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Abstract

This paper considers the analysis of genetic case-control data. We consider the

allele frequency in cases and controls. Because each individual has two alleles at any

autosomal locus, there will be twice as many alleles as people in the allele distribution.

Simultaneously, the serological distribution is bulit by ignoring the difference between

homozygous and herterozygous. We also consider the marker loci with multiple alleles.

Traditional case-control studies provide a powerful and efficient method for evaluation

of association between candidate gene and disease. There has been debate on how

the power of tests for association changes with different allelic effect. To facilitate

the design of association studies, we present power and sample size formulas for

Armitage’s test for trend applied to case-control studies of candidate genes.
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Chapter 1

Introduction

Classical case-control studies are improtant in genetic epidemiology, even though

they can only establish an association and other designs are necessary to determine

whether such associations are causal. Chi-square tests based on simple contingency

tables are useful tools for the association mapping of disease genes. These tables

(Table 2.2 and Table 2.3) consist of rows representing those affected with the disease

(cases) and those not affected (controls). Columns are either alleles or genotype

at the genetic markers of interest. In this paper, we show the methods of testing

for associations between biallelic markers and disease status, the Cochran-Armitage

linear trend test and the allele test. Further, we show extension from biallelic to

multiallelic trend test.
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CHAPTER 1. INTRODUCTION 2

1.1 What is genotype?

Genotype: In a broad sense, the term ‘genotype’ refers to the genetic makeup of

an organism; in other words, it describes an organism’s complete set of genes. In a

more narrow sense, the term can be used to refer to the alleles, or variant forms of a

gene, that are carried by an organism. Humans have diploid organisms, which means

that they have two alleles at each genetic position, or locus, with one allele inherited

from each parent. Each pair of alleles represents the genotype of a specific gene.

1.2 How to connect statistical tests with disease

genes?

Classical case-control studies are important in gentic epidemiology, even though

they can only establish an association and other designs are necessary to determine

whether such associations are causal. These tables (Table 2.2 and Table 2.3)consist

of rows representing those affected with the disease (cases) and those not affected

(controls), and columns representing either alleles or genotypes at the genetic markers

of interest. Chi-square tests based on simple contingency tables are useful tools for

the association mapping of disease genes.



Chapter 2

Definitions used in this paper

2.1 Definitions in Biology

Definition 2.1.1. Complete Dominance: In complete dominance, the effect of one

allele in a heterozygous genotype completely masks the effect of the other. The allele

that masks the other is said to be dominant to the latter, and the allele that is

masked is said to be recessive to the former. Complete dominance, therefore, means

that the phenotype of the heterozygote is indistinguishable from that of the dominant

homozygote.

Definition 2.1.2. Incomplete Dominance: Incomplete dominance (also called partial

dominance, semi-dominance or intermediate inheritance) occurs when the phenotype

of the heterozygous genotype is distinct from and often intermediate to the pheno-

types of the homozygous genotypes. For example, the snapdragon flower color is

homozygous for either red or white. When the red homozygous flower is paired with

the white homozygous flower, the result yields a pink snapdragon flower.

3



CHAPTER 2. DEFINITIONS USED IN THIS PAPER 4

Definition 2.1.3. Codominance: Co-dominance occurs when the contributions of

both alleles are visible in the phenotype. For example, in the ABO blood group

system, the IA and IB alleles produce different modifications. Thus IAIA and IAi in-

dividuals both have type A blood, and IBIB and IBi individuals both have type B

blood, but IAIB individuals have both modifications on their blood cells and thus

have type AB blood, so the IA and IB alleles are said to be co-dominant.

Definition 2.1.4. Hardy-Weinberg Equilibrium: The Hardy-Weinberg equilibrium

is a principle stating that the genetic variation in a population will remain constant

from one generation to the next in the absence of disturbing factors. When mating is

random in a large population with no disruptive circumstances, the law predicts that

both genotype and allele frequencies will remain constant because they are in equi-

librium. The Hardy-Weinberg equilibrium can be disturbed by a number of forces,

including mutations, natural selection, nonrandom mating, genetic drift, and gene

flow. For instance, mutations disrupt the equilibrium of allele frequencies by intro-

ducing new alleles into a population. Similarly, natural selection and nonrandom

mating disrupt the Hardy-Weinberg equilibrium because they result in changes in

gene frequencies. This occurs because certain alleles help or harm the reproductive

success of the organisms that carry them. Another factor that can upset this equi-

librium is genetic drift, which occurs when allele frequencies grow higher or lower by

chance and typically takes place in small populations. Gene flow, which occurs when

breeding between two populations transfers new alleles into a population, can also al-

ter the Hardy-Weinberg equilibrium. Because all of these disruptive forces commonly

occur in nature, the Hardy-Weinberg equilibrium rarely applies in reality. Therefore,

the Hardy-Weinberg equilibrium describes an idealized state, and genetic variations
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in nature can be measured as changes from this equilibrium state. There are two

equations necessary to solve a HWE:

• p+ q = 1

• p2 + 2pq + q2 = 1

where,

p : is the frequency of the dominant allele.

q : is the frequency of the recessive allele.

p2 : is the frequency of the individuals with the homozygous dominant genotype.

2pq : is then frequency of individuals with the heterzygous genotype.

q2 : is the frequency of individuals with the homozygous recessive genotype.

2.2 Cochran Armitage test for trend

Definition 2.2.1. Cochran-Armitage test for trend: is used in categorical data anal-

ysis when the aim is to assess for the presence of an association between a variable

with two categories and an ordinal variable with k categories. It modifies the Pearson

chi-squared test to incorporate a suspected ordering in the effects of the k categories

of the second variable. For example, doses of a treatment can be ordered as ’low’,

’medium’, and ’high’, and we may suspect that the treatment benefit cannot become

smaller as the dose increases. The trend test is often used as a genotype-based test

for case-control genetic association studies. In Table 2.1, R = r0 + r1 + r2, and
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n0 = r0 + s0. The trend test statistic is:

T =
k∑
i=0

ti(riS − siR),

where the ti are weights, and the difference (riS − siR)can be seen as the difference

between ri and si after reweighting the rows to have the same total.

Table 2.1: Completed with the marginal totals of the two variables

x0 = 0 x1 = 1 x2 = 2 Sum

Case r0 r1 r2 R
Control s0 s1 s2 S

Sum n0 n1 n2 N

where xi = i, i = 0, 1, 2, denote the number of alleles.

The corresponding chi-square statistics is Armitage’s test for trend, which is equiv-

alent to the score test for the covariate effect in the logistic model. Let xi denote a

score associated with each column of the table. The general form of Armitage’s test

is:

X2
T =

N(N
∑
rixi −R

∑
nixi)

2

R(N −R)N
∑
nix2i − (

∑
nixi)2

where xi = i, i = 0, 1, 2, denote the number of alleles M.
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2.3 Distributions under different allelic effect

2.3.1 Genotype distribution

The genotype distribution table (Table 2.2)presents the number of cases (ri) and

control (si) for negative (which has no disease gene), heterozygous (which has one

disease gene) and homozygous (which has two disease genes).

Table 2.2: Genotype distribution

Negative Heterozygous Homozygous Total

Case r0 r1 r2 R

Control s0 s1 s2 S

Total n0 n1 n2 N

2.3.2 Allele Distribution

For the Allele Test, we focus on the number of each allele. Changing the data

from genotype to gene, will double the sample size. The case and control table for

allele will be a 2× 2 tabel as in Table 2.3.

Table 2.3: Allele distribution

x0 = 0 x1 = 1 Total

Case r1 + 2r2 r1 + 2r0 2R

Control s1 + 2s2 s1 + 2s0 2S

Total n1 + 2n2 n1 + 2n0 2N



CHAPTER 2. DEFINITIONS USED IN THIS PAPER 8

2.4 Cochran-Mantel-Haenszel Estimator

Definition 2.4.1. Cochran-Mantel-Haenszel Estimator: To explore and adjust for

confounding, use a stratified analysis in which a series of two-by-two tables are set

up, one for each stratum/category of the confounding variable. Compute a weighted

average of the estimates of the risk ratios or odds ratios across the strata.

ai bi

ci di

ni

The weighted average provides a measure of association that is adjusted for confound-

ing. The weighted average for odds ratio is:

ˆORMH =

∑K
i=1(

aidi
ni

)∑K
i=1(

bici
ni

)
,

with K = 1, 2, 3...

