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Abstract

This paper considers an urn and its evolution in discrete time steps. The

urn initially has two different colored balls(blue and red). We discuss different

cases where k blue balls (k “ 1, 2, 3, . . . ) will be added (or removed) at every

step if a blue ball is withdrawn, based on the goal of eventually withdrawing a

red ball P pR eventuallyq. We compute the probability of eventually withdrawing

a red ball with two different methods–one using infinite sums and other using

infinite products. One advantage of this is that we can obtain P pR eventuallyq in

a complex but nicely patterned form using one method, and a simple form using

the other method. Since the results must be equal, we obtain some interesting

identities. We also present a general result and invent new identities, illustrated

by an example using the Fibonacci numbers. Additionally, we transform Wallis

Product(a) and Wallis Product(b) into urn models. Finally, we illustrate some

results by simulating the urn processes in R.
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CHAPTER 1

Introduction

1.1. Scope and Motivation of Research

Urn models have been intensely studied since the eighteenth century. Early

notable contributions were made by mathematicians such as Jacob Bernoulli and

Laplace[1]. In Ars Conjectandi (1713), Bernoulli used the Latin word urna(a clay

vessel) and considered a problem of determining the proportions of different colored

pebbles inside an urn after a number of pebbles are drawn from the urn. This topic

of research also attracted the attention of Abraham de Moivre and Thomas Bayes.

During the nineteenth and twentieth century, a number of classical urn problems

attributed to some eminent mathematicians researching in probability theory, were

proposed and studied. For instance, the ballot problems concerning with the

progress of a vote were first put forward the solved in 1878 by W.Whitworth. He

viewed the progress of votes as white and blue balls being deposited in an urn.

Other urn problems such as occupancy problems, coupon collector’s problems,

the gambler’s ruin and banach’s Matchbox problem were also raised and discussed

before the early twentieth century. Then in 1977, the book by Johnson and Kotz[2]

did a remarkable job of presenting a historical perspective on the simplest urn

models and some of their applications in statistics, engineering, and genetics. They

traced urns back to the post-Renaissance era and mentioned urns in works of

Huygens, de Moivre, Laplace, Bernoulli and other distinguished mathematicians

and scientists. Nowadays, urn models can be successfully used to model real world

processes in fields as diverse as genetics, ecology, physics, and economics. An

extensive overview of the literature on urn model can be found in Rafik(2018)[4],

Eskenazis(2018)[5], Stenlund(2018)[6], Aguech(2018)[7], Barbier(2017)[8], etc.

In particular, Pólya urn models, as a popular topic of urn problems, seem to

be first mentioned in 1906 by Markov in his seminal paper[9] and in [10]. A special

form appeared in the work of Paul Ehrenfest and Tatyana Ehrenfest in 1907, and
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was proposed as a model for the mixing of gases. However, it was named after

the work of Pólya and Eggenberger(1923)[11]. They generalized Markov’s urn

and used it as a model for contagion processes.The interest in Pólya urn models

mainly concentrated on the urn population and the sequence of colors of the balls

drawn out. Furthermore, in Pólya urn models, objects of real interest (e.g. atoms,

genes, social network users) are represented as colored balls, which can apply

to a broad variety of areas. A recent work about Pólya urns is the book by

Mahmoud(2008)[3] where a lot of applications, especially in computer science and

bioscience, are discussed. And more recent literature includes Saraiva(2017)[12],

Kuntschik(2017)[13], Hayhoe(2017)[14], Dosi(2017)[15], etc.

However, this paper focused on an urn with two different colored balls(blue and

red) under different circumstances. We discussed various cases of withdrawing a

ball from the urn with and without replacement on top of the goal of eventu-

ally withdrawing a red ball. More importantly, we computed the probability of

eventually obtaining a red ball in two different forms—infinite sums and infinite

products. Moreover, we generalized the results and invented new identities based

on the infinite sums and infinite products obtained from the evolution of the urn.
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CHAPTER 2

An Urn With 1 red ball and 1 blue ball

An urn contains one red ball and one blue ball. The urn evolves in discrete

time steps. At each step, a ball is sampled at random. If a blue ball is withdrawn,

then the ball will be returned to the urn(with replacement) with k blue balls added

to the urn. This process stops when the red ball is withdrawn. We are interested

in the probability of drawing the red ball at each step, which will be discussed in

Section 7.1. In addition, we will especially research the probability of eventually

drawing the red ball.

It needs to be clarified that k is the number of blue balls added to the urn

if a blue ball is withdrawn, so k “ 1, 2, 3, 4, ...; n is the number of steps, so

n “ 1, 2, 3, 4, ....

And we define:

P pRiq “ P pB1B2B3 . . . Bi´1Riq, i “ 1, 2, 3, . . . , n

to be the probability of withdrawing the red ball at the ith step. We will simply

use P pRiq instead of the form of P pB1B2B3 . . . Bi´1Riq in some cases.

For example,

P pR2q “ P pB1R2q “ P pB1qP pR2|B1q

meaning the probability of obtaining a blue ball at the first step and the red ball

at the second step;

P pR3q “ P pB1B2R3q “ P pB1qP pB2|B1qP pR3|B1, B2q

meaning the probability of obtaining a blue ball at the first step, another blue ball

at the second step and the red ball at the third step. So,

P pRnq “ P pB1B2B3 . . . Bn´1Rnq

“ P pB1qP pB2|B1qP pB3|B1, B2q . . . P pRn|B1, B2, B3, . . . , Bn´1q

3



meaning the probability of withdrawing a blue ball for the first pn´ 1q steps and

the red ball at the nth step.

Then, as n Ñ 8, the probability of eventually obtaining the red ball can be

computed in two different ways.

P pR eventuallyq

“ P pR1q ` P pB1R2q ` P pB1B2R3q ` . . .` P pB1B2B3 . . . Bn´1Rnq ` . . . (2.1)

and

P pR eventuallyq

“ 1´ P pobtaining a blue ball at every stepq

“ 1´ lim
nÑ8

P pB1B2B3 . . . Bnq (2.2)

To be specific, we will use both (2.1) and (2.2) to calculate P pR eventuallyq

for all the related problems in this paper. The advantages of doing this it that

the infinite summation part in (2.1) is often difficult to calculate while the infinite

product part in (2.2) may be easy to obtain. Thus, we can always try to obtain

P pR eventuallyq using (2.2) whenever we can not solve (2.1) since p2.1q ðñ

p2.2q. Furthermore, calculating P pR eventuallyq in both ways can help to avoid

computational mistakes and can result in some beautiful equalities.

The following sections illustrate the probability of eventually obtaining the red

ball when k “ 1, 2, 3 respectively using formulas (2.1) and (2.2). Adding 4 or more

blue balls pk ě 4q if a blue ball is withdrawn will not be discussed here since it is

the same calculating process as adding 3 or fewer balls.Therefore, we will discuss

the circumstances where

k “ 1: adding 1 blue ball every step if a blue ball is withdrawn in Section 2.1;
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k “ 2: adding 2 blue balls every step if a blue ball is withdrawn in Section 2.2;

k “ 3: adding 3 blue balls every step if a blue ball is withdrawn in Section 2.3.

In Section 2.4, we will discuss a special case where adding k blue balls if a blue

ball is withdrawn at the kth step where k “ 1, 2, . . . .

2.1. k “ 1 :Adding One Blue Ball

In the case where k “ 1,

p2.1q “ P pR1q ` P pB1R2q ` P pB1B2R3q ` . . .` P pB1B2B3 . . . Bn´1Rnq ` . . .

