University of Windsor Scholarship at UWindsor

Major Papers

Theses, Dissertations, and Major Papers

2019

Lifestyle and Obesity in Canada-A Quantile Regression Approach

Khandoker Monjure Kabir kabirk@uwindsor.ca

Follow this and additional works at: https://scholar.uwindsor.ca/major-papers Part of the <u>Behavioral Economics Commons</u>, <u>Econometrics Commons</u>, and the <u>Economic</u> <u>Theory Commons</u>

Recommended Citation

Kabir, Khandoker Monjure, "Lifestyle and Obesity in Canada-A Quantile Regression Approach" (2019). *Major Papers*. 90. https://scholar.uwindsor.ca/major-papers/90

This Major Research Paper is brought to you for free and open access by the Theses, Dissertations, and Major Papers at Scholarship at UWindsor. It has been accepted for inclusion in Major Papers by an authorized administrator of Scholarship at UWindsor. For more information, please contact scholarship@uwindsor.ca.

Life style and Obesity in Canada: A Quantile Regression Approach

By

Khandoker Monjure Kabir

A Major Research Paper Submitted to the Faculty of Graduate Studies through the Department of Economics in Partial Fulfillment of the Requirements for the Degree of Master of Arts at the University of Windsor

Windsor, Ontario, Canada

2019

© 2019 Khandoker Monjure Kabir

Life style and Obesity in Canada: A Quantile Regression Approach

By

Khandoker Monjure Kabir

Approved by

Y. Wang

Department of Economics

D. Li, Advisor

Department of Economics

May 3, 2019

Declaration of Originality

I hereby certify that I am the sole author of this thesis and that no part of this thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone's copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or any other material from the work of other people included in my thesis, published or otherwise, are fully acknowledged in accordance with the standard referencing practices. Furthermore, to the extent that I have included copyrighted material that surpasses the bounds of fair dealing within the meaning of the Canada Copyright Act, I certify that I have obtained a written permission from the copyright owner(s) to include such material(s) in my thesis and have included copies of such copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved by my thesis committee and the Graduate Studies office, and that this thesis has not been submitted for a higher degree to any other University or Institution.

Abstract

Objective: This study examines the relationship between BMI and some life-style variables, socio-economic status (SES) variables, and some socio-demographic variables related to behavior of individuals along different points of the BMI distribution by using quantile regression. Methods: A representative sample of 34,225 individuals of Canada form the Canadian Community Health survey 2014 is selected to conduct this study. Ordinary least squares (OLS) method is used at first to differentiate the results between conditional mean framework and conditional quantile framework. Quantile regression is estimated to analyze the heterogeneous relationship among fruits and vegetables, physical activity and BMI. Results: Analyses expose that fruits and vegetables intake and physical activities are negatively associated with BMI and statistically significant both for male and female. The estimates are larger in the higher quantiles for individuals. OLS overstates these associations at the lower quantile and understates at the higher quantile of the distribution. Conclusion: Findings of OLS that assumes equal responses may be misleading. The study finding suggest that effective dietary strategy and appropriate physical consciousness strategy may be helpful to reduce the risk of obesity and overweight.

Keywords

Life style, fruits and vegetables, physical activity, BMI, quantile regression

Acknowledgement

I would like to express my special thanks of gratitude to my supervisor Professor Dingding Li for her guidance, understanding, encouragement, and patience. Professor Li has given me so many useful advices, which makes me feel motivated and enthusiastic to do better. I have learned a lot from her. I am also grateful to Professor Yuntong Wang for his invaluable instructions and comments on my paper. He has provided me a lot of help in writing. I have got a strong base of support from them. Last but not least, I would like to thank all my Professors for teaching and supporting me in a way that I have reached this far and all my classmates for making days we spend together memorable.

Table of Contents

Declaration of Originality	III
Abstract	IV
Acknowledgement	V
List of Tables	VII
List of Figures	VIII
List of Appendices	IX
Introduction	1
Data	6
Background Information	8
OLS	8
Ramsey RESET Test	9
Chow test	10
Quantile Regression	11
Methods	15
OLS	16
Ramsey RESET Test	16
Chow test	18
Quantile Regression	19
Results	20
Ramsey RESET Test	20
Chow test	21
Summary statistics	22
OLS and Quantile Regression	26
Discussion	34
Conclusion	38
References	39
Appendices	43
Vita Auctoris	59

List of Tables

Table 1 Portion size of different food item	4
Table 2 Level of BMI at different quantiles for male, female and whole sample	13
Table 3 Summary Statistics for whole sample	23
Table 4 Summary Statistics for male	24
Table 5 Summary Statistics for female	25
Table 6 Regression Results (OLS and Quantile for whole sample)	26
Table 7 Regression Results (OLS and Quantile for Female)	30
Table 8 Regression Results (OLS and Quantile for Male)	32

List of Figures

Figure 1 Pie Charts for BMI fruits and vegetables, and Physical Activity	.5
Figure 2 CDF for BMI	13
Figure 3 Inverse CDF of BMI	14
Figure 4 OLS and Quantile Regression Estimates of BMI determinants for whole sample	30
Figure 5 Level of BMI with polynomial trend for whole sample in different quantiles	33

List of Appendices

Appendix 1: A. OLS results for whole sample	43
B. OLS results for male	43
C. OLS results for female	44
Appendix 2: A. Table of OLS for Ramsey RESET test – Model 1	45
B. Table of OLS for Ramsey RESET test – Model 2	45
Appendix 3: A. Quantile result for whole sample	46
B. Quantile result for male	50
C. Quantile result for female	54

INTRODUCTION

Life-style is directly related to a person's health status. The rise in obesity has adverse effects in the prevalent health condition of Canada and it has become a challenge for the policy makers to overcome this prevalent crisis. According to reports from the World Health Organization (WHO³) and the Food and Agriculture Organization (FAO) (2003), daily consumption of five servings, or a minimum of 400 grams with one portion of 80 grams, of fruits and vegetables (fv) helps in preventing several diseases. The Health and Social Care Information Centre of United Kingdom, 2013, converted portion sizes for different food items to everyday units to make it easier for people to calculate (and monitor) their daily consumption which is shown in table 1. An 80 grams portion is equal to three tablespoons of vegetables, a cereal bowlful of salad or a medium fruit (such as an apple). According to Statistics Canada³, fruits and vegetables (fv) are negatively associated with obesity. Obese people have high risk of having several health issues like asthma, arthritis, back problems, high blood pressure, diabetes, thyroid disorders, activity limitations, heart disease, urinary incontinence, and repetitive strain injuries (Statistics Canada⁴).

The rising obesity rate in Canada has been accompanied by increasingly poor eating pattern among Canadians (Azagba and Sharaf, 2011). Consumption of fv has numerous benefits including lowering the body weight, as those are full of water and fiber. Despite the benefits people do not eat sufficient amount of fv. According to Canadian Community Health Survey (CCHS) 2014, 60.5% of Canadian people reported consuming less than five times a day and this fraction is increasing day by day.

Several studies have argued that technological innovation is one of the main reasons in increasing body weight. Lakdawalla and Philipson (2002) in their study find that the growth in weight results from the agricultural innovation and also from technological changes in home and

market production as it declines physical activities. They argue that technological improvement rises the economic growth and thus helps to gain overweight. Bleich et. al. (2008) have also found the same result, calorie intake rises with the technological innovation and helps to become obese. There is indirect effect of fv on BMI through its prices, and prices of fv are positively associated with adolescents BMI (Auld and Powell, 2009). Men consume fewer servings of fruit and vegetables than women as men are less likely to concern about the healthy recommendations (Baker and Wardle, 2003).

Obesity is not just a health related problem, it creates several social and economic problems. The economic cost related to obesity is substantial (Katzmarzyk and Janssen, 2004; Finkelstein et. al., 2005), and if the benefits exceed the costs, it should be avoided through behavioral changes. Socio-economic status (SES) can be a significant factor to determine an individual's body weight. Education is an SES factor which has a significant impact on determining the obesity or overweight of a person. McLaren (2007) examined more than three hundred published studies to determine the association between obesity and SES. His findings suggest that there is a negative and significant association between SES and body weight among women in highly developed countries, whereas the relationship is positive and non-significant among men.

Obesity rate is rising worldwide. According to WHO¹, it has tripled from 1975 to 2016, and in 2016, more than 1.9 billion adults (39%) - 18 years and older - were overweight. Of these over 650 million (13%) were obese. Canada is one of the countries with higher rate of obesity. Obesity can be prevented not only by consuming more fv, but also by physical activities (Vitale and Doherty, 2016). WHO² suggests some ways to reduce obesity or overweight, increasing consumption of fruit and vegetables, and engaging in regular physical activity are the most important among those. Left pie of figure 1 shows the fraction of the underweight, normal weight, overweight and obese Canadian people and the right pie resembles the share of the active, moderately active and inactive Canadian adults, whereas the bottom pie shows the percentages of Canadian people taking fv less than 5 per day, 5 to 10 per day and more than 10 per day.

The objective of this study is to examine the relationship between BMI and some life-style variables, socio-economic status (SES) variables, and some socio-demographic variables related to behavior of individuals along different points of the BMI distribution. The study contributes in the following manner: First, the limitations of applying standard estimation models are reduced by applying quantile regression to get the nonlinear association across the different quantiles of the BMI distribution. Second, instead of examine the bivariate association between fv and BMI or physical activities and BMI, followed by most of the previous studies, this study includes a wide range of potential determinants of BMI. Third, most of the previous studies with multiple variables mostly use linear regression methods to examine the conditional mean of BMI, whereas this paper uses both conditional mean for linear association and conditional quantile for nonlinear association. Policy makers may want to give more attention to the individuals who are obese or overweight, that is in the upper quantiles of the BMI distribution. Ordinary Least Squares (OLS), estimates the average effect which may over or under estimate the influence of the covariates at different points across the BMI distribution.

Remaining of the paper is divided into 6 sections: section two consists data part used in this study, section three provides background information related to the estimation techniques and tests. Methods are discussed in section four, and section five analyzes the results of this study. The last parts of this paper discusses the results and rationality of getting this results, and the very last part includes concluding remarks.

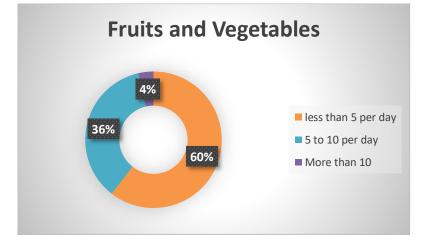

Portion size of different food items			
Food Item	Portion size		
Vegetables (fresh, raw, tinned and frozen)	3 tablespoons		
Pulses	3 tablespoons		
Salad	1 cereal bowl		
Vegetables in composites, e.g. vegetable curry	3 tablespoons		
Very large fruit, e.g. melon	1 average slice		
Large fruit, e.g. grapefruit	Half a fruit		
Medium fruit, e.g. apples	1 fruit		
Small fruits, e.g. plums	2 fruits		
Very small fruit and berries	1 average handful		
Dried fruit	1 tablespoon		
Frozen fruit/tinned fruit	3 tablespoons		
Fruit in composites, e.g. stewed fruit	3 tablespoons		
Fruit juice	1 small glass (150 ml)		

Table 1: Measures of Portion size of different food items

Source: The Health and Social Care Information Centre, 2013

Figure 1: BMI, Physical Activity, and Fruits and Vegetables

Source: CCHS 2014, Statistics Canada

DATA

Canadian Community Health Survey (CCHS) 2014 data from Statistics Canada¹ is used in this study. CCHS is a cross-sectional survey for Canadian residents that collects information related to health behavior. It provides national, provincial and intra-provincial levels of health data and the sample size each year is approximately 65,000. The CCHS produces an annual microdata file and a file combining two years of data. To conduct this study, I have used microdata of 2014 which has 63,522 respondents. My data includes only the samples of 34,315 respondents who are between 18 to 69 years of ages. Older people aged 70 and above and children lower than 18 are excluded as they do not have the control over BMI due to their consumption habit of fruits and vegetables and their physical activity.

BMI less than 60 is the dependent variable, which is self-reported by the respondents. I select CCHS data 2014 of self-reported BMI rather than calculating by using weight in kilograms divided by height in meters squared. Different literatures are studied to select the potential determinants of BMI. The explanatory variables include fruits and vegetables (fv) consumption. This indicates the number of times per day the respondent consumes fv, not the amount consumed. Physical activity - a lifestyle variable - is another determinant of BMI for which I select continuous data. This classification is based on the monthly frequency on leisure-time physical activities which lasts more than 15 minutes. Other socio-demographic and life-style variables are also included in the study. Gender is considered as dummy variable as female=1 and male=0. Age is represented in three categories – 18 to 34 (age0) as the reference group, 35 to 54 (age1) and 55 to 69 (age2). Educational attainment is represented by four dummy variables – less than secondary (edu0) as the reference group, secondary (edu1), some post-secondary (edu2) and post-secondary (edu3). Three dummy variables represent marital status of the respondents – married and common

law (partner), widowed, separated, and divorced (WSD), and single as the reference group. Immigration status of the respondents is classified as immigrant (IMM=1) and non-immigrant (NIMM=0). Three dummy categories classify smoking status as: current smoker (csmoker), former smoker (fsmoker), and never smoker (nsmoker) as the reference group. Households income is classified in three dummy categories: less than \$20,000 (income0) as the reference group, \$20,000 to less than \$60,000 and \$60,000 to \$80,000 and more. Provincial effects are categorized in 5 parts: Ontario (ON); British Columbia (BC); Quebec; Atlantic comprising Newfoundland and Labrador, Prince Edward Island, Nova Scotia, and New Brunswick as the reference group, and Western consisting of Manitoba, Saskatchewan, and Alberta.

