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Abstract

Simulation of the level crossing method will be used to find approximations

of the distribution of the workload for several queueing models. In particular,

three different type of queueng models, with different methods of handling work-

load bound thresholds, will be considered. Simulation applied to workload bound

thresholds is new work.
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CHAPTER 1

Introduction

Queueing models have a long history wihtin the probability literatue. Some

classic books on the subject include Kleinrock([9], Gross([7]) et al., Gautam([6],

Cooper[5], Bolch et al.([2]) , Medhi([10]), Bhat([1]), Jain([8]) et al. Various

mathematical methods are used to analyse queues, including differential equa-

tions, Laplace Transforms, generating functions, matrix analytic methods, tran-

sient queueing methods, fluid methods, and level crossing methods. Level crossing

methods were invented by Brill ([3],[4]). They provide a short efficient method of

handling certain types of queueing model, and give an intuitive explanation for

many results. However, the related integral equations may be hard to set up or

may be hard to solve. As a result, simulation of the level crossings can be a useful

tool to obtain approximate solutions to various queueing measures.

We begin by considering the simplest nontrivial queueing model, the M{M{1

system (independent exponentially distributed interarrivals times and exponen-

tially distributed service times) and show how level crossing methods can be used

to find the workload distribution of the system. Assume an arrival rate of λ per

unit time, and a service rate of µ per unit time. First we define workload.The

workload W ptq at time t is the total time that it will take the server to complete

the service of all customers in the system at time t. If a customer arrives at exactly

time t, then that customer’s service time is included in the workload.We define

the virtual wait at time t as the time that it would take to complete service of all

customers in the system at time t who arrived before time t. (See Takacs, p. 5)

The virtual wait and the workload are identical except at arrival times.

Consider Figure 1.1, which shows the workload for an M/M/1 queue. It shows

jumps representing service times and shows diagonal drops with slope -1 indicating
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that the workload decreases linearly with time. Pick a level x of the workload,

represented by the horizontal line in the diagram.

Figure 1.1. Workload vs Time

Brill’s level crossing method basically states that the upcrossing rate at level

x must equal the downcrossing rate at level x.

Upcrossings will occur if the system is at level 0 and an arrival occurs and the

service requirement for the arrival exceeds x. Upcrossings will also occur if the

system is at workload level y between 0 and x and an arrival occurs and the service

requirement for the arrival is at least x � y. Let fpxq be the probability density

function for the workload. The complementary cdf of an exponential distribution

with rate µ is P pX ¡ xq �
³8
x
µe�µtdt � e�µx . Thus

UpCrossingRate � π0λe
�µx �

» x
0

fpyqλe�µpx�yqdy.
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Downcrossings occur if the workoad is at a level just above x and no arrivals oc-

cur before the downcrossing. The downcrossing rate is simply the density function.

DownCrossingRate � fpxq.

By equating the two parts, we have

fpxq � π0λe
�µx �

» x
0

fpyqλe�µpx�yqdy. (1)

But the long run proportion of time that the system is full is ρ � λ{µ and the long

run proportion of time that the system is empty is π0 � 1� λ{µ. Take derivatives

(using the fundamental theorem of calculus) to obtain

f 1pxq � �µπ0λe
�µx � fpxqλ�

» x
0

fpyqλp�µqe�µpx�yqdy. (2)

We substitute the expression for the integral from (1) into (2) to obtain

f 1pxq � �µπ0λe
�µx � fpxqλ� µpfpxq � π0λe

�µxq � pλ� µqfpxq (3)

Thus fpxq � Ke�pµ�λqx To determine K, we need π0�
³8
0
Ke�pµ�λqxdx � 1. Solving

gives K � pλ{µqpµ� λq

Thus we have the distribution of the workload with an atom at 0 with probability

p1 � λ{µq and an continuous part exponentially distributed with rate µ� λ.

Because the task of setting up appropriate equations can be challenging and

because the solution techniques needed may be difficult, it is useful to be able

to apply the same level crossing modeling with a simulation. This paper will

illustrate how this can be done with a set of models related to the one that was

just considered.

In this major paper, we discuss some of the features in queueing systems with

a single server.

In chapter 2, a number of queueing measures are defined and discussed. The

key quantities are interarrival time and service time. These two quantities give

us information about arrival times, number of customers in the system, customer
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waiting time, and workload. All quantities to be discussed are based on interarrival

times and service times.

After generating vectors of interarrival times and service times by computer

simulation, we are able to calculate quantities of interest: idle times, remaining

[workload] time. Then we study relationships among these quantities. Further, we

create algorithms to obtain workload and frequency in a customer-intense context,

draw illustrative diagrams for workload versus time, as well as frequency and

density graphs of the workload. The M/M/1 setting is used here.

In the third chapter, we allow the interarrival and service time to follow different

distributions (other than exponential) so that queueing systems can be generalized

as G/G/1. We simulate interarrival and service data for various distributions, then

plot diagrams as before and study the changes of these diagrams compared to the

M/M/1 case.

In the fourth chapter, we concentrate on cases where workload is bounded.

Three types of methods for handling such cases are proposed: (a) reject access to

service; (a) give partial access to service; (c) give full access to service but restrict

further arrivals. Each method requires its own algorithm. The bound will help

reduce situations of overload, though the three different methods have different

impacts on workload.

In chapter 5, we give a method to approximate the distribution of workload.

We create an algorithm to find the counts at different levels of x from computer

implementation, then transfer the counts into probabilities. In addition, applying

resampling techniques, we refine our pdf to a better approximation.

Chapter 6 gives conclusions.

4



CHAPTER 2

Queueing Measures

2.1. Inter-arrival Time and Service Time

In a queueing model, inter-arrival time refers to the amount of time between

two consecutive customers coming into the system. Service time denotes that the

amount of time the server has to spend on a particular customer.

2.2. Workload

Workload at time t is a term used to describe the amount of time a server has

to spend on customers in a queueing system at time t. A server’s workload will

change over time; the workload will depend on the number of customers in the

system and their respective service needed.

At a point in time when there is no customer in the system, the workload

is equal to 0. Once a customer enters the system, the workload will jump by

a quantity equal to the service time of this customer. At that point in time, the

workload will have a linear decline with a slope of -1 until the next customer arrives

or the workload hits zero. For example, at intial time 0, assume a customer enters

the system. The workload will immediately jump right to an amount equal to

the service time of this customer and then decrease linearly. If the next customer

arrives before the workload hits zero, then it jumps. If the workload hits zero

before the next customer arrives, then it will stay at 0 until the next customer

enters the system.

2.3. Idle Time and Remaining Time

In a queueing system, we assign to each customer Ci an idle time ITi . For

example, if our queueing system has 10 customers, then we will have 10 idle times

assigned to each customer. The idle time ITi is the length of time that the server
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has been empty at the time that customer Ci enters the system. In Figure 2.1, we

see that the first customer arrives at time 0, idle time is assigned 0, so IT1 � 0.

Then for the second customer, because there is a period of time 6.89 that the server

is empty (workload is zero) before it enters, the idle time for the second customer

is IT2 � 6.89. Moving on, we assign 0 to the third customer because there doesn’t

exist a length of time that the server is empty, IT3 � 0. Thus, according to this

rule, we can assign each customer an idle time.

