapter 2. Related Work 57

Table 2.19: Scores and items’ rank

Time
step

Item
Scores

Scores
(descending)

Item
Order Expected order

1 (0.07,0.18,0.12) (0.18,0.12,0.07) Wallet,Mobile,Purse Wallet , Mobile. . .
2 (0.20,0.46,0.33) (0.46,0.33,0.20) Wallet,Mobile,Purse Laptop, Purse.

o4 =


0.07

0.18

0.12

 , o5 =


0.20

0.46

0.33

 o6 =


0.20

0.46

0.33


which means in o4 out of three items “Purse, wallet and mobile”, it ranked “wallet” as

expected to be the next item (0.18) with high probability. In the next timestep t4 and t5

the output ranked wallet with the high score i.e. 0.46. wheraes we expect for items “laptop”

and “mobile”. However, the results may vary depending on the selection of weights. So,

from this we can see that the model has ranked “wallet” as the next item in sequence for

the next minibatch which is the same as the actual item in the next mini batch (next in

sequence). The items are ordered according to their probability (descending order) and

their position is their rank as shown in Table 2.19. If the recommended (predicted) item is

not as the actual item, loss is computed and weights are updated by backpropagation.

Step 5: Loss Computation:

Expected loss is:

Ls = 1
Ns
·

Ns∑
j=1

σ (rs,j−rs,i) + σ
(
r2

s,j

)
(2.13)

Where Ns is the number of samples in the session and rs,i is score on item i (next

desired item) and rs,j are scores on negative samples which are taken from other sessions

not present in the current session showing customer dislike. Hence,

Ls = 1/3 ∗ σ(0.46− 0.18) + σ(0.46)2

= 0.37

Similarly, loss for all sessions will be calculated for each epoch. After each epoch,

the weight matrices U , W and V will be updated using Back Propagation Through Time

(BPTT). Update to each weight matrix is proportional to the gradient of the error with

Chapter 2. Related Work 58

respect to that matrix and BPTT computes the gradients using the chain rule. Figure 2.5

shows the computation steps by RNN architecture to generate the final recommendation

for example 2.6.

Figure 2.5: Recommended items (output) through RNN model for example 2.8

Some other variants of RNN’s are proposed to capture more complex dependencies in a

sequence, like hierarchical RNN (Quadrana et al., 2017). An extension to GRU4Rec (Hidasi

et al., 2016c) was proposed (Tan et al., 2016) by providing four main features which are

(1) click sequence augmentation, (2) temporal change adaptation, (3) privilege information

usage and (4) using item embedding. Smirnova et al. (Smirnova and Vasile, 2017) pro-

posed the use of contextual information besides considering the user’s past sequence. They

suggest using context such as the time gaps between events and the time of day for each

interaction and the associated types of user-item interactions. Additionally, a new class of

Contextual Recurrent Neural Networks for Recommendation (CRNNs) was proposed which

incorporates the contextual information both in the input and output layers and modifies

the behavior of the RNN by combining the context embedding with the item embedding.

One of the limitations of the previous session-based systems was that they were un-

able to capture evolution in user preferences across sessions. The reason being that those

approaches handled sessions independently and there is no cross transfer of information

across sessions. This issue was addressed through a hierarchical RNN (Quadrana et al.,

Chapter 2. Related Work 59

2017). The model consists of a hierarchy of two GRUs, the session-level GRU (GRUses)

and the user-level GRU (GRUusr). The session-level GRU models the user activity within

sessions and generates recommendations. The user-level GRU(GRUusr) models the evolu-

tion of the user across sessions and provides personalization capabilities to the session-level

GRU by initializing its hidden state and, optionally, by propagating the user representation

in input. Another study (Hidasi et al., 2016c) introduced a parallel architecture consisting

of multiple RNN’s (p-RNN) for session-based recommendation. Three GRUs are used for

learning item representations from text feature vectors, image features and one-hot vectors.

To predict next item in the session, output of the three GRUs are weightedly concatenated

and fed into a non-linear activation. They categorize the architecture as baseline RNN and

Parallel RNN’s. The idea is to first create multiple base line models each with a different

item representation such as item ID, image and text. The proposed parallel architectures

use a subset of the above three item representations (ID, image or text) as input. The out-

put is a score for every item indicating the likelihood of being the next item in the session.

The hidden states of these networks are merged to produce the score for all items. As a

baseline, the standard best RNN setting from GRU4Rec15 was choosen. The input of the

networks is the item ID of a transaction.

In a different study, a two stage GRU based RNN interactive recommendation model

was introduced (Christakopoulou et al., 2018) which first asks users about topics of interest

and then recommend items such as videos. This first stage is Question ranking. It involves

capturing user interest by asking questions about the topic of their interest. The second

stage is video response model (ranking stage model) which will predict Top-K videos based

on the feedback (selected topic) from stage 1.

In summary, RNN’s turns out to be promising models for modeling sequential depen-

dencies between items, however they suffer from some limitations: (1) it is easy to generate

fake dependencies due to the overly strong assumption that any adjacent interactions in a

sequence must be dependent, which may not be the case in the real world because there

are usually irrelevant or noisy interactions inside a sequence; and (2) it is likely to capture

the point-wise dependencies only while ignoring the collective dependencies (e.g., several

interactions collaboratively affect the next one), and (3) difficulty to train the model and

optimize hyper parameters.

Chapter 2. Related Work 60

Convolutional Neural Networks- A Convolutional Neural Network (CNN) is a feed-

forward neural network and consists of convolution layers, pooling layers, and feed-forward

full-connected layers. It can efficiently capture the local and global features in the input.

For example, common applications include processing time series and image data such as

finding correlations between pixels in a specific part of an image or finding dependencies

between various adjacent words in a sentence (Tang and Wang, 2018, Yuan et al., 2019).

For sequential recommendation, given a sequence of user-item interactions, a CNN

first generates embeddings of these user-item interactions and creates a matrix of these

embeddings. This matrix is then treated as an “image” in time and space. The CNN then

uses convolutional filters to learn sequential patterns considering them as an image’s local

features and generates next recommendations. CNN’s however, are not able to effectively

capture long term dependencies due to limitation in the size of filters used. Some research

works such as 3D-CNN (Tuan and Phuong, 2017) concatenated the embeddings of item id,

name, and category to create the input embedding matrix for the CNN. CASER (Tang

and Wang, 2018), another Convolutional Neural Network (CNN) based method provides

sequential recommendation by applying convolution operations on the embedding matrix

of L most recent items. It views the embedding matrix of L previous items as an ‘image’,

and then captures the sequential patterns using horizontal and vertical convolutional layers.

Long term preferences are also captured through user embedding. NextitNet (Yuan et al.,

2019), a CNN model proposes to capture short and long term item dependencies through

the use of residual block structure.

Graph Neural Networks- Recently, Graph Neural Networks (GNN) based systems

have been adapted to sequential recommendation. They can capture complex relations and

dependencies between user-item interactions in a sequence. These systems work by con-

structing a directed graph on the sequence data. Each interaction is considered as a node

in the graph and each sequence gets mapped to a path in the graph. In the next step,

user and item embeddings are learnt on the graph and complex relationships are embed

into the graph (Wu et al., 2019). A Graph Neural Network based sequential recommender

system (SDE-GNN) (Guo et al., 2021) captures sequential dependencies and item transi-

tion relations within sessions for generating accurate next item recommendations. Another

recommender system (Xiao et al., 2020) generates unified friend and item recommenda-

Chapter 2. Related Work 61

tion by incorporating a mutualistic mechanism which models mutual relationships between

consumption and social behaviour of users.

A Hierarchical and Interactive Gate Network (HIGnet) model for items’ rating predic-

tion is proposed (Zhong et al., 2020) which explores users’ and items’ textual features to

capture their correlations by modeling informativeness of local words and captures global

semantics from customer reviews in a hierarchical way. GNN (Zhou et al., 2020) is proposed

to collectively aggregate information from graph structure. Wu et al. (Wang et al., 2018a)

first used GNN for session-based recommendation by capturing more complex relationships

between items in a sequence, and each session is represented as the composition of the long-

term preference and short-term interests within a session using an attention network. Wu

et al. (Wang et al., 2018a) fused GNN for session-based recommendation and proposed to

model each session as a directed graph. Session representations include local and global ses-

sion embeddings and the probabilities of next items are computed based on representations

from sessions and item embeddings.

A deep listNet framework proposed by Wu et al. (Wu and Yan, 2017) with two phases

as : (1) SIE, which performs pooling operation (average or max) to create click and view

embedding vectors from user’s interaction sequences. These are then concatenated with

user and target item embedding. A feed forward network then learns a sessions’ hybrid

representation according to the concatenation. (2) List wise ranking, which computes rele-

vance score between candidate items and session representations. These techniques capture

high-order sequential interaction between items and users, however, they usually require a

high computational time and are complex.

2.2.2.3.3 Advanced Deep Neural Networks

Attention Models- Attention mechanisms are also used for sequential recommendation.

Given a user’s historical behaviour (sequence), these models aim to identify items more

relevant to the user. They focus more on interactions that are important in a sequence

and ignore the ones that are less relevant. An encoder-decoder based attention framework

NARM7 (Li et al., 2017) is proposed for transaction based sequential recommendation.

The encoder is a hybrid of global and local encoder where the local encoder uses RNN

Chapter 2. Related Work 62

with vanilla attention (which uses a linear combination of previous hidden vectors in the

input sequence) to capture user’s interest in a sequence and the global encoder uses RNN

for modeling sequential dependencies between items in the current sequence. A unified

representation for the sequence is then obtained from this hybrid encoder. Wang et al.

(Wang et al., 2018b) also utilised vanilla mechanism and reduces impact of irrelevant in-

teractions (e.g., accidental clicks, views) by assigning weights to each items. A short term

attention model proposed by Li et al. (Li et al., 2017), computes (a) items’ attention score

in a sequence and (b) attention correlation between most recent and previous items in a

sequence. A hierarchical attentive architecture (Bai et al., 2018) deploys attention mecha-

nism at item feature level and identifies users’ preferences towards items SASRec (Kang and

McAuley, 2018a) uses attention mechanism to capture long term user preferences and uses

user’s historical sequence to identify preferences for next items. The model comprises of an

embedding and self attention layer along with a feed forward network. The model can learn

complex transitions between items by including additional attention layer and feed forward

network (self attention blocks) in the architecture. The probability of a candidate item to

be the next item (recommended next item in a sequence) is computed as a result of the

output of the self attention block. BERT4Rec (Sun et al., 2019a), a Sequential Recommen-

dation model with Bidirectional Encoder Representations from Transformer utilizes deep

bidirectional self-attention mechanism for modeling user behavioral sequences and learns a

bidirectional representation model which makes recommendations by allowing each item in

users’ historical behavior to integrate information from both left and right sides in given

sequence. Zhang et al. (Zhang et al., 2018a) infers relationships between items by accepting

an input of an item embedding vector, and predicts the next item by combining user’s short

term and long term preferences by estimating item weights in user’s sequence using self

attention and a metric learning framework respectively.

Memory Models- Memory Models utilise an external memory matrix to store and

then later update the historical user-item interactions in a given sequence. This facilitates

to find dependencies between historical and future user-item interactions dynamically and

explicitly, hence improving model effectiveness and reducing interactions that are irrelevant

(Chen et al., 2018). Some other works (Huang et al., 2018a) proposed to use a key-value

memory network to store and then later update the historical user-item interactions to

Chapter 2. Related Work 63

better learn user preferences for recommendation.

Mixture Models- A mixture model (Kang et al., 2018, Tang et al., 2019) generates

sequential recommendation by integrating different sub models where each sub model cap-

tures different dependencies and contributes to the models’ performance in generating better

sequential recommendation. To learn short term and long term dependencies, (Tang et al.,

2019) combines encoders of different kinds where each encoder learns a representation of a

sequence to generate subsequent next recommendations.

Adversarial Networks- The Adversarial Network (AN) (Goodfellow et al., 2014) is a

Generative Neural Network (GNN) which consists of a discriminator and a generator. The

two neural networks (discriminator and generator) are simultaneously trained by competing

with each other in a minimax game framework. Recently, generative adversarial networks

(GANs) have been used in deep learning fields for image and audio generation (Zheng

et al., 2019). GAN works on the principle of playing an adversarial minimax game between a

generator and a discriminator. The task of the generator is to (i) capture distribution of real

observed data, (ii) generate samples which are adversarial and (iii) fool the discriminator.

The discriminator on the other hand focus on distinguishing whether the input sample is

generated by the generator. Recommendation Systems DAN (Wang et al., 2019a) utilises

an adversarial approach and transfers the representation of items and users to the target

domain from different domains. Another GAN based model, AB-GAN (Zheng et al., 2019)

a virtual try on clothing model which generates images for 2D images modeling. Using

four features including user-image feature, desired-posture feature, body shape mask and

new clothing feature, it generates an image of the user wearing new clothes. The generator

creates the person’s original image to ensure that data distribution is similar to the real

image.

Some other Sequential Recommendation Systems (Nasir and Ezeife, 2020, Nasir et al.,

2021) explored to integrate items’ semantic knowledge obtained by utilizing item (prod-

ucts’) meta data (e.g., title, description and brand) according to their semantic context

(co-purchased and co-reviewed products) into the sequential recommendation process. The

authors used Distributional hypothesis (Sahlgren, 2008) (which assumes that words which

are similar in meaning occur in similar contexts), to learn an item’s representation by

analyzing the context in which they are used and then captures the semantics of these user-

Chapter 2. Related Work 64

item interactions using techniques of Prod2Vec (Grbovic et al., 2015), Glove (Pennington

et al., 2014), TF-IDF (Salton, 1988) and DoctoVec (Mikolov et al., 2013). The extracted

items’ semantic knowledge is then integrated into different recommendation phases such as

pre-processing, candidate generation and the output (recommendation) phases.

A summary of Sequential Recommendation Systems as classified in the taxonomy based

on the techniques used to build those systems along with their limitations and notable

research works is presented in Tables 2.20, 2.21 and 2.22.

2.2.2.4 Classification of Traditional Sequential Recommendation Systems ac-

cording to Features

2.2.2.4.1 Types of Sequences

Sequences in the database may represent information regarding single dimension or multiple

dimensions. Below we will discuss both of these sequence types.

Single Dimensional Sequences- These are the sequences which represent only one as-

pect (dimension) of customers’ transactions (for example, sequences representing products

purchased by customers). Consider Table 2.23 which shows a single dimension sequence

database which shows purchase sequences of four customers where SID represents the se-

quence ID to represent a unique customer and the sequence represents the items bought

by the customer on different timestamps. For example, the customer with SID 100 has

the purchase sequence < (be)(ce) >, representing two events, each comprising of two items.

This shows that the customer first purchased items b and e together and then later on a dif-

ferent time stamp purchased items c and e together. Since, no other information besides the

items purchased is represented by the sequence, these sequences are single dimensional. To

mine frequent sequential purchase patterns according to a minimum support threshold from

this single dimensional sequence database, any of the sequential pattern mining algorithms

such as GSP (Agrawal and Srikant, 1995), SPAM (Ayres et al., 2002), Prefix Span (Jian

Pei et al., 2001) and PLWAP (Ezeife et al., 2005) can be used as given the same sequence

database and the minimum support threshold, any sequential pattern algorithm will yield

same set of frequent sequential patterns and will only differ in the process of generating

sequential patterns (i.e., the structure for extracting sequential patterns).

Chapter 2. Related Work 65
T

ab
le

2.
20

:
Su

m
m

ar
y

of
Se

qu
en

tia
lR

ec
om

m
en

da
tio

n
Sy

st
em

A
pp

ro
ac

he
s

C
at

eg
or

y
Su

b-
C

at
eg

or
y

L
im

it
at

io
ns

R
es

ea
rc

h
W

or
k

Tr
ad

iti
on

al
A

pp
ro

ac
he

s
Se

qu
en

ce
Si

m
ila

rit
y

M
at

ch
in

g

·
St

at
ic

-C
an

no
t

le
ar

n
us

er
’s

ev
ol

vi
ng

pr
ef

er
en

ce
s

·
It

em
sim

ila
rit

y
co

m
pu

te
d

us
in

g
ex

ac
t

pr
od

uc
t

m
at

ch
(e

.g
.,

na
m

e)
,n

o
ot

he
r

co
nt

en
t

at
tr

ib
ut

e
in

fo
rm

at
io

n
in

cl
ud

ed
·

Se
qu

en
ce

ca
n

on
ly

ha
nd

le
on

e
ev

en
t

ty
pe

(e
.g

.,
cl

ic
k/

pu
rc

ha
se

ev
en

ts
)

·
N

o
us

e
of

sid
e

in
fo

rm
at

io
n

(u
se

rs
/i

te
m

s)
·

D
o

no
t

ca
pt

ur
e

te
m

po
ra

l
in

fo
rm

at
io

n

(X
ia

o
an

d
Ez

ei
fe

,2
01

8)
,

(Z
ha

ng
an

d
C

ao
,2

01
3)

,
(G

ur
ba

no
v

an
d

R
ic

ci
,2

01
7)

,
(S

on
g

an
d

Ya
ng

,2
01

4)
,

(S
al

eh
ia

nd
N

ak
ha

iK
am

al
ab

ad
i,

20
13

)

Se
qu

en
tia

lP
at

te
rn

M
in

in
g

·
D

ep
en

ds
on

ch
oi

ce
of

su
ita

bl
e

th
re

sh
ol

d
fo

r
m

in
su

pp
or

t

·
U

na
bl

e
to

ge
ne

ra
te

pa
tt

er
ns

th
at

ar
e

le
ss

fr
eq

ue
nt

(m
ay

be
of

in
te

re
st

to
th

e
ta

rg
et

us
er

)
·

C
an

no
t

m
od

el
in

di
vi

du
al

us
er

’s
pr

ef
er

en
ce

s
(la

ck
of

pe
rs

on
al

iz
at

io
n)

·
C

an
no

t
in

fe
r

se
m

an
tic

re
la

tio
n-

sh
ip

s
be

tw
ee

n
ite

m
s

·
O

nl
y

re
co

m
m

en
di

ng
fr

eq
ue

nt
(p

op
ul

ar
)

pr
od

uc
ts

(B
ha

tt
a

et
al

.,
20

19
),

(S
ai

ni
et

al
.,

20
17

),
(C

ho
ie

t
al

.,
20

12
),

(Y
ap

et
al

.,
20

12
),

(R
ud

in
et

al
.,

20
11

),
(P

ar
am

es
w

ar
an

et
al

.,
20

10
),

(L
iu

et
al

.,
20

09
),

(M
ob

as
he

r
et

al
.,

20
02

)
(A

gr
aw

al
an

d
Sr

ik
an

t,
19

95
)

Fa
ct

or
iz

at
io

n
an

d
La

te
nt

R
ep

re
se

nt
at

io
n

Fa
ct

or
iz

at
io

n
Te

ch
ni

qu
es

.L
at

en
t

R
ep

re
se

nt
at

io
ns

ar
e

no
t

in
te

rp
re

ta
bl

e
.S

ca
la

bi
lit

y
iss

ue
s

.G
oo

d
fo

r
on

ly
pa

rt
ic

ul
ar

ty
pe

of
fe

ed
ba

ck
(e

.g
.,

im
pl

ic
it

us
er

be
ha

vi
or

)

(Z
en

g
et

al
.,

20
19

),
(P

as
ric

ha
an

d
M

cA
ul

ey
,2

01
8)

,
(W

an
an

d
M

cA
ul

ey
,2

01
8)

,
(H

e
an

d
M

cA
ul

ey
,2

01
6)

,
(L

ia
n

et
al

.,
20

19
),

(Z
ha

o
et

al
.,

20
12

)
(R

en
dl

e
et

al
.,

20
10

)

Chapter 2. Related Work 66

T
ab

le
2.

21
:

Su
m

m
ar

y
of

Se
qu

en
tia

lR
ec

om
m

en
da

tio
n

Sy
st

em
A

pp
ro

ac
he

s
(c

on
tin

ue
d

fr
om

Ta
bl

e
2.

20
)

C
at

eg
or

y
Su

b-
C

at
eg

or
y

L
im

it
at

io
ns

R
es

ea
rc

h
W

or
k

Fa
ct

or
iz

at
io

n
an

d
La

te
nt

R
ep

re
se

nt
at

io
n

M
ar

ko
v

M
od

el
s

.C
an

on
ly

m
od

el
sh

or
t

te
rm

de
pe

nd
en

ci
es

(u
pt

o
a

lim
ite

d
no

.
of

st
at

es
)

.T
ra

ns
iti

on
pr

ob
ab

ili
ty

m
at

rix
su

ffe
rs

fr
om

am
bi

gi
uo

s
pr

ed
ic

t-
io

n
pr

ob
le

m
(s

am
e

pr
ob

ab
ili

ty
fo

r
tr

an
sit

io
ni

ng
to

ne
xt

st
at

e)
an

d
sp

ar
sit

y
(la

ck
of

us
er

-it
em

in
te

ra
ct

io
ns

)

(B
er

nh
ar

d
et

al
.,

20
16

),
(T

av
ak

ol
an

d
B

re
fe

ld
,2

01
4)

,
(S

ah
oo

et
al

.,
20

12
),

(S
ha

ni
et

al
.,

20
05

),
(B

ra
fm

an
et

al
.),

(D
es

hp
an

de
an

d
K

ar
yp

is)
,

(Z
im

da
rs

et
al

.,
20

13
)

D
ee

p
N

eu
ra

l
N

et
w

or
k

B
as

ed

M
ul

til
ay

er
Pe

rc
ep

tr
on

s

.
Se

ns
iti

ve
to

fe
at

ur
e

sc
al

in
g

.
H

yp
er

pa
ra

m
et

er
tu

ni
ng

(e
.g

.,
no

.
of

la
ye

rs
,i

te
ra

tio
ns

)

(X
ia

o
et

al
.,

20
20

),
(D

zi
ug

ai
te

an
d

R
oy

,2
01

5)
,

(L
ia

n
et

al
.,

20
17

),
(W

an
g

et
al

.,
20

17
),

(X
ue

et
al

.,
20

17
),

(Z
ha

ng
et

al
.,

20
18

b)

R
ec

ur
re

nt
N

eu
ra

l
N

et
w

or
ks

.A
ss

um
es

th
at

ad
ja

ce
nt

in
te

ra
ct

-
io

ns
in

a
se

qu
en

ce
m

us
t

be
de

p-
en

de
nt

(w
hi

ch
m

ay
no

t
be

tr
ue

)
.D

iffi
cu

lt
to

tr
ai

n
m

od
el

an
d

fin
d

op
tim

al
hy

pe
r

pa
ra

m
et

er
s

.I
nt

er
pr

et
ab

ili
ty

is
lo

w

(H
id

as
ie

t
al

.,
20

16
a,

b,
c)

,
(V

ill
at

el
et

al
.,

20
18

),
(D

on
ke

rs
et

al
.,

20
17

)
(W

u
et

al
.,

20
17

),
(Y

u
et

al
.,

20
16

),
(C

hr
ist

ak
op

ou
lo

u
et

al
.,

20
18

),
(Q

ua
dr

an
a

et
al

.,
20

17
),

(T
an

et
al

.,
20

16
)

C
on

vo
lu

tio
na

lN
eu

ra
l

N
et

w
or

ks

.C
an

be
slo

w
er

du
e

to
m

ax
-

po
ol

in
g

op
er

at
io

n
.D

iffi
cu

lty
in

im
ag

e
cl

as
sifi

ca
tio

n
if

th
e

im
ag

e
is

til
te

d
or

ro
ta

te
d

A
po

ss
ib

le
so

lu
tio

n
is

to
us

e
da

ta
au

gm
en

ta
tio

n
du

rin
g

cl
as

s-
ifi

ca
tio

n
.R

eq
ui

re
s

lo
ts

of
tr

ai
ni

ng
da

ta

(T
an

g
an

d
W

an
g,

20
18

),
(T

ua
n

an
d

Ph
uo

ng
,2

01
7)

,
(Y

ua
n

et
al

.,
20

19
),

(H
su

et
al

.,
20

16
)

Chapter 2. Related Work 67
T

ab
le

2.
22

:
Su

m
m

ar
y

of
Se

qu
en

tia
lR

ec
om

m
en

da
tio

n
Sy

st
em

A
pp

ro
ac

he
s

(C
on

tin
ue

d
fr

om
Ta

bl
e

2.
21

)

C
at

eg
or

y
Su

b-
C

at
eg

or
y

L
im

it
at

io
ns

R
es

ea
rc

h
W

or
k

D
ee

p
N

eu
ra

l
N

et
w

or
k

B
as

ed
G

ra
ph

N
eu

ra
l

N
et

w
or

ks

.U
se

of
sa

m
e

pa
ra

m
et

er
s

ac
ro

ss
di

ffe
re

nt
la

ye
rs

.
D

iffi
cu

lty
in

eff
ec

tiv
e

m
od

el
in

g
of

in
fo

rm
at

iv
e

fe
at

ur
es

on
gr

ap
h

ed
ge

s

(G
uo

et
al

.,
20

21
),

(X
ia

o
et

al
.,

20
20

),
(W

u
et

al
.,

20
19

),
(W

u
an

d
Ya

n,
20

17
),

(S
ac

hd
ev

a
et

al
.,

20
19

),
(Z

ho
ng

et
al

.,
20

20
),

(Z
ho

u
et

al
.,

20
20

)

A
dv

an
ce

d
D

ee
p

Le
ar

ni
ng

M
od

el
s

A
tt

en
tio

n
M

od
el

s

.A
dd

iti
on

of
m

or
e

w
ei

gh
t

pa
ra

m
et

er
s,

he
nc

e
in

cr
ea

se
d

m
od

el
tr

ai
ni

ng
tim

e

(W
an

g
et

al
.,

20
18

b)
,(

Y
in

g
et

al
.,

20
18

),
(L

ie
t

al
.,

20
17

),
(L

iu
et

al
.,

20
18

),
(R

en
et

al
.,

20
19

),
(S

ac
hd

ev
a

et
al

.,
20

18
),

(B
ai

et
al

.,
20

18
),

(K
an

g
an

d
M

cA
ul

ey
,2

01
8a

),
(S

un
et

al
.,

20
19

a)
,(

Zh
an

g
et

al
.,

20
18

a)

M
em

or
y

N
et

w
or

ks

.A
n

in
cr

ea
se

in
ea

ch
su

pp
or

tin
g

m
em

or
y

le
ve

lk
,l

ea
ds

to
an

in
cr

ea
se

in
th

e
em

be
dd

in
g

m
at

-
rix

siz
e

ac
co

rd
in

g
to

m
od

el
s’

vo
ca

bu
la

ry
siz

e
w

hi
ch

be
co

m
es

im
pr

ac
tic

al
fo

r
hu

ge
vo

ca
bu

-
la

rie
s

(e
.g

.,
w

ith
th

ou
sa

nd
s

of
w

or
ds

)

(C
he

n
et

al
.,

20
18

),
(H

ua
ng

et
al

.,
20

18
b)

M
ix

tu
re

M
od

el
s

.
Id

en
tifi

ab
ili

ty
(e

xi
st

en
ce

of
a

un
iq

ue
ch

ar
ac

te
riz

at
io

n
fo

r
an

y
on

e)
of

th
e

m
od

el
s

w
hi

ch
re

qu
ire

s
m

in
or

co
ns

tr
ai

nt
s

fo
r

es
tim

at
io

n
(e

.g
.,

in
ca

se
of

fin
ite

m
ix

tu
re

m
od

el
s)

(T
an

g
et

al
.,

20
19

),
(W

an
g

et
al

.,
20

19
b)

,
(K

an
g

et
al

.,
20

18
)

A
dv

er
sa

ria
lN

et
w

or
ks

.M
od

e
co

lla
ps

e
(o

cc
ur

s
w

he
n

th
e

ge
ne

ra
to

r
on

ly
pr

od
uc

es
a

sin
gl

e
ou

tp
ut

ty
pe

or
a

sm
al

l
se

t
of

ou
tp

ut
s)

.N
on

-C
on

ve
rg

en
ce

(G
oo

df
el

lo
w

et
al

.,
20

14
),

(U
ng

er
et

al
.,

20
16

),
(W

an
g

et
al

.,
20

18
a)

Chapter 2. Related Work 68

Table 2.23: Single dimensional sequence data base

SID Sequences
100 (be)(ce)
101 (ah)abf
102 (bf)(ce)(fg)
103 (bd)cba

Table 2.24: Multidimensional sequence database

SID Cust_
type City Age_

range Sequence

100 Student Windsor young (be)(ce)
101 Manager Toronto middle (ah)abf

102 Skilled
Worker Toronto retired (bf)(ce)(fg)

103 Student Waterloo young (bd)cba

Multidimensional Sequences- In real world, most sequence patterns are associated

with different circumstances and such circumstances form a multiple dimensional space.

For example, customer purchase sequences are associated with location, time, customer

group and occupation etc. Consider Table 2.24, which shows a multidimensional sequence

database of customer purchases from Table 2.23 where the table now contains the columns

(cust_type, city, age_range) representing three dimensions (aspects) of customers’ infor-

mation along with their unique SID’s and purchase sequences. For example, for customer

with SID 100, we can see that he is a student from the Windsor region and of young age.

In other words, a multidimensional sequence will take the form as (ai,a2,.,an,S), where

ai represents the dimension and S represents the sequence. In this case, for customer with

SID 100, the multidimensional sequence will be represented as (student, Windsor, young,

< (be)(ce) >). A multidimensional sequence is said to match a tuple in a multidimensional

sequence data base if any of the dimensions in the multidimensional sequence matches with

the corresponding dimension in the multidimensional sequence database and the sequence

present in the multidimensional sequence is the subset of the sequence in the database. For

example, a multidimensional sequence M = (student, ∗, ∗, < (b) >) matches tuples 100 and

103 where ∗ in the multidimensional sequence represents any domain not present in the

sequence database and the support (no. of matching tuples) of M in the sequence data

base is 2.

Mining sequential patterns associated with multidimensional information are useful.

Chapter 2. Related Work 69

Table 2.25: Multidimensional Extension Sequence Database Created from Table 2.24

SID Sequences
100 (student Windsor young)(be)(ce)
101 (manager Toronto middle)(ah)abf
102 (skilled worker Toronto retired)(bf)(ce)(fg)
103 (manager waterloo middle)(bd)cba

Given a multidimensional sequence database and a minimum support threshold, a multi-

dimensional frequent sequential pattern will be the one whose support is greater than the

minimum support threshold and can be mined through embedding multidimensional in-

formation into sequences and then mine the whole set using a sequential pattern mining

method.

For example, consider Table 2.25 created as an extension from Table 2.24 by em-

bedding the multidimensional information in the sequence as a special element. For in-

stance, for tuple 100 in Table 2.24 (100, student, Windsor, young, < (be, ce) >), the se-

quence < (be)(ce) > in this tuple can be extended as < (studentWindsoryoung)(be)(ce) >

as shown in Table 2.25 (tuple 100). Other sequence can be extended in the similar fash-

ion. Next, multidimensional sequential patterns can be mined from this extended sequence

database by using any traditional sequential pattern mining algorithm such as Prefix Span

(Jian Pei et al., 2001).

2.2.2.4.2 Use of side Information (Customers’ & Items’ meta data)

Traditional information sources consist of gathering users’ interest on items by monitoring

their implicit or explicit behaviors.

Implicit- Implicit actions are captured by inferring how a user responds to an item.

For example, on an e-commerce site, which items a user has browsed, clicked, added to his

favourite items’ list, added to cart or purchased. These implicit actions indicate a user’s

interest on an item and are helpful in determining their future preferences. One way of ex-

pressing implicit behaviors is by storing binary values in the user item rating matrix where

a “1” indicates behavior on an item such as clicked or purchased and a “0” otherwise. A

disadvantage is that it cannot fully reflect users’ preference on the item as a value of “0”

does not necessarily mean that a user is not interested in the item. Since there are millions

Chapter 2. Related Work 70

Table 2.26: Historical Purchase Records of Customers

UID Clicks sequence Purchases sequence
1 (1,2,3),(7,5,3),(1,6),(6),(1,5) (1,2),(3),(6),(7),(5)
2 (1,4),(6,3),(1,2),(1,2,5,6) (1,4),(3),(2),(1,2,5,6)
3 (1,5),(6,5,2),(6),(5) (1), (2),(6),(5)
4 (2,7),(6,6,7) (2),(6, 7)

of products, it is very likely possible that the user is unaware of the existence of such items.

Explicit- Explicit behaviors are recorded when users’ explicitly provide feedback on

the item. A common example is rating an item on a five star scale where “1” is the lowest

rating and “5” is the highest. Another way of extracting users’ explicit feedback is from

text reviews. In this case, if the review is positive, a value of “1” is stored in the user-item

matrix, “0” for a neutral review and “-1” for a negative feedback. A common example is

extracting user’s preferences from the reviews they provide after consuming a product.

Auxiliary Input sources-These information sources complement the traditional in-

formation sources and can better reflect user’s interest by capturing more insights about

users’ behavior. These information can be classified as (a) user and item information (e.g.,

meta data), (b) information contributed by users (e.g., tags, geotags, multimedia content,

free comments and reviews) and (c) information associated with user-item interaction also

known as context. An example of such information can be when a user is interacting with

an item, such as purchasing an item, watching a movie or listening to a song (Adomavicius

and Tuzhilin, 2011).

2.2.2.4.3 Consequential Bond between Click stream and Purchase Data

User interactions (clicks, purchases) in e-commerce data contains information which can

be used to derive consequential bond (relationships) between these user interactions and

thus facilitate in understanding user preferences (Xiao and Ezeife, 2018). More specifically,

consequential bond refers to the concept that when a customer clicks on some items, it is

most likely that some of those clicked items will be purchased. For example, consider Table

2.26, presenting historical purchase data of various customers. We can see that customer

with user id 4 had clicked items 2 and 7 in a single transaction and notice that item 2 had

Chapter 2. Related Work 71

been purchased in that transaction. Similar patterns can be seen in the behaviour of other

customers which shows that there is a relationship between clicks and purchases and it can

be used to derive the consequential bond between clicks and purchases.

2.2.2.4.4 Use of Contextual Information (location, occasion, season)

Unlike the traditional recommendation systems which collects users’ preferences as ratings,

context aware systems also include the “contextual information” to understand users’ pref-

erences. Context represents a set of factors or situations under which a user interacted

with an item. For example, time, location, surroundings, purpose of purchase, device and

occasion while interacting with an item (Adomavicius and Tuzhilin, 2011). Each context

factor can be characterized by a structure such as the time factor can be described as sec-

onds, minutes, hours, days, months and years. Such contextual information can be gathered

from users’ implicit or explicit feedback. For example, a user’s rating for a hotel during her

summer vacation stay.

