Combined bulk-rock Hf- and Nd-isotope compositions of Mesoarchaean metavolcanic rocks from the Ivisaartoq Supracrustal Belt, SW Greenland: Deviations from the mantle array caused by crustal recycling

Ali Polat
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/environmentalsciencepub

Part of the Earth Sciences Commons, and the Environmental Sciences Commons

Recommended Citation
https://scholar.uwindsor.ca/environmentalsciencepub/108

This Article is brought to you for free and open access by the Earth & Environmental Sciences at Scholarship at UWindsor. It has been accepted for inclusion in Earth & Environmental Sciences Publications by an authorized administrator of Scholarship at UWindsor. For more information, please contact scholarship@uwindsor.ca.
Combined bulk-rock Hf- and Nd-isotope compositions of Mesoarchaean metavolcanic rocks from the Ivisaartoq Supracrustal Belt, SW Greenland: Deviations from the mantle array

Kristoffer Szilas¹*, J. Elis Hoffmann²,³,⁴, Toni Schulz⁵, Christina Hansmeier⁴, Ali Polat⁶, Sebastian Viehmann⁷, Haino Uwe Kasper³, Carsten Münker³

¹School of Earth, Energy and Environmental Sciences, Stanford University, California, USA
²Institut für Geologische Wissenschaften, Geochemie, Freie Universität Berlin, Berlin, Germany
³Institut für Geologie und Mineralogie, Universität zu Köln, Germany
⁴Steinmann Institut, Universität Bonn, Germany
⁵Department of Lithospheric Research, University of Vienna, Austria
⁶Department of Earth and Environmental Sciences, University of Windsor, Ontario, Canada
⁷Jacobs University, Bremen, Germany

* Corresponding author e-mail: szilas@stanford.edu

Abstract

Bulk-rock Lu-Hf and Sm-Nd isotope compositions, as well as major and trace element data are presented for metavolcanic rocks from the Mesoarchaean (ca. 3075 Ma) Ivisaartoq Supracrustal Belt in the Nuuk region of southern West Greenland. The εHf calculated at 3075 Ma range from +0.8 to +3.1 and the corresponding εNd values range from +0.7 to +3.6, which forms an array that is displaced off the mantle array for these two isotopic systems. Primitive mantle normalized trace element plots of the metabasalts display negative Nb- and Ti-anomalies in combination with the elevated Th abundances, which is consistent with a subduction zone affinity as proposed by previous studies of this metavolcanic belt. No significant correlations are observed between the isotope compositions and proxies of shallow crustal contamination in the Ivisaartoq rocks, despite
clear evidence for inherited Eoarchaean zircon (Polat et al., 2009. Chemical Geology 268, 248-271) which would have dominated the bulk-rock Hf-isotope budget. Furthermore, the measured samples are less radiogenic than the estimate for the depleted mantle composition at 3075 Ma. The lack of isotope and trace element correlation suggests incomplete equilibration between the crustal contaminant and the parental Ivisaartoq melts. We prefer a petrogenetic model with some combination of slab-derived metasomatism of the mantle source region a-for the Ivisaartoq magmas, which homogenized their trace element contents, in combination with the incorporation of granitoid restite with unradiogenic Hf-isotope composition at higher degrees of partial melting and finally the eruption of mechanically entrained Eoarchaean crust without significant chemical equilibration. The geochemical arc-affinity and non-DM isotope compositions of these metavolcanic rocks support the notion that crustal recycling and plate tectonics has been operating on Earth since at least the Mesoarchaean Eon.

Keywords: Nuuk region, Godthåbsfjord; Greenstone belt; Metavolcanic rocks; Ujarassuit

1. Introduction

Mesoarchaean supracrustal (greenstone) belts are composed of variably metamorphosed supracrustal lithologies, predominantly mafic to felsic volcanic products, interlayered with gabbros, metaperidotites/serpentinites, and minor amounts of siliciclastic sediments (e.g., Condie, 1981; Eriksson et al., 1994; Condie, 2005). Over the last three decades, detailed geochemical studies of such supracrustal assemblages has documented diverse rock types generated in different tectonic environments, such as arc or plume magmatism in oceanic and continental setting (e.g., Bickle et al., 1983; Puchtel et al., 1993; Polat et al., 1999; Smithies, 2002; Smithies et al., 2004; Kerrich & Polat, 2006).
Because mafic and ultramafic rocks are in most cases mantle-derived, detailed geochemical trace element and isotope studies on these rocks can provide information about the depletion state of the Archaean mantle, which is maintained by the generation of a corresponding continental crustal reservoir (e.g., Sylvester et al., 1997; Polat & Münker, 2004). Moreover, inferences can be made on the composition and depth of the mantle sources, with implications for the geodynamic processes and crust-mantle interaction, such as crustal recycling, source contamination by sediments or contamination processes during the ascent of the magmas (e.g., Chauvel et al., 1985; Appel et al., 2009; Hoffmann et al., 2010).

Measurement of the Sm-Nd isotope compositions of Archaean rocks have revealed high degrees of mantle depletion in the early Earth (e.g., Collerson et al., 1991; Bennett et al., 1993; Bowring and Housh, 1995; Nutman et al., 2007). Bennett et al. (1993) suggested a transitional time period between 3.6 and 2.8 Ga, in which highly depleted reservoirs mixed with enriched components, to homogenize the depleted mantle curve back on a steady-state trend. However, because of the scarcity of Sm-Nd isotope data from highly metamorphosed rocks, it is not possible to distinguish between a “true” mantle depletion signature and post-magmatic disturbance. Therefore, Vervoort & Patchett (1996) applied the more robust Lu-Hf isotope system on early Archaean rocks, because it behaves in tandem with the Sm-Nd isotope system by having a slightly more incompatible radiogenic product than the parental isotope, which thus cause isotopic fractionation of the mantle after melt extraction. These authors did not find a similar signature of a higher depletion-state of the mantle, whereas more recent bulk-rock studies, in which the Lu-Hf isotope system was applied on mafic rocks, do in fact show the presence of such reservoirs in the Archaean Eon (Blichert-Toft & Arndt, 1999; Blichert-Toft et al., 2004; Polat & Münker, 2004; Hoffmann et al., 2010, 2011b). However, it is currently unclear if these reservoirs represent local mantle sources indicative of a specific geodynamic setting (e.g., supra-subduction zones or mantle plumes), or if the early mantle was simply heterogeneous and required further time for homogenization (Hoffmann et al., 2011b).
In this study, we applied the Lu-Hf and Sm-Nd isotope systems in combination with major and trace element analysis on different mafic to ultramafic rocks from the well-characterized Mesoarchaean Ivisaartoq Supracrustal Belt in southern West Greenland (Polat et al., 2007, 2011). The aim of this study is to assess the state of Mesoarchaean mantle depletion and potential mixing signatures resulting from mantle-crust interaction in this region.