In weighted form, the weighted average for odds ratio is:

ˆORMH =
K∑
i=1

wi
ORi∑K
i=1wi

,

with ORi =
aidi
bici

and wi =
bici
ni

, these two formulas are exactly same by plugging in

the format of wi.
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2.5 Linkage Disequilibrium (LD)

Definition 2.5.1. In population genetics, linkage disequilibrium is the non-random

association of alleles at different loci in a given population. Loci are said to be

in linkage disequilibrium when the frequency of association of their different alleles

is higher or lower than what would be expected if the loci were independent and

associated randomly. Linkage disequilibrium is influenced by many factors, including

selection, the rate of genetic recombination, mutation rate, genetic drift, the system of

mating, population structure, and genetic linkage. As a result, the pattern of linkage

disequilibrium in a genome is a powerful signal of the population genetic processes

that are structuring it.

Suppose that among the gametes that are formed in a sexually reproducing popu-

lation, allele A occurs with frequency pA at one locus (pA is the proportion of gametes

with A at that locus), while at a different locus allele B occurs with frequency pB.

Similarly, let pAB be the frequency with which both A and B occur together in the

same gamete (pAB is the frequency of the AB haplotype).

The association between the alleles A and B can be regarded as completely ran-

dom—which is known in statistics as independence—when the occurrence of one does

not affect the occurrence of the other, in which case the probability that both A and

B occur together is given by the product pApB of the probabilities. There is said to

be a linkage disequilibrium between the two alleles whenever pAB differs from pApB

for any reason.

The level of linkage disequilibrium between A and B can be quantified by the
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coefficient of linkage disequilibrium DAB, which is defined as:

DAB = pAB − pApB,

provided that both pA and pB are greater than zero. Linkage disequilibrium corre-

sponds to DAB 6= 0.



Chapter 3

Extension from genotype to genes

In different genetic markers of interest, there are three tables (Genotype distribu-

tion, Allele distribution and Serological distribution). The chi-square test statistics

and the odds ratios were developed in this chapter. We consider which tabulation is

the most appropriate in different allelic effects.

11



CHAPTER 3. EXTENSION FROM GENOTYPE TO GENES 12

3.1 Tests under Complete Dominance

3.1.1 Genotype distribution under Complete Dominance

Table 3.1 presents the number of cases and control for negative (which has no

marker allele), heterozygous (which has one marker allele) and homozygous (which

has two marker allele).

Table 3.1: Genotype distribution

Negative Heterozygous Homozygous Total

Case r0 r1 r2 R

Control s0 s1 s2 S

Total n0 n1 n2 N

In genotype distribution, the trend statistic X2
G for the 2×3 genotype tabel (Table

2.3) is:

X2
G =

N(N(r1 + 2r2)−R(n1 + 2n2))
2

R(N −R)[N(n1 + 4n2)− (n1 + 2n2)2]

3.1.2 Allele distribution under Complete Dominance

Since each heterozygous person has one copy of the marker allele and each ho-

mozygous person has two copies, one can produce an allele table(e.g, Apple et al.,

1994, 1995; Odunsi et al., 1995) with twice the sample size (Table 3.2).

The test statistic for the 2× 2 allele table, is given by:
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Table 3.2: Allele distribution

Marker allele Other Total

Case r1 + 2r2 r1 + 2r0 2R

Control s1 + 2s2 s1 + 2s0 2S

Total n1 + 2n2 n1 + 2n0 2N

X2
A =

2N(2N(r1 + 2r2)− 2R(n1 + 2n2))
2

2R(2N − 2R)[2N(n1 + 2n2)− (n1 + 2n2)2]
.

3.1.3 Serological distribution under Complete Dominance

We built the serological disrtibution table by ignoing the difference between ho-

mozygous and heterozygous genotypes. Such a tabulation was common when the

disease type was done by serology, so that it was not possible to distinguish between

someone who was homozygous for the allele of interest and someone who was het-

erozygous. Intuitively, this table will be appropriate whenever the allele of interest

is dominant. Table 3.3 present the data in terms of the number of patients with and

without the disease allele.

The Chi-square test statistics X2
S for 2 × 2 serological table obtained by pooling

heterozygous and homozygous individuals, is equivalent to the trend test applied to

the 2 × 3 genotypic table using x0 = 0 and x1 = x2. The test is efficient when the

gene is dominant. It is inefficient for testing whether a codominant gene is associated
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Table 3.3: Serological distribution

Patients with marker allele Other Total

Case r1 + r2 r0 R

Control s1 + s2 s0 S

Total n1 + n2 n0 N

with disease. The test statistic X2
S is:

X2
S =

N [N(r1 + r2)−R(n1 + n2)]
2

R(N −R)[N(n1 + n2)− (n1 + n2)2]
.

3.2 Tests under Codominance

3.2.1 Genotype distribution under Codominance

Under the Codominance genotype, A represents the marker allele, B represents

others. Table 3.4 represents the number of cases and controls for three types of

genotype: Negative, Homozygous and Heterozygous. The phenotype of heterozygous

will always have the disease. The test statistic will be same as:

X2
G =

N(N(r1 + 2r2)−R(n1 + 2n2))
2

R(N −R)[N(n1 + 4n2)− (n1 + 2n2)2]
in Chapter 2.4.

3.2.2 Allele distribution under Codominance

The table for Allele distribution under Codominance (Table 3.5) summarizes the

number of marker allele (A) and the number of the other gene (B), where x1 = 1 is dis-
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Table 3.4: Genotype distribution

Negative(BB) Heterozygous(AB) Homozygous(AA) Total

Case r0 r1 r2 R

Control s0 s1 s2 S

Total n0 n1 n2 N

ease gene A, x0 = 0 is the other gene B. Since human is diploid organism, the sample

size will be doubled. The test statisticX2
A =

2N(2N(r1 + 2r2)− 2R(n1 + 2n2))
2

2R(2N − 2R)[2N(n1 + 2n2)− (n1 + 2n2)2]

is same as the test statistic in Chapter 2.5.

Table 3.5: Allele distribution

Marker allele(A) Other(B) Total

Case r1 + 2r2 r1 + 2r0 2R

Control s1 + 2s2 s1 + 2s0 2S

Total n1 + 2n2 n1 + 2n0 2N

3.2.3 Relation between Trend Test and Allele Test

Calculating the ratio of two test statistics to check the relation.

Ratio =
X2
A

X2
G

=
2N(2N(r1 + 2r2)− 2R(n1 + 2n2))

2

2R(2N − 2R)[2N(n1 + 2n2)− (n1 + 2n2)2]
× R(N −R)[N(n1 + 4n2)− (n1 + 2n2)

2]

N(N(r1 + 2r2)−R(n1 + 2n2))2

=[
2N(r1 + 2r2)− 2R(n1 + 2n2)

N(r1 + 2r2)−R(n1 + 2n2)
]2 × N(n1 + 4n2)− (n1 + 2n2)

2

2[2N(n1 + 2n2)− (n1 + 2n2)2]

=
2N(n1 + 4n2)− 2(n1 + 2n2)

2

2N(n1 + 2n2)− (n1 + 2n2)2

=
2(n0 + n1 + n2)(n1 + 4n2)− 2(n1 + 2n2)

2

2(n0 + n1 + n2)(n1 + 2n2)− (n1 + 2n2)2
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=
2(n2

1 + 5n1n2 + 4n2
2 + n1n0 + 4n2n0)− 2(n2

1 + 4n2
2 + 4n1n2)

2(n2
1 + 3n1n2 + 2n2

2 + n1n0 + 2n2n0)− (n2
1 + 4n2

2 + 4n1n2)

=
2n1n2 + 2n0n1 + 8n0n2

n2
1 + 2n1n2 + 2n0n1 + 4n0n2

=
2n1n2 + 2n0n1 + 8n0n2

(n1 + 2n0)(n1 + 2n2)

=
2n1n2 + 2n0n1 + 8n0n2 + n2

1 − n2
1

(n1 + 2n0)(n1 + 2n2)

=
(n1 + 2n0)(n1 + 2n2) + 4n0n2 − n2

1

(n1 + 2n0)(n1 + 2n2)

=1 +
4n0n2 − n2

1

(n1 + 2n0)(n1 + 2n2)

Let B =
4n0n2 − n2

1

(n1 + 2n0)(n1 + 2n2)
. The equation of B only has n′is, which are the

combined sample sizes with ni = ri + si. So B depends only on the counts in the

combined sample. Then, the ratio of X2
A and X2

G is 1+
4n0n2 − n2

1

(n1 + 2n0)(n1 + 2n2)
= 1+B,

which depends only on the combined sample sizes.