2.2.2.4.5 Structure for Extracting and Modeling Sequential Behaviour

Different structures are used by Sequential recommendation Systems for extracting and

modeling sequential behaviours. In traditional Sequential Recommendation Systems uti-

lizing sequence similarity matching (Sect. 2.2.2.1.1), the technique of longest common

sub-sequence is used to find the matching sequences for recommendation to the target user

and for sequential pattern mining based approaches (Sect. 2.2.2.1.3), several algorithms

are designed to mine sequential patterns from sequence databases such as GSP (Agrawal

and Srikant, 1995), SPADE (Zaki, 2001), SPAM (Ayres et al., 2002), Prefix Span (Jian Pei

et al., 2001) and PLWAP (Ezeife et al., 2005). The input to these sequential pattern mining

algorithms is a sequence database and a minimum support threshold (set by the user) and

output is the set of frequent sequential patterns. Given the same sequence data base and the

minimum support threshold, all sequential pattern mining algorithms will output the same

set of sequential patterns as these algorithms do not differ in the output but differ from each

other according to the (1) type of search technique used, such as breadth first, e.g., GSP

(Agrawal and Srikant, 1995), depth first, e.g., SPADE (Zaki, 2001) and SPAM (Ayres et al.,

Chapter 2. Related Work 72

2002), (2) the type of database representation, such as, horizontal (e.g., GSP (Agrawal and

Srikant, 1995) or vertical (e.g., SPADE (Zaki, 2001) and SPAM (Ayres et al., 2002) and (3)

how next patterns are determined and generated from the search space, such as, candidate

generate and test, e.g., Apriori (Agrawal et al.) and GSP (Agrawal and Srikant, 1995),

pattern growth by using projected databases, e.g., Prefix Span (Jian Pei et al., 2001). Use

of efficient strategies and data structures results in some algorithms more efficient than oth-

ers (Fournier-Viger and Lin, Mabroukeh and Ezeife, 2010). For more details on structures

for extracting sequential patterns using sequential pattern mining algorithms, we encourage

the reader to follow the survey on sequential pattern mining by (Fournier-Viger and Lin,

Mabroukeh and Ezeife, 2010, Mooney and Roddick, 2013).

Factorization and Latent Representation based approaches model user’s sequen-

tial behaviour by creating a model from the training data (observed user ratings) and then

predicting the ratings for users on unseen items based on the observations learned from

the trained model. Model-based methods apply machine learning techniques (e.g., Matrix

Factorization) during the model training process. Model-based methods are assumed to

capture underlying relations from the data. Common approaches are Matrix Factorization

(Koren, 2009) and Markov Models (Bernhard et al., 2016, Brafman et al., Rendle et al.,

2010, Shani et al., 2005). The concept behind matrix factorization is that there should be

some latent (hidden) features which determine the preference of a user towards an item. For

example, two users may give high ratings to a certain book if they both like the writer of

the book, or if the book is based on an historical event. In this case, the latent feature can

be the “genre” which both users like. So, the latent feature “historic genre” can be used to

describe both the user and the item. Thus, the discovery of such latent features can help to

predict the rating of a particular user on a particular item because the features associated

with both the user and the item are same. While determining those different features, an

assumption is also made that the number of features k would be less than the number of

users and the number of items. The Markov chain based models (Bernhard et al., 2016,

Brafman et al., Rendle et al., 2010, Shani et al., 2005) are successful probabilistic models

that model sequential patterns by predicting user’s future actions based on the past actions.

To achieve this goal, an item to item transition probability matrix is estimated where items

which are nearest (with high probability of transitioning) after the recently interacted item

Chapter 2. Related Work 73

by the user are recommended. For example, recommending the item for purchase that has

the highest transitioning probability after the last purchased item by the user as explained

in Sect. 2.2.2.2.1.

Deep Neural network based approaches (Nielsen, 2015) model user’s sequential

behaviour capturing the comprehensive relations over different entities (e.g., users, items,

interactions) in a sequence. The most commonly used neural networks for modeling sequen-

tial behavior are Recurrent Neural Networks (RNN) (Christakopoulou et al., 2018, Hidasi

et al., 2016b,b, Quadrana et al., 2017, Tan et al., 2016) due to their natural strength in

sequence modelling.

Given a sequence of historical user-item interactions, an RNN-based RS tries to predict

the next possible interaction by modelling the sequential dependencies over the given in-

teractions. A basic RNN is a standard feed-forward Multilayer Perceptron Network (MLP)

architecture (a network with single input, multiple hidden and single output layer) with

addition of loops to the architecture. RNN’s have internal memory which helps the model

to store important things about the input and enables it to predict precisely about what

is coming next. For this reason, RNN’s are preferred for sequential data like time series,

speech, text, financial data, audio, video and weather. They are designed to handle variable

length sequence data. Several sequential recommender systems based on RNN’s had been

proposed to model users’ sequential behaviour (Christakopoulou et al., 2018, Hidasi et al.,

2016b,c, Quadrana et al., 2017, Smirnova and Vasile, 2017, Tan et al., 2016, Villatel et al.,

2018).

2.2.2.4.6 Sequences having Long User Item Interactions

A long user-item interaction sequence has large number of user-item interactions which

makes it challenging to model comprehensive and complex dependencies between multiple

interactions that form the sequence. Two key features in long user-item interaction se-

quences are (i) learning higher-order sequential dependencies and (ii) learning long-term

sequential dependencies.

Higher order sequential dependencies- Compared to the lower-order sequential

dependencies, which are moderately simple and can be easily modeled by Markov chain

Chapter 2. Related Work 74

models (Bernhard et al., 2016, Brafman et al., Rendle et al., 2010, Shani et al., 2005) or

factorization machines (Koren, 2009), higher-order sequential dependencies are more com-

plex and difficult to capture due to their complicated multi-level cascading dependencies

crossing multiple user-item interactions. High order sequential dependencies can be ad-

dressed through the use of higher-order Markov-chain models (He and McAuley, 2016) and

Recurrent Neural Networks (Christakopoulou et al., 2018, Hidasi et al., 2016b,c, Quadrana

et al., 2017, Smirnova and Vasile, 2017, Tan et al., 2016). However, each approach has its

own limitations, for example, an increase in the order of Markov Model also increases the

number of states and the model complexity. Alternately, reducing the number of states

leads to inaccurate transition probability matrix and limits the predictive power whereas in

case of RNN models, some sequential dependencies may not be modelled efficiently due to

the assumption that any adjacent items in a sequence are highly dependent, which might

not be true in the real world as a sequence may contain irrelevant or noisy interactions.

Long-term sequential dependencies- In a sequence, long term dependencies involve

dependencies between interactions which are far from each other. For example, in a given

shopping sequence S = {towel, eggs, bread, butter, soap}, which consists of items purchased

successively by a user Smith. Obviously, the towel and the soap are highly dependent (in the

context of being used for bath) besides even they are far from each other. These situations

are quite common in real world as users’ behaviours tend to change with time and highly

uncertain which may lead to placement of any items in any order in the cart. To address this,

Long Short Term Memory based (Wu et al., 2017) and Gated Recurrent Unit based RNN

(Hidasi et al., 2016c) have been used in Sequential Recommendation Systems to capture

the long-term dependencies among the user-item interactions in a sequence. However, it is

easy for RNN models to generate false dependencies by overly assuming any adjacent items

in a sequence are highly dependent. In the above example of Smith’s shopping sequence,

an RNN usually models S by assuming the butter and the soap are dependent due to the

close distance between them, but actually they are not. Overall, the works that are able to

tackle this are quite limited and need further investigation.

Chapter 2. Related Work 75

2.2.2.4.7 Sequences with Flexible Order

In real world, it is not necessary that all adjacent user interactions in a sequence are depen-

dent sequentially. For instance, in a shopping sequence S = {butter, eggs, cheese, bread},

the order of purchase of bread, eggs and cheese is not important, however, the collective pur-

chase of butter, eggs and cheese leads to an increased probability to purchase bread. This

shows that while there is no strict order among butter, eggs and cheese but the purchase

of bread will depend sequentially on their union. Hence, in a flexible order sequence, it is

important to capture collective sequential dependencies instead of point wise dependencies

(which do not consider a strict order) between user-item interactions. Existing Sequen-

tial Recommendation Systems designed based on Markov-chains, factorization machines or

RNN’s are good at handling the point-wise dependencies but are not very good at modelling

and capturing collective dependencies.

2.2.2.4.8 Temporal Patterns

Temporal databases integrate the concept of time to capture past, present and future data.

Various forms of temporal data can include (i) start time (when the event actually began)

and end time (when the event ended), for example, when a customer started his session

by navigating an on line e-commerce site and ended the session after purchase or without

a purchase by leaving the site, (ii) granularity (for example, events occurring on the same

day or happening with N weeks from a specific day or in a specific month etc.) and (iii)

periodicity which refers to regular repetition of a certain event within a specific time interval.

For instance, the event “fall” is repeated once within the time interval of a year. Such events

are called periodic events and such intervals are called periodic intervals (Alkilany, 2013).

Data is collected in the form of event time sequences where each event lasts for a certain

time interval. Each record in the database stores the start time and end time during

which the tuple is valid. For instance, for an e-commerce business, customers’ purchase

records are stored to determine customers’ purchase behaviour over a certain period of

time. For example, records like “Customer A had purchased items X and Y on 20 August”

or Customer A visited the site from 13:00 to 14:00 on May 11 and purchased items X,

Y and Z are stored. The temporal nature of data provides valuable information about

Chapter 2. Related Work 76

varying trends or patterns. For example, we can find patterns like “80% of the customers

who bought item X and then bought item Y within an hour, are likely to visit the site the

following day to view new promotions”. Such frequent temporal patterns from customers are

useful to identify correlations between items for further marketing and promotion strategies.

Incorporating temporal aspect is an important extension as it offers the capability

to infer causal and temporal proximity relationships. The time component helps in an-

alyzing the changes in data overtime. The time component may facilitate in identifying

the validity of rules like HikingGear → HikingBoots, Y ears : Months(5 : 3) during

{Y ears(2015), Y ears(2020)} which reveals that every spring time from 2015 to 2020, cus-

tomers who bought hiking gear also purchased hiking boots. Such a rule may not be valid

before 2015 or after 2020. Therefore, by adding the temporal information to the rule set,

more accurate and clear information is obtained. Furthermore, it is possible to predict

how quickly a domain changes by discovering the change in knowledge obtained from the

underlying data, thus leading to better marketing strategies.

A classification of sequential recommender systems is presented in Tables 2.27, 2.28 and

2.29 according to the categories presented in the taxonomy and based on the eight features

explained above.

2.2.3 Semantics Based Recommendation Techniques

Research works have introduced to learn item associations by learning their semantics

(meanings). This is achieved by transitioning from key-word based representations to

concept-based user and item representations. Availability of open knowledge sources such

as Wikipedia1 (a free online encyclopedia), DBpedia2 (structured representation of content

extracted from Wikipedia) and BabelNet3 (a multilingual encyclopedic dictionary) have

largely contributed in the analysis of the content by integrating techniques from semantic

technologies such as ontologies (formal representations of categories, properties and rela-

tions between concepts, data and entities), Resource Description Framework (framework

for describing resources on the web) and Natural Language Processing (NLP), leading to
1www.wikipedia.org
2www.dbpedia.org
3www.babelnet.org

Chapter 2. Related Work 77

T
ab

le
2.

27
:

C
la

ss
ifi

ca
tio

n
of

Se
qu

en
tia

lR
ec

om
m

en
de

r
Sy

st
em

s
A

cc
or

di
ng

to
Fe

at
ur

es

Se
qu

en
ce

s
T

yp
e

Si
de

In
fo

rm
at

io
n

(M
et

a
da

ta
)

(U
se

rs
,i

te
m

s)

C
on

se
-

qu
en

tia
l

B
on

d

C
on

te
xt

ua
l

In
fo

rm
at

io
n

St
ru

ct
ur

e
to

Ex
tr

ac
t

Se
qu

en
tia

l
Pa

tt
er

ns

H
an

dl
in

g
Lo

ng
us

er
Se

-
qu

en
ce

s

Fl
ex

ib
le

O
r-

de
r

Se
qu

en
ce

s

Te
m

po
ra

l
C

ha
ra

ct
er

ist
ic

s
(S

eq
ue

nc
e

G
ra

nu
-

la
rit

y)

C
ho

iR
ec

12
(C

ho
i,

K
.,

Yo
o,

D
.,

K
im

,
G

.,
&

Su
h,

Y
.

,
20

12
)

Si
ng

le
le

ve
l

x
x

x
Se

qu
en

tia
l

Pa
tt

er
n

A
na

ly
sis

x
x

x

(Y
ap

,
G

.
E.

,
Li

,
X

.
L.

,
Ph

ili
p,

S.
Y

.,
20

12
)

M
ul

ti-
le

ve
l

x
x

x
Pa

tt
er

n
gr

ow
th

(P
re

fix
Sp

an
)

x
x

Ye
s

(w
ei

gh
te

d
B

ac
k-

w
ar

d
an

d
Fo

rw
ar

d
C

om
pa

t-
ib

ili
ty

of
se

qu
en

ce
s

w
ith

th
e

ta
rg

et
se

qu
en

ce
)

H
yb

rid
(S

al
eh

i,
M

.
,2

01
3)

Si
ng

le
le

ve
l

Ye
s

(P
ro

du
ct

A
tt

rib
ut

es
)

x
x

A
pr

io
ri

(in
tr

od
uc

ed
w

ei
gh

te
d

as
so

ci
at

io
n

ru
le

s)

x
x

Ye
s

(m
or

e
w

ei
gh

t
as

-
sig

ne
d

to
pr

od
uc

ts
pu

rc
ha

se
d

re
ce

nt
ly

)
B

SS
M

(Z
ha

ng
,

Y
.,

&
C

ao
,

J.
,

20
13

)

Si
ng

le
le

ve
l

x
x

x
Se

qu
en

ce
sim

ila
rit

y
ba

se
d

on
be

ha
vi

or
Se

qu
en

ce
Si

m
ila

rit
y

x
x

x

(W
ei

So
ng

K
ai

Ya
ng

,
20

14
)

Si
ng

le
le

ve
l

x
x

x
W

ei
gh

te
d

Se
qu

en
ce

M
at

ch
in

g

x
x

x

N
ot

e:
X

m
ea

ns
th

e
pr

es
en

ce
of

a
pa

rt
ic

ul
ar

fe
at

ur
e

in
th

e
sy

st
em

un
de

r
di

sc
us

si
on

Chapter 2. Related Work 78

T
ab

le
2.

28
:

C
la

ss
ifi

ca
tio

n
of

Se
qu

en
tia

lR
ec

om
m

en
de

r
Sy

st
em

s
A

cc
or

di
ng

to
Fe

at
ur

es
(C

on
tin

ue
d

fr
om

Ta
bl

e
2.

27
)

Se
qu

en
ce

s
T

yp
e

Si
de

In
fo

rm
at

io
n

(M
et

a
da

ta
)

(U
se

rs
,i

te
m

s)

C
on

se
-

qu
en

tia
l

B
on

d

C
on

te
xt

ua
l

In
fo

rm
at

io
n

St
ru

ct
ur

e
to

Ex
tr

ac
t

Se
qu

en
tia

l
Pa

tt
er

ns

H
an

dl
in

g
Lo

ng
us

er
Se

-
qu

en
ce

s

Fl
ex

ib
le

O
r-

de
r

Se
qu

en
ce

s

Te
m

po
ra

l
C

ha
ra

ct
er

ist
ic

s
(S

eq
ue

nc
e

G
ra

nu
-

la
rit

y)

Sa
in

iR
ec

17
(S

ai
ni

,
S.

,
Sa

um
ya

,S
.,

&
Si

ng
h,

J.
P.

,2
01

7)

Si
ng

le
le

ve
l

x
x

x
Ve

rt
ic

al
Id

lis
t

ba
se

d
(S

PA
D

E)
x

x
Ye

s
(m

on
th

ly
ba

sis
)

H
yb

rid
(G

ur
ba

no
v,

T
.,

&
R

ic
ci

,
F.

(2
01

7)

Si
ng

le
le

ve
l,

ho
w

ev
er

(w
ith

co
l-

le
ct

io
n

of
va

rio
us

ac
tio

ns
on

th
e

ev
en

t,
lik

e
cl

ic
k,

bo
ok

m
ar

k
et

c)

x
x

x

Pr
ob

ab
ili

st
ic

(B
ay

es
an

d
N

aï
ve

B
ay

es
)

x
x

Ye
s

(S
es

sio
ns

as
tim

e
le

ss
an

d
tim

e
aw

ar
e)

W
he

re
in

tim
e

aw
ar

e
re

p-
re

se
nt

th
e

tim
e

ga
p

be
tw

ee
n

ac
tio

n
a

i

an
d

ac
tio

n
a

i+
1

on
th

e
sa

m
e

ite
m

H
PC

R
ec

18
(X

ia
o,

Y
.,

&
Ez

ei
fe

,C
.

I.
,2

01
8)

Si
ng

le
-le

ve
l

x

Ye
s

(w
ith

ou
t

co
ns

id
er

in
g

th
e

se
qu

en
-

tia
lit

y)

x
C

on
se

qu
en

tia
l

B
on

d
x

x
x

N
ot

e:
X

m
ea

ns
th

e
pr

es
en

ce
of

a
pa

rt
ic

ul
ar

fe
at

ur
e

in
th

e
sy

st
em

un
de

r
di

sc
us

si
on

Chapter 2. Related Work 79
T

ab
le

2.
29

:
C

la
ss

ifi
ca

tio
n

of
Se

qu
en

tia
lR

ec
om

m
en

de
r

Sy
st

em
s

A
cc

or
di

ng
to

Fe
at

ur
es

(C
on

tin
ue

d
fr

om
Ta

bl
e

2.
28

)

Se
qu

en
ce

s
T

yp
e

Si
de

In
fo

rm
at

io
n

(M
et

a
da

ta
)

(U
se

rs
,i

te
m

s)

C
on

se
-

qu
en

tia
l

B
on

d

C
on

te
xt

ua
l

In
fo

rm
at

io
n

St
ru

ct
ur

e
to

Ex
tr

ac
t

Se
qu

en
tia

l
Pa

tt
er

ns

H
an

dl
in

g
Lo

ng
us

er
Se

-
qu

en
ce

s

Fl
ex

ib
le

O
r-

de
r

Se
qu

en
ce

s

Te
m

po
ra

l
C

ha
ra

ct
er

ist
ic

s
(S

eq
ue

nc
e

G
ra

nu
-

la
rit

y)

H
SP

R
ec

19
(B

ha
tt

a
et

al
.,

20
19

)

Si
ng

le
-le

ve
l

x
Ye

s
x

G
SP

(G
en

er
al

iz
ed

Se
qu

en
tia

l
Pa

tt
er

ns
)

x
x

Ye
s

(C
re

at
in

g
Se

qu
en

ce
s

w
ith

gr
an

-
ul

ar
ity

of
da

ily
,

w
ee

kl
y

an
d

m
on

th
ly

pu
rc

ha
se

s)

SE
M

SR
ec

20
(N

as
ir,

M
.,

Ez
ei

fe
,

C
.

I.,
20

20
)

Si
ng

le
-le

ve
l

Ye
s

(c
us

to
m

er
s’

re
vi

ew
s)

Ye
s

x
Pa

tt
er

n
gr

ow
th

(P
re

fix
Sp

an
),

U
se

of
se

m
an

-
tic

s
du

rin
g

m
in

in
g

x
x

Ye
s

(C
re

at
in

g
Se

qu
en

ce
s

w
ith

gr
an

-
ul

ar
ity

of
da

ily
,

w
ee

kl
y

an
d

m
on

th
ly

pu
rc

ha
se

s)

SE
M

SR
ec

21
(N

as
ir,

M
.,

Ez
ei

fe
,

C
.

I.,
G

id
ad

o,
A

bd
ul

-
ra

uf
,2

02
1)

Si
ng

le
-le

ve
l

Ye
s

(c
us

to
m

er
s’

re
vi

ew
s

&
pr

od
uc

t
m

et
a

da
ta

)

Ye
s

x

Pa
tt

er
n

gr
ow

th
(P

re
fix

Sp
an

)
U

se
of

se
m

an
tic

s
du

rin
g

m
in

in
g

Ye
s

x
Ye

s
(C

re
-

at
in

g
Se

qu
en

ce
s

w
ith

gr
an

-
ul

ar
ity

of
da

ily
,

w
ee

kl
y

an
d

m
on

th
ly

pu
rc

ha
se

s)

N
ot

e:
X

m
ea

ns
th

e
pr

es
en

ce
of

a
pa

rt
ic

ul
ar

fe
at

ur
e

in
th

e
sy

st
em

un
de

r
di

sc
us

si
on

Chapter 2. Related Work 80

semantic recommenders. According to (Lops et al., 2011), techniques in semantic recom-

menders can be categorized as (i) top down and (ii) bottom-up.

To capture the semantics of target user’s information needs, top-down approaches utilize

external knowledge sources, such as, taxonomies (IS-A hierarchy), dictionaries, or ontologies

for creating user profiles and interpreting the meaning of items. Top down approaches aim

to facilitate recommender systems in interpreting documents written in natural language

and provide meaningful reasoning by providing knowledge such as linguistic, common sense

and cultural backgrounds.

Bottom up approaches, on the other hand, interpret the semantics by exploring the

syntagmatic and paradigmatic relations between words in high dimensional vector spaces.

Syntagmatic relation is a type of semantic relation between words that co-occur in the

same sentence or text (Asher and Simpson, 1993). For example, “the lion chased the deer”,

representing syntagmatic relationship between lion and chase or “I liked my new iphone”

representing relationship between “iphone” and “liked”. Paradigmatic relation is a different

type of semantic relations between words that can be substituted with another word in

the same categories for example, substituting ‘cat’ with ‘dog’ or ‘coca-cola’ with ‘coca-cola

cherry’. Bottom up approaches are also called distributional approaches, as they learn a

representation by analyzing the context (neighborhood) in which the word is used. The

idea is that words (or terms) that co-occur in a context are likely to be similar to each other

and therefore more close in the vector space.

2.2.3.1 Top Down Semantic Approaches

These approaches are based on the integration of external knowledge for representing con-

tent. They facilitate the recommendation system by providing the linguistic, cultural and

background knowledge in the content representation. They introduce semantics by (i)

mapping the features describing the item with semantic concepts, such as Word Sense Dis-

ambiguation (Semeraro et al., 2007), entity linking or (ii) linking the item to a knowledge

graph such as ontological knowledge (Middleton et al., 2004), structured or unstructured

encyclopedic knowledge, like Wikipedia (Gabrilovich and Markovitch, 2009, Semeraro et al.,

2009) or utilizing Linked Open Data Cloud (Di Noia et al., 2012). In the next subsection

each of these methods for inferring semantics from the content will be discussed.

Chapter 2. Related Work 81

Table 2.30: WordNet structure

Word Meanings Word Forms
F1 F2 F3 Fn

M1 V(1,1) V(2,1)
M2 V(2,2) V(3,2)
M3
M. . .
M..n

V(m,n)

2.2.3.1.1 Word Sense Disambiguation WSD (Semeraro et al., 2007) selects the

proper meaning, that is, sense, for a word in a text by taking into account the context

in which it occurs. The main idea is to learn the semantics by utilizing linguistic ontol-

ogy such as WordNet (Miller, 1995), which is a lexical database for the English language.

WordNet is used to integrate linguistic knowledge while learning user profile. WordNet

arranges words into sets of synonyms called synsets, which represent specific meaning of a

word along with its synonyms. Therefore, items are represented according to the synsets

that are likely to indicate their characteristics and user profiles are created according to the

synsets that specify their preferences. Table 2.30. shows a sample structure for WordNet

where each row represents synonyms and each column represents polysemous words (same

word with multiple meanings).

JIGSAW Algorithm in WSD:

The JIGSAW algorithm (Basile et al., 2007) is a Word Sense Disambiguation (WSD) system

which disambiguates (represent with semantics) all words in a text based on exploiting

WordNet senses. It disambiguates (represents with semantics) each word wi in the document

according to the context of each word (synset).

Problem : Given a collection of words in documents, represent each document as se-

mantics (by disambiguating the words) in k dimensions where k < number of words. The

input to the algorithm is a document D = {w1, w2,, wh} where w1, w2, represents words

in the documents, the algorithm outputs the document as a representation of semantics in

k dimensions such that X = {s1, s2, , sk} (k < h), where each si is obtained by dis-

ambiguating wi according to the context of each word. It uses semantic similarity between

Chapter 2. Related Work 82

synsets using path length similarity such as Leackock-Chodorow similarity (Leacock and

Chodorow, 1998).

Example 2.7. Synset Semantic Similarity Computation (Taxonomy based) Con-

sider an example of computing the synset semantic similarity between two terms “cat” and

“mouse” according to a pre-defined taxonomy as shown in Fig. 2.6

Figure 2.6: A sample taxonomy of animals (Mammal)

The similarity is computed by using Eq. 2.14,

SINSIM = r = − log
(

Np

2D

)
(2.14)

where Np is the number of nodes in path p from a to b (where a = cat and b =

mouse) and D is the maximum depth of the taxonomy. The value of D in WordNet is 16

and according to the taxonomy (IS-A) relationship, value of Np is =5. Hence, semantic

similarity between the two terms cat and mouse is,

SINSIM (cat, mouse) = − log (Np/2D) = 5/2 ∗ 16 = 5/32 = 0.86.

Example 2.8. Synset Semantic Similarity Computation (Key word based) Con-

sider the example where each book is represented as a set of keywords. For example, the

book “The invisible Man” was under the “Science Fiction” genre and represented as a set

of key words such as science fiction, novel, 1897, horror, H.G Wells. Through WSD, we

can process the textual description of the item can obtain a semantics-aware representation

Chapter 2. Related Work 83

Table 2.31: Synsets obtained from WordNet

Keyword Synsets obtained from WordNet
Science fiction {06380251} S: (n) science fiction (literary fantasy involving the imagined

impact of science on society)

Horror
{07535650} S: (n) horror (intense and profound fear)
{03543047} S: (n) horror (something that inspires horror; something
horrible)
{07519226} S: (n) repugnance, repulsion, revulsion, horror
(intense aversion)

Invisible {02527322} S: (adj) invisible, unseeable (impossible or nearly impossible
to see; imperceptible by the eye)

of the item as output, that is, keyword-based features are replaced with the concepts from

WordNet synsets. A Wikipedia page for the book is shown in Fig. 2.7 A sample of key-

Figure 2.7: Wikipedia page for the book “The invisible Man”

word replacement to concepts based on synsets obtained from WordNet for the book “The

Invisible Man” are shown in Table 2.31.

The format shows the synset ID in the word net as in curly brackets {} and then the

concepts associated with the keyword.

WSD can handle the polysemy and synonymy. However, the limitation of WSD is that

it cannot recognize the entities such as people, places and organizations in the text. For

example, H.G. Wells in the content description of the book.

Chapter 2. Related Work 84

2.2.3.1.2 Entity Linking Entity linking algorithms address the problem of entity recog-

nition in the content. Input to these algorithms is free text such as content description from

Wikipedia and output is the identification of entities in the text. Entity linking is impor-

tant because we need to identify the entities mentioned in the textual description to better

catch user preferences and information needs. Several state-of-the-art implementations for

entity identification from text are already available namely OPENCLAIS4 , TAG.ME5 and

Babelfy6 . OPENCALAIS can correctly identify entities in the text, but it ignores common

sense and abstract concepts. TAG.ME is very transparent and provides human-readable

content representation. It annotates the text with relevant hyperlinks to the Wikipedia

pages. Non-trivial NLP tasks, such as, stop words removal, n-grams identification, named

entities recognition and disambiguation are automatically performed. The advantage of

extracting entities and concepts from text using TAG.ME are (i) several common sense

concepts are now identified like (novel, science, optics) and each identified entity is a refer-

ence to a Wikipedia page. For example, the entity H. G. Wells will refer to the Wikipedia

page https://en.wikipedia.org/wiki/H._G._Wells.

By utilizing this information, we can enrich this entity-based representation by exploit-

ing the Wikipedia categories’ tree. The enriched representation can be created by combining

the entities and concepts identified in the text along with the most relevant Wikipedia cat-

egories each entity is linked to. However, the limitation is that it ignores terms and entities

which cannot be linked to Wikipedia. Babelfy is a large multilingual encyclopedic dictio-

nary and semantic network that uses graph-based approach to Entity Linking and Word

Sense Disambiguation.

Babelfy is also good at identifying entities and concepts from text and by linking enti-

ties to Wikipedia-based representation, it can extract some common sense terms and new

interesting features (for example, science-fiction writer) can be generated. It also includes

linguistic knowledge and is able to disambiguate terms. Fig.2.8 shows entities identified

from the content description of the book “The Invisible Man”. The yellow highlighted

words shows the entities and green ones shows the concepts. Fig. 2.9 shows entities iden-
4http://www.opencalais.com/opencalais-api/
5https://tagme.d4science.org/tagme/
6http://babelfy.org/

https://en.wikipedia.org/wiki/H._G._Wells.

Chapter 2. Related Work 85

tified from the same text using TAG.ME. Underlying entities shows their links to relevant

Wikipedia pages.

Figure 2.8: Text to entity and concept identification through Babelfy

Figure 2.9: Text to entity identification through TAG.ME

In summary, top down semantic approaches (exogenous techniques) use external knowl-

edge sources to incorporate semantics. Word Sense Disambiguation algorithms process the

textual description and replace keywords with semantic concepts (as synsets from WordNet)

whereas Entity Linking algorithms focus on the identification of the entities from the text

Chapter 2. Related Work 86

Table 2.32: Term-Context matrix

Context
Items C1 C2 C3 C4 C5 C6 C7 C8 C9
Beer ✓ ✓ ✓ ✓
Wine ✓ ✓ ✓ ✓ ✓
Spoon ✓ ✓ ✓ ✓
Glass ✓ ✓ ✓ ✓ ✓
Plate ✓ ✓ ✓ ✓ ✓

and then linking those entities to other encyclopedic sources such as Wikipedia to create

enriched item profiles.

2.2.3.2 Bottom Up Semantic Approaches

These approaches utilize the huge amount of available content (for example, item descrip-

tions, customer reviews) to directly learn a representation of words according to their usage

(distribution). The Distributional Hypothesis (Harris, 1954) stated that “linguistic items

with similar distributions have similar meanings”. This idea of distributional hypothesis led

to distributional semantics (FIRTH, 1957) which means that “by analyzing large corpora

of textual data, it is possible to infer information about the usage (meaning) of the terms”.

The semantics learnt according to the usage of a term are therefore called distributional

semantics. For example, cat and dog, wine and beer, share a similar meaning since they are

often used in similar contexts, as cats are dogs are animals with some similar attributes and

beer and wine are both fermented beverages. These methods work on the principle of vector

space model (Turney and Pantel, 2010) in which each term is represented. A Term-Context

Matrix is created to learn the vector-space representation of each term by encoding the

context (for example, a situation) in which the term is used. Consider the matrix in Table

2.32 with items beer, wine, spoon and glass associated with some contexts.

A context can be set according to the granularity required by the representation of term.

The granularity can be coarse grained (a whole document) or fine grained (a paragraph,

sentence, a window of words). An example of coarse grained context could be, a document of

customers’ review about the quality of beverages and the cutlery served at the restaurant

they dined at. A fine grained context can be the description of items purchased by a

customers’ over the weekend. In Table 2.32, each row represents a vector. We can observe

Chapter 2. Related Work 87

Table 2.33: Entity/concept-context matrix

Context
Concepts/Entities C1 C2 C3 C4 C5 C6 C7 C8 C9
H.G. Wells ✓ ✓ ✓ ✓
Stephen King ✓ ✓ ✓ ✓ ✓
Horror ✓ ✓ ✓ ✓ ✓
Comedy ✓ ✓

that beer and wine have a good overlap (they occur in similar contexts), so they are similar,

whereas beer and spoon have no overlap, so they are not similar. Based on this, we can

say that beer and wine will be more close to each other in the vector space as compared

to beer and glass. A vector space representation (called WordSpace) is learnt according to

terms’ usage in contexts. Specifically, terms sharing a similar usage are very close in the

word space. An example of Wordspace (Lowe) for the Term-Context Matrix in Table 2.32

is shown in Fig. 2.10.

Figure 2.10: Wordspace

Similarly, Distributional semantic models provide the flexibility to replace keywords

with concepts as synsets or entities and then semantic similarities can be computed between

them. For example, H.G. Wells and Stephen King will be closer to each other as they both

share similar interests in writing science fiction, fantasy and suspense novels as shown in

Table 2.33.

Given a WordSpace, a vector space representation of documents (called DocSpace) is

typically built as the centroid vector of word representations, that is, a document vector will

be represented as the average vector of the words in the document. Once we obtain the vec-

tor representations, it is possible to perform similarity calculations between items according

Chapter 2. Related Work 88

Table 2.34: ESA matrix

Contexts
Terms Context1 Context2 Context3 Context4 Context5
Big Data 0 0.26 0 0.01 0.01
Python 0.42 0 0.01 0.01 0
R 0 0.15 0.01 0.02 0.02

to their semantic representation. A common similarity measure is cosine similarity.

In summary, we can utilize the (big) corpora of data to directly learn a semantic

vector-space representation of the terms of a language. It facilitates to infer lightweight

semantics, which are not formally defined such as those in Wikipedia. Furthermore, they

are flexible as items, concepts, entities are represented as vector and similarities can easily

be computed between terms or terms and documents. The adoption of context can have

different granularities which can span a whole document or shrink to a sentence, paragraph

or window of words. However, the limitations are that in order to learn these semantic

representations, huge amount of content is needed. The resultant term-context matrices

are particularly huge and difficult to build as it may have lots of features which cause the

need for dimensionality reduction.

2.2.3.2.1 Explicit Semantic Analysis ESA (Gabrilovich and Markovitch, 2009) is a

distributional semantic model which uses Wikipedia articles as context to find the usage of

terms. A term-context matrix known as ESA matrix is created where each column represents

a context (a Wikipedia article). Each entry in the matrix represents the relatedness of a term

to the context computed using the TF-IDF score (details on TF-IDF computation can be

found in Sect. 2.2.1.1). Each row of the ESA matrix is called semantic interpretation vector

of a term t. As a result, each Wikipedia page can be described in terms of the words with

the highest TF-IDF score. Consider Table 2.34, which shows an ESA matrix, where each

context represents a Wikipedia article about a particular concept. For example, context 1

represents article about the concept of “Python” programming language. Each entry in the

matrix shows association between the term and the concept by using the TF-IDF score.