“
1

2
`

1

2
ˆ

1

3
`

1

2
ˆ

2

3
ˆ

1

4
`

1

2
ˆ

2

3
ˆ

3

4
ˆ

1

5

` . . .`
1

2
ˆ

2

3
ˆ

3

4
ˆ . . .ˆ

n´ 1

n
ˆ

1

n` 1

“
1

1ˆ 2
`

1

2ˆ 3
`

1

3ˆ 4
` . . .`

1

pn´ 1q ˆ n
`

1

nˆ pn` 1q

“

8
ÿ

n“1

1

npn` 1q

Since
8
ř

n“1

1

npn` 1q
requires partial fractions and telescoping series, we will calculate

it again using (2.2).

p2.2q “ 1´ lim
nÑ8

P pB1B2B3 . . . Bnq

“ 1´ lim
nÑ8

ˆ

1

2
ˆ

2

3
ˆ

3

4
ˆ

4

5
ˆ . . .ˆ

n´ 1

n
ˆ

n

n` 1

˙

“ 1´ lim
nÑ8

1

n` 1

“ 1´ 0 “ 1

Therefore, the probability of eventually obtaining the red ball is 1 in the case

where 1 blue ball is added if a blue ball is withdrawn, and we have found a new

method to evaluate
8
ř

n“1

1

npn` 1q
.
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2.2. k “ 2 :Adding Two Blue Balls

In the case where k “ 2,

p2.1q “ P pR1q ` P pB1R2q ` P pB1B2R3q ` . . .` P pB1B2B3 . . . Bn´1Rnq ` . . .

“
1

2
`

1

2
ˆ

1

4
`

1

2
ˆ

3

4
ˆ

1

6
`

1

2
ˆ

3

4
ˆ

5

6
ˆ

1

8
`

1

2
ˆ

3

4
ˆ

5

6
ˆ

7

8
ˆ

1

10
` . . .

“
1

2
`

8
ÿ

n“2

1ˆ 3ˆ 5ˆ . . .ˆ p2n´ 3q ˆ 1

2ˆ 4ˆ 6ˆ . . .ˆ p2n´ 2q ˆ 2n

“
1

2
`

8
ÿ

n“2

1ˆ 2ˆ 3ˆ 4ˆ 5ˆ . . .ˆ p2n´ 3q ˆ p2n´ 2q

2ˆ 4ˆ 6ˆ . . .ˆ p2n´ 2q ˆ 2nˆ 2ˆ 4ˆ 6ˆ . . .ˆ p2n´ 2q

“

8
ÿ

n“1

p2n´ 2q!

2n r1ˆ 2ˆ 3ˆ . . .ˆ pn´ 1q ˆ ns ˆ 2n´1 r1ˆ 2ˆ 3ˆ . . .ˆ pn´ 1qs

“

8
ÿ

n“1

p2n´ 2q!

2n ¨ 2n´1 ¨ n! ¨ pn´ 1q!

“

8
ÿ

n“1

p2n´ 1q!

n!pn´ 1q!
¨

1

2n´1
¨

1

2n
¨

1

2n´ 1

“

8
ÿ

n“1

ˆ

2n´ 1

n

˙ˆ

1

2

˙n´1ˆ
1

2

˙n

¨
1

2n´ 1

Similarly, we will obtain the probability using (2.2) as well.

p2.2q “ 1´ lim
nÑ8

P pB1B2B3 . . . Bnq

“ 1´ lim
nÑ8

ˆ

1

2
ˆ

3

4
ˆ

5

6
ˆ

7

8
ˆ

9

10
ˆ . . .ˆ

2n´ 1

2n

˙

“ 1´ lim
nÑ8

1ˆ 2ˆ 3ˆ 4ˆ 5ˆ . . .ˆ p2n´ 1q ˆ 2n

2ˆ 4ˆ 6ˆ . . .ˆ p2n´ 2q ˆ 2nˆ 2ˆ 4ˆ 6ˆ . . .ˆ p2n´ 2q ˆ 2n

“ 1´ lim
nÑ8

p2nq!

2n ¨ 2n ¨ n! ¨ n!

“ 1´ lim
nÑ8

ˆ

2n

n

˙ˆ

1

2

˙nˆ
1

2

˙n

p˚q

“ 1´ lim
nÑ8

p2nq2n ¨ e´2n ¨
?

4πn

nn ¨ e´n ¨
?

2πn ¨ nn ¨ e´n ¨
?

2πn ¨ 22n

“ 1´ lim
nÑ8

1
?
πn

“ 1´ 0 “ 1

6



where n! « nn ¨ e´n
?

2πn by Stirling’s approximation

Note that (*) is intuitively equal to zero as it represents the limit as nÑ 8 of

the probability of getting exactly n heads in 2n flips of a fair coin.

Therefore, the probability of eventually obtaining the red ball is 1 in the case

where 2 blue balls are added if a blue ball is withdrawn. And we have obtained

the sum of a series which would otherwise be difficult to obtain.

2.3. k “ 3 :Adding Three Blue Balls

In the case where k “ 3,

p2.1q “ P pR1q ` P pB1R2q ` P pB1B2R3q ` . . .` P pB1B2B3 . . . Bn´1Rnq ` . . .

“
1

2
`

1

2
ˆ

1

5
`

1

2
ˆ

4

5
ˆ

1

8
`

1

2
ˆ

4

5
ˆ

7

8
ˆ

1

11
`

1

2
ˆ

4

5
ˆ

7

8
ˆ

10

11
ˆ

1

14
` . . .

“
1

2
`

8
ÿ

n“2

1ˆ 4ˆ 7ˆ . . .ˆ p3n´ 5q ˆ 1

2ˆ 5ˆ 8ˆ . . .ˆ p3n´ 4q ˆ p3n´ 1q

“
1

2
`

8
ÿ

n“2

¨

˚

˚

˚

˚

˝

n
ź

i“2

p3i´ 5q

n
ź

i“1

p3i´ 1q

˛

‹

‹

‹

‹

‚

“

8
ÿ

n“1

¨

˚

˚

˚

˝

3n´1Γpn´ 2
3
q

Γp1
3
q

3nΓpn` 2
3
q

Γp2
3
q

˛

‹

‹

‹

‚

p˚q

“
Γp2

3
q

3Γp1
3
q

8
ÿ

n“1

Γpn´ 2
3
q

Γpn` 2
3
q

We prove p˚q as follows.

Recall Γpn` 1q “ nΓpnq,
7



n
ź

i“2

p3i´ 5q “
n
ź

i“2

3i´1
pi´

5

3
q

“

n
ź

i“2

3i´1
Γpi` 1´ 5

3
q

Γpi´ 5
3
q

“ 3n´1
Γp3´ 5

3
q

Γp2´ 5
3
q
¨

Γp4´ 5
3
q

Γp3´ 5
3
q
. . .

Γpn` 1´ 5
3
q

Γpn´ 5
3
q

“ 3n´1
Γpn` 1´ 5

3
q

Γp2´ 5
3
q

“ 3n´1
Γpn´ 2

3
q

Γp1
3
q

Similarly,
n
ź

i“1

p3i´ 1q “ 3n
Γpn` 2

3
q

Γp2
3
q

This explains p˚q.

We will obtain the probability using (2.2) as well.

p2.2q “ 1´ lim
nÑ8

P pB1B2B3 . . . Bnq

“ 1´ lim
nÑ8

ˆ

1

2
ˆ

4

5
ˆ

7

8
ˆ

10

11
ˆ

13

14
ˆ . . .ˆ

3n´ 2

3n´ 1

˙

“ 1´ lim
nÑ8

n
ź

i“1

p3i´ 2q

n
ź

i“1

p3i´ 1q

“ 1´ lim
nÑ8

n
ź

i“1

p1´
1

3i´ 1
q

“ 1´ 0 “ 1 by using later result theorem 2.4.1

8



By equating both sides, we have

1 “
Γp2

3
q

3Γp1
3
q

8
ÿ

n“1

Γpn´ 2
3
q

Γpn` 2
3
q

So
8
ÿ

n“1

Γpn´ 2
3
q

Γpn` 2
3
q
“

3Γp1
3
q

Γp2
3
q

This is a very interesting summation. We obtained this result using urn models

and very limited knowledge of Γpxq.