Figure 2.1. Workload. The server is idle when workload is zero.

In a single server system, as customers arrive, the server will have different

statuses, namely busy and idle. These two status are given to the server when a

new customer arrives. The server is considered to be busy when a new customer

arrives while the server still is working on another customer. On the other hand,

if the server has already completed its work on all customers before a new arrival,

the server will be considered to be idle just before this customer arrives.

6



We assign the idle time for a new customer coming into the system to 0, IT � 0,

if the server’s status is busy by the time this customer arrives. So if the server has

other previous customers left to work on, then the idle time for a new customer

will be 0 since after completing its service on those previous customers, the server

has to immediately serve this new customer. On the other hand, the idle time for

a new customer will be non-zero if the server’s status is idle when this customer

arrives, i.e. IT � 0.

Suppose we have 1000 customers entering a queueing system. each customer

will have its required service time Si, i � 1, 2, ...1000. We assume that the first

customer arrives at time 0, so there will be 999 inter-arrival times between cus-

tomers, we denote them as Ii, i � 1, 2, ...1000, with I1 � 0. If we know the total

number of customers and service times as well as the inter-arrival times, we will

be able to calculate idle time for each customer.

In order to get a vector of idle time IT � pIT1, IT2, . . . , IT1000q, we define

another quantity RT , remaining time, meaning that the amount of time a server

has yet to work on previous customers at the time a new customer comes. The

difference between workload and remaining time is 0 excerpt that at arrival times.

At arrival times, the workload includes the time of the new arrival while the

remaining time does not. The remaining time is useful not only in obtaining idle

time but also in calculating workload later on. As the definition shows, RT1 is equal

to 0 since the server does not have any work to do when the first customer comes.

On the other hand, if the server still has work to do with preceding customers

when a new customer arrives, then we consider remaining time to be equal to the

amount of time it has left.

2.4. Relations Among Workload, Idle Time and Remaining Time

At time 0, the first customer enters the system. Hence idle time for the first

customer is 0, IT1 � 0, and workload at this point of time jump from 0 to S1, and

the server will complete service on the first customer at time S1. If the second

customer enters the system before time S1, then the idle time for the second
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customer will be 0 because the server still has work to do with the first customer

at time when the second customer comes so RT2 will be great than 0. If the second

customer enters the system after time S1, then the server will finish its service on

the first customer and wait until the second customer shows up. In this case, the

idle time for the second customer will be (I1 - S1) and RT2 � 0. Then we follow

the same rule to obtain IT3, IT4, . . . , IT1000 as well as RT3, RT4, . . . , RT1000.

Therefore, we can obtain idle time and remaining time for each customer as

follows:

Step 1

IT1 � 0

RT1 � 0

Step 2

ITn�1 � maxpIn � Sn �RTn, 0q

RTn�1 � maxpSn �RTn � In, 0q

n = 1, 2, ..., 999

Once we figure out the idle time for each customer from a given set of inter-

arrival and service time, we can then move on to obtain workload at those arrival

times of new customers.

For example, when we have a set of inter-arrival and service time as follows:

I � p1.94, 7.39, 8.47, 0.18q (4)

S � p2.51, 1.13, 2.69, 0.14, 0.23q (5)

Our time versus workload relationship can be shown as follows:

Relationship between workload and time is shown in Figure 2.2 with inter-

arrival and service time as given in the example.
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Figure 2.2. Workload versus time

Notice that when we obtain ITi and RTi, we find that the workload is always

associated with RTi, specifically,

Workloadi � Si �RTi

When the ith customer arrives, the workload is the sum of service time Si and

remaining time RTi of the ith customer.

Meanwhile, one can observe the plot is comprised of “mountain” shape lines

and they all have the same slope after reaching their peaks. We can prove that for

any given set of inter-arrival and service time, the slope of mountains will always

be -1. The reason is that for the ith customer, its workload peak is pSi�RTiq and

if there is no more customer coming into the system, the service is destined to be

completed at time pAri � Si � RTiq. Ari denotes the point of time when the ith

customer arrives. Therefore, to obtain the slope of each “mountain”, one will have

to know coordinates of two points in a workload-time coordinate graph: peak and

destined complete time. From above analysis, we can obtain the coordinates of
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these two points:

pAri, Si �RTiq

pAri � Si �RTi, 0q

Therefore,

Slope �
pSi �RTiq � 0

Ari � pAri � Si �RTiq

� �1

Since the value is fixed, it means the slope is fixed no matter the value of i.

After determining workloads at arrival times, we need to know workload during

inter-arrival times between two customers. First we notice that the workloads are

always on a linear decline towards 0 during inter-arrival periods and have the

same slope of -1, which makes it easier for us to measure the relation between

workload and time. However, one has to know that there are two scenarios need

to be considered. One is that workload would drop to 0 before the next customer

arrives and would remain unchanged until the next customer shows up. The other

one is that workload is on its declining way to 0 but does not reach 0 when the

very next customer shows up. In this scenario, workload will immediately increase

by the amount of service time of the next customer.

In an attempt to create an intuitive interpretation in terms of the relationship

between workload and time, one can draw a coordinate graph as shown above.

It is easy to plot it when we have only 5 customers coming into the system, but

in the case of 1000 or even more, we need to figure out a way to use computer

programming method to present.

First, one can observe that to plot such graph, we don’t need the coordinate of

every point on X-axis, since it is a time series and X-axis time is continuous. What

we need here is those points when either workload hits zero or a new customer

arrives. Once we figure out the coordinate of those points, we are able to plot

them on a graph.
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Finding these critical points when either workload hits zero or a new customer

arrives is relatively time-saving. Since we already obtain idle time and remaining

time, we may use them to find these coordinates, here is the algorithm:

(1) set T1, T2 equal to zero, T � pT1, T2q; set Wl1 equal to zero and Wl2

equal to S1, Wl � p0, S1q.

(2) if ITi is nonzero, let

T � pT, Ari � ITi, Ari, Ariq

Wl � pWl, 0, 0, Siq

(3) if ITi is zero, let

T � pT, Ari, Ariq

Wl � pWl, RTi, Si �RTiq

(4) i � 2, 3, ..., n

With this algorithm, we are able to find the relationship between server’s work-

load and time. Each element in the time vector denotes a point of time when either

a new customer arrives or workload hits 0. As we thread these point on the two

dimensional coordinate, we can get a clear and dynamic relation between workload

and time.

Two vectors of workload and time with 100 elements are plotted at times when

workload reaches peaks or hits zero (first), and fitted line on them (second). Work-

load and time are obtain through simulated dataset of inter-arrival and service time

from exponential distribution.