Each row in the matrix represents the semantics of a word as a vector of its associa-

tions with Wikipedia concepts. For example, the second row in the matrix represents the

Chapter 2. Related Work 89

association of the term “Python” across 5 Wikipedia articles. The highest the score, the

more the strength of its ‘semantic connection’ with a Wikipedia concept. Similarly, each

column represents the semantics of the article as a vector of the terms in the article. A

semantic representation of an item (for example, movie, product, document, sequence) can

be built as the centroid vector of the semantic interpretation vectors of the terms in the

item description (for example, product title or description, movie plot). Next, to find the

semantic relatedness (similarity) between a pair of text fragments (for example, description

of two products), cosine similarity can be computed between their semantic interpretation

vectors. The higher the cosine similarity, means items are related closely.

In summary, ESA models are Distributional Model which uses Wikipedia Article as

context. They provide a very transparent representation where columns have an explicit

meaning. The downside is that the whole matrix is very huge and requires tuning of the

parameters. For example, the choice about the number of articles, number of terms to

represent the article etc.

2.2.3.2.2 Random Indexing Dimensionality reduction methods address the huge ma-

trix dimensionality issues. They learn a more compact vector-space representation of terms

and items while still maintaining the important information. These techniques also known

as word embedding techniques where embedding represents the words in a smaller dimen-

sion as compared to their original representations. Random Indexing (Sahlgren, 2006) is

an incremental and scalable technique for dimensionality reduction. The algorithm works

in four main steps (i) Assign a vector to each context (word, documents, etc.).The length

(dimension) of the vector can vary according to the requirement,(ii) fill the vector with

(almost) randomly assigned values,(iii) given a word, collect the contexts where that word

appears and (iv) sum the context and obtain the final representation of the word. The

resulting representation is a smaller but (almost) equivalent to the original one. The steps

are explained in Example 2.9.

Example 2.9.Random Indexing

Input: context granularity, such as,(document, paragraph, sentence, word), dimension

Chapter 2. Related Work 90

Figure 2.11: Matrix for Random Indexing

r1
r2
r3
r4
r5
...
rn



0 0 −1 1 0 0 0
1 0 0 0 0 0 −1
0 0 0 0 −1 1 0
−1 1 0 0 0 0 0
1 0 0 −1 0 0 0
...

...
...

...
...

...
...

· ·


Table 2.35: Computation for semantic vector representation of term t1

r1 0 0 -1 1 0 0 0
r2 1 0 0 0 0 0 -1
r5 1 0 0 -1 0 0 0
t1 2 0 -1 0 0 0 -1

size =k =8, Possible values, for example, {−1, 0, +1}

Output: Reduced Matrix with each term represented as a context vector of k-dimension

Step 1: Define the granularity of the context

Consider a sentence as the context.

Step 2 – Create the random matrix R

For example, Table 2.11. shows the matrix where row 1 (r1) represents a context (a

sentence in our example) and column represents terms. Each ‘context’, that is, sentence is

assigned random values in the range -1,0,+1 across k dimensions. Each row represents a

context vector across 8 dimensions.

Step 3 –Building vector space representation of a term t

It is obtained by combining the random vectors of the context in which it occurs. For

example, assume a term t1 occurs in r1, r2 and r5 , that is t1 ∈ {1, r2, r5}, then the vector

representation of the term t1 will be computed by taking the sum of vectors of r1, r2 and

r5 as shown in Table 2.35. As an output of this step, we obtain the wordspace, that is, each

term (word) is represented in a vector space.

Step 4 – Building the document space

In a similar way, by aggregating the vector space representations of the terms occurring

in a document d, we can represent the document d in the vector space. The output of this

Chapter 2. Related Work 91

Table 2.36: WordSpace and DocSpace

Word Space DocSpace
c1 c2 c3 c4 . . . ck c1 c2 c3 c4 . . . ck

t1 d1
t2 d2
t3 d3
t4 d4
.
tn dn

step is the document space where each document is represented as a k-dimension vector

which represents the semantic associations between the terms and the documents. Table

2.36 shows a uniform representation of the wordspace and docspace.

In summary, Random Indexing is incremental and scalable technique for learning

word embeddings, that is, representing words in a reduced dimension. The advantages

are it provides smaller vector space representation and dimension of the space can be set

arbitrarily. However, the limitation is that the learnt representations are not transparent

anymore, that is, we are unaware what “concepts” are used to find associations between

terms and terms and documents. In addition to that, proper parameter tuning is required

to find the optimal size of the embeddings.

2.2.3.2.3 Word2Vec Word2vec (Mikolov et al., 2013) is another distributional model

for learning semantic representation of words. It is a neural network based model which

consists of input, hidden and output layers. Word2vec represent words by a vector of real

numbers of dimension d. Training of the model is based on the Skip-Gram methodology

(Mikolov et al., 2013) which, when given an input of a word w(t), predict its context words

(neighbors) that is, w(t− 2), w(t− 1). . . w(t + 1), w(t + 2).

The context of a word w within a sentence is the set of x surrounding words. For example,

for the sentence “My new iphone fell out of my pocket and broke its screen” we have the

target word “iphone”. With a sliding window of size=1, moving along a sentence, the

skipgram model (Mikolov et al., 2013) predicts the probabilities of a word being a context

word given a target word “iphone”, where context words are those on the left and right of

the target word within the sliding window. In this case, with a context, x = 2, for the word

Chapter 2. Related Work 92

“iphone” the context words are “My”, “new”, “fell”, “out” that is, two words each towards

the left and right of the target word “iphone”.

A context-target pair is considered as a new observation (training sample) in the data. For

example, the target word “iphone” in the above case produces four training samples as (my,

iphone), (new, iphone), (fell, iphone) and (out, iphone). This process is iterated for each

word in the sentence. Word2Vec is a distributional model since it learns a representation

such that couples (context, word) appearing together have similar vectors.

The algorithm is fed with a corpus, and training examples are created through Skip-Gram.

For example, for the above sentence, training samples will be generated as (new, the),(new,

iphone), (iphone, new),(iphone, fell)and so on by using a window size of 1. The model aims

at maximizing the probability of predicting a context C given a word w by using Eq. 2.15.

arg max
θ

∑
(w.c)∈D

log p(c | w) (2.15)

The probability is high when scalar product is close to 1, that is, when vectors are simi-

lar. Some of the generated (context, word) pairs are (([my,iphone],new), ([new,fell],iphone),

([iphone,out],fell). The errors are collected and the weights in the network are updated ac-

cordingly. Stochastic Gradient Descent or Mini-Batch (every 128 or 512 training examples)

are used for model updates. The steps for predicting the probability of a context(s) given

a target word using Word2Vec are explained in Example 2.10.

Problem: Given an input of a word w(t), predict its context words (neighbors),

w(t− 2), w(t− 1), ..w(t + 1), w(t + 2)

Example 2.10.Word2Vec (Skipgram Model)

Word2vec uses a neural network with an input, hidden and output layer as shown in

Fig. 2.12. The input layer has the same number of neurons as the number of words in the

vocabulary (unique words in the sentences). The size of the hidden layer is according to

the dimensionality (length of the word vectors). The input and the output layer have the

same size. Therefore, if the vocabulary for learning word vectors consists of V words and N

is the dimension of word vectors, then the connections from the input to the hidden layer

Chapter 2. Related Work 93

can be represented by matrix WI of size V ×N where each row representing a vocabulary

word. In the same way, the connections from hidden layer to output layer can be described

by a matrix WO of size N × V . Here, each column of WO matrix represents a word from

the given vocabulary.

Given the vocabulary size V , word embedding vectors of size N will be learned. The

model learns to predict one context word (output) using one target word (input) at a time.

Figure 2.12: Word2vec neural model

Consider a set of three sentences “The lion saw a deer”. “The lion chased the deer”.

“The deer disappeared in the bush”. Our goal is to predict the context words (neighbors) of

the target word “disappeared” when the window size is 1. Below are the steps illustrating

the training and learning process of Word2vec.

Input: sentences, V = size of vocabulary (unique items in the data), C = number of context

words, N = dimension (length of the vector), Input layer size – [1 X V], Input-hidden weight

matrix = Wi =[V x N], Number of neurons in hidden layer – N, Hidden-Output weight

matrix size – [N X V], Output layer size – [1 X V]

Output: probability of predicting the context words for each target word. In our running

example, we want to predict the context words for the target word “disappeared”.

Step 1: Vocabulary creation

The first step is vocabulary creation which consists of all the unique words in the input

sentences. After alphabetically arranging all the unique words in the input sentences, the

vocabulary consists of nine words indexed by their position as {1 : a, 2 : bush, 3 :

chased, 4 : deer, 5 : disappeared, 6 : in, 7 : lion, 8 : saw, 9 : the}. For the

Chapter 2. Related Work 94

input layer to take the target word as input, it needs to be represented as 1-V (hot vector)

representation, which is [0 0 0 0 1 0 0 0] , where 1 shows the position of the word in

the vocabulary. Similarly, the actual output that we expect from the system which is the

context word “deer” has a 1-V vector representation as [0 0 0 1 0 0 0 0]. The

input vector is represented as X and the output vector is represented as Y .

1.1.Initializing input (Wi) and output weight matrices (Wo)

Initially the weights are randomly chosen. There are two sets of weights, one is between

the input and the hidden layer (Wi) and second between hidden and output layer (Wo).

Input-Hidden layer weight matrix size = [V ×N], hidden-Output layer weight matrix size

= [N ×V]: Where N is the number of dimensions to represent the word. It is arbitrary and

a hyper-parameter for a Neural Network. Also, N is the number of neurons in the hidden

layer. Here, N=3 and V = 9.

Wi =



−0.0945 −0.4440 0.3139

−0.4908 −0.2299 0.0655

0.0729 0.1722 −0.3578

0.1045 −0.4630 0.0794

−0.2261 −0.1547 −0.0384

0.4061 −0.1928 −0.4420

0.1818 0.0883 0.2776

−0.0553 0.4918 0.2631

0.1045 −0.4630 0.0794



,

Wo =


0.0231 0.4799 0.4321 0.3755 −0.3647 −0.1198 0.2661 −0.3510 0.3755

−0.3680 0.4248 −0.2571 −0.1488 0.0339 0.3539 −0.1449 0.1309 −0.1488

0.4224 0.3645 0.4679 −0.0203 −0.4239 −0.4388 0.2685 −0.4468 −0.0203


Step 2: Computing the vector at the hidden layer

Now we have the input vector X representing the word disappeared, the output at the

hidden layer neurons can be computed as:

Ht = Xt ∗WI = [−0.22608 − 0.154659 − 0.038422]

Step 3: Computing the vector at the output layer Next, the vector for output layer

will be computed by taking the product of the hidden vector obtained in step 2 with the

output weight matrix (Wo) which will give the result,

Chapter 2. Related Work 95

Ot = Ht∗W2 =
[

0.035 −0.188 −0.075 −0.061 0.09 −0.01 −0.048 0.076 −0.061
]

This output vector has a combination of positive and negative values. To understand

the probability for each word being the context word, these values will be converted to

probabilities using the softmax function with the following equation, where x refers to the

value we require to be in the range [0-1].

Softmax = σ(x) = 1
1+e−x = σ(0.035) = 1

1+e−0.035 = 0.497.

Similarly, we will compute the sigmoid for other values and the final out put vector will

be:

Ot =
[

0.497 0.453 0.481 0.519 0.523 0.509 0.488 0.485 0.485
]

This output vector shows the probability score of each word in the vocabulary, that is,

a , bush, chased, deer, disappeared, in, lion, saw, the to be the context word for the target

word disappeared. So, according to this output, we can see that the model predicts deer as

the context word to the target word disappeared with the highest probability score. In this

case, the model has correctly predicted the context word for the target word. This process

is repeated for each word in the vocabulary.
Ot =

a bush chased deer disappeared in lion saw the

0.497 0.453 0.481 0.519 0.523 0.509 0.488 0.485 0.485

In summary, Word2vec learns Word Embeddings through Neural Networks, it is not

based on counting co-occurrences rather it relies on predicting the distribution of words.

The advantages of this approach are that the representation can be really small (size<100)

and the semantic vector representations of words are very accurate. On the other hand, the

drawback of these models are that the learnt embeddings are not transparent in terms of

providing explanations. Additionally, they needs more computational resources.

2.2.3.2.4 Prod2Vec The prod2vec (Grbovic et al., 2015) model uses purchase sequences

to learn vector representation of products and then compute the semantic similarities be-

tween products. In particular, prod2vec uses the same principle of Word2Vec by applying

Chapter 2. Related Work 96

skip gram model (Mikolov et al., 2013) to learn product representations and aims to maxi-

mize the objective function over the entire set S of purchase sequences, defined in Eq.2.16

L =
∑
s∈S

∑
pi∈s

∑
−c≤j≤c,j ̸=0

logP (pi+j | pi) (2.16)

Where products from the same purchase sequence are in random order. Probability of

P (pi+j | pi) observing a neighboring product pi+j given the current product pi is defined

using the function as in Eq.2.17

P (pi+j | pi) =
exp

(
vT

piv
′
i+j

)
∑p

p=1 exp
(
vT

piv
J
p

) (2.17)

Where vp and v′
p are the input and output vector representations of product p, c is the

length of the context for product sequences, and P is the number of unique products in the

vocabulary created from purchased sequences. Prod2vec models the context of purchase

sequences, where products with similar contexts that is, with similar neighboring purchases

will have similar vector representations and are closer to each other. According to the anal-

ogy of Word2vec each a purchase sequence is a sentence and product id’s are words, that

will be fed to the model for training. The steps to learn product co-occurrences in a context

given a target product using Prod2Vec are explained in Example 2.11.

Example 2.11. Learning Products’ Vector Representations through Prod2Vec

Step 1: Creating purchase sequences

Purchase sequences are created according to time stamp, grouped by customers (Fig.2.14

) from the Online Retail Data set that shows transactions by customers (Fig. 2.13). In the

data set, a tuple is of the form (InvoiceNo, StockCode, Description, Quantity, InvoiceDate,

UnitPrice, CustomerID, Country). Data was preprocessed for duplicates, null values and

only relevant columns (StockCode, InvoiceDate, CustomerID) were kept for further steps.

The idea is to have a given product (target product) and finding products which are in

its neighborhood (context). This will be achieved by learning embeddings which is dense

vector representation of items.

Chapter 2. Related Work 97

Figure 2.13: Online Retail data set sample records

Figure 2.14: Online Retail data set after preprocessing

Step 2.1.Learning Embeddings and model training

Consider a purchase sequence S1 with products P1, P2, P3, . . . , Pn sorted according to

the timestamp. Each product will be represented as a feature vector across 4 dimensions

learnt from prod2vec model. Each sequence will be represented as aggregated feature vector

based on all the products in the purchase sequence. Below steps show the detailed steps for

learning vector representation for products.

Input: sentences (purchase sequences from Fig. 2.14, context C =2, N = 4, Input layer

size – [1 × V], Input hidden weight matrix size – [V × N], Number of neurons in hidden

layer – N, Hidden-Output weight matrix size – [N × V], Output layer size – C[1× V], V =

size of vocabulary (unique items in the data), C = number of context products.

Output: probability of each unique product to be in the neighborhood of the context

product. The created sentences (purchased sequences) will be fed to the model for learning

product vector representations.

2.2. Vocabulary creation

From the purchase sequences, vocabulary of all unique products will be created based

on the product id’s. For example, here we consider a small vocabulary size (V = 10) with

Chapter 2. Related Work 98

products created from the purchase sequences as 1: ‘85116’ , 2: ‘22951’, 3: ‘23166’, 4:

‘22376’, 5: ‘21380’, 6: ‘21232’, 7: ‘22423’, 8: ‘22060’, 9: ‘22646’, 10: ’22632’

2.3. Input layer weight matrix

Initially the weights are randomly chosen. The input layer and the target, both are

one-hot encoded of size [1×V]. Here V = 10. Model takes input (product id) and represent

it in the form of one hot vector encoding fashion, that is, according to its position in the

vocabulary. For example one hot vector representation of product with id ’22951’ will be

[0100000000] as it is at second position in the vocabulary. The dimension of the vector will

be according to the size of the vocabulary which is 10 in this case.

There are two sets of weights, one is between the input and the hidden layer and second

between hidden and output layer. Input-Hidden layer weight matrix size = [V ×N], hidden-

Output layer weight matrix size = [N × V]: Where N is the number of dimensions to

represent the product. It is arbitrary and a hyper-parameter for a Neural Network. Also,

N is the number of neurons in the hidden layer. Here, N=4 and V = 10. Weight matrices

are shown as U (input to hidden layer) and W (hidden to output layer) respectively.

U =



1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

37 38 39 40



W =



0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21

0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 0.31

0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 0.41

0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50 0.51



The input is multiplied by the input-hidden weight matrix U and called hidden acti-

vation. It is simply the corresponding row in the input-hidden matrix which is 2nd row in

our case. So multiplying, [0101000000] with the input hidden weight matrix U , we get the

hidden input vector (Ht) as: Ht =
[

5 6 7 8
]

Chapter 2. Related Work 99

Next step is to multiply the hidden input computed (Ht) with the hidden- output weight

matrix W to obtain the output (Ôt).

Multiplying hidden input [5 6 7 8] with hidden output weight matrix W , we get the

output vector as:

Ôt =

 7.52 7.78 8.04 8.3 8.56 8.82 9.08 9.34 9.6 9.86

7.52 7.78 8.04 8.04 8.04 8.82 9.08 9.08 9.6 9.86



Now converting the scores obtained in the output vector Ôt into probabilities by using

Softmax = (x) = 1
1+e−x as the sum of probabilities of all unique items has to be in the

range 0 and 1. The final obtained probabilities for each of the products (in the vocabulary)

being the context of the target product are shown below.

Ot =
[

0.024 0.030 0.040 0.051 0.067 0.087 0.1133 0.1470 0.1906 0.2473
]

So, here our model predicted product with id “22632” to be the context(neighborhood)

of the target product “22951”, which is a wrong prediction, as the correct context products

(actual) are products “85116” and “23166” with their one-hot vectors are represented as:

 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0


[
−0.98 0.030 0.040 0.051 0.067 0.087 0.1133 0.1470 0.1906 0.2473

]
[

0.024 0.030 −0.95 0.051 0.067 0.087 0.1133 0.1470 0.1906 0.2473
]

Element-wise sum is taken over all the error vectors to obtain a final error vector as :[
−0.95 0.06 −0.919 0.103 0.134 0.174 0.226 0.294 0.38 0.494

]
This error vector is propagated back to update the weight matrix. The weight between

the hidden layer and the output layer is taken as the vector representation of the product

across N dimensions. Final vector representations for all ten products as shown in Prod-

uct Vector PV matrix, where each column represents vector representation of a product p

across N (4) dimensions.

PV =



0.24 0.13 0.14 0.15 0.21 0.17 0.18 0.19 0.2 0.21

0.22 0.23 0.15 0.10 0.26 0.27 0.28 0.29 0.30 0.31

0.32 0.13 0.24 0.15 0.36 0.37 0.38 0.35 0.40 0.41

0.12 0.23 0.14 0.25 0.46 0.47 0.48 0.49 0.50 0.51



Here, column 1 is vector representation of product “85116”, column 2 represents vector

representation of product “22951” and so on.

Step 3: Product Recommendation

The model is trained and has learnt the product vector representations. So now for any

given (target) product, it will look up its vector representation and recommend the product

whose vector representation is close to it by calculating the cosine similarity between their

vectors.

In summary, Prod2Vec utilizes the same concept of Word2Vec and applies skipgram

method (Mikolov et al., 2013) on purchase sequences to learn the product semantics by

predicting the probability of context(s) (neighboring products) given a target product.

Once, the vector representations are learned, similarities can be computed to find close-

ness between products. This approach considers the semantic similarity between products,

however it has some limitations such that, it do not consider the sequential relationship

and the temporal information between the products. Also, it do not include the purchase

history of customer to cover both long term and short term preferences. Further more, it

does not incorporate the knowledge transfer from different customer purchase histories in

order to determine similar buying habits among customers.

100

Chapter 3

Problems Identified and Research

Questions

3.1 Problems

From the discussions in Chapter 2, following problems and issues have been identified.

1. Recommendation Systems suffer from the following problems:

(a) The Cold Start problem- In cold start problem items cannot be recommended

due to the lack of information about the user and/or the item. Cold-start problem

presents a collective issue of new item and new user to RS. There are two types

of cold start (i) New Item: A new item cannot be recommended initially when it

is introduced to a Collaborative Filtering system with no ratings. For instance,

MovieLens (movielens.org) cannot recommend new movies until these have got

some initial ratings. (ii) New User: When a new user enters the system, it is

bit hard to find similar users or to create a content based profile as previous

preferences (such as browsing history, likes/dislikes) of user are not available.

(b) Sparsity – Sparsity occurs when majority of the users do not rate most of the

items and consequently the ratings matrix becomes very sparse which limits

the chances of finding a set of users with similar ratings. In other words, this

101

problem arises when there are many items to be recommended but only few

recommendations are provided (because of fewer available ratings on items).

(c) Content Overspecialization and Diversity - This means that the system

cannot provide something unexpected. Such systems would not find anything

novel since they only recommend items similar to the user profile. This problem

affects the user and the system. The user may get bored easily and not return.

The system may not be able to introduce new items. Differently speaking, gen-

erally, a user can opt for an item of his interest from a recommendation list if the

list reflects some diversity in the recommended items to some extent. Seamless

recommendations for a restricted type of product have no value until or unless

it is desired or explicitly described by the user with a narrow set of preferences.

In the initial stage, when the RS is used as a knowledge discovery tool, the users

may wish to explore new and different options available. So, it is required to

have such solution that could achieve the goal of diversity of items together with

the accuracy of recommendation.

2. Sequential Pattern based recommendation methods have the following limitations:

(a) Huge Search Space- SPM algorithms have a huge search space when applied

on customer transactions. A method is required to efficiently guide the algorithm

in this search space.

(b) Lack of Contextual Information - Sequential rules generated from frequent

sequential patterns lack contextual information, that is, they recommend items

by finding a match between the target product and the generated rule. If a match

exists, only then a product is recommended. Sequential rules generated from se-

quential patterns do not consider relationships between items according to their

context. For example, if there are two sequential rules for chocolate purchase

such as: Ferrero Rocher, Ferrero Rondnoir→ Rafeallo and (b) Kinder Chocolate

Bar, Kinder Surprise → Kinder Beuno, where rule (a) (indicating that a pur-

chase of Ferrero Rocher, Ferrero Rondnoir will most likely lead to the purchase

of Rafeallo), so for a new purchase sequence where a customer bought Nutella

and Rafeallo, he can be recommended to purchase “Ferrero Collection” as they

all belong to same brand and have “similar” characteristics such as their ingredi-

102

ents, however if there is no rule for the product “Nutella”, the customer will not

be recommended with a product. Conventional sequential rules fail to capture

such semantic relationships between products and will only recommend product

that exist as a result of a matching rule with products “Nutella and Rafeallo”.

Therefore, it cannot recommend products that are similar in semantics as they

are based only on the frequent sequential occurrence. i.e., frequency count based

on a minimum support threshold.

So, there is a need to learn inherent meanings of items to find similarities be-

tween products which will have an influence on succeeding purchases and diverse

product recommendation.

(c) Lack of personalization – Sequential patterns are not targeted for a specific

customer, as they infer decisions based on a global view of sequences extracted

from the users’ historical data.

3.2 Research Questions

In light of the problems identified, following research questions are formulated which will

be answered by this dissertation.

Research Question 1: How incorporating data from multiple sources can contribute

towards personalized recommendations?

Answer: This thesis proposes a comprehensive model which inputs customers’ pur-

chase history and products’ meta data (e.g., title, description and brand) and extract prod-

ucts’ sequential and semantic knowledge according to their (i) usage (e.g., products co-

purchased or co-reviewed) and (ii) textual features by finding similarity between products

based on their characteristics using distributional hypothesis methods (Prod2Vec, Glove,

Doc2vec and TF-IDF) which consider the context of items’ usage. Products’ semantic fea-

ture vectors were learnt by training various distributional models and obtaining products’

representations by: (a) Individually training Prod2vec (Grbovic et al., 2015) and Glove

(Pennington et al., 2014) models using products from customers’ purchase sequences sorted

103

according to the time stamp, (b) utilizing product feature vectors (embeddings) obtained

from prod2vec (Grbovic et al., 2015) and Glove (Pennington et al., 2014) to create hybrid

embeddings for product representation, (c) individually training TF-IDF (Salton, 1988)

and Doc2Vec (Mikolov et al., 2013) models using more product features such as title, de-

scription and brand from products’ meta data and customers’ purchase sequences, where a

document represents the collection of products’ title, description and brand purchased by

the customer sorted according to the time stamp, (d) utilizing product features (embed-

dings) obtained from TF-IDF (Salton, 1988) and Doc2Vec (Mikolov et al., 2013) to create

hybrid embeddings for product representation (Sect. 5.1, Algorithm 2).

The extracted products’ semantic knowledge is then utilized in the candidate genera-

tion and recommendation phases to generate candidate items that are similar in semantics

with target user’s preference to generate recommendations that are of interest to user. The

items’ semantic knowledge is integrated in the candidate generation and recommendation

process of sequential recommendation to (i) mine frequent sequential purchase patterns

(Sect. 6.1, Algorithm 3), (i) enrich item to item similarity matrix of Collaborative Filtering

method and (ii) enhance sequential next item prediction process of first order Markov Model

by incorporating the semantic knowledge (semantic similarity) into the Transition Proba-

bility Matrix (Sect. 6.1, Algorithm 4) which provides recommendations tailored towards

customers’ interest.

Research Question 2: Can items’ semantic knowledge be integrated to enhance the

performance of item based Collaborative Filtering Systems?

Answer: Yes. This is obtained by computing cosine similarity between the products’

semantic feature vectors obtained from customers’ purchase histories and products’ meta

data. This semantic similarity between items is then used to create an item-item semantic

similarity matrix for item based Collaborative Filtering (Chapter 6). To further enhance

the item based Collaborative Filtering with items semantic and sequential relationships, a

weighted products’ score measure is proposed which is computed through semantic similar-

ity, confidence and lift measures between a pair of products. The item similarity matrix is

then populated with this score measure where each entry in the matrix represents semantic

and sequential relationship (in terms of a score value) between a pair of products (Sect. 7.1,

Algorithm 6). The matrix can then be used to generate semantic and sequential next item

104

recommendation by taking each item in target user’s profile and retrieving a list of Top-K

items with a high score.

Research Question 3: How does incorporating semantics to sequential pattern mining

methods address their limitations and enhance the accuracy of recommendations?

Answer: This is accomplished by integrating semantic knowledge extracted from cus-

tomers’ purchase histories and products’ meta data to enhance the mining process. The first

step is to determine Top-N customers based on semantic similarities between products in

their purchase sequences, where each purchase sequence will be represented as an aggregate

vector of all products in the sequence (Section 6.1.3). This is analogous to representing a

sentence as collection of words and then creating a database of these semantically similar

purchase sequences to mine frequent semantic and sequential patterns using PrefixSpan

(Jian Pei et al., 2001). During the mining process, the semantic information of products

from the item similarity matrix along with their support count is used to prune patterns of

products that are below the specified semantic similarity threshold and minimum support

threshold (Section 6.1, Algorithm 3). Later, in the recommendation phase, the extracted

semantic rich sequential patterns are used to generate rules to recommend items that are

similar in semantics and can be purchased in sequential order (Algorithm 5).

Research Question 4: Can the inclusion of semantic information solve the problems

in the recommendation systems and how?

Answer: To address the items’ cold start issue, this thesis proposes to compute se-

mantic and sequential relationships between items from customers’ purchase history and

products’ meta data (e.g., title, description and brand) and extract products’ semantic

knowledge according to their (i) usage (e.g., products co-purchased or co-reviewed) and

(ii) textual features by finding similarity between products based on their characteristics.

These relationships obtained in the form of product feature vector representations can then

be used to compute similarities between existing and a new item to guarantee the appear-

ance of this newly introduced item into the recommendation set without the use of any

explicit ratings.

For a new user issue, where no previous history exists, the current user behaviour (e.g.,

what items she is browsing), are considered to find items that are similar in semantics.

105

Then, for recommendation using user-based CF, Top-N neighbors (customers’ whose inter-

est is similar to the target customer) are identified based on the products’ in their purchase

sequence. This is based on semantic similarities between products in their purchase se-

quences, where each purchase sequence will be represented as an aggregate vector of all

products in the sequence (Section 6.1.3) and each user will be represented as an aggre-

gate vector of her purchase sequences to compute Top-N neighbors. This is analogous to

representing a sentence as collection of words. Sparsity (lack of user item interactions) is

addressed as an item’s relationship with other items is computed on the basis of item’s tex-

tual features and usage context (e.g., items co-purchased, co-viewed). Hence, to compute

similarities between items, no explicit information (ratings) are required. The huge search

space issue is also addressed by narrowing down the search space during the mining process

by proposing to prune patterns on the basis of semantic similarity threshold in addition to

traditional pruning method of using the support count.

Furthermore, a first order Markov Model’s Transition Probability Matrix is enhanced

with items’ semantic knowledge by first (a) creating a product frequency matrix based on

the sequential occurrence of each consecutive pair of products using the customers’ his-

torical purchases, (b) creating a Transition probability Matrix by normalizing the matrix

obtained in step (a) as explained in Sections 6.2.1 and 6.2.2 and then integrating the seman-

tic information of products from the item similarity matrix by computing a weighted score

(based on their semantic and sequential occurrence) for each consecutive pair of products

in the Transition Probability Matrix (Section 6.2, Algorithm 4). This provides us the items

that are similar in semantics and purchased in sequential order. A personalization vector is

then computed for each customer based on any product in its most recent purchases (as a

starting probability vector for the customer to begin at state k) in order to determine the

probabilities for landing at state k+1 (i.e., recommending a personalized next item by initi-

ating the customers’ journey from state k which represent any of the products purchased by

the customer during the last time stamp) and then determine the next product for purchase

(state k+1) based on the weighted score (Sect. 7.2, Algorithm 7).

106

Chapter 4

Proposed Semantic Embedded

Sequential Recommender for

E-commerce Products (SEMSRec)

4.1 Problem Formulation

Consider a set of users U = {u1, u2, , un} and a set of products P = {p1, p2, , pn}.

Each user u is associated with a sequence of interactions with some items from P such that

S = {S1, S2,, Sn}. Given a sequence of user-item interactions (click, view, add to cart,

purchase), the task of a Sequential Recommendation System is to generate a personalized

Top-K ranked candidate item list. The system aims to maximize users’ future needs, by

considering their long and short term preferences in terms of finding sequential relationships

between various user-item interactions (e.g., clicks, views or purchases). In other words, the

sequential recommendation task is to learn a complex function f for accurately predicting

the probability that user u will choose each product p at time t + 1 based on the input

behavior sequence and the user profile. Mathematically,

O = argmax f(I)

107

where f represents a utility function which outputs a ranking score for the candidate items,

and can be in the form of conditional probability or an interaction score. I is the input

sequence such that I = {a1, a2, ..., a|S|} and represents a sequence of user-item interactions

where each interaction ai = ⟨u, i, p⟩ is a triplet comprising of a user u, the user’s interaction

i, (click, view or purchase) and the corresponding item p. Sometimes, there is some meta

data associated with the users (e.g., user demographics or features), items (e.g., product

descriptions, title, brand) and user-item interactions (e.g., click, add to the cart, purchase)

which can occur under different scenarios (contexts) such as a particular time, location and

weather. The output O (i.e., recommendation) is a list of items ordered by the ranking

score.

Hence, this work focuses on the task of Top-K recommendations formally stated as, con-

sider a set of users U = {u1, u2, , un} and a set of products P = {p1, p2,, pn}. Each

user u is associated with a sequence of some items from P such that Su = (S1, S2, , Sn).

Given all users’ purchase sequences Su, the system aims to recommend each user u a list of

Top–K tailored products from the candidate set based on the semantic relationship between

products instead of u′s interactions (ratings) on products. The system aims to maximize

users’ future needs, by considering their long and short term preferences in terms of find-

ing (a) semantic similarities and sequential relationship between products from customers’

purchase histories and product meta data and then (b) integrating products’ semantic simi-

larities and sequential relationships into Sequential Pattern Mining, Collaborative Filtering

and Transition Probability Matrix of Markov Model to generate semantic and sequential

personalized recommendations for customers.

4.2 Proposed Solution and System Architecture

We propose a component based architecture for our proposed system. Fig. 4.1 presents the

diagram depicting the architecture of the system and Algorithm 1 shows the processing.

The system consists of four main components/phases which are (i) data pre-processing

phase, (ii) items’ semantic representation phase, (iii) candidate generation (users’, items’)

phase and (iv) semantic and sequential recommendation phase. Here, we provide a brief

overview of each component and then in the subsequent chapters (Chapters 5, 6 and 7) will

108

explain the detail functionality along with walk through examples for each component of

the proposed system.

The major goal of the proposed Semantic Embedded Sequential Recommendation Sys-

tem (SEMSRec) is to integrate items’ semantic and sequential information extracted from

customers’ purchase histories to compute item similarities for personalized recommendations

without using item ratings. It also integrates semantic knowledge to (i) mine semantically

rich frequent sequential purchase patterns, (ii) enhance the CF item-to-item similarity ma-

trix and (iii) enrich the transition probability matrix of Markov Model for semantic and

sequential next item recommendation(s). Thus, SEMSRec (Algorithm 1) takes customer

historic purchase records (HPR), products meta data (title, description, brand), number of

Top-N users with similar purchase behavior (N), number of Top-K recommendation items

(K), minimum support(s),minimum semantic sim (m_sem), number of steps (L) as input

to output set of items that are similar in semantics and purchased frequently in sequential

order.