BACKGROUND INFORMATION

OLS

The method of ordinary least squares (OLS) is attributed to Carl Friedrich Gauss, a German mathematician. OLS is the most widely used estimation procedure to find out the average behavior of outcome variable dependent on some regressors based on the conditional mean function E(y|X). For linear regression model, the relationship of dependency between variables is described properly by the OLS estimation procedure. A simple linear regression model can be

$$Y_i = \beta_1 + \beta_2 X_i + \varepsilon_i$$

Here Y is the dependent variable, X is the explanatory variable for i = 2,...,n, and ε is the disturbance term. So, the disturbance term can be

$$\varepsilon_i = Y_i - \beta_1 - \beta_2 X_i$$

And the estimated error term will be

$$e_i = y_i - b_1 - b_2 X_i$$

which shows that e (the residual) is simply the differences between the actual (y_i) and estimated Y values $(b_1 + b_2 X_i)$. If we try to summarize the residuals, all the residuals get same weight in the summation no matter how close or far each are from the regression function and the sum becomes near to zero. To overcome this problem, we use OLS which adds the squared residuals and find out the minimum sum of squared residuals. In other words, OLS coefficient minimizes the sum of squares of the residuals.

$$\sum e_i^2 = \sum (y_i - b_1 - b_2 X_i)^2$$

This method gives same weight to the residuals, whether it is close or far from the regression line. OLS estimators are completely based on the sample, thus it is observable and easy to compute. Linear least squares is appropriate for only the linear models not for non-linear ones. For non-linear models. it will provide biased and inconsistent result.

In this study, I have used BMI as the dependent variable and life style variables like fv consumption, physical activity, some variables showing SES and socio-demographic condition of the respondents as the independent variables. The relationship between BMI and the variables may be non-linear which can make OLS results biased. Still I have used OLS to compare my prediction with the method.

Ramsey RESET test

A functional form misspecification usually means that the model does not consider some important nonlinearities, and omitting important variables is also a kind of misspecification. The Ramsey RESET test could be a way to test whether there are any significant non-linear relationships persisting in a linear regression model. To check the correctness of my model, to detect omitted variables, and incorrect functional form, I have included Ramsey's RESET test which proceeds as follows:

Estimating the following model:

$$Y_i = \beta_1 + \beta_2 X_i + \varepsilon_i$$

The predicted value of y is

$$\hat{y} = b_1 + b_2 X_i$$

Testing the augmented model as

$$Y_i = \beta_1 + \beta_2 X_i + \gamma_1 \hat{y}^2 + \gamma_2 \hat{y}^3 + \varepsilon_i$$

Test for misspecification:

 $H_0: \gamma_1 = \gamma_2 = 0, \quad against \quad H_1: \gamma_1 \neq \gamma_2 \neq 0$

Rejection of null hypothesis implies that the original model is not adequate and it can be improved either by including relevant omitted variables or by taking non-linear form - higher order, log form - of the important determining variables depending on the type of the model.

Chow test

Chow test can be used to determine whether multiple regression function differs across two groups (Woolridge, 2013). The relationship between dependent and explanatory variables may be different for different groups and the values of the parameters of the model may not remain same for the groups. Here I have used Chow test to find the rationality of running separate regression for two groups, male and female. To do that, the estimation procedure follows by

Male sample: $y_i = \gamma x + \varepsilon$, n_1

Female sample: $y_i = \delta x + \varepsilon$, n_2

Whole sample: $y_i = \beta x + \varepsilon$, $n = n_1 + n_2$

Model of whole sample is the restricted model and both male and female sample models are unrestricted models. Now we need to test for structural break as follows:

 $H_0: \gamma = \delta$ against $H_1:$ not all of those equal to each other

Rejecting the null satisfies that there is structural break in the model and either intercepts or slopes or both intercepts and slopes of the two regressions are different.

Quantile Regression Model

Most familiar measures used to describe a distribution are the mean for the central location and the standard deviation for the dispersion. For skewed distributions the mean and standard deviation are not the best measures of location and shape. Quantile estimation procedure can solve the problem of location and shape of asymmetric distribution (Hao and Naiman, 2007). The concept of quantile regression was first introduced by Koenker and Bassett (1978). They tried to overcome the limitations of standard estimation procedure by the new estimation procedure regression quantiles.

Quantile regression describes the relationship at different points in the conditional distribution of dependent variable. Equivalent to the conditional mean function of linear regression, we can consider the relationship between the explanatory variables and the outcome using the conditional median function $Q_q(y|X)$, where the median is the 50th percentile, or quantile q, of the empirical distribution. The quantile $q \in (0,1)$ is that y, which splits the data into proportions q below and 1– q above: $F(y_q) = q$ and $y_q = F^{-1}(q)$: for the median, q = 0.5. $F(y_q)$ represents the cumulative distribution function (CDF) of y and y_q represents the qth quantile of outcome y conditional on X (Baum, 2013).

OLS minimizes the model prediction error $\sum e_i^2$, while quantile regression minimizes a sum that gives asymmetric penalties $(1 - q)|e_i|$ for over prediction and $q|e_i|$ for under prediction.

Quantile regression estimator is asymptotically normally distributed. We can use quantile regression to model conditional quantiles of the joint distribution of y and x (Baum, 2013).

Let $\hat{y}(X)$ is the predictor function and $e(X) = (y - \hat{y}(X))$ be the prediction error. Then $L(e(X)) = L(y - \hat{y}(X))$ denotes the loss associated with the prediction error. If L(e) = |e|, the optimal predictor is the conditional median, med(y|X), and the optimal predictor is that $\hat{\beta}$ which minimizes $\sum_i |y_i - X'_i\beta|$ (Baum, 2013).

The quantile regression estimator for quantile q minimizes the objective function

$$Q(\beta_q) = \sum_{i:y_i \ge X_i'\beta_q}^{N} |y_i - X_i'\beta_q| + \sum_{i:y_i < X_i'\beta_q}^{N} (1-q) |y_i - X_i'\beta_q|$$

where 0 < q < 1.

Bootstrap standard errors are used for minimizing this non-differentiable function rather than standard analytical standard error (Baum, 2013).

The advantage of quantile regression is that if the errors are highly non-normal, OLS can be inefficient but quantile regression is more efficient in this case and it is robust for outliers. The CDF, $F(y_q)$, for BMI is illustrated in figure 2 and the inverse CDF, y_q , is illustrated in figure 3. Table 2 presents the level of BMI at different quantiles for male, female and whole sample.

Figure 2: CDF of BMI when BMI<60

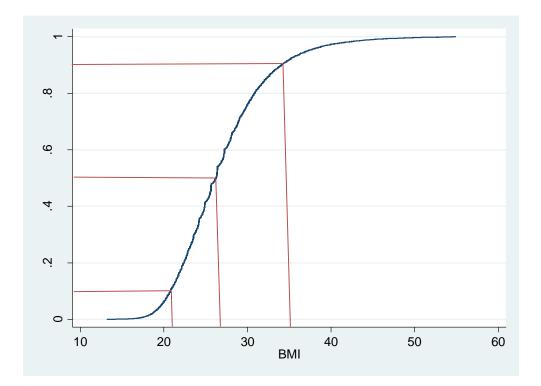


Table 2: Level of BMI at different quantiles for male, female and whole sample

Quantiles of BMI	Male	Female	Whole
Q 10	21.97	20.19	20.83
Q 20	23.49	21.59	22.43
Q 30	24.8	22.78	23.58
Q 40	25.63	24.03	24.89
Q 50	26.76	25.4	26.23
Q 60	27.9	26.91	27.25
Q 70	29.28	28.65	28.92
Q 80	30.94	30.76	30.84
Q 90	33.74	34.18	34.04

Source: Authors calculation

Cumulative distribution function ranges between 0 and 1. For the values of BMI lower than 60, CDF has a nice 'S' shape which shows that BMI probably lower than 18 has zero distribution and it is rising until somewhere below 50 and after that 100 percent of the distribution is between 50 to 56 BMI. In figure 3, we see the inverse CDF of BMI for different percentiles in different quantiles. The 10th, 50th and 90th quantiles are 20.83, 26.23, and 34.04. The reference lines give the quantiles of underweight, normal weight, overweight and obese. The graph shows that majority of the sample is in between normal and overweight. The marginal effects of covariates on BMI are considered on different quantiles.

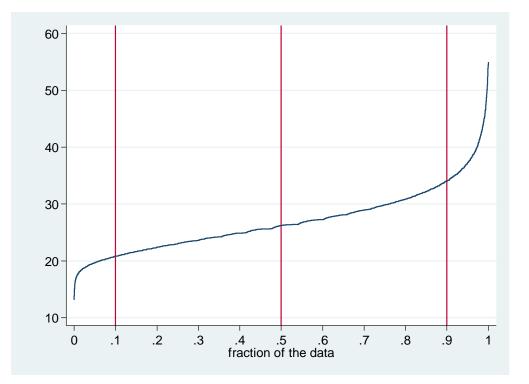


Figure 3: The empirical inverse CDF of BMI when BMI<60

METHODS

Different economic models are developed to analyze decisions associated with many economic problems. Consumption behavior of different individuals is explained and analyzed through the problem of utility maximization. All the economic agents always try to maximize their utility through their activities and behavior facing some kind of constraints which they take into account. Food consumption is the basic need for any individual and people try to maximize their utility by choosing optimum level of food consumption. Food consumption and body weight are related to economic decision and research on these topics are still going on vastly. Ruhm (2012) takes help from the behavioral economics associated with traditional economic theories to study the determining factors of individual weight. According to Ruhm (2012), 'The combination of economic and biological factors is likely to result in overeating, in the current environment of cheap and readily available food' (p: 2). He proposes a dual decision model which is characterized by overeating and excess weight. Azagba and Sharaf (2012) examines the relationship between fruits and vegetables consumption and BMI using quantile regression.

Research articles related to health commonly use multivariate regression techniques to measure the relationship of health outcomes with clinical characteristics, sociodemographic factors, socio-economic status (SES), life-style and policy changes (Le Cook and Manning, 2013). Following Azagba and Sharaf's (2012) model and the concept of overeating and excess weight of Ruhm (2012), I have included the life style and SES factors - fruits and vegetables consumption, physical activity, income, education and other - in my model to determine the relationship between BMI and these factors. To estimate this relationship, I have examined the following model at first:

Ordinary Least Squares (OLS)

$$BMI_{j} = \alpha + \beta f v_{j} + \mu phys_act_{j} + \theta X_{j} + \varepsilon$$

Where j denotes individual associated with province of residence. BMI represents an individual's reported Body Mass Index. fv denotes the frequency of fruits and vegetables consumption, phys_act denotes monthly physical activity of individuals, and X is a vector of other regressors. ε is the disturbance term which remains constant for every individual and province of residence.

Ramsey RESET test

Ramsey RESET test is designed to detect omitted variables and incorrect functional form of a model. To determine the nonlinearity of the basic model that I propose in this study, it is useful to test for misspecification of the model.

Model 1:
$$BMI_i = \beta_1 + \beta_2 f v_i + \beta_3 phys_act_i + \varepsilon$$

This is the linear basic model which I proceed with. Now I check the nonlinearity of the model that is whether the model has specification error or not. To do that I use Ramsey RESET test. To test for nonlinearity, I proceed through following

$$\widehat{BMI}_{j} = b_{1} + b_{2}fv_{j} + b_{3}phys_act_{j}$$

$$BMI = \beta_1 + \beta_2 fv + \beta_3 phys_{act} + \gamma_1 \widehat{BMI^2} + \gamma_2 \widehat{BMI^3} + \gamma_3 \widehat{BMI^4} + e$$

To test this model, I have a null and alternative hypothesis.

H₀: $\gamma_1 = \gamma_2 = \gamma_3 = 0$, against

H1: At least one of this is not equal to zero

This is equivalent to test between:

H₀: The model is adequate

H₁: The model is not adequate

F-test is used to test the hypothesis.

$$F = \frac{(SSE_R - SSE_{UR})/j}{SSE_{UR}/(n-k)}$$

Rejecting the null concludes that the model is not adequate and there is a way to improve the model.

Firstly, the RESET test is done for the linear regression function to test whether the model can be improved or not and then we add quadratic term in the model to test the possible non-linearity of the model. I have added second order higher terms for fv and physic_act with the basic model. The determinants of BMI are then fv, physic_act, fv² and phys_act².

Model 2:
$$BMI_j = \beta_1 + \beta_2 fv_j + \beta_3 phys_act_j + \beta_4 fv^2 + \beta_5 phys_act^2 + \varepsilon$$

$$\widehat{BMI}_{j} = b_1 + b_2 f v_j + b_3 phys_act_j + b_4 f v^2 + b_5 phys_act^2$$

I carry on the same procedure as model 1.

$$BMI = \beta_1 + \beta_2 fv + \beta_3 phys_{act} + \beta_4 fv^2 + \beta_5 phys_{act}^2 + \gamma_1 \widehat{BMI}^2 + \gamma_2 \widehat{BMI}^3 + \gamma_3 \widehat{BMI}^4 + u$$

The testing procedure follows the same as before.

H₀: $\gamma_1 = \gamma_2 = \gamma_3 = 0$, against

H1: At least one of this is not equal to zero

This is equivalent to test between:

H₀: The model is adequate

H₁: The model is not adequate

Rejecting a null hypothesis of $\gamma_1 = \gamma_2 = \gamma_3 = 0$ states that the model has nonlinearity and it can be improved.

F-test is used to test the hypothesis.

$$F = \frac{(SSE_R - SSE_{UR})/j}{SSE_{UR}/(n-k)}$$

Chow test

The Chow Test inspects whether parameters (slopes and the intercept) of one group are different from those of other groups, but it does not explicitly tell us which coefficient, intercept or slope, is different or whether both are different in the two groups.

Restricted model:

$$BMI_{j} = \alpha_{1} + \alpha_{2}fv_{j} + \alpha_{3}phys_act_{j} + \alpha_{k}X_{j} + \varepsilon$$

And unrestricted models:

$$BMI_{mj} = \gamma_1 + \gamma_2 f v_{mj} + \gamma_3 phys_act_{mj} + \gamma_k X_{mj} + \varepsilon$$

$$BMI_{fj} = \delta_1 + \delta_2 f v_{fj} + \delta_3 phys_act_{fj} + \delta_k X_{fj} + \varepsilon$$

The first model is for male and second one is for female. Now we test

 $H_0: \gamma = \delta$ against $H_1:$ not all of those equal to each other

Which is equivalent to testing:

H₀: There is no structural break

against

H₁: There is structural break

The F-statistic is used to test the hypotheses.

$$F = \frac{(SSE_R - SSE_{UR})/K}{SSE_{UR}/(n - 2K)}$$

Rejecting the null concludes that the two models do not have same parameters (slopes or intercepts or both), thus there is structural break between the models.