We note that the command

sum Gammapn´
2

3
q{Gammapn`

2

3
q, n “ 1 to infinity

in WolframAlpha gives the equivalent sum equal to
2Γp1

3
q

Γp5
3
q
.

In summary, the probability of eventually obtaining the red ball is 1 when

k “ 1, k “ 2 and k “ 3.

2.4. Adding k Blue Balls

In this section, 1 blue ball will be added at the first step, 2 blue balls will be

added at the second step, 3 blue balls will be added at the third step,..., k blue

balls will be added at the kth step, if a blue ball is withdrawn. Also, we will try to

calculate the probability of eventually obtaining the red ball using formulas (2.1)

and (2.2).

p2.1q “ P pR1q ` P pB1R2q ` P pB1B2R3q ` . . .` P pB1B2B3 . . . Bn´1Rnq ` . . .

“
1

2
`

1

2
ˆ

1

3
`

1

2
ˆ

2

3
ˆ

1

5
`

1

2
ˆ

2

3
ˆ

4

5
ˆ

1

8

`
1

2
ˆ

2

3
ˆ

4

5
ˆ

7

8
ˆ

1

12
`

1

2
ˆ

2

3
ˆ

4

5
ˆ

7

8
ˆ

11

12
ˆ

1

17
` . . .

9



It is complicated to find the pattern of this summation, so we try to obtain the

probability using (2.2).

p2.2q “ 1´ lim
nÑ8

P pB1B2B3 . . . Bnq

“ 1´ lim
nÑ8

¨

˚

˚

˚

˚

˝

1

2
ˆ

2

3
ˆ

4

5
ˆ

7

8
ˆ

11

12
ˆ

16

17
ˆ . . .ˆ

1`
npn´ 1q

2

2`
npn´ 1q

2

˛

‹

‹

‹

‹

‚

“ 1´
8
ź

n“1

¨

˚

˚

˚

˚

˝

1`
npn´ 1q

2

2`
npn´ 1q

2

˛

‹

‹

‹

‹

‚

In order to prove
8
ź

n“1

¨

˚

˚

˚

˚

˝

1`
npn´ 1q

2

2`
npn´ 1q

2

˛

‹

‹

‹

‹

‚

converges, we next introduce theorem 2.4.1.

Theorem 2.4.1. Let an be a sequence of real numbers with 0 ď an ă 1. Then

the infinite product

P “
8
ź

n“1

p1´ anq

converges to a nonzero real number if and only if the series

8
ÿ

n“1

an

converges.

Proof. Taking the logarithm of the product gives the series

lnP “
8
ÿ

n“1

lnp1´ anq

10



whose convergence is equivalent to the convergence of the product. But using

L’Hópital’s Rule, observe that

lim
xÑ0

lnp1´ xq

x
“ lim

xÑ0

d

dx
lnp1´ xq

d

dx
pxq

“ lim
xÑ0

¨

˝

´ 1

1´ x

˛

‚

1
“ ´1

If we assume that an Ñ 0, this gives us that

lim
nÑ8

lnp1´ anq

an
“ ´1

and the theorem follows by the limit comparison test. Q.E.D.[16] Using this the-

orem, everything about infinite series translates directly to the world of infinite

products. For example, the product

8
ź

n“1

ˆ

1´
1

np

˙

converges iff
8
ř

n“1

1

np
converages and p ą 1. �

Using theorem 2.4.1, we can prove
8
ź

n“1

¨

˚

˚

˚

˚

˝

1`
npn´ 1q

2

2`
npn´ 1q

2

˛

‹

‹

‹

‹

‚

converges to a real

number r, r P p0, 1s.

Proof.

8
ź

n“1

¨

˚

˚

˚

˚

˝

1`
npn´ 1q

2

2`
npn´ 1q

2

˛

‹

‹

‹

‹

‚

“

8
ź

n“1

¨

˚

˚

˚

˚

˝

1´
1

2`
npn´ 1q

2

˛

‹

‹

‹

‹

‚

,

which converges to a non-zero number bewteen 0 and 1 iff
11



8
ÿ

n“2

¨

˚

˚

˚

˚

˝

1

2`
npn´ 1q

2

˛

‹

‹

‹

‹

‚

converges.

And

8
ÿ

n“2

¨

˚

˚

˚

˚

˝

1

2`
npn´ 1q

2

˛

‹

‹

‹

‹

‚

ď

8
ÿ

n“2

2

pn´ 1q2

which converges.

Therefore,

8
ź

n“1

¨

˚

˚

˚

˚

˝

1`
npn´ 1q

2

2`
npn´ 1q

2

˛

‹

‹

‹

‹

‚

converges to a real number r, r P p0, 1s. �

Then,

p2.2q “ 1´
8
ź

n“1

¨

˚

˚

˚

˚

˝

1`
npn´ 1q

2

2`
npn´ 1q

2

˛

‹

‹

‹

‹

‚

“ 1´ r

is a real number whose range is r0, 1q, meaning that the probability of eventually

obtaining the red ball is a number strictly between 0 and 1.

This is very interesting. Even though the partial products get smaller as n

increases, the limit of the partial products does not tend to zero. Thus our method

does not result in a closed form for the infinite sum.
12



Using WolframAlpha, the command

productp1` n ˚ pn´ 1q{2q{p2` n ˚ pn´ 1q{2q, n “ 1 to 10000

gives 0.1455419 . . . for an approximation to r. Or

1´ 0.1455419 “ 0.8544581

as an approximation to the probability of eventually choosing a red ball.

Interestingly, we can change the condition that k blue balls will be added at

the kth step if a blue ball is withdrawn to one red ball and k blue balls will be

added at the kth step if a blue ball is withdrawn. In this way, we will obtain

P pR eventuallyq “ 1. We compute this result using (2.1) and (2.2) as follows.

p2.1q “ P pR1q ` P pB1R2q ` P pB1B2R3q ` . . .` P pB1B2B3 . . . Bn´1Rnq ` . . .

“
1

2
`

1

2
ˆ

2

4
`

1

2
ˆ

2

4
ˆ

3

7
`

1

2
ˆ

2

4
ˆ

4

7
ˆ

4

11

`
1

2
ˆ

2

4
ˆ

4

7
ˆ

7

11
ˆ

5

16
`

1

2
ˆ

2

4
ˆ

4

7
ˆ

7

11
ˆ

11

16
ˆ

6

22
` . . .

“
1

1ˆ 2
`

2

2ˆ 4
`

3

4ˆ 7
`

4

7ˆ 11
`

5

11ˆ 16
` . . .

“

8
ÿ

i“1

i
¨

˝1`
pi´ 1qi

2

˛

‚

¨

˝1`
pi` 1qi

2

˛

‚

Using (2.2), we get

p2.2q “ 1´ lim
nÑ8

P pB1B2B3 . . . Bnq

“ 1´

ˆ

1

2
ˆ

2

4
ˆ

4

7
ˆ

7

11
ˆ

11

16
. . .

˙

“ 1´ 0 “ 1

13



Thus
8
ÿ

i“1

2i

p2` pi´ 1qiqp2` pi` 1qiq
“ 1

so
8
ÿ

i“1

i

p2` pi´ 1qiqp2` pi` 1qiq
“

1

2

This sum can also be obtained by a telescoping series.

14



CHAPTER 3

Urns Without Replacement

In this chapter we work with 50 red and 50 blue balls as a particular case of a

general setting. If a blue ball is withdrawn, the ball will be returned to the urn,

but k blue ballspk ě 1q are removed from the urn. The process stops when the

red ball is withdrawn.

It needs to be clarified that k is the number of blue balls removed from the

urn if a blue ball is withdrawn, so k “ 1, 2, 3, 4, ..., 50; n is the number of steps,

n “ 1, 2, 3, 4, ..., 51.