Figure 4.1: Architecture of the proposed system

109

Algorithm 1 Semantic Enhanced Sequential Recommendation for E-Commerce Products
(SEMSRec)
Input : Customer Historic Purchase Records (HPR), Products Meta Data (ti-

tle, description, brand),number of Top-N users with similar purchase be-
havior (N), number of Top-K recommendation items (K), minimum sup-
port(s),minimum semantic sim (m_sem),number of steps (L)

Output : set of Top-K recommended items (RS)
Intermediates: Customer Purchase Sequences (PS), Products’ semantic feature vector

representation matrix (PV) of size features × products,Semantic rich se-
quential purchase patterns,item semantic similarity matrix M , purchase
sequence vector (−−→PSu) of user u, similar purchase sequence data base
(SPSDB),Transition Probability Matrix P , Product Frequency matrix
PF , Semantic rich Transaction Probability matrix P1,Probability Vector
for Next Item Recommendation at time t+1 P t+1

/* Data Pre-processing */
1 Creating purchase sequences from customers’ historical records and cleaning meta data

using NLP operations (Section 4.2.1 /* Learn Products Semantic Representation
*/

2) Learn products’ semantic representation using Algorithm 2 (SKE) in Section 5
/* Generating Semantic rich Sequential Candidate Items */

3 if using Semantic rich Sequential Pattern Mining Method then
4 use Algorithm 3 (SKI_SSPM) in Section 6.1
5 else
6 if using Markov Model Method then
7 use Algorithm 4 (SKI_MM) in Section 6.1.4

/* Generate Semantic and Sequential rich Next Item Recommendations */
8 if using Semantic rich Sequential Pattern Mining Method then
9 use Algorithm 5 (SSR_SPM) in Section 7.1

10 else
11 if using Collaborative Filtering Method then
12 use Algorithm 6 (SSR_CF) in Section 7.1
13 else
14 use Markov Model Method by using Algorithm 7 (SSR_MM) in Section 7.2

4.2.1 Data Pre-processing Phase

This component is responsible to pre-process the users’ (customers’) historical purchase

data and products’ meta data (title, description and brands) for input to the system. The

customers’ historical data depends on the purchases made by the customers’ over a period

of time. The historical data needs to be cleaned and transformed to obtain it in the cor-

rect form. The transformations involve filling missing values, removing duplicate records,

sorting and grouping customers’ purchase sequences according to the timestamp. Other

110

pre-processing task for the product meta data involve natural language processing opera-

tions such as a) tokenization (the process of segmenting text into words, clauses or sentences

such as separating words and removing punctuations), b) stop words removal (removal of

commonly used words unlikely to be useful for learning such as a, the, of), and c) stem-

ming which involves reducing related words to a common stem such as reducing the words

loved, loving and lovely to the word love obtained from customer’s review about a product

expressing her likeliness towards the product. These pre-processing operations need to be

performed before the data can be input to the models for learning products semantic rep-

resentations. This is where the feature extraction, construction, and selection takes place

too to get the data model.

4.2.2 Items (Products’) Semantic Representation Learning Phase

This phase involves learning the product representations which are then used in the later

phases for computing product similarities, semantically similar purchase sequences, ex-

tracting semantically frequent sequential patterns and then incorporating this semantic

and sequential information into the item-item similarity matrix in Collaborative Filtering

for generating Top-K recommendations. The semantics are learned based on:

(a) Product ID’s: In this setting, the corpus consists of product id’s from customers’

purchase sequences sorted according to the time stamp and is used to individually train the

Prod2vec (Grbovic et al., 2015) and GloVe (Pennington et al., 2014) models to obtain prod-

ucts’ vector representations. Here, for the model training, a corpus of sentences in case of

Prod2Vec (where a sentence represents sequence of products purchased by customers sorted

according the time stamp) and documents in case of GloVe (where a document represents

collection of sequences representing products purchased by the customer) are used.

In a different setting, vectors obtained after training both models are combined (aver-

aged) to obtain a unified feature vector representation of each product in the corpus.

(b) Product’s Meta Data: To explore the impact of obtaining product semantics from

other product features (textual data), a corpus of documents and tokens in case of TF-IDF

(where a document represents collection of products’ title, description, brand and tokens

111

comprise of unique words present in the textual data) and documents for Doc2vec (Mikolov

et al., 2013) are used (where a document represents collection of product descriptions, title

and brand in a list of list format and each list element represents description, title and

brand of a product purchased, and a document ID for each document).

In a different setting, vectors obtained after training both models are combined (aver-

aged) to obtain a unified feature vector representation of each product in the corpus.

(Grbovic et al., 2015) is based on word2vec which is a highly scalable predictive model for

learning word embeddings from text. It is based on the Distributional Hypothesis, which

states that words that appear in the same contexts are close to each other in meanings.

A similar hypothesis can be applied in larger contexts such as online shopping where we

can treat products as word tokens and use user sequences (analogical to sentences) to learn

product embeddings. Word2Vec encode semantics of the words which is exactly what we

need for similar products, therefore prod2vec (Grbovic et al., 2015) is used to generate prod-

uct embeddings. However, the product embeddings generated by prod2vec (Grbovic et al.,

2015) only take into account the information of the user purchase sequence, that is, only

the local co-occurrence information. Glove model (Pennington et al., 2014) on the other

hand is a word vector representation method where training is performed on aggregated

global word-word co-occurrence statistics from the corpus (set of all purchase sequences).

Therefore to capture information from the purchase sequences at the local and the global

level, product embeddings were obtained by training both models (Prod2vec and Glove)

individually and then unifying the learnt embeddings for better representation of product

vectors. Experiments showed that unified embeddings gave better results in terms of finding

similar products.

We further enhanced the products’ representations by including other types of item

information which is the items’ meta data (e.g., product titles, descriptions and brand) and

used Doc2vec (Mikolov et al., 2013) and TF-IDF because Prod2vec (Grbovic et al., 2015)

and Glove (Pennington et al., 2014) do not take into account these types of information

such as the items’ metadata. In Doc2Vec model (Mikolov et al., 2013), the words (products)

and the paragraph (products’ meta data in a purchase sequence) are trained jointly to learn

product vector representations (embeddings).

The rationale to obtain product embeddings through aggregating two models (e.g.,

112

prod2vec and Glove) on product sequences was to capture information about the products

(embeddings) from the purchase sequences at the local and the global level.

Chapter 5 of this thesis explains the step by step detailed functionality of

this phase along with walk through example.

4.2.3 Candidate (Users’ and Items’) Generation Phase

This phase involves generating potential candidates for recommendation and comprises of

three steps which are (i) computing products’ semantic similarity, (ii) extracting Top-N

semantically similar neighbors (users, items) and finally (iii) generating candidates either

by (a) mining semantic embedded sequential patterns and rules or (b) using Markov Model

created from the daily purchase sequences of customers’ historical purchase which is based

on proposed semantic transition probability matrix.

Chapter 6 of this thesis provides step by step detailed functionality of this

phase for generating potential candidate items and users using both approaches

(semantic based sequential pattern mining and semantic Markov Model transi-

tion matrix) along with walk through example.

4.2.4 Semantic and Sequential Next Item Recommendation Phase

This phase involves incorporating the semantic and sequential associations between products

into the item-item similarity matrix in order to enrich the Collaborative Filtering item-

item matrix for recommending products to customers which are similar in semantics and

are purchased in sequential order as well. The steps involved in this phase are (i) score

computation for products, (ii) creating semantic and sequentially rich (a) item to item

similarity matrix in Collaborative Filtering Model and (b) transition probability matrix in

Markov Model, (iii) personalized vector creation for target customer and (iv) generating

semantically rich and sequential Top-K recommendations.

Chapter 7 of this thesis explains the step by step detailed functionality of this

phase to generate semantic and sequential next item recommendations using

113

semantic based (a) Sequential Pattern Mining, (b) Collaborative Filtering and

(c) Markov Model along with walk through examples.

114

Chapter 5

Semantic Representation Learning

of E-commerce Products

In this Chapter, we present the details of obtaining product representations based on prod-

uct Id’s and the meta data using the Prod2vec (Grbovic et al., 2015), Glove (Pennington

et al., 2014), Doc2vec (Le and Mikolov) and TF-IDF (Salton, 1988). To explain the input

format and the working of the models Prod2Vec(Grbovic et al., 2015), Glove(Pennington

et al., 2014), TF-IDF(Salton, 1988) and Doc2Vec(Le and Mikolov), we will use data from

Table 5.1 and Table 5.2 representing sample historical product purchase records of customers

and products’ meta data. For each of these models, we will obtain a semantic representation

of items across d = 100 dimensions, where an item can represent documents comprising of

products, articles, books, customer reviews or product descriptions. Algorithm 2 shows the

steps to obtain semantic representation of products.

5.1 Walk through Examples for learning Products Semantic

Feature Vector Representation

Example 5.1. Product’s Semantic Representation Using Prod2Vec

Step 1: Creating purchase sequences

From Table 5.1 we create purchase sequences (Table 5.3) for each customer sorted according

115

Table 5.1: Sample historical product purchase records

Invoice No. Stock Code Invoice Date Customer ID
536365 20674 12/1/10 8:26 17850.0
536365 21242 12/1/10 8:26 17850.0
536365 20675 12/1/10 8:26 17850.0
536365 21245 12/1/10 8:28 17850.0
536365 20677 12/1/10 8:28 17850.0
536365 20655 12/1/10 8:30 17850.0
536365 20677 12/1/10 8:30 17850.0

Table 5.2: Sample of product meta data

Stock Code Title Description Brand

20674 Green polka
Dot bowl Earthenware, largest measures5.5 inch h x

12 inch l x 11.25 inch hand wash
Tag limited

21242 Red retrospot
Plate

These beautiful plates are composed of
high-rated heavyweight plastic materials
rendering the plates leak-free, soak resis-
tant, cut proof and unbreakable.

Silver
Spoons

20675 Blue Polka Dot
bowl

This polka dot bowl is fun and festive and
perfect for that bowl of cereal in the morn-
ing or bowl of ice cream in the evening. It
is finished in a blue celadon glaze with a
sprinkling of matte black polkadots. Dish
washer safe

Creative in-
novations

21245 Green polka
Dot plate

Add a splash of color with this bright
party detail! Green and White Dots
Dessert Plates (8), 7"

Party2u

20677 Pink polka
Dot bowl Earthenware,largest measures 5.5 inch h x

12 inch l x 11.25 inch. Hand wash
Tag limited

20655 Queen of skies
Luggage Tag

Suitcase tag made PU material, in front
with a protective film. waterproof. Fully
Bendable / Flexible Material to Prevent
Breaking or Losing Your leather luggage
tags.

PAGSRAH

116

Algorithm 2 Products’ Semantic Knowledge Extraction (SKE)
Input : Customer Historic Purchase Records (HPR), Products Meta Data (title, descrip-

tion, brand)
Output: Customer Purchase Sequences (PS), Products’ semantic feature vector represen-

tation matrix (PV) of size features × products
1 Create purchase sequences from Customers’ historical purchase records
2 Obtain Matrix (PVprod2vec) of features × items← computed using Prod2vec (Example 5.1)
3 Obtain Matrix (PVglove) of features x items ← computed using Glove (Example 5.2)
4 Obtain Matrix (PVtfidf) of features × items ← computed using TF-IDF (Example 5.3)
5 Obtain Matrix (PVDoc2V ec) of features × items← computed using Doc2vec (Example 5.4)
6 Create hybrid PV matrix (PVhybrid) ← computed by averaging the embeddings (semantic

feature vectors) of each product in their respective PV matrices

Table 5.3: A purchase sequence database (Purchase Sequences)

SID Purchase Sequences
1. 21239, (21239, 20655, 21242), (21239, 21242), (21366), (21242, 22246)
2. (21239, 21366), 21242, (20655, 21242) , (21239, 21377)
3. (21377, 22246), (21239, 20655), (21366, 22246), (21242,20655)
4. 21377, 22198 , (21239,22246), 21242, 20655, 21242
5. (20674), (20674, 21245, 21239),21242
6. 21238,21239,21245
7. (20655,20674,20675,20675),(21242,21245)
8. 20675,21238,21245
9. 21366,21239,21242,21245

to the timestamp. Table 5.4, then represents the sequences in the form of lists for learning

products’ vector representations using Prod2Vec.

Problem 1:

Given the input purchase sequence [‘20674’, ‘21242’, ‘20675’, ‘21245’, ‘20677’, ‘20655’]

represented as a sentence with words (products) as p1 = 20674, p2 = 21242, p3 = 20675, p4 =

21245, p5 = 20677, p6 = 20655. Consider the product ‘20675’ as center product (word), the

goal is to train the model to predict the neighboring (context) products which are [‘20674’

, ‘21242’ , ‘21245’, ‘20677’, ‘20655’] by learning vector representations. The model works as

explained below.

Prod2Vec Algorithm Summary: Prod2Vec accepts product purchase sequences (e.g., as

shown in Table 5.4) with some other input data listed above. It creates a product (word)

vocabulary in the format of index: unique product id. Then, each product is represented

in a one-hot vector format with dimension V where V is the vocabulary size and the po-

117

Table 5.4: Purchase sequences in list format

SID Sequence(s) as Lists
S1 [21239, 21239, 20655, 21242, 21239, 21242, 21366, 21242, 22246]
S2 [21239, 21366, 21242, 20655, 21242 , 21239, 21377]
S3 [21377, 22246, 21239, 20655, 21366, 22246, 21242,20655]
S4 [21377, 22198 , 21239,22246, 21242, 20655, 21242]
S5 [20674, 20674, 21245, 21239,21242]
S6 [21238,21239,21245]
S7 [20655,20674,20675,20675,21242,21245]
S8 [20675,21238,21245]
S9 [21366,21239,21242,21245]

sition of the product is represented by a ‘1’ in the vector. Next, a product of one-hot

vector is taken with the input weight matrix X to get an embedded vector for the product

which is then multiplied with the output weight matrix Y to get embedded vectors for the

context products (e.g., as shown in Fig. 5.1). As a result, we obtain the Product Vec-

tor PV matrix (Nasir and Ezeife, 2020) where each product is represented across d=100

dimensions (features). Fig. 5.1 shows matrix PV for some sample products using Prod2Vec.

Figure 5.1: Product Vectors by Prod2Vec Model

PVp2vec =



F0 F1 F2 F97 F98 F99

20674 0.66072 0.176294 −0.577179
...

...
... 0.985326 −0.113320 0.120507

21242 0.135658 0.208497 −0.108157
...

...
... 0.728440 0.023664 0.430904

20675 0.344165 −0.012509 −0.293663
...

...
... 0.786582 0.182488 0.388695

21245 0.016946 −0.051390 −0.172432
...

...
... 0.728440 0.023664 0.430904

20677 0.363226 0.076637 −0.299294
...

...
... 0.908400 0.081133 0.245601

20655 −0.110575 0.226335 −0.199941
...

...
... 0.183031 −0.334734 0.558633



We chose to use Prod2vec (Grbovic et al., 2015) to obtain product embeddings as it

was the first approach to leverage the idea of word2vec (which was used to obtain word

embeddings according to their context, i.e., neighboring words). Prod2vec (Grbovic et al.,

2015) utilized the word2vec (Mikolov et al., 2013) approach by applying it to customers’

historical records to obtain product embeddings.

Example 5.2. Learning Product Vector Representations Using Global Vec-

tors (GloVe)

To use Glove model for our task, we represent a collection of purchase sequences con-

118

sisting of product ID’s sorted according to timestamp as documents and each product ID

in the document representing a word. Glove will model the context of purchase sequences,

where products with similar contexts that is, with similar neighboring purchases will have

similar vector representations and are closer to each other.

The steps to learn product vector representations (semantics) by creating a co-occurrence

matrix and then the vector representations using Glove are explained below:

Problem 2:

Given an input of purchase sequences (document) in a list of list format as [[’20674’,

’21242’, ’20675’, ’21245’, ’20677’, ’20655’], [’20675’, ’21245’, ’20655’],[’21245’, ’20674’, ’20675’]]

where a document consists of a collection of customers’ purchase sequences sorted according

to the timestamp and each sequence consists of one or more products (words) and a window

size of n, the goal is to train the model to obtain the product co-occurrence matrix and

then learn products’ vector representations (semantics). Here in our example, we have three

purchase sequences where each purchase sequence has a number of products represented by

product ID’s. The model works as explained below.

Input: Corpus of documents (purchase sequences in list of list format), window size - c .

Intermediates: Co-occurence matrix M of size (n x n) where n is the number of unique

products in the sequences.

Output: Vector representation of all unique products in the vocabulary V across N dimen-

sions. The created document (purchased sequences) will be fed to the model for creating

co-occurrence matrix and then learning product vector representations.

Glove Algorithm Summary: Glove accepts product purchase sequences (e.g., shown in Table

5.4) with some other input data listed above. It creates a product (word) vocabulary in

the format of index: unique product id. Then, it collects word (product) co-occurrence

statistics to get a co-occurrence matrix (Fig. 5.2) so that it can compute the product co-

occurrence score for each pair of products.

Steps:

1. Create a vocabulary of size (V) in the format index: product id consisting of all unique

products. For example, V = {1 : 20674; 2 : 21242; 3 : 20675; 4 : 21245; 5 : 20677; 6 :

119

20655}.

2. Collect word (product) co-occurrence statistics in a form of word (product) co-ocurrence

matrix X. Each element Xij of such matrix represents how often product i appears in

context of product j. This is done by scanning the corpus as: for each product, look

for context products within the defined window_size c (here c=1) after the term. Less

weight is given for context products which are more distant from the target product,

by using Eq.5.1:

decay = 1
offset (5.1)

Figure 5.2: Glove Model’s Co-ocurrence Matrix

20674 21242 20675 21245 20677 20655
20674 0.0 1.0 1.5 1.33 0.25 0.20
21242 0.0 0.0 1.0 0.5 0.33 0.25
20675 0.0 0.0 0.0 2.5 0.50 0.83
21245 0.0 0.0 0.0 0.0 1.0 1.50
20677 0.0 0.0 0.0 0.0 0.0 1.0
20655 0.0 0.0 0.0 0.0 0.0 0.0


For example, in the above co-occurrence matrix, we can see that product “20674” (tar-

get) has co-occurred with product “21242” (context) as 1.0 times. This is computed

by scanning the corpus and finding the positions where both these products occur

together. Here, according to the corpus, they both occur together only in sequence 1

and the product “21242” is in the context window size (offset) of 1, so its co-occurrence

score as per the Eq.5.1 is =1/1/= 1.0. In the same way the co-occurrence between

products “20674” and “20677” (context) is computed. As product “20677” co-occurs

with product “20674” in only one sequence (first sequence) and at an offset 4, so

its co-occurrence score will be = 1
4 = 0.25. The co-occurrence score between other

products is computed in the same way.

3. Produce vector values in continuous space for each word in the corpus, which repre-

sents how every pair of words i and j co-occur. This is done by using a soft constraint

for each word pair of word i and word j which states that word vectors are learnt such

that their dot product (inner product) equals the logarithm of the words’ probability

of co-occurrence as shown in Eq.5.2.

120

wT
i wj + bi + bj = log (Xij) (5.2)

Here wi represents vector for the target product, wj is vector for the context product,

bi, bj are scalar biases for the target and the context products. This is achieved by mini-

mizing an objective function J , which evaluates the sum of all squared errors based on the

above equation, weighted with a function f as given in Eq.5.3

J =
V∑

i=1

V∑
j=1

f (Xij)
(
wT

i wj + bi + bj − log Xij

)
2 (5.3)

Where V is the size of the vocabulary. Here f is a weighting function which helps to

prevent learning only from extremely common word pairs (product pairs). The following

function (Eq.4) is used in Glove(Pennington et al., 2014):

f (Xij) =


(

Xij

xmax

)
α, if Xij < XMAX

1, otherwise
(5.4)

By using the above formulas and the co-occurrence matrix obtained in step 3, we learn

the feature vector representations of products as shown in Fig. 5.3.

PVglove =



F0 F1 F2 F97 F98 F99

20674 −0.077740 0.075161 0.075892
...

...
... −0.020273 0.133662 0.034656

21242 −0.114833 0.061225 0.109533
...

...
... −0.025963 0.173161 0.065046

20675 −0.123344 0.098004 0.120447
...

...
... −0.022385 0.189432 0.054446

21245 −0.065362 0.047590 0.059333
...

...
... −0.021115 0.114979 0.041389

20677 −0.102480 0.087887 0.101183
...

...
... −0.019029 0.167862 0.033685

20655 −0.000398 −0.002544 0.003422
...

...
... −0.001759 0.001247 0.003912


Figure 5.3: Product vectors by Glove model

Where each row represents feature vector representation of a product across d dimen-

sions. Here, the feature vectors (dimensions) have a size of 100. This is a model parameter

and can be set as required. For example, vector representation of product with id “20674” is

the first row in the matrix and represented as [−0.077740 −0.075161 0.075892 −

0.020273 0.133662 0.034656].

121

Example 5.3. Learning Product Vector Representations Using TF-IDF

Problem 3:

Given a collection of documents d (e.g., books, articles, product descriptions, user re-

views) and a set of features (terms) t, learn the document representation (semantics) by

finding the association (weight) between the document and the features.

For our task, the problem is reformulated as:

Given a collection of documents (where a document represents collection of product

descriptions in a list format as [’medium ceramic top storage jar’, ’black candelabra t-

light holder’, ’woodland charlotte bag’, ’airline bag vintage jet set brown’] where each

element represents description of a product purchased and a set of features (where a feature

will consist of unique tokens extracted from the product descriptions), find the association

(weight) between the products and the features.

Input : D = {d1, d2,, dN}, in our case,

D= [’medium ceramic top storage jar’, ’black candelabra t-light holder’,

’woodland charlotte bag’, ’airline bag vintage jet set brown’]

T = {t1, t2, , tN}, in our case,

T= [’blue’, ’bowl’, ’dot’, ’green’, ’luggage’, ’pink’, ’plate’, ’polka’, ’queen’, ’red’,

’retrospot’, ’skies’, ’tag’]

Output: dj =< w1j , w2j ,, wnj>

TF-IDF Summary: TF-IDF aims to learn the product feature vectors by first creating set of

all unique tokens (words) in product descriptions and then computing the term frequency

count from the given product descriptions (Table 5.5 and Table 5.6). It then computes

Inverse Document Frequencies (Table 5.7) and finally the product of Term frequency (TF)

and Inverse document Frequency (IDF) is computed (Table 5.8 to obtain a term weighted

vector representation, i.e., representing each product as an n-dimensional feature vector

(Fig. 5.4). The steps to learn the product feature vectors using TF-IDF are given below:

Step 1: Term Frequency Computation (TF)

122

T
ab

le
5.

5:
Fr

eq
ue

nc
y

C
ou

nt
of

U
ni

qu
e

To
ke

ns
oc

cu
rr

in
g

in
th

e
Pr

od
uc

t
D

es
cr

ip
tio

ns

Pr
od

Id
Pr

od
uc

ts
To

ke
ns

bl
ue

bo
w

l
do

t
gr

ee
n

lu
gg

ag
e

pi
nk

pl
at

e
po

lk
a

qu
ee

n
re

d
re

tr
os

po
t

sk
ie

s
ta

g
20

67
4

G
re

en
po

lk
a

do
t

bo
w

l
0

1
1

1
0

0
0

1
0

0
0

0
0

21
24

2
R

ed
re

tr
os

po
t

pl
at

e
0

0
0

0
0

0
1

0
0

1
1

0
0

20
67

5
B

lu
e

po
lk

a
do

t
bo

w
l

1
1

1
0

0
0

0
1

0
0

0
0

0
21

24
5

G
re

en
po

lk
a

do
t

pl
at

e
0

0
1

1
0

0
1

1
0

0
0

0
0

20
67

7
Pi

nk
po

lk
a

do
t

bo
w

l
0

1
1

0
0

1
0

1
0

0
0

0
0

20
65

5
Q

ue
en

of
sk

ie
s

lu
gg

ag
e

ta
g

0
0

0
0

1
0

0
0

1
0

0
1

1

T
ab

le
5.

6:
Te

rm
Fr

eq
ue

nc
ie

s
(T

F-
C

om
pu

ta
tio

n)
Pr

od
uc

t
Id

Pr
od

uc
ts

To
ke

ns
bl

ue
bo

w
l

do
t

gr
ee

n
lu

gg
ag

e
pi

nk
pl

at
e

po
lk

a
qu

ee
n

re
d

re
tr

os
po

t
sk

ie
s

ta
g

20
67

4
G

re
en

po
lk

a
do

t
bo

w
l

0.
00

0.
25

0.
25

0.
25

0.
00

0.
00

0.
00

0.
25

0.
00

0.
00

0.
00

0.
00

0.
00

21
24

2
R

ed
re

tr
os

po
t

pl
at

e
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

33
0.

00
0.

00
0.

33
0.

33
0.

00
0.

00
20

67
5

B
lu

e
po

lk
a

do
t

bo
w

l
0.

25
0.

25
0.

25
0.

00
0.

00
0.

00
0.

00
0.

25
0.

00
0.

00
0.

00
0.

00
0.

00
21

24
5

G
re

en
po

lk
a

do
t

pl
at

e
0.

00
0.

00
0.

25
0.

25
0.

00
0.

00
0.

25
0.

25
0.

00
0.

00
0.

00
0.

00
0.

00
20

67
7

Pi
nk

po
lk

a
do

t
bo

w
l

0.
00

0.
25

0.
25

0.
00

0.
00

0.
25

0.
00

0.
25

0.
00

0.
00

0.
00

0.
00

0.
00

20
65

5
Q

ue
en

of
sk

ie
s

lu
gg

ag
e

ta
g

0.
00

0.
00

0.
00

0.
00

0.
25

0.
00

0.
00

0.
00

0.
25

0.
00

0.
00

0.
25

0.
25

T
ab

le
5.

7:
ID

F
C

om
pu

ta
tio

n
Te

rm
s

bl
ue

bo
w

l
do

t
gr

ee
n

lu
gg

ag
e

pi
nk

pl
at

e
po

lk
a

Q
ue

en
re

d
re

tr
os

po
t

sk
ie

s
Ta

g
ID

F
0.

78
0.

30
0.

18
0.

48
0.

78
0.

78
0.

48
0.

18
0.

78
0.

78
0.

78
0.

78
0.

78

T
ab

le
5.

8:
T

F-
ID

F
of

To
ke

ns
in

Pr
od

uc
t

D
es

cr
ip

tio
ns

(P
ro

du
ct

Ve
ct

or
s

U
sin

g
T

F-
ID

F)
Te

rm
s

bl
ue

bo
w

l
do

t
gr

ee
n

lu
gg

ag
e

pi
nk

pl
at

e
po

lk
a

Q
ue

en
re

d
re

tr
os

po
t

sk
ie

s
Ta

g
ID

F
0.

78
0.

30
0.

18
0.

48
0.

78
0.

78
0.

48
0.

18
0.

78
0.

78
0.

78
0.

78
0.

78

123

Term Frequency (TF) will be computed by using 2.2. For example term frequency for

“blue” in product description “green polka dot bowl” is computed as :

TF (blue, green polka dot bowl) = 0
3 = 0. Similarly, the term frequencies of all tokens are

computed and shown in Table 5.5 which shows frequency count of thirteen terms occurring

in the product descriptions For example, the term “bowl” appears three times among the

product descriptions (as indicated by a 1 in each corresponding row where the term appears

in a product).

Step 2: Inverse Document Frequency Computation (IDF)

IDF for all the terms is computed using the formula log(N
nk

) where N is the total number

of product descriptions and nk represents the number of product descriptions in which the

term appears at least once. Table 5.7. shows the IDF of all terms.

Step 3: TF- IDF Computation

The TF-IDF is computed using 2.1 that is, taking the product of Term Frequency of

each token in the product description with Inverse Document Frequency of the token in

that product description. For example, the TF-IDF of the term blue will be:

TF-IDF (blue, green polka dot bowl) = TF (blue) * IDF (blue, green polka dot bowl)

=0.0 * 0.78 = 0.0

TF-IDF (bowl, green polka dot bowl) = TF (bowl) * IDF (bowl, green polka dot bowl)

= 0.25 * 0.30 = 0.08

After the computation of TF-IDF (Table 5.8), we can represent each product as an

n-dimensional feature vector, where each dimension represents a feature (token). For our

example, we have thirteen features (tokens) and the product “green polka dot bowl” can be

represented as term weighted vector as: Green polka dot bowl = [0.00 0.08 0.04 0.12 0.00

0.00 0.00 0.04 0.00 0.00 0.00 0.00] After training the model on all products in the purchase

sequence, we reduce the dimension of the features by using Singular Value Decomposition

(SVD) and obtain final product vector matrix as shown in Fig. 5.4.

Example 5.4. Learning Product Vector Representations Using Doc2vec (Le and

Mikolov)

124

Figure 5.4: Product Vectors obtained from TF-IDF Model

PVtfidf =



F0 F1 F2 F97 F98 F99

20674 0.075502 −0.026424 −0.091291
...

...
... 0.000088 −0.073289 −0.055986

21242 0.202582 −0.226119 −0.354920
...

...
... 0.019935 −0.028236 0.037867

20675 0.080445 −0.041201 −0.134280
...

...
... 0.014696 −0.030099 −0.067652

21245 0.074386 −0.036098 −0.061312
...

...
... 0.002169 −0.076671 0.041561

20677 0.114951 −0.034461 −0.145326
...

...
... −0.010915 −0.047242 −0.070353

20655 0.000589 −0.001437 −0.001532
...

...
... −0.002298 0.004696 0.003122



Problem 4:

Given a collection of documents d, learn the document vector representation.

For our task, the problem is reformulated as:

Given a collection of documents (where a document represents collection of product

descriptions, product title and product brand in a list of list format as where each element

represents description, title and brand of a product purchased, and a document ID for each

document, learn document representation (product representation).

Input: A collection of documents in a list of list format [[green polka dot bowl earthenware

largest measures hand wash tag limited], [red retrospot plate beautiful plates composed

high rated heavy weight plastic material render plate leak free soak resistant cut proof

unbreakable, silver spoon], [green polka dot plate add a splash of color bright party detail

green white dots dessert plates party2u]].

Intermediates: vectors (word and and document ID vectors) with vector dimensions as

1 × V (one-hot vector) and 1 × N respectively, where N represents the total number of

documents (product descriptions), weight matrix W from input to hidden layer and weight

matrix Y from the hidden layer to the output layer.

Output: Vector representation of each document across N dimensions.

Doc2vec Summary and Steps: The method for learning document representation is

similar to that of word2vec with the difference that along with the generation of word

vector W for each word, a document vector D is also generated for each document during

the training phase. For example, TaggedDocument (words=[‘green’ , ‘polka’ , ‘dot’, ‘bowl’

, ‘earthenware’, ‘largest’ , ‘measures’ , ‘hand’, ‘wash’, ‘tag’, ‘limited’] tags=[’0’]) and in

the end of training, a numeric representation of the document (products) is represented as

125

shown in Fig. 5.5.

PVDoc2vec =



F0 F1 F2 F97 F98 F99

20674 −0.729392 −0.694623 0.360440
...

...
... −0.059213 0.784198 −0.709698

21242 0.478108 0.810839 −0.67386
...

...
... 0.876485 0.128663 −0.818151

20675 1.560531 0.965368 −1.731812
...

...
... 0.182436 −0.794381 −0.585287

21245 −0.309573 0.418730 0.247207
...

...
... −0.468052 0.743325 0.427864

20677 −0.100401 1.024751 0.034455
...

...
... 0.346302 −0.044198 0.284042

20655 0.685829 0.646765 −0.305982
...

...
... 0.438488 1.036193 1.161657


Figure 5.5: Product Vectors by Doc2vec Model

We then created two hybrid matrices of product vector representations as (i) hybrid of

PVp2vec and PVglove (Fig. 5.6 and (ii) hybrid of PVtfidf and PVdoc2vec (Fig. 5.7) to better

learn the product semantics. This is achieved by averaging the embeddings of each product

in the respective matrices.

PVp2vec&glove =



F0 F1 F2 F97 F98 F99

20674 0.005834 0.125728 −0.250644
...

...
... 0.482526 0.010171 0.077582

21242 0.010412 0.134861 0.000688
...

...
... 0.351238 0.098413 0.247975

20675 0.110410 0.042747 −0.086608
...

...
... 0.382098 0.185960 0.221571

21245 0.024208 −0.001900 −0.056549
...

...
... 0.483533 0.153193 0.265428

20677 0.130373 0.082262 −0.099056
...

...
... 0.444685 0.124498 0.139643

20655 −0.055486 0.111896 −0.098260
...

...
... 0.090636 −0.166744 0.281272


Figure 5.6: Hybrid Product Vectors by Prod2vec and Glove Model

PVd2vecandtfidf =



F0 F1 F2 F97 F98 F99

20674 −0.034295 0.053539 −0.088612
...

...
... −0.024504 −0.121241 0.018026

21242 0.042981 −0.004462 −0.270291
...

...
... −0.024960 −0.061913 0.104531

20675 −0.022603 0.041644 −0.109378
...

...
... 0.004292 −0.068960 −0.068960

21245 −0.021472 0.072360 −0.129097
...

...
... −0.064445 −0.128279 0.069797

20677 −0.007805 0.065704 −0.117965
...

...
... −0.014165 −0.082256 0.027480

20655 −0.038842 0.030226 −0.069437
...

...
... 0.097315 0.031924 0.204722


Figure 5.7: Hybrid Product Vectors by Doctovec and TF-IDF Model

126

Chapter 6

Semantic Based Candidate

Generation

In this Chapter, details are presented for generating potential candidate items for recom-

mendation either by (a) mining semantic embedded sequential patterns and rules or (b)

using Markov Model created from the daily purchase sequences of customers’ historical

purchase and enriched with proposed semantic transition probability matrix.

Section 6.1 presents details for generating candidate items using semantic based sequential

pattern mining and Collaborative Filtering and Section 6.2 explains generating candidate

items using semantic rich Markov Model along with walk through examples.

6.1 Semantics based Sequential Pattern Mining

This phase involves steps as (i) computing products’ semantic similarity and creating item

semantic similarity matrix, (ii) creating aggregated vector representation of purchase se-

quences, (iii) extracting Top-N semantically similar neighbors (users, items) and finally (iv)

extracting semantic rich sequential patterns. Algorithm 3 presents the details.

127

Algorithm 3 Semantic Knowledge Integration into Sequential Pattern Mining Process
(SKI_SPM)
Input : Customers’ purchase sequences (PS), Products’ semantic feature vector

matrix PVhybrid, number of Top-N users with similar purchase behav-
ior (N) as target customer, minimum support(s),minimum semantic sim
(m_sem)

Output : Semantic rich sequential purchase patterns
Intermediates: item semantic similarity matrix M , purchase sequence vector (−−→PSu) of

user u, similar purchase sequence data base (SPSDB)
1 Compute semantic similarity between products using cosine similarity (eq. 6.1) between

their semantic feature vectors from hybrid PVhybrid matrix (section 6.1.1)
2 Item semantic similarity matrix (M) ← created using eq. 6.2 in section 6.1.1
3 for each purchase sequence (PS) do
4

−−→
PSu ← calculate by taking average of vectors of all products in the purchase sequence
using matrix PVhybrid (section 6.1.2)

5 for purchase sequence vector of each target user −−−→PSut do
6 for purchase sequence vector of each user −−→PSu do
7 compute similarity as similar users(−−−→PSut),

−−→
PSu) as in section 6.1.3

8 sort results from the previous step N ← store Top-N users with semantically similar
purchases

9 SPSDB ← Extract purchase sequences of Top-N similar users from PS
10 SSP ← Generate semantic sequential patterns from SPSDB (section 6.1.4)

6.1.1 Computing Products’ Semantic Similarity and item Semantic Sim-

ilarity Matrix

Products’ semantic similarity is computed by applying cosine similarity using Eq.6.1 on

product vectors in the joint PV matrix.