Quantile regression model

$$Q_{BMI}(q|fv_j, phys_act_j, X_j) = \alpha(q) + \beta(q)fv_j + \mu(q)phys_act_j + \theta(q)X_j + \varepsilon_i^q$$

Q represents qth conditional quantile for BMI given fv, physic_act and X is Q_{BMI} . The coefficients find out the heterogeneous association between BMI and explanatory variables along the different points in the conditional distribution. ε_j^q represents the disturbance term varying with the different values of quantile. A quantile regression parameter illustrates that a one unit change in the regressor at a specific quantile, produces a change in the conditional quantile of BMI, the dependent variable.

RESULTS

Ramsey RESET test

When the relationship between the dependent and observed explanatory variables is not properly specified, the problem of functional form misspecification arises. This leads to biased and inconsistent estimator. So before proceed through the estimation procedure, it is necessary to be sure about choosing the correct model and estimation technique. To do that I run OLS at first for different models with and without quadratic term, and with only some limited explanatory variables, and then, I check the Ramsey RESET test.

For model 1, which I discussed in methods part, I have got the estimated values by running OLS.

 $B\hat{M}I = 28.325 - 0.140 fv - 0.026 phys_act$ p-value (0.000) (0.000) (0.000)

Now Ramsey RESET test is conducted through the procedure described in methods section where the null hypothesis is 'The model is adequate' against the alternative of 'The model is not adequate'. Rejecting the null ensures that the model is inadequate to analyze the true situation and it can be modified.

F-statistic = 20.04 and p-value = 0.0000 and Adjusted $R^2 = 0.0221$

F-value is large and p-value is zero, well below the level of significance (0.01, 0.05 and 0.10), which indicates that we reject the null hypothesis and concludes that our original model is inadequate and it can be improved. To improve the model, two quadratic explanatory variables fv^2 and phys_act² are included with fv and physical activity into model 2 to determine the omission of nonlinearity.

The estimated values for model 2, again, which I discussed in methods section, by running OLS are

$$B\hat{M}I = 28.670 - 0.182 fv - 0.045 phys_act + 0.0035 fv^2 + 0.0002 phys_act^2$$

p-value (0.000) (0.000) (0.000) (0.053) (0.000)

Using the similar procedure of model 1, described before, I measure the value of F-statistic and p-value which are

F-statistic = 1.84 and p-value = 0.1378 and Adjusted R² = 0.0241

This model shows improvement, F-value decreases substantially and p-value rises enough to reach higher than all - 1%, 5%, and 10% - the level of significance (α) and also reaches the decision of non-rejection. So, we cannot reject the null hypothesis and can conclude that the model is adequate to get the expected outcome.

For this model, as we cannot reject the null, the simple nonlinear model outperforms the linear model. The simple nonlinear regression model still not flexible enough. In order to get the complete picture of the association of the key variables with BMI we use a different estimation technique - quantile regression.

Chow test

Chow test is based on the OLS regression when we try to pool two or more groups together and try to interpret those groups as one which is mostly unrealistic. In this study, I have a huge amount of data which may help to run the regression separately for female and male. Pooling data for both groups may provide good result but may not be appropriate. So, I conducted Chow test to provide the rationality of running regression separately for female and male. As I have mentioned earlier, pooled sample model is restricted model, and male and female are unrestricted ones.

$$SSE_{R} = 980234.317$$

$$SSE_{UR} = SSE_m + SSE_f = 965214.04$$

$$F_{(18, 34279)} = \frac{(SSE_R - SSE_{UR})/K}{SSE_{UR}/(n-2K)} = 29.63$$

 F_c (18, 34279) \approx 1.88 at α = .01. So we reject the null hypothesis and can conclude that there is structural break between these two groups and we should run regression separately.

Summary statistics

Table 3 represents the descriptive summary of the variables for whole sample, and table 4 and 5 summarizes the mean and standard deviation of the variables for male and female, respectively. The mean BMI is 26.94, means that on average, the study group of people are little overweight. BMI is categorized in underweight (18.5 or less), acceptable or normal weight (18.6 to 24.9), overweight (25 to 29.9) and obese (30 or more) (Statistics Canada⁴, Health reports 1999). Males have relatively higher BMI on average (27.47) than females (26.49). Both of the groups are overweight on average. The average number of fv intake is 4.63 which is little below the recommended number, 5 times a day. Females consume 5 times per day on average whereas males consume on average only 4 times per day. On an average, the respondents' monthly frequency of physical activity is 28.42 times. Males frequency of physical activity is little higher than that of females. Among the study population, 46% are male and 54% are female. 35% of the respondents are ages between 35 and 54. In term of educational level attainment, almost 63% of the target population have completed 1 or more post-secondary educations, and 11% have less than secondary education. Females achievements of higher education is more than that of males. Only 22% of the study population is currently smoker, whereas 44% are former smokers who have already quit smoking. Only 13% of the target population are immigrants, and 47% of the study population earns yearly income between 20 thousand to below 60 thousand dollars. Most of the respondents are the residents of Ontario, almost 33%.

Table 3: Summary	Statistics of	of who	le sample
------------------	---------------	--------	-----------

Variables	Mean	St. Deviation
BMI	26.94	5.54
Fruits and vegetables (fv)	4.63	2.57
Physical_activity	28.41	25.30
Gender		
Male	.463	.499
Female	.537	.499
Age		
Age 18-34 (age0)	.238	.426
Age 35-54 (age1)	.345	.475
Age 55-69 (age2)	.418	.493
Marital Status		
Married (partner)	.578	.494
Separated (WSD)	.168	.374
Single	.254	.435
Education		
Lower than secondary (edu0)	.111	.314
Secondary (edu1)	.211	.408
Some post-secondary (edu2)	.052	.222
Post-secondary (edu3)	.626	.484
Immigration status		
Immigrants (IMM)	.134	.341
Non-immigrants (NIMM)	.866	.341
Smoking status		
Current smoker (csmoker)	.222	.416
Former smoker (fsmoker)	.437	.496
Never smoker (nsmoker)	.341	.474
Income level		
Income level<20 (income0)	.251	.434
Income level: 20 - <60	.467	.499
(income1)		
Income level: >=60 (income2)	.281	.450
Province		
Ontario (ON)	.326	.469
Quebec	.203	.402
British Columbia (BC)	.124	.330

Atlantic	.134	.341
Western	.213	.409

Observations

34,315

Weighted statistics using the CCHS sampling weights

Table 4: Summary Statistics of Male

Variables	Mean	St. Deviation
BMI	27.47	5.02
Fruits and vegetables (fv)	4.20	2.49
Physicl_activity	28.71	26.16
Age		
Age 18-34 (age0)	.249	.432
Age 35-54 (age1)	.347	.476
Age 55-69 (age2)	.405	.491
Marital Status		
Married (partner)	.584	.493
Separated (WSD)	.127	.333
Single	.290	.454
Education		
Lower than secondary (edu0)	.122	.328
Secondary (edu1)	.213	.409
Some post-secondary (edu2)	.054	.225
Post-secondary (edu3)	.612	.487
Immigration status		
Immigrants (IMM)	.136	.343
Non-immigrants (NIMM)	.864	.343
Smoking status		
Current smoker (csmoker)	.246	.431
Former smoker (fsmoker)	.455	.498
Never smoker (nsmoker)	.300	.458
Income level		
Income level<20 (income0)	.175	.380
Income level: 20 - <60	.441	.496
(income1)		
Income level: >=60 (income2)	.384	.486
Province		
Ontario (ON)	.323	.467
Quebec	.199	.399
British Columbia (BC)	.128	.334
Atlantic	.130	.336
Western	.221	.415

Observations

15,886

Weighted statistics using the CCHS sampling weights

Table 5: Summary Statistics of Female

Variables	Mean	St. Deviation
BMI	26.48	5.91
Fruits and vegetables (fv)	5.00	2.57
Physical_activity	28.16	24.53
Age		
Age 18-34 (age0)	.228	.420
Age 35-54 (age1)	.343	.475
Age 55-69 (age2)	.429	.495
Marital Status		
Married (partner)	.573	.495
Separated (WSD)	.204	.403
Single	.223	.416
Education		
Lower than secondary (edu0)	.101	.302
Secondary (edu1)	.209	.407
Some post-secondary (edu2)	.051	.220
Post-secondary (edu3)	.639	.480
Immigration status		
Immigrants (IMM)	.133	.340
Non-immigrants (NIMM)	.867	.340
Smoking status		
Current smoker (csmoker)	.202	.401
Former smoker (fsmoker)	.422	.494
Never smoker (nsmoker)	.376	.484
Income level		
Income level<20 (income0)	.317	.465
Income level: 20 - <60	.491	.500
(income1)		
Income level: >=60 (income2)	.192	.394
Province		
Ontario (ON)	.328	.470
Quebec	.207	.405
British Columbia (BC)	.122	.327
Atlantic	.138	.345
Western	.206	.404

Observations

18,429

Weighted statistics using the CCHS sampling weights

OLS and Quantile regression

The OLS estimates and the quantile regression for BMI of the whole sample are illustrated in table 6 for some selected quantiles between 10th and 90th BMI distribution. Analyzing the results of OLS, we see a negative relationship between fv and BMI, and physical activity and BMI which are consistent with our expectation. These can be interpreted as, increase in one serving of fv per day will lower BMI by .081 point, on average, and lowering monthly physical activity one time will increase the chance of getting higher BMI by .025 point, on average. Both of these are statistically significant that is these are statistically different than zero.

Variables	OLS	Quantile Regression estimates				
		10	30	50	70	90
fv	109***	103***	108***	115***	113***	119***
	(.012)	(.012)	(.014)	(.014)	(.014)	(.029)
Physical_activity	026***	005***	013***	019***	030***	045***
	(.001)	(.001)	(.001)	(.001)	(.002)	(.004)
Age						
Age1 (35-54)	1.589***	.915***	1.359***	1.537***	1.576***	1.613***
	(.084)	(.089)	(.093)	(.114)	(.096)	(.219)
Age2 (55-69)	1.671***	1.384***	1.862***	1.852***	1.592***	1.04***
-	(.085)	(.080)	(.082)	(.121)	(.118)	(.146)
Marital Status						
Partner	.101	.442***	.411***	.432***	.205**	652***
	(.076)	(.078)	(.060)	(.085)	(.100)	(.245)
WSD	.092	.069	.007	.225*	.324**	.109
	(.100)	(.098)	(.074)	(.131)	(.145)	(.291)
Education						
edu1 (Secondary)	468***	046	415***	426***	735***	872***
· · ·	(.109)	(.125)	(.113)	(.100)	(.124)	(.266)
edu2 (Some post-	553**	196	560***	737***	895***	468
secondary)	(.156)	(.188)	(.174)	(.207)	(.318)	(.519)
edu3 (Post-	849***	421***	896***	884***	-1.104***	-1.135***
secondary)	(.099)	(.111)	(.110)	(.102)	(.152)	(.326)
Immigration status	·	·			•	·

Table 6: OLS and Quantile results of BMI determinants for selected quantiles- Whole Sample

IMM	-1.341*** (.088)	625*** (.074)	763*** (.082)	967*** (.085)	-1.442*** (.092)	-2.311*** (.217)
Smoking status	(1000)	(,)	(1002)	()	(,_)	()
csmoker	675***	230**	467***	452***	597***	998***
	(.082)	(.093)	(.071)	(.081)	(.123)	(.256)
fsmoker	.591***	.629***	.609***	.609***	.626***	.629***
	(.068)	(.082)	(.074)	(.072)	(.121)	(.177)
Income level				. ,		
income1 (Income	.118	.691***	.464***	.225***	.040	753***
level (20 - <60))	(.074)	(.092)	(.080)	(.071)	(.10)	(.180)
Income2 (Income	.322***	1.201***	1.041***	.711***	.183*	-1.097***
level(=>60))	(.086)	(.089)	(.086)	(.089)	(.094)	(.193)
Province						
ON	430***	423***	482***	390***	475***	171
	(.095)	(.100)	(.121)	(.144)	(.157)	(.246)
Quebec	-1.423***	945***	-1.148***	-1.249***	-1.487***	-1.684***
	(.103)	(.108)	(.108)	(.139)	(.147)	(.316)
BC	-1.129***	633***	-1.004***	-1.085***	-1.270***	-1.119***
	(.116)	(.099)	(.125)	(.136)	(.169)	(.300)
Western	212**	441***	421***	242*	137	.429
	(.102)	(.087)	(.110)	(.126)	(.127)	(.306)

Observations

34,315

Standard errors are in parentheses. p<0.01***, p<0.05** and p<0.10* Authors estimation using the CCHS sampling weights

The coefficient of fv and physical activity vary across quantiles of the conditional BMI distribution as quantile regression helps us to examine the heterogeneous responses of individual's BMI to the explanatory variables at different tails of the distribution (Azagba and Sharaf, 2012). The marginal effects of frequency of fv intake and monthly leisure time physical activity on BMI increase for individuals in the higher quantile. For example, the coefficient of fv at the 90th quantile is almost three times the estimate at the 10th quantile. For physical activity it is almost 4 times in 90th quantile than in 30th quantile. Moreover, in lower quantiles, the decrease in BMI brought by fv consumption and leisure time physical activity is lower compared to the conditional mean estimates. The reason of getting these kind of estimated values can be the consumption of fv

may be an effective factor to control over excessive weight and actively engagement in physical activities may help people to get rid of excess weight and reduce the risk of obesity.

Figure 4 displays the OLS and quantile regression estimates over the entire BMI distribution for the determinants of BMI for the whole sample. The figure shows the substantial differences across the quantiles of the BMI distribution. The vertical axis gives the values of estimated coefficient while the horizontal axis gives the quantiles of that variable. The horizontal bolded solid line gives the estimated coefficient of OLS regression, and the dotted lines below and above the solid line, represents the corresponding confidence intervals. The OLS regression coefficients are different for different variables but it remains same across quantiles. However, coefficients of quantile regression are plotted as lines varying across the quantiles. These shaded lines of quantile regression coefficients show the nonlinear association between BMI and the studied explanatory variables. For physical activity, all the coefficients are negative both for OLS and quantile regression, which shows the negative impact of physical activity on BMI. As all the coefficients are well below zero these are statistically different from zero. Age has a positive relationship with BMI showing that the older people have higher BMI than the younger ones. Considering income estimates, increasing in income lowers BMI but it is not always significant, meaning that it has lower impact on determining the BMI level. Higher level of education lowers BMI maybe because well educated people are more concerned about their health status. Current smokers, and immigrants have negative association with BMI whereas former smokers, married and separated people have positive and more or less statistically significant impact on BMI.