If B = 0, the ratio is one, which means that X2
A = X2

G.

B = 0 =⇒ 4n0n2 = n2
1

The HWE holds in data if the genotype distribution and the allele distribution are

same, which means the test statistics X2
G and X2

A are equal. Clearly, the two test

statistics are equal only when HWE holds (B = 0) in the combined sample which

is 4n0n2 = n2
1. Otherwise, the alleles statistic is larger than the valid trend test

statistic if there is an excess of homozygotes and smaller when there is an excess of

heterozygotes, meaning the test will be conservative for the excess of heterozygote.
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The binomial distribution that the allele test is based on does not hold due to depen-

dence between alleles within individuals when there is departure from HWE.

3.2.4 Summary

Association between disease and gene under three distributions (Genotype distri-

bution, Allele distribution and Serological distribution) and the power of test statistics

under different allelic effect are concluded in the following Proposition 3.1.

Proposition 3.1. Tests under different distributions:

1. Under the null hypothesis of no association between the disease and the gene:

(a) both X2
G and X2

S are asymptotically distributed as chi-squared with one

degree of freedom;

(b) X2
A is also asymptotically chi-squared provided the population from which

the cases and controls are sampled is in Hardy-Weinbery equilibrium;

(c) X2
A will be anticonservative if there is an excess of homozygotes relative to

the Hardy-Weinbery equilibrium.

2. Concerning power:

(a) X2
G is locally most powerful if and only if the allele effect is exactly co-

dominant(i.e., if the homozygous odds ratio is the square of the heterozy-

gous one).
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(b) X2
S is locally most powerful if and only if the allele effect is dominant.

(c) Provided the population is in Hardy-Weinberg equilibrium, X2
A is locally

most powerful if and only if the allele effect is (exactly) codominant.

3.3 Odds Ratio

3.3.1 Odds Ratio for general cases

Definition 3.3.1. The formulas for odds ratio for general cases: heterozygous, ho-

mozygous, allele and serological are summrized in Table3.6.

Table 3.6: Odds Ratios

Distribution Odds Ratio

Heterozygous ψhetero =
r1s0
r0s1

Homozygous ψhomo =
r2s0
r0s2

Allele ψallele =
(2r2 + r1)(2s0 + s1)

(2r0 + r1)(2s2 + s1)

Serological ψsero =
(r1 + r2)s0
r0(s1 + s2)

Theorem 3.1. Suppose that the heterozygous odds ratio is not equal to one, zero or

infinity. Then any two of the following four conditions imply the other two.
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1. The homozygous odds ratio is the square of the heterozygous one,

ψhomo =
r2s0
r0s2

= (
r1s0
r0s1

)2 = ψ2
hetero.

2. The allelic odds ratio is equal to the heterozygous one,

ψallele =
(2r2 + r1)(2s0 + s1)

(2r0 + r1)(2s2 + s1)
=
r1s0
r0s1

= ψhetero.

3. The Hardy-Weinberg equilibrium holds in the control population,

4s0s2 = s21.

4. The Hardy-Weinberg equilibrium holds in the case population,

4r0r2 = r21.

The stipulation that the heterozygous odds ratio is not equal to one is only

required to derive (3) or (4) from (1) and (2).

Proof. Assume that the common odds ratio ψ =
r1s0
r0s1

=
r2s1
r1s2

.

• (1) and (2) =⇒ (3)

From (1) one have r2 =
ψr1s2
s1

, plug this equation into (2). We have :

(r1s1 + 2ψr1s2)(2s0 + s1) = ψs1(2r0 + r1)(s1 + 2s2)
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=⇒ s2(2ψr1(2s0 + s1)− 2ψs1(2r0 + r1)) = ψs21(2r0 + r1)− r1s1(2s0 + s1)

=⇒ s2 =
2s1(ψr0s1 − r1s0) + r1s

2
1(ψ − 1)

4ψ(r1s0 − r0s1)

=⇒ s2 =
r1s

2
1(r1s0 − r0s1)

4r1s0(r1s0 − r0s1)

=⇒ s2 =
s21
4s0

=⇒ 4s0s2 = s21,

which is (3).

• (1) and (2) =⇒ (4)

Similar to proof 1, plug s2 =
s1r2
ψr1

into the equstion(2):

=⇒ r2 =
r21
4r0

=⇒ 4r0r2 = r21.

• (1) and (3) =⇒ (4)

(1) implies that:

r2s0
r0s2

= (
r1s0
r0s1

)2

=⇒ r2 =
r21s0s1

r0s21
.

Then, plug s21 = 4s0s1 into r2,

=⇒ r2 =
r21s0s2
4r0s0s2



CHAPTER 3. EXTENSION FROM GENOTYPE TO GENES 21

=⇒ r2 =
r21
4r0

=⇒ 4r0r2 = r21,

which is (4).

• (2) and (4) =⇒ (3):

Substituting for r2 =
r21
4r0

from(4) into
(2r2 + r1)(2s0 + s1)

(2r0 + r1)(2s2 + s1)
=
r1s0
r0s1

=⇒ (2r21 + 4r0r1)(2s0 + s1)r0s1 = 4r0r1s0(2s2 + s1)(2r0 + r1)

=⇒ s2 =
2r1s1(r1 + 2r0)(s1 + 2s0)− 4r1s0s1(2r0 + r1)

8r1s0(2r0 + r1)

=⇒ s2 =
s32 + 2s0s1 − 2s0s1

4s0

=⇒ s2 =
s21
4s0

=⇒ 4s0s2 = s21,

which is (3).

• (3) and (4) =⇒ (1):

From (3) and (4), we have s21 = 4s0s2 and r21 = 4r0r2.

The square of the odds ratio for heterozygous is ψ2
hetero = (

r1s0
r0s1

)2, using (3) and

(4) we have:

=⇒ ψ2
hetero = (

r1s0
r0s1

)2 =
r21s

2
0

r20s
2
1

=⇒ ψ2
hetero =

4r0r2s
2
0

4s0s2r20
=
r2s0
r0s2

= ψhomo.
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• (3) and (4) =⇒ (2):

From (3) and (4), we have s2 =
s21
4s0

and r2 =
r21
4r0

. Use (3) and (4) to write s2

snd r2.

The odds ratio for allele is

ψallele =
(2r2 + r1)(2s0 + s1)

(2r0 + r1)(2s2 + s1)
=

(2r21/4r0 + r1)(2s0 + s1)

(2r0 + r1)(2s21/4s0 + s1)

=⇒ ψallele =
(r21s0 + 2r0r1s0)(2s0 + s1)

(2r0 + r1)(2s21r0 + 2r0s0s1)

=⇒ ψallele =
(2r2 + r1)(2s0 + s1)

(2r0 + r1)(2s2 + s1)
=
r1s0
r0s1

= ψhetero.

Proposition 3.2. Odds ratios

1. Suppose that the Hardy-Weinberg equilibrium holds in the control population.

Then the allelic odds ratio is greater (less) than the heterozygous odds ratio if

and only if the homozygous odds ratio is greater (less) than the square of the

heterzygous one.

Proof. The proof in the left to right direction follows that used to prove (1) and

(3) =⇒ (4) and (3) and (4) =⇒ (2) in Theorem 1.



CHAPTER 3. EXTENSION FROM GENOTYPE TO GENES 23

2. Suppose that only the homozygotes are not viable, i.e., there are no homozy-

gotes in the population. Then the allelic odds ratio always lies between the

heterozygous odds ratio and 1. (Suppose r2 = s2 = 0, ψallele always between

ψhetero and 1.)