Clearly, we can obtain the red ball within finite steps since there are finite balls

in the urn at the beginning and we remove blue balls from the urn if a blue ball

is withdrawn. Thus, a red ball can be withdrawn as early as the first step or as

late as the 51th step. We obtain a red ball at the 51th step in the case where

we remove one blue ball at each step if a blue ball is withdrawn. However, we

are still interested in the probability of drawing a red ball at each step. Also, we

would like to know the total probability of drawing a red ball after n steps even

though we know P pR eventuallyq is 1. For example, we would like to know the

total probability of obtaining a red ball within the first 10 steps
10
ř

i“1

P pRiq.

The total probability of obtaining a red ball within the first n continuous

attempts is
n
ř

i“1

P pRiq, which is the summation of the probability of obtaining the

red ball at the first step, the second step,. . . , until the nth step. Thus, it is still

given by (2.1) from Chapter 2. That is,

n
ÿ

i“1

P pRiq “ P pR1q ` P pB1R2q ` P pB1B2R3q ` . . .` P pB1B2B3 . . . Bn´1Rnq

However, calculating the probability of obtaining the red ball using (2.2) will

not be discussed in this chapter as the red ball will be obtained anyway within

finitely many steps. Also, removing 4 or more blue balls pk ě 4q if a blue ball is

15



withdrawn will not be discussed here since it is the same calculating process as

dropping 3 or fewer balls.

Therefore, we will attain
n
ř

i“1

P pRiq in the following sections and discuss the

circumstances where

k “ 1: removing 1 blue ball every step if a blue ball is withdrawn in Section 3.1;

k “ 2: removing 2 blue balls every step if a blue ball is withdrawn in Section 3.2;

k “ 3: removing 3 blue balls every step if a blue ball is withdrawn in Section 3.3;

3.1. k “ 1 :Removing One Blue Ball

In the case where k “ 1,

n
ÿ

i“1

P pRiq “ P pR1q ` P pB1R2q ` P pB1B2R3q ` P pB1B2B3R4q

` . . .` P pB1B2 . . . Bn´1Rnq

“
50

100
`

50

100
ˆ

50

99
`

50

100
ˆ

49

99
ˆ

50

98
`

50

100
ˆ

49

99
ˆ

48

98
ˆ

50

97
` . . .

`
50

100
ˆ

49

99
ˆ

48

98
ˆ . . .ˆ

50´ n` 2

100´ n` 2
ˆ

50

100´ n` 1

“

n
ÿ

i“1

50!

p50´ i` 1q!
100!

p100´ i` 1q!

ˆ
50

100´ i` 1

“

n
ÿ

i“1

p101´ iq!

50!p51´ iq!
100!

50!50!

ˆ
50

101´ i

“

n
ÿ

i“1

`

101´i
50

˘

`

100
50

˘ ˆ
50

101´ i

where n “ 2, 3, . . . , 51. In particular, if n “ 1, p1q “
50

100
.

When n “ 51,

51
ÿ

i“1

P pRiq “
50

100
`

50

100
ˆ

50

99
`

50

100
ˆ

49

99
ˆ

50

98
`

50

100
ˆ

49

99
ˆ

48

98
ˆ

50

97

16



` . . .`
50

100
ˆ

49

99
ˆ

48

98
ˆ

47

97
ˆ

46

96
ˆ . . .ˆ

1

51
ˆ

50

50

“

51
ÿ

i“1

`

101´i
50

˘

`

100
50

˘ ˆ
50

101´ i

“ 1 (since we must eventually choose a red ball)

This can be rewritten as

ˆ

100

50

˙

“

51
ÿ

i“1

ˆ

101´ i

50

˙

50

101´ i

“

51
ÿ

i“1

ˆ

100´ i

49

˙

“

51
ÿ

i“1

ˆ

100´ i

51´ i

˙

“

ˆ

99

50

˙

`

ˆ

98

49

˙

`

ˆ

97

48

˙

` . . .`

ˆ

49

0

˙

This can be interpreted combinatorially as follows.

We have 100 objects and we want to choose 50 of them(left hand side). If we

forbid the first object then there are
`

99
50

˘

choices. If we choose the first object

but forbid the second object, there are
`

98
49

˘

. If we choose the first two objects

but forbid the third object, there are
`

97
48

˘

choices. Continuing in this manner we

achieve our result. The result above is a classical result from combinatorics and

results from repeated application of the identity

ˆ

n

n

˙

“

ˆ

n´ 1

n´ 1

˙

`

ˆ

n´ 1

n

˙

17



3.2. k “ 2 :Removing Two Blue Balls

In the case where k “ 2,

n
ÿ

i“1

P pRiq “ P pR1q ` P pB1R2q ` P pB1B2R3q ` P pB1B2B3R4q

` . . .` P pB1B2 . . . Bn´1Rnq

“
50

100
`

50

100
ˆ

50

98
`

50

100
ˆ

48

98
ˆ

50

96
`

50

100
ˆ

48

98
ˆ

46

96
ˆ

50

94

`
50

100
ˆ

48

98
ˆ

50

96
`

50

100
ˆ

48

98
ˆ

46

96
ˆ

44

94
ˆ

50

92
` . . .

“
50

100
`

n
ÿ

i“2

2i´1rp25´ pi´ 2qq ˆ . . .ˆ 23ˆ 24ˆ 25s

2i´1rp50´ pi´ 2qq ˆ . . .ˆ 48ˆ 49ˆ 50s
ˆ

50

100´ 2pi´ 1q

“

n
ÿ

i“1

25!

p27´ i´ 1q!
50!

p52´ i´ 1q!

ˆ
25

51´ i

“

n
ÿ

i“1

p51´ iq!

25!p26´ iq!
50!

25!25!

ˆ
25

51´ i

“

n
ÿ

i“1

`

51´i
25

˘

`

50
25

˘ ˆ
25

51´ i

where n “ 1, 2, . . . , 26.

When n “ 26,

26
ÿ

i“1

P pRiq “
50

100
`

50

100
ˆ

50

98
`

50

100
ˆ

48

98
ˆ

50

96
`

50

100
ˆ

48

98
ˆ

46

96
ˆ

50

94

` . . .`
50

100
ˆ

48

98
ˆ

46

96
ˆ

2

52
ˆ

50

50

“

26
ÿ

i“1

`

51´i
25

˘

`

50
25

˘

25

51´ i
“ 1

18



As in the previous case, this is equivalent to

26
ÿ

i“1

ˆ

51´ i

26´ i

˙

“

ˆ

50

25

˙

which has a combinatorial interpretation similar to the previous. Note that we

obtained our result probabilistically rather than combinatorially.

3.3. k “ 3 :Removing Three Blue Balls

In the case where k “ 3, we do not get factorial or binomial coefficient expres-

sions.
n
ÿ

i“1

P pRiq “ P pR1q ` P pB1R2q ` P pB1B2R3q ` P pB1B2B3R4q

` . . .` P pB1B2 . . . Bn´1Rnq

“
50

100
`

50

100
ˆ

50

97
`

50

100
ˆ

47

97
ˆ

50

94
`

50

100
ˆ

47

97
ˆ

44

94
ˆ

50

91
` . . .

“
50

100
`

n
ÿ

i“2

rp50´ 3pi´ 2qs ˆ . . .ˆ 44ˆ 47ˆ 50

rp100´ 3pi´ 2qs ˆ . . .ˆ 94ˆ 97ˆ 100
ˆ

50

100´ 3pi´ 1q

“
50

100
`

n
ÿ

i“2

¨

˚

˚

˚

˚

˚

˝

50
i
ź

j“2

p56´ 3jq

i
ź

j“1

p103´ 3jq

˛

‹

‹

‹

‹

‹

‚

“
50

100
`

n
ÿ

i“2

50p3i´1qΓp103´3i
3
qΓp53

3
q

3iΓp56´3i
3
qΓp103

3
q

where n “ 2, 3, . . . , 17. In particular, if n “ 1, p1q “
50

100
.