Table 7 and 8 report the quantile regression and OLS results for female and male respectively. Figure 5 shows the level of BMI across different quantiles of distribution for male, female and whole sample and polynomial trend of whole sample. The estimates for fv and physical

activity for both male and female shows almost similar pattern as the whole sample shown in table 6. Nonetheless all the coefficients are statistically significant. Other covariates are quite similar to the whole sample except married female have negative association with BMI for 50th, 70th and 90th quantiles and married male has all the positive association except in 90th quantile. Another exception is related to the socio-economic status – education and income. The association of income and BMI is positive and most are statistically significant for males, and the association is negative in most of the quantiles and only a few are statistically significant for females.

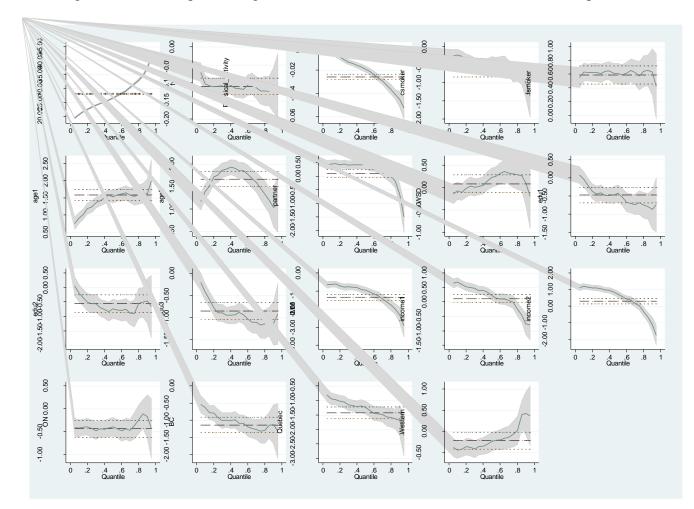


Figure 4: OLS and quantile regression estimates for BMI determinants-whole sample

Table 7: OLS and Quantile results of BMI determinants for selected quantiles- female

Variables	OLS	Quantile Regression estimates						
		10	30	50	70	90		
fv	063***	038***	041***	041**	059**	119***		
	(.017)	(.014)	(.015)	(.018)	(.024)	(.034)		
Physical_activity	038***	008***	020***	033***	047***	061***		
	(.002)	(.001)	(.001)	(.002)	(.002)	(.004)		
Age								
Age1 (35-54)	1.792***	.960***	1.341***	1.910***	2.118***	1.840***		
-	(.122)	(.094)	(.105)	(.117)	(.198)	(.299)		
Age2 (55-69)	1.943***	1.414***	2.007***	2.481***	2.157***	1.095***		
	(.123)	(.106)	(.141)	(.134)	(.218)	(.309)		
Marital Status								

Partner	241** (.112)	.421*** (.097)	.411*** (.112)	107 (.156)	399*** (.151)	-1.148*** (.308)
WSD	023	.276**	.315**	.184	.111	165
	(.142)	(.131)	(.141)	(.159)	(.176)	(.381)
Education						
edu1 (Secondary)	290*	.103	470***	365*	554***	.091
-	(.164)	(.135)	(.169)	(.196)	(.205)	(.379)
edu2 (Some post-	366	301	686***	734**	491	.651
secondary)	(.232)	(.222)	(.241)	(.285)	(.346)	(.527)
edu3 (Post-	640***	226*	855***	743**	929***	563
secondary)	(.152)	(.130)	(.203)_	(.206)	(.199)	(.389)
Immigration						
status						
IMM	-1.326***	574***	736***	817***	-1.307***	-2.438***
	(.129)	(.121)	(.107)	(.138)	(.128)	(.232)
Smoking status						
csmoker	445***	495***	307***	141	286*	636**
	(.121)	(.096)	(.115)	(.120)	(.173)	(.255)
fsmoker	.738***	.437***	.575***	.789***	.886***	.786***
	(.097)	(.069)	(.114)	(.122)	(.137)	(.250)
Income level						
income1 (Income	178*	.232***	.033	258*	191	798***
level (20 - <60))	(.100)	(.080)	(.097)	(.150)	(.146)	(.275)
Income2 (Income	676***	.046	299**	587***	819***	-1.731***
level(=>60))	(.131)	(.131)	(.149)	(.194)	(.132)	(.249)
Province						
ON	577***	301***	582***	583***	522***	327
	(.137)	(.151)	(.141)	(.163)	(.170)	(.275)
Quebec	-1.919***	.781***	-1.449***	-1.745***	-2.006***	-2.602***
	(.147)	(.151)	(.167)	(.143)	(.224)	(.319)
BC	-1.326***	.573***	-1.138***	-1.401***	-1.580***	-1.369***
	(.168)	(.166)	(.147)	(.184)	(.175)	(.328)
Western	323**	273*	571***	446**	192	.181
	(.147)	(.162)	(.219)	(.214)	(.260)	(.272)
Observations			18,4	129		

Standard errors are in parentheses. p<0.01***, p<0.05** and p<0.10* Authors estimation using the CCHS sampling weights

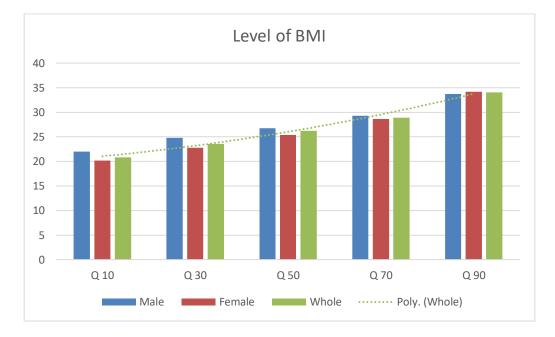

Variables	OLS	Quantile Regression estimates						
		10	30	50	70	90		
fv	080***	021	068***	084***	104***	116**		
	(.016)	(.017)	(.017)	(.017)	(.024)	(.046)		
Physical_activity	015***	.0006	003***	011***	020***	032***		
	(.002)	(.001)	(.0009)	(.001)	(.002)	(.003)		
Age	. ,		. ,	. ,		. ,		
Age1 (35-54)	1.514***	1.176***	1.328***	1.279***	1.296***	1.288***		
	(.111)	(.133)	(.107)	(.116)	(.174)	(.317)		
Age2 (55-69)	1.40***	1.281***	1.376***	1.306***	1.198***	.965**		
	(.114)	(.120)	(.100)	(.107)	(.165)	(.379)		
Marital Status						× /		
Partner	.554***	.707***	.830***	.875***	.666***	015		
	(.102)	(.105)	(.115)	(.103)	(.138)	(.252)		
WSD	.482***	.391*	.539***	.726***	.772***	091		
	(.142)	(.201)	(.171)	(.156)	(.196)	(.410)		
Education		~ /	× ,			~ /		
edu1 (Secondary)	521***	030	170	366**	746***	-1.594***		
·····))	(.140)	(.234)	(.161)	(.181)	(.240)	(.460)		
edu2 (Some post-	631***	005	257*	777***	993**	-1.238*		
secondary)	(.202)	(.230)	(.140)	(.194)	(.386)	(.708)		
edu3 (Post-	755***	160	385***	633***	-1.013***	-1.555***		
secondary)	(.126)	(.200)	(.090)	(.141)	(.181)	(.368)		
Immigration status			(/					
IMM	-1.444***	959***	954***	-1.151***	-1.546***	-2.096***		
Smalring status	(.115)	(.125)	(.122)	(.134)	(.172)	(.368)		
Smoking status								
csmoker	-1.105***	450***	839***	888***	-1.056***	-1.336***		
	(.108)	(.109)	(.114)	(.132)	(.172)	(.351)		
fsmoker	.261***	.493***	.366***	.286**	.179	.404		
	(.094)	(.093)	(.091)	(.119)	(.171)	(.287)		
Income level								
income1 (Income	.291**	1.101***	.660***	.365**	.018	674***		
level (20 - <60))	(.113)	(.161)	(.066)	(.102)	(.116)	(.256)		
Income2 (Income	.516***	1.679***	1.067***	.646***	.249*	822***		
level(=>60))	(.125)	(.170)	(.084)	(.108)	(.136)	(.290)		
Province								
ON	204	228*	177	102	279*	250		
	(.128)	(.120)	(.136)	(.131)	(.150)	(.293)		
Quebec	876***	787***	625***	706***	-1.086***	799**		
	(.138)	(.111)	(.122)	(.142)	(.153)	(.401)		

Table 8: OLS and Quantile results of BMI determinants for selected quantiles- male

BC	887***	638***	756***	724***	993***	572
	(.154)	(.147)	(.156)	(.148)	(.222)	(.372)
Western	.013	133	168*	.038	.032	.901***
	(.137)	(.125)	(.100)	(.142)	(.190)	(.210)
Observations]	15,886		

Standard errors are in parentheses. $p<0.01^{***}$, $p<0.05^{**}$ and $p<0.10^{*}$ Authors estimation using the CCHS sampling weights

Figure 5: Level of BMI with polynomial trend for whole sample in different quantiles

Authors calculation using CCHS 2014 data

DISCUSSION

Canada is one of the first countries to adopt body mass index (BMI) as a useful surrogate anthropometric measure of obesity (Lau, 2007). Emerging estimates of the direct cost - health care, and indirect costs of physical inactivity - loss of economic output due to illness, disease-related work disabilities or premature death - are alarming (WHO). The problem of prevalence of overweight and obesity is very concerning all over the world because obesity is advancing towards children and adolescents along with adults.

Over the past century, life expectancy at birth in Canada has risen substantially to 79.8 years for males, and 83.9 years for females (Statistics Canada²). Increases in the quantity of life cannot say a lot about the quality of life (Statistics Canada³). Quality of life is associated with healthy lifestyle which can face potential risk in the presence of overweight or obesity. BMI is associated with food habit, lifestyle behavior - smoking and physical activity, and socio-economic status – income, education.

'Eating and body weight are economic decisions, in that individuals presumably tradeoff the utility from current food intake against the associated monetary expense and disutility of future weight gains' (Ruhm, 2012, p: 1). When we consider losing weight or maintaining a healthy body weight, the concept of effective dietary strategies and adequate energy expenditure are raised despite physical, psychological, social and economic consequences. Therefore, the benefits of consuming fv and spending time on physical activities in weight management is undoubtable. In this study, I examine the association between the distributional attributes of BMI with the consumption of fv and energy expenditure through models under conditional mean framework and conditional quantile framework using the data from Canadian Community Health Survey 2014. Based on unconditional mean framework, I find that the daily average number of fv intake is little higher than 4 which is lower than the recommended amount of 5 servings per day. For the conditional mean framework, OLS, results show that the conditional mean of BMI is negatively and significantly associated with fv consumption. The accuracy of some results of the conditional mean framework models are not always satisfactory. This kind of models are actually based on the linear relationships between the response variable and predictors. As the determinants are nonlinearly related to BMI, which I have proved by using RESET test, quantile regression technique is added to get this association that varies across the conditional BMI distribution. This is almost same for association between physical activity and the conditional BMI distribution. Regular physical activity improves the power of survival and helps the body to function well, which can improve quality of life (Lim and Taylor, 2005). The coefficients of physical activities both for males and females reveal similar patterns as the whole population estimates. The OLS model overstates the effect of fv consumption and physical activity on the BMI at the lower half and understates at the upper half of the conditional BMI distribution. This proves that conclusions of OLS that assumes uniform response across different quantiles may be misleading.

Results for the other BMI determinants as socio-economic status (SES), usually measured by income and education level, hugely affects the food habits of the individuals, hence affects BMI. The level of income affects the capability of having healthy and nutritious food through heavy financial support and it also gives adequate time to spend on physical activities. Educational attainment makes people more careful about choosing appropriate consumption habit and creates awareness of necessity for and benefits of physical activity. Several studies show that people with higher SES have healthier, nutritionally more balanced diets and are more physically active than those with lower SES (Lim and Taylor, 2005; Azagba and Sharaf, 2011). Existing literatures most of the cases implies a negative association between SES and BMI among females in developing countries, on the other hand, among males this association is less consistent (Sobal and Stunkard, 1989). However, I find a negative association between income and BMI, and education and BMI among females, and a relatively strong positive association between income and BMI among males.

Results of life-style variables such as smoking status significantly affects the BMI both for males and females. I find that smokers have lower BMI, while former smokers have relatively higher BMI compared to those who have never smoked. The general belief is that smoking cessation is associated with an increase in BMI (Munafò et. al., 2009). My result is consistent with this belief.

I find that immigrants have lower BMI than natives. On average, immigrants are less likely to be obese or overweight upon arrival in Canada (McDonald and Kennedy, 2005). This difference decreases overtime due to acculturation and get used to with new life style. Results show that BMI increases with age which is consistent with previous literature of Baum and Ruhm (2009). They predicted an annual increase in the BMI of 0.12 kilograms/squared meter.

This study has some strength. First, I examine the association among fv intake, physical activity and BMI using both conditional mean and conditional quantile framework. Moreover, I test for nonlinearity using RESET test before using quantile regression to make the strong baseline of estimating through quantile regression. In particular, nonlinear relationships are captured by quantile regression technique, thus provides a richer characterization of the data. Additionally, using bootstrap method provides consistency of the model. Second, as I have used Ramsey RESET test to find out the misspecification error, it provides a way to get the unbiased and consistent

estimators. Third, I report multivariate association among BMI and other potential determining factors. This study gives attention to individuals at all segments of the BMI distribution.