2. Geological setting and sampling

The Ivisaartoq-Ujarassuit supracrustal association is situated in the eastern Nuuk region of southern West Greenland (Fig. 1), which is part of the North Atlantic craton (Windley and Garde, 2009). In the present work we are solely concerned with the Ivisaartoq Supracrustal Belt, which has been investigated in great detail by several previous studies (Polat et al., 2007, 2008a, 2008b, 2009a, 2009b; Ordóñez-Calderón et al., 2008, 2009). The Ivisaartoq Supracrustal Belt may be correlated with the Qussuk-Bjørneøen Supracrustal Belt (Garde, 2007), located about 50 km to the west (Fig. 1), which has a similar age within the analytical error. The region is composed of several 3.9 to ca. 2.8 Ga tectonostratigraphic terranes (e.g., Friend et al., 1988; Nutman et al., 1996, 2004, 2015b; Friend & Nutman, 2005). The continental crust in this region is dominated by orthogneisses of the tonalite-trondhjemite-granodiorite (TTG) suite, which are believed to have formed by partial melting of mafic crust of similar composition as the tholeiitic basalts of the Ivisaartoq Supracrustal Belt (Hoffmann et al., 2011a, 2014; Nagel et al., 2012). The Ivisaartoq Supracrustal Belt represents the largest Mesoarchaean supracrustal belt of southern West Greenland (Appel, 1986, 1994; Polat et al., 2011).

Because of the Mesoarchaean age of the hosting TTG gneisses, the Ivisaartoq Supracrustal Belt is thought to be part of the Kapisilik terrane (Nutman & Friend, 2007). To the west, TTG gneisses of the late Archaean (2830-2800 Ma) Tre Brødre terrane, to the north and northwest TTG gneisses
of the early Archaean (3850-3650 Ma) Isukasia and Ferringehavn terranes surround the belt. The supracrustal belt is separated from the surrounding TTGs by late Archaean mylonites (Nutman et al., 1989), and a detailed tectonic interpretation of the structures within the Ivisaartoq sequence is given by Hall & Friend (1983) and Chadwick (1985, 1990).

Detrital zircon from felsic metasediments, which are interlayered with the magmatic components of the belt yielded a U-Pb zircon age of 3075 ±15 Ma (Friend & Nutman, 2005). This age was confirmed by Polat et al. (2008a) with Sm-Nd geochronology on the mafic and ultramafic associations of the belt. A minimum age of 2963 ±12 Ma is defined by crosscutting granitoid intrusions (Friend & Nutman, 2005). The amphibolite units of the Ivisaartoq Supracrustal Belt contain several types of well-preserved primary structures such as: pillow basalts, agglomerates, gabbroic textures, cpx-bearing ultramafic cumulates, volcanic breccias and felsic ocelli (Hall et al., 1987; Polat et al., 2008a, 2008b). An important observation was made by Polat et al. (2009a) who found 3700 Ma inherited zircon grains in pillow lavas from the Ivisaartoq metavolcanic sequence. This evidence of recycled continental crust, in combination with the general depletion of high field strength elements (HFSE) in the volcanic rocks, is strong evidence for a subduction zone setting of the Ivisaartoq Supracrustal Belt (Polat et al., 2011).

The samples used in the present study were collected from low strain domains in the so-called ‘upper unit’, which were previously described in detail by Polat and co-workers in the above cited studies. The samples selected for the isotope measurements in the present study are fresh and show metamorphic textures as seen in Figure 2. They are dominated by hornblende and plagioclase, and oxides generally comprise less than 3 vol.% of the rocks. The major and trace element data and the GPS-positions of the samples can be seen in Table 1.

3. Analytical techniques
Rock samples of approximately 2 kg were crushed with a mild steel jaw crusher and powdered using an agate mill. Samples were carefully selected so they did not contain leucosomes, carbonate veins or any obvious signs of post-magmatic alteration. Major element compositions were measured by the XRF method using a Philips PW-1480 spectrometer at Universität Bonn. Trace elements and isotope ratios were measured in powder splits of about 100 mg. These splits were digested in Parr® bombs using a table top pre-digestion in concentrated HF-HNO₃, followed by 3 days at 180 °C in the bombs and finally digested in HClO₄ following the procedures described in Hoffmann et al. (2010). Trace element concentrations were determined by quadrupole ICP-MS, using an Agilent 7500cs at Universität Kiel following the protocol of Garbe-Schönberg (1993). Replicate measurements of the BIR-1 rock standard, as well as of several samples were carried out, which indicated an external reproducibility of <2–4% RSD.

Hafnium and Nd isotope compositions and Lu, Hf, Sm and Nd elemental concentrations were obtained by isotope dilution, employing mixed ¹⁷⁶Lu-¹⁸⁰Hf and a ¹⁴⁹Sm-¹⁵⁰Nd spikes and separation by Eichrom® Ln spec resin following the protocols of Münker et al. (2001) and Weyer et al. (2002). From the remaining matrix, Sm and Nd were separated following the method of Pin & Zaldegui (1997). Lutetium, Hf, Sm and Nd were measured using a Finnigan® Neptune MC-ICP-MS at Universität Bonn.

Measured ¹⁷⁶Hf/¹⁷⁷Hf were mass bias corrected to a ¹⁷⁹Hf/¹⁷⁷Hf of 0.7325 using the exponential law. The Münster AMES standard, isotopically indistinguishable from the JMC-475 standard (REF), yielded an average ¹⁷⁶Hf/¹⁷⁷Hf ratio of 0.282160 with an external reproducibility of ±40 ppm (2σ). All of the ¹⁷⁶Hf/¹⁷⁷Hf data are given relative to a JMC-475 value of 0.282160. The typical external reproducibility of the ¹⁷⁶Lu/¹⁷⁷Hf reported in Table 2 is ±0.2% for ideally spiked samples and also include the effects of error magnification due to non-ideal spike-sample ratios and uncertainties imparted by corrections for Yb interferences (Blichert-Toft et al., 2002; Vervoort et al., 2004; Lagos et al., 2007).
The calculated initial Hf isotope compositions include both the propagated external errors from the measured Hf isotope compositions and the Lu/Hf ratios. For calculation of ε_{Hf} and ε_{Nd} values, a 176Lu decay constant of 1.867x10^{-12} (Scherer et al., 2001; Söderlund et al., 2004), a 147Sm decay constant of 6.54x10^{-11} (Lugmair & Marti, 1978) and the CHUR values of Bouvier et al. (2008) were used.