Proof. Assume ψhetero < 1,

=⇒ r1s0
r0s1

< 1

=⇒ r1s0
r0s1

× r1s1
r0s1

<
r1s1
r0s1

=⇒ 2r1s0
r0s1

+
r1s0
r0s1

× r1s1
r0s1

<
2r1s0
r0s1

+
r1s1
r0s1

=⇒ r1s0
r0s1

× (2 +
r1s1
r0s1

) <
2r1s0
r0s1

+
r1s1
r0s1

=⇒ r1s0
r0s1

<
2r1s0
r0s1

+ r1s1
r0s1

2 + r1s0
r0s1

< 1

=⇒ r1s0
r0s1

<
2r1s0 + r1s1
2r0s1 + r1s1

< 1

=⇒ r1s0
r0s1

<
r1(2s0 + s1)

s1(2r0r1)
< 1

=⇒ ψhetero < ψallele < 1.

Similarly for ψhetero > 1.

3. Suppose only that the gene is dominant so that the homozygous odds ratio is

equal to the heterzygous odds ratio. Then the allelic odds ratio lies between

the heterozygous odds ratio and 1. (ψhomo = ψhetero =⇒ ψallele lies between

ψhetero and 1.)

Proof. Assume ψhetero < 1
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From ψhomo = ψhetero one has r2 =
r1s1
s1

.

Let ψhetero =
r1s0
r0s1

= x, and
r1s1
2r0s1

= y. Then one has x < 1.

=⇒ xy < 1

=⇒ x+ xy < x+ y

=⇒ x(1 + y) < x+ y

=⇒ x <
x+ y

1 + y
< 1, (x < 1)

=⇒ r1s0
r0s1

<
r1s0
r0s1

+ r1s1
2r0s1

1 + r1s1
2r0s1

=
r1(2s0 + s1)

s1(2r0 + r1)
.

Similarly for ψhetero > 1.

4. Suppose only that the gene is recessive, so that the heterozygous odds ratio is

equal to 1. Then the allelic odds ratio lies between homozygous odds ratio and

1. (ψhetero = 1 =⇒ ψallele lies between ψhomo and 1.)

Proof. Assume ψhomo < 1, ψhetero =
r1s0
r0s1

= 1 =⇒ s1 =
r1s0
r0

.

Let x =
r2s0
r0s2

, y =
r1s0
2r0s2

=⇒ x < 1

=⇒ xy < y < 1

=⇒ x+ xy < x+ y < 1

=⇒ x <
x+ y

1 + y
< 1

=⇒ r2s0
r0s2

<

r2s0
r0s2

+
r1s0
2r0s2

1 +
r1s0
2r0s2
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=⇒ r2s0
r0s2

<
s0(2r2 + r1)

r0(2s2 + s1)
=

s0
r0

(2r2 + r1)(2r0 + r1)

(2s2 + s1)(2r0 + r1)

=⇒ r2s0
r0s2

<
(2r2 + r1)(

r1s0
r0

+ 2s0)

(2r0 + r1)(2s2 + s1)

=⇒ r2s0
r0s2

<
(2r2 + r1)(2s0 + s1)

(2r0 + r1)(2s2 + s1)

=⇒ ψhomo =
r2s0
r0s2

<
(2r2 + r1)(2s0 + s1)

(2r0 + r1)(2s2 + s1)
= ψallele < 1

=⇒ ψhomo < ψallele < 1.

Similarly for ψhomo > 1.

5. Provided r0 and s0 are both nonzero, the serological odds ratio is greater (less)

than the heterozygous odds ratio if and only if the homozygous odds ratio is

greater (less) than the heterozygous one. Note that in symbols,

ψhomo < ψhetero ⇐⇒ ψsero < ψhetero.

Conversely,

ψhomo > ψhetero ⇐⇒ ψsero > ψhetero.

Proof.

ψhomo > ψhetero ⇐⇒
r2s0
r0s2

>
r1s0
r0s1

⇐⇒ r2
s2
>
r1
s1

⇐⇒ r2s1 > r1s2
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⇐⇒ r2s1 + r1s1 > r1s2 + r1s1

⇐⇒ s1(r2 + r1) > r1(s2 + s1)

⇐⇒ r2 + r1
s2 + s1

>
r1
s1

⇐⇒ s0
r0

(
r2 + r1
s2 + s1

) >
r1s0
s1r0

⇐⇒ ψsero > ψhetero.

Similarly for ψsero < ψhetero ⇐⇒ ψhomo < ψhetero.

6. The serological odds ratio always lies between the heterozygous and homozygous

odds ratios. ( ψsero always lies between ψhetero and ψhomo.)

Proof. Assume ψhetero < ψhomo

=⇒ r1s0
r0s1

<
r2s0
r0s2

=⇒ r1
s1
<
r2
s2

=⇒ r1s2
r2s1 < 1

=⇒ r1s2 < r2s1.

Part 1: multiplying r1s2 < r2s1 on both sides by s2:

=⇒ r1s2s2 < r2s1s2

=⇒ r1s1s2 + r1s2s2 < r1s1s2 + r2s1s2

=⇒ r1s2(s1 + s2) < s1s2(r1 + r2)
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=⇒ 1

s1s2(s1 + s2)
r1s2(s1 + s2) <

1

s1s2(s1 + s2)
s1s2(r1 + r2)

=⇒ r1s2(s1 + s2)

s1s2(s1 + s2)
<
s1s2(r1 + r2)

s1s2(s1 + s2)
.

Part 2: multiply by s1 for both sides:

=⇒ r1s1s2 < r2s1s1

=⇒ r1s1s2 + r1s1s2 < r1s1s2 + r2s1s1

=⇒ 1

s1s2(s1 + s2)
s1s2(r1 + r2) <

1

s1s2(s1 + s2)
r2s1(s1 + s2)

=⇒ s1s2(r1 + r2)

s1s2(s1 + s2)
<
r2s1(s1 + s2)

s1s2(s1 + s2)
.

Combining Part 1 and Part 2 together:

=⇒ r1s2(s1 + s2)

s1s2(s1 + s2)
<
s1s2(r1 + r2)

s1s2(s1 + s2)
<
r2s1(s1 + s2)

s1s2(s1 + s2)

=⇒ r1
s1
<
r1 + r2
s1 + s2

<
r2
s2

=⇒ s0
r0

r1
s1
<
s0
r0

r1 + r2
s1 + s2

<
s0
r0

r2
s2

=⇒ r1s0
r0s1

<
s0(r1 + r2)

r0(s1 + s2)
<
r2s0
r0s2

=⇒ ψhetero < ψsero < ψhomo.

Similarly for ψhetero > ψhomo.



Chapter 4

Extension from Biallelic to

Multiallelic

The extension from biallelic to multiallelic markers is not as straightforward as

the contingency-table-based test. But multiallelic trend test has the same power

advantage of the allele test over the genotype test due to fewer degrees of freedom

and remains valid when Hardy-Weinberg Disequilibrium (HWD) exists in the sample.

First, we rewrite the biallelic test statistics into matrix forms. Then we extend x from

a 3 × 1 matrix into X, a m(m + 1)/2 ×m matrix for the multiallelic trend test. In

this chapter we also consider the biallelic test and the multiallelic test in proportion

form.

28
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4.1 Biallelic Trend Test

4.1.1 Biallelic Trend Test in matrix term

To extend Sasieni’s findings to multiallelic markers, we start by looking at different

representations of the biallelic trend test statistic. Slager and Schaid (2001) present

the trend test statistic in the form
u2

V ar(u)
where u = x′[(1− φ)r− φs], with φ =

R

N

and

x =


0

1

2

 r =


r0

r1

r2

 s =


s0

s1

s2

 n =


n0

n1

n2

 .

4.1.2 Algebraic Simplification

A small amount of algebra shows the equality of the trend test statistic in this

form to the one given in Chapter 2.4.1,

X2
G =

N(N(r1 + 2r2)−R(n1 + 2n2))
2

R(N −R)[N(n1 + 4n2)− (n1 + 2n2)2]
.

1. Part 1, the u term:

u = x′[(1− φ)r − φs]

=(0 1 2)

(1− R

N
)


r0

r1

r2

− R

N


s0

s1

s2



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=(0 1 2)

N −RN


r0

r1

r2

− R

N


s0

s1

s2




=(0 1 2)


N −R
N

r0 −
R

N
s0

N −R
N

r1 −
R

N
s1

N −R
N

r2 −
R

N
s2


=0×

(
N −R
N

r0 −
R

N
s0

)
+ 1×

(
N −R
N

r1 −
R

N
s1

)
+ 2×

(
N −R
N

r2 −
R

N
s2

)
=

1

N
[(N −R)(r1 + 2r2)−R(s1 + 2s2)].