There are some limitations in my study. First, I choose self-reported BMI rather than measured by using height and weight, which may cause some inaccuracy of data. There is a strong discrepancy between the data of self-reported obesity and measured obesity using height and weight. According to OECD, in 2015, self-reported fraction of over obese people in Canada was 52.4 whereas the measured fraction was 64.1. Second, as I have used cross-sectional data, it may not appropriately infer the causality. Third, due to data limitation, the consumption of fv is based on number of times per day rather than the quantity consumed.

CONCLUSION

From the view of policy making, public and socio-economic contexts, findings of this study recommend that policies strengthening the consumption of fv and activeness in physically may help to control over gaining more weight, and lead a healthy and happy life. The high obesity rate in Canada, and the rising risk of having unhealthy and unhappy life, give the scope to build an appropriate policy aimed to mitigate this problem. Effective dietary policy by increasing the frequency of fv consumption and encouraging physically activeness through proper exercise method can control the higher risk of gaining more weight. Study results show that the standard models that assume same response across different quantiles of BMI distribution may produce misleading conclusion. Additionally, inclusion of different SES variables and life-style variables may lighten important differences in health outcomes.

Policy makers should give more attention to find out the potential factors that can be helpful to influence body weight. Policy making can be based on the studies that are already conducted and still waiting to come out. The study findings may serve as empirical evidence in helping policy making and considering the trade-off among factors that limit public to make healthier choice. Government may establish a proper tax credit system against physical activities for a specific part of the population. The policy makers may set a set of policies to aware people about the importance of eating fruits and vegetables and other healthy foods. The food processing industries and finished food product suppliers may label their product reporting the ingredients and food values consisting inside.

Understanding the association among fv intake, physical activity and BMI distribution, may help to implement the intervention measures targeted toward the most vulnerable groups – obese and overweight.

REFERENCES

- Auld, M. C., and Powell, L. M. (2009). Economics of food energy density and adolescent body weight. *Economica*, 76(304), 719-740. https://doi.org/10.1111/j.1468-0335.2008.00709.x
- Azagba, S., and Sharaf, M. F. (2011). Disparities in the frequency of fruit and vegetable consumption by socio-demographic and lifestyle characteristics in Canada. *Nutrition journal*, 10(1), 118. DOI: https://doi.org/10.1186/1475-2891-10-118
- Azagba, S., and Sharaf, M. F. (2012). Fruit and Vegetable Consumption and Body Mass Index: A Quantile Regression Approach. *Journal of primary care & community health*, 3(3), 210-220. DOI: 10.1177/2150131911434206.
- Baker, A. H., and Wardle, J. (2003). Sex differences in fruit and vegetable intake in older adults. *Appetite*, 40(3), 269-275. DOI: https://doi.org/10.1016/S0195-6663(03)00014-X
- Baum, C. L. Jr., and Ruhm, C. J. (2009). Age, socioeconomic status and obesity growth. *Journal* of health economics, 28(3), 635-648. DOI: 10.1016/j.jhealeco.2009.01.004.
- Baum, C. F. (Spring 2013). Quantile regression. http://fmwww.bc.edu/EC-C/S2013/823/EC823.S2013.nn04.slides.pdf
- Bleich, S. N., Cutler, D., Murray, C., and Adams, A. (2008). Why is the developed world obese? Annual. Rev. Public Health, 29, 273-295. DOI: https://doi.org/10.1146/annurev.publhealth.29.020907.090954
- Finkelstein, E. A., Ruhm, C. J., and Kosa, K. M. (2005). Economic causes and consequences of obesity. *Annu. Rev. Public Health*, 26, 239-257. DOI: https://doi.org/10.1146/annurev.publhealth.26.021304.144628

Hao, L., and Naiman, D. Q. (2007). *Quantile regression* (No. 149). Sage Publications.

- Katzmarzyk, P. T., and Janssen, I. (2004). The economic costs associated with physical inactivity and obesity in Canada: an update. *Canadian journal of applied physiology*, *29*(1), 90-115. https://www.nrcresearchpress.com/doi/pdf/10.1139/h04-008
- Koenker, R., & Bassett Jr, G. (1978). Regression quantiles. *Econometrica: journal of the Econometric Society*, 46(1), 33-50.
- Lakdawalla, D., and Philipson, T. (2002). *The growth of obesity and technological change: a theoretical and empirical examination* (No. w8946). National Bureau of Economic Research.
- Lau, D.C.W. (2007). Synopsis of the 2006 Canadian Clinical practice guidelines on the managemeent and prevention of obesity in adults and children. *Canadian Medical Association Journal*, 176(8), 1103-1106. DOI: https://doi.org/10.1503/cmaj.070306
- Lê Cook, B., & Manning, W. G. (2013). Thinking beyond the mean: a practical guide for using quantile regression methods for health services research. Shanghai archives of psychiatry, 25(1), 55. DOI: 10.3969/j.issn.1002-0829.2013.01.011
- Lim, K., and Taylor, L. (2005). Factors associated with physical activity among older people—a population-based study. *Preventive medicine*, 40(1), 33-40. DOI: https://doi.org/10.1016/j.ypmed.2004.04.046
- McDonald, J. T., and Kennedy, S. (2005). Is migration to Canada associated with unhealthy weight gain? Overweight and obesity among Canada's immigrants. *Social science & medicine*, 61(12), 2469-2481. DOI: https://doi.org/10.1016/j.socscimed.2005.05.004
- McLaren, L. (2007). Socioeconomic status and obesity. *Epidemiologic reviews*, 29(1), 29-48. https://pdfs.semanticscholar.org/33d8/5c9c603387a898adeb7f2da9f47c9d6bb7de.pdf

- Munafò, M. R., Tilling, K., and Ben-Shlomo, Y. (2009). Smoking status and body mass index: a longitudinal study. *Nicotine & Tobacco Research*, 11(6), 765-771. DOI: 10.1093/ntr/ntp062.
- Ruhm, C. J. (2012). Understanding overeating and obesity. *Journal of Health economics*, *31*(6), 781-796. DOI: https://doi.org/10.1016/j.jhealeco.2012.07.004
- Sobal, J., and Stunkard, A. J. (1989). Socioeconomic status and obesity: a review of the literature. *Psychological bulletin*, 105(2), 260-275. DOI: https://psycnet.apa.org/doi/10.1037/0033-2909.105.2.260

Statistics Canada¹. Canadian Community Health Survey 2014.

- Statistics Canada². Life tables, Canada, provinces and territories: Complete set of life tables for Canada, provinces and territories (Excel) (Catalogue 84-537-X).
- Statistics Canada³. Health-adjusted life expectancy in Canada. *Health Reports-2018*. , *Vol.* 29, no. 4, 14-22, https://www150.statcan.gc.ca/n1/pub/82-003-x/2018004/article/54950-eng.htm
- Statistics Canada⁴. *Health Reports, summer 1999, vol.* 11, no. 1 https://www150.statcan.gc.ca/n1/en/pub/82-003-x/1999001/article/4644eng.pdf?st=tMDMZdoT
- The Health and Social Care Information Centre, UK. Fruit and Vegetable Consumption, HSE 2013. Vol. 1, chapter 7. http://healthsurvey.hscic.gov.uk/media/1092/_7-fruit-and-vegetable-consumption_7th-proof.pdf

- The Organization for Economic Co-operation and Development (OECD). Available at: https://data.oecd.org/healthrisk/overweight-or-obese-population.htm
- Vitale, M. M. and Doherty, S. (2016). Acculturation and Post-Immigration Changes in Obesity, Physical Activity, and Nutrition: Comparing Hispanics and Asians in the Waterloo Region, Ontario, Canada." Theses and Dissertations (Comprehensive). 1884. http://scholars.wlu.ca/etd/1884
- WHO¹ (World Health Organization). Obesity and overweight. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
- WHO². 10 key factors on physical activity in the WHO European region. http://www.euro.who.int/en/health-topics/disease-prevention/physical-activity/data-and-statistics/10-key-facts-on-physical-activity-in-the-who-european-region
- WHO³: Diet, nutrition, and the prevention of chronic diseases., Report of a joint WHO/FAO expert consultation,2003 Technical Report Series 916. https://apps.who.int/iris/bitstream/handle/10665/42665/WHO_TRS_916.pdf;jsessionid=1 0E03FE96DAB9A1CE668AAA9E6DD4EA2?sequence=1
- Wooldridge, J. M. (2015). *Introductory econometrics: A modern approach*. Fifth edition. Nelson Education.

_

_

Appendix 1

A. OLS results for whole sample

Source SS	df	MS	Number of obs = $34,315$ F(18, 34296) = 140.38
Model 72219.0657 Residual 980234.317			Prob > F = 0.0000 R-squared = 0.0686 Adj R-squared = 0.0681
Total 1052453.38	34,314	30.6712532	Root MSE = 5.3462

BMI	Coef. S	Std. Err.	t	P > t	[95% Conf	. Interval]
fv 10	91745 .	0119213	-9.16	0.000	1325406	0858083
Phys_act 02	58866	0011977 -	-21.61	0.000	0282342	023539
csmoker 6	745596	.0815273	-8.27	0.000	8343557	5147634
fsmoker .5	911015	.0682579	8.66	0.000	.4573137	.7248893
age1 1.	589462	.0838947	18.95	0.000	1.425026	1.753899
age2 1.	670864	.0849998	19.66	0.000	1.504261	1.837466
partner .	1013107	.0758378	1.34	0.182	0473339	.2499552
WSD .0	0915811	.1002631	0.91	0.361	1049379	.2881001
edu1 4	4680604	.1089789	-4.29	0.000	6816627	2544582
edu2	5526684	.1558775	5 -3.5	5 0.000	8581935	2471433
edu3	.8494778	.0993661	-8.5	5 0.000	-1.044239	654717
IMM -1	.341232	.0876942	-15.29	0.000	-1.513115	-1.169348
income1	.118258	8 .0737182	2 1.6	0 0.109	0262314	.2627489
income2	.321583	5 .086181	4 3.7	0.00	0.152665	.4905019
ON	430020	.09520	9 -4.5	2 0.00	0616633	2434074
BC	-1.12879	9.1156912	2 -9.7	6 0.000) -1.355549	9020318
Quebec -1	1.422825	.1025434	-13.8	8 0.000	0 -1.623814	-1.221837
Western -	.212035	7.1019694	4 -2.0	8 0.038	34118992	0121722
_cons	28.064	.1483258	189.2	1 0.00	0 27.77328	28.35472

B. OLS results for male

Source SS	df	MS	Number of obs $=$ 15,886
			F(18, 15867) = 68.08
Model 28713.0647	18	1595.17026	Prob > F = 0.0000
Residual 371769.681	15,867	23.43037	R-squared = 0.0717

Adj R-squared = 0.0706Root MSE = 4.8405

Total | 400482.746 15,885 25.2113784

BMI Coef. Std. Err. t $P > t $ [95% Conf. Interval]
fv 0793026 .0163011 -4.86 0.00011125460473506
Phys_act 0150539 .0015461 -9.74 0.00001808450120233
csmoker -1.104674 .1075511 -10.27 0.000 -1.3154868938616
fsmoker .26146 .0936348 2.79 0.005 .0779251 .4449948
age1 1.514162 .1113293 13.60 0.000 1.295944 1.73238
age2 1.399565 .1137863 12.30 0.000 1.176531 1.622599
partner .5535034 .1016599 5.44 0.000 .3542384 .7527685
WSD .4819014 .1419102 3.40 0.001 .2037413 .7600615
edu1 5205798 .1401804 -3.71 0.00079534932458103
edu2 6305994 .2023815 -3.12 0.002 -1.027292339087
edu3 755036 .1260755 -5.99 0.000 -1.0021585079137
IMM -1.444456 .1153822 -12.52 0.000 -1.670618 -1.218294
income1 .2911995 .1134314 2.57 0.010 .068861 .5135379
income2 .5164189 .1254286 4.12 0.000 .2705647 .7622732
ON 2038766 .128103 -1.59 0.1124549729 .0472197
BC 8873437 .1538969 -5.77 0.000 -1.1889995856884
Quebec 8757849 .1382889 -6.33 0.000 -1.146847604723
Western 0131656 .1368395 -0.10 0.9232813865 .2550553
_cons 27.74427 .2005357 138.35 0.000 27.3512 28.13735

C. OLS results for female

Source SS G Model 50315.4103 Residual 593444.359 Total 643759.769 643759.769 643759.769	18,410	795.30057 32.2348918	_ Number of ol F(18, 18410) Prob > F R-squared Adj R-square Root MSE) = =
BMI Coef. S	Std. Err.	t P> t [9	5% Conf. Interval]	
Physical_activity 03824 csmoker 4446228 fsmoker .7384387 age1 1.79243	477 .001 8 .12065 7 .09733 .1222357	7911 -21.35 81 -3.68 0.0 18 7.59 0.0 14.66 0.00	09731940291779 0.0000417583034737 0006811242081216 00 .5476594 .9292181 0 1.552837 2.032023 00 1.701295 2.184191	1

ber of obs = 18,42918410) = 86.72 > F = 0.0000= 0.0782lared R-squared = 0.0773MSE = 5.6776

partner | -.2407644 .1123667 -2.14 0.032 -.4610136 -.0205152 WSD | .022885 .1422561 0.16 0.872 -.2559501 .3017202 -.6110053 edu1 | -.2895091 .1640209 -1.77 0.078 .0319871 edu2 | -.3656939 .2320811 -1.58 0.115 -.8205944 .0892066 -4.20 0.000 edu3 | -.6402146 .1523173 -.9387706 -.3416586 IMM | -1.326298 .1290501 -10.28 0.000 -1.579248 -1.073348 income1 | -.1778142 .0997807 -1.78 0.075 -.3733936 .0177653 income2 | -.6764686 .1310835 -5.16 0.000 -.9334045 -.4195328 ON | -.5774292 .1368108 -4.22 0.000 -.8455911 -.3092673 BC | -1.32613 .1680398 -7.89 0.000 -1.655503 -.9967562 Quebec | -1.918689 .1470785 -13.05 0.000 -2.206977 -1.630401 Western | -.3234692 .1472121 -2.20 0.028 -.6120186 -.0349197 _cons | 28.04086 .2164535 129.55 0.000 27.61659 28.46513