All measured 143Nd/144Nd data were mass bias corrected using a value of 0.7219 for 146Nd/144Nd and the exponential law. During the course of this study the 143Nd/144Nd measured for a 20 ppb LaJolla standard solution was 0.511809±20, and all data reported here are given relative to a 143Nd/144Nd of 0.511859 for LaJolla. The external reproducibility for 143Nd/144Nd measurements was ±30 ppm and ±0.2% for 147Sm/144Nd. Total procedural blanks during the course of this study were <15 pg for Lu, <57 pg for Hf, and <50 pg for Sm and Nd. All corrections of the isotope compositions to their initial values were made to an age of 3075 Ma, which was demonstrated to be the magmatic age of the Ivisaartoq Supracrustal Belt based on U-Pb zircon dating of a felsic unit by Friend & Nutman (2005).

4. Results

Major and trace element compositions for the Ivisaartoq samples are listed in Table 1. The amphibolites (n = 7) are characterized by 49.3–55.7 wt.% SiO$_2$, 0.52–1.1 wt.% TiO$_2$, 12.5–15.9 wt.% Al$_2$O$_3$, 5.93–12.2 wt.% MgO, 9.10–12.4 wt.% Fe$_2$O$_3$ and 10.0–12.5 wt.%. CaO (Fig. 3). One of the amphibolites (499332) is slightly more magnesian than the rest of these samples (Fig. 3) and is termed picrite in the rest of this paper. The ultramafic rock (sample 499321) is clearly distinct from the main group of amphibolites by being an amphibole-bearing serpentinite (Figs. 2e and 2f). It has 22.0 wt.% MgO, 5.48 wt.% Al$_2$O$_3$, 0.22 wt.% TiO$_2$ and generally has low abundances of trace element relative to the amphibolites and the serpentinite likely represents a cumulate rock. The trace
element levels are close to the detection limits, which makes this sample susceptible to metasomatic overprinting. We disregard the trace element and isotopic composition of this particular sample in the discussion because of its spiky trace element composition suggests incomplete sample digestion and thus its isotope composition is likely also compromised.

The primitive mantle-normalized trace element patterns of the amphibolites measured in the present study are seen in Figure 4. These overlap with those of similar mafic rocks (not shown) from the Ivisaartoq Supracrustal Belt reported by Polat et al. (2007, 2008a, 2008b) and Ordóñez-Calderón (2008, 2009). These trace element patterns show characteristic negative anomalies for Nb and Ti (Fig. 4), with the exception of sample 499330, which has positive Nb-anomaly, as well as higher overall levels of incompatible trace element abundances. Sample 499330 also has negative Sr- and Pb-anomalies. Sample 499331 has lower Th concentration than the rest of the samples. Nb/Nb* of the amphibolites range from 0.53 to 1.3, as also expressed by low Nb/Th (2.7–12) and La/Nb (0.95–2.0). Ratios of Zr/Hf of the measured samples are near-chondritic (34–36) and their chondrite-normalized rare earth element (REE) patterns have LaCN/YbCN ratios of 0.84 to 1.3 and LaCN/SmCN ratios of 0.73 to 1.3.

The bulk-rock Lu-Hf and Sm-Nd isotope data for the measured samples from the Ivisaartoq Supracrustal Belt are presented in Table 2. Ratios of $^{176}\text{Lu}/^{177}\text{Hf}$ measured in the Ivisaartoq rocks range from 0.02673 to 0.03346 and $^{147}\text{Sm}/^{144}\text{Nd}$ in the same sample splits are between 0.1872 and 0.2073. The εHf_t calculated to 3075 Ma range from +0.8 to +3.1 (Fig. 6). The ultramafic sample (499321) yields a significantly more radiogenic εHf_t composition of +7.5. However, as mentioned above we disregard the ultramafic sample in the discussion of the isotope data based on its low Hf concentration, which would make this particular sample prone to metasomatic overprinting. Additionally, there could have been an issue with the sample digestion, which is indicated by the saw-tooth trace element pattern of this sample (not shown) with negative Zr-Ti-Y-Lu-anomalies. εNd_t values of the measured mafic rocks and the picrite from Ivisaartoq range from +0.7 to +3.6.
None of the two isotope systems yield true isochrons, which is to be expected due to the relatively wide range of initial ϵ-values for the Ivisaartoq amphibolites. This indicates that these rocks have either experienced crustal contamination or that their mantle source region was heterogeneous or variably overprinted by a crustal component.

5. Discussion

Previous studies have documented that at an early stage hydrothermal seafloor alteration affected Archaean supracrustal rocks in the Nuuk region (e.g., Polat & Hofmann, 2003; Szilas & Garde, 2013). Ordóñez-Calderón et al. (2008) discussed the different types of alteration found within the Ivisaartoq Supracrustal Belt, and as mentioned in Section 2, in this work we specifically selected samples which did not display any petrographic evidence of alteration. In addition the calculated W-index of Ohta & Arai (2007) for all Ivisaartoq samples used in this work is less than 6.6, which supports the inference that they have not experienced hydrothermal alteration. Furthermore these samples plot within the geochemical range of previous results from this metavolcanic sequence (Fig. 3). Hence alteration is regarded as unlikely to have significantly affected the materials discussed in detail below.