From the second graph, we can have a clear view of what workload will look

like over time if given a set of inter-arrival and service time. However, sometimes

we may want to know workload of a particular point of time, not those times when

a customer shows up or workload drops to 0. The two vectors of workload and

time cannot give us necessary information about workload at these points of time.
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Figure 2.3. Workload endpoints

Figure 2.4. Workload

According to results above, it is obvious that there are the values of remaining

time and workload are different at times when customers arrive. We call the

12



smaller of the two lower bound and the larger one upper bound. The following is

the algorithm to get workload on a specific point of time:

(1) Obtain lower bound at arrivals

(a) let Lb1 equal to S1

(b) if ITi is non-zero, let Lbi � 0

(c) if ITi is zero, let Lbi � RTi

(d) i � 2, 3, ..., n

(2) Obtain function of workload when given a value of time

(a) if Time  � Ar2, then

Workload � �Time� Lb1

(b) if Time  � pAri�1 � ITi�1q, then

Workload � Lbi � Ari � Si � Time

(c) if Time  � Ari�1, then Workload � 0

(d) i � 2, 3, ..., n

Once we apply the function above, we can write a program so that given a

value of time, we obtain the corresponding workload.

2.5. Frequency/Count

From the previous discussion we have found the relationship between workload

and time once given a set of inter-arrival and service time. Now we would like to

know the number of times or the count or frequency of a server being at a certain

level of workload throughout the whole time series generated by the customer

interarrival and service times. For example, we would like to know how many

times a server has had a workload of level 20 units, measured from time 0 to final

completion of service of all customers.

Knowing the relationship between frequency and workload is very useful be-

cause we would like to know the work intensity of a server. If workload is high

13



Figure 2.5. The frequency of a server having a workload of 4 is 12.

and its corresponding frequency is also relatively high, that would mean that the

server is consistently under high workload pressure, and we may want to relieve

its workload by some method as discussed later. On the other hand, if frequency

is low when workload is high or frequency is high when workload is low, it appears

the server may have a leisurely working environment.

It is easy to count when we have a small set of customers in our system, while

we may encounter difficulty doing that for hundreds of thousands of customers in

a queueing system.

However, we are able to obtain frequency given a value of workload based on

the following flowchart:
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CHAPTER 3

Different Queueing Models

In the previous chapter, we discussed wait, remaining time and workload as

well as frequency. We used algorithms to obtain these quantities. However, these

quantities are derived from customers’ original dataset of inter-arrival and service

time. In other word, we have a prior information about inter-arrival and service

time among customers. However, in reality, we may not be able to have access

to this information beforehand and it is also extremely time-consuming to collect

data when we have a lot of customers entereing a queueing system.

Instead of collecting data, we would like to study different distributions of

customers’ inter-arrival and service time. In this way, it is more relevant to simulate

the behaviour of customers in a particular queueing system and easier for us to

try to find a pattern among customers. Hence, if inter-arrival and service time

follow particular respective distributions, we are able to simulate a dataset based

on their distributions to study those quantities discussed in the previous chapter.

3.1. Birth and Death Process

As discussed above, inter-arrival and service times with exponential distribu-

tions form a birth-death process. The birth-death process is a special case of

continuous-time Markov process where the state transitions are of only two types:

”births”, which increase the state variable by one and ”deaths”, which decrease

the state by one. The process goes from state n to n � 1. When a death occurs,

the process goes from state n to state n�1. The process is specified by birth rates

µi and death rate λi, i � 1, 2, ..., n.

We consider birth-death process in a perspective of interarrival and service

time. We have µ as the arrival rate of customers per unit time. The reciprocal 1
µ

gives the average amount of time for ith customer to come after pi� 1qth customer
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arrived. Therefore, 1
µ

can also be viewed as the average inter-arrival time between

ith and pi � 1qth customer. We can also apply λi to understand the relationship

between death rate and service time.

M/M/c model is used in queueing theory. It is a birth-death process used

to describe customers in an infinite queue. M refers to exponentially distributed

interarrivals and service times. c denotes the number of servers in the queueing

system. Therefore, M/M/1 is a queueing system where customers’ inter-arrival

and service time follow exponential distributions with µi � µ, λi � λ, with one

server is in the system.

Once we know the distribution of arrivals and departures and the number

of servers in the system, we are able to randomly generate a dataset of inter-

arrival and service time to simulate the real situation of customers’ arrivals and

departures. For example, if we know a queueing model is G1/G2/1, where G1 refers

to uniform distribution unifpα, βq and G2 refers to an exponential distribution

with parameter µ, then we can generate a dataset of interarrivals from a uniform

distribution and a dataset of service from an exponential distribution.

Given the set of interarrival and service times, we are able to the quantities

discussed the previous chapter such as idle time and workload as well as frequency.

3.2. Frequency Displayed in Different Queueing Models

We would like to study the relationship between frequency and workload in

different queueing models with a single server system.

3.2.1. M/M/1. In this single server queueing model, we discuss a scenario

where the arrivals and departures both follow a exponential distribution with pa-

rameter λ and µ, λ   µ. We generate a dataset for inter-arrivals and services

from their respective distributions to simulate the real situation of 1000 customers

entering the system. So we have our simulated dataset I � pI1, I2, ..., I999q and

S � pS1, S2, ..., S1000q. According to our previous algorithm, we can obtain a rela-

tionship between workload and time, frequency and workload.
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Figure 3.1. M/M/1 Workload

Figure 3.2. M/M/1 Workload. Different paramters.

Figure 3.1 shows a plot of frequency with respect to workload, data of inter-

arrivals generated from I � expp0.2q and services from S � expp0.3q.

As the Figure 3.1 shows, frequency tends to decrease monotonically as workload

increases. When workload reaches its maximum around 40, frequency hits 0. Also,

Frequency drops dramatically as workload augments from 0 to 10 and then starts

to slow down. When workload increases from 30 to 40, changes of frequency

become minimum.
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Curves of frequency with respect to workload, derived from three datasets of

inter-arrival and service time are shown in Figure 3.2, generated from three M/M/1

models with different set of parameters.

As far as Figure 3.2 is concerned, it is noticeable that when we increase µ

and keep λ intact, the curve (blue) will have a higher upside but shorter tail. On

the other hand, if we increase λ but keep µ unchanged, the curve (red) will have

a lower upside but longer tail. This makes sense since if a server speeds up its

service on customers, it would encounter fewer situations of high workload as blue

curve suggests. If customers come into system less frequently, the server would

face fewer situations of high workload as the red curve shows.
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Figure 3.3. Frequency and workload in a M/D/1 model

3.2.2. M/D/1. In the previous subsection, we know that frequency declines

monotonically as workload increases in the M/M/1 model. Now we want to exam

the curve under an M/D/1 model. Here, D refers to a deterministic service time,

meaning the server will always complete its service in a fixed amount of time on

every customer.

As the figure suggests, when the service time becomes deterministic, it is no-

ticeable that frequency reaches its peak right before workload increases to the value

equivalent to the deterministic value of service time, which is 4. Once workload

breaks through 4, frequency plummets, then slows down and continue to decline.

The main reason why frequency at workload of 4 is so high is that when a server

turns to an idle status, its workload will jump to the deterministic value once a

new customer arrives. Therefore, the more idle status a server has, the more likely

its frequency at workload of 4 is so workload become higher.
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CHAPTER 4

Queueing Models With Bound on Workload

In the previous chapter, we discussed the relationship between workload and

time as well as frequency, without conditions on workload. However, in this chap-

ter, we are going to discuss scenarios where a limit is imposed on workload and

we consider the respective shape of frequency curve as well as the pdf of workload

based on the frequency curve. In addition, we use resampling methods to smooth

our frequency curve and the resulting pdf such that we will have a more accurate

description about the workload.