Specifically, after we draw a blue ball every step for 16 steps, there will be 2

blue balls and 50 red balls left since 3 blue balls are dropped out of the urn every

step. Then, at the 17th step if we draw a blue ball again, 2 blue balls and 1 red

ball will be dropped out of the urn. At last, at the 18th step, there will be 49 red

balls left and we will definitely obtain a red ball.
19



So, the probability of obtaining a red ball at the 18th step is

18
ź

i“2

p56´ 3iq

17
ź

i“1

p103´ 3iq

“
23

118885713076

And when n “ 18,

18
ÿ

i“1

P pRiq “
50

100
`

50

100
ˆ

50

97
`

50

100
ˆ

47

97
ˆ

50

94
`

50

100
ˆ

47

97
ˆ

44

94
ˆ

50

91
` . . .

`
50

100
ˆ

47

97
ˆ . . .ˆ

5

55
ˆ

50

52
`

50

100
ˆ

47

97
ˆ

50

94
ˆ . . .ˆ

5

55
ˆ

2

52
ˆ

49

49

“
50

100
`

17
ÿ

n“2

50
n
ź

i“2

p56´ 3iq

n
ź

i“1

p103´ 3iq

`

18
ź

i“2

p56´ 3iq

17
ź

i“1

p103´ 3iq

“
50

100
`

17
ÿ

n“2

50Γp´100
3
qΓpn´ 53

3
q

53Γp´53
3
qΓpn´ 100

3
q
`

23

118885713076

“
50

100
`

59442856515

118885713076
`

23

118885713076
“ 1

20



CHAPTER 4

An Urn With m red balls and 1 blue ball

This chapter considers an urn containing m red balls and one blue ball at the

beginning. The urn evolves in discrete time steps. At each step, a ball is sampled

at random. If a blue ball is withdrawn at a step, then the ball will be returned to

the urn(with replacement) with 1 blue ball added to the urn. This process stops

when a red ball is withdrawn. We will still study the probability of eventually

drawing a red ball P pR eventuallyq using (2.1) as well as (2.2).

It needs to be clarified that m is the number of red balls in the urn. Specially,

when m “ 1, it means that there are 1 red ball and 1 blue ball in the urn at the

beginning and one blue ball is added if a blue ball is withdrawn. So, it becomes

the same case as that in Section 2.1 and will not be discussed again in this chapter.

Here, n is the number of steps, so n “ 1, 2, 3, 4, ....

We will discuss the circumstances where m “ 2, an urn starting with 2 red

balls and 1 blue ball in Section 4.1. In Section 4.2, we will discuss and summarize

the results where m “M , an urn starting with M red balls and 1 blue ball.

4.1. An urn starting with 2 red balls and 1 blue ball

In the case where m “ 2,

p2.1q “ P pR1q ` P pB1R2q ` P pB1B2R3q ` P pB1B2B3R4q

` . . .` P pB1B2 . . . Bn´1Rnq ` . . .

“
2

3
`

1

3
ˆ

2

4
`

1

3
ˆ

2

4
ˆ

2

5
`

1

3
ˆ

2

4
ˆ

3

5
ˆ

2

6

`
1

3
ˆ

2

4
ˆ

3

5
ˆ

4

6
ˆ

2

7
` . . .`

22

npn` 1qpn` 2q
` . . .

“

8
ÿ

n“1

22

npn` 1qpn` 2q

21



Since
8
ř

n“1

22

npn` 1qpn` 2q
is uneasy to obtain, we will calculate it using (2.2).

p2.2q “ 1´ lim
nÑ8

P pB1B2B3 . . . Bnq

“ 1´ lim
nÑ8

ˆ

1

3
ˆ

2

4
ˆ

3

5
ˆ

4

6
ˆ . . .ˆ

n´ 2

n
ˆ
n´ 1

n` 1
ˆ

n

n` 2

˙

“ 1´ lim
nÑ8

2

pn` 1qpn` 2q
“ 1´ 0 “ 1

Therefore, the probability of eventually obtaining a red ball P pR eventuallyq

is 1 in the case where an urn starts with 2 red balls and 1 blue ball and 1 blue ball

will be added if a blue ball is withdrawn.

By equating (2.1) and (2.2) results, we obtain

8
ÿ

n“1

1

npn` 1qpn` 2q
“

1

4

.

This result is of interest in itself and a discussion of it appears in Mathematics

Stack Exchange at questions 560816, 1108626, 721749, 308555, 1686516[17].

4.2. An urn starting with M red balls and 1 blue ball

This section summarizes the formulas obtained from previous sections under

the circumstances where m “ 1,m “ 2 and gives the general formulas for both

(2.1) and (2.2) when m “M .

For m “ 1,

p2.1q “
8
ÿ

n“1

1

npn` 1q

p2.2q “ 1´ lim
nÑ8

1

n` 1

For m “ 2,

p2.1q “
8
ÿ

n“1

22

npn` 1qpn` 2q
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p2.2q “ 1´ lim
nÑ8

2

pn` 1qpn` 2q

For m “ 3,

p2.1q “
8
ÿ

n“1

2ˆ 32

npn` 1qpn` 2qpn` 3q

p2.2q “ 1´ lim
nÑ8

2ˆ 3

pn` 1qpn` 2qpn` 3q

For m “ 4,

p2.1q “
8
ÿ

n“1

2ˆ 3ˆ 42

npn` 1qpn` 2qpn` 3qpn` 4q

p2.2q “ 1´ lim
nÑ8

4!

pn` 1qpn` 2qpn` 3qpn` 4q

...

For m “M,

p2.1q “
8
ÿ

n“1

pM ´ 1q! ¨M2

npn` 1qpn` 2qpn` 3qpn` 4q . . . pn`Mq

“

8
ÿ

n“1

pM ´ 1q! ¨M2

pn`Mq!

pn´ 1q!

“

8
ÿ

n“1

M ¨M ! ¨ n!

npn`Mq!

“

8
ÿ

n“1

M

n

1
`

n`M
n

˘

p2.2q “ 1´ lim
nÑ8

M !

pn` 1qpn` 2qpn` 3qpn` 4q . . . pn`Mq

“ 1´ lim
nÑ8

M !

pn`Mq!

n!

“ 1´ lim
nÑ8

1
`

n`M
n

˘ “ 1´ 0 “ 1
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Therefore, when m “M , the probability of eventually obtaining a red ball is

P pR eventuallyq “
8
ÿ

n“1

M

n
¨

1
`

n`M
n

˘ “ 1´ lim
nÑ8

1
`

n`M
n

˘ “ 1

.
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CHAPTER 5

General Theorem

This chapter presents a general result based on the previous chapters. The

result presented can be useful in inventing new identities. We illustrate with one

example after stating the main theorem.

Theorem 5.0.1. Let 0 ă ai ď 1, then

1´
n
ź

i“1

ai “
n
ÿ

i“1

p1´ aiq
i´1
ź

j“1

aj (5.1)

If convergence holds, then

1´
8
ź

i“1

ai “
8
ÿ

i“1

p1´ aiq
i´1
ź

j“1

aj (5.2)

or

1´ a1a2a3 . . . “ p1´ a1q ` a1p1´ a2q ` a1a2p1´ a3q ` . . . (5.3)

Proof. Assume we have an urn with red and blue balls. We draw balls re-

peatedly and independently until we obtain a red ball. Assume that the proba-

bility of drawing a blue ball on the ith draw is ai, i “ 1, 2, . . . , n. We compute

P pR eventuallyq “ P in two different ways.

P “ P pRq ` P pBRq ` P pBBRq ` . . .` P pBBB . . . BRq

“ p1´ a1q ` a1p1´ a2q ` a1a2p1´ a3q ` . . .` a1 . . . an´1p1´ anq

“

n
ÿ

i“1

p1´ aiq
i´1
ź

j“1

aj

Also,
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P “ 1´ P pall Bq “ 1´ P pBB . . . Bq

“ 1´ a1a2 . . . an “ 1´
n
ź

i“1

ai

From this, we get (5.1), (5.2), (5.3). �

Example: Let fpnq be the nth Fibonacci number. So fp1q “ 1, fp2q “ 1,

fp3q “ 2, fp4q “ 3, fp5q “ 5, and

fpnq “ fpn´ 1q ` fpn´ 2q for n “ 3, 4, . . .