Although we present a relatively small geochemical data set, it is obvious from Figure 3 that our data shows similar geochemical trend as existing data from the Ivisaartoq Supracrustal Belt. The combined data sets outline geochemical trends that are consistent with fractional crystallization processes. The ultramafic rocks (serpentinites) from the Ivisaartoq Supracrustal Belt are similar in composition to serpentinites and amphibolite-phlogopite schists found in other Archaean supracrustal sequences of southern West Greenland (e.g., Szilas et al., 2012b, 2014a, 2015b). Such ultramafic rocks typically represent olivine±pyroxene cumulates, which can be related directly to the associated metavolcanic rocks through fractional crystallization of a primitive melt.
Significant crustal assimilation during fractional crystallisation processes (AFC) is not supported due to the relatively high Mg, Cr and Ni contents of the metavolcanic rocks and the general lack of correlation with their isotope compositions (Figures 3 and 8). We note that all of the measured samples from the Ivisaartoq Supracrustal Belt plot within the region of subduction-related rocks in a Th/Yb vs. Nb/Yb binary tectonic discrimination diagram (Fig. 5), similar to the vast majority of Mesoarchaean mafic-andesitic supracrustal rocks from southern West Greenland (e.g., Szilas et al., 2011, 2013a, 2013b, 2014b). However, as shown recently by Li et al. (2015), such tectonic discrimination plots do not adequately capture the geochemical differences of contrasting geological settings. Nevertheless, this plot is useful as a reference for comparison with the existing data from the Ivisaartoq Supracrustal Belt. The primitive mantle (PM) normalized diagrams (as shown in Figure 4) further aid in distinguishing between different volcanic environments and their mantle sources. The distinctly negative Nb- and Ti-anomalies that are seen in all of our Ivisaartoq samples (except for sample 499330), in combination with the elevated Th contents is most easily explained as a feature imparted through subduction zone processes, where the mantle wedge was influenced by a slab-derived component. This finding is consistent with previous studies of the Ivisaartoq Supracrustal Belt who indicated subduction derived geochemical signatures (Polat et al., 2007; Ordóñez-Calderón et al., 2008). The positive Pb-anomalies likely reflect a crustal metasomatic input during subduction zone processes or alternatively may emanate from an early stage of seafloor alteration of the basaltic sequence. The positive Sr-anomalies however are more ambiguous, as they could either represent a metasomatic addition during metamorphism, or more likely they may be primary and reflect accumulation of plagioclase in the magmas.

Polat et al. (2009a) documented evidence for crustal contamination of the metavolcanic rocks from the Ivisaartoq Supracrustal Belt in the form of preserved Eoarchaean zircon within ocelli (felsic inclusions) in pillow basalts, which were likely derived from the adjacent Itsaq Gneiss Complex (Fig. 1). As shown by Bennett and Nutman (2014) and Nutman et al. (2015a, 2016), such
Eoarchaean felsic crust would have had a near-chondritic initial isotope composition. This crust would then have evolved to an isotope composition with ε_{Hf} of around -15.8 by 3075 Ma, at the time of eruption of the Ivisaartoq volcanic sequence (Fig. 6). Thus, there appears to have been a distinct contribution from an unradiogenic component (similar to Isua TTGs) in the mantle source of the Ivisaartoq rocks in terms of their Hf- and Nd-isotope compositions. This may in turn account for the negative Nb- and Ti-anomalies that are observed in Figure 4, as well as the lack of correlation between trace elements and isotope compositions. This would also explain why our data do not yield any consistent isochrons as their apparent initial ε-values scatter significantly.

Figure 7 shows a plot of ε_{Hf} vs. ε_{Nd} for the Ivisaartoq amphibolites. Most of these samples deviate from the mantle array, such decoupling between the Hf and Nd systems is typically explained by the presence of garnet in the source region during partial melting, which retains HREE in the restite (Hoffmann et al., 2011b). However, such a model in this instance is not supported given that the picrite sample, which supposedly represents the highest degree of melting among these samples, also has a flat HREE-pattern similar to that of the other amphibolite samples (Fig. 4). If garnet was involved in the picrite genesis this sample’s HREE patterns would be expected to have fractionated from its LREE pattern.

ε_{Nd} and ε_{Hf} display an apparent inverse correlation with La/Sm and Th/Nb, whereas they are overall positively correlated with Nb/Nb* (Fig. 8). This would at first appear to support crustal contamination involving an evolved incompatible trace element-rich assimilant with negative HFSE-anomalies and unradiogenic isotope compositions. However, these trends are mainly controlled by samples 499330 and 499331, which from Figure 4 can be seen to both be anomalous by having a positive Nb- and negative Th anomaly, respectively. The elevated Nb of sample 499330 cannot be accounted for by dilution with a crustal assimilant, which would have even lower Nb content and such a source would also likely have low HREE concentration relative to the metabasalts. This sample has likely accumulated a Nb-rich phase, because it is not unusual in any...
other regard in comparison to the rest of the Ivisaartoq samples. The elevated Th of samples 499331 in combination with its relatively unradiogenic isotope compositions is also not consistent with a crustal assimilant. Excluding these two anomalous samples, there is no obvious correlation between the contamination-sensitive trace elements and the isotope compositions. In fact all of the samples would essentially have similar trace element ratios.

The picritic sample (499332) with a MgO content of 12.2 wt.%, has the most radiogenic Nd-isotope composition, but the least radiogenic Hf-isotope composition (Fig. 7). Given that there are technically no correlations between the isotope compositions and the major or trace elemental abundances of the measured samples as mentioned above, the observed range of the Hf- and Nd-isotope data seem to reflect a variable mantle source composition, rather than crustal assimilation during the eruption of the volcanic rocks. Alternatively, any crustal assimilant would have had to be introduced into the mantle source region of the volcanic rocks from the Ivisaartoq Supracrustal Belt. The apparent decoupling of the Hf- and Nd-isotope systematics that is seen in Figure 7 is typical of Archaean TTGs (Hoffmann et al., 2011b); however, as seen in Figure 4, all of the measured Ivisaartoq samples have similar HREE-patterns. Thus, garnet fractionation in either the mantle source or within a deep magma chamber of the Ivisaartoq rocks cannot explain their isotopic variation. One possible way of imparting an unradiogenic Hf-isotope signature on a magma derived from an otherwise depleted mantle source could be to have a residual HFSE-rich phase that is only fused at higher degrees of partial melting. This could potentially explain why the picritic sample, which likely experienced the highest degree of melting, has the largest deviation from the mantle array and yet appears to have sampled the most depleted part of the mantle source in terms of the Nd-isotope composition (Fig. 7). This also means that at lower degrees of partial melting, the Ivisaartoq magma would sample a higher proportion of any fusible component such as pyroxenite or slab-derived contributions in the mantle source region. This explanation is consistent with the observed wide range in isotope values without any significant trace element variation.
Another possible way to explain these observations is that the mantle source of the Ivisaartoq rocks was overprinted by a slab melt component and/or by mélange diapirs (c.f., Marschall & Schumacher, 2012) in a subduction zone. In this way Eoarchaean sediments could have been recycled back into the mantle source region carrying with them the zircon-bearing crustal material that imparted subduction zone characteristics of the Ivisaartoq metavolcanic rocks. Zircon would potentially only have been fused during higher melting degrees, which could explain why the picritic sample is the most decoupled. However, the latter model is difficult to reconcile with the apparent lack of thermal equilibration of felsic zircon-bearing material, which would likely require hybridisation of low temperature serpentine-dominated sediment diapirs and mantle-derived melts.