4.1. Partial Access to Service

For a particular queueing system, sometimes we may want to make sure that

the server will not encounter high volume of workload. So it is reasonable to set a

limit on workload, say B, we want to make sure the server’s workload can reach,

at most, but will not exceed B. If a workload would, at certain point of time,

exceed the bound value B, then we will only allow partial access to service such

that the workload will only increase to B rather than exceed it.

In this case, workload has to be reduced to B once it exceeds that bound, so we

may need to adjust some of service times in which workload would have exceeded

the bound had we not carried out this step. For example, assuming that by the

time t ith customer arrives, the server’s workload is Wlt pWlt   Bq and the service

time for this customer is Si. If

Wlt � Si ¡ B

we will reset Si equivalent to B �Wlt so that every customer will get full service

if workload is not over the bound after adding the amount of service time or get

partial access to service to reach a bound value of workload if workload would
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have been over the bound. Hence, by doing this procedure, we will change some

of elements in the vector S � pS1, S2, ...., Snq, which again lead to another change

in the way we obtain idle and remaining time. Therefore, the method to get wait

and remaining time in previous chapter is no longer valid in this case.

Algorithm 3.1 below gives us a way to obtain idle time, remaining time and

workload:

(1) Input inter-arrival and service time.

(2) Set initial values for critical points of time when a new customer arrives or

workload hits zero, and its corresponding workload as well as remaining

time for each customer:

T1 � Wl1 � RT1 � 0

(3) Set a bound value for workload B.

(4) Use loops to obtain critical points T and Wl along with IT and RT .

(a) Let N be the total number of customers and i equal to 2

(b) Test if i   pN � 1q holds, if no, then

T � cpT, ArN , ArN �minpB, RTN � SNqq

Wl � cpWl, minpB,RTN � SNq, 0q

(c) If the formula in (b) holds and RTi�1 � Si�1   B holds too, then we

will follow the below procedures:
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RTi�1 �

Si�1   B

RTi�1 �

Si�1   Ii�1

RTi � 0 ; ITi �

Ii�1 � pRTi�1 � Si�1q

T �

cpT,Ari�1, Ari�1 �

RTi�1 � Si�1, Ariq

Wl � cpWl,RTi�1 �

Si�1, 0, 0q

RTi � RTi�1 �

Si�1 � Ii�1 ; ITi � 0

T � cpT,Ari�1, Ariq

Wl � cpWl,RTi�1 �

Si�1, RTiq

Yes

Yes

No

(d) If the formula in (b) holds but formula RTi�1� Si�1   B in (c) does

not hold, then we will follow this procedure below:
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RTi�1 �

Si�1   B
B   Ii�1

RTi � 0 ;

ITi � Ii�1 � B

T �

cpT,Ari�1, Ari�1 �

B,Ariq

Wl � cpWl,B, 0, 0q

RTi � B � Ii�1

; ITi � 0

T � cpT,Ari�1, Ariq

Wl � cpWl,B,RTiq

No

Yes

No

(e) Let i increase by 1, i � i� 1, then go back to (b)

(f) Jump out of the loop when i � pN � 1q.

(5) Output critical points of time and its workload, T and Wl, along with

wait and remaining time, IT and RT .

(6) Stop.

The above algorithm will make sure a server’s workload never exceed the bound

value that we set. If at some points of time workload tends to exceeds that bound,

the algorithm will set the workload of these points of time as the bound value,

then adjust the corresponding service time to the bound value as well.

By using the above algorithm, we are able to obtain the critical points of

time and its corresponding workload, then we apply the algorithm of 1.5 to get a

relationship between frequency and workload given a bound on workload.

Figure 4.1 shows workload with respect to time in a M/M/1 system containing

10 customers before and after we set a bound on workload.
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Figure 4.1. Workload with Bound.

The figure shows that once we add a bound on workload the relationship be-

tween workload and time will change dramatically. Once workload first exceeds

the bound value, which is 10 above, the shape or dynamic of workload will differ

since then. If we compare the server’s total idle time between these two scenarios,

the one with a bound on workload tend to have more idle time, 30.26 units of

idle time for the right plot comparing with 22.41 units for the left, which further

validate that adding a bound on workload will ease a server’s work and increase

more idle time for a server.

On the other hand, server of a queueing system with limits on workload tend

to complete its service on all customers no slower than the one without limits on

workload. Since in workload-limited systems, a server will complete its service at

time pArN � minpB, RTN � SNqq while service is not completed until at time

pArN �RTN � SNq in systems without limits on workload.

Figure 4.2 shows the relationship between frequency and workload as we change

the value of bound on workload in a M/M/1 system containing 1000 customers in

which I � expp0.1q and S � expp0.15q.

In cases where workload is unlimited, frequency will drop all the way as work-

load increases, but slowly decline to zero as workload approaches its maximum.
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Figure 4.2. Frequency and workload as bound changes

However, if a bound is imposed on workload, frequency will plummet as workload

approaches the bound value but will not usually hit zero.

In addition, we observe that once we impose a bound on workload, the fre-

quency curve is always shorter but higher than the one without bound on work-

load. As bound value increases, the frequency curve will become longer and lower,

but always above the curve without bound.

4.2. Reject Service

Next we present a second strategy to deal with limitation on workload. Unlike

the one we mentioned in the previous section, now we will apply a different method:

if the workload exceeds the bound value that we set as a new customer arrives, we

decide that this customer will not be served at all, and the workload will continue

to drop until next customer comes. No matter when customers show up, the server

will reject service to these customers whose presence increases the workload over

the bound value. If a customer is to be rejected, then the workload will drop at

the same pace as it does before this customer shows up.
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To solve this problem, we come up with a similar algorithm as the one in section

3.1:

(1) Follow all procedures of Algorithm 3.1 except pbq and pdq of Step 4

(2) Set a new variable reject equal to zero, reject � 0

(3) We change the pbq of Step 4 as follows: Test if i   pN � 1q holds, if no,

then

(a) if RTN � SN ¡ B, then

reject � reject� 1

T � cpT,ArN �RTNq

Wl � cpWl, 0q

(b) if RTN � SN  � B, then

T � cpT,ArN , ArN �RTN � SNq

Wl � cpWl,RTN � SN , 0q

(4) We change the pdq of Step 4 as well: If the formula in (b) holds but formula

RTi�1� Si�1   B in (c) does not hold, then we will follow this procedure

below:

(a) if RTi�1   Ii�1, then

reject � reject� 1

RTi � 0

ITi � Ii�1 �RTi�1

T � cpT,Ari�1 �RTi�1, Ariq

Wl � cpWl, 0, 0q

(b) if RTi�1 ¡� Ii�1, then

reject � reject� 1
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Figure 4.3. Workload Frequency with Rejected Customers

RTi � RTi�1 � Ii�1

ITi � 0

T � cpT,Ariq

Wl � cpWl,RTiq

After implementing this algorithm in R, we will be able to plot a diagram of

workload with respect to time. The variable reject is used to record the number

of customers being rejected from service.