Cosine Similarity (x, y) =
∑n

i=1 xiyi√∑n
i=1 x2

i

√∑n
i=1 y2

i

(6.1)

where xi and yi represent components of vectors for products x and y respectively.

For example, to compute the similarity of product “20674” (Green Polka Dot Bowl) with

product “21239” (Pink Polka Dot Cup) and product “20675” (Blue Polka Dot Bowl), we will

take their corresponding product vectors (column) from the hybrid PV matrix and 21239,

20675 compute cosine similarity between them. So, cosine similarity, Cosine similarity

(20674, 21239) is 0.81 and Cosine similarity (20674, 20675) is 0.98, which shows that product

20674 is more close to product 20675 in the vector space than product 21239. Similarity

128

between other products is computed in the same way.

Cosine similarity was used as it measures the similarity between two vectors where in

our case each product is represented in an n-dimensional vector space where each dimension

represents products’ semantic features obtained through product characteristics, concepts

and context of usage (co-purchased, co-reviewed). Mathematically, Cosine similarity metric

measures the cosine of the angle between two n-dimensional vectors which are projected in

a multi-dimensional space. The Cosine similarity of two vectors will range from 0 to 1. If

the Cosine similarity score is 1, it means two vectors have the same orientation. The value

closer to 0 indicates that the two vectors have less similarity. Therefore the choice of cosine

similarity fits to our requirement while computing similarities between product vectors.

Next, an item-item semantic similarity matrix M is populated with this computed

product semantic similarity using Eq. 6.2. Each entry Rx,y in the matrix M represents

semantic similarity between products x and y in the vector space. Fig. 6.1. shows a sample

of matrix M .

Mx,y =

 1, if x = y

CosineSimilarity (x, y), otherwise
(6.2)

Figure 6.1: Item to Item Semantic Similarity Matrix

M =



20674 21242 21238 21245 21239 20655 20675 21366 22246 21377 22198
20674 1.00 0.84 0.88 0.80 0.81 0.93 0.98 0.86 0.97 0.87 0.33
21242 0.84 1.00 0.91 0.86 0.78 0.02 0.87 0.21 0.21 0.11 0.12
21238 0.88 0.91 1.00 0.96 0.98 0.95 0.94 0.94 0.90 0.94 0.98
21245 0.80 0.86 0.96 1.00 0.78 0.35 0.86 0.21 0.18 0.21 0.34
21239 0.81 0.78 0.98 0.77 1.00 0.10 0.89 0.23 0.11 0.18 0.37
20655 0.93 0.02 0.95 0.35 0.10 1.00 0.45 0.15 0.43 0.23 0.23
20675 0.98 0.87 0.94 0.86 0.89 0.45 1.00 0.47 0.16 0.31 0.44
21366 0.86 0.21 0.94 0.21 0.23 0.15 0.47 1.00 0.16 0.23 0.42
22246 0.97 0.21 0.90 0.18 0.11 0.43 0.16 0.16 1.00 0.23 0.32
21377 0.87 0.11 0.94 0.21 0.18 0.23 0.31 0.23 0.23 1.00 0.28
22198 0.33 0.12 0.98 0.34 0.37 0.23 0.44 0.42 0.32 0.28 1.00



6.1.2 Aggregate Vector Representation of Vector Sequences

This step involves computing vector representation (semantic information) of purchase se-

quences by aggregating vectors of each product in the purchase sequence. This is obtained

129

by computing mean of vectors (across N dimensions) of all products in the purchase sequence

by utilizing the hybrid matrices created in Chapter 5 Sect. 5.1.

6.1.3 Extracting Top-N Semantically Similar Neighbors

Next, Top-N neighbors with semantically similar sequences are identified by finding co-

sine similarity using Eq.6.1 between purchase sequence vector in the test data (target cus-

tomer) and each purchase sequence vector in the training data. For example, to compute

cosine similarity between the target customers’ purchase sequence in the test data and

other purchase sequences in the train data, consider a sample purchase sequence in test

data as [’23077’, ’23078’, ’23076’, ’22437’] with vector representation −→PSut = [-0.044143

0.044143 0.001968 -0.001035 0.018966 0.02645] and a purchase sequence in training

data [21238,21239,21245] with vector representation as −→PSu = [0.032593 0.066846 -0.172250

... -0.025199 -0.043636 0.08122], so, the cosine similarity between vectors of these

two purchase sequences using Eq. 6.1 is 0.81.

Similarly, cosine similarity between this purchase sequence vector −→PSut in test data is

computed with other purchase sequence vectors −→PSu in the training data. The results of

cosine similarity are then sorted in decreasing order to select Top-N (where N = 5, 10, or

15) customers with similar purchase behaviors, i.e., having products that are semantically

similar to products in the target sequence. This process is repeated for all the purchase

sequences in the test data (i.e., for each target user).

So, here we obtain semantically similar purchase sequences by computing similarities

between the test and the train purchase sequences using the hybrid similarity matrices

(PVp2vec_glove and PVdoc2vec_tfidf).

6.1.4 Mining Semantic Embedded Sequential Patterns and Rules

Purchase sequences of top-N semantically similar customers were extracted and database

of those purchase sequences was created. Using Sequential Historical Database (SHOD)

(Bhatta et al., 2019) format, these semantically similar purchase sequences were formatted

to extract frequent semantic sequential patterns. For example, using SHOD format, a

130

Table 6.1: Purchase sequence database of Top-N customers

SID Sequence
1 21239, (21239, 20655, 21242), (21239, 21242), (21366), (21242, 22246)
2 (21239, 21366), 21242, (20655, 21242) , (21239, 21377)
3 (21377, 22246), (21239, 20655), (21366, 22246), (21242,20655)
4 21377, 22198 , (21239,22246), 21242, 20655, 21242
5 (20674), (20674, 21245, 21239),21242
6 21238,21239,21245
7 (20655,20674,20675,20675),(21242,21245)
8 20675,21238,21245
9 21366,21239,21242,21245

sequence will be represented as <21239 21366-1 21242 -1 20655 21242 -1 21239 21377-2>

where a -1 indicates the end of item and -2 indicates the end of sequence. For example, in our

running example, Table 6.1, shows purchase sequences with products that are semantically

similar to our target purchase sequence [’23077’, ’23078’, ’23076’, ’22437’].

Next, frequent semantic sequential purchase patterns from these semantically similar

purchase sequences (Table 6.1 are extracted using Prefix Span (Pei et al., 2004). As these

frequent sequences were generated from purchase sequences with products which are seman-

tically similar, so the sequences obtained represents products which are similar in semantics

and frequently purchased in sequential order. Detailed step by step example of extract-

ing sequential patterns using PrefixSpan (Pei et al., 2004) is explained in Sect. 2.2.2.1.3.

At this step, we enrich the process of mining sequential patterns by integrating semantic

information of products from matrix M . The goal is to generate semantic rich frequent

sequential patterns by pruning product sequences that have a semantic similarity score less

than the specified similarity threshold in addition to the traditional method of removing

sequences based on the support count. A similarity threshold of 0.5 was used. This gives

us frequent sequential purchase patterns of products which are similar in semantics.

For example, first, some of the frequent sequential length-2 (L2) itemsets with their sup-

port count are: L2 = (21239, 20655):4, (21239, 21242):5, (21239, 22246):3, (20655, 21242):5,

(21242, 20655):3, (21366, 21242):4. We will then check the semantic similarity between these

products to reduce the search space and further prune the itemsets that are not semantically

similar by looking at item to item semantic similarity matrix M(Fig. 6.1). In this case,

the pattern (21239, 20655):4 and (21239, 22246):3 will be pruned out as semantic similarity

between (21239, 20655) is 0.10 and between (21239, 22246) is 0.11 which are less than our

131

specified threshold of 0.5. So, final semantic sequential purchase patterns are:

L = 21239, 20655, 21242, 21366, 22246, 21377,21245, (21239, 21242), (21239,21245),

(21242,21239), (21242,21245),(21239,21242,21239),(21239,21242,21245),

(21242,21239,21242), (21242,21239,21245)

From these semantic sequential purchase patterns, one of the semantic sequential rule can

be:

21239, 21242→ 1245

Pink Polka Dot Cup, Red Retrospot Plate → Green Polka Dot Plate

Here we can see that the recommended product 21245 (Green Polka Dot Plate) is similar in

semantics to the products 21239 (Pink Polka Dot Cup) and 21242 (Red Retrospot Plate)

which the user has already liked or purchased and is more close to the interest of user.

We used Prefix Span (Jian Pei et al., 2001), as it extracts the sequential patterns

through sequential by pattern growth method i.e., constructing projected databases with

respect to the sequential pattern(s) (in which no candidate sequence needs to be generated).

Furthermore, as the projected databases keep shrinking so it also lowers the computation

process. The reasons is because in a sequence database, the number of sequential patterns

that grow quite long, is usually small and therefore, in a projected database, when prefix

grows, the number of sequences reduces substantially.

6.2 Semantic Enhanced Transition Probability Matrix in

Markov Models

We propose to build a Markov Model from the daily purchase sequences of customers’

historical purchase and consists of two steps which are (i) creating product pairs’ sequential

frequency matrix and (ii) creating transition probability matrix and then enriching this

transition probability matrix with items’ semantic knowledge. Algorithm 4 shows the steps

and in the next subsequent sections, we will discuss each of these steps in detail.

Markov models satisfy the Markov property, i.e., the conditional probability distribution

of future states depends only on the current state. In the simplest Markov model, known

132

Algorithm 4 Semantic and Sequential Knowledge Integration into Markov Model
(SSKI_MM)
Input : Customers’ purchase sequences (PS), item semantic similarity matrix (M)
Output : Semantic Rich Transition Probability matrix P1

1 Product Frequency (PF) matrix ← computed based on the co-occurrence frequency of a
product pair in customer purchase sequence (section 6.2.1)

2 Transition Probability matrix P ← computed by normalizing PF matrix using Eq. 6.3
(section 6.2.2)

3 Product pair score ← computed based on semantic similarity and sequential relationship
between a product pair using Eq. 6.4 (section 6.2.3)

4 Semantic rich Transition Probability matrix P1 ← created using Eq. 6.5 (section 6.2.4)

Table 6.2: Sample purchase sequences of customers

SID Sequences
1. (a,b),(a,c),(a,d),(a,e),(a,f),(c,b),(b,e)
2. (b,a),(b,c),(b,d),(b,c),(b,e),(a,f),(c,b)
3. (c,b),(a,c),(a,d),(a,e),(e,c)
4. (e,b),(e,c),(a,e),(c,b),(b,e)

as first-order, each state is formed by a single action, i.e., a customer purchased a product.

In the case of K-th-order models, the state-space will correspond to all possible sequences

of K actions. As the available data could not adequately support the number of states of

higher-order chains, these models would suffer from reduced coverage and possibly worse

overall performance. Therefore, we adopted a first-order Markov chain.

We assume that the next-product purchase depends strongly on the purchase that was

made recently or (the purchase which is happening now). Markov models are represented

by the parameters (S, P), where S is the set of states for which the Markov model is

designed; and P is an n× n transition probability matrix, where n is the number of states

(i.e., products in our example). In this context, state Si is associated with the fact that the

customer purchased the product i. Each entry Pi,j corresponds to the probability of moving

to state Sj when the process is in state Si, i.e., purchasing product j after product i. Note

that this matrix is not symmetric, i.e., Pi,j ̸= Pj,i, as the order in which the products are

purchased matters.

133

6.2.1 Product Pairs’ Frequency Matrix Creation

Consider Table 6.2 which shows a sample purchase sequence database consisting of purchases

made by customers sorted according to a time stamp. Each purchase sequence is assigned

a sequence ID. For example, the purchase sequence with SID 2 that in the first transaction,

the customer first purchased the product ‘b’ followed by the purchased of item ‘a’. Then,

in the next transaction (made on another timestamp), she purchased item ‘b’ followed by

the purchase of item ‘d’ and so on. For the sake of simplicity we represent products using

small alphabets a, b, c, d, e, f where ’a’ = product with stock code 20674, ‘b’= 21242, ‘c’

= 21238,‘d’=21245, ‘e’=21239, ‘f’ =20655 and ‘g’=’20675’ (description of these products is

already specified in Table 5.2 in Chapter 5, Sect. 5.1.

Based on the historical purchase information of the customers (purchase sequences from

Table 6.2, we first compute Product Frequency, PF matrix, which is an n× n matrix that

holds the counts of every pair of consecutive products purchased. Every pair of products

(i, j) that a customer has taken consecutively is used to estimate the entry pfi,j , i.e., the

frequency of the event that state sj follows the state si . The product frequency matrix

PF of products from the purchase sequences is shown in Fig. 6.2. An entry pfi,j shows the

frequency of the occurrence of the product pair i, j among all sequences. For example, the

entry pfa,b = 0.25 which shows that the purchase of product b followed by the purchase of

product a occurs once among the four sequences so pfa,b = 1
4 = 0.25. The “0” in the matrix

shows that these pairs of products are never purchased together.

Figure 6.2: Product Frequency Matrix (PF)

PF =



a b c d e f g
a 0 0.25 0.50 0.5 0.75 0.25 0.25
b 0.5 0 0.25 0.25 0.75 0 0.5
c 0 1 0 0 0.25 0 0
d 0 0 0 0 0 0 0.5
e 0 0.25 0.5 0 0 0 0
f 0 0 0 0 0 0 0
g 0 0.25 0 0 0 0 0



134

Figure 6.3: Transition Probability Matrix P

P =



a b c d e f g
a 0 0.11 0.22 0.22 0.33 0.11 0.1
b 0.22 0 0.11 0.11 0.33 0 0.22
c 0 0.8 0 0 0.2 0 0
d 0 0 0 0 0 0 1
e 0 0.33 0.66 0 0 0 0
f 0 0 0 0 0 0 0
g 0 1 0 0 0 0 0



6.2.2 Transition Probability Matrix Creation

After computing the frequencies of matrix PF , we need to normalize it to get P, a row

stochastic matrix (transition probability matrix), so that the total transition probability

from state i to any other state will sum up to 1 according to Eq. 6.3 where the numerator

represents the matrix entry at a row (starting state) and the denominator represents the sum

of all states from that start state. For example, Fig. 6.3 shows the transition probability

matrix P created after normalizing the product frequency matrix PF in Fig. 6.2.

Pi = PFi∑n
j=1 PFi,j

, if
n∑

j=1
PFi,j > 0 (6.3)

6.2.3 Score Computation for Products

Next, enrich the transition probability matrix P with the semantic information of products

(item similarities) from item to item similarity matrix M . This will be obtained by (i)

computing a score for each product using Eq.6.4 and then (ii) updating the transition

probability matrix entries by using Eq. 6.5.

Score (i, j) = α(Mi,j) + β(P(i, j)) (6.4)

For example, Score between product pair (a, b) can be computed as:
Score (a, b) = α(Mi,j) + β(P(i, j))

= 0.8 ∗ 0.84 + 0.2 ∗ 0.11 = 0.69
Similarly,

135

Figure 6.4: Semantic and Sequentially rich updated Transition probability Matrix P1

P1 =



a b c d e f g
a 0 0.69 0.74 0.68 0.71 0.76 0.81
b 0.72 0 0.75 0.71 0.69 0.02 0.74
c 0.70 0.72 0 0.76 0.82 0.77 0.75
d 0.64 0.68 0.76 0 0.62 0.28 0.88
e 0.69 0.69 0.91 0.61 0 0.08 0.71
f 0.74 0.01 0.76 0.28 0.80 0 0.36
g 0.78 0.89 0.75 0.68 0.67 0.36 0



Score(a, d) = 0.8 ∗ 0.80 + 0.2 ∗ 0.22 = 0.68 (where α = 0.8, β = 0.2)

Similarly, score for other product pairs is computed.

6.2.4 Semantic and Sequentially Rich Transition Probability Matrix

The entries in the matrix P are updated with this score value showing the semantic and

sequential relationship between products (by showing the transitioning probabilities from

one state to another). Fig. 6.4 shows semantic and sequentially rich updated transition

probability matrix P1 populated using Eq. 6.5 after score calculations for sample products.

Matrix P1 can now be used to recommend next personalized semantic and sequential items

to users. Here, the probability at being at the same state is 0, all diagonal entries are ‘0’

(as we are assuming not to recommend the same product at time t + 1 which the customer

has purchased in the current state at time t).

P1 =

 0, if i = j

Score (i, j), otherwise
(6.5)

This semantic and sequentially rich transition probability matrix also addresses the am-

biguous prediction problem by having a different score measure (probabilities) of purchasing

a particular product after the target product. For example, in Fig. 6.3., after the purchase

of product a, products b and f have same probabilities which cause ambiguity as which

product to select from both. However, this is resolved as shown in Fig. 6.4. where both

products b and f have different probabilities stating that product f has higher probability

of recommendation than product b. After normalization, we have the final semantic and

sequential transition probability matrix as shown in Fig. 6.5.

136

P1 =



a b c d e f g
a 0 0.160 0.170 0.150 0.160 0.170 0.190
b 0.198 0 0.20 0.196 0.190 0.006 0.204
c 0.155 0.159 0 0.168 0.181 0.170 0.166
d 0.166 0.176 0.197 0 0.161 0.073 0.228
e 0.190 0.187 0.247 0.165 0 0.022 0.192
f 0.251 0.003 0.258 0.095 0.271 0 0.122
g 0.189 0.215 0.182 0.165 0.162 0.087 0


Figure 6.5: Normalized semantic and sequentially rich Transition probability Matrix P

137

Chapter 7

Semantic & Sequential Next Item

Recommendation

This chapter will explain the phase in the proposed system which generates semantic based

sequential next item recommendations based on using any of the proposed semantic en-

hanced (a) Sequential Pattern Mining method (Algorithm 5), (b) Collaborative Filtering

Method (Algorithm 6) or (c) Markov Model (Algorithm 7). The steps involved in this

phase are (i) score computation for products, (ii) semantic and sequentially rich (a) item

to item similarity matrix for Collaborative Filtering and (b) transition probability matrix

for Markov Model and (iii) semantically rich and sequential Top-K item recommendation.

7.1 Recommendation Using Semantic Based Sequential Pat-

tern Mining and Collaborative Filtering

In this section, details are presented to generate semantic and sequential next item recom-

mendation using proposed semantic based (a) Sequential Pattern Mining (Algorithm 5) and

(b) Collaborative Filtering (Algorithm 6).

138

Algorithm 5 Semantic and Sequential Next Item Recommendation using Semantic Se-
quential Pattern Mining (SSR_SPM)
Input : Semantic rich sequential purchase patterns, min_conf, min_sup (s),item semantic

similarity matrix (M), m_semsim
Output: Set of semantic and sequential rich Top-K recommended items (RS)

1 Generate rules from semantic rich sequential purchase patterns as
2 for each frequent sequential itemset l do
3 generate all nonempty subsets of l

4 for every nonempty subset s of l do
5 R← output the rule s→ (l−s) if support_count (l) / support_count(s) >= min_conf,

where min_conf is the minimum confidence threshold
6 for each item i in user profile up of target user ut do
7 if matching rule found in R then
8 RS ← match with rule antecedent and retrieve the rule consequent to create set of

Top-K recommendations
9 else

10 if no matching rule found in R then
11 R ← retrieve semantic and sequential score (i,j) from M1 between item in up and

items in rule antecedent, store the rule where antecedent semantic similarity >=
m_semsim and rule confidence is > = min_conf

12 RS ← sort the results from RS and retrieve set of Top-K recommendations

Algorithm 6 Semantic and Sequential Knowledge Integration and Recommendation using
Collaborative Filtering (SSKIR_CF)
Input : Item semantic similarity matrix M , Semantic rich Sequential Patterns

(SSP), number of Top-K recommendation items (K)
Output : Set of semantic and sequential rich Top-K recommended items (RS)

1 Compute semantic and sequential score between a pair of products using Eq. 7.1 (section
7.1.1)

2 Semantic and sequential rich item matrix M1 ← populated using Eq. 7.4 (section 7.1.2)
3 for each item i in user profile up of target user ut do
4 for each item j in M1 do
5 RS ← retrieve score m(i,j) from M1

6 RS ← sort the results from RS and retrieve set of Top-K recommendations

7.1.1 Score Computation for Products

After extracting semantically rich frequent sequential purchase patterns (Ch. 6, Sect. 6.1,

this sequential information about products is populated into the semantically rich item to

item similarity matrix M . For each entry Rx,y in the matrix M , we update the matrix

139

entries by computing a score using Eq. 7.1,

Score(x, y) = α(CosineSimilarity (x, y)) + β(Confidence (x, y)) + γ(lift(x, y)) (7.1)

where CosineSimilarity(x, y) is already computed using Eq. 6.1 and Confidence (x,y)

and lift(x,y) are computed using Eq. 7.2 and Eq.7.3 as:

Confidence (x, y) = Support(x, y)
Support(x) (7.2)

lift(x, y) = Support(x, y)
Support(x) ∗ Support(y) (7.3)

where support(x,y) measures how frequently products x and y occur sequentially in all

available sequences and Confidence(x,y) determines the sequential co-occurrence of prod-

ucts x and y given all sequences in which x occurs. The lift score lift (x, y) indicates whether

there is a relationship between items x and y, or whether the two items are occuring to-

gether in the same order simply by chance (i.e., at random). Unlike the confidence metric

whose value may vary depending on direction (e.g., confidence (x → y) may be different

from confidence(y → x), lift has no direction. This means that the lift(x,y) is always equal

to the lift (y,x).For example, consider the products “21242” and “21245”, their cosine simi-

larity with product “21239” is 0.58 and 0.88 respectively.

Confidence(x,y) and lift (x,y) based on their frequent sequential support count can be cal-

culated as :

Confidence (21239, 21242) = Support (21239,21242)
Support (21239) = 6/9

7/9 = 0.85

lift(21239, 21242) = Support(21239,21242)
Support(21239)∗Support(21242) = 6/9

7/9∗7/9 = 1.10

Confidence (21239, 21245) = Support (21239,21245)
Support (21239) = 2/9

7/9 = 0.28

lift(21239, 21245) = Support(21239,21245)
Support(21239)∗Support(21245) = 2/9

7/9∗5/9 = 0.51

140

A lift score of 1 implies that there is no relationship between x and y and they occur to-

gether by chance). A lift score of greater than 1 shows a positive relationship indicating

that x and y occur together more often whereas a lift score of less than 1 shows that both

x and y occur together less often than random. Based on the above computed values, the

Score(x,y) between products using Eq.7.1 can be computed as:

Score(21239, 21245) = α(CosineSimilarity (x, y)) + β(Confidence (x, y)) + γ(lift (x, y)

= 0.5 ∗ 0.58 + 0.3 ∗ 0.85 + 0.2 ∗ 1.10 = 0.76
Similarly,

Score(21239, 21242) = 0.5 ∗ 0.88 + 0.3 ∗ 0.28 + 0.2 ∗ 0.51 = 0.62 where α + β + γ = 1

Similarly, score for other products are computed.

7.1.2 Semantic and Sequentially Rich Item to Item Similarity Matrix

The entries in the matrix M are updated with this score value showing the semantic and

sequential relationship between products. Fig.8.2.6.0.3 shows semantic and sequentially rich

updated item to item matrix M1 populated using Eq.7.4 after score calculations for sample

products. Matrix M1 can now be used by CF to recommend Top-K personalized items to

users.

M1x,y =

 1, if x = y

Score (x, y), otherwise
(7.4)

7.1.3 Semantically Rich and Sequential Top-K Recommendation

Finally, next item(s) for a user is predicted by taking the purchase sequence of each user

in train data (user profile) and then generating recommendations for every item in the

user profile by looking at its score with other available products from the matrix M1.

Items having the highest score are retrieved and sorted in decreasing order. This process is

repeated for all items in the user profile and then lists of top K items are generated which

are semantically similar and purchased in sequential order.

In our running example, for the sequence where the user purchased products as <21242,

141

Figure 7.1: Semantic and Sequentially rich updated item to item matrix M1

M1 =

20674 21242 21238 21245 21239 20655 20675 21366 22246 21377 22198
20674 1.00 0.16 0.39 0.40 0.24 0.17 0.47 0.24 0.97 0.05 0.57
21242 0.55 1.00 0.87 0.98 0.71 0.25 0.35 0.21 0.39 0.31 0.12
21238 0.56 0.87 1.00 0.01 0.59 0.35 0.61 0.91 0.76 0.39 0.98
21245 0.40 0.02 0.01 1.00 0.17 0.38 0.65 0.02 0.34 0.58 0.34
21239 0.24 0.62 0.59 0.76 1.00 0.13 0.57 0.42 0.41 0.15 0.37
20655 0.17 0.21 0.35 0.38 0.13 1.00 0.07 0.69 0.59 0.61 0.23
20675 0.98 0.87 0.94 0.65 0.86 0.07 1.00 0.42 0.13 0.28 0.44
21366 0.86 0.21 0.94 0.02 0.67 0.62 0.42 1.00 0.47 0.59 0.42
22246 0.97 0.21 0.90 0.34 0.41 0.04 0.90 0.47 1.00 0.15 0.32
21377 0.87 0.11 0.94 0.58 0.15 0.96 0.28 0.59 0.15 1.00 0.28
22198 0.33 0.12 0.98 0.39 0.67 0.57 0.76 0.90 0.73 0.66 1.00


Table 7.1: Product recommendation using semantically enhanced Sequential Pattern

Mining and Collaborative Filtering Matrix

User’s Purchases Products Top-3 Products (Semantically similar and Sequential)
21242 21245 21238 21239
20655 21242 20655 20675
20675 20674 21239 21238

20655, 20675>, the Top-K (K=3) semantic and sequentially similar products to each of the

product in the purchase sequence which are recommended to the user are shown in Table

7.1.

Eliminating the common products and those already purchased by the user, the final

set of recommended items for the user will be {21245, 20674, 21238, 21239}.

7.2 Recommendation Using Semantic Enhanced Transition

Probability Matrix in Markov Model

In this subsection, details are presented to generate semantic and sequential next item rec-

ommendation using proposed Markov Model which is based on semantic enhanced transition

probability matrix (Algorithm 7).

For next item recommendation, a Markov Model can be traversed as a random walk.

A random walk on a directed graph consists of a sequence of vertices generated from a

start vertex by selecting an edge, traversing the edge to a new vertex, and repeating the

142

Algorithm 7 Recommendation using Semantic Rich Transaction Probability Matrix in
Markov Model (SSR_MM)
Input : Semantic rich Transaction Probability matrix P1, Customers’ purchase

sequece (PS), number of steps (L)
Output : Probability Vector for Next Item Recommendation at time t+1 P t+1

1 Consider Markov Model’s semantic rich Transition Probability matrix as an item to item
graph, where each item in the matrix represents a vertex and each entry pi,j represents
probability of walk at vertex i selecting the edge to vertex j

2 Initiate the walk at vertex x0 (item in user’s purchase sequence) at time t by computing
a starting probability distribution vector pt (representing the probability of initiating the
walk at vertex i (item in the purchase sequence)

3 if user purchase sequence has single item at time step t then
4 pt ← computed using Eq. 7.5 (Section 7.2)
5 Next items’ probability vector pt+1,after a single time step (L), at time t+1← computed

using Eq. 7.6 (Section 7.2, Example 7.1)
6 Next items’ probability vector pt+1,after multiple time steps (L), at time t + 1 ← com-

puted using Eq. 7.7 (Section 7.2, Example 7.1)
7 else
8 if user purchase sequence has multiple items at time step t then
9 Each item (vertex) will have equal probability to begin the walk

10 pt ← computed using Eq. 7.5 (Section 7.2)
11 Next items’ probability vector pt+1, after a single time step (L), at time t + 1 ←

computed using Eq. 7.6 (Section 7.2, Example 7.2)
12 Next items’ probability vector pt+1,after multiple time steps (L), at time t + 1 ←

computed using Eq. 7.7 (Section 7.2, Example 7.2)

process. So, in this case, a Markov Model is considered as an item-to-item graph based on

the transition probability matrix where each item in the matrix represents a vertex and each

entry pi,j represents probability of the walk at vertex i selecting the edge to vertex j. To

initiate the walk at a vertex xo at time t, a starting probability distribution is required and

then its product with the transition probability matrix is computed to obtain the probability

of being at vertex x at time t + 1 (that is , the probability of going from state i at time t

to state j at time t + 1). The initial probability distribution represented as p ∈ R1×n at

time t, where p is a row vector with non-negative components whose sum equals 1, and px

being the probability of starting at vertex x, R representing set of non-negative numbers.

The initial probability distribution at time t can be computed (i) by starting the walk at

a given vertex or (ii) initiating the walk at random (where all vertices have an equally likely

chance of being selected). For example, if we have states (vertices) as {a, b, c, d, e, f, g} and

we want to initiate the walk at a given vertex c, then the starting probability distribution

143

vector p will be p = [0 0 1 0 0 0 0] i.e., the vertex from where we will initiate the walk

will have ‘1’, i.e., px = 1 where x = c and remaining vertices will have ‘0’. However, to

start the walk at random from any vertex at time t where each vertex is equally likely to

be selected to initiate the walk, the initial probability distribution for each vertex will be
1

degree(v) , where degree(v) represents the number of vertices. For example, here it will be

px =[1
7

1
7

1
7

1
7

1
7

1
7

1
7].

In our setting, the random walk for customer j will equally start from any given product

in the customers’ last purchase, so the initial probability distribution will be computed

using Eq. 7.5. This also serves as a customer’s personalization vector as we are taking

into account customers’ purchase history for each customer contrary to other approaches

where same state of initial probabilities is used for all customers to determine the transition

probabilities to the next state.

pt =

 1/ |Ij,tj | if i ∈ Ij,tj

0 otherwise
(7.5)

Where Ij,tj is the set of all items purchased at time t. Now, given an initial probability

distribution pt which is a row vector with a component for each vertex specifying the

probability of the vertex at time t and the transition probability matrix P1, we can walk

over the Markov Model to obtain pt+1 (the row vector of probabilities at time t + 1 using

Eq. 7.6 which represents the probabilities of transitioning to next state j at time t+1. Next,

we present two example usecases to understand the next item recommendation process.

ptP = pt+1 (7.6)

Example 7.1: Semantic and Sequential Next Item Recommendation with Single

item purchase at time t

For example, if the customers’ last purchase sequence contains product <c>, we want

to predict (recommend) the next item after the purchased item ‘c’, then our initial proba-

bility distribution vector will be pt =[0 0 1 0 0 0 0]. Using Eq. 7.6 we take product of the

144

enriched transition probability matrix and the initial probability vector to get pt+1 as :

pt+1 =
[

0 0 1 0 0 0 0
]
∗



a b c d e f g

a 0 0.160 0.170 0.150 0.160 0.170 0.190

b 0.198 0 0.20 0.196 0.190 0.006 0.204

c 0.155 0.159 0 0.168 0.181 0.170 0.166

d 0.166 0.176 0.197 0 0.161 0.073 0.228

e 0.190 0.187 0.247 0.165 0 0.022 0.192

f 0.251 0.003 0.258 0.095 0.271 0 0.122

g 0.189 0.215 0.182 0.165 0.162 0.087 0


=

[
0.155 0.159 0 0.168 0.181 0.170 0.166

]
So, the next product recommended to customer will be product ‘e’ which has high score

of 0.181.

Furthermore, if we want to compute the probabilities (recommend items) after t + 1

steps, it will be obtained by the sum over each adjacent vertex i of starting at i and taking

the transition from i to j using Eq.7.7,

pPt = pt+1 (7.7)

For example, if we want to predict the next possible purchase after 3 time steps (i.e.,

after purchase of three products where each purchase involves transition from one product

to the next). So, substituting values in the above equation we get, pP 3 = p4 as:

145

Table 7.2: Product recommendation by proposed semantic enhanced Transition Proba-
bility Matrix in Markov method

User’s last Purchased
Product

Recommended Products
(Semantically similar and Sequential)

t=1 t=2 t=3
c

(Red retrospot cup)
e

(Pink polka dot bowl)
a

(Green polka dot bowl)
c

(Red retrospot cup)
a

(Green polka dot bowl)
g

(blue Polka dot bowl)
a

(Green polka dot bowl)
c

(Red retrospot cup)
b

(Red retrosport plate)
a

(Green polka dot bowl)
b

(Red retrosport plate)
c

(Red retrospot cup)

e
(Pink polka dot bowl)

c
(Red retrospot cup) e

(Pink polka dot bowl)
c

(Red retrospot cup)

[
0 0 1 0 0 0 0

]
∗





a b c d e f g

a 0 0.160 0.170 0.150 0.160 0.170 0.190

b 0.198 0 0.20 0.196 0.190 0.006 0.204

c 0.155 0.159 0 0.168 0.181 0.170 0.166

d 0.166 0.176 0.197 0 0.161 0.073 0.228

e 0.190 0.187 0.247 0.165 0 0.022 0.192

f 0.251 0.003 0.258 0.095 0.271 0 0.122

g 0.189 0.215 0.182 0.165 0.162 0.087 0



3

=
[

0.151 0.145 0.160 0.141 0.150 0.091 0.158
]

So, the recommended product after time 3 (after 3 purchases) will be product c as it

has the highest probability. So, the recommended sequence of customer purchase will be

<e, a, c>.

In our running example, for the users where the last purchased product is c, the rec-

ommended products upto 3 time steps will be e, a and c as shown in Table 7.2. Results are

shown for some other products as well.

The recommended products results show that the probability of the walker to reach the

vertices after K steps provides an intuitive measure that can be used to rank the products

and offer personalized recommendations to the customers accordingly.