Alternatively, the domains in the metavolcanic rocks that host Eoarchaean zircon may represent entrainment of pre-existing crust during eruption without significant equilibration with the hosting arc-related magmas, but in this case a subduction zone component would still be needed in the source region of the Ivisaartoq magmas in order to explain their trace element patterns in combination with their relatively high Mg, Cr and Ni contents. In our opinion a model where HFSE-rich ilmenite/rutile derived as a restite by TTG-formation that was present in the mantle source of the Ivisaartoq metavolcanic rocks, is plausible. If this component was only contributing to the melt at high degrees of melting, such as those experiences by the picritic rock then this sample could have inherited an unusually unradiogenic Hf-isotope composition, despite sampling more of the depleted mantle domain as seen by its Nd-isotope composition (Fig. 7). Overall the trace element and isotope compositions of the metavolcanic rocks from the Ivisaartoq supracrustal belt are consistent with some degree of crustal recycling during the Mesoarchaean. In addition our results are compatible with a subduction zone-related origin for at least some components of the supracrustal belts in southern West Greenland (e.g., Windley & Garde, 2009; Polat et al., 2011, 2015).
6. Conclusions

Based on new 176Lu/176Hf and 147Sm/143Nd isotope data, as well as major and trace element data for volcanic rocks from the Mesoarchaean Ivisaartoq Supracrustal Belt, the following is apparent:

- The Lu-Hf and Sm-Nd isotope systematics of the measured amphibolites from the Ivisaartoq Supracrustal Belt define an array that deviates from the mantle array and broadly overlaps with TTGs from this region.

- The metavolcanic rocks are not juvenile and have Hf- and Nd-isotope compositions distinctly less radiogenic than predicted depleted mantle at the time of eruption.

- Negative Nb- and Ti-anomalies in combination with elevated Th abundances for the amphibolites is consistent with a subduction zone affinity.

- No clear correlation exists between initial Hf- and Nd-isotope compositions and proxies for shallow crustal contamination (AFC processes).

Given the above two distinct petrogenetic models can be proposed for the Ivisaartoq metavolcanic rocks:

1. The lack of AFC-processes recorded in these rocks demonstrates that crustal contamination did not occur during the eruption of these magmas through pre-existing continental crust. Instead, we suggest that the mantle source region of the Ivisaartoq magmas contained remnants of TTG-derived restite with an unradiogenic component which fused into the magma at higher degrees of partial melting, such as those possibly attained by the picritic rock.
Alternatively, Eoarchaean sediments could have been recycled back into the mantle source region carrying with them zircon-bearing crustal material that imparted the subduction zone characteristics to the Ivisaartoq metavolcanic rocks. In this scenario zircon would also only have been fused during higher melting degrees, consistent with the picritic sample’s decoupled Nd- and Hf-isotopic signature.

Currently the presented data set does not permit unequal distinction between these two scenarios. However, it does point out an intriguing decoupled Lu-Hf and Sm-Nd signature which may have significance for processes related to Archaean metavolcanic rocks and their geodynamic settings.

Acknowledgements

We thank R. Hoffbauer for help with the XRF-analysis. Dieter Garbe-Schönberg and his team are acknowledged for quadrupole ICP-MS analyses in Kiel and Cologne. The Geological Survey of Denmark and Greenland (GEUS) is thanked for permission to publish this work. We greatly appreciate the editorial handling and review comments by Dewashish Upadhyay, and acknowledge the constructive critique by an anonymous reviewer, which significantly improved the manuscript. Discussions with Christopher Kirkland were also highly valued as they contributed positively to this study.

References

26

Figure captions

Fig. 1. Geological map of the Nuuk region of southern West Greenland based on work by the Geological Survey of Denmark and Greenland (GEUS). The Ivisaartoq Supracrustal Belt is located in the eastern part of the map and the sampling area is outlined by a red box. The capital Nuuk is marked with a red circle.

Fig. 2. Photomicrographs of the measured samples from the Ivisaartoq Supracrustal Belt. These representative petrographic features are typical of amphibolite-facies metabasalts from this region. a) Fine grained amphibolite (sample 499329) in plane polarized light (PPL). This rock is well-foliated and is dominated by green hornblende and has less than 10 vol.% plagioclase and only minor amounts of oxides. b) Sample 499329 under crossed polarized light (XPL). c) Medium grain amphibolite (sample 499331) in PPL. d) Sample 499331 under XPL. e) Amphibole-bearing
serpentinite (sample 499321) in PPL. This sample is relatively oxide-rich, which likely represents magnetite formed after serpenitisation of olivine. f) Sample 499321 under XPL. Please note that the white scale bar at the lower right corner of each frame is 1 mm wide.

Fig. 3. Major element variation shown as a function of MgO content for various rocks from the Ivisaartoq Supracrustal Belt. Green circles represent mafic rocks, the large purple circle is the picritic rock and the red square is the serpentinite sample that were analysed as part of the present study. Small black dots are literature data for the volcanic sequence of the Ivisaartoq Supracrustal Belt extracted from the GeoRoc database (Sarbas & Nohl, 2008). Obvious alterations and metasedimentary rocks have been filtered out of the GeoRoc data set. Please note the cumulate trends that project towards olivine±opx (high-MgO) and cpx±amphibole (high-CaO) end-members, respectively. Also note that the sizes of the different symbols do not reflect the actual analytical uncertainties, which are significantly smaller.

Fig. 4. Primitive mantle-normalized trace element diagram for the new Ivisaartoq data presented in this study (green and purple lines). The outlier with the overall elevated trace element and positive Nb-anomaly is sample 499330, and sample 499331 has significantly lower Th content than the rest of the samples. Please note that the serpentinite sample (499321) is not shown due to its erratic pattern, as its trace element abundances are close to the detection limits, however even this sample is well within the total trace element range of the GeoRoc data for Ivisaartoq (not shown). The trace element composition of mean MORB (Gale et al., 2013) is shown for comparison (black diamonds).