Suppose we have 7 customers coming into the M/M/1 system with µ � 0.15

and λ � 0.1 in which the inter-arrival time is I = (1.934, 0.583, 0.633, 22.114,

10.035, 11.734) and its corresponding service time is S = (2.874, 3.437, 42.478,

6.545, 15.200, 4.761, 5.020).

Figure 4.3 shows 7 customers arriving. Green lines: workload without bound.

Red line: Bound value at 10. Yellow dashed lines: workload with bound, reject

service when workload exceed bound.

If we are to reject customer service when workload exceeds the bound, as shown

in Figure 4.3, workload will tend to be lower and shorter because customers with

high service time will be prevented from being served. In this case, with this

method applied, we reject the third customer and other customers are served. The
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server’s workload is kept low and it will also finish the job earlier than that without

a bound.

The another effect of this method is that server will gain more idle time over

the whole period. In Figure 4.3, the server would have no idle time until all 7

customers have completed their service at 80.31 while with this condition, server

will have 29.42 units of idle time out of total 52.05 units, meaning 29.42/52.05 =

56.5% of time the server is in a idle state and only one is rejected from service.
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Figure 4.4. Frequency with high arrival rate

Now we want to exam if this method have an effect on server’s idle time when

there are a large number of customers arriving in the system. Suppose we have

1000 customers comes into the M/M/1 system with µ � 0.15 and λ � 0.1, and we

set workload bound at 50. We will get a workload plot as below:

Figure 4.4 (Left) shows Workload without a bound, while Figure 4.4(Right)

shows Workload with a bound at 50.

Compared to the case without a bound, the right diagram of Figure 4.4 has

a significantly low workload throughout the whole period. In our simulation, we

have 14 customers rejected from service and the server is idle 39% of the time

comparing with 36% without a bound. We may conclude that by rejecting certain

service-heavy customers from receiving their service, we are able to chop down the

server’s workload effectively and give it more idle time.

Figure 4.5 shows frequency curves obtained by applying method of rejecting

access to service in cases where different bounds on workload are imposed.

As Figure 4.5 shows, if we set a bound at workload of 40 and consider workload

near 40 is overload, then the green curve indicates that the server will encounter

fewer overload situations. Thus, it is illustrative that when we apply method of
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Figure 4.5. Different Bounds

rejecting service given a certain workload bound, it helps the server to reduce

situations of heavy workload.

4.3. Full Access to Service

Finally we will apply another a third method to deal with limit on workload. In

this scenario, we allow service for customers whose presence increases the workload

from below the bound value to exceed it, and any customers come next at a time

before the workload drop below the bound value will be rejected from service.

That is to say, once the workload exceeds the bound value, the next customer to

be served has to come after the workload is below the bound.

As Figure 4.6 shows, the arrival of the second customer increases workload over

the bound, but the system still give this customer full service, then the workload

decreases below the bound until the third customer arrives. What we should

notice is that when workload reaches its peak at 26.6 and starts to decline, there

is a customer arriving while workload is still above the bound. By the method

discussed in this section, we reject this customer from gaining its service and

workload continues dropping as shown in Figure 4.6.
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Figure 4.6. Frequency workload in Full Access model

In Figure 4.6, Green lines show workload without a bound, Red line shows

bound value at 10. Purple dashed lines show workload where customers are ac-

cepted to full access to service only when workload is below the bound.

Now we implement this method in R and the following is the algorithm:

(1) Follow Step 1, 2 and 3 of Algorithm 3.1

(2) Set a new variable reject � 0

(3) Follow (a) and (c) of Step 4 in Algorithm 3.1

(4) Revise (b) of Step 4 in Algorithm 3.1: Test if i   pN � 1q, if no, then

(a) Test if ITN is null, if yes, then

T � cpT,ArN , ArN �RTNq

Wl � cpWl,RTN , 0q

(b) if no, then

T � cpT,ArN , ArN �RTN � SNq

Wl � cpWl,RTN � SN , 0q
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(5) Revise (d) of Step 4 in Algorithm 3.1:

RTi�1 �

Si�1   B

Ii�1   Si�1 �

RTi�1 � B

Ii�1  

Si�1 � RTi�1

Ii�1 ¡

Si�1 � RTi�1

reject � reject � 1

Si � 0

ITi � Null ; RTi �

Si�1 � RTi�1 � Ii�1

T � cpT,Ari�1q Wl �

cpWl, Si�1 � RTi�1q

RTi � Si�1 �

RTi�1 � Ii�1 ITi � 0

T � cpT,Ari�1, Ariq

Wl � cpWl, Si�1 �

RTi�1, Si�1 �

RTi�1 � Ii�1q

RTi � 0 ITi �

Ii�1 � pSi�1 � RTi�1q

T �

cpT,Ari�1, Ari�1 �

Si�1 � RTi�1, Ariq

Wl � cpWl, Si�1 �

RTi�1, 0, 0q

yes

No No

Yes Yes Yes

This algorithm would give us the desirable result in terms of allowing full access

to service despite the bound. Further, we are able to get frequency function of the

workload.
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Figure 4.7. Workload vs Timel

Figure 4.7 shows Left: Workload without a bound, same as the left graph of

Figure 3.3.1. Right: Workload with a bound at 50 but full access to service is

allowed using same wait and service dataset.

This method of allowing full access does not help increase the proportion of

idle time for the server as 36.3% of time is idle comparing with 36.0% of time

in the case without a bound. And the sever will finish its job at the same time

for both cases at 10291.54 units of time. But only 6 customers are rejected from

receiving service comparing with 14 as the case in the scenario two.

Figure 4.8 shows frequency curves obtained by applying method of full access

to service in cases where different bounds of workload are imposed using the same

dataset of inter-arrival and service as in Figure 4.7.

The problem of this method is that if we set workload bound too high, it may

not make much difference in helping reduce overload. As blue and green curves in

Figure 4.8 show, although we set the bound of workload at 40 and 50 respectively

as in Figure 4.5, their frequency curves are very close to the one without a bound,

which result in a nearly zero improvement in reducing overload. On the other

hand, if we set bound at 30, it does help reduce the frequency of overload. In
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Figure 4.8. Frequency workload in Full Access model

other word, in order to reduce overload, one has to set the bound lower than what

is acceptable, 50 in this case. But this would cause another problem that we

may have to reject more customers from receiving their service for the purpose of

reducing overload.
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CHAPTER 5

PDF of Workload with Bound

5.1. Constructing A PDF of Workload

We have obtained frequency curves with imposed bound using three different meth-

ods discussed in the previous chapter. Now we would like to construct a pdf of

workload with application of these methods. As a matter of fact, in reality, it is

difficult to obtain the pdf of workload even given the condition that the interarrival

and service time follow particular distributions. However, we can approximate the

pdf of workload using the frequency function of workload and then convert it into

a pdf. We can simply divide the frequency value at every point of workload by

the area underneath the frequency curve, which would give us an approximation

of the pdf of workload.

However, in previous frequency graphs we obtained, the particular frequency

at workload of zero is not included in these curves. That is because when workload

is at 0, the server is in an idle state. We cannot count the frequency at workload

0 over the whole period because workload at 0 is a discrete value that has its own

probability, and the distribution of workload is mixed.