146

Example 7.2: Semantic and Sequential Next Item Recommendation with mul

tiple items purchase at time t

For example, if the customers’ last purchase sequence contains products < bac>, we

want to predict (recommend) the next item after the purchase, then our initial probability

distribution vector will be [1
7

1
7

1
7 0000], we take product of the enriched transition probability

matrix and the initial probability vector using Eq.7.6 to get pt+1 as :

pt+1 =
[

1
7

1
7

1
7 0 0 0 0

]
∗



a b c d e f g

a 0 0.160 0.170 0.150 0.160 0.170 0.190

b 0.198 0 0.20 0.196 0.190 0.006 0.204

c 0.155 0.159 0 0.168 0.181 0.170 0.166

d 0.166 0.176 0.197 0 0.161 0.073 0.228

e 0.190 0.187 0.247 0.165 0 0.022 0.192

f 0.251 0.003 0.258 0.095 0.271 0 0.122

g 0.189 0.215 0.182 0.165 0.162 0.087 0



=
[

0.0494 0.0447 0.0518 0.0720 0.0744 0.0484 0.0784
]

So, the next product recommended to customer will be product g which has high score

of 0.078. Similarly, to recommend products after t + 1 steps (e.g., after 3 steps), we use

Eq.7.7 to get, pP3 = p4

[
1
7

1
7

1
7 0 0 0 0

]
∗



a b c d e f g

a 0 0.160 0.170 0.150 0.160 0.170 0.190

b 0.198 0 0.20 0.196 0.190 0.006 0.204

c 0.155 0.159 0 0.168 0.181 0.170 0.166

d 0.166 0.176 0.197 0 0.161 0.073 0.228

e 0.190 0.187 0.247 0.165 0 0.022 0.192

f 0.251 0.003 0.258 0.095 0.271 0 0.122

g 0.189 0.215 0.182 0.165 0.162 0.087 0





3

=
[

0.0646 0.0587 0.0590 0.0680 0.0640 0.0361 0.0666
]

So, the recommended product after 3 steps will be d as it has the highest probability

and the recommended sequence of customer purchase will be <g, c, d>.

147

In our running example, for the users where the last purchase sequence is <bac>, the

recommended products upto 3 time steps will be g, c and d as shown in Table 7.3. Results

are shown for some other products as well.

148

T
ab

le
7.

3:
Pr

od
uc

t
R

ec
om

m
en

da
tio

n
by

ou
r

pr
op

os
ed

m
et

ho
d

U
se

r’s
la

st
Pu

rc
ha

se
d

Pr
od

uc
t

R
ec

om
m

en
de

d
Pr

od
uc

ts
(S

em
an

tic
al

ly
sim

ila
r

an
d

Se
qu

en
tia

l)
t=

1
t=

2
t=

3
<

b,
a,

c>
(R

ed
re

tr
os

po
t

pl
at

e,
G

re
en

po
lk

a
do

t
bo

w
l,

R
ed

re
tr

os
po

t
cu

p
)

g
(B

lu
e

Po
lk

a
do

t
bo

w
l)

c
(R

ed
re

tr
os

po
t

cu
p)

d
(g

re
en

po
lk

a
do

t
pl

at
e)

149

Chapter 8

Experiments and Analysis

In this chapter, we will present details for our experiments conducted to evaluate the pro-

posed system when (i) semantic integrated sequential patterns and semantic enhanced CF

models are used (Section 8.1) and (ii) semantic enhanced transition probability matrix is

used in Markov Model (Section 8.2) for generating personalized semantic and sequential

next item recommendation.

8.1 Evaluation of Proposed System with Semantic Integrated

Sequential Patterns and Collaborative Filtering Method

8.1.1 Datasets and Implementation Details

• Online Retail1 : This dataset contains purchases made during an eight-month period

between 01/12/2010 and 09/12/2011 for a UK based retail company that sells unique

all-occasion gifts.

• Amazon2 : This dataset includes reviews (ratings, text, helpfulness votes), product

metadata (descriptions, category information, price, brand, and image features), and

links (also viewed/also bought graphs). To test our model, we selected the review-K

core (which is a subset of the data set where all items have at least K reviews, where
1https://archive.ics.uci.edu/ml/datasets/online+retail
2http://jmcauley.ucsd.edu/data/amazon/

150

K=5) and product metadata for categories including fashion, beauty, movies and TV.

Details of data set statistics are provided in Table 8.1.

We implemented the proposed model using python. For mining sequential patterns

using PrefixSpan (Jian Pei et al., 2001), we used Open source data mining library SPMF3

. To compare our proposed model with the baselines we used the code provided from their

authors and the github repository4.

8.1.2 Pre-processing and Hyper-parameter Tuning

For data set partitioning, we adopted commonly used strategies of (i) leave one out (the

most recent, i.e., last sequence of each user is used for testing and all remaining sequences

for training) and (ii) temporal user splitting (where a percentage of the last interactions

of each user is reserved for testing rather than just one). Availability of a rating or review

(Amazon) and purchase (Online Retail) is considered as user-item interaction and we used

timestamps to determine the sequential order of actions. Purchases made by each customer

were grouped into sequences according to the timestamp. Data was pre-processed to create

train and test data. For leave-one-out, the training data was created from those purchase

sequences and the last purchase sequence of each customer was used to create the test set

for evaluating model’s performance. In the temporal user splitting, we used train and test

splits of (a)70%, 30% and (b) 80%, 20%. Users with at least 5 purchasing records are

selected.

All the models have some parameters to tune. We follow the reported optimal parameter

settings for the baseline methods. For our model, the embedding dimension d is determined

by grid search in the range {10, 20, 30, 40, 50, 100}, number of Top users with similar be-

havior N as {5, 10, 15}, number of Top recommendation items K in {1, 5, 10, 20, 50, 100},

minimum support s (%) for mining sequential patterns as {1, 2, 3} and semantic similar-

ity m_sem=0.5. The values of coefficients (alpha, beta and gamma) while computing

score measure for products were explored through grid search and the best results were
3https://www.philippe-fournier-viger.com/spmf/index.php
4https://github.com/mquad/sars tutorial

151

T
ab

le
8.

1:
D

at
a

se
t

st
at

ist
ic

s
(p

ro
du

ct
re

vi
ew

s
an

d
m

et
a

da
ta

)

R
ev

ie
w

s
(A

m
az

on
)

an
d

P
ur

ch
as

es
(O

nl
in

e
R

et
ai

l)
D

at
a

M
et

a
D

at
a

D
at

a
se

t
/S

ta
ti

st
ic

s
T

ot
al

no
.

of
T

ra
ns

-
ac

ti
on

s

N
o.

of
U

ni
qu

e
U

se
rs

N
o.

of
U

ni
qu

e
It

em
s

A
vg

.
no

.
of

R
e-

vi
ew

s/
P

ur
-

ch
as

es
pe

r
it

em

M
ax

.
Se

-
qu

en
ce

le
ng

th

A
vg

.
Se

-
qu

en
ce

le
ng

th

M
in

.
Se

-
qu

en
ce

L
en

gt
h

N
o.

of
U

ni
qu

e
It

em
s

A
m

az
on

Fa
sh

io
n

88
36

36
74

32
16

18
60

54
4.

66
40

1.
17

1
18

66
37

M
ov

ie
s

an
d

T
V

82
90

10
9

37
55

90
7

18
19

96
45

.5
5

40
36

2.
21

1
20

39
70

B
ea

ut
y

35
39

56
31

79
82

32
58

6
10

.8
6

23
1.

11
1

32
99

2

O
nl

in
e

R
et

ai
l

24
00

07
29

74
32

82
58

.1
0

29
4

16
.6

4
1

44
97

152

with α = 0.5, β = 0.3 and γ = 0.2. For other parameters, optimal performance was with

d = 100, N = 15ands = 1, m_sem=0.5.

8.1.3 Evaluation Metrices

The model was evaluated on many metrices including Precision@K, Recall@K, Mean Re-

ciprocal Rank (MRR), Hitrate@K and NDCG@K as used in (Kang and McAuley, 2018b,

Tang and Wang, 2018, Wang and Kadıoğlu, 2021). For a given length of user profile in a

test sequence, we predict a list of Top-K items denoted as R̂1:K and the remaining part

of the test sequence i.e., ground truth denoted as R. The different evaluation metrices are

defined as:

• Precision@K: It is defined as the proportion of recommended items in the top-K set

that are relevant and computed as:

Precision@K = |R ∩R∧
1:K |

K
(8.1)

• Recall@K: Recall is defined as the proportion of relevant items found in the top-K

recommendations.

Recall@K =

∣∣∣R ∩ R̂1:K
∣∣∣

|R|
(8.2)

• Mean Reciprocal Rank (MRR): The reciprocal rank of items recommended is the

multiplicative inverse of the rank of the first correct recommended item among the

top-K recommendations. The mean reciprocal rank is the average of the reciprocal

ranks of results for a sample of ground truths R, where ranki refers to the rank

position of the first relevant item for the i-th ground truth. It is computed as:

MRR = 1
|R|

|R|∑
i=1

1
ranki

(8.3)

• Hit rate@K: Percentage of users that can receive at least one correct recommenda-

tion.

• Normalized Discounted Cumulative Gain (NDCG@K): Evaluates ranking per-

formance by taking the positions of correct items into consideration. NDCG@k is

153

normalized to [0, 1] and a perfect ranking is represented by 1. For each user, the

NDCG is computed using the following,

NDCG@ K =
∑K

k=1
Ik

cj

log2(k+1)∑mK
cj

k=1
1

log2(k+1)

(8.4)

where Ik
ui

will be 1 if the kth recommendation for customer cj is relevant, or it exits

in the actual response, and 0 otherwise. Besides, mK
cj

is the number of relevant items for

customer cj up to the Kth recommendation. We used the average of NDCG over all users

as the final metric of a method. For each user in a test sequence, we predict lists of Top-K

personalized items where K is in {1, 5, 10, 20, 30, 50, 100}. We first computed the per-user

score for each K and then reported the global average score for all users for each K.

8.1.4 Complexity Analysis

The dominant term in the computational complexity of our proposed model is O(n2) mainly

due to computing similarity at item level and sequence level. Next, we discuss the complexity

according to the models, data processing and mining of sequential patters.

8.1.4.1 Complexity of Models

• Prod2vec: The complexity is proportional to the vocabulary size (unique products),

which is computationally expensive in practical tasks as it can easily reach millions

of products. As an alternative, negative sampling is used which significantly reduces

the computational complexity. Depending on the size of the corpus, the complexity

grows linearly with the size of the corpus. Therefore, if N represents the size of the

corpus and V represents the unique products in the vocabulary, the complexity will

be O(N ∗ log(V)).

• Glove: The computational complexity of the model depends on the number of nonzero

elements in the co-occurrence matrix X. As this number is always less than the total

number of entries of the matrix, the model scales no worse than O(|V 2|), where V

represents the size of the vocabulary.

154

• Doc2vec: The runtime of the model is linear in the number of input documents, i.e.,

purchase sequences with products and meta data. Keeping all other parameters equal,

increasing the number of input documents, the runtime will be increased.

• TF-IDF: If N represents the number of documents and TN represents the total num-

ber of terms, then the worst-case time complexity of this will be O(TN ∗ N). In

practice, the number of documents in which a particular term appears is very less and

hence the time taken will be much lower than that.

8.1.4.2 Complexity of dataset Pre-processing

The various Natural Language Processing (NLP operations were performed using the Natu-

ral Language ToolKit (NLTK) library from python which consists of a set of text processing

libraries for faster data pre-processing.

8.1.4.3 Complexity of Mining the Sequential Patterns

As we used Prefix Span (Jian Pei et al., 2001), in which no candidate sequence needs to be

generated so major complexity is involved in constructing projected databases with respect

to the sequential pattern(s). However, as the projected databases keep shrinking so it also

lowers the computation process. The reasons is because in a sequence database, the number

of sequential patterns that grow quite long, is usually small and therefore, in a projected

database, when prefix grows, the number of sequences reduces substantially. In the worst

case, in PrefixSpan, a projected database is constructed for every sequential pattern. If

there are N sequential patterns then the complexity for constructing projected databases

will be O(N). The cost is non-trivial, if a good number of sequential patterns exists.

8.1.5 Baseline Methods for Comparison

To show the effectiveness of our model, we considered recommendation baselines under

three groups.

155

The first group includes general recommendation methods based on user feedback with-

out any sequential order of user actions.

1. Popularity Based (POP). All items are ranked by their popularity in all users’

sequences, where popularity is determined by the number of interactions.

2. Baysian Personalized Ranking (BPR) (Rendle et al., 2009). A state of the

art method for non-sequential item recommendation on implicit feedback, utilizing

Matrix Factorization Model.

The second group includes sequential recommendation methods based on se-

quential pattern mining and first order Markov chains, which consider the last visited

item.

3. Historical Purchase Click (HPCRec) (Xiao and Ezeife, 2018) and Histor-

ical Sequential Purchase (HSPRec) (Bhatta et al., 2019). It mines frequent

sequential click and purchase behavior patterns using the consequential bond between

click and purchase sequences and then using this quantitatively and qualitatively rich

matrix for collaborative filtering to provide better recommendations.

4. Factorized Personalized Markov Chain (FPMC) (Rendle et al., 2010). A

hybrid approach that combines matrix Factorization (MF) which factorizes the matrix

on user-item preferences for learning users’ general taste and Markov Chains(MC) that

models sequential behavior through a transition graph built over items which predicts

users’ next action based on the recent actions.

The third group includes sequential recommender systems based on deep learn-

ing, which include various or all previously visited items.

5. GRU4Rec (Hidasi et al., 2016c).To model sequential dependencies and making

predictions in session based recommendation systems, proposed this method based on

Recurrent Neural Networks (RNN’s).

6. Convolutional Sequence Embeddings Caser (Tang and Wang, 2018). A con-

volutional neural network (CNN) based method which takes the embedding matrix of

the L most recent items and applies convolution operations on it to achieve sequential

recommendation.

156

7. Self Attentive Sequential (SASRec) (Kang and McAuley, 2018b). It captures

long term user preferences by using attention mechanism and makes its predictions

based on relatively few actions.

8.1.6 Results and Analysis

Our proposed model SSHRec (Nasir et al., 2021) gave improved performance after incorpo-

rating products’ meta data to learn product semantics and using semantic similarity, con-

fidence and lift measures to compute relationship between products in comparison to our

previously proposed SEMSRec (Nasir and Ezeife, 2020) model (without using any product

data) and other baselines on all K tested. High precision and recall measures of sequential

recommenders such as SASRec (Kang and McAuley, 2018b), Caser (Tang and Wang, 2018),

HSPRec19 (Bhatta et al., 2019) and RNN (Hidasi et al., 2016c) indicate that learning se-

quential information about customers’ behaviour is important to capture user’s long and

short term preferences and to improve quality of recommendations. Factorized Personal-

ized Markov Chain (FPMC) (Rendle et al., 2010) model on the other hand, showed least

performance with the lowest precision and recall score, indicating that it could not learn

the semantics of items and sequential purchase patterns of customers effectively. SEMSRec

(Nasir and Ezeife, 2020) on the other hand gave slightly high performance as compared to

other sequential recommender baselines indicating that integrating items’ semantic infor-

mation to compute item similarities can improve the quality of recommendations. However,

the proposed extension SSHRec has outperformed SEMSRec significantly showing the im-

portance of using meta data for learning product semantics and using semantic similarity,

confidence and lift measures to compute relationship between products. Fig. 8.1 shows the

performance of SSHRec in comparison to other systems on various evaluation metrices.

Furthermore, the results of the proposed model (SSHRec) on different datasets includ-

ing Online Retail and various categories in Amazon data (Fashion, Beauty, Movies) are

presented in Table 8.2. Here, we report results on all evaluation metrices at a cutoff of

K=10. We notice that SSHRec performed considerably well Amazon’s beauty dataset with

a hitrate of 67% and 45% respectively.

Next, we will discuss the impact of the parameters, minimum support, s and number

157

(a) Precision (b) Recall

(c) MRR

Figure 8.1: Performance comparison of proposed SSHRec with other models

of customers with similar purchase behavior (N) one at a time by holding the remaining

parameters at their optimal settings.

8.1.6.0.1 Influence of Top-N customers (N) We vary the number of customers N

with similar purchase behaviors generated after finding semantic similarity between training

sequences and the target sequence, to explore how it effects the quality of overall recom-

mendations. We used different values of N as 5, 10 and 15 respectively. By increasing

the value of N , gradual decrease in model performance was noticed in terms of Top-K

recommendations. This is because when the number of customers is increased, number of

similar purchase sequences also increases, so we do get more similar products to recommend

from, however, those similar products are not necessarily purchased in sequence (which is

important to capture users’ long and short term behaviors) which lowers the recommender’s

158

performance. Optimal performance was when N = 5. Futhermore, choosing N less than

five yielded purchase sequences which were very short in length and did not contribute

much in yielding useful semantic sequential purchase patterns and rules therefore we did

not consider that.

Table 8.2: Results of Proposed System SSHRec on different datasets with K=10

Evaluation Metrices/Data Set Amazon Online Retail
Fashion Movies and TV Beauty

Precision@K 0.0075 0.0165 0.0909 0.1006
Recall@K 0.0194 0.0360 0.4856 0.1145
MRR 0.0126 0.0276 0.1705 0.1509
HitRate@K 0.0559 0.1326 0.6705 0.4544
Mean Average Precision 0.0075 0.0154 0.0855 0.0887
NDCG@K 0.0166 0.0319 0.3696 0.1450

8.1.6.0.2 Influence of Embedding size We vary the size of embeddings d and trained

multiple models based on embedding size {10, 20, 30, 50, 100} and found that d = 100 gave

optimal results. The detailed results are shown in Table 8.3.

8.1.6.0.3 Influence of train and test split For data set partitioning, we adopted the

strategies of (i) leave one out (the most recent, i.e., last sequence of each user is used for

testing and all remaining sequences for training) and (ii) temporal user splitting (where a

percentage of the last interactions of each user is reserved for testing rather than just one).

Availability of a rating (Amazon) and purchase (Online Retail) is considered as user-item

interaction and we used timestamps to determine the sequential order of actions.

Data was preprocessed to create train and test data. Purchases made by each customer

were grouped into sequences according to the timestamp. For leave-one-out, the training

data was created from those purchase sequences and the last purchase sequence of each

customer was used to create the test set for evaluating model’s performance. In the temporal

user splitting, we used train and test splits of (a)70%, 30% and (b) 80%, 20%. Users with

at least 5 purchasing records are selected. The experiments showed that the proposed

model SSHRec performed well when the data set was split using temporal user setting

159

Table 8.3: Prediction performance of SSHRec with different embedding dimension d

Evaluation Metrics K Embedding Size
10 20 30 40 50 100

Precision@K

1
5
10
20
50
100

0.1298
0.0427
0.0307
0.0236
0.0185
0.0160

0.1725
0.0740
0.0538
0.0411
0.0301
0.0242

0.2392
0.1080
0.0764
0.0560
0.0388
0.0294

0.2918
0.1328
0.0922
0.0660
0.0442
0.0336

0.3009
0.1395
0.0977
0.0701
0.0468
0.0349

0.3284
0.1528
0.1065
0.0768
0.0510
0.0374

Recall@K

1
5
10
20
50
100

0.0968
0.1107
0.1224
0.1395
0.1845
0.2348

0.1094
0.1504
0.1728
0.2037
0.2584
0.3173

0.1255
0.1834
0.2091
0.2410
0.3002
0.3609

0.1364
0.2034
0.2302
0.2637
0.3246
0.3922

0.1387
0.2064
0.2338
0.2698
0.3332
0.3990

0.1431
0.2167
0.2452
0.2830
0.3500
0.4181

MRR 0.1298 0.1725 0.2392 0.2918 0.3009 0.3284

Hitrate@K

1
5
10
20
50
100

0.1298
0.2006
0.2752
0.3894
0.6130
0.7923

0.1725
0.3189
0.4338
0.5825
0.8068
0.9143

0.2392
0.4256
0.5486
0.6896
0.8695
0.9356

0.2918
0.4907
0.6045
0.7442
0.8966
0.9482

0.3009
0.5090
0.6249
0.7628
0.9048
0.9482

0.3284
0.5347
0.6510
0.7899
0.9173
0.9512

NDCG@K

1
5
10
20
50
100

0.1337
0.1353
0.1398
0.1468
0.1650
0.1850

0.1777
0.1836
0.1931
0.2072
0.2324
0.2580

0.2464
0.2377
0.2461
0.2607
0.2892
0.3165

0.3005
0.2752
0.2808
0.2951
0.3245
0.3554

0.3099
0.2829
0.2891
0.3047
0.3357
0.3660

0.3382
0.3030
0.3081
0.3243
0.3570
0.3886

with training as 80% and test as 20% which indicates that including more historical user

interactions better capture users’ interest and provide relevant recommendations. Results

of the model while using different train and test split strategies are shown in Table 8.4.

8.2 Evaluation of Proposed System with Semantic Enhanced

Transition Probability Matrix in Markov Models

In this section, we present the experimental setup along with results and analysis while

evaluating our proposed model for semantic and sequential next item recommendation when

we used the proposed semantic enhanced transition probability matrix for building the

Markov Model.

160

Table 8.4: Prediction performance of proposed model with different train and test split
strategies

Train and Test Split
Leave one
Out Temporal Split

Evaluation
Metric K Leave one

out Train=70%
Test=30%

Train=80%
Test=20%

Precision@K

1
5
10
20
50
100

0.3284
0.1528
0.1065
0.0768
0.0510
0.0374

0.3805
0.1906
0.1290
0.0868
0.0537
0.0375

0.4846
0.2279
0.1450
0.0932
0.0524
0.0347

Recall@K

1
5
10
20
50
100

0.1431
0.2167
0.2452
0.2830
0.3500
0.4181

0.1323
0.2466
0.2911
0.3386
0.4176
0.4892

0.1967
0.3484
0.3918
0.4425
0.5175
0.5847

NDCG@K

1
5
10
20
50
100

0.3382
0.3030
0.3081
0.3243
0.3570
0.3886

0.3897
0.3444
0.3601
0.3820
0.4189
0.4498

0.4993
0.4512
0.4667
0.4908
0.5243
0.5515

8.2.1 Datasets and Implementation Details

Amazon5 : This dataset includes reviews (ratings, text, helpfulness votes, timestamps),

product metadata (descriptions, category information, price, brand, and image features),

and links (also viewed/also bought graphs). The statistics for data set are shown in Table

8.5.

To test our model, we selected the review-K core (which is a subset of the data set

where all items have greater than K reviews, where K=5) and product metadata for five

categories including auto, baby, garden, office and videos.

Following previous works (He and McAuley, 2016, Rendle et al., 2010) the explicit

feedback is converted to implicit feedback by setting a rating score of ‘1’ for a user item
5http://jmcauley.ucsd.edu/data/amazon/

161

Table 8.5: Data set statistics

Amazon
Dataset No. of

Users
No. of
Items

Total
Inter-
actions

Avg.
Inter-
action per
user

Avg.
Inter-
action per
Item

Auto 122,492 28,473 369,525 3.02 12.98
Baby 20,434 8,293 169,153 8.28 20.4
Garden 5,376 5,098 59,634 11.09 11.69
Office 7,416 5,490 52,175 9.73 13.15
Video 176,404 19,421 630,513 3.57 32.47

interaction and ‘0’ otherwise.

We implemented the proposed model using python. To compare our proposed model with

the baselines, the code from their respective authors (He and McAuley, 2016, Kabbur et al.,

2013, Kang and McAuley, 2018b, Rendle et al., 2010) was used to maintain their models’

accuracy.

8.2.2 Pre-processing and Hyper-parameter Tuning

For data set partitioning, we adopted commonly used strategies of (i) leave one out (the

most recent, i.e., last sequence of each user is used for testing and all remaining sequences

for training) and (ii) temporal user splitting (where a percentage of the last interactions

of each user is reserved for testing rather than just one). Availability of a rating or review

(Amazon) is considered as user-item interaction and we used timestamps to determine the

sequential order of actions. Purchases made by each customer were grouped into sequences

according to the timestamp. Data was pre-processed to create train and test data. For

leave-one-out, the training data was created from those purchase sequences and the last

purchase sequence of each customer was used to create the test set for evaluating model’s

performance. In the temporal user splitting, we used train and test splits of (a) 70%, 30%

and (b) 80%, 20%.

Users with purchasing records greater than five are selected. Furthermore, to evalu-

ate the impact of proposed model (SEMMRec) performance on handling sparse data, two

variants of each dataset (auto, baby and garden) were created. For example, the data set

Auto1 refers to data set which have minimum user interaction as seven and the dataset

162

Auto2 represents dataset with minimum user interaction as ten. Performance comparison

is shown in Fig 8.4 Performance Comparison of proposed Model using Sparse datasets (Two

variants of Each Data set).

All the models have some parameters to tune. We follow the reported optimal parameter

settings for the baseline methods. On all datasets, for BPR-MF, FISM, FPMC, and Fossil,

following settings were adopted: size of latent dimension =100, learning rate= 0.02 and the

number of recommendation items = 30. The values of coefficients while computing score

measure for products was set to α = 0.8 and β = 0.2 after performing various experiments.

For our model, products’ embedding dimension d is determined by grid search in the range

{10, 20, 30, 40, 50, 100}, Markov chain based on different order of L (where L ∈ {1, 2, 3, 4, 5}),

number of Top recommendation items K (where K in {1, 5, 10, 20, 30, 50, 100}). The values

of coefficients (alpha and beta) while computing score measure for products were explored

through grid search. Optimal performance was with d=100, α = 0.8 and β = 0.2.

8.2.3 Evaluation Metrices

The model was evaluated on commonly used metrics including Recall@K and NDCG@K

as used in (Kang and McAuley, 2018b, Tang and Wang, 2018). The performance was mea-

sured at K=30. For a given length of user profile in a test sequence, we predict a list of

Top-K items denoted as R̂1:K and the remaining part of the test sequence i.e., ground truth

denoted as R. The performance was measured at K=30. The different evaluation metrics

are defined as:

• Recall@K: Recall is defined as the proportion of relevant items found in the top-K

recommendations.

Recall@K =

∣∣∣R ∩ R̂1:K
∣∣∣

|R|
(8.5)

• Normalized Discounted Cumulative Gain (NDCG@K): Evaluates ranking per-

formance by taking the positions of correct items into consideration. NDCG@k is nor-

malized to [0, 1] and a perfect ranking is represented by 1.For each user, the NDCG

163

is computed using the following,

NDCG@ K =
∑K

k=1
Ik

cj

log2(k+1)∑mK
cj

k=1
1

log2(k+1)

(8.6)

where Ik
ui

will be 1 if the kth recommendation for customer cj is relevant, or it exits in

the actual response, and 0 otherwise. Besides, mK
cj

is the number of relevant items for

customer cj up to the Kth recommendation. We used the average of NDCG over all

users as the final metric of a method. For each user in a test sequence, we predict lists

of top-K personalized items where K is in {1, 5, 10, 20, 30, 50, 100}. We first computed

the per-user score for each K and then reported the global average score for all users

for each K.

8.2.4 Complexity Analysis

SEMMRec predicts the semantic and sequential product recommendation for the customers.

In terms of time complexity, once the transition probability matrix is built, it is trivial to

walk through the products (states). As a result, with the number of customers, the model

scales well and provides them personalized recommendations.

8.2.5 Baseline Methods for Comparison

To show the effectiveness of our model, we compared the performance of our proposed

model SEMMRec with the following advanced existing approaches (Table 8.6) shows the

performance comparison for each model:

1. Baysian Personalized Ranking (BPR-MF). A state of the art method for non-

sequential item recommendation on implicit feedback, utilizing Matrix Factorization

Model.

2. The Factored Item Similarity Models (FISM). Based on one of the latest rec-

ommendation algorithms to capture the relationship between items for personalized

recommendations.

164

T
ab

le
8.

6:
Pe

rf
or

m
an

ce
C

om
pa

ris
on

of
pr

op
os

ed
M

od
el

(S
EM

M
R

ec
)

w
ith

th
e

ba
se

lin
es

D
at

as
et

s
A

ut
o

B
ab

y
G

ar
de

n
O

ffi
ce

V
id

eo
Av

er
ag

e
M

od
el

s
\M

et
ric

R
ec

al
l

N
D

C
G

R
ec

al
l

N
D

C
G

R
ec

al
l

N
D

C
G

R
ec

al
l

N
D

C
G

R
ec

al
l

N
D

C
G

R
ec

al
l

N
D

C
G

B
PR

-M
F

0.
03

8
0.

01
6

0.
05

8
0.

03
2

0.
04

4
0.

02
1

0.
03

7
0.

01
7

0.
04

3
0.

02
8

0.
04

4
0.

02
2

FI
SM

0.
08

2
0.

04
7

0.
07

3
0.

04
1

0.
08

5
0.

04
6

0.
07

5
0.

04
9

0.
04

3
0.

08
2

0.
07

1
0.

05
3

FP
M

C
0.

02
5

0.
01

3
0.

04
7

0.
02

7
0.

04
3

0.
02

4
0.

04
3

0.
02

3
0.

03
0

0.
03

1
0.

03
7

0.
02

3
Fo

ss
il

0.
08

1
0.

04
0.

06
1

0.
03

4
0.

08
1

0.
04

5
0.

08
2

0.
04

2
0.

04
3

0.
06

7
0.

06
9

0.
04

5
SA

S
0.

08
5

0.
03

0
0.

06
7

0.
02

2
0.

12
5

0.
04

3
0.

13
2

0.
04

6
0.

18
6

0.
06

6
0.

11
9

0.
04

1
G

R
U

4R
ec

0.
09

61
0.

03
31

0.
09

11
0.

02
91

0.
10

11
0.

03
41

0.
10

12
0.

03
41

0.
09

18
0.

04
21

0.
09

62
0.

03
45

C
as

er
0.

09
91

0.
04

13
0.

09
71

0.
04

21
0.

09
82

0.
04

41
0.

09
89

0.
04

11
0.

10
24

0.
04

12
0.

09
91

0.
04

19
B

ER
T

4R
ec

0.
12

11
0.

07
10

0.
12

41
0.

07
34

0.
15

21
0.

08
67

0.
11

93
0.

09
73

0.
13

93
0.

12
25

0.
13

11
0.

09
01

SE
M

M
R

ec
0.

10
70

0.
06

73
0.

12
54

0.
07

21
0.

13
13

0.
07

31
0.

10
6

0.
06

02
0.

11
24

0.
11

40
0.

11
64

0.
07

73

165

3. Factorized Personalized Markov Chain (FPMC). A hybrid approach that com-

bines matrix Factorization (MF) which factorizes the matrix on user-item preferences

for learning users’ general taste and Markov Chains (MC) that models sequential be-

havior through a transition graph built over items which predicts users’ next action

based on the recent actions. However, since this method does not take into account the

high-order Markov chain, including it helps in comparative analysis while analysing

the effectiveness of high order Markov Chain.

4. Factorized Sequential Prediction with Item Similarity (Fossil). A model for

sequential recommendations inspired from FPMC and FISM. To increase the perfor-

mance, it emphasizes the sequential features by combining user preference with high

order Markov Chain in a similarity model.

5. Self Attentive Sequential (SASRec). It captures long term user preferences by

using attention mechanism and makes its predictions based on relatively few actions.

The introduction of adaptive self-attention mechanism method models high-order se-

quence, and it shows high performance for sequential recommendations.

GRU4Rec. To model sequential dependencies and making predictions in session

based recommendation systems, (Hidasi et al., 2016b) proposed this method based on

Recurrent Neural Networks (RNN’s).

6. Convolutional Sequence Embeddings (Caser). A convolutional neural network

(CNN) based method which takes the embedding matrix of the L most recent items

and applies convolution operations on it to achieve sequential recommendation (Tang

and Wang, 2018).

7. Bert4Rec. A Sequential Recommendation model with Bidirectional Encoder Repre-

sentations from

Transformer by (Sun et al., 2019b). The model utilizes deep bidirectional self-attention

mechanism for modeling user behavioral sequences and learns a bidirectional represen-

tation model which makes recommendations by allowing each item in users’ historical

behavior to integrate information from both left and right sides.

166

8.2.6 Results and Analysis

Our proposed model SEMMRec gave improved performance in comparison to the baselines

on all K tested after incorporating products’ meta data to learn product semantics and using

semantic similarity measures to compute relationship between products and then utilizing

this semantic knowledge while building the transition probability matrix for Markov Model.

The aforementioned baseline methods and our method used the same dimension (d =100)

to evaluate performance via Recall and NDCG for a uniform comparison. The comparative

evaluation results for the given datasets are shown in Table 8.6.

A graphical representation of Table 8.6 is also shown in Fig. 8.2 and it can be seen

that BPR-MF and FISM are the recommender systems that only consider user preferences.

However, BPR-MF uses a method of factoring a user-item interaction matrix, and FISM

factors an item-item similarity matrix. The comparison results show that FISM better

reflects user preferences by highlighting the relationships between items. More specifically,

FISM shows that on all datasets, the average of Recall is 0.071 and NDCG is 0.053 which is

higher than BPR-MF showing that factoring the item-item similarity matrix is technically

better.

Fossil and FPMC present the user preference and the sequential patterns for the recom-

mender system. However, Fossil highlights the sequential pattern better than FPMC, and

introduces the concept of FISM. In this regard, as illustrated in Table 8.6, Fossil outper-

forms FPMC on all the datasets; the average of Recall is 0.069 and NDCG 0.045 indicating

that learning sequential information about customers’ behaviour is important to capture

user’s long and short term preferences and to improve quality of recommendations and show

that the high-order Markov chain and item similarity method are useful for a recommender

system in a sequential environment.

SAS deal with sequential information to implement a sparse sequential recommendation

models using deep learning-based approaches. On all datasets, SAS has an average Recall of

0.119 and NDCG of 0.041 which imply that deep learning-based models are useful for sparse

sequential recommendation. The comparison between the deep learning-based recommen-

dation methods and conventional recommendation algorithms along with SEMMRec shows

that deep learning-based outperforms almost all conventional recommendation algorithms.

167

However, they require more hyper-parameter tuning and training the model takes much

longer. Fig. 8.2 and Table 8.6 illustrate the NDCG and Recall evaluations of the five

datasets for all the methods used in the experiment. According to these results, SEMMRec

has an improved average Recall of 0.019 and NDCG of 0.019 compared to FISM, an improved

average Recall of 0.063 and NDCG of 0027 in comparison to Fossil (that is considered the

best performed model among traditional recommendation algorithms) and an improved

average Recall of 0.013 and 0.031 as compared to SAS (deep learning based approach).

Given performance of all existing methods, it can be said that SEMMRec mostly has

better recommendation performance than other recommendation models as it extract se-

mantic knowledge of items from items’ meta data (title, description and brand) and cus-

tomers’ purchase histories (co-purchased and co-reviewed products), to compute seman-

tic similarities between items and enriches the sequential next item prediction process of

Markov Model by incorporating the semantic knowledge (semantic similarity) into the tran-

sition probability matrix thereby generating personalized recommendations.

Furthermore, the results of the proposed model (SEMMRec) on five datasets in Amazon

data (Auto, Baby, Office, Garden, Video) are presented in Table 8.6. Here, we report

results on all evaluation metrics at a cutoff of K=30. We notice that SEMMRec performed

considerably well on all data sets. Next, we will discuss the impact of different order of

Markov Chain L), effect of sparsity through our proposed SEMMRec.

