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ABSTRACT
Imperfectly round bridge stay cable cross section is speculated to be a key factor for wind-induced large-amplitude cable vibrations observed
on site. A delayed detached eddy simulation implemented in Open source Field Operation and Manipulation is used to investigate the flow
structure around and in the near-wake of an imperfectly round circular cylinder and the corresponding aerodynamic forces at a Reynolds
number of 104 and an attack angle of 0○ or 45○. With the increase in roundness imperfection, both monotonic and non-monotonic changes
of the mean surface pressure and the wake velocity are found when the cylinder is normal to the flow. At an attack angle of 45○ and when the
roundness ratio is e/D = 4%, it is found that the geometric imperfection in the cross-sectional shape of the cylinder allows it to the retention
of more axial flow in the proximity of the cylinder leeward surface due to a shorter recirculation length. The vortex formed by the intensified
axial flow would interact with the conventional von Kármán vortex formation at a frequency a few times lower than that of the latter and
lead to intermittently amplified transverse lift. This reveals that imperfect roundness in the cross section of a circular cylinder could be an
excitation source of low frequency vibration. Thus, it provides evidence that this kind of geometric imperfection, which commonly exists in
real stay cables, could contribute to the mechanisms that trigger large-amplitude or even divergent cable motion, such as dry inclined cable
galloping on site.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0002997., s

I. INTRODUCTION

Increasing research effort has been dedicated to wind-induced
vibrations of stay cables on cable-stayed bridges under no precip-
itation condition. Owing to the low lateral stiffness, low inherent
damping, and light mass, stay cables are sensitive to dynamic exci-
tations such as wind. In typical bridge engineering practice, a high-
density polyethylene (HDPE) tube is commonly used to shield a stay
cable’s steel strands from environmental impact. Thus, a stay cable
was modeled as a smooth circular cylinder in many existing exper-
imental1–3 and numerical4,5 studies. However, the cross-sectional
shape of a real stay cable is not usually perfectly round. Its round-
ness could be affected by numerous factors including manufacturing
precision, assembling processes, and deformations during shipping
and storage. For example, Larose et al.6 reported that a deviation of
the mean diameter larger than ±5% could exist on site. To clarify the
impact of such shape imperfection, researchers prescribed geometric

perturbations on a circular cylinder cross section. One of the actively
studied topics in fluid mechanics is the groove-shaped geometric
perturbation. Large desert plants such as cacti experience high wind
velocity in their habitat and evolve a groove-shaped cross section.
These organisms provide researchers many new insights into the
flow past non-circular bluff bodies.7,8 Inspired by the groove-shaped
cross section, researchers studied9 the riblet surface aligned in the
flow direction, reduced10 the drag of the base flow in a channel, and
optimized11 a longitudinal groove in a pressure driven flow.

The aerodynamic behavior of a perfectly round circular cylin-
der has been extensively studied,5,12 but studies on a cylinder having
imperfect roundness are constrained to a limited number of cross
sectional shapes, such as 2D arc/triangle groove, pyramid, sand, and
emery perturbation.13 Although this kind of modification on the
cross-sectional shape is idealized, it provides many insights into the
fundamental problems in fluid mechanics. In the past few years,
the roundness effect on the aerodynamic behavior of bridge stay
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cables was investigated in the laboratorial environment.14,15 The
results of a wind tunnel test15 suggested that the imperfect round-
ness of a circular cylinder could significantly affect drag reduction
when the flow is in the critical Reynolds number regime. Further-
more, a wall-resolved large eddy simulation13 showed that the pri-
mary mechanism for the occurrence of drag crisis was not asso-
ciated with laminar–turbulent boundary-layer transition, but with
the interaction between primary flow separation and secondary flow
recirculating motions.

In 2015, the Federal Highway Administration Agency (FHWA)
of the U.S. initiated a research project to further investigate large
amplitude vibrations of bridge stay cables reported in several wind
tunnel tests.2,16 Besides some key parameters, such as the cable incli-
nation angle and the characteristics of atmospheric turbulence, the
focus was on the effect of surface irregularities of the HDPE tube.
It should be pointed out that this kind of surface imperfection
is not identical to the surface roughness but rather indicates the
deviation of a cross-sectional shape from the perfectly round one.
Insights gained from existing fundamental studies suggested that
small imperfection on the cross-sectional shape could have a signif-
icant impact on the overall aerodynamic performance of a circular
cylinder. Thus, it is reasonable to ask to what extent the imperfection
in the cross section roundness would contribute to the aerodynamic
instability of a real stay cable.

The wind tunnel test by Wang et al.15 was perhaps the first
experimental study attempting to investigate the role of round-
ness effect in the mechanism of wind-induced large-amplitude cable
vibrations without rain. It was observed that compared to a perfectly
round circular cylinder, a groove-shaped cross-sectional cylinder
has a less significant drag reduction in a lower Reynolds numbers
range (105 < Re < 2 × 105). However, no sufficient experimental data
are available to capture the details of the flow field surrounding the
imperfectly round circular cylinder.