P pW � 0q � π0 ¡ 0

Workload has a partial probability density function fpW q when it is greater than

0 which accounts for a total probability of p1 � π0q. Therefore, we will have a

probability function of workload as follows

P pW q �

$''&
''%
fpW q W ¡ 0

π0 W � 0

36



In order to get an approximation of the pdf of workload, we first look to obtain

π̂0, the estimate of π0. This is easy to get that since we have information about the

idle time for each customer, ITi, and the total period max(T), so we can calculate

π̂0 by the proportion of idle time from the simulation

π̂0 �

°8
i�1 ITi

maxpT q

and then divide the frequency curve of workload we obtained before, denote here

as FrqpW q. Hence the estimate of partial pdf of workload when it is greater than

0 is

f̂pW q � p1 � π̂0q � FrqpW q{auc pW ¡ 0q

Here auc denotes the area under the frequency curve obtain by

auc �

» 8
0�
FrqpW qdW

Now we have a partial pdf of workload when workload is greater than 0 such that

» 8
0�
f̂pW qdW � p1 � π̂0q

Thus, our estimated pdf of workload is

P̂ pW q �

$''&
''%
p1 � π̂0q � FrqpW q{auc W ¡ 0

π̂0 W � 0

5.2. An example of building pdf of workload in case of partial access

To illustrate, we would like to obtain a pdf of workload while a bound value of

50 is imposed. We use the same system with µ � 0.15 and λ � 0.1 and only allow

a partial access to service as discussed in the previous chapter.

5.2.1. Obtain the Probability of Idle Time. In order to obtain a more

accurate estimate of the pdf of workload, first we need to obtain the probability

of idle time π0. One way to achieve that is by simulating as many customers as
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possible in a sense that the proportion of idle time will be approaching to the

true probability of idle time. Since both idle time IT and the total period T is

subject to the change with the number of customers C, we can consider these two

quantities as functions of C. Hence once we increase C to infinity, the estimate π̂0

should approach π0:

lim
CÑ8

Ç

i�1

ITi{T pCq � π0

In addition to boosting the number of customers, we also adopt the method of

resampling. We can resample N data from the collected N data of interarrival and

service time and generate a set of resampled data: (I1, S1), (I2, S2) ... (IR, SR).

For any set of (Ik, Sk), we are able to get an estimate π̂0
k, k � 1, 2 ... R. Hence,

the average of π̂0
k will provide a more reliable estimate of π0. What’s more, if

we continue this resampling procedures for a large number of times, our averaged

estimate should be closing to the true probability of idle time π as well:

lim
RÑ8

Ŗ

k�1

π̂0
k{R � π0

However, once we adopt either method or both, it is inevitable to encounter

computational problems caused by the increased volume of data. Our goal is to

get a reliable estimate of π0 without sacrificing too much time on computing the

result.

Figure 5.1 shows a heat map of squared residuals, on the x-axis is the number

of customers and y-axis stands for the resampling repeats.

Figure 5.1 sheds light on how the estimate of π0 varies by applying resampling

procedures R and adjusting the number of customers C. Each of this 5 � 5 grid

represents a combination of resampling repeats and number of customers, which

leads to an estimate of π0, π̂0pijq. In this simulation context, we are able to obtain

the true probability of idle time by specifying C large enough, say 100,000, so we

the true probability π0 � 0.3568. The squared residual grid pπ̂0pijq � π0q
2 pi, j �

1, 2, 3, 4, 5q would provide a good measure of goodness of fit. Then the grid of
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Figure 5.1. Resampling

squared residual can be converted into a heat map based on numeric values as

shown in Figure 5.1.

The above graph shows that, in order to obtain an accurate estimate of π0, one

does not have to generate a large set of data or implement a large scale of resam-

pling procedures. The combination of 50 customers and 10 times of resampling

would produce nearly a perfect estimate of 0.36.

5.2.2. Obtain the Partial PDF of Workload. Now, as we have obtained

the probability of idle time π̂o, we can assign a total probability of p1� π̂0q to the

partial pdf of workload. Then we use one of sets (Ik, Sk) to obtain a frequency

graph as shown on the left of Figure 3.4.1. Also, the area under the curve is

shadowed with grey color and we can obtain the area by dividing the whole period

into 500 equal pieces with x � p0.1, 0.2, ..., 50q, so the area would be

auc � 0.1 �
499̧

i�1

Frqpxiq

Finally,

f̂pW q � p1 � π̂0q � FrqpW q{auc pW ¡ 0q

so we can construct a partial pdf of workload shown on the right of Figure 4.1.1.

Figure 5.2 shows: (Left) Frequency curve obtained by applying method of

partial access, (Right) Resulting PDF of the workload.
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Figure 5.2. Frequency curve and pdf

We can see the partial pdf f̂pW q has the same shape as the frequency curve,

and we also estimate π0 by 0.36. So our approximation to the distribution of

workload is given by

P̂ pW q �

$'''''&
'''''%

0.36 W � 0

f̂pW q 0   W ¤ 50

0 W ¡ 50

in which f̂pW q is given by the partial PDF on the right plot of Figure 5.2.

5.2.3. Improvement to the PDF Using Resampling. In section 5.2.2,

we have obtained an approximated mixed distribution of workload, which is useful

in terms of understanding a server’s workload under a bounded queueing system.

However, as the pdf is shown in the previous section, it is noticeable that the

partial pdf of workload takes a bumpy shape. This may cause a problem. For

example, if one wants to know the true probability of workload within a certain

range, say from 20 to 30, it could give us a bad result (probability) using this

partial pdf since the pdf is too flexible such that any prediction from this pdf

would have a high variability. In fact, as Figure 5.3 shows, if we draw frequency
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Figure 5.3. Different Frequency curves

curves based on different sets of (Ik, Sk), we may end up getting curves that are

quite different.

Figure 5.3 shows frequency curves using four datasets (Ik, Sk), k � 1, 2, 3, 4.

In Figure 5.3, it is clear that despite using the same system with same param-

eters, we still get different looks of frequency curves, which are used to translate

into the pdf of workload we want. Hence, the difference of frequency curve would

lead to a variety of pdf’s, and eventually result in a highly variable estimate of the

true partial pdf.

Ideally, we would like to have a smooth partial pdf to avoid high variability

and to have a better estimation of the true distribution. In order to achieve that,

we turn to resampling to give us a better estimate of the target pdf.

The method is easy to interpret, it is as follows:

(1) Specify queueing system as M/M/1 and its inter-arrival λ and service

rates µ as well as the number of customer N

(2) Set a bound value B

(3) Randomly generate K datasets of inter-arrival and service time
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(4) Obtain idle time ITi, i � 1, 2, ...N and total period T for each individual

datasets, calculate π̂1
0, π̂2

0, ... π̂K0

(5) Build a Frequency function based on individual dataset: Frq1pW q, Frq2pW q,

... FrqNpW q.

(6) Create an ordered set of workload X � px1, x2, ...xMq where M � 10 � B

in which every adjacent elements has a difference of 0.1

(7) Build a matrix P � rFrq1pXq, F rq2pXq, ..., F rqKpXqsM�K that takes a

form

Frq1 Frq2 ... F rqK�
�������������

�
������������


p11 p12 ... p1K x1

p21 p22 ... p2K x2

. . ... . .