Appendix 2

A. Table of OLS for Ramsey RESET test – Model 1

Source	SS	df	MS			Number of obs = $34,315$ F(2, 34312) = 387.87
Model	23268.3343	2	11634.1	1672		Prob > F = 0.0000
Residual	1029185.05	34,312	29.994	9011		R-squared $= 0.0221$
						Adj R-squared = 0.0221
Total	1049272.32	2 34,314	30.671	2532		Root MSE = 5.4768
BMI	Coefficient	Std. Error	t	P > t	[95% Cor	f. Interval]
'	1403374					1169217
Phys_act	0257653	.0012115	-21.27	0.000	0281398	0233907
cons	28.32496	.0641358	441.64	0.000	28.19925	28.45067

B. Table of OLS for Ramsey RESET test – Model 2

Source SS	df	MS	
Model 25456.7967	4	6364.19917	
Residual 1026996.59	34,310	29.9328646	

Number of obs = 34,315F(4, 34310) = 212.62Prob > F = 0.0000R-squared = 0.0242Adj R-squared = 0.0241

Total 1052453.38	34,314	30.6712	2532		Root MSE	=	5.4711
BMI Coefficient	Std. Error	t	P> t	[95% Con	f. Interval]		
fv 1823309 Phys_act 0452538 fv2 .0034809 Phys_act2 .0002108	.0027333 .0017993 .0000263	-16.56 1.93 8.03	0.000 0.053 0.000	0506111 0000458 .0001594	0398964 .0070076 .0002623		
cons 28.67043	.0885525	323.77	0.000	28.49686	28.844		

Appendix 3

A. Quantile results for whole sample

Number of $obs =$	34,315
-------------------	--------

.10 Pseudo R2 =	0.0395, .20 Pseudo R2 =	0.0455, .30 Pseudo R2 =	0.0461
-----------------	-------------------------	-------------------------	--------

- .40 Pseudo R2 = 0.0454, .50 Pseudo R2 = 0.0429, .70 Pseudo R2 = 0.0393
- .80 Pseudo R2 = 0.0399, .90 Pseudo R2 = 0.0434

Bootstrap
BMI Coef. Std. Err. t $P> t $ [95% Conf. Interval]
q10
fv 1025097 .0115305 -8.89 0.00012510980799096
Phys_act 005104 .0010557 -4.83 0.00000717310030349
csmoker 2304953 .0931628 -2.47 0.01341309750478931
fsmoker .6287702 .0817904 7.69 0.000 .4684584 .789082
age1 .9149591 .0890905 10.27 0.000 .7403388 1.089579
age2 1.383921 .0795188 17.40 0.000 1.228062 1.539781
partner .4423491 .0780058 5.67 0.000 .2894552 .595243
WSD 0691492 .0984428 -0.70 0.4822621004 .1238021
edu1 046362 .1248359 -0.37 0.7102910446 .1983206
edu2 1957209 .1880076 -1.04 0.298564222 .1727803
edu3 4213825 .1114009 -3.78 0.000639732203033
IMM 6248614 .0741993 -8.42 0.00077029444794283
income1 .6909673 .0919136 7.52 0.000 .5108137 .871121
income2 1.201163 .0894503 13.43 0.000 1.025837 1.376488

ON 4230214 .0999325 -4.23 0.00061889252271504 BC 633299 .0990951 -6.39 0.00082752874390693 Quebec 9447832 .1084943 -8.71 0.000 -1.1574367321307 Western 4407262 .0865991 -5.09 0.00061046332709891 _cons 20.56321 .1440368 142.76 0.000 20.28089 20.84552
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Western 3617572 .0863905 -4.19 0.0005310853192429 _cons 22.44073 .1393337 161.06 0.000 22.16763 22.71383
q30 fv 1080775 .0143631 -7.52 0.00013622950799254
Phys_act 0131666 .0013207 -9.97 0.000 0157553 0105779 csmoker 4673305 .0713673 -6.55 0.000 6072127 3274483 fsmoker .6085127 .0735907 8.27 0.000 .4642725 .752753 age1 1.359331 .0930835 14.60 0.000 1.176884 1.541777 age2 1.86196 .08248 22.57 0.000 .294219 .5282883 WSD .0065255 .0740416 0.09 0.930 1385985 .1516494 edu1 4146979 .1126343 -3.68 0.000 6354648 193931 edu2 5601458 .1739018 -3.22 0.001 9009991 2192924 edu3 8956924 .1096261 -8.17 0.000 1110563 6808216 IMM 7628731 .0815468 -9.36 0.000 .9227075 6030386 income1 .4638416 .0803094 5.78 0.000 .3064324 .6212507 income2 1.040975 .08619 12.08 0.000 .8720399 1.209911 ON 4817304

_cons 23.93947 .1471247 162.72 0.000 23.6511 24.22784
q40
fv 1072527 .0121634 -8.82 0.00013109350834119
Phys_act 0159719 .0010996 -14.53 0.0000181270138167
csmoker 4726978 .0896778 -5.27 0.00064846922969264
fsmoker .6494529 .0782262 8.30 0.000 .496127 .8027788
age1 1.494716 .094062 15.89 0.000 1.310351 1.679081
age2 1.932006 .0892177 21.65 0.000 1.757136 2.106875
partner .4189078 .057941 7.23 0.000 .3053415 .5324741
WSD .0492265 .0866796 0.57 0.5701206685 .2191214
edu1 483263 .0719328 -6.72 0.00062425363422724
edu2 7617013 .1483193 -5.14 0.000 -1.0524124709905
edu3 9482526 .0781386 -12.14 0.000 -1.1014077950985
IMM 8110369 .0974005 -8.33 0.000 -1.0019456201288
income1 .3979235 .0646293 6.16 0.000 .271248 .5245991
income2 .9469389 .0744156 12.73 0.000 .8010819 1.092796
ON 4422985 .125639 -3.52 0.00068855521960419
BC -1.006329 .1256053 -8.01 0.000 -1.252527601387
Quebec -1.210633 .1276235 -9.49 0.000 -1.4607799604863
Western 3486438 .0991512 -3.52 0.00054298341543041
q50
fv 1152191 .0143444 -8.03 0.00014333470871035
Phys_act 0193797 .0013329 -14.54 0.00002199230167671
csmoker 4515605 .0810217 -5.57 0.00061036582927552
fsmoker .608552 .0722073 8.43 0.000 .4670233 .7500807
age1 1.536692 .1139562 13.48 0.000 1.313334 1.76005
age2 1.85241 .1209176 15.32 0.000 1.615407 2.089412
partner .4321515 .0848784 5.09 0.000 .2657871 .5985159
WSD .2253547 .131 1.72 0.0850314097 .4821191
edu1 4255833 .1004009 -4.24 0.00062237252287941
edu2 736959 .2074856 -3.55 0.000 -1.1436383302804
edu3 8837579 .1024977 -8.62 0.000 -1.084657682859
IMM 9671664 .0854465 -11.32 0.000 -1.1346447996884
income1 .2252417 .0706951 3.19 0.001 .086677 .3638064
income2 .7112592 .0894534 7.95 0.000 .5359276 .8865909
ON 3897876 .1440907 -2.71 0.00767221011073651
BC -1.085116 .1355972 -8.00 0.000 -1.3508918193414
Quebec -1.249391 .1391855 -8.98 0.000 -1.5221999765832
Western 2419985 .1262943 -1.92 0.0554895396 .0055426
_cons 26.50578 .145895 181.68 0.000 26.21982 26.79174
+

q70 | fv | -.113482 .0144674 -7.84 0.000 -.1418386 -.0851253

Phys_act 029615 .0017538 -16.89 0.00003305260261774
csmoker 5967943 .1227973 -4.86 0.00083748113561074
fsmoker .6261692 .1214458 5.16 0.000 .3881315 .8642069
age1 1.576142 .0960373 16.41 0.000 1.387906 1.764378
age2 1.592464 .1182106 13.47 0.000 1.360768 1.824161
partner .2054091 .0998527 2.06 0.040 .0096946 .4011236
WSD .3239641 .1453102 2.23 0.026 .0391513 .6087769
edu1 7352686 .1237005 -5.94 0.00097772584928115
edu2 8950896 .3181053 -2.81 0.005 -1.5185862715927
edu3 -1.103855 .1520515 -7.26 0.000 -1.401881805829
IMM -1.441807 .0922693 -15.63 0.000 -1.622658 -1.260956
income1 .0397256 .0988219 0.40 0.6881539685 .2334198
income2 .1825721 .0938852 1.94 0.052001446 .3665902
ON 4749548 .1574532 -3.02 0.00378356831663412
BC -1.270476 .1685945 -7.54 0.000 -1.6009269400249
Quebec -1.487263 .1473162 -10.10 0.000 -1.776007 -1.198518
Western1373173 .1271597 -1.08 0.2803865545 .1119199
_cons 30.32445 .1891498 160.32 0.000 29.95371 30.69519
q80
fv 1224686 .0172894 -7.08 0.00015635650885807
Phys_act 0365283 .0022543 -16.20 0.00004094670321098
csmoker 6826069 .1434166 -4.76 0.00096370824015057
fsmoker .6430332 .1333518 4.82 0.000 .3816593 .9044071
age1 1.596898 .1433002 11.14 0.000 1.316025 1.877771
age2 1.336852 .1258135 10.63 0.000 1.090253 1.58345
partner .0109691 .1311304 0.08 0.9332460509 .2679891
WSD .2891015 .1971385 1.47 0.1430972964 .6754994
edu1 7539621 .1431718 -5.27 0.000 -1.0345844733406
edu2 5514497 .4583455 -1.20 0.229 -1.449822 .3469226
edu3 -1.145264 .1787769 -6.41 0.000 -1.4956737948556
IMM -1.772793 .132848 -13.34 0.000 -2.03318 -1.512407
income1 2595669 .1297592 -2.00 0.04551389920052346
income2 3326253 .1348427 -2.47 0.01459692140683292
ON 2350048 .1113655 -2.11 0.03545328490167247
BC -1.29893 .2365329 -5.49 0.000 -1.7625438353181
Quebec -1.58834 .1247562 -12.73 0.000 -1.832866 -1.343814
Western .0232021 .100676 0.23 0.8181741261 .2205304
_cons 32.95161 .2438027 135.16 0.000 32.47375 33.42947
++
q90
fv 1192539 .029042 -4.11 0.00017617710623307
Phys_act 0451451 .0038468 -11.74 0.00005268490376053
csmoker 9978836 .2564604 -3.89 0.000 -1.5005544952128
fsmoker .6289709 .1766334 3.56 0.000 .2827635 .9751783
age1 1.612693 .2192501 7.36 0.000 1.182956 2.042431

partner 6521235 .2450019 -2.66 0.008 -1.1323351719117 WSD .1089857 .2913105 0.37 0.7084619926 .6799639 edu1 8716144 .2657076 -3.28 0.001 -1.392413508187 edu2 4675344 .5191493 -0.90 0.368 -1.485084 .5500154 edu3 -1.134513 .3255523 -3.48 0.000 -1.7726074964199 IMM -2.310571 .2172585 -10.64 0.000 -2.736405 -1.884737 income1 7526888 .1796151 -4.19 0.000 -1.104744006373 income2 -1.097102 .1928009 -5.69 0.000 -1.4749987192055 ON 1713705 .2455607 -0.70 0.4856526777 .3099367 BC -1.118545 .2998599 -3.73 0.000 -1.706285308098 Quebec -1.684051 .3160911 -5.33 0.000 -2.3036 -1.064502 Western .4285141 .3058064 1.40 0.1611708766 1.027905 _cons 37.31111 .4808928 77.59 0.000 36.36855 38.25368	age2 1.040072 .146397	5 7.10 0.000 .753	1.327016
edu1 8716144.2657076-3.280.001-1.392413508187edu2 4675344.5191493-0.900.368-1.485084.5500154edu3 -1.134513.3255523-3.480.000-1.7726074964199IMM -2.310571.2172585-10.640.000-2.736405-1.884737income1 7526888.1796151-4.190.000-1.104744006373income2 -1.097102.1928009-5.690.000-1.4749987192055ON 1713705.2455607-0.700.4856526777.3099367BC -1.118545.2998599-3.730.000-1.706285308098Quebec -1.684051.3160911-5.330.000-2.3036-1.064502Western .4285141.30580641.400.16117087661.027905	partner 6521235 .24500	19 -2.66 0.008 -1.1	323351719117
edu2 4675344 .5191493 -0.90 0.368 -1.485084 .5500154 edu3 -1.134513 .3255523 -3.48 0.000 -1.7726074964199 IMM -2.310571 .2172585 -10.64 0.000 -2.736405 -1.884737 income1 7526888 .1796151 -4.19 0.000 -1.104744006373 income2 -1.097102 .1928009 -5.69 0.000 -1.4749987192055 ON 1713705 .2455607 -0.70 0.4856526777 .3099367 BC -1.118545 .2998599 -3.73 0.000 -1.706285308098 Quebec -1.684051 .3160911 -5.33 0.000 -2.3036 -1.064502 Western .4285141 .3058064 1.40 0.1611708766 1.027905	WSD .1089857 .29131	05 0.37 0.70846	619926 .6799639
edu3 -1.134513.3255523-3.480.000-1.7726074964199IMM -2.310571.2172585-10.640.000-2.736405-1.884737income1 7526888.1796151-4.190.000-1.104744006373income2 -1.097102.1928009-5.690.000-1.4749987192055ON 1713705.2455607-0.700.4856526777.3099367BC -1.118545.2998599-3.730.000-1.706285308098Quebec -1.684051.3160911-5.330.000-2.3036-1.064502Western .4285141.30580641.400.16117087661.027905	edu1 8716144 .26570 [°]	6 -3.28 0.001 -1.3	392413508187
IMM -2.310571.2172585-10.640.000-2.736405-1.884737income1 7526888.1796151-4.190.000-1.104744006373income2 -1.097102.1928009-5.690.000-1.4749987192055ON 1713705.2455607-0.700.4856526777.3099367BC -1.118545.2998599-3.730.000-1.706285308098Quebec -1.684051.3160911-5.330.000-2.3036-1.064502Western .4285141.30580641.400.16117087661.027905	edu2 4675344 .519149	03 -0.90 0.368 -1.4	85084 .5500154
income1 7526888 .1796151 -4.19 0.000 -1.104744006373 income2 -1.097102 .1928009 -5.69 0.000 -1.4749987192055 ON 1713705 .2455607 -0.70 0.4856526777 .3099367 BC -1.118545 .2998599 -3.73 0.000 -1.706285308098 Quebec -1.684051 .3160911 -5.33 0.000 -2.3036 -1.064502 Western .4285141 .3058064 1.40 0.1611708766 1.027905	edu3 -1.134513 .325552	23 -3.48 0.000 -1.7	726074964199
income2 -1.097102 .1928009 -5.69 0.000 -1.4749987192055 ON 1713705 .2455607 -0.70 0.4856526777 .3099367 BC -1.118545 .2998599 -3.73 0.000 -1.706285308098 Quebec -1.684051 .3160911 -5.33 0.000 -2.3036 -1.064502 Western .4285141 .3058064 1.40 0.1611708766 1.027905	IMM -2.310571 .21725	85 -10.64 0.000 -2.	.736405 -1.884737
ON 1713705.2455607-0.700.4856526777.3099367BC -1.118545.2998599-3.730.000-1.706285308098Quebec -1.684051.3160911-5.330.000-2.3036-1.064502Western .4285141.30580641.400.16117087661.027905	income1 7526888 .1796	151 -4.19 0.000 -1	.104744006373
BC -1.118545.2998599-3.730.000-1.706285308098Quebec -1.684051.3160911-5.330.000-2.3036-1.064502Western .4285141.30580641.400.16117087661.027905	income2 -1.097102 .1928	009 -5.69 0.000 -1	.4749987192055
Quebec -1.684051.3160911-5.330.000-2.3036-1.064502Western .4285141.30580641.400.16117087661.027905	ON 1713705 .24550	607 -0.70 0.4856	526777 .3099367
Western .4285141 .3058064 1.40 0.1611708766 1.027905	BC -1.118545 .29985	99 -3.73 0.000 -1.	.706285308098
	Quebec -1.684051 .3160	911 -5.33 0.000 -2	2.3036 -1.064502
_cons 37.31111 .4808928 77.59 0.000 36.36855 38.25368	Western .4285141 .3058)64 1.40 0.1611	708766 1.027905
	_cons 37.31111 .480892	28 77.59 0.000 36.	36855 38.25368