2. Part 2, the V ar(u) term:

V ar(u) =V ar(x′[(1− φ)r − φs])

=V ar

[
(1− φ)x′

2∑
i=0

ri − φx′
2∑
j=0

sj

]

=V ar

[
(1− φ)x′

2∑
i=0

ri

]
+ V ar

[
φx′

2∑
j=0

sj

]
− 2Cov

[
(1− φ)x′

2∑
i=0

ri, φx
′

2∑
j=0

sj

]

=(1− φ)2x′V ar

(
2∑
i=0

ri

)
x+ φ2x′V ar

(
2∑
j=0

sj

)
x

− 2φ(1− φ)x′Cov

(
2∑
i=0

ri,
2∑
j=0

sj

)
x

=(1− φ)2x′

[
V ar(

2∑
i=0

ri) + 2
∑∑

i 6=j

Cov(ri, rj)

]
x
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+ φ2x′

[
V ar(

2∑
j=0

sj) + 2
∑∑

i 6=j

Cov(si, sj)

]
x

− 2φ(1− φ)x′

[∑
i

∑
j

Cov(ri, sj)

]
x.

3. Variance and Covariance (Given disease status, the distribution of genotypes is

multinomial with parameter vector p = (p0, p1, p2) for cases and q = (q0, q1, q2)

for controls):

V ar(ri) =
R(N −R)ni(N − ni)

N2(N − 1)
= Rpi(1− pi);

V ar(si) =
S(N − S)ni(N − ni)

N2(N − 1)
= Sqi(1− qi);

Cov(ri, rj) = −R(N −R)ninj
N2(N − 1)

= −Rpipj;

Cov(si, sj) = −S(N − S)ninj
N2(N − 1)

= −Sqiqj;

Cov(ri, sj) =
RSninj

N2(N − 1)
.

Note that the three covariance terms in the last step account for the biological

relationships among the subjects: Cov(ri, rj), for correlation between the ith

and jth cases; Cov(si, sj), for correlation between the ith and jth controls; and

Cov(ri, sj), for correlation between the ith case and jth control.
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4. Adding equations together, the trend test statistic is:

u2

V ar(u)
=

1

N2
[(N −R)(r1 + 2r2)−R(s1 + 2s2)]

2 × 1

V ar(u)

=
N(N(r1 + 2r2)−R(n1 + 2n2))

2

R(N −R)[N(n1 + 4n2)− (n1 + 2n2)2]

=X2
G.

4.1.3 Biallelic Trend Test in proportion form

If the proportion of marker alleles for case and the proportion of marker alleles

for control are equal, there is no marker-disease association. The null hypothesis is

p̂R− p̂S = 0, and the alternative hypothesis is p̂R− p̂S 6= 0, where p̂R is the proportion

of marker alleles that appears in cases and p̂S is the proportion of marker alleles that

appears in controls. Under H0, p̂R = p̂S = ˆ̄p.

p̂R =
2r2 + r1 + 0r0

2R
;

p̂S =
2s2 + s1 + 0s0

2S
;

ˆ̄p =
2n2 + n1 + 0n0

2N
;

V ar(p̂R − p̂S) = V ar(p̂R) + V ar(p̂S)

=
p̂R(1− p̂R)

NR
+
p̂S(1− p̂S)

NS
=

ˆ̄p(1− ˆ̄p)

2R
+

ˆ̄p(1− ˆ̄p)

2S
.

In matrix form,
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x =


0

1

2

 r =


r0

r1

r2

 s =


s0

s1

s2

 n =


n0

n1

n2

 .

ˆpRi
=

1

2R
X ′r, p̂Si

=
1

2S
X ′s

V ar(p̂R − p̂S)

=



V ar(pR1 − pS1) Cov(pR1 − pS1 , pR2 − pS2) Cov(pR1 − pS1 , pR3 − pS3)

Cov(pR2 − pS2 , pR1 − pS1) V ar(pR2 − pS2) Cov(pR2 − pS2 , pR3 − pS3)

Cov(pR3 − pS3 , pR1 − pS1) Cov(pR3 − pS3 , pR2 − pS2) V ar(pR3 − pS3)


= V ar(p̂R) + V ar(p̂S)

=
p̂R(1− p̂R)

NR
+
p̂S(1− p̂S)

NS
=

ˆ̄p(1− ˆ̄p)

2R
+

ˆ̄p(1− ˆ̄p)

2S
.

Since in biallelic case, we only have one value of pR and one value of pS.

The Biallelic Trend Test statistic in proportion form:

u2

V ar(u)
= (p̂R − p̂S)2 × 1

V ar(u)
.
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4.2 Multiallelic Trend Test

4.2.1 Variables used in Multiallelic Trend Test

To construct such a statistic for m alleles.

1. We create a matrix X such that:

(a) The jth column in X corresponds to the jth allele, (j = 1, 2, ...,m).

(b) An element in the jth column is the number of type j alleles.

(c) The matrix X has
m(m+ 1)

2
rows, which is the total number of possible

genotypes.

(d) X is a
m(m+ 1)

2
×m matrix.

2. r’s, s’s and n’s:

r =



r0

r1

r2
...

rm(m+1)/2


s =



s0

s1

s2
...

sm(m+1)/2


n =



n0

n1

n2

...

nm(m+1)/2


.

3. The vector of trend test statistic U is:

U = X ′[(1− φ)r − φs]
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where the vector r and s are defined before but with length equal to
m(m+ 1)

2
,

the number of distinct genotypes.

4. The V ar(U) is easily derived by replacing the vector x by the matrix X in the

previous variance function for u.

V ar(U) =(1− φ)2X ′

[
V ar(

2∑
i=0

ri) + 2
∑∑

i 6=j

Cov(ri, rj)

]
X

+ φ2X ′

[
V ar(

2∑
j=0

sj) + 2
∑∑

i 6=j

Cov(si, sj)

]
X

− 2φ(1− φ)X ′

[∑
i

∑
j

Cov(ri, sj)

]
X

4.2.2 Multiallelic Trend Test in proportion form

The allele test statistic X2
A is not conducive to a multiallelic extension. We need

a method of calculating the allelic test statistic that can be translated from a scalar

to matrix format as with the trend test statistic. Under the null hypothesis of no

marker-disease association we assume that the alleles in cases and controls come from

independent multinomial samples, each with a probability that can be estimated with

p̄ (the sample frequency of the corresponding allele).

In matrix notation the chi-square statistic can be expressed as:

(p̂R − p̂S)′[V ar(p̂R − p̂S)]−1(p̂R − p̂S)
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with U = p̂R− p̂S, p̂R =
1

2R
X ′r, p̂S =

1

2S
X ′s =

1

2N − 2R
X ′(n− r) and p̂ =

1

2N
X ′n.

V ar(p̂Ri
− p̂Si

) = V ar(p̂Ri
) + V ar(p̂Si

)

=
p̂Ri

(1− p̂Ri
)

NR
+
p̂Si

(1− p̂Si
)

NS
=
p̂i(1− p̂i)

2R
+
p̂i(1− p̂i)

2S

=

(
1

2R
+

1

2S

)
(p̂i(1− p̂i));

Cov(p̂Ri
− p̂Si

, p̂Rj
− p̂Sj

) =

(
1

2R
+

1

2S

)
(−p̂ip̂j);

V ar(p̂R − p̂S)

=



V ar( ˆpR1 − p̂S1) Cov( ˆpR1 − p̂S1 , ˆpR2 − p̂S2) . . .

Cov( ˆpR2 − p̂S2 , ˆpR1 − p̂S1) V ar( ˆpR2 − p̂S2) . . .

...
. . .

...

Cov( ˆpRm − ˆpSm , ˆpR1 − p̂S1) . . . V ar( ˆpRm − ˆpSm)



=

(
1

2R
+

1

2S

)


p̂1(1− p̂1) −p̂1p̂2 . . .

−p̂1p̂2 p̂2(1− p̂2) . . .

...
. . .

...