. . ... . .

. . ... . .

pM1 pM2 ... pMK xM

(8) Obtain the mean value of each row from the matrix P and standard de-

viation,

Pi �
1

K

Ķ

j�1

pij pi � 1, 2, ...Mq

Sdi �
1

K � 1

gffe Ķ

j�1

ppij � Piq2 pi � 1, 2, ...Mq

and the mean of π̂io,

π̂�o �
1

K

Ķ

j�1

π̂io

(9) Fit a frequency curve Frq� using set X as workload (x-axis) and Pi as

corresponding frequency.

(10) Calculate the area under the curve Frq�, auc

42



Figure 5.4. Smoothed Frequency and PDF

(11) The approximation to the pdf of workload would be

P̂ pW q �

$'''''&
'''''%

π̂�o W � 0

p1 � π̂�o qFrq
�{auc 0   W ¤ B

0 W ¡ B

Now, we use the procedures discussed above to obtain an averaged estimate of

the pdf of workload for the example in section 3.4.

Figure 5.4 shows (Left) the averaged frequency curve, (Right) the pdf derived

from the averaged frequency curve.

Here, we specify K � B � 50, and the number of customer N � 1000. Using

the same system as the example in 3.4, we obtain a frequency curve on the left of

Figure 3.5.2 and the following partial pdf of workload.

After completing such a procedure, the estimate of partial pdf of workload

becomes smoother and less variable.

Also, we have a set of estimates of idle probability π̂i0, and by averaging them,

we will get a more stable estimator of idle probability. In this particular case,

43



we have a mean of 0.358. Therefore, the estimated partial pdf of workload takes

64.2% probability when the server is busy.
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CHAPTER 6

Conclusion

This paper is mainly concerned with presenting the behaviour of workload using

simulated datasets. Although in reality there would be an inevitable discrepancy

with our simulated results (caused by the disparity between the actual and the as-

sumed distributions of inter-arrival and service time), they provide us with general

ideas of the relationship of workload with time and frequency. For example, if we

simulate our interarrival and service dataset using the M/M/1 model, we notice

the corresponding partial pdf of workload takes a form of an exponential distri-

bution as well. In situations of imposing limits on workload, different methods to

tackle it would lead to different workload-time graphs, through which we are able

to find the best form based on our needs such as “finishing serving all customers

fastest”, “having the least proportion of idle time”, “serving the maximum number

of customers within a certain period,” etc.

As in the book [4] by Brill (2017), we can build a relationship between up-

crossing rate and downcrossing rate. By equating them and solving the resulting

equation, we are able to obtain the distribution of workload. However, aside from

complex mathematical operations involved in figuring out the distribution, another

prerequisite for this equation to hold is that limits should not be imposed on work-

load. In other word, if there exists a bound on workload and it is small enough

to effectively impact the workload (If bound value is too high, it will have limited

effect on workload), this up-and-down crossing equation is difficult to study.

On the other hand, since we have found a way to present the workload-time

graph under this workload-bound restriction in a context of large dataset and

translate it into a pdf, we are able to avoid difficulties involved in obtaining the

pdf by mathematical operations and straightforwardly get an approximation of

the distribution. However, in order for our pdf to be a good approximation, we
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are also required to simulate a dataset large enough to truly observe patterns and

apply techniques such as resampling at the same time.

Future Work

Thus far, we have considered applying those three methods to deal with a

workload bound restriction when the dataset of inter-arrival and service time are

fixed, so does the bound value. However, there is an interesting problem concerning

the bound value. Suppose we have a restaurant (queueing system), and its owner

wants to make money by having a lot of customers in a day. But the restaurant

has only one server, and the server needs a break during the work. Suppose the

restaurant is always busy and customers keep coming one by one. There has to

be a workload limit for the server. We also know the distribution of customer

interarrival time as well as service time. So our goal will be to figure out a way to

meet both criteria of the owner and the server.


 Owner’s perspective: serve as many customers as possible in a day


 Server’s perspective: get as much break time as possible

Now we may set that the desired number of customers for the owner is no and

the desired proportion of idle time for the server is ps. In order to achieve goals of

both sides, we need to adjust the bound value of workload and apply those three

methods discussed in chapter 4 given the bound.

queueing system Bound value Partial access

Reject service

Full access

Possible future work might be to make decisions on what method we should

apply and under what circumstances.
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Appendix: R Code

# Spec i f y C and B and randomly genera te i n t e r a r r i v a l and s e r v i c e time

N = 1000 % Number o f customers

TH = 50 % Maximum Threshold o f Workload

set . seed (11)

OI <� rexp (N � 1 , 0 . 1 ) % i n t e r a r r i v a l time for 1000 customers

OS <� rexp (N, 0 . 15 ) % s e r v i c e time for 1000 customers

I <� sample (OI , N�1, replace = TRUE)

S <� sample (OS, N, replace = TRUE)

Pi = 1�(0.1/ 0 . 15 )

T <� 0

WLT <� 0

g <� rep (0 ,N)

W<� rep (0 ,N)

Ar=0

cumul=0

n=1

while (n < N) {
cumul <� cumul + I [ n ]

Ar <� c (Ar , cumul )

n = n + 1

}

# PAS a lgor i thm

i = 2

while ( i < N + 1) {

i f ( g [ i �1] + S [ i �1] < TH){

i f ( g [ i �1] + S [ i �1] < I [ i �1]){

g [ i ] = 0

W[ i ] = I [ i �1] � ( g [ i �1] + S [ i �1])

T <� c (T, Ar [ i �1] , Ar [ i �1] + g [ i �1] + S [ i �1] , Ar [ i ] )

WLT <� c (WLT, g [ i �1] + S [ i �1] , 0 , 0)

}
else {
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g [ i ] = g [ i �1] + S [ i �1] � I [ i �1]

W[ i ] = 0

T <� c (T, Ar [ i �1] , Ar [ i ] )

WLT <� c (WLT, g [ i �1] + S [ i �1] , g [ i ] )

}
}
else {

i f (TH < I [ i �1]){

g [ i ] = 0

W[ i ] = I [ i �1] � TH

T <� c (T, Ar [ i �1] , Ar [ i �1] + TH, Ar [ i ] )

WLT <� c (WLT, TH, 0 , 0)

}
else {

g [ i ] = TH � I [ i �1]

W[ i ] = 0

T <� c (T, Ar [ i �1] , Ar [ i ] )

WLT <� c (WLT, TH, g [ i ] )

}
}

i = i + 1

}
sum(W)/max(Ar)

T <� c (T, Ar [N] , Ar [N] + min(TH, g [N] + S [N] ) )

WLT <� c (WLT, min(TH, g [N] + S [N] ) , 0)

# RS a lgor i thm

i = 2

r e j e c t = 0

while ( i < N + 1) {

i f ( g [ i �1] + S [ i �1] < TH){

i f ( g [ i �1] + S [ i �1] < I [ i �1]){

g [ i ] = 0

W[ i ] = I [ i �1] � ( g [ i �1] + S [ i �1])

T <� c (T, Ar [ i �1] , Ar [ i �1] + g [ i �1] + S [ i �1] , Ar [ i ] )