.

Choose

an “
2fpn` 1q

fpn` 3q
in theorem 5.0.1

Note that

fpnq Ò and fpn` 3q “ fpn` 2q ` fpn` 1q

So

2fpn` 1q ă fpn` 3q for n “ 1, 2, . . .

Hence

0 ă ai ă 1 for n “ 1, 2, . . .

It is well known that

lim
nÑ8

fpn` 2q

fpn` 1q
“

1`
?

5

2
(golden ratio)r18s
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Hence

an “
2fpn` 1q

fpn` 3q
“

2fpn` 1q

fpn` 2q

fpn` 2q

fpn` 3q
Ñ 2p

2

1`
?

5
qp

2

1`
?

5
q

So

an ă
8

9
, for large n

Since

ˆ

8

9

˙n

Ñ 0,

it follows that

8
ź

i“1

ai “ 0 so 1´
8
ź

i“1

ai “ 1´ 0 “ 1

We observe that

a1 “
2fp2q

fp4q
“

2p1q

3
“

2

3
, a2 “

2fp3q

fp5q
“

2p2q

5
“

4

5

a3 “
2fp4q

fp6q
“

2p3q

8
“

6

8
, a4 “

2fp5q

fp7q
“

2p5q

13
“

10

13
,

We transform our situation to an urn model. The urn initially has 2 blue balls

and 1 red ball. The process is with replacement. If a blue ball is withdrawn at the

1st step, then 2fp1q blue balls will be added to the urn; If a blue ball is withdrawn

at the 2nd step, then 2fp2q blue balls and fp1q red ball will be added to the urn;

If a blue ball is withdrawn at the 3rd step, then 2fp3q blue balls and fp2q red ball

will be added to the urn; If a blue ball is withdrawn at the 4th step, then 2fp4q

blue balls and fp3q red balls will be added to the urn; If a blue ball is withdrawn
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at the ith step, then 2fpiq blue balls and fpi´ 1q red ball will be added to the urn

and so forth.

We know

1´
8
ź

i“1

ai “ 1´
2fp2q

fp4q

2fp3q

fp5q

2fp4q

fp6q
. . . “ 1´ 0 “ 1

Using (5.3), we have

1 “ p1´ a1q ` a1p1´ a2q ` a1a2p1´ a3q ` a1a2a3p1´ a4q ` . . .

“

ˆ

1´
2fp2q

fp4q

˙

`
2fp2q

fp4q

ˆ

1´
2fp3q

fp5q

˙

`
2fp2q

fp4q

2fp3q

fp5q

ˆ

1´
2fp4q

fp6q

˙

`
2fp2q

fp4q

2fp3q

fp5q

2fp4q

fp6q

ˆ

1´
2fp5q

fp7q

˙

` . . .

“

ˆ

1´
2fp2q

fp4q

˙

`
2fp2q

fp4q

ˆ

1´
2fp3q

fp5q

˙

`

8
ÿ

i“2

2i`1

fp2` iqfp3` iq

ˆ

1´
2fp2` iq

fp4` iq

˙

“ 1´
2

3
`

2

3

ˆ

1´
4

5

˙

`

8
ÿ

i“2

2i`1

fp2` iqfp3` iq

fp4` iq ´ 2fp2` iq

fp4` iq

“ 1´
8

15
`

8
ÿ

i“2

2i`1

fp2` iqfp3` iq

fp3` iq ´ fp2` iq

fp4` iq

“ 1´
8

15
`

8
ÿ

i“2

2i`1

fp2` iqfp3` iq

fp1` iq

fp4` iq

Hence
8
ÿ

i“2

2i`1fp1` iq

fp2` iqfp3` iqfp4` iq
“

8

15
“ 0.5333 . . .

Using Wolfram Alpha command

sum 2pn`1q ˚ Fpn`1q{pFpn`2q ˚ Fpn`3q ˚ Fpn`4qq, n “ 2 to 1000

we obtain 0.5333 . . . , which confirms our result.

There are many possible applications of theorem 5.0.1, as illustrated by our

one example.
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CHAPTER 6

Infinite Products and Urn Models

This chapter examines two well-known infinite products for π—Wallis Prod-

uct(a) and Wallis Product(b) and how they are transformed into urn models.

Definition 6.1 (Infinite Product). For a sequence of complex numbers a1, a2, a3,

... , the infinite product

8
ź

n“1

an “ a1a2a3 . . .

is defined to be the limit of the partial products a1a2...an as n increases without

bound. The product is said to converge when the limit exists and is not zero.

Otherwise the product is said to diverge.

Wallis Product(a) is given by

π

2
“

8
ź

n“1

p
2n

2n´ 1
¨

2n

2n` 1
q

“
2

1
ˆ

2

3
ˆ

4

3
ˆ

4

5
ˆ

6

5
ˆ

6

7
ˆ

8

7
ˆ

8

9
ˆ

10

9
ˆ . . . (6.1)

Wallis Product(b) is given by

2

π
“

8
ź

n“1

p1´
1

4n2
q

“

8
ź

n“1

p
4n2 ´ 1

4n2
q

“
3

4
ˆ

15

16
ˆ

35

36
ˆ

63

64
ˆ

99

100
ˆ . . . (6.2)
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6.1. Wallis Product(a) Transformed to an Urn Problem

This section demonstrates how Wallis’ Product(a) is turned into the form of

(2.2) in terms of a certain type of urn model with blue and red balls. Specifically,

we indicate the initial urn and how it works with the purpose of eventually drawing

the red ball. In addition, we will write formulas —(2.1) and (2.2) for this urn model

to obtain the probability of eventually drawing the red ball.

First we transform Wallis Product(a) into the form of (2.2) for a certain urn

model,

p6.1q “
2

1
ˆ

2

3
ˆ

4

3
ˆ

4

5
ˆ

6

5
ˆ

6

7
ˆ

8

7
ˆ

8

9
ˆ

10

9
ˆ . . . “

π

2

ùñ
1

1
ˆ

2

3
ˆ

4

3
ˆ

4

5
ˆ

6

5
ˆ

6

7
ˆ

8

7
ˆ

8

9
ˆ

10

9
ˆ . . . “

π

4

ùñ 1´
1

1
ˆ

2

3
ˆ

4

3
ˆ

4

5
ˆ

6

5
ˆ

6

7
ˆ

8

7
ˆ

8

9
ˆ

10

9
ˆ . . . “ 1´

π

4

ùñ 1´
8

9
ˆ

24

25
ˆ

48

49
ˆ

80

81
ˆ . . . “ 1´

π

4

The formula above can be seen as the form of (2.2), so the corresponding urn

model starts with 1 red ball and 8 blue balls. And 16 blue balls will be added if a

blue ball is withdrawn at the first step; 24 blue balls will be added if a blue ball

is withdrawn at the second step; . . . ; 8pn ` 1q blue balls will be added if a blue

ball is withdrawn at the nth step. The whole process is still with replacement and

it stops when the red ball is withdrawn. So the probability of eventually drawing

the red ball is already obtained above, which is 1 -
π

4
.

We next write the formula in the form of (2.1) as well as (2.2), then

p2.1q “ P pR1q ` P pB1R2q ` P pB1B2R3q ` P pB1B2B3R4q

` . . .` P pB1B2B3 . . . Bn´1Rnq ` . . .