8.2.6.0.1 Influence of different Order L of Markov Chain - Next, we analyse the

change in performance of the high-order Markov chain based on different order of L where

(L ∈ {1, 2, 3, 4, 5}). In other words, we compared the performance of recommendations with

different values for L. Performance comparisons were made through the 1-order Markov

chain. Table 8.7 and Fig. 8.3 shows the performance of our proposed SEMMRec with

different values for L in all the datasets. An increase in the number of L elicits an increase

in the recommendation performance for most datasets (Baby, Office, Garden, and Video).

It means that a high-order Markov chain works well for sequential recommendation in our

proposed method.

168

(a) Recall

(b) NDCG

Figure 8.2: Performance comparison of proposed SEMMRec with baseline models on
Five Datasets on the basis of (a) Recall and (b) NDCG

169

Table 8.7: Effect of different order of L in Markov Chain in SEMMRec

Metric Order of L

Data Set 1 2 3 4 5

Auto Recall 0.143 0.151 0.149 0.150 0.149
NDCG 0.089 0.093 0.92 0.092 0.092

Baby Recall 0.02 0.139 0.15 0.154 0.157
NDCG 0.092 0.115 0.135 0.140 0.145

Garden Recall 0.153 0.17 0.192 0.19 0.191
NDCG 0.093 0.108 0.119 0.12 0.122

Office Recall 0.02 0.121 0.15 0.154 0.157
NDCG 0.07 0.083 0.096 0.104 0.104

Video Recall 0.193 0.197 0.23 0.21 0.20
NDCG 0.115 0.122 0.124 0.126 0.127

8.2.6.0.2 Handling Sparsity - To show how effectively the proposed SEMMRec deal

with sparsity, we generated two variants of each of the Amazon data sets in categories auto,

baby and garden. For example, the data set Auto1 refers to data set which have minimum

user interaction as seven and the dataset Auto2 represents dataset with minimum user

interaction as ten.

Variants for baby and garden data set were also created in the same way. Models’

performance was evaluated using same parameters as explained in Sect. 8.2.2. The results

are presented in Fig. 8.4 which shows that SEMMRec outperforms the other approaches on

different sizes and the length of sequences of datasets. Especially, in small size data set and

high-order sequential datasets (e.g. Auto2 and Garden2), SEMMRec and Fossil outperform

SAS which is a deep learning-based algorithm. This shows that the conventional machine

learning approach compared to deep learning-based approaches appear to have a better

performance on the small and high-order sequential dataset. Thus, it can be concluded

that our proposed approach is mainly stable on various sparse datasets (with different size

and sequence).

8.2.6.0.3 Influence of Train and Test Split - For data set partitioning, we adopted

the strategies of (i) leave one out (the most recent, i.e., last sequence of each user is used for

testing and all remaining sequences for training) and (ii) temporal user splitting (where a

percentage of the last interactions of each user is reserved for testing rather than just one).

170

(a) Recall

(b) NDCG

Figure 8.3: Effects of Different order of L on proposed Model (SEMMRec) Performance
based on (a) Recall and (b) NDCG

171

Figure 8.4: Performance comparison of proposed model using sparse datasets (two vari-
ants of each data set)

Availability of a rating (Amazon) is considered as user-item interaction and we used times-

tamps to determine the sequential order of actions. Data was pre-processed to create train

and test data. Purchases made by each customer were grouped into sequences according

to the timestamp. For leave-one-out, the training data was created from those purchase

sequences and the last purchase sequence of each customer was used to create the test set

for evaluating model’s performance. In the temporal user splitting, we used train and test

splits of (a) 70%, 30% and (b) 80%, 20%. Users with greater than 5 purchasing records are

selected. The experiments showed that the proposed model SEMMRec performed well when

the data set was split using temporal user setting with training as 80% and test as 20%

which indicates that extracting semantic knowledge of items from items’ meta data (title,

description and brand) and customers’ purchase histories (co-purchased and co-reviewed

products) and utilizing it to compute semantic similarities between items and then inte-

grating the semantic knowledge (semantic similarity) into the transition probability matrix

enhanced the recommendation process by generating personalized recommendations.

172

Chapter 9

Conclusion, Limitations and

Future Research Directions

This chapter presents a summary of this thesis, its limitations and some future research

directions.

9.1 Conclusion

This thesis, proposed a model to explore the effectiveness of utilizing semantic knowledge

(meaningful relationships between items) extracted from items’ meta data (title, descrip-

tion and brand) and customers’ purchase histories to compute semantic similarities between

items according to their (a) usage (e.g., products co-purchased or co-reviewed) and (b) tex-

tual features by finding similarity between products based on their characteristics. The

extracted semantic knowledge is then integrated into different phases of recommendation

process such as (i) pre-processing, to learn relationships between items, (ii) candidate gen-

eration, such as while (a) mining semantic rich sequential patterns, (b) enriching the item

matrix in Collaborative Filtering to select Top-N candidates that show semantic and se-

quential relationships between items and (c) enhancing the Transition Probability Matrix

in the Markov Model method and (iii) generate semantic rich and sequential next item rec-

ommendations either by using semantic rich (a) Sequential Pattern Rules, (b) item based

173

Collaborative Filtering or (c) Markov Model depending upon the method used to generate

candidate items. Thus, the inclusion of semantic knowledge into all phases of recommen-

dation process can address the issues of sparsity, coldstart, content overspecialization and

provide recommendations which are diverse, similar in context and better reflect user’s long

and short term interests. Experimental results on publicly available e-commerce data sets

such as Amazon and Online Retail has shown that the proposed model has improved perfor-

mance over existing systems. Therefore, the signicant contributions made by this research

in context of the research questions described in Chapter 3 and are repeated below.

Research Question 1: How incorporating data from multiple sources can contribute

towards personalized recommendations?

Answer: This thesis proposes a comprehensive model which inputs customers’ pur-

chase history and products’ meta data (e.g., title, description and brand) and extract prod-

ucts’ sequential and semantic knowledge according to their (i) usage (e.g., products co-

purchased or co-reviewed) and (ii) textual features by finding similarity between products

based on their characteristics using distributional hypothesis methods (Prod2Vec, Glove,

Doc2vec and TF-IDF) which consider the context of items’ usage. Products’ semantic fea-

ture vectors were learnt by training various distributional models and obtaining products’

representations by: (a) Individually training Prod2vec (Grbovic et al., 2015) and Glove

(Pennington et al., 2014) models using products from customers’ purchase sequences sorted

according to the time stamp, (b) utilizing product feature vectors (embeddings) obtained

from prod2vec (Grbovic et al., 2015) and Glove (Pennington et al., 2014) to create hybrid

embeddings for product representation, (c) individually training TF-IDF (Salton, 1988)

and Doc2Vec (Mikolov et al., 2013) models using more product features such as title, de-

scription and brand from products’ meta data and customers’ purchase sequences, where a

document represents the collection of products’ title, description and brand purchased by

the customer sorted according to the time stamp, (d) utilizing product features (embed-

dings) obtained from TF-IDF (Salton, 1988) and Doc2Vec (Mikolov et al., 2013) to create

hybrid embeddings for product representation (Sect. 5.1, Algorithm 2).

The extracted products’ semantic knowledge is then utilized in the candidate genera-

tion and recommendation phases to generate candidate items that are similar in semantics

with target user’s preference to generate recommendations that are of interest to user. The

174

items’ semantic knowledge is integrated in the candidate generation and recommendation

process of sequential recommendation to (i) mine frequent sequential purchase patterns

(Sect. 6.1, Algorithm 3), (i) enrich item to item similarity matrix of Collaborative Filtering

method and (ii) enhance sequential next item prediction process of first order Markov Model

by incorporating the semantic knowledge (semantic similarity) into the Transition Proba-

bility Matrix (Sect. 6.1, Algorithm 4) which provides recommendations tailored towards

customers’ interest.

Research Question 2: Can items’ semantic knowledge be integrated to enhance the

performance of item based Collaborative Filtering Systems?

Answer: Yes. This is obtained by computing cosine similarity between the products’

semantic feature vectors obtained from customers’ purchase histories and products’ meta

data. This semantic similarity between items is then used to create an item-item semantic

similarity matrix for item based Collaborative Filtering (Chapter 6). To further enhance

the item based Collaborative Filtering with items semantic and sequential relationships, a

weighted products’ score measure is proposed which is computed through semantic similar-

ity, confidence and lift measures between a pair of products. The item similarity matrix is

then populated with this score measure where each entry in the matrix represents semantic

and sequential relationship (in terms of a score value) between a pair of products (Sect. 7.1,

Algorithm 6). The matrix can then be used to generate semantic and sequential next item

recommendation by taking each item in target user’s profile and retrieving a list of Top-K

items with a high score.

Research Question 3: How does incorporating semantics to sequential pattern mining

methods address their limitations and enhance the accuracy of recommendations?

Answer: This is accomplished by integrating semantic knowledge extracted from cus-

tomers’ purchase histories and products’ meta data to enhance the mining process. The first

step is to determine Top-N customers based on semantic similarities between products in

their purchase sequences, where each purchase sequence will be represented as an aggregate

vector of all products in the sequence (Section 6.1.3). This is analogous to representing a

sentence as collection of words and then creating a database of these semantically similar

purchase sequences to mine frequent semantic and sequential patterns using PrefixSpan

175

(Jian Pei et al., 2001). During the mining process, the semantic information of products

from the item similarity matrix along with their support count is used to prune patterns of

products that are below the specified semantic similarity threshold and minimum support

threshold (Section 6.1, Algorithm 3). Later, in the recommendation phase, the extracted

semantic rich sequential patterns are used to generate rules to recommend items that are

similar in semantics and can be purchased in sequential order (Algorithm 5).

Research Question 4: Can the inclusion of semantic information solve the problems

in the recommendation systems and how?

Answer: To address the items’ cold start issue, this thesis proposes to compute se-

mantic and sequential relationships between items from customers’ purchase history and

products’ meta data (e.g., title, description and brand) and extract products’ semantic

knowledge according to their (i) usage (e.g., products co-purchased or co-reviewed) and

(ii) textual features by finding similarity between products based on their characteristics.

These relationships obtained in the form of product feature vector representations can then

be used to compute similarities between existing and a new item to guarantee the appear-

ance of this newly introduced item into the recommendation set without the use of any

explicit ratings.

For a new user issue, where no previous history exists, the current user behaviour (e.g.,

what items she is browsing), are considered to find items that are similar in semantics.

Then, for recommendation using user-based CF, Top-N neighbors (customers’ whose inter-

est is similar to the target customer) are identified based on the products’ in their purchase

sequence. This is based on semantic similarities between products in their purchase se-

quences, where each purchase sequence will be represented as an aggregate vector of all

products in the sequence (Section 6.1.3) and each user will be represented as an aggre-

gate vector of her purchase sequences to compute Top-N neighbors. This is analogous to

representing a sentence as collection of words. Sparsity (lack of user item interactions) is

addressed as an item’s relationship with other items is computed on the basis of item’s tex-

tual features and usage context (e.g., items co-purchased, co-viewed). Hence, to compute

similarities between items, no explicit information (ratings) are required. The huge search

space issue is also addressed by narrowing down the search space during the mining process

by proposing to prune patterns on the basis of semantic similarity threshold in addition to

176

traditional pruning method of using the support count.

Furthermore, a first order Markov Model’s Transition Probability Matrix is enhanced

with items’ semantic knowledge by first (a) creating a product frequency matrix based on

the sequential occurrence of each consecutive pair of products using the customers’ his-

torical purchases, (b) creating a Transition probability Matrix by normalizing the matrix

obtained in step (a) as explained in Sections 6.2.1 and 6.2.2 and then integrating the seman-

tic information of products from the item similarity matrix by computing a weighted score

(based on their semantic and sequential occurrence) for each consecutive pair of products

in the Transition Probability Matrix (Section 6.2, Algorithm 4). This provides us the items

that are similar in semantics and purchased in sequential order. A personalization vector is

then computed for each customer based on any product in its most recent purchases (as a

starting probability vector for the customer to begin at state k) in order to determine the

probabilities for landing at state k+1 (i.e., recommending a personalized next item by initi-

ating the customers’ journey from state k which represent any of the products purchased by

the customer during the last time stamp) and then determine the next product for purchase

(state k+1) based on the weighted score (Sect. 7.2, Algorithm 7).

9.2 Limitations

1. Adaptability for recommendation in other domains The proposed system has

been evaluated and tested for e-commerce products as according to the thesis scope,

however, it still needs to be investigated whether the proposed approach can also be

adapted to generate recommendations in other domains such as news recommendation,

music recommendation to name a few.

2. Availability of dataset from other sources Besides click stream and purchase

data, there is a lack of publicly available e-commerce data set that include various

other aspects of user interactions such as items added to their wish list, added to

cart but not purchased. Therefore, the proposed model could not be evaluated based

on these user-item interactions to interpret the impact of these data sources while

generating the semantic and sequential relationships between items.

177

9.3 Future Research Directions

Research on Sequential Recommendation Systems has gained attention in the past several

years. While summarizing and categorizing the various research directions followed, we

ascertain further open research directions including:

1. Context-adaptation in Sequential Recommendation Systems

Estimating the current context for a user to understand its preferences can greatly

impact the quality of recommendation and therefore increase user satisfaction. For

example, a context may represents a set of factors or situations under which a user

interacted with an item such as time, location, surroundings, purpose of purchase,

device and occasion while interacting with an item. Knowing the context in sequen-

tial recommender systems is more essential as user’s intent are short term and may

evolve quickly with time. For example, in an e-commerce platform, it is important to

determine if the user is going over the catalog to find different range of options or she

is interested in just reviewing shortlisted candidate items for purchase. However, most

existing Sequential Recommendation Systems ignore this significant aspect. Hence,

further work in this direction can be promising.

2. Social influence in Sequential Recommendation Systems

Users tend to trust more on the recommendations from their friends (social network)

than recommendations by unknown people. Collecting social information of users such

as facebook friends, followers on twitter, gathering preferences of their friends from

social networks and then utilize their ratings on items to generate recommendations for

the target user needs to be taken into account in Sequential Recommendation Systems.

A common example could be recommending movie to watch based on the movies

recently watched by target user’s friends or recommending products by collecting

information on products bought by target users’ friends and are similar to her interest.

3. Cross-domain Sequential Recommendation Systems

Cross domain recommendation aims to leverage data in different domains by trans-

ferring knowledge from source domain to target domain (for example, recommending

178

books on the basis of movies watched by the user), hence amplifying the target do-

mains’ recommendation performance. Future research can investigate deep learning

approaches to determine the characteristics of sequential data in source and target

domains and design Sequential Recommendation Systems generating cross-domain

recommendations.

4. Explainability in Sequential Recommendation Systems

Recently, most advanced neural network and deep learning based models are deemed

as a black box and lack explainability for users and model practitioners. Therefore,

designing Sequential Recommendation Systems which are explainable is significant as

without knowing the reasons behind recommendations, users’ may not trust these and

hence do not take an action accordingly (e.g., purchasing an item). Similarly, it is

vital for the practitioners to understand the influence of various factors such as data,

features, and other model hyper-parameters on the model output (i.e., recommenda-

tions).

5. Incorporating general trends and additional data

Usually, few specific types of user interactions (e.g., items views, clicks and purchases)

are considered while creating users’ profile (recording its preferences). However, in

real world, other rich information sources are available relevant to items (e.g., add to

favourites, add to wish-list, add to cart, trending items) and users (e.g., navigation

across different categories, purchase behaviours during several occasions). Focus on

these additional information sources can also impact the quality of recommendations.

6. Comprehensive and standardised evaluations across different Models

There has been a debate that only complex and advanced deep learning models cannot

always guarantee better and more robust recommender systems. Additionally, one

critical issue for evaluation in Sequential Recommendation Systems is the lack of

effective standardised benchmarks. Therefore, it is imperative to lay emphasis on

benchmarking study for standardised evaluations.

7. Domain specific sequential recommendation

Most of the research conducted for sequential recommendation is considered to be

applicable to all domains (e.g., music, news, movies, product recommendation). How-

179

ever, to address the needs for real world applications, more focus can be given to

design recommendation algorithms for a particular domain based on domain specific

features and hence have common data sets and standard baselines for comparison.

For example, in case of movie recommendation, common features include “genre”,

“artists”, “director”, “writer”,“release year“, “awards” etc., to being with, however,

in case of e-commerce domain for product recommendation, product features vary

not just in comparison to other domains but also between various product categories

as most of the product information (features) is embedded in the text descriptions.

For example, consider the description of a baby girl clothing with description as “

Cute Blue Red Cranberry Taped Girl Ruffle long Sleeve Sunflower Dress”, so here

“Cranberry” and “Sunflower” may refer to a “flavour” , an “ingredient’ or simply a

“color”. Accurate identification of these features is important to generate accurate

and relevant recommendations.

8. Inclusion of products’ semantic knowledge

Extracting products’ semantic knowledge (e.g., using textual features and context)

and then including it in the sequential recommendation process can improve the rec-

ommendation process. Nasir et al (Nasir and Ezeife, 2020, Nasir et al., 2021) proposed

to use customers’ purchase history and products’ meta data (e.g., title, description

and brand) and then extract products’ sequential and semantic knowledge according

to their (a) usage (e.g., products co-purchased or co-reviewed) and (b) textual features

by finding similarity between products based on their characteristics considering the

context of items’ usage.

9. Exploring consequential bond between customers’ different sequential in-

teractions

Consequential bond (similarity between click and purchase sequences) (Bhatta et al.,

2019) is useful to find similarities between customers’ click and purchase sequences.

This relationship (consequential bond) can be further extended to other user-item

interactions including items viewed, added to cart, add to wish list to further explore

sequential dependencies between users’ various interactions and hence recommend

items of interest.

180

10. Mining historical (long term) and short term user preferences

Considering the shift in users’ interest and preferences, it will be good to consider

users’ historical (long term) records (e.g., past purchases) along with their current

interests (e.g., short term user–item interactions). This can facilitate in learning their

static (long term) preferences (e.g., a particular clothing brand/style) and dynamic

short term intent (e.g., a particular colour). Models integrating these can lead to

improved recommendations tailored to customers’ needs.

181

Bibliography

Adomavicius, G. and Tuzhilin, A. Context-Aware Recommender Systems. In Ricci, F.,

Rokach, L., Shapira, B., and Kantor, P. B., editors, Recommender Systems Handbook,

pages 217–253. Springer US, Boston, MA, 2011. ISBN 978-0-387-85820-3. doi: 10.1007/

978-0-387-85820-3_7. URL https://doi.org/10.1007/978-0-387-85820-3_7.

Aggarwal, C. C. An Introduction to Recommender Systems. In Aggarwal, C. C., editor,

Recommender Systems: The Textbook, pages 1–28. Springer International Publishing,

Cham, 2016. ISBN 978-3-319-29659-3. doi: 10.1007/978-3-319-29659-3_1. URL

https://doi.org/10.1007/978-3-319-29659-3_1.

Agrawal, R. and Srikant, R. Mining sequential patterns. In Proceedings of the Eleventh

International Conference on Data Engineering, pages 3–14, March 1995. doi: 10.1109/

ICDE.1995.380415.

Agrawal, R., Srikant, R., Road, H., and Jose, S. Fast Algorithms for Mining Association

Rules. page 32.

Alkilany, A. A. A. An overview: temporal-side of sequential patterns discovery. Interna-

tional Journal of Data Mining & Knowledge Management Process, 3(1):1, 2013. Publisher:

Academy & Industry Research Collaboration Center (AIRCC).

Asher, R. E. and Simpson, J. M. Y. The Encyclopedia of Language and Linguistics. Perg-

amon, 1993.

Ayres, J., Flannick, J., Gehrke, J., and Yiu, T. Sequential PAttern mining using a bitmap

representation. In Proceedings of the eighth ACM SIGKDD international conference on

Knowledge discovery and data mining, KDD ’02, pages 429–435, New York, NY, USA,

182

https://doi.org/10.1007/978-0-387-85820-3_7
https://doi.org/10.1007/978-3-319-29659-3_1

July 2002. Association for Computing Machinery. ISBN 978-1-58113-567-1. doi: 10.114

5/775047.775109. URL https://doi.org/10.1145/775047.775109.

Bai, T., Nie, J.-Y., Zhao, W. X., Zhu, Y., Du, P., and Wen, J.-R. An attribute-aware neural

attentive model for next basket recommendation. In The 41st International ACM SIGIR

Conference on Research & Development in Information Retrieval, pages 1201–1204, 2018.

Basile, P., de Gemmis, M., Gentile, A. L., Lops, P., and Semeraro, G. UNIBA: JIG-

SAW algorithm for Word Sense Disambiguation. In Proceedings of the Fourth Inter-

national Workshop on Semantic Evaluations (SemEval-2007), pages 398–401, Prague,

Czech Republic, June 2007. Association for Computational Linguistics. URL https:

//www.aclweb.org/anthology/S07-1088.

Bernhard, S. D., Leung, C. K., Reimer, V. J., and Westlake, J. Clickstream Prediction

Using Sequential Stream Mining Techniques with Markov Chains. In Proceedings of the

20th International Database Engineering & Applications Symposium, IDEAS ’16, pages

24–33, New York, NY, USA, July 2016. Association for Computing Machinery. ISBN

978-1-4503-4118-9. doi: 10.1145/2938503.2938535. URL https://doi.org/10.1145/29

38503.2938535.

Bhatta, R., Ezeife, C. I., and Butt, M. N. Mining Sequential Patterns of Historical Purchases

for E-commerce Recommendation. In Ordonez, C., Song, I.-Y., Anderst-Kotsis, G., Tjoa,

A. M., and Khalil, I., editors, Big Data Analytics and Knowledge Discovery, Lecture

Notes in Computer Science, pages 57–72, Cham, 2019. Springer International Publishing.

ISBN 978-3-030-27520-4. doi: 10.1007/978-3-030-27520-4_5.

Bobadilla, J., Ortega, F., Hernando, A., and Gutiérrez, A. Recommender systems survey.

Knowledge-Based Systems, 46:109–132, July 2013. ISSN 0950-7051. doi: 10.1016/j.knos

ys.2013.03.012. URL http://www.sciencedirect.com/science/article/pii/S09507

05113001044.

Brafman, R. I., Heckerman, D., and Shani, G. Recommendation as a Stochastic Sequential

Decision Problem. page 10.

Burke, R. Hybrid Web Recommender Systems. In Brusilovsky, P., Kobsa, A., and Nejdl,

W., editors, The Adaptive Web: Methods and Strategies of Web Personalization, Lecture

183

https://doi.org/10.1145/775047.775109
https://www.aclweb.org/anthology/S07-1088
https://www.aclweb.org/anthology/S07-1088
https://doi.org/10.1145/2938503.2938535
https://doi.org/10.1145/2938503.2938535
http://www.sciencedirect.com/science/article/pii/S0950705113001044
http://www.sciencedirect.com/science/article/pii/S0950705113001044

Notes in Computer Science, pages 377–408. Springer, Berlin, Heidelberg, 2007. ISBN

978-3-540-72079-9. doi: 10.1007/978-3-540-72079-9_12. URL https://doi.org/10.1

007/978-3-540-72079-9_12.

Carrer-Neto, W., Hernández-Alcaraz, M. L., Valencia-García, R., and García-Sánchez, F.

Social knowledge-based recommender system. Application to the movies domain. Expert

Systems with Applications, 39(12):10990–11000, September 2012. ISSN 0957-4174. doi:

10.1016/j.eswa.2012.03.025. URL http://www.sciencedirect.com/science/article/

pii/S0957417412004952.

Chen, X., Xu, H., Zhang, Y., Tang, J., Cao, Y., Qin, Z., and Zha, H. Sequential Recommen-

dation with User Memory Networks. In Proceedings of the Eleventh ACM International

Conference on Web Search and Data Mining, pages 108–116, Marina Del Rey CA USA,

February 2018. ACM. ISBN 978-1-4503-5581-0. doi: 10.1145/3159652.3159668. URL

https://dl.acm.org/doi/10.1145/3159652.3159668.

Cheng, W., Yin, G., Dong, Y., Dong, H., and Zhang, W. Collaborative Filtering Recom-

mendation on Users’ Interest Sequences. PLOS ONE, 11(5):e0155739, May 2016. ISSN

1932-6203. doi: 10.1371/journal.pone.0155739. URL https://journals.plos.org/

plosone/article?id=10.1371/journal.pone.0155739. Publisher: Public Library of

Science.

Choi, K., Yoo, D., Kim, G., and Suh, Y. A hybrid online-product recommendation system:

Combining implicit rating-based collaborative filtering and sequential pattern analysis.

Electronic Commerce Research and Applications, 11(4):309–317, July 2012. ISSN 1567-

4223. doi: 10.1016/j.elerap.2012.02.004. URL http://www.sciencedirect.com/scienc

e/article/pii/S156742231200018X.

Christakopoulou, K., Beutel, A., Li, R., Jain, S., and Chi, E. H. Q&R: A Two-

Stage Approach toward Interactive Recommendation. In Proceedings of the 24th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’18,

pages 139–148, New York, NY, USA, July 2018. Association for Computing Machinery.

ISBN 978-1-4503-5552-0. doi: 10.1145/3219819.3219894. URL https://doi.org/10.1

145/3219819.3219894.

184

https://doi.org/10.1007/978-3-540-72079-9_12
https://doi.org/10.1007/978-3-540-72079-9_12
http://www.sciencedirect.com/science/article/pii/S0957417412004952
http://www.sciencedirect.com/science/article/pii/S0957417412004952
https://dl.acm.org/doi/10.1145/3159652.3159668
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0155739
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0155739
http://www.sciencedirect.com/science/article/pii/S156742231200018X
http://www.sciencedirect.com/science/article/pii/S156742231200018X
https://doi.org/10.1145/3219819.3219894
https://doi.org/10.1145/3219819.3219894

de Gemmis, M., Lops, P., Musto, C., Narducci, F., and Semeraro, G. Semantics-Aware

Content-Based Recommender Systems. In Ricci, F., Rokach, L., and Shapira, B., editors,

Recommender Systems Handbook, pages 119–159. Springer US, Boston, MA, 2015. ISBN

978-1-4899-7637-6. doi: 10.1007/978-1-4899-7637-6_4. URL https://doi.org/10.100

7/978-1-4899-7637-6_4.

Deshpande, M. and Karypis, G. Selective Markov Models for Predicting Web Page Accesses.

ACM Transactions on Internet Technology, 4(2):22.

Di Noia, T., Mirizzi, R., Ostuni, V. C., Romito, D., and Zanker, M. Linked open data

to support content-based recommender systems. In Proceedings of the 8th International

Conference on Semantic Systems - I-SEMANTICS ’12, page 1, Graz, Austria, 2012.

ACM Press. ISBN 978-1-4503-1112-0. doi: 10.1145/2362499.2362501. URL http:

//dl.acm.org/citation.cfm?doid=2362499.2362501.

Donkers, T., Loepp, B., and Ziegler, J. Sequential user-based recurrent neural network rec-

ommendations. In Proceedings of the eleventh ACM conference on recommender systems,

pages 152–160, 2017.

Dziugaite, G. K. and Roy, D. M. Neural network matrix factorization. arXiv preprint

arXiv:1511.06443, 2015.

Ekstrand, M. D., Riedl, J. T., and Konstan, J. A. Collaborative Filtering Recommender

Systems. Now Publishers Inc, 2011. ISBN 978-1-60198-442-5.

Ezeife, C. I., Lu, Y., and Liu, Y. PLWAP sequential mining: open source code. In Proceed-

ings of the 1st international workshop on open source data mining: frequent pattern min-

ing implementations, OSDM ’05, pages 26–35, New York, NY, USA, August 2005. Associ-

ation for Computing Machinery. ISBN 978-1-59593-210-5. doi: 10.1145/1133905.1133910.

URL https://doi.org/10.1145/1133905.1133910.

FIRTH, J. R. A synopsis of linguistic theory, 1930-1955. Studies in Linguistic Analysis,

1957. URL https://ci.nii.ac.jp/naid/10020680394/. Publisher: Basil Blackwell.

Fournier-Viger, P. and Lin, J. C.-W. A Survey of Sequential Pattern Mining. page 24.

Gabrilovich, E. and Markovitch, S. Wikipedia-based Semantic Interpretation for Natural

Language Processing. Journal of Artificial Intelligence Research, 34:443–498, March 2009.

185

https://doi.org/10.1007/978-1-4899-7637-6_4
https://doi.org/10.1007/978-1-4899-7637-6_4
http://dl.acm.org/citation.cfm?doid=2362499.2362501
http://dl.acm.org/citation.cfm?doid=2362499.2362501
https://doi.org/10.1145/1133905.1133910
https://ci.nii.ac.jp/naid/10020680394/

ISSN 1076-9757. doi: 10.1613/jair.2669. URL https://www.jair.org/index.php/jai

r/article/view/10595.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,

A., and Bengio, Y. Generative adversarial nets. Advances in neural information processing

systems, 27, 2014.

Grbovic, M., Radosavljevic, V., Djuric, N., Bhamidipati, N., Savla, J., Bhagwan, V., and

Sharp, D. E-commerce in Your Inbox: Product Recommendations at Scale. In Proceedings

of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, KDD ’15, pages 1809–1818, New York, NY, USA, August 2015. Association for

Computing Machinery. ISBN 978-1-4503-3664-2. doi: 10.1145/2783258.2788627. URL

https://doi.org/10.1145/2783258.2788627.

Guo, H., Tang, R., Ye, Y., Li, Z., and He, X. Deepfm: a factorization-machine based neural

network for ctr prediction. arXiv preprint arXiv:1703.04247, 2017.

Guo, W., Wang, S., Lu, W., Wu, H., Zhang, Q., and Shao, Z. Sequential dependency

enhanced graph neural networks for session-based recommendations. In 2021 IEEE 8th

International Conference on Data Science and Advanced Analytics (DSAA), pages 1–10.

IEEE, 2021.

Gurbanov, T. and Ricci, F. Action prediction models for recommender systems based on

collaborative filtering and sequence mining hybridization. In Proceedings of the Sympo-

sium on Applied Computing, pages 1655–1661, 2017.

Harris, Z. S. Distributional Structure. WORD, 10(2-3):146–162, August 1954. ISSN 0043-

7956, 2373-5112. doi: 10.1080/00437956.1954.11659520. URL http://www.tandfonlin

e.com/doi/full/10.1080/00437956.1954.11659520.

He, R. and McAuley, J. Fusing Similarity Models with Markov Chains for Sparse Sequential

Recommendation. In 2016 IEEE 16th International Conference on Data Mining (ICDM),

pages 191–200, Barcelona, Spain, December 2016. IEEE. ISBN 978-1-5090-5473-2. doi:

10.1109/ICDM.2016.0030. URL http://ieeexplore.ieee.org/document/7837843/.

Hidasi, B., Karatzoglou, A., Baltrunas, L., and Tikk, D. SESSION-BASED RECOMMEN-

DATIONS WITH RECURRENT NEURAL NETWORKS. page 10, 2016a.

186

https://www.jair.org/index.php/jair/article/view/10595
https://www.jair.org/index.php/jair/article/view/10595
https://doi.org/10.1145/2783258.2788627
http://www.tandfonline.com/doi/full/10.1080/00437956.1954.11659520
http://www.tandfonline.com/doi/full/10.1080/00437956.1954.11659520
http://ieeexplore.ieee.org/document/7837843/

Hidasi, B., Karatzoglou, A., Baltrunas, L., and Tikk, D. Session-based Recommendations

with Recurrent Neural Networks. arXiv:1511.06939 [cs], March 2016b. URL http:

//arxiv.org/abs/1511.06939. arXiv: 1511.06939.

Hidasi, B., Quadrana, M., Karatzoglou, A., and Tikk, D. Parallel Recurrent Neural Network

Architectures for Feature-rich Session-based Recommendations. In Proceedings of the 10th

ACM Conference on Recommender Systems, RecSys ’16, pages 241–248, New York, NY,

USA, September 2016c. Association for Computing Machinery. ISBN 978-1-4503-4035-9.

doi: 10.1145/2959100.2959167. URL https://doi.org/10.1145/2959100.2959167.

Hinton, G. E., Osindero, S., and Teh, Y.-W. A fast learning algorithm for deep belief nets.

Neural computation, 18(7):1527–1554, 2006.

Hsu, K.-C., Chou, S.-Y., Yang, Y.-H., and Chi, T.-S. Neural network based next-song

recommendation. arXiv preprint arXiv:1606.07722, 2016.

Huang, J., Zhao, W. X., Dou, H., Wen, J.-R., and Chang, E. Y. Improving sequential

recommendation with knowledge-enhanced memory networks. In The 41st International

ACM SIGIR Conference on Research & Development in Information Retrieval, pages

505–514, 2018a.

Huang, J., Zhao, W. X., Dou, H., Wen, J.-R., and Chang, E. Y. Improving Sequential

Recommendation with Knowledge-Enhanced Memory Networks. In The 41st Interna-

tional ACM SIGIR Conference on Research & Development in Information Retrieval,

pages 505–514, Ann Arbor MI USA, June 2018b. ACM. ISBN 978-1-4503-5657-2. doi:

10.1145/3209978.3210017. URL https://dl.acm.org/doi/10.1145/3209978.3210017.

Hunt, J. W. and MacIlroy, M. D. An algorithm for differential file comparison. Bell Labo-

ratories Murray Hill, 1976.

Jannach, D., Zanker, M., Felfernig, A., and Friedrich, G. Recommender Systems: An

Introduction. Cambridge University Press, September 2010. ISBN 978-1-139-49259-1.

Google-Books-ID: eygTJBd_U2cC.

Jian Pei, Jiawei Han, Mortazavi-Asl, B., Pinto, H., Qiming Chen, Dayal, U., and Mei-

Chun Hsu. PrefixSpan,: mining sequential patterns efficiently by prefix-projected pattern

187

http://arxiv.org/abs/1511.06939
http://arxiv.org/abs/1511.06939
https://doi.org/10.1145/2959100.2959167
https://dl.acm.org/doi/10.1145/3209978.3210017

growth. In Proceedings 17th International Conference on Data Engineering, pages 215–

224, Heidelberg, Germany, 2001. IEEE Comput. Soc. ISBN 978-0-7695-1001-9. doi:

10.1109/ICDE.2001.914830. URL http://ieeexplore.ieee.org/document/914830/.

Kabbur, S., Ning, X., and Karypis, G. FISM: factored item similarity models for top-N

recommender systems. In Proceedings of the 19th ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 659–667, Chicago Illinois USA, August

2013. ACM. ISBN 978-1-4503-2174-7. doi: 10.1145/2487575.2487589. URL https:

//dl.acm.org/doi/10.1145/2487575.2487589.

Kang, W.-C. and McAuley, J. Self-attentive sequential recommendation. In 2018 IEEE

International Conference on Data Mining (ICDM), pages 197–206. IEEE, 2018a.