−p̂1p̂m . . . p̂m(1− p̂m)


=

(
1

2R
+

1

2N − 2R

)
·
[

1

(2N)2
(2Ndiag(X ′n)−X ′nn′X)

]
=

2N

2R(2N − 2R)
·
[

1

(2N)2
(2Ndiag(X ′n)−X ′nn′X)

]
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=
1

2R(2N − 2R)(2N)
· (2Ndiag(X ′n)−X ′nn′X)

with the vector n of length
m(m+ 1)

2
containing the overall sample counts for each

marker genotype and pi representing the sample frequency of the ith marker allele.

p̂R − p̂S =
1

2R
X ′r − 1

2S
X ′s

=
1

2R
X ′r − 1

2N − 2R
X ′n+

1

2N − 2R
X ′r

=
2N − 2R

2R(2N − 2R)
X ′r +

2R

2R(2N − 2R)
X ′r − 1

2N − 2R
X ′n

=
N

R

1

2N − 2R
X ′r − 1

N −R
X ′n

=
1

2N − 2R
(φ−1X ′r −X ′n)

=
1

φ(2N − 2R)
X ′(r − φn)

=
N

2R(N −R)
X ′(r − φn).

The test statistics:

X2 =(p̂R − p̂S)′[V ar(p̂R − p̂S)]−1(p̂R − p̂S)

=
N

2R(N −R)
· (r − φn)′X · [2R(2N)(2N − 2R)]

· [2Ndiag(X ′n)−X ′nn′X]
−1 · N

2R(N −R)
X ′(r − φn)

=
N2

4R2(N −R)2
· 8NR(N −R) · (r − φn)′X · [2Ndiag(X ′n)−X ′nn′X]

−1 ·X ′(r − φn)

=
2N3

R(N −R)
· (r − φn)′X · [2Ndiag(X ′n)−X ′nn′X]

−1 ·X ′(r − φn).
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The allele test statistic for multiallelic markers is X2
A = X2. The multiallelic trend

test statistic X2
G can be put into a form similar to X2

A, by replacing 2N , 2R and 2S

in X2
A into N , R and S.

X2
A =

2N3

R(N −R)
· (r − φn)′X · [2Ndiag(X ′n)−X ′nn′X]

−1 ·X ′(r − φn)

=
1
4
· 4 · 2N3

1
4
· 4R(N −R)

· (r − φn)′X · [2Ndiag(X ′n)−X ′nn′X]
−1 ·X ′(r − φn)

=
1
4
· (2N)3

1
4
· 2R(2N − 2R)

· (r − φn)′X · [2Ndiag(X ′n)−X ′nn′X]
−1 ·X ′(r − φn)

=
(2N)3

1
4
· 2R(2N − 2R)

· (r − φn)′X · [2Ndiag(X ′n)−X ′nn′X]
−1 ·X ′(r − φn)

X2
G =

N3

R(N −R)
· (r − φn)′X · [N(X ′diag(n)X)−X ′nn′X]

−1 ·X ′(r − φn).

As in the biallelic case, without the assumption of HWE, the allele test statistic

under the null hypothesis does not hold. The requirement for the equality of these

two statistics is:

[N(X ′diag(n)X)−X ′nn′X]
−1

= 2 [2Ndiag(X ′n)−X ′nn′X]
−1

=⇒ 2 [N(X ′diag(n)X)−X ′nn′X] = 2Ndiag(X ′n)−X ′nn′X

=⇒ 2N(X ′diag(n)X)−X ′nn′ = 2Ndiag(X ′n).
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These two statistics are formed with the same vector U , but have different variances.

The requirement for the equality can also be expressed in more familiar terms:



p̂1
2 p̂1p̂2 . . .

p̂1p̂2 p̂2
2 . . .

...
. . .

...

p̂1p̂m . . . p̂mp̂m


=



P̂11
1
2
P̂12 . . .

1
2
P̂21 P̂22 . . .

...
. . .

...

1
2
P̂(m)1 . . . P̂(m)(m)


where p̂i represents the frequency of allele in the sample, P̂ij represent the sample

frequency of genotype with allele i and j, P̂ii = p̂ip̂i and P̂ij = p̂ip̂j.

4.3 The Power of trend test and Sample sizes

We approximate the formula of the power of trend test and the formula of nec-

essary sampe sizes for given power of test. First, we calculate power for the trend

test in biallelic case using normal distribution without HWE. Then we use Chi-square

distribution to calculate the power for the trend test for multiallelic statistic.

4.3.1 The Power of the test and sample sizes required by

biallelic statistic

The candidate gene status of a particular allele in any individual subject can be

defined by two classes: (A) for high risk and (a) for all other alleles. We took R
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random cases and S controls, with R+S = N . Given disease status, the distribution

of genotypes is multinomial with parameter vector p = (p0, p1, p2) for cases and q =

(q0, q1, q2) for controls. The population prevalence of the disease K, γ1 and γ2, the

relative risks of genotypes Aa and AA, respectively, to aa.

The Armitage trend test is written as
u2

V ar(u)
. Under null hypothesis H0 : pi = qi:

µ0 =0;

σ2
0 =V ar(u) = V ar(x′[(1− φ)r − φs])

=Nφ(1− φ)2

[∑
i

x2i pi − (
∑
i

xipi)
2

]
+Nφ2(1− φ)

[∑
i

x2i qi − (
∑
i

xiqi)
2

]

=Nφ(1− φ)

[∑
i

x2i pi − (
∑
i

xipi)
2

]
[(1− φ)φ]

=Nφ(1− φ)

[∑
i

x2i pi − (
∑
i

xipi)
2

]

=N(σ∗0)2.

Under alternative hypothesis Ha : pi 6= qi:

µ1 =N

[
φ(1− φ)

∑
i

xi(pi − qi)

]
= Nµ∗1;

σ2
1 =V ar(u) = V ar(x′[(1− φ)r − φs])

=Nφ(1− φ)2

[∑
i

x2i pi − (
∑
i

xipi)
2

]
+Nφ2(1− φ)

[∑
i

x2i qi − (
∑
i

xiqi)
2

]

=N(σ∗1)2.
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The power for the test is:

(1− β) =P

(
Z <

−z1−α/2σ0 − µ1

σ1

)
+ P

(
Z >

z1−α/2σ0 − µ1

σ1

)
=⇒ N ≥

(z1−α/2σ
∗
0 − zβσ∗1)2

(µ∗1)
2

where pi =
figi∑
i figi

, qi =
(1− fi)gi∑
i(1− fi)gi

, K is the prevalence rate and p is the

frequency of high-risk allele (A). g0, g1 and g2 are the population genotypic probabil-

ities, and f0, f1 and f2 are the penetrances for the respective genotypes (aa), (Aa)

and (AA). g0 = (1− p)2, g1 = 2(1− p)p and g2 = p2. f0 =
K

g2γ2 + g1γ1 + g0
, f1 = f0γ1

and f2 = f0γ2.

4.3.2 Linkage Disequilibrium coefficients

We assume a biallelic disease locus with alleles A1 and A2, and the pupolation

frequency for the high-risk allele A2 is p. And the penetrance for (ArAs) is frs. We

consider markers with alleles Mi with population frequencies qi, i = 1, ...,m, m is the

number of alleles at marker locus. As in Chapman and Wijsman (1998), we assume

equifrequent alleles in all markers (qi = 1/m for all i) to maximize heterozygosity.

Thus, for any number of alleles at a marker, there are only two distinct linkage

disequilibrium (LD) coefficients. The LD coefficients Dri between Ar and Mi have
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values:

D11 = −DA, D21 = DA

D1i = −DB, D2i = DB

where DA =
(m− 1)p

m
, DB =

−p
m

. The usual bounds on linkage disequilibria imply

that p ≤ 1

m
for this fomulation.