Fig. 5. Pearce diagram for tectonic discrimination of volcanic rocks based on Th/Yb vs. Nb/Yb ratios. The data for the Ivisaartoq samples that were measured in the present study are given as large circles (green and purple) and the previously published data for the Ivisaartoq Supracrustal Belt
extracted from the GeoRoc database are shown as small black circles. Please note that displacement from the mantle array is only possible by either crustal assimilation of by introduction of a contaminant in the mantle source region. The latter is typically assumed to represent a slab-derived component in the case of arc-related magmas (see inset in lower right corner). Also note that the sizes of the different symbols do not reflect the actual analytical uncertainties, which is significantly smaller.

Fig. 6. ε_{Hf} versus time diagram showing the Hf-isotope data from the present study (large green and purple circles) in comparison to literature data (small black circles). Southern West Greenland samples denote Mesoarchaean basalts and andesites from the 2970 Ma Grædefjord supracrustal belt (Szilas et al., 2013a), the 2970 Ma Fiskenæsset region (Szilas et al., 2012a), ca. 2970 Ma Ameralik supracrustal belt (Szilas et al., 2015a), the ca. 2985 Ma Naajat Kuuat Anorthosite Complex (Hoffmann et al., 2012), the >2996 Ma Tartoq Group (Szilas et al., 2011, 2013b), and the 3071 Ma Quussuk Supracrustal Belt (Szilas et al., 2016). All of the data are for bulk-rock samples, except for the Ivisaartoq data by Nutman et al. (2015c), which is based on in situ Hf-isotope analysis of zircon extracted from a felsic volcanic rock (small blue diamonds). The isotope composition of the Isua TTG is taken from Hoffmann et al. (2014) using their sample JEH 10–39 with a bulk-rock $^{176}\text{Lu}/^{177}\text{Hf}$ ratio of 0.002351 and an $\varepsilon_{Hf}$$_{3806\text{Ma}}$ of +0.4±0.5.

Fig. 7. ε_{Hf} vs. ε_{Nd} diagram for the Ivisaartoq samples from the present study showing a deviation from the mantle array (blue line). The picritic sample displays a significant displacement off the mantle array, which we proposed could be due to TTG-restite entering the liquid at high enough degree of melting of a heterogeneous mantle source. Please note that these data represent the only samples from the Ivisaartoq Supracrustal Belt that have been analysed for both Lu-Hf and Sm-Nd.
isotope compositions on the same rock. Also note that a similar range is observed for Archaean TTGs (not shown) according to Hoffmann et al. (2011b).

Fig. 8. Plots of Nb/Nb*, La/Sm and Th/Nb versus δNd, and δHf, respectively. Please note that samples 499330 and 499331 have anomalous trace element patterns (see Fig. 4) with the former having a positive Nb-anomaly and the latter having low Th concentration relative to the rest of the samples. The picritic sample (499332), has a MgO contents of 12.2 wt.% and would have been expected to have the most depleted isotope composition of any of these rocks due to its higher degree of melting of the mantle source. However, we would argue that this is the reason why this particular sample may have entrained an unradiogenic Hf-component from TTG restite in the mantle source region (see discussion in the main text).

Tables

Table 1. Bulk-rock major and trace element data for the measured samples from the Ivisaartoq Supracrustal Belt. Please note that the ultramafic sample has an erratic trace element pattern, which suggests that this particular sample had incomplete digestion of accessory phases. For this reason we are only using the major element composition of this sample throughout this work.