Kang, W.-C. and McAuley, J. Self-Attentive Sequential Recommendation.

arXiv:1808.09781 [cs], August 2018b. URL http://arxiv.org/abs/1808.09781.

arXiv: 1808.09781.

Kang, W.-C., Wan, M., and McAuley, J. Recommendation through mixtures of heteroge-

neous item relationships. In Proceedings of the 27th ACM International Conference on

Information and Knowledge Management, pages 1143–1152, 2018.

Kim, Y. S. and Yum, B.-J. Recommender system based on click stream data using asso-

ciation rule mining. Expert Systems with Applications, 38(10):13320–13327, September

2011. ISSN 0957-4174. doi: 10.1016/j.eswa.2011.04.154. URL http://www.sciencedir

ect.com/science/article/pii/S0957417411006816.

Kim, Y. S., Yum, B.-J., Song, J., and Kim, S. M. Development of a recommender system

based on navigational and behavioral patterns of customers in e-commerce sites. Expert

Systems with Applications, 28(2):381–393, February 2005. ISSN 0957-4174. doi: 10.101

6/j.eswa.2004.10.017. URL http://www.sciencedirect.com/science/article/pii/

S0957417404001368.

Koren, Y. Collaborative filtering with temporal dynamics. In Proceedings of the 15th ACM

SIGKDD international conference on Knowledge discovery and data mining, KDD ’09,

pages 447–456, New York, NY, USA, June 2009. Association for Computing Machinery.

188

http://ieeexplore.ieee.org/document/914830/
https://dl.acm.org/doi/10.1145/2487575.2487589
https://dl.acm.org/doi/10.1145/2487575.2487589
http://arxiv.org/abs/1808.09781
http://www.sciencedirect.com/science/article/pii/S0957417411006816
http://www.sciencedirect.com/science/article/pii/S0957417411006816
http://www.sciencedirect.com/science/article/pii/S0957417404001368
http://www.sciencedirect.com/science/article/pii/S0957417404001368

ISBN 978-1-60558-495-9. doi: 10.1145/1557019.1557072. URL https://doi.org/10.1

145/1557019.1557072.

Le, Q. and Mikolov, T. Distributed Representations of Sentences and Documents. page 9.

Leacock, C. and Chodorow, M. Combining local context and wordnet similarity for word

sense identification. WordNet: An electronic lexical database, 49(2):265–283, 1998.

Lee, D., Chuang, H., and Seamons, K. Document ranking and the vector-space model.

IEEE Software, 14(2):67–75, 1997. doi: 10.1109/52.582976.

Li, J., Li, L., Wu, Y., and Chen, S. An Improved Recommender Based on Hidden Markov

Model. page 5.

Li, J., Ren, P., Chen, Z., Ren, Z., Lian, T., and Ma, J. Neural attentive session-based

recommendation. In Proceedings of the 2017 ACM on Conference on Information and

Knowledge Management, pages 1419–1428, 2017.

Li, T., Choi, M., Fu, K., and Lin, L. Music Sequence Prediction with Mixture Hidden

Markov Models. In 2019 IEEE International Conference on Big Data (Big Data), pages

6128–6132, December 2019. doi: 10.1109/BigData47090.2019.9005695.

Lian, D., Xie, X., and Chen, E. Discrete matrix factorization and extension for fast item

recommendation. IEEE Transactions on Knowledge and Data Engineering, 33(5):1919–

1933, 2019.

Lian, J., Zhang, F., Xie, X., and Sun, G. Cccfnet: a content-boosted collaborative filter-

ing neural network for cross domain recommender systems. In Proceedings of the 26th

international conference on World Wide Web companion, pages 817–818, 2017.

Liu, D.-R., Lai, C.-H., and Lee, W.-J. A hybrid of sequential rules and collaborative filtering

for product recommendation. Information Sciences, 179(20):3505–3519, 2009.

Liu, Q., Zeng, Y., Mokhosi, R., and Zhang, H. Stamp: short-term attention/memory prior-

ity model for session-based recommendation. In Proceedings of the 24th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, pages 1831–1839,

2018.

189

https://doi.org/10.1145/1557019.1557072
https://doi.org/10.1145/1557019.1557072

Lops, P., de Gemmis, M., and Semeraro, G. Content-based Recommender Systems: State

of the Art and Trends. In Ricci, F., Rokach, L., Shapira, B., and Kantor, P. B., editors,

Recommender Systems Handbook, pages 73–105. Springer US, Boston, MA, 2011. ISBN

978-0-387-85820-3. doi: 10.1007/978-0-387-85820-3_3. URL https://doi.org/10.100

7/978-0-387-85820-3_3.

Lowe, W. Towards a Theory of Semantic Space. page 7.

Mabroukeh, N. R. and Ezeife, C. I. A taxonomy of sequential pattern mining algorithms.

ACM Computing Surveys, 43(1):3:1–3:41, December 2010. ISSN 0360-0300. doi: 10.114

5/1824795.1824798. URL https://doi.org/10.1145/1824795.1824798.

Middleton, S. E., Shadbolt, N. R., and De Roure, D. C. Ontological user profiling in

recommender systems. ACM Transactions on Information Systems, 22(1):54–88, January

2004. ISSN 1046-8188. doi: 10.1145/963770.963773. URL https://doi.org/10.1145/

963770.963773.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. Distributed Represen-

tations of Words and Phrases and their Compositionality. In Burges, C. J. C., Bottou,

L., Welling, M., Ghahramani, Z., and Weinberger, K. Q., editors, Advances in Neural In-

formation Processing Systems 26, pages 3111–3119. Curran Associates, Inc., 2013. URL

http://papers.nips.cc/paper/5021-distributed-representations-of-words-and

-phrases-and-their-compositionality.pdf.

Miller, G. A. WordNet: a lexical database for English. Communications of the ACM,

38(11):39–41, November 1995. ISSN 00010782. doi: 10.1145/219717.219748. URL

http://portal.acm.org/citation.cfm?doid=219717.219748.

Mobasher, B., Dai, H., Luo, T., and Nakagawa, M. Discovery and evaluation of aggregate

usage profiles for web personalization. Data mining and knowledge discovery, 6(1):61–82,

2002.

Mooney, C. H. and Roddick, J. F. Sequential pattern mining – approaches and algorithms.

ACM Computing Surveys, 45(2):1–39, February 2013. ISSN 0360-0300, 1557-7341. doi:

10.1145/2431211.2431218. URL https://dl.acm.org/doi/10.1145/2431211.2431218.

190

https://doi.org/10.1007/978-0-387-85820-3_3
https://doi.org/10.1007/978-0-387-85820-3_3
https://doi.org/10.1145/1824795.1824798
https://doi.org/10.1145/963770.963773
https://doi.org/10.1145/963770.963773
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://portal.acm.org/citation.cfm?doid=219717.219748
https://dl.acm.org/doi/10.1145/2431211.2431218

Morris, M. R., Teevan, J., and Panovich, K. What do people ask their social networks, and

why? a survey study of status message q&a behavior. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, CHI ’10, pages 1739–1748, New

York, NY, USA, April 2010. Association for Computing Machinery. ISBN 978-1-60558-

929-9. doi: 10.1145/1753326.1753587. URL https://doi.org/10.1145/1753326.1753

587.

Nasir, M. and Ezeife, C. I. Semantics Embedded Sequential Recommendation for E-

Commerce Products (SEMSRec). In 2020 IEEE/ACM International Conference on Ad-

vances in Social Networks Analysis and Mining (ASONAM), pages 270–274, December

2020. doi: 10.1109/ASONAM49781.2020.9381352. ISSN: 2473-991X.

Nasir, M., Ezeife, C. I., and Gidado, A. Improving e-commerce product recommendation

using semantic context and sequential historical purchases. Social Network Analysis and

Mining, 11(1):82, September 2021. ISSN 1869-5469. doi: 10.1007/s13278-021-00784-6.

URL https://doi.org/10.1007/s13278-021-00784-6.

Nielsen, M. A. Neural networks and deep learning, volume 25. Determination press San

Francisco, CA, USA, 2015.

Parameswaran, A. G., Koutrika, G., Bercovitz, B., and Garcia-Molina, H. Recsplorer:

recommendation algorithms based on precedence mining. In Proceedings of the 2010

ACM SIGMOD International Conference on Management of data, pages 87–98, 2010.

Pasricha, R. and McAuley, J. Translation-based factorization machines for sequential rec-

ommendation. In Proceedings of the 12th ACM Conference on Recommender Systems,

pages 63–71, 2018.

Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., and Hsu,

M.-C. Mining sequential patterns by pattern-growth: the PrefixSpan approach. IEEE

Transactions on Knowledge and Data Engineering, 16(11):1424–1440, November 2004.

ISSN 1558-2191. doi: 10.1109/TKDE.2004.77. Conference Name: IEEE Transactions on

Knowledge and Data Engineering.

Pennington, J., Socher, R., and Manning, C. Glove: Global Vectors for Word Representa-

tion. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language

191

https://doi.org/10.1145/1753326.1753587
https://doi.org/10.1145/1753326.1753587
https://doi.org/10.1007/s13278-021-00784-6

Processing (EMNLP), pages 1532–1543, Doha, Qatar, 2014. Association for Computa-

tional Linguistics. doi: 10.3115/v1/D14-1162. URL http://aclweb.org/anthology/D

14-1162.

Polyzou, A. and Karypis, G. Scholars Walk: A Markov Chain Framework for Course

Recommendation. page 6, 2019.

Quadrana, M., Karatzoglou, A., Hidasi, B., and Cremonesi, P. Personalizing Session-based

Recommendations with Hierarchical Recurrent Neural Networks. In Proceedings of the

Eleventh ACM Conference on Recommender Systems, RecSys ’17, pages 130–137, New

York, NY, USA, August 2017. Association for Computing Machinery. ISBN 978-1-4503-

4652-8. doi: 10.1145/3109859.3109896. URL https://doi.org/10.1145/3109859.3109

896.

Ren, P., Chen, Z., Li, J., Ren, Z., Ma, J., and De Rijke, M. Repeatnet: A repeat aware

neural recommendation machine for session-based recommendation. In Proceedings of the

AAAI Conference on Artificial Intelligence, volume 33, pages 4806–4813, 2019.

Rendle, S., Freudenthaler, C., and Schmidt-Thieme, L. Factorizing personalized Markov

chains for next-basket recommendation. In Proceedings of the 19th international confer-

ence on World wide web, WWW ’10, pages 811–820, New York, NY, USA, April 2010.

Association for Computing Machinery. ISBN 978-1-60558-799-8. doi: 10.1145/1772690.

1772773. URL https://doi.org/10.1145/1772690.1772773.

Rendle, S., Freudenthaler, C., Gantner, Z., and Schmidt-Thieme, L. BPR: Bayesian Per-

sonalized Ranking from Implicit Feedback. page 10, 2009.

Ricci, F., Rokach, L., and Shapira, B. Recommender Systems: Introduction and Challenges.

In Ricci, F., Rokach, L., and Shapira, B., editors, Recommender Systems Handbook, pages

1–34. Springer US, Boston, MA, 2015. ISBN 978-1-4899-7637-6. doi: 10.1007/978-1-48

99-7637-6_1. URL https://doi.org/10.1007/978-1-4899-7637-6_1.

Rubino, G. and Sericola, B. Markov Chains and Dependability Theory. Cambridge Univer-

sity Press, Cambridge, 2014. ISBN 978-1-139-05170-5. doi: 10.1017/CBO9781139051705.

URL http://ebooks.cambridge.org/ref/id/CBO9781139051705.

192

http://aclweb.org/anthology/D14-1162
http://aclweb.org/anthology/D14-1162
https://doi.org/10.1145/3109859.3109896
https://doi.org/10.1145/3109859.3109896
https://doi.org/10.1145/1772690.1772773
https://doi.org/10.1007/978-1-4899-7637-6_1
http://ebooks.cambridge.org/ref/id/CBO9781139051705

Rudin, C., Letham, B., Salleb-Aouissi, A., Kogan, E., and Madigan, D. Sequential event

prediction with association rules. In Proceedings of the 24th annual conference on learning

theory, pages 615–634. JMLR Workshop and Conference Proceedings, 2011.

Sachdeva, N., Gupta, K., and Pudi, V. Attentive neural architecture incorporating song

features for music recommendation. In Proceedings of the 12th ACM Conference on

Recommender Systems, pages 417–421, 2018.

Sachdeva, N., Manco, G., Ritacco, E., and Pudi, V. Sequential variational autoencoders

for collaborative filtering. In Proceedings of the twelfth ACM international conference on

web search and data mining, pages 600–608, 2019.

Sahlgren, M. The distributional hypothesis. Italian Journal of Disability Studies, 20:33–53,

2008.

Sahoo, N., Singh, P. V., and Mukhopadhyay, T. A hidden markov model for collaborative

filtering. MIS quarterly, pages 1329–1356, 2012.

Saini, S., Saumya, S., and Singh, J. P. Sequential Purchase Recommendation System

for E-Commerce Sites. In Saeed, K., Homenda, W., and Chaki, R., editors, Computer

Information Systems and Industrial Management, Lecture Notes in Computer Science,

pages 366–375, Cham, 2017. Springer International Publishing. ISBN 978-3-319-59105-6.

doi: 10.1007/978-3-319-59105-6_31.

Salehi, M. and Nakhai Kamalabadi, I. Hybrid recommendation approach for learning

material based on sequential pattern of the accessed material and the learner’s pref-

erence tree. Knowledge-Based Systems, 48:57–69, August 2013. ISSN 0950-7051. doi:

10.1016/j.knosys.2013.04.012. URL http://www.sciencedirect.com/science/articl

e/pii/S095070511300124X.

Salton, G. Automatic text processing: the transformation, analysis, and retrieval of informa-

tion by computer. Addison-Wesley series in computer science. Addison-Wesley, Reading,

Mass, 1988. ISBN 978-0-201-12227-5.

Sarukkai, R. R. Link prediction and path analysis using Markov chains. Computer Networks,

33(1-6):377–386, June 2000. ISSN 13891286. doi: 10.1016/S1389-1286(00)00044-X. URL

https://linkinghub.elsevier.com/retrieve/pii/S138912860000044X.

193

http://www.sciencedirect.com/science/article/pii/S095070511300124X
http://www.sciencedirect.com/science/article/pii/S095070511300124X
https://linkinghub.elsevier.com/retrieve/pii/S138912860000044X

Schafer, J. B., Konstan, J. A., and Riedl, J. E-Commerce Recommendation Applications.

Data Mining and Knowledge Discovery, 5(1):115–153, January 2001. ISSN 1573-756X.

doi: 10.1023/A:1009804230409. URL https://doi.org/10.1023/A:1009804230409.

Schafer, J. B., Frankowski, D., Herlocker, J., and Sen, S. Collaborative Filtering Recom-

mender Systems. In Brusilovsky, P., Kobsa, A., and Nejdl, W., editors, The Adaptive

Web: Methods and Strategies of Web Personalization, Lecture Notes in Computer Sci-

ence, pages 291–324. Springer, Berlin, Heidelberg, 2007. ISBN 978-3-540-72079-9. doi:

10.1007/978-3-540-72079-9_9. URL https://doi.org/10.1007/978-3-540-72079-

9_9.

Semeraro, G., Degemmis, M., Lops, P., and Basile, P. Combining learning and word sense

disambiguation for intelligent user profiling. In Proceedings of the 20th international joint

conference on Artifical intelligence, IJCAI’07, pages 2856–2861, San Francisco, CA, USA,

January 2007. Morgan Kaufmann Publishers Inc.

Semeraro, G., Lops, P., Basile, P., and de Gemmis, M. Knowledge infusion into content-

based recommender systems. In Proceedings of the third ACM conference on Recom-

mender systems, RecSys ’09, pages 301–304, New York, NY, USA, October 2009. Associ-

ation for Computing Machinery. ISBN 978-1-60558-435-5. doi: 10.1145/1639714.1639773.

URL https://doi.org/10.1145/1639714.1639773.

Shani, G., Heckerman, D., and Brafman, R. I. An MDP-Based Recommender System.

Journal of Machine Learning Research, 6(Sep):1265–1295, 2005. ISSN ISSN 1533-7928.

URL https://www.jmlr.org/papers/v6/shani05a.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrit-

twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. Mastering the game

of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Smirnova, E. and Vasile, F. Contextual Sequence Modeling for Recommendation with Re-

current Neural Networks. In Proceedings of the 2nd Workshop on Deep Learning for Rec-

ommender Systems, DLRS 2017, pages 2–9, New York, NY, USA, August 2017. Associa-

tion for Computing Machinery. ISBN 978-1-4503-5353-3. doi: 10.1145/3125486.3125488.

URL https://doi.org/10.1145/3125486.3125488.

194

https://doi.org/10.1023/A:1009804230409
https://doi.org/10.1007/978-3-540-72079-9_9
https://doi.org/10.1007/978-3-540-72079-9_9
https://doi.org/10.1145/1639714.1639773
https://www.jmlr.org/papers/v6/shani05a
https://doi.org/10.1145/3125486.3125488

Song, W. and Yang, K. Personalized recommendation based on weighted sequence similarity.

In Practical Applications of Intelligent Systems, pages 657–666. Springer, 2014.

Su, Q. and Chen, L. A method for discovering clusters of e-commerce interest patterns using

click-stream data. Electronic Commerce Research and Applications, 14(1):1–13, January

2015. ISSN 1567-4223. doi: 10.1016/j.elerap.2014.10.002. URL http://www.scienced

irect.com/science/article/pii/S1567422314000726.

Su, X. and Khoshgoftaar, T. M. A Survey of Collaborative Filtering Techniques. Advances

in Artificial Intelligence, 2009:1–19, 2009. ISSN 1687-7470, 1687-7489. doi: 10.1155/20

09/421425. URL https://www.hindawi.com/archive/2009/421425/.

Sun, F., Liu, J., Wu, J., Pei, C., Lin, X., Ou, W., and Jiang, P. Bert4rec: Sequential recom-

mendation with bidirectional encoder representations from transformer. In Proceedings

of the 28th ACM international conference on information and knowledge management,

pages 1441–1450, 2019a.

Sun, F., Liu, J., Wu, J., Pei, C., Lin, X., Ou, W., and Jiang, P. BERT4Rec: Sequen-

tial Recommendation with Bidirectional Encoder Representations from Transformer. In

Proceedings of the 28th ACM International Conference on Information and Knowledge

Management, pages 1441–1450, Beijing China, November 2019b. ACM. ISBN 978-1-4503-

6976-3. doi: 10.1145/3357384.3357895. URL https://dl.acm.org/doi/10.1145/33573

84.3357895.

Tan, Y. K., Xu, X., and Liu, Y. Improved Recurrent Neural Networks for Session-based Rec-

ommendations. In Proceedings of the 1st Workshop on Deep Learning for Recommender

Systems, DLRS 2016, pages 17–22, New York, NY, USA, September 2016. Association for

Computing Machinery. ISBN 978-1-4503-4795-2. doi: 10.1145/2988450.2988452. URL

https://doi.org/10.1145/2988450.2988452.

Tang, J. and Wang, K. Personalized Top-N Sequential Recommendation via Convolutional

Sequence Embedding. arXiv:1809.07426 [cs], September 2018. URL http://arxiv.or

g/abs/1809.07426. arXiv: 1809.07426.

Tang, J., Belletti, F., Jain, S., Chen, M., Beutel, A., Xu, C., and H. Chi, E. Towards neural

195

http://www.sciencedirect.com/science/article/pii/S1567422314000726
http://www.sciencedirect.com/science/article/pii/S1567422314000726
https://www.hindawi.com/archive/2009/421425/
https://dl.acm.org/doi/10.1145/3357384.3357895
https://dl.acm.org/doi/10.1145/3357384.3357895
https://doi.org/10.1145/2988450.2988452
http://arxiv.org/abs/1809.07426
http://arxiv.org/abs/1809.07426

mixture recommender for long range dependent user sequences. In The World Wide Web

Conference, pages 1782–1793, 2019.

Tavakol, M. and Brefeld, U. Factored mdps for detecting topics of user sessions. In Pro-

ceedings of the 8th ACM Conference on Recommender Systems, pages 33–40, 2014.

Tuan, T. X. and Phuong, T. M. 3d convolutional networks for session-based recommen-

dation with content features. In Proceedings of the eleventh ACM conference on recom-

mender systems, pages 138–146, 2017.

Turney, P. D. and Pantel, P. From Frequency to Meaning: Vector Space Models of Se-

mantics. Journal of Artificial Intelligence Research, 37:141–188, February 2010. ISSN

1076-9757. doi: 10.1613/jair.2934. URL https://www.jair.org/index.php/jair/ar

ticle/view/10640.

Unger, M., Bar, A., Shapira, B., and Rokach, L. Towards latent context-aware recommen-

dation systems. Knowledge-Based Systems, 104:165–178, 2016.

Villatel, K., Smirnova, E., Mary, J., and Preux, P. Recurrent Neural Networks for Long and

Short-Term Sequential Recommendation. arXiv:1807.09142 [cs, stat], July 2018. URL

http://arxiv.org/abs/1807.09142. arXiv: 1807.09142.

Wan, M. and McAuley, J. Item recommendation on monotonic behavior chains. In Pro-

ceedings of the 12th ACM conference on recommender systems, pages 86–94, 2018.

Wan, S., Lan, Y., Wang, P., Guo, J., Xu, J., and Cheng, X. Next basket recommendation

with neural networks. In RecSys Posters, 2015.

Wang, C., Niepert, M., and Li, H. Recsys-dan: discriminative adversarial networks for

cross-domain recommender systems. IEEE transactions on neural networks and learning

systems, 31(8):2731–2740, 2019a.

Wang, P., Guo, J., Lan, Y., Xu, J., Wan, S., and Cheng, X. Learning hierarchical represen-

tation model for nextbasket recommendation. In Proceedings of the 38th International

ACM SIGIR conference on Research and Development in Information Retrieval, pages

403–412, 2015.

196

https://www.jair.org/index.php/jair/article/view/10640
https://www.jair.org/index.php/jair/article/view/10640
http://arxiv.org/abs/1807.09142

Wang, Q., Yin, H., Hu, Z., Lian, D., Wang, H., and Huang, Z. Neural memory stream-

ing recommender networks with adversarial training. In Proceedings of the 24th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 2467–

2475, 2018a.

Wang, S., Hu, L., Cao, L., Huang, X., Lian, D., and Liu, W. Attention-based transac-

tional context embedding for next-item recommendation. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 32, 2018b.

Wang, S., Hu, L., Wang, Y., Sheng, Q. Z., Orgun, M., and Cao, L. Modeling multi-purpose

sessions for next-item recommendations via mixture-channel purpose routing networks. In

International Joint Conference on Artificial Intelligence. International Joint Conferences

on Artificial Intelligence, 2019b.

Wang, S., Cao, L., Wang, Y., Sheng, Q. Z., Orgun, M., and Lian, D. A Survey on Session-

based Recommender Systems. arXiv:1902.04864 [cs], May 2021. URL http://arxiv.

org/abs/1902.04864. arXiv: 1902.04864.

Wang, X., He, X., Nie, L., and Chua, T.-S. Item silk road: Recommending items from

information domains to social users. In Proceedings of the 40th International ACM SIGIR

conference on Research and Development in Information Retrieval, pages 185–194, 2017.

Wang, X. and Kadıoğlu, S. Modeling uncertainty to improve personalized recommendations

via Bayesian deep learning. International Journal of Data Science and Analytics, March

2021. ISSN 2364-415X, 2364-4168. doi: 10.1007/s41060-020-00241-1. URL http:

//link.springer.com/10.1007/s41060-020-00241-1.

Wang, Y., Chan, S. C.-F., and Ngai, G. Applicability of Demographic Recommender System

to Tourist Attractions: A Case Study on Trip Advisor. In 2012 IEEE/WIC/ACM In-

ternational Conferences on Web Intelligence and Intelligent Agent Technology, volume 3,

pages 97–101, December 2012. doi: 10.1109/WI-IAT.2012.133.

Wu, C.-Y., Ahmed, A., Beutel, A., Smola, A. J., and Jing, H. Recurrent Recommender

Networks. In Proceedings of the Tenth ACM International Conference on Web Search

and Data Mining, WSDM ’17, pages 495–503, New York, NY, USA, February 2017.

197

http://arxiv.org/abs/1902.04864
http://arxiv.org/abs/1902.04864
http://link.springer.com/10.1007/s41060-020-00241-1
http://link.springer.com/10.1007/s41060-020-00241-1

Association for Computing Machinery. ISBN 978-1-4503-4675-7. doi: 10.1145/3018661.

3018689. URL https://doi.org/10.1145/3018661.3018689.

Wu, C. and Yan, M. Session-aware information embedding for e-commerce product recom-

mendation. In Proceedings of the 2017 ACM on conference on information and knowledge

management, pages 2379–2382, 2017.

Wu, S., Tang, Y., Zhu, Y., Wang, L., Xie, X., and Tan, T. Session-based recommenda-

tion with graph neural networks. In Proceedings of the AAAI conference on artificial

intelligence, volume 33, pages 346–353, 2019.

Xiao, Y., Yao, L., Pei, Q., Wang, X., Yang, J., and Sheng, Q. Z. Mgnn: Mutualistic graph

neural network for joint friend and item recommendation. IEEE Intelligent Systems, 35

(5):7–17, 2020.

Xiao, Y. and Ezeife, C. I. E-Commerce Product Recommendation Using Historical Pur-

chases and Clickstream Data. In Ordonez, C. and Bellatreche, L., editors, Big Data

Analytics and Knowledge Discovery, Lecture Notes in Computer Science, pages 70–

82, Cham, 2018. Springer International Publishing. ISBN 978-3-319-98539-8. doi:

10.1007/978-3-319-98539-8_6.

Xue, H.-J., Dai, X., Zhang, J., Huang, S., and Chen, J. Deep matrix factorization models

for recommender systems. In IJCAI, volume 17, pages 3203–3209. Melbourne, Australia,

2017.

Yap, G.-E., Li, X.-L., and Yu, P. S. Effective Next-Items Recommendation via Personalized

Sequential Pattern Mining. In Lee, S.-g., Peng, Z., Zhou, X., Moon, Y.-S., Unland, R., and

Yoo, J., editors, Database Systems for Advanced Applications, Lecture Notes in Computer

Science, pages 48–64, Berlin, Heidelberg, 2012. Springer. ISBN 978-3-642-29035-0. doi:

10.1007/978-3-642-29035-0_4.

Ying, H., Zhuang, F., Zhang, F., Liu, Y., Xu, G., Xie, X., Xiong, H., and Wu, J. Sequential

recommender system based on hierarchical attention network. In IJCAI International

Joint Conference on Artificial Intelligence, 2018.

Yu, F., Liu, Q., Wu, S., Wang, L., and Tan, T. A dynamic recurrent model for next basket

198

https://doi.org/10.1145/3018661.3018689

recommendation. In Proceedings of the 39th International ACM SIGIR conference on

Research and Development in Information Retrieval, pages 729–732, 2016.

Yuan, F., Karatzoglou, A., Arapakis, I., Jose, J. M., and He, X. A simple convolutional

generative network for next item recommendation. In Proceedings of the Twelfth ACM

International Conference on Web Search and Data Mining, pages 582–590, 2019.

Zaki, M. J. SPADE: An Efficient Algorithm for Mining Frequent Sequences. Machine

Learning, 42(1):31–60, January 2001. ISSN 1573-0565. doi: 10.1023/A:1007652502315.

URL https://doi.org/10.1023/A:1007652502315.

Zeng, Z., Lin, J., Li, L., Pan, W., and Ming, Z. Next-item recommendation via collaborative

filtering with bidirectional item similarity. ACM Transactions on Information Systems

(TOIS), 38(1):1–22, 2019.

Zhang, S., Tay, Y., Yao, L., and Sun, A. Next item recommendation with self-attention.

arXiv preprint arXiv:1808.06414, 2018a.

Zhang, S., Yao, L., Sun, A., Wang, S., Long, G., and Dong, M. Neurec: On nonlinear

transformation for personalized ranking. arXiv preprint arXiv:1805.03002, 2018b.

Zhang, Y. and Cao, J. Personalized recommendation based on behavior sequence similarity

measures. In Behavior and Social Computing, pages 165–177. Springer, 2013.

Zhao, G., Lee, M. L., Hsu, W., and Chen, W. Increasing temporal diversity with purchase

intervals. In Proceedings of the 35th international ACM SIGIR conference on Research

and development in information retrieval, pages 165–174, 2012.

Zheng, N., Song, X., Chen, Z., Hu, L., Cao, D., and Nie, L. Virtually trying on new

clothing with arbitrary poses. In Proceedings of the 27th ACM International Conference

on Multimedia, pages 266–274, 2019.

Zhong, M., Li, C., Wen, J., Liu, L., Ma, J., Zhang, G., and Yang, Y. Hignet: Hierarchical

and interactive gate networks for item recommendation. IEEE Intelligent Systems, 35

(5):50–61, 2020.

Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., and Sun, M.

Graph neural networks: A review of methods and applications. AI Open, 1:57–81, 2020.

199

https://doi.org/10.1023/A:1007652502315

Zhu, J., Shan, Y., Mao, J., Yu, D., Rahmanian, H., and Zhang, Y. Deep embedding

forest: Forest-based serving with deep embedding features. In Proceedings of the 23rd

ACM SIGKDD international conference on knowledge discovery and data mining, pages

1703–1711, 2017.

Zimdars, A., Chickering, D. M., and Meek, C. Using Temporal Data for Making Recommen-

dations. arXiv:1301.2320 [cs], January 2013. URL http://arxiv.org/abs/1301.2320.

arXiv: 1301.2320.

200

http://arxiv.org/abs/1301.2320

Vita Auctoris

NAME: Mahreen Nasir Butt

PLACE OF BIRTH: Pakistan

YEAR OF BIRTH: 1984

EDUCATION: Doctor of Philosophy in Computer Science,

University of Windsor

Windsor, Ontario, Canada, 2022.

Master of Science in Computer Science,

Lahore College for Women University,

Lahore, Punjab, Pakistan, 2009

Bachelor of Science in Computer Science,

Lahore College for Women University

Lahore, Punjab, Pakistan, 2006

201

	Semantic Embedded Sequential Recommendation for E-Commerce Products through Mining Customers’ Historical Interactions and Products’ Data
	Recommended Citation

	Declaration of Co-Authorship and Previous Publications
	Abstract
	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Recommendation Systems
	E-commerce Recommendation Systems
	Challenges in E-Commerce Recommendation Systems
	How E-commerce Recommendation is Different from Recommendation in other Domains

	Components of a Recommendation Framework
	Input Phase (Data Sources)
	Candidate Generation Phase
	Output Phase (Recommendation)

	Motivation
	Why need a Sequential Recommendation System
	Extracting Sequential Patterns from user interactions using Sequential Pattern Mining
	Why use Semantics in Sequential Recommendation Systems?

	Thesis Contributions
	Feature Contributions
	Procedural Contributions

	Thesis Outline

	Related Work
	Classification of Recommendation Systems based on Input Data
	Classification of Recommendation Systems according to Candidate Generation (Recommendation Techniques)
	Traditional Approaches for Recommendation
	Term Frequency-Inverse Document Frequency (TF-IDF)
	Neighborhood Based

	Sequential Recommendation Techniques
	Traditional Approaches for Sequential Recommendation Systems
	Sequence Similarity Based Methods
	Frequent Pattern Mining
	Frequent Sequential Pattern Mining

	Factorization and Latent Representation Based Approaches
	Matrix Factorization
	Markov Models

	Neural Network Based
	Deep Neural Network Methods
	Recurrent Neural Networks
	Advanced Deep Neural Networks

	Classification of Traditional Sequential Recommendation Systems according to Features
	Types of Sequences
	Use of side Information (Customers’ & Items’ meta data)
	Consequential Bond between Click stream and Purchase Data
	Use of Contextual Information (location, occasion, season)
	Structure for Extracting and Modeling Sequential Behaviour
	Sequences having Long User Item Interactions
	Sequences with Flexible Order
	Temporal Patterns

	Semantics Based Recommendation Techniques
	Top Down Semantic Approaches
	Word Sense Disambiguation
	Entity Linking

	Bottom Up Semantic Approaches
	Explicit Semantic Analysis
	Random Indexing
	Word2Vec
	Prod2Vec

	Problems Identified and Research Questions
	Problems
	Research Questions

	Proposed Semantic Embedded Sequential Recommender for E-commerce Products (SEMSRec)
	Problem Formulation
	Proposed Solution and System Architecture
	Data Pre-processing Phase
	Items (Products') Semantic Representation Learning Phase
	Candidate (Users' and Items') Generation Phase
	Semantic and Sequential Next Item Recommendation Phase

	Semantic Representation Learning of E-commerce Products
	Walk through Examples for learning Products Semantic Feature Vector Representation

	Semantic Based Candidate Generation
	Semantics based Sequential Pattern Mining
	Computing Products' Semantic Similarity and item Semantic Similarity Matrix
	Aggregate Vector Representation of Vector Sequences
	Extracting Top-N Semantically Similar Neighbors
	Mining Semantic Embedded Sequential Patterns and Rules

	Semantic Enhanced Transition Probability Matrix in Markov Models
	Product Pairs' Frequency Matrix Creation
	Transition Probability Matrix Creation
	Score Computation for Products
	Semantic and Sequentially Rich Transition Probability Matrix

	Semantic & Sequential Next Item Recommendation
	Recommendation Using Semantic Based Sequential Pattern Mining and Collaborative Filtering
	Score Computation for Products
	Semantic and Sequentially Rich Item to Item Similarity Matrix
	Semantically Rich and Sequential Top-K Recommendation

	Recommendation Using Semantic Enhanced Transition Probability Matrix in Markov Model

	Experiments and Analysis
	Evaluation of Proposed System with Semantic Integrated Sequential Patterns and Collaborative Filtering Method
	Datasets and Implementation Details
	Pre-processing and Hyper-parameter Tuning
	Evaluation Metrices
	Complexity Analysis
	Complexity of Models
	Complexity of dataset Pre-processing
	Complexity of Mining the Sequential Patterns

	Baseline Methods for Comparison
	Results and Analysis
	Influence of Top-N customers (N)
	Influence of Embedding size
	Influence of train and test split

	Evaluation of Proposed System with Semantic Enhanced Transition Probability Matrix in Markov Models
	Datasets and Implementation Details
	Pre-processing and Hyper-parameter Tuning
	Evaluation Metrices
	Complexity Analysis
	Baseline Methods for Comparison
	Results and Analysis
	Influence of different Order L of Markov Chain -
	Handling Sparsity -
	Influence of Train and Test Split -

	Conclusion, Limitations and Future Research Directions
	Conclusion
	Limitations
	Future Research Directions

	Bibliography
	Vita Auctoris