B. Quantile results for male

Number of obs =	15,886		
.10 Pseudo R2 =	0.0671, .20 Pseudo R2 =	0.0578, .30 Pseudo R2 =	0.0543
.40 Pseudo R2 =	0.0487, .50 Pseudo R2 =	0.0458, .70 Pseudo R2 =	0.0388
.80 Pseudo R2 =	0.0370, .90 Pseudo R2 =	0.0374	

	tstrap Std. Err.	t	P> t	[95% Conf	. Interval]
q10					
fv 0205606	.0174124	-1.18	0.238	0546908	.0135697
Phys_act .0005959	.001342	0.44	0.657	0020347	.0032265
csmoker 4500828	.1093461	-4.12	0.000	6644135	235752
fsmoker .4934124	.0934543	5.28	0.000	.3102314	.6765934
age1 1.175931	.1329031	8.85	0.000	.9154259	1.436436
age2 1.281158	.1201607	10.66	5 0.000	1.045629	1.516686
partner .707312	8 .1054075	6.71	0.000	.5007021	.9139235
WSD .391328	.2013544	1.9	4 0.052	20033488	.786006
edu1 0303929	9 .2343962	-0.13	0.897	4898361	.4290503
edu2 0053400	5.2300751	-0.02	0.981	4563138	.4456326
edu31603122		-0.80	0.423	5523231	.2316988

IMM | -.9589789 .1246773 -7.69 0.000 -1.203361 -.7145972 income1 | 1.101058 .1609891 6.84 0.000 .7855015 1.416615 income2 | 1.678588 .1698312 9.88 0.000 1.3457 2.011477 ON | -.228152 .1197323 -1.91 0.057 -.4628409 .0065369 BC | -.6384149 .1474254 -4.33 0.000 -.9273854 -.3494444 Quebec | -.7866361 .1113345 -7.07 0.000 -1.004864 -.5684078 Western | -.1333472 .1253406 -1.06 0.287 -.3790291 .1123346 _cons | 20.28952 .361839 56.07 0.000 19.58028 20.99877 -----+----+ q20 fv | -.0519251 .0239271 -2.17 0.030 -.098825 -.0050252 Phys_act | -.001363 .0012195 -1.12 0.264 -.0037534 .0010274 csmoker | -.8750154 .1167061 -7.50 0.000 -1.103773 -.6462582 fsmoker | .3379104 .0799159 4.23 0.000 .1812663 .4945546 age1 | 1.307092 .1354004 9.65 0.000 1.041692 1.572492 age2 | 1.392957 .1229105 11.33 0.000 1.152038 1.633876 partner | .7633151 .1131709 6.74 0.000 .5414874 .9851429 WSD | .4794916 .1874686 2.56 0.011 .1120318 .8469514 edu1 | -.173369 .1322694 -1.31 0.190 -.432632 .085894 edu2 | -.1916569 .120134 -1.60 0.111 -.4271332 .0438195 edu3 | -.4622705 .1014176 -4.56 0.000 -.6610606 -.2634804 IMM | -.9386287 .1149199 -8.17 0.000 -1.163885 -.7133727 income1 | .8177925 .1238379 6.60 0.000 .5750562 1.060529 income2 | 1.335902 .1228363 10.88 0.000 1.095129 1.576675 ON | -.2788893 .1423063 -1.96 0.050 -.5578258 .0000471 BC | -.7501669 .1513523 -4.96 0.000 -1.046835 -.4534991 Quebec | -.6680534 .1277943 -5.23 0.000 -.9185447 -.4175621 Western | -.1600583 .1234523 -1.30 0.195 -.4020388 .0819222 cons | 22.38996 .1994601 112.25 0.000 21.999 22.78093 _____ q30 fv | -.0681544 .0165597 -4.12 0.000 -.1006132 -.0356956 Phys_act | -.0029121 .0009321 -3.12 0.002 -.0047392 -.0010851 csmoker | -.8390493 .1135724 -7.39 0.000 -1.061664 -.6164344 fsmoker | .3657965 .0909611 4.02 0.000 .1875023 .5440907 age1 | 1.32829 .1065363 12.47 0.000 1.119466 1.537113 13.79 0.000 age2 | 1.376236 .0998243 1.180569 1.571903 partner | .8296221 .115206 7.20 0.000 .6038052 1.055439 WSD | .5390308 .1713364 3.15 0.002 .2031921 .8748696 edu1 | -.1703251 -1.06 0.290 .16092 -.4857465 .1450964 edu2 | -.2571759 .1399888 -1.84 0.066 -.5315697 .017218 edu3 | -.3850238 .089593 -4.30 0.000 -.5606362 -.2094114 IMM | -.953703 .1221304 -7.81 0.000 -1.193092 -.7143136 9.96 0.000 .529738 income1 | .659575 .0662395 .789412 income2 | 1.067047 .0835605 12.77 0.000 .9032588 1.230835 ON | -.1767849 .1361924 -1.30 0.194 -.4437374 .0901677

BC 7564237 .1557563 -4.86 0.000 -1.0617244511236
Quebec 6245636 .1223711 -5.10 0.00086442483847023 Western 1682452 .100294 -1.68 0.0933648328 .0283425
Western 1682452 .100294 -1.68 0.0933648328 .0283425 _cons 23.61336 .1665295 141.80 0.000 23.28694 23.93977
q40
$fv \mid0742372 .0185736 -4.00 0.000 1106436 0378308$
Phys_act 0069608 .0010634 -6.55 0.00000904510048766
csmoker 8773437 .0957943 -9.16 0.000 -1.065111689576
fsmoker .3146896 .094682 3.32 0.001 .1291021 .5002772
age1 1.308126 .1068791 12.24 0.000 1.098631 1.517621
age2 1.419807 .1108016 12.81 0.000 1.202623 1.63699 partner .8727102 .0984314 8.87 0.000 .6797735 1.065647
$\begin{array}{c} \text{partner} & .8727102 & .0984314 & 8.87 & 0.000 & .0797733 & 1.003047 \\ \text{WSD} & .6342989 & .1375172 & 4.61 & 0.000 & .3647496 & .9038482 \end{array}$
$edu1 \mid2442419 .1816823 -1.34 0.179 6003598 .111876$
$edu2 \mid5814379 .1717958 -3.38 0.001 918177 2446987$
edu3 5590979 .1224227 -4.57 0.00079906033191355
IMM9969997 .1092737 -9.12 0.000 -1.2111897828107
income1 .6095275 .0929988 6.55 0.000 .4272392 .7918157
income2 .956059 .1015989 9.41 0.000 .7569136 1.155204
ON 1333165 .116765 -1.14 0.2543621891 .0955561
BC 7059605 .1275224 -5.54 0.0009559194560021
Quebec 652327 .1142457 -5.71 0.00087626164283925
Western 0827177 .1119791 -0.74 0.4603022095 .1367741
_cons 24.87897 .1592283 156.25 0.000 24.56686 25.19107
q50
fv 0839458 .0167992 -5.00 0.00011687410510174
Phys_act 0108405 .0014469 -7.49 0.00001367670080044
csmoker 8878108 .1324988 -6.70 0.000 -1.1475236280982
fsmoker .2863358 .1187029 2.41 0.016 .0536646 .5190069
age1 1.278746 .1161858 11.01 0.000 1.051008 1.506483
age2 1.305908 .1069219 12.21 0.000 1.096329 1.515487
partner .8751913 .1033062 8.47 0.000 .6726993 1.077683
WSD .7260181 .1561588 4.65 0.000 .4199293 1.032107
edu1 365941 .1811438 -2.02 0.04372100340108787
edu2 7770633 .1942303 -4.00 0.000 -1.1577773963499
edu3 6333534 .1408603 -4.50 0.00090945553572513 IMM -1.151031 .1342689 -8.57 0.000 -1.4142138878482
IMM -1.151031 .1342689 -8.57 0.000 -1.4142138878482 income1 .3654012 .102047 3.58 0.000 .1653774 .5654249
income2 .6459045 .1077836 5.99 0.000 .4346365 .8571725
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
BC 724489 .1483479 -4.88 0.000 -1.0152684337103
Quebec $ $ 706001 .1421261 -4.97 0.00098458424274178
Western .0379589 .1684992 0.23 0.8222923188 .3682365
$_{\rm cons}$ 26.41159 .1501177 175.94 0.000 26.11734 26.70584

++
q70
fv 1037959 .0237836 -4.36 0.00015041440571774
Phys_act 0198689 .0017597 -11.29 0.00002331820164196
csmoker -1.056466 .1721672 -6.14 0.000 -1.3939337189985
fsmoker .1785517 .1713945 1.04 0.2981574011 .5145044
age1 1.296038 .173547 7.47 0.000 .9558662 1.63621
age2 1.198495 .1646585 7.28 0.000 .8757454 1.521244
partner .6660179 .1377053 4.84 0.000 .3960998 .935936
WSD .7724963 .1955347 3.95 0.000 .3892261 1.155767
edu1 7461542 .2395629 -3.11 0.002 -1.2157252765837
edu2 9929864 .3856774 -2.57 0.010 -1.748958237015
edu3 -1.012536 .1805718 -5.61 0.000 -1.3664786585949
IMM -1.545587 .1723381 -8.97 0.000 -1.883389 -1.207784
income1 .0177476 .1159568 0.15 0.8782095409 .245036
income2 .2489099 .1355252 1.84 0.0660167348 .5145546
ON 2785045 .1502466 -1.85 0.0645730049 .0159959
BC 9930956 .2221691 -4.47 0.000 -1.4285725576188
Quebec -1.08588 .1525303 -7.12 0.000 -1.3848577869037
Western .0323827 .190364 0.17 0.8653407524 .4055177
_cons 30.24566 .1551232 194.98 0.000 29.9416 30.54972
++
q80
fv 1221883 .0264617 -4.62 0.00017405610703205
Phys_act 0227402 .0016213 -14.03 0.00002591810195624
csmoker -1.129317 .214369 -5.27 0.000 -1.5495047091292
fsmoker .3026848 .1973566 1.53 0.1250841566 .6895262
age1 1.307868 .2116041 6.18 0.000 .8930997 1.722636
age2 1.060452 .1959223 5.41 0.000 .6764222 1.444482
partner .5239917 .1726752 3.03 0.002 .1855286 .8624547
WSD .7114315 .1927255 3.69 0.000 .3336677 1.089195
edu1 8963333 .2860988 -3.13 0.002 -1.4571193355471
edu2 8769716 .4511164 -1.94 0.052 -1.761211 .0072677
edu3 -1.171872 .2272831 -5.16 0.000 -1.617372726371
IMM -1.650031 .2390755 -6.90 0.000 -2.118646 -1.181415
income1 3121137 .1644185 -1.90 0.0586343926 .0101652
income2 1811631 .1472127 -1.23 0.2184697166 .1073905
ON 09767 .2180889 -0.45 0.654525149 .3298089
BC -1.060959 .2988146 -3.55 0.000 -1.646674752489
Quebec 9924734 .2301639 -4.31 0.000 -1.4436215413261
Western .0957942 .204635 0.47 0.6403053135 .496902
_cons 32.5479 .3717628 87.55 0.000 31.8192 33.2766
++
q90
fv 1162786 .0462111 -2.52 0.01220685770256996 Phys. act 0316363 .0033735 -9.38 0.00003824870250238

Phys_act | -.0316363 .0033735 -9.38 0.000 -.0382487 -.0250238

csmoker -1.33563 .3512877 -3.80 0.000 -2.0241936470659
fsmoker .4037071 .2871005 1.41 0.1601590425 .9664567
age1 1.287743 .3168282 4.06 0.000 .666724 1.908763
age2 .965063 .3787576 2.55 0.011 .2226552 1.707471
partner 0149943 .2521045 -0.06 0.9535091477 .4791591
WSD 0907302 .4095825 -0.22 0.8258935584 .7120979
edu1 -1.594377 .4598703 -3.47 0.001 -2.4957756929788
edu2 -1.238327 .7084051 -1.75 0.080 -2.626881 .1502278
edu3 -1.555138 .3682914 -4.22 0.000 -2.2770318332451
IMM -2.09603 .3682483 -5.69 0.000 -2.817839 -1.374222
income1 6744168 .2558969 -2.64 0.008 -1.1760041728298
income2 8223779 .2898395 -2.84 0.005 -1.3904962542596
ON .249892 .2926748 0.85 0.3933237838 .8235677
BC 5723171 .371987 -1.54 0.124 -1.301454 .1568197
Quebec 7986022 .4013965 -1.99 0.047 -1.5853850118195
Western .9011573 .2100096 4.29 0.000 .4895146 1.3128
_cons 36.53602 .5278505 69.22 0.000 35.50137 37.57067