In view of this, the current study aims at using delayed detached
eddy simulation (DDES) implemented in Open source Field Oper-
ation and Manipulation (OpenFOAM version 4.117) to investi-
gate the flow structure around and in the near-wake of a circu-
lar cylinder having imperfect roundness and the corresponding
aerodynamic forces at a Reynolds number of 104 with an attack
angle of 0○ and 45○, respectively. This would assist us to clar-
ify the possible mechanisms associated with wind-induced large-
amplitude cable vibrations under no precipitation conditions on
site.

II. NUMERICAL ASPECTS
OpenFOAM is a free, open source software to solve scientific

problems in continuum mechanic distributed by the GNU Gen-
eral Public License. It uses a finite-volume method to divide the
computational domain into a set of discrete volumes that fill the
computational domain without overlap. The equations are then
volume-integrated over each individual finite volume using Gauss
theorem.

We used the second order scheme, backward, to do the time
integration. We used predictor-corrector Pressure Implicit with
Splitting of Operators (PISO) to decouple the pressure and veloc-
ity fields and solve them iteratively. The velocity matrix system was
predicted using the Gauss Seidel solver with a tolerance of 10−7.

The pressure matrix system was solved by a geometric agglomerated
algebraic multi-grid (GAMG) solver with a tolerance of 10−6. Three
PISO correctors were used for each time step.

A. Governing equation and turbulence modeling
The governing equations for the current numerical simulation

are the Navier–Stokes equations, where the flowing air is assumed to
be incompressible,

∇ ⋅ v = 0, (1)

∂v
∂t

+ (v ⋅ ∇)v = −∇p
ρ

+ ν∇2v, (2)

where v is the velocity vector, p is the pressure, ρ is the density, and
ν is the kinematic viscosity.

A wall-resolved large eddy simulation remains a challenging
task for engineering interest.18 Considering the studied Reynolds
number Re = 104 and the available computational resources, in the
current study, we used DDES in OpenFOAM. Menter and Kuntz19

pointed out that artificial grid induced separation could occur if
the switch from Reynolds-averaged simulations (RAS) to large-eddy
simulation (LES) takes place and the reduction of eddy viscosity is
not balanced by the resolved turbulent content. This “gray area” can
occur if the size of the near wall grid is refined to a degree such that
the turbulence model switches from RAS to LES contents, but the
grid is not fine enough to satisfy the requirement of LES. The modi-
fication in the delayed detached eddy simulation improves the “gray
area” between RAS and LES. The mathematical details of DDES
can be found in our previous work20 or in the original proposal by
Spalart et al.21

B. Computational domain and boundary conditions
The computational grid has a cylindrical geometry (also known

as O-type grid). As shown in Fig. 1(a), the cylinder is located at the
center of the computational domain whose diameter and length are
40D and 20D, respectively. A Cartesian coordinate system is used
such that the x-axis represents the stream-wise direction, the z-axis
coincides with the cylinder axis, and the y-axis is perpendicular to
the x-axis and the z-axis. In addition, the attack angle (α) is also
denoted in Fig. 1(a).

We adopt a similar definition of roundness used in an earlier
wind tunnel study.15 The cross-sectional shape of the cylinder is
formed by superimposing a half-sine curve on one-eighth of a circle.
This pattern [denoted by the blue curve in Fig. 1(b)] repeats itself
every 45○ of axial rotation until the entire cross section is formed.
The control variable of roundness is defined as the ratio between the
maximum groove depth, e, and the cylinder diameter, D, as shown
in Fig. 1(b). This ratio describes the degree of geometric imperfec-
tion of a circular cylinder, with e/D = 0 corresponding to a perfectly
round circular cylinder.

Figure 2 shows the two-dimensional grids of the cylinders with
four different roundness ratio cases based on our previous experi-
ence.20,22 Particularly, we selected the two-dimensional grid simi-
lar to our previous work.20 The three-dimensional grid was con-
structed by extruding the two-dimensional grid along the z-axis.
The inlet/outlet planes were half the cylinder surface, as shown
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FIG. 1. (a) Sketch of the full compu-
tational domain, and (b) illustration of
roundness definition.

FIG. 2. Mesh details in the vicinity of
cylinders with four roundness ratios e/D:
(a) 0% (b) 1% (c) 4%, and (d) 10%.

in Fig. 1(a). The following boundary conditions were used in the
current study:

● At the inlet plane, a turbulent inlet was adopted of which the
corresponding turbulence intensity was around 1%.

● At the outlet plane, a Neumann boundary condition was
imposed to the velocities (∂u/∂x = ∂v/∂y = ∂w/∂z = 0) and
the pressure was assumed to be zero (p = 0).

● On the cylinder surface, a Dirichlet boundary condition for
velocities (u = v = w = 0) and a zero gradient condition
(perpendicular to the cylinder surface) for the pressure were
utilized. The turbulent kinematic viscosity was predicted
using Spalding’s laws to alleviate the extremely fine near-wall
resolution near the cylinder surface.

● On the span-wise “wall,” the periodic boundary conditions
were applied to minimize the end effect.