“
1

9
`

8

9
ˆ

1

25
`

8

9
ˆ

24

25
ˆ

1

49
`

8

9
ˆ

24

25
ˆ

48

49
ˆ

1

81
` . . .
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“
1

9
`

8
ÿ

n“2

p32 ´ 1q ˆ p52 ´ 1q ˆ p72 ´ 1q ˆ . . .ˆ rp2n´ 1q2 ´ 1s ˆ 1

32 ˆ 52 ˆ 72 ˆ . . .ˆ p2n´ 1q2 ˆ p2n` 1q2

“
1

9
`

8
ÿ

n“2

p2ˆ 4q ˆ p4ˆ 6q ˆ p6ˆ 8q ˆ . . .ˆ rp2n´ 2q ˆ 2ns

32 ˆ 52 ˆ 72 ˆ . . .ˆ p2n´ 1q2 ˆ p2n` 1q2

“
1

9
`

8
ÿ

n“2

n
ź

i“2

p2i´ 2q ¨ 2i

n
ź

i“1

p2i` 1q2

“
1

9
`

8
ÿ

n“2

42n´1pn!q3pn´ 1q!

pp2n` 1q!q2

p2.2q “ 1´ lim
nÑ8

P pB1B2B3 . . . Bnq

“ 1´
8

9
ˆ

24

25
ˆ

48

49
ˆ

80

81
ˆ . . .

“ 1´
8
ź

n“2

p2n´ 2q2n

p2n´ 1q2

“ 1´ lim
nÑ8

42npn!q4pn` 1q

pp2n` 1q!q2

We know that both the sum and the product equal 1´
π

4
by Wallis’ formula.

6.2. Wallis Product(b) Transformed to an Urn Problem

Similarly, this section illustrates how Wallis Product(b) is turned into the form

of (2.2) for a certain type of urn model with blue and red balls. Specifically, the

initial and addition of blue balls with the purpose of eventually drawing the red

ball will be explained.

First we transform Wallis Product(b) into the form of (2.2) for a certain urn

model,

p6.2q “
3

4
ˆ

15

16
ˆ

35

36
ˆ

63

64
ˆ

99

100
ˆ . . . “

2

π

ùñ 1´
3

4
ˆ

15

16
ˆ

35

36
ˆ

63

64
ˆ

99

100
ˆ . . . “ 1´

2

π
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The formula above also can be seen as a form of (2.2), so the corresponding

urn model is an urn starting with 1 red ball and 3 blue balls. 12 blue balls will

be added if a blue ball is withdrawn at the first step; 20 blue balls will be added

if a blue ball is withdrawn at the second step; . . . ; r12` 8pn´ 1qs blue balls will

be added if a blue ball is withdrawn at the nth step. The whole process is still

with placement and it stops when the red ball is withdrawn. So the probability of

eventually drawing the red ball is already obtained above, which is 1 -
2

π
.

We next write the formula in the form of (2.1) as well as (2.2), then

p2.1q “ P pR1q ` P pB1R2q ` P pB1B2R3q ` P pB1B2B3R4q

` . . .` P pB1B2B3 . . . Bn´1Rnq ` . . .

“
1

4
`

3

4
ˆ

1

16
`

3

4
ˆ

15

16
ˆ

1

36
`

3

4
ˆ

15

16
ˆ

35

36
ˆ

1

64
` . . .

“
1

4
`

8
ÿ

n“1

3ˆ 15ˆ 35ˆ . . .ˆ rp2nq2 ´ 1s ˆ 1

22 ˆ 42 ˆ 62 ˆ . . .ˆ p2nq2 ˆ p2n` 2q2

“
1

4
`

8
ÿ

n“1

p1ˆ 3q ˆ p3ˆ 5q ˆ p5ˆ 7q ˆ . . .ˆ rp2n´ 1q ˆ p2n` 1qs

22 ˆ 42 ˆ 62 ˆ . . .ˆ p2nq2 ˆ p2n` 2q2

“
1

4
`

8
ÿ

n“1

n
ź

i“1

p2i´ 1qp2i` 1q

n
ź

i“0

p2i` 2q2

“
1

4
`

8
ÿ

n“1

pp2nq!q2p2n` 1q

24n`2pn!q4pn` 1q2

p2.2q “ 1´ lim
nÑ8

P pB1B2B3 . . . Bnq

“ 1´
3

4
ˆ

15

16
ˆ

35

36
ˆ

63

64
ˆ

99

100
ˆ . . .

“ 1´
8
ź

n“1

p2n´ 1qp2n` 1q

p2nq2

“ 1´ lim
nÑ8

pp2nq!q2p2n` 1q

24npn!q4

By Wallis Product(b), both the sum and the product equal 1´
2

π
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CHAPTER 7

Urn Model Simulation in R

7.1. Simulation for Adding Blue Balls in Chapter 2

In this section, we will simulate the urn models discussed in Chapter 2 with

the goal of withdrawing the red ball under the circumstances where k “ 1, 2, 3

respectively in R. We also use the notation [increasing] to indicate that we add i

extra blue balls to the urn if the ith ball is blue. In addition to the k “ 1, 2, 3 cases,

we also consider the [increasing] case. In particular, we will obtain and study the

estimated probabilities as well as the real probability of withdrawing the red ball

at each step using R.

For example, consider k “ 1 (adding one extra blue ball after each draw) :

In R, firstly, we simulate the urn with one red ball and one blue ball initially.

Then, we simulate the process so that if a blue ball is randomly withdrawn then the

ball will be replaced with 1 blue ball added to the urn. If the red ball is randomly

withdrawn then the process stops and we record the step at which the red ball is

withdrawn. This procedure will be simulated N times. As observed in Chapter 2,

this procedure will result in a red ball eventually with probability 1. Since extra

blue balls are added each time a blue ball is selected, the probability of a blue ball

on the subsequent step increases (and the probability of a red ball decreases). So

there is a good possibility for the number of steps required to observe a red ball

to be very large. For practical reasons, we will stop after 10000 steps if a red ball

has not yet been drawn.

When k “ 1 and N “ 10 simulations, a typical set of results for the number of

trials needed to see a red ball is 1, 1, 3, 1, 26, 1, 2, 5, 1, 1. We denote the true prob-

ability that X trials are needed to see the first red ball by f1pxq “ P pX “ xq and

observe that f1pxq “
1

xpx` 1q
, x “ 1, 2, 3, . . . . We can estimate this probability by

f̂1pxq “
Frequency(x)

N
, x “ 1, 2, 3, . . .
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where N is the number of simulations, f̂1pxq is the estimated probability of with-

drawing the first red ball at the xth step; Frequencypxq is the frequency (among

N) of obtaining the red ball at the xth step;

For our simulation results with N “ 10, we obtain

f̂1p1q “ 6{10, f̂1p2q “ 1{10, f̂1p3q “ 1{10,

f̂1p5q “ 1{10, f̂1p26q “ 1{10,

and f̂1pxq “ 0 for all other values of x. These estimates are plotted in Figure 7.1

using “+”.

We repeat the procedure for N “ 1000. The estimates for N “ 1000 are also

plotted in Figure 7.1 using “*”. In addition, the true probabilities are plotted in

Figure 7.1 using straight line segments.

Note that the probability mass function f1pxq “
1

xpx` 1q
, x “ 1, 2, 3, . . . is a

heavy tailed distribution since

lim
xÑ8

etxP pX ą xq “ lim
xÑ8

etx
8
ÿ

i“x`1

1

ipi` 1q
“ lim

xÑ8
etx

1

x` 1
“ 8 for all t ą 0

Note as well, that if X has pmf f1pxq, then

EpXq “
8
ÿ

x“1

xf1pxq “
8
ÿ

x“1

x
1

xpx` 1q
“

8
ÿ

x“1

1

px` 1q
“ 8.

The procedure that led to Figure 7.1 (using k “ 1 additional ball) is repeated

for k “ 2, giving Figure 7.2, and for k “ 3, giving Figure 7.3, and for the [increas-

ing] case, giving Figure 7.4.