Table 2. Bulk-rock Lu-Hf and Sm-Nd isotope data for the measured samples from the Ivisaartoq Supracrustal Belt. Please note that the ultramafic sample has an erratic trace element pattern (see Table 1), which suggests that this particular sample had incomplete digestion of accessory phases. This may explain why this sample has an unusually high apparent δHf compared to the rest of the samples. For this reason we are not using the isotope compositions of this particular sample in the discussion.
<table>
<thead>
<tr>
<th>Sample</th>
<th>499321</th>
<th>499325</th>
<th>499327</th>
<th>499328</th>
<th>499329</th>
<th>499330</th>
<th>499331</th>
<th>499332</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock type</td>
<td>Ultramafic rock</td>
<td>Amphibolite</td>
<td>Pillow core</td>
<td>Metagabbro</td>
<td>Pillow lava</td>
<td>Amphibolite</td>
<td>Pillow lava</td>
<td>Picrite</td>
</tr>
<tr>
<td>Latitude</td>
<td>N 64°43.690</td>
<td>N 64°44.768</td>
<td>N 64°44.899</td>
<td>N 64°44.899</td>
<td>N 64°44.809</td>
<td>N 64°44.538</td>
<td>N 64°44.381</td>
<td></td>
</tr>
<tr>
<td>Longitude</td>
<td>W 49°54.523</td>
<td>W 49°51.336</td>
<td>W 49°52.324</td>
<td>W 49°51.845</td>
<td>W 49°51.845</td>
<td>W 49°51.522</td>
<td>W 49°57.660</td>
<td>W 49°56.182</td>
</tr>
<tr>
<td>Majors (wt.%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO2</td>
<td>48.83</td>
<td>51.20</td>
<td>54.67</td>
<td>49.48</td>
<td>50.05</td>
<td>48.71</td>
<td>49.27</td>
<td>49.34</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.21</td>
<td>0.53</td>
<td>0.54</td>
<td>0.51</td>
<td>0.59</td>
<td>1.10</td>
<td>0.76</td>
<td>0.51</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>9.01</td>
<td>10.86</td>
<td>8.93</td>
<td>11.15</td>
<td>11.27</td>
<td>11.80</td>
<td>12.34</td>
<td>11.94</td>
</tr>
<tr>
<td>MgO</td>
<td>21.08</td>
<td>8.69</td>
<td>5.82</td>
<td>9.04</td>
<td>9.09</td>
<td>7.40</td>
<td>8.16</td>
<td>12.00</td>
</tr>
<tr>
<td>MnO</td>
<td>0.17</td>
<td>0.17</td>
<td>0.16</td>
<td>0.20</td>
<td>0.19</td>
<td>0.19</td>
<td>0.20</td>
<td>0.19</td>
</tr>
<tr>
<td>CaO</td>
<td>11.20</td>
<td>10.27</td>
<td>12.21</td>
<td>10.38</td>
<td>10.65</td>
<td>10.54</td>
<td>11.61</td>
<td>9.83</td>
</tr>
<tr>
<td>Na2O</td>
<td>0.13</td>
<td>2.19</td>
<td>0.76</td>
<td>2.52</td>
<td>2.53</td>
<td>3.11</td>
<td>1.76</td>
<td>1.96</td>
</tr>
<tr>
<td>K2O</td>
<td>0.03</td>
<td>0.16</td>
<td>0.09</td>
<td>0.22</td>
<td>0.16</td>
<td>0.18</td>
<td>0.17</td>
<td>0.19</td>
</tr>
<tr>
<td>P2O5</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>0.06</td>
<td>0.04</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>SO3</td>
<td>0.03</td>
<td>0.01</td>
<td>0.06</td>
<td>0.01</td>
<td>0.01</td>
<td>0.03</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>LOI</td>
<td>3.35</td>
<td>0.73</td>
<td>0.43</td>
<td>0.72</td>
<td>0.52</td>
<td>0.54</td>
<td>0.58</td>
<td>0.93</td>
</tr>
<tr>
<td>Total</td>
<td>99.6</td>
<td>99.3</td>
<td>98.7</td>
<td>99.0</td>
<td>99.3</td>
<td>99.5</td>
<td>100.0</td>
<td>99.3</td>
</tr>
<tr>
<td>Traces (ppm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li</td>
<td>-</td>
<td>53.7</td>
<td>35.8</td>
<td>-</td>
<td>77.0</td>
<td>85.6</td>
<td>167</td>
<td>119</td>
</tr>
<tr>
<td>Sc</td>
<td>-</td>
<td>44.5</td>
<td>45.4</td>
<td>41.9</td>
<td>38.9</td>
<td>46.9</td>
<td>42.4</td>
<td>39.4</td>
</tr>
<tr>
<td>V</td>
<td>-</td>
<td>250</td>
<td>254</td>
<td>-</td>
<td>237</td>
<td>321</td>
<td>273</td>
<td>225</td>
</tr>
<tr>
<td>Cr</td>
<td>-</td>
<td>429</td>
<td>779</td>
<td>385</td>
<td>491</td>
<td>291</td>
<td>312</td>
<td>909</td>
</tr>
<tr>
<td>Co</td>
<td>-</td>
<td>47.8</td>
<td>67.7</td>
<td>-</td>
<td>53.2</td>
<td>50.8</td>
<td>52.0</td>
<td>63.4</td>
</tr>
<tr>
<td>Ni</td>
<td>-</td>
<td>120</td>
<td>318</td>
<td>118</td>
<td>138</td>
<td>119</td>
<td>158</td>
<td>326</td>
</tr>
<tr>
<td>Cu</td>
<td>-</td>
<td>17.8</td>
<td>69.0</td>
<td>28.2</td>
<td>49.1</td>
<td>24.9</td>
<td>106</td>
<td>80.4</td>
</tr>
<tr>
<td>Zn</td>
<td>-</td>
<td>71.8</td>
<td>88.7</td>
<td>80.0</td>
<td>82.3</td>
<td>101</td>
<td>88.2</td>
<td>84.5</td>
</tr>
<tr>
<td>Ga</td>
<td>-</td>
<td>14.4</td>
<td>14.1</td>
<td>-</td>
<td>14.4</td>
<td>18.7</td>
<td>16.1</td>
<td>12.8</td>
</tr>
<tr>
<td>Rb</td>
<td>-</td>
<td>1.18</td>
<td>1.03</td>
<td>1.77</td>
<td>1.69</td>
<td>5.63</td>
<td>3.04</td>
<td>6.4</td>
</tr>
<tr>
<td>Sr</td>
<td>26.7</td>
<td>102</td>
<td>84.2</td>
<td>94.4</td>
<td>136</td>
<td>97.9</td>
<td>84.1</td>
<td>100</td>
</tr>
<tr>
<td>Y</td>
<td>6.84</td>
<td>14.7</td>
<td>14.7</td>
<td>13.5</td>
<td>15.5</td>
<td>23.1</td>
<td>17.1</td>
<td>13.5</td>
</tr>
<tr>
<td>Zr</td>
<td>12.7</td>
<td>34.3</td>
<td>35.2</td>
<td>36.5</td>
<td>40.9</td>
<td>67.2</td>
<td>40.4</td>
<td>34.9</td>
</tr>
<tr>
<td>Nb</td>
<td>0.80</td>
<td>1.49</td>
<td>1.86</td>
<td>1.32</td>
<td>2.06</td>
<td>3.13</td>
<td>2.00</td>
<td>1.58</td>
</tr>
<tr>
<td>Mo</td>
<td>-</td>
<td>0.219</td>
<td>0.587</td>
<td>-</td>
<td>0.0685</td>
<td>0.132</td>
<td>0.106</td>