4.3.3 Genotype frequencies

HWD at the marker locus, is denoted dij for genotype MiMj; HWD at the disease

locus, is denoted drs for genotype ArAs. The digenic gametic disequilibrium (LD) is

defined above as Dri, and the digenic nongametic disequilibrium, is denoted Dr/i for

allele Ar at the disease locus and Mi at the marker locus. And frs is the penetrance

of (ArAs).The marker genotype frequencies in affected individuals in case is:

Pr(MiMi|Aff.) =
1

K

∑
r,s

frs[(prqi +Dri)(psqi +Dsi) + prpsdii

+q2i drs + diidrs + prqiDs/i + psqiDr/i +Dr/iDs/i]

=q2i +
1

K
(2qiδ

c
i + δcii)

=Pr(MiMi) +
1

K
(2qiδ

c
i + δcii);

Pr(MiMj|Aff.) =
1

K

∑
r,s

frs[(prqi +Dri)(psqj +Dsj) + prpsdij

+qiqjdrs + dijdrs + prqjDs/i + psqiDr/j +Dr/jDs/i
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+(prqj +Drj)(psqi +Dsi) + prpsdij

+qiqjdrs + dijdrs + prqiDs/j + psqjDr/i +Dr/iDs/j]

=2qiqj +
2

K
(qiδ

c
j + qjδ

c
i + δcij)

=Pr(MiMj) +
2

K
(qiδ

c
j + qjδ

c
i + δcij).

Similarly, equations of genotype frequencies for the controls (unaffected individuals)

are obtained by simply substituting (1− frs) for frs and (1−K) for K:

Pr(MiMi|Unaff.) =
1

1−K
∑
r,s

(1− frs)[(prqi +Dri)(psqi +Dsi) + prpsdii

+q2i drs + diidrs + prqiDs/i + psqiDr/i +Dr/iDs/i]

=q2i +
1

1−K
(2qiδ

c
i + δcii)

=Pr(MiMi) +
1

1−K
(2qiδ

c
i + δcii);

Pr(MiMj|Unaff.) =
1

1−K
∑
r,s

(1− frs)[(prqi +Dri)(psqj +Dsj) + prpsdij

+qiqjdrs + dijdrs + prqjDs/i + psqiDr/j +Dr/jDs/i

+(prqj +Drj)(psqi +Dsi) + prpsdij

+qiqjdrs + dijdrs + prqiDs/j + psqjDr/i +Dr/iDs/j]

=2qiqj +
2

1−K
(qiδ

c
j + qjδ

c
i + δcij)

=Pr(MiMj) +
2

1−K
(qiδ

c
j + qjδ

c
i + δcij).

We simplify these two equations for marker genotype frequencies in cases and controls

by assuming the HWE holds in population. When HWE holds in the whole popula-
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tion, we have dij = drs = 0, it is reasonable to assume that the digentic nongametic

disequilibria are also zero. In that case:

δci =D2if11[−(1− p) + ((1− p)− p)γ1 + pγ2]

δcij =D2iD2jf11(1− 2γ1 + γ2)

where f11 is calculated by f11 =
K

g2γ2 + g1γ1 + g0
.

4.3.4 The Power of the test and sample sizes required by

multiallelic statistic

We took R random cases and S controls, with R+S = N . We assume the sample

sizes for case and control ar eequal, which means R = S =
1

2
N and φ =

R

N
= 0.5.

Given disease status, the distribution of genotypes is multinomial with parameter

PR for cases and PS for controls. K represents the population prevalence of the

disease, γ1 and γ2, the relative risks of genotypes Aa and AA, respectively, to aa. We

create the matrix X such that: The jth column in X corresponds to the jth allele,

(j = 1, 2, ...,m). An element in the jth column is the number of alleles of type j. The

matrix X has
m(m+ 1)

2
rows, which is the total number of possible genotypes.

We calculate the power for the trend test for the multiallelic statistic by using Chi-

square distribution. Under the alternative hypothesis that genotypes in case and

control are from two independent multinomial distributions with unequal probabilities

PR = Pr(MiMj|Aff.) and PS = Pr(MiMj|Unaff.), repectively. The mean of U is

µ1 = Nφ(1 − φ)X ′(PR − PS) and the variance of U is Σ1 = Nφ(1 − φ)X ′[(1 −

φ)(diag(PR)− PRP ′R) + φ(diag(PS)− PSP ′S)]X, which is the results in chapter 4.3.1.
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By the definitions for a multinomial distribution, the noncentrality parameter λ =

1

2
µ′1Σ

−1
1 µ1. The power of the test is:

Power = 1−X ′2
df,λ

where X
′2
df,λ is the left-tail area of the noncentral Chi-square distribution with df de-

gree of freedom and noncentrality parameter λ.

At any given power of test we also can compute the necessary sample sizes by com-

bining the formulas of PR, PS, X, µ1 and Σ1:

λ =
1

2
µ′1Σ

−1
1 µ1

=⇒ 2λ = µ′1Σ
−1
1 µ1

=⇒ 2λ = [µ1 = Nφ(1− φ)X ′(PR − PS)]
′

· [Nφ(1− φ)X ′[(1− φ)(diag(PR)− PRP ′R) + φ(diag(PS)− PSP ′S)]X]
−1

· [µ1 = Nφ(1− φ)X ′(PR − PS)]

=⇒ 2λ = Nφ(1− φ)(PR − PS)′X

· [X ′[(1− φ)(diag(PR)− PRP ′R) + φ(diag(PS)− PSP ′S)]X]
−1

·X ′(PR − PS)

=⇒ N−1 =
φ(1− φ)

2λ
(PR − PS)′X

· [X ′[(1− φ)(diag(PR)− PRP ′R) + φ(diag(PS)− PSP ′S)]X]
−1

·X ′(PR − PS)

=⇒ N−1 =
0.5

2λ
(PR − PS)′X

· [X ′[(diag(PR)− PRP ′R) + (diag(PS)− PSP ′S)]X]
−1
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·X ′(PR − PS)

=⇒ N =
2λ

0.5
[(PR − PS)′X

· [X ′[(diag(PR)− PRP ′R) + (diag(PS)− PSP ′S)]X]−1

·X ′(PR − PS)]−1

where the value of λ = X2
(m−1), β depends on the power of test and the degrees of

freedom (m − 1), X depends on the number of alleles at the marker locus, PR =

Pr(MiMj|Aff.) and PS = Pr(MiMj|Unaff.).



Chapter 5

Calculations

5.1 From genotypes to genes

5.1.1 Test statistics

The data concerns HLA-DQ and HLA-DR typing and cervical intraepithelial neo-

plasia (CIN). The table of the data presents the number of cases (women with CIN

3) and controls with 0 (negative), 1 (heterozygous), and 2 (homozygous) copies of the

allele DQ3 (DQ3 as co-domminants also called DQB1*03) at the HLA locus DQ. The

odds ratio and the Chi-square test statistics for heterozygous and homozygous refer

to the respective 2 × 2 subtables (Table 5.2 and Table 5.4) within Table 5.1. The

expected values are concluded in another 2× 2 table (Table 5.3 and Table 5.5). The

odds ratios: ψhetero =
45× 273

40× 100
= 3.07, ψhomo =

28× 273

40× 43
= 4.44 and the Chi-square

test statistics: X2
hetero =

∑ (Oij − Eij)2

Eij
= 21.85, X2

homo =
∑ (Oij − Eij)2

Eij
= 28.22.

Since a heterozygous woman has one copy of DQ3 and each homozygous woman
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has two copies, we can produce an allele table with twice the sample size (Table 5.6),

where DQ3 represent the total number of the DQ3 for all observations. Similarly, one

can build a table of expected values (Table 5.7).

Finally, the data in terms of the number of women with and without the allele,

treat homozygous and heterozygous genotype in one group. Such a tabulation (Table

5.8) was common when HLA typing was done by serology, so that it was not possible

to distinguish between someone who was homozygous or heterozygous for the allele

of interest. Meanwhile, we can not test the association between disease and unknown

allele. Intuitively, this table will be appropriate whenever the allele of interest is

dominant.

Table 5.1: Genotype Distribution

Negative Heterozygous Homozygous Total

Case 40 45 28 113

Control 273 100 43 416

Total 313 145 71 529

Table 5.2: I: hetero (Oij)

Negative Heterozygous Total

Case 40 45 85

Control 273 100 373

Total 313 145 458

From Table 5.1 to 5.9, one can calculate odds ratios and Chi-square test statis-
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Table 5.3: I: hetero (Eij)

Negative Heterozygous Total

Case 58 27 85

Control 255 118 43

Total 313 145 458

Table 5.4: I: homo (Oij)

Negative Homozygous Total

Case 40 28 68

Control 273 43 316

Total 313 71 384

tics (X2 =
∑ (Oij − Eij)2

Eij
). The row labeled ”I: linear” is the maximum likelihood

estimate from the model using a covariate that counts the number of DQ3 alleles

that each woman has. The test statistic for ”I: linear” is the sum of two independent

Chi-square test statistics, concluded in Table 5.10.