C. Quantile results for female

Number of obs = 18,429

.10 Pseudo R2 = 0.0299, .20 Pseudo R2 = 0.0378, .30 Pseudo R2 = 0.0442

.40 Pseudo R2 = 0.049, .50 Pseudo R2 = 0.0504, .70 Pseudo R2 = 0.0493

.80 Pseudo R2 = 0.0507, .90 Pseudo R2 = 0.0544

Bo	otstrap			
BMI Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
q10				
fv 038181	.0138067	-2.77	0.006	06524340111187
Phys_act 0081907	.0013603	-6.02	0.000	0108570055243
csmoker 4948923	.0964386	-5.13	0.000	6839213058636
fsmoker .4368974	.0690887	6.32	0.000	.3014773 .5723176
age1 .9603012	.0944878	10.16	0.000	.7750962 1.145506
age2 1.413585	.1064095	13.28	0.000	1.205013 1.622158
partner .421138	5 .0972825	4.33	0.000	.230456 .6118213
WSD .27626	9.1309496	2.11	0.035	.0195957 .5329423

edu1 | .1025921 .1345864 0.76 0.446 -.1612097 .3663939 edu2 | -.3013146 .2216682 -1.36 0.174 -.7358049 .1331758 edu3 | -.2255016 .1298741 -1.74 0.083 -.4800669 .0290638 IMM | -.573924 .1211146 -4.74 0.000 -.8113198 -.3365282 2.90 0.004 income1 | .231804 .0797953 .0753978 .3882101 0.35 0.724 .3026317 income2 | .0461478 .1308529 -.210336 ON | -.3011822 .1512509 -1.99 0.046 -.597648 -.0047165 BC | -.5730397 .1655328 -3.46 0.001 -.8974994 -.2485799 Quebec | -.780783 .1514288 -5.16 0.000 -1.077597 -.4839685 Western | -.2734035 .1617795 -1.69 0.091 -.5905063 .0436993 _cons | 19.98844 .173126 115.46 0.000 19.6491 20.32779 q20 fv | -.0437208 .0144698 -3.02 0.003 -.0720829 -.0153587 Phys act | -.0137194 .001661 -8.26 0.000 -.0169751 -.0104637 csmoker | -.3171251 .0915065 -3.47 0.001 -.4964864 -.1377638 .3712588 fsmoker | .541505 .0868562 6.23 0.000 .7117513 age1 | 1.159715 .1012899 11.45 0.000 .9611769 1.358252 age2 | 1.696494 .1153287 14.71 0.000 1.470439 1.922548 partner | .4235105 .0911055 4.65 0.000 .2449354 .6020857 WSD | .2387986 .1250355 1.91 0.056 -.0062825 .4838797 edu1 | -.2072753 .2273817 -0.91 0.362 -.6529646 .238414 -1.42 0.155 edu2 | -.3533875 .2486494 -.8407635 .1339884 edu3 | -.4963889 .2336634 -2.12 0.034 -.9543909 -.038387 IMM | -.6898515 .0907183 -7.60 0.000 -.8676677 -.5120352 income1 | .1065658 .0650489 1.64 0.101 -.020936 .2340677 income2 | -.2215629 .1330196 -1.67 0.096 -.4822937 .039168 -3.94 0.000 ON | -.5197923 .1318107 -.7781535 -.2614311 BC | -.9347159 .1508089 -6.20 0.000 -1.230315 -.6391165 Quebec | -1.162183 .0943782 -12.31 0.000 -1.347173 -.9771931 Western | -.5332648 .1404735 -3.80 0.000 -.808606 -.2579237 cons | 21.96305 .2666412 82.37 0.000 21.44041 22.48569 -----+----+ q30 fv | -.0405424 .014685 -2.76 0.006 -.0693262 -.0117585 -.0231019 -.0175727 Phys act | -.0203373 .0014104 -14.42 0.000 csmoker | -.3074073 .1151184 -2.67 0.008 -.5330501 -.0817646 fsmoker | .5745299 .1136551 5.06 0.000 .3517554 .7973044 age1 | 1.340815 .1051946 12.75 0.000 1.134624 1.547006 14.28 0.000 age2 | 2.007048 .1405928 1.731473 2.282623 partner | .4108235 .1124903 3.65 0.000 .1903321 .631315 WSD | .3149533 .1409112 2.24 0.025 .0387543 .5911522 edu1 | -.4703043 .1692562 -2.78 0.005 -.8020621 -.1385465 edu2 | -.6860809 .2407608 -2.85 0.004 -1.157994 -.2141674 edu3 | -.8545716 .2029494 -4.21 0.000 -1.252371 -.456772 IMM | -.7363702 .1074376 -6.85 0.000 -.9469579 -.5257824

income1 | .0330815 .0968833 0.34 0.733 -.1568188 .2229819 income2 | -.2994938 .148904 -2.01 0.044 -.5913594 -.0076282 .141163 -4.12 0.000 -.8587542 -.3053692 ON | -.5820617 BC | -1.137861 .1472976 -7.72 0.000 -1.426578 -.8491444 Quebec | -1.448943 .1195288 -12.12 0.000 -1.683231 -1.214656 Western | -.571068 .1673029 -3.41 0.001 -.8989972 -.2431388 cons | 23.58302 .2185974 107.88 0.000 23.15455 24.01149 _____ q40 fv | -.0442737 .01646 -2.69 0.007 -.0765369 -.0120105 Phys_act | -.0265691 .0015542 -17.09 0.000 -.0296156 -.0235227 csmoker | -.3292896 .1302848 -2.53 0.011 -.5846599 -.0739193 fsmoker | .6135429 .1114421 5.51 0.000 .395106 .8319797 age1 | 1.593435 .0746744 21.34 0.000 1.447067 1.739804 age2 | 2.305432 .0875848 26.32 0.000 2.133758 2.477106 partner | .2886888 .1207005 2.39 0.017 .0521046 .525273 WSD | .1811039 .1372912 1.32 0.187 -.0879996 .4502074 -4.75 0.000 edu1 | -.6346459 .1335561 -.8964282 -.3728637 -4.58 0.000 edu2 | -.875759 .1910361 -1.250207 -.5013105 edu3 | -.8766366 .1701117 -5.15 0.000 -1.210071 -.5432018 IMM | -.8075893 .0947966 -8.52 0.000 -.9933995 -.6217791 income1 | -.0944205 .1127687 -0.84 0.402 -.3154576 .1266166 income2 -.4390519 .1362616 -3.22 0.001 -.7061372 -.1719666 ON | -.6856292 .1179673 -5.81 0.000 -.916856 -.4544024 BC | -1.357987 .1513476 -8.97 0.000 -1.654642 -1.061331 Quebec | -1.679324 .1117116 -15.03 0.000 -1.898289 -1.460358 Western | -.5149501 .1532501 -3.36 0.001 -.8153346 -.2145656 _cons | 25.0667 .187886 133.41 0.000 24.69843 25.43498 q50 fv | -.0408902 .0177123 -2.31 0.021 -.0756079 -.0061724 Phys act | -.0325607 .001565 -20.81 0.000 -.0356283 -.0294931 csmoker | -.1406949 .1199197 -1.17 0.241 -.3757486 .0943588 fsmoker | .7893382 .1218158 6.48 0.000 .5505679 1.028109 age1 | 1.909795 .1174684 2.140044 16.26 0.000 1.679546 age2 | 2.480839 .1338273 18.54 0.000 2.218525 2.743153 partner | .1071665 .1563071 0.69 0.493 -.1992098 .4135429 WSD | .1840764 .1585285 1.16 0.246 -.1266542 .494807 edu1 | -.364532 .1955995 -1.86 0.062 -.7479252 .0188611 edu2 | -.7341858 .2849913 -2.58 0.010 -1.292795 -.1755764 edu3 | -.7430093 .2059727 -3.61 0.000 -1.146735 -.3392837 IMM | -.8167535 .1378964 -5.92 0.000 -1.087043 -.5464638 income1 | -.2579569 .1502547 -1.72 0.086 -.5524701 .0365563 income2 | -.5869472 .1938663 -3.03 0.002 -.9669431 -.2069514 ON | -.5831226 .1629932 -3.58 0.000 -.9026045 -.2636407 BC | -1.401321 .1836164 -7.63 0.000 -1.761226 -1.041416

Quebec -1.745138 .1432027 -12.19 0.000 -2.025828 -1.464447 Western 4460512 .2142892 -2.08 0.03786607790260246 _cons 26.14097 .2450209 106.69 0.000 25.6607 26.62123
q70
fv 058516 .0242618 -2.41 0.01610607140109606
Phys_act 0473224 .0022307 -21.21 0.000051694804295
csmoker 2857161 .1731798 -1.65 0.0996251645 .0537324
fsmoker .8857458 .1373706 6.45 0.000 .6164867 1.155005
age1 2.118336 .1981443 10.69 0.000 1.729955 2.506718
age2 2.156843 .218049 9.89 0.000 1.729447 2.58424
partner 3992286 .1514049 -2.64 0.0086959963102461
WSD .1107101 .1759278 0.63 0.5292341246 .4555449
edu1 5541532 .2046802 -2.71 0.0079553454152961
edu2 4913209 .3457982 -1.42 0.155 -1.169117 .1864757
edu3 929392 .1988686 -4.67 0.000 -1.3191935395911
IMM -1.307045 .12755 -10.25 0.000 -1.557054 -1.057035
income1 1908429 .1463691 -1.30 0.1924777399 .096054
income2 8191836 .1318596 -6.21 0.000 -1.0776415607266
ON 5215131 .1695314 -3.08 0.00285381051892158 BC -1.579755 .1754099 -9.01 0.000 -1.923575 -1.235935
Western 1916669 .2597811 -0.74 0.4617008619 .3175282 _cons 30.31501 .3298792 91.90 0.000 29.66841 30.9616
_colls 50.51501 .5298792 91.90 0.000 29.00841 50.9010
 q80
fv 1038315 .0347754 -2.99 0.00317199460356685
Phys_act 055219 .002992 -18.46 0.00006108370493543
csmoker 2387729 .2656341 -0.90 0.3697594405 .2818947
fsmoker .9045579 .1541766 5.87 0.000 .6023574 1.206758
age1 1.971554 .2173912 9.07 0.000 1.545447 2.397661
age2 1.663323 .2670273 6.23 0.000 1.139925 2.186722
partner 6280479 .1906409 -3.29 0.001 -1.001722254374
WSD 2285681 .2410095 -0.95 0.3437009691 .2438328
edu1 5238368 .2374673 -2.21 0.02798929480583788
edu2 333373 .34728 -0.96 0.337 -1.014074 .3473281
edu3 9697104 .2287575 -4.24 0.000 -1.4180965213245
IMM -1.780701 .1324642 -13.44 0.000 -2.040343 -1.521059
income1 3661961 .15585 -2.35 0.01967167660607156
income2 -1.028169 .191049 -5.38 0.000 -1.4026436536953
ON 1945831 .1625097 -1.20 0.2315131172 .1239511
ON 1945831 .1625097 -1.20 0.2315131172 .1239511 BC -1.323151 .267009 -4.96 0.000 -1.8465137997883
ON 1945831.1625097-1.200.2315131172.1239511BC -1.323151.267009-4.960.000-1.8465137997883Quebec -2.107682.208148-10.130.000-2.515671-1.699692
ON 1945831.1625097-1.200.2315131172.1239511BC -1.323151.267009-4.960.000-1.8465137997883Quebec -2.107682.208148-10.130.000-2.515671-1.699692Western .067995.28407160.240.8114888118.6248017
ON 1945831.1625097-1.200.2315131172.1239511BC -1.323151.267009-4.960.000-1.8465137997883Quebec -2.107682.208148-10.130.000-2.515671-1.699692

q90
fv1194233 .0340793 -3.50 0.00018622190526247
Phys_act 0614227 .0035435 -17.33 0.00006836840544771
csmoker 6359651 .2550413 -2.49 0.013 -1.135871360604
fsmoker .7861363 .2495003 3.15 0.002 .2970925 1.27518
age1 1.840016 .2987538 6.16 0.000 1.25443 2.425601
age2 1.094596 .3086314 3.55 0.000 .4896496 1.699542
partner -1.14804 .3083862 -3.72 0.000 -1.7525065435748
WSD 1652216 .3809864 -0.43 0.6659119903 .5815472
edu1 0913185 .3787138 -0.24 0.8098336327 .6509957
edu2 .65111 .527258 1.23 0.2173823645 1.684585
edu3 5625588 .3892595 -1.45 0.148 -1.325544 .200426
IMM -2.437734 .232061 -10.50 0.000 -2.892595 -1.982873
income1 798406 .2748897 -2.90 0.004 -1.3372152595965
income2 -1.731049 .2490348 -6.95 0.000 -2.21918 -1.242918
ON 3267069 .2751971 -1.19 0.2358661188 .212705
BC -1.368829 .3279225 -4.17 0.000 -2.0115877260701
Quebec -2.601735 .3185245 -8.17 0.000 -3.226072 -1.977397
Western .1806121 .2719187 0.66 0.5073523738 .713598
_cons 37.83696 .6442499 58.73 0.000 36.57417 39.09975

VITA AUCTORIS

Name:	Khandoker Monjure Kabir
Place of Birth:	Bangladesh
Year of Birth:	1984
Education:	Saleha Ishaq Govt. Girls High School, Sirajganj, Bangladesh, 2000
	Ullapara Science College, Sirajganj, Bangladesh, 2002
	B.Sc. and M.Sc., Jahangirnagar University, Savar, Dhaka,
	Bangladesh, 2009
	M.A., University of Windsor, Canada, 2019