Finally, in Figure 7.5, the true probabilities for all four cases are plotted to-

gether. It is clear that since we have pmf’s, and the sum of the probabilities is one

for fkpxq, k “ 1, 2, 3 that the curves must cross each other. The [increasing] case

is included in the Figure 7.5 as well.
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model/urn plot in major paper/k=1.png

Figure 7.1. Comparing N “ 10 and N “ 1000 when k “ 1

model/urn plot in major paper/k=2.png

Figure 7.2. Comparing N “ 10 and N “ 1000 when k “ 2
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model/urn plot in major paper/k=3.png

Figure 7.3. Comparing N “ 10 and N “ 1000 when k “ 3

model/urn plot in major paper/[increasing].png

Figure 7.4. Comparing N “ 10 and N “ 1000 when [increasing]
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model/urn plot in major paper/trueprobs.png

Figure 7.5. Comparing the True Probabilities When k “ 1, 2, 3
and [increasing]
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Appendix A

Codes and Programs

This section shows the R programming code and commands used in the study:

###Simulation when k=1 and N=10###

red=1;blue=1;n=10000;N=10; #simply change "N=10" to "N=1000" when doing 1000 trials

t <- rep(NA,N);

for(j in 1:N){

red=1;blue=1;

for(i in 1:n){

t[j]=i;

x=sample(red+blue,1,replace = TRUE);

if(x==1){

break;}

else{

blue=blue+1}

}

}

t.table <- table(factor(t,levels=1:n))

t.frequency <- as.matrix(t.table,header=FALSE)

p.simulation110 <- rep(NA,n)

#the estimated probability of obtaining the red ball at each step when k=1

for(k in 1:n){

p.simulation110[k]=t.frequency[k]/N

}

print(p.simulation110)

#the true probability of obtaining the red ball at each time when k=1

true.prob_add1=rep(NA,n)

for (y in 1:n) {

true.prob_add1[y]=1/(y*(y+1));
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y=y+1;

}

##############################

###Simulation when k=2 and N=10###

red=1;blue=1;n=10000;N=10; #simply change "N=10" to "N=1000" when doing 1000 trials

t <- rep(NA,N);

for(j in 1:N){

red=1;blue=1;

for(i in 1:n){

t[j]=i;

x=sample(red+blue,1,replace = TRUE);

if(x==1){

break;}

else{

blue=blue+2}

}

}

t.table <- table(factor(t,levels=1:n))

t.frequency <- as.matrix(t.table,header=FALSE)

p.simulation210 <- rep(NA,n)

#the estimated probability of obtaining the red ball at each step when k=2

for(k in 1:n){

p.simulation210[k]=t.frequency[k]/N

}

print(p.simulation210)

#the true probability of obtaining the red ball at each time when k=2

true.prob_add2=rep(NA,n)

for (y in 1:n) {

true.prob_add2[y]=factorial(2*y-2)/(factorial(y)*factorial(y-1)*(2^y)*(2^(y-1)));

y=y+1;

}

##############################

###Simulation when k=3 and N=10###
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red=1;blue=1;n=10000;N=10; #simply change "N=10" to "N=1000" when doing 1000 trials

t <- rep(NA,N);

for(j in 1:N){

red=1;blue=1;

for(i in 1:n){

t[j]=i;

x=sample(red+blue,1,replace = TRUE);

if(x==1){

break;}

else{

blue=blue+3}

}

}

t.table <- table(factor(t,levels=1:n))

t.frequency <- as.matrix(t.table,header=FALSE)

p.simulation310 <- rep(NA,n)

#the estimated probability of obtaining the red ball at each step when k=3

for(k in 1:n){

p.simulation310[k]=t.frequency[k]/N

}

print(p.simulation310)

#the true probability of obtaining the red ball at each time when k=3

true.prob_add3=rep(NA,n)

true.prob_add3[1]=0.5

for (y in 2:n) {

true.prob_add3[y]=factorial(3*y-3)/factorial(3*y-1)*(prod(3*(2:y)-2)/prod(3*(2:y)-4));

y=y+1;

}

##############################

###Simulation when [increasing] and N=10###

red=1;blue=1;n=10000;N=10; #simply change "N=10" to "N=1000" when doing 1000 trials

t <- rep(NA,N);

for(j in 1:N){
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red=1;blue=1;

for(i in 1:n){

t[j]=i;

x=sample(red+blue,1,replace = TRUE);

if(x==1){

break;}

else{

blue=blue+i}

}

}

t.table <- table(factor(t,levels=1:n))

t.frequency <- as.matrix(t.table,header=FALSE)

p.simulationn10 <- rep(NA,n)

#the estimated probability of obtaining the red ball at each step when [increasing]

for(k in 1:n){

p.simulationn10[k]=t.frequency[k]/N

}

print(p.simulationn10)

#the true probability of obtaining the red ball at each time when [increasing]

a=b=c=rep(NA,n)

b[1]=1/2

c[2]=(1/2)*(2/3)

true.prob_addn=rep(NA,n)

true.prob_addn[1]=0.5;true.prob_addn[2]=(1/2)*(1/3)

for (y in 2:n) {

a[y]=y*(y-1)/2;

b[y]=(1+a[y])/(2+a[y])

y=y+1;

}

for (z in 2:n) {

c[z+1]=c[z]*b[z+1];

true.prob_addn[z+1]=c[z+1]*(1/(1+a[z+1]));

z=z+1;
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}

##############################

#Figure 7.1: Comparing N=10 and N=1000 when k=1

plot(1:20, p.simulation110[1:20],col="blue",pch=3,main = "k = 1",

ylab = "the probability of obtaining the red ball", xlab = "step")

points(1:20, p.simulation11000[1:20],col="red",pch=4)

lines(1:20, true.prob_add1[1:20],col="black")

legend("topright", legend = c("N=10","N=1000","the true probability"),

col = c("blue","red","black"),pch = c(3,4,NA),lty = c(NA,NA,1))

#Figure 7.2: Comparing N=10 and N=1000 when k=2

plot(1:20, p.simulation210[1:20],col="blue",pch=3,main = "k = 2",

ylab = "the probability of obtaining the red ball", xlab = "step")

points(1:20, p.simulation21000[1:20],col="red",pch=4)

lines(1:20, true.prob_add2[1:20],col="black")

legend("topright", legend = c("N=10","N=1000","the true probability"),

col = c("blue","red","black"),pch = c(3,4,NA),lty = c(NA,NA,1))

#Figure 7.3: Comparing N=10 and N=1000 when k=3

plot(1:20, p.simulation310[1:20],col="blue",pch=3,main = "k = 3",

ylab = "the probability of obtaining the red ball", xlab = "step")

points(1:20, p.simulation31000[1:20],col="red",pch=4)

lines(1:20, true.prob_add3[1:20],col="black")

legend("topright", legend = c("N=10","N=1000","the true probability"),

col = c("blue","red","black"),pch = c(3,4,NA),lty = c(NA,NA,1))

#Figure 7.4: Comparing N=10 and N=1000 when [increasing]

plot(1:20, p.simulationn10[1:20],col="blue",pch=3,main = "[increasing]",

ylab = "the probability of obtaining the red ball", xlab = "step")

points(1:20, p.simulationn1000[1:20],col="red",pch=4)

lines(1:20, true.prob_addn[1:20],col="black")

legend("topright", legend = c("N=10","N=1000","the true probability"),

col = c("blue","red","black"),pch = c(3,4,NA),lty = c(NA,NA,1))

#Figure 7.5: Comparing the true probabilities when k=1,2,3 and [increasing]

plot(1:10, true.prob_add1[1:10],col="black","l",xlab = "step",ylab =

"the true probability",main = "Comparing the True Probabilities")

lines(1:10, true.prob_add2[1:10],col="dark green")
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lines(1:10, true.prob_add3[1:10],col="purple")

lines(1:10, true.prob_addn[1:10],col="red")

legend("topright",legend = c("k=1","k=2","k=3","[increasing]"),

col=c("black","dark green","purple","red"),lty=1)
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