<td>0.113</td>
</tr>
<tr>
<td>Sn</td>
<td>-</td>
<td>0.324</td>
<td>0.445</td>
<td>-</td>
<td>0.421</td>
<td>0.656</td>
<td>0.432</td>
<td>0.362</td>
</tr>
<tr>
<td>Element</td>
<td>Sb</td>
<td>Cs</td>
<td>Ba</td>
<td>La</td>
<td>Ce</td>
<td>Pr</td>
<td>Nd</td>
<td>Sm</td>
</tr>
<tr>
<td>---------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.109</td>
<td>0.132</td>
<td>-</td>
<td>0.239</td>
<td>0.134</td>
<td>0.126</td>
<td>0.395</td>
</tr>
<tr>
<td>Sb</td>
<td>-</td>
<td>0.0411</td>
<td>0.0186</td>
<td>1.57</td>
<td>0.00266</td>
<td>1.16</td>
<td>0.0592</td>
<td>0.447</td>
</tr>
<tr>
<td>Cs</td>
<td>-</td>
<td>50.7</td>
<td>25.2</td>
<td>41.9</td>
<td>46.4</td>
<td>50.7</td>
<td>25.0</td>
<td>43.6</td>
</tr>
<tr>
<td>Ba</td>
<td>2.40</td>
<td>2.53</td>
<td>2.61</td>
<td>2.68</td>
<td>2.79</td>
<td>2.99</td>
<td>2.20</td>
<td>2.76</td>
</tr>
<tr>
<td>La</td>
<td>5.51</td>
<td>6.32</td>
<td>6.49</td>
<td>6.64</td>
<td>7.49</td>
<td>9.11</td>
<td>6.14</td>
<td>6.91</td>
</tr>
<tr>
<td>Ce</td>
<td>-</td>
<td>0.911</td>
<td>0.933</td>
<td>0.895</td>
<td>1.104</td>
<td>1.519</td>
<td>1.003</td>
<td>0.989</td>
</tr>
<tr>
<td>Pr</td>
<td>3.40</td>
<td>4.38</td>
<td>4.42</td>
<td>4.40</td>
<td>5.33</td>
<td>7.89</td>
<td>5.25</td>
<td>4.68</td>
</tr>
<tr>
<td>Nd</td>
<td>1.13</td>
<td>1.36</td>
<td>1.38</td>
<td>1.33</td>
<td>1.63</td>
<td>2.59</td>
<td>1.77</td>
<td>1.40</td>
</tr>
<tr>
<td>Sm</td>
<td>3.047</td>
<td>0.483</td>
<td>0.487</td>
<td>0.477</td>
<td>0.562</td>
<td>0.954</td>
<td>0.701</td>
<td>0.497</td>
</tr>
<tr>
<td>Eu</td>
<td>1.72</td>
<td>1.86</td>
<td>1.89</td>
<td>1.90</td>
<td>2.14</td>
<td>3.34</td>
<td>2.36</td>
<td>1.83</td>
</tr>
<tr>
<td>Gd</td>
<td>0.285</td>
<td>0.351</td>
<td>0.354</td>
<td>0.35</td>
<td>0.391</td>
<td>0.605</td>
<td>0.436</td>
<td>0.339</td>
</tr>
<tr>
<td>Tb</td>
<td>2.46</td>
<td>2.46</td>
<td>2.28</td>
<td>2.66</td>
<td>4.07</td>
<td>2.96</td>
<td>2.29</td>
<td>1.40</td>
</tr>
<tr>
<td>Dy</td>
<td>0.469</td>
<td>0.535</td>
<td>0.537</td>
<td>0.499</td>
<td>0.566</td>
<td>0.858</td>
<td>0.626</td>
<td>0.497</td>
</tr>
<tr>
<td>Ho</td>
<td>1.50</td>
<td>1.54</td>
<td>1.53</td>
<td>1.49</td>
<td>1.60</td>
<td>2.40</td>
<td>1.77</td>
<td>1.40</td>
</tr>
<tr>
<td>Er</td>
<td>0.234</td>
<td>0.230</td>
<td>0.223</td>
<td>0.237</td>
<td>0.359</td>
<td>0.263</td>
<td>0.209</td>
<td>1.409</td>
</tr>
<tr>
<td>Tm</td>
<td>1.638</td>
<td>1.579</td>
<td>1.576</td>
<td>1.505</td>
<td>1.622</td>
<td>2.379</td>
<td>1.767</td>
<td>1.409</td>
</tr>
<tr>
<td>Yb</td>
<td>0.136</td>
<td>0.238</td>
<td>0.236</td>
<td>0.229</td>
<td>0.238</td>
<td>0.347</td>
<td>0.267</td>
<td>0.211</td>
</tr>
<tr>
<td>Lu</td>
<td>0.560</td>
<td>0.997</td>
<td>1.03</td>
<td>1.05</td>
<td>1.14</td>
<td>1.86</td>
<td>1.16</td>
<td>0.986</td>
</tr>
<tr>
<td>Hf</td>
<td>0.0376</td>
<td>0.225</td>
<td>0.505</td>
<td>-</td>
<td>0.206</td>
<td>0.168</td>
<td>0.288</td>
<td>0.153</td>
</tr>
<tr>
<td>W</td>
<td>0.00489</td>
<td>0.00207</td>
<td>-</td>
<td>0.00860</td>
<td>0.0306</td>
<td>0.0439</td>
<td>0.0300</td>
<td>1.31</td>
</tr>
<tr>
<td>Th</td>
<td>3.40</td>
<td>1.82</td>
<td>8.28</td>
<td>1.45</td>
<td>0.87</td>
<td>3.63</td>
<td>1.31</td>
<td>0.520</td>
</tr>
<tr>
<td>Pb</td>
<td>0.419</td>
<td>0.121</td>
<td>0.140</td>
<td>0.111</td>
<td>0.121</td>
<td>0.0825</td>
<td>0.0907</td>
<td>0.109</td>
</tr>
<tr>
<td>Sample ID</td>
<td>Lithology</td>
<td>Lu (ppm)</td>
<td>Hf (ppm)</td>
<td>Lu/Hf</td>
<td>176Lu/177Hf</td>
<td>2σ error</td>
<td>176Hf/177Hf</td>
<td>2σ error</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>----------</td>
<td>----------</td>
<td>-------</td>
<td>---------------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>499321</td>
<td>Ultramafic rock</td>
<td>0.1382</td>
<td>0.6417</td>
<td>0.2154</td>
<td>0.03058</td>
<td>0.00007</td>
<td>0.282816</td>
<td>0.000009</td>
</tr>
<tr>
<td>499325</td>
<td>Amphibolite</td>
<td>0.2469</td>
<td>1.047</td>
<td>0.2357</td>
<td>0.03346</td>
<td>0.00008</td>
<td>0.282827</td>
<td>0.000006</td>
</tr>
<tr>
<td>499327</td>
<td>Pillow core</td>
<td>0.2464</td>
<td>1.072</td>
<td>0.2298</td>
<td>0.03262</td>
<td>0.00007</td>
<td>0.282756</td>
<td>0.000008</td>
</tr>
<tr>
<td>499328</td>
<td>Metagabbro</td>
<td>0.2333</td>
<td>1.009</td>
<td>0.2313</td>
<td>0.03293</td>
<td>0.00008</td>
<td>0.282785</td>
<td>0.000006</td>
</tr>
<tr>
<td>499329</td>
<td>Pillow lava</td>
<td>0.2469</td>
<td>1.201</td>
<td>0.2056</td>
<td>0.02918</td>
<td>0.00008</td>
<td>0.282549</td>
<td>0.000005</td>
</tr>
<tr>
<td>499330</td>
<td>Amphibolite</td>
<td>0.3605</td>
<td>1.907</td>
<td>0.1890</td>
<td>0.02683</td>
<td>0.00006</td>
<td>0.282460</td>
<td>0.000005</td>
</tr>
<tr>
<td>499331</td>
<td>Pillow lava</td>
<td>0.2722</td>
<td>1.186</td>
<td>0.2295</td>
<td>0.03258</td>
<td>0.00008</td>
<td>0.282810</td>
<td>0.000011</td>
</tr>
<tr>
<td>499332</td>
<td>Picrite</td>
<td>0.2191</td>
<td>1.038</td>
<td>0.2111</td>
<td>0.02996</td>
<td>0.00016</td>
<td>0.282594</td>
<td>0.000005</td>
</tr>
</tbody>
</table>