WLT <� c (WLT, g [ i �1] + S [ i �1] , 0 , 0)

}
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else {

g [ i ] = g [ i �1] + S [ i �1] � I [ i �1]

W[ i ] = 0

T <� c (T, Ar [ i �1] , Ar [ i ] )

WLT <� c (WLT, g [ i �1] + S [ i �1] , g [ i ] )

}
}
else {

i f ( g [ i �1] < I [ i �1]){

r e j e c t = r e j e c t + 1

g [ i ] = 0

W[ i ] = I [ i �1] � g [ i �1]

T <� c (T, Ar [ i �1] + g [ i �1] , Ar [ i ] )

WLT <� c (WLT, 0 , 0)

}
else {

r e j e c t = r e j e c t + 1

g [ i ] = g [ i �1] � I [ i �1]

W[ i ] = 0

T <� c (T, Ar [ i ] )

WLT <� c (WLT, g [ i ] )

}
}
i = i + 1

}

i f ( g [N]+S [N]>TH){
r e j e c t = r e j e c t + 1

T <� c (T, Ar [N] + g [N] )

WLT <� c (WLT, 0)

} else {
T <� c (T, Ar [N] , Ar [N] + g [N] + S [N] )

WLT <� c (WLT, g [N] + S [N] , 0)

}

# FAS a lgor i thm

i = 2

r e j e c t = 0

while ( i < N + 1) {

i f ( g [ i �1] + S [ i �1] < TH){

50



i f ( g [ i �1] + S [ i �1] < I [ i �1]){

g [ i ] = 0

W[ i ] = I [ i �1] � ( g [ i �1] + S [ i �1])

T <� c (T, Ar [ i �1] , Ar [ i �1] + g [ i �1] + S [ i �1] , Ar [ i ] )

WLT <� c (WLT, g [ i �1] + S [ i �1] , 0 , 0)

}
else {

g [ i ] = g [ i �1] + S [ i �1] � I [ i �1]

W[ i ] = 0

T <� c (T, Ar [ i �1] , Ar [ i ] )

WLT <� c (WLT, g [ i �1] + S [ i �1] , g [ i ] )

}
}
else {

i f ( I [ i �1] < S [ i �1] + g [ i �1] � TH){

r e j e c t = r e j e c t + 1

g [ i ] = S [ i �1] + g [ i �1] � I [ i �1]

S [ i ] = 0

W[ i ] = NA

T = c (T, Ar [ i �1])

WLT = c (WLT, S [ i �1] + g [ i �1])

}
else i f ( I [ i �1] < S [ i �1] + g [ i �1]) {

g [ i ] = S [ i �1] + g [ i �1] � I [ i �1]

W[ i ] = 0

T <� c (T, Ar [ i �1] , Ar [ i ] )

WLT <� c (WLT, S [ i �1] + g [ i �1] , S [ i �1] + g [ i �1] � I [ i �1])

}
else {

g [ i ] = 0

W[ i ] = I [ i �1] � (S [ i �1] + g [ i �1])

T = c (T, Ar [ i �1] , Ar [ i �1] + g [ i �1] + S [ i �1] , Ar [ i ] )

WLT = c (WLT, S [ i �1] + g [ i �1] , 0 , 0)

}
}

i = i + 1

}
sum(W)/max(Ar)

i f ( i s .na(W[N] ) ) {
T <� c (T, Ar [N] , Ar [N] + g [N] )

WLT <� c (WLT, g [N] , 0)

} else {
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T <� c (T, Ar [N] , Ar [N] + g [N] + S [N] )

WLT <� c (WLT, g [N] + S [N] , 0)

}

# Frequency func t i on

f = 0

f r q <� function ( workload ){

i = 1

while (T[ i ] < max(T) ) {

i f (T[ i ] == T[ i +1]){

i f ( (WLT[ i ] <= workload ) & ( workload < WLT[ i +1])) { f = f + 1}
}

else {

i f ( (WLT[ i +1] < workload ) & ( workload <= WLT[ i ] ) ) { f = f + 1}
}

i = i + 1

}

return ( f )

}

Frequency <� Vecto r i z e ( f r q )

# Resampling

dev <� matrix (data = 0 , nrow = 5 , ncol = 5)

r <� c (1 , 10 , 100 , 500 , 1000)

N = 5000 # Number o f customers

TH = 50 # Maximum Threshold o f Workload

set . seed (11)

OI <� rexp (N � 1 , 0 . 1 ) # i n t e r a r r i v a l time f o r 1000 customers

OS <� rexp (N, 0 . 15 ) # se r v i c e time f o r 1000 customers

for ( k in 1 : 5 ) {
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sumpi = 0

for ( j in 1 : r [ k ] ) {

I <� sample (OI , N�1, replace = TRUE)

S <� sample (OS, N, replace = TRUE)

T <� 0

WLT <� 0

g <� rep (0 ,N)

W<� rep (0 ,N)

Ar=0

cumul=0

n=1

while (n < N) {
cumul <� cumul + I [ n ]

Ar <� c (Ar , cumul )

n = n + 1

}

i = 2

while ( i < N + 1) {

i f ( g [ i �1] + S [ i �1] < TH){

i f ( g [ i �1] + S [ i �1] < I [ i �1]){

g [ i ] = 0

W[ i ] = I [ i �1] � ( g [ i �1] + S [ i �1])

T <� c (T, Ar [ i �1] , Ar [ i �1] + g [ i �1] + S [ i �1] , Ar [ i ] )

WLT <� c (WLT, g [ i �1] + S [ i �1] , 0 , 0)

}
else {

g [ i ] = g [ i �1] + S [ i �1] � I [ i �1]

W[ i ] = 0

T <� c (T, Ar [ i �1] , Ar [ i ] )

WLT <� c (WLT, g [ i �1] + S [ i �1] , g [ i ] )

}
}
else {

i f (TH < I [ i �1]){

g [ i ] = 0

W[ i ] = I [ i �1] � TH
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T <� c (T, Ar [ i �1] , Ar [ i �1] + TH, Ar [ i ] )

WLT <� c (WLT, TH, 0 , 0)

}
else {

g [ i ] = TH � I [ i �1]

W[ i ] = 0

T <� c (T, Ar [ i �1] , Ar [ i ] )

WLT <� c (WLT, TH, g [ i ] )

}
}

i = i + 1

}
T <� c (T, Ar [N] , Ar [N] + min(TH, g [N] + S [N] ) )

WLT <� c (WLT, min(TH, g [N] + S [N] ) , 0)

sumpi = sumpi + sum(W)/max(T)

}

dev [ 5 , k ] = sumpi/r [ k ]

}

l ibrary ( l a t t i c e )

colnames (dev) = c (1 ,10 ,100 ,500 ,1000)

rownames(dev) = c (10 ,50 ,250 ,1000 ,5000)

l e v e l p l o t ( ( dev1�0.3568534)ˆ2 , data=data , x lab=”C” , ylab = ”R” ,

col . r e g i on s = heat . colors ( 1 5 0 ) [ length (heat . colors ( 1 0 0 ) ) : 1 ] ,

main=”Squared Res idua l ” )
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