5.1.2 Conclusion

From Table 5.10, we can see the allele distribution gives the largest chi-squared

test statistic value. However, we can not conclude that the test for allele distribution

is the most powerful test. The power of trend test for genotype distribution, the test

for allele distribution and the test for serological distribution may be affected by the

types of allele effect and satisfaction of HWE.
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Table 5.5: I: homo (Eij)

Negative Homozygous Total

Case 55 13 68

Control 258 58 316

Total 313 71 384

Table 5.6: II: allele (Oij)

DQ3 Other Total

Case 101 125 226

Control 186 646 832

Total 287 771 1058

Table 5.7: II: allele (Eij)

DQ3 Other Total

Case 61 165 226

Control 226 606 832

Total 287 771 1058

5.2 Extension from Biallelic to Multiallelic

5.2.1 The Power of the test and sample sizes required by

biallelic statistic without HWE

Tables 5.11 to 5.14 conclude the necessary sample size N to achieve 80% power

for Armitage’s trend test under four different allelic effects (multiplicative, additive,

dominant and recessive). Under a multiplicative model, γ21 = γ2, under an additive

Table 5.8: III: ser (Oij)

DQ3 Other Total

Case 73 40 113

Control 143 273 416

Total 216 313 529

Table 5.9: III: ser (Eij)

DQ3 Other Total

Case 46 67 113

Control 170 246 416

Total 216 313 529
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Table 5.10: Odds ratios and Chi-square statistics

Table Odds ratio Chi-square

I: hetero 3.07 21.85

I: homo 4.44 28.22

I: linear 2.22 34.32

II: allele 2.81 44.85

III: serological 3.48 33.61

model, γ2 = 2γ1 − 1, under dominant model, γ1 = γ2, under recessive model, γ1 = 1.

For each genetic model, we assumed equal number of cases and controls, which means

φ = 0.5. We calculate the necessary sample sizes by N =
(z1−α/2σ

∗
0 − zβσ∗1)2

(µ∗1)
2

.

5.2.2 Conclusion

In this case, we ignore the HWE and assume the sizes of case and the sizes of

control are equal, which means R = S =
1

2
N . Table 5.11 − 5.14 conclude necessary

sample size under different allelic effects (multiplicative, additive, dominant and re-

cessive) with different values of population prevalence of the disease K, γ1 and γ2(the

relative risks of genotypes Aa and AA, respectively, to aa) and the population fre-

quencies of high-risk allele p.

First of all, the necessary sample sizes under the recessive model are much larger than

others. It is easily to understand that, because the recessive disease genes has lower

probability to affect people. Then, as the population prevalence of the disease K

increases, the necessary sample sizes decreases. Similarly, the population frequencies

of high-risk allele p increasing makes the necessary sample sizes decreasing.
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Table 5.11: Sample sizes N for mul-
tiplicative model

γ1 γ2 K p α = 0.05

2 4

0.01
0.01 599

0.10 64

0.50 19

0.10
0.01 505

0.10 54

0.50 16

3 9

0.01
0.01 240

0.10 26

0.50 7

0.10
0.01 204

0.10 22

0.50 6

Table 5.12: Sample sizes N for addi-
tive model

γ1 γ2 K p α = 0.05

2 3

0.01
0.01 604

0.10 70

0.50 33

0.10
0.01 510

0.10 59

0.50 27

3 5

0.01
0.01 243

0.10 29

0.50 16

0.10
0.01 206

0.10 24

0.50 13
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Table 5.13: Sample sizes N for dom-
inant model

γ1 γ2 K p α = 0.05

2 2

0.01
0.01 609

0.10 77

0.50 91

0.10
0.01 514

0.10 64

0.50 74

3 3

0.01
0.01 244

0.10 30

0.50 39

0.10
0.01 207

0.10 26

0.50 32

Table 5.14: Sample sizes N for reces-
sive model

γ1 γ2 K p α = 0.05

1 2

0.01
0.01 2, 544, 269

0.10 3, 424

0.50 72

0.10
0.01 2, 104, 248

0.10 2, 845

0.50 60

1 3

0.01
0.01 653, 082

0.10 1, 033

0.50 26

0.10
0.01 540, 517

0.10 862

0.50 22
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5.2.3 Sample sizes required for multiallelic distribution with

HWE and complet LD

Tables 5.15− 5.19 show the sample sizes required for achieving 80% power using

the multiallic trend test. Multiplicative, additive, dominant and recessive disease

models were examined, defined by K, p, γ1, γ2 and f11. As the usual bounds on linkage

disequilibria imply that p ≤ 1

m
mentioned in section 4.3.2, we don’t consider the

situation of the number of alleles at the marker locus greater than 2.

Table 5.15: Necessary sample sizes for multiplicative models with HWE and complete
LD

Number of alleles at marker locus

γ1 γ2 K p 2 3

2 4

0.01
0.01 2666 4, 795

0.10 32 132

0.50 3

0.10
0.01 23, 306 8, 125

0.10 36 186

0.50 3

We can conclude that, the necessary sample sizes for recessive models is much

larger than other models. The larger number of alleles at marker locus needs larger

sample size to achieve 80% power of test. Then, as the population prevalence of

the disease K is increasing, the necessary sample size is decreasing. Similarly, the

population frequencies of high-risk allele p increasing makes the necessary sample
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Table 5.16: Necessary sample sizes for additive models with HWE and complete LD

Number of alleles at marker locus

γ1 γ2 K p 2 3

2 4

0.01
0.01 27 6, 147

0.10 35 160

0.50 4

0.10
0.01 437 7, 874

0.10 24 65

0.50 5

sizes decreasing. We got similar results in the bialleic statistic in section 5.2.1.
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Table 5.17: Necessary sample sizes for dominant models with HWE and complete LD

Number of alleles at marker locus

γ1 γ2 K p 2 3

2 4

0.01
0.01 1, 319 7, 682

0.10 45 152

0.50 12

0.10
0.01 729 7, 096

0.10 31 126

0.50 12

Table 5.18: Necessary sample sizes for recessive models with HWE and complete LD

Number of alleles at marker locus

γ1 γ2 K p 2 3

2 4

0.01
0.01 2, 560 301, 995

0.10 2, 624 1, 918

0.50 7

0.10
0.01 2561 301, 995

0.10 350 963

0.50 11
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Conclusion

Initially, we consider the extension from genotype to genes under complete dom-

inance and codominance. Table 3.1 − 3.5 shows that the extension under complete

dominance and codominance are same.

We also compute the test statistics for genotype distribution and allele distribution.

Besides this, we found out the relations between X2
A and X2

G. X2
A is asymptotically

chi-squared provided the population from which the cases and controls are sampled is

in Hardy-Weinbery equilibrium. X2
G is locally most powerful if and only if the allele

effect is exactly co-dominant (i.e., if the homozygous odds ratio is the square of the

heterozygous one). Provided the population is in Hardy-Weinberg equilibrium, X2
A is

locally most powerful if and only if the allele effect is (exactly) codominant.

After that, we extend the biallelic statistic to the multiallelic statistic, and derive the

test statistics for trend tests in both normal form and proportion form. Furthermore,

we approximate the formula for the power of trend test and the formula for necessary

sample sizes at given power level for the trend test in the biallelic case using normal
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distribution without HWE and Chi-square distribution to calculate the power of the

trend test for the multiallelic statistic.

Finally, we calculate the test statistics for genotype distribution, allele distribution

and serological distribution to compare the power of the tests. It is observed that the

power of trend test for genotype distribution, the test for allele distribution and the

test for serological distribution may be affected by the types of allele effect and satis-

faction of HWE. We also calculate the necessary sample sizes for the biallelic statistic

without HWE (Table 5.11− 5.14) and the necessary sample sizes for multiallelic dis-

tribution with HWE (Table 5.15− 5.18) under different values of K, p, γ1, γ2 and f11.

Thereby, the recessive model always needs a larger sample size to achieve 80% power

compared to other models. If the population prevalence of the disease K increases, the

necessary sample sizes will decrease. Likewise, increase in the population frequencies

of high-risk allele p will decrease the necessary sample sizes.
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