As indicated in an earlier study,23 the insufficient size of
the computational domain could cause a periodic artifact in the
simulation results. Thus, we used a length of 20D and 300 lay-
ers in the span-wise direction to ensure accurate capturing of the
topology associated with the application of the periodic boundary
conditions.

A constant time step was chosen to warrant a local Courant
number smaller than 1. A non-dimensional time is defined as
t∗ ≡ tU∞/D, where t is the dimensional time, U∞ is the free-stream
velocity, and D is the diameter of the cylinder. A summary of the
mean drag coefficient, the Strouhal number, and the root-mean-
square lift coefficient is given in Table I. The drag and lift coefficients
are defined as

CD ≡
2FD

ρU2
∞DL

, (3)

CL ≡
2FL

ρU2
∞DL

, (4)

where FD and FL are the total force per unit length in the positive
x direction and the positive y direction, respectively, ρ is the air
density, and L is the cylinder length. The non-dimensional form of
the vortex shedding frequency (f s) is defined as St ≡ f sD/U∞. The
root-mean-square value of CL is defined as

C′L ≡
¿
ÁÁÀ N

∑
n=1
∣CL(t)∣2/N, (5)
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TABLE I. Grid configuration for the normal flow case and the sensitivity study.

Case Re Lz/D Nr (Δr+)a Nθ (Δθ+) Nz (Δz+) CD St C′L −Cp |umin|/U LB/D

α = 0○

Current 1.0 ×104 20 115 118 300 1.14 0.20 0.23 0.96 0.28 1.11
(0.004) (0.026) (0.067)

Cheng et al.5 1.0 ×104 3 384 384 96 1.08 . . . . . . 1.20 . . . . . .

Travin et al.30 5.0 ×104 2 118 105 30 1.05 0.22 0.21 0.98 . . . 1.3
Expt. data . . . . . . . . . . . . . . . . . . 0.21b . . . 1.10c 0.38d 1.02e

Coarse 1.0 ×104 20 115 118 200 1.21 0.20 0.21
α = 0○ (e/D = 4%) Medium 1.0 ×104 20 115 118 300 1.20 0.20 0.17

Fine 1.0 ×104 20 115 118 400 1.22 0.20 0.18

aThe dimensionless thickness of the near-wall mesh Δr+ = d/D, where d is the dimensional thickness and D is the diameter of the cylinder.
bFrom Ref. 24.
cFrom Ref. 31.
dFrom Ref. 32.
eFrom Ref. 33.

FIG. 3. Mean pressure distribution on the cylinder surface with four roundness
ratios e/D at Re = 104: (a) 0% (red squares are interpolated from Norberg’s25

experimental data), (b) 1%, (c) 4%, and (d) 10%; mean pressure distribution
around cylinders: (e) 0%, (f) 1%, (g) 4%, and (h) 10%.

where CL(t) is the instantaneous lift coefficient. The time averag-
ing process was executed over a period of time corresponding to T∗

= 190 after the first transitional time period (T∗ = 95).

C. Validation
The case of the perfectly round circular cylinder not only served

as a reference base but was also used for the mesh validation pur-
pose. It can be seen from Table I that the mean drag coefficient of
1.14 obtained from the current numerical model agrees with a wall-
resolved LES by Cheng et al.,5 which is CD = 1.08 at Re = 1 × 104.
The Strouhal number of St = 0.20 from the current study at the sub-
critical Reynolds number of 104 concurs well with the experimental
work of Roshko,24 which reported St = 0.21. In addition, the surface
pressure distribution around the cylinder is also in general agree-
ment with the experimental data by Norberg,25 which is shown in
Fig. 3(a) as red squares. We also conducted a mesh sensitivity analy-
sis. The computational domain has a span-wise length of 20D. Three
grids, Nz = 200, 300, and 400 in the span-wise direction, were tested.
The results of a sample case of e/D = 4% and normal flow condition
are given in Table I. It is clear from Table I that further refinement
than Nz = 300 in the span-wise direction would hardly affect the
simulation results. Thus, the grids of other cases in this study were
based on the medium grid.

III. RESULTS AND DISCUSSIONS
To explore the impact of imperfect roundness on the flow struc-

ture around a circular cylinder and its wake, we simulated flow
around circular cylinders having different levels of roundness imper-
fection when placed normal or inclined to the oncoming flow and
compared with the reference case of e/D = 0.

A. Attack angle α = 0○ (normal flow)
In this section, the flow field and aerodynamic characteristics

of circular cylinders having different levels of roundness imperfec-
tion, i.e., e/D = 0%, 1%, 4%, and 10%, when exposed to normal flow

Phys. Fluids 32, 044106 (2020); doi: 10.1063/5.0002997 32, 044106-4

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 4. The angular position of an arbitrary point on the cylinder surface with
respect to the stagnation point (θ = 0○) and the locations of zones.

(α = 0○) are examined. The studied parameters include the surface
pressure distribution, the force coefficients, and the wake velocity.
The case of e/D = 0 is used as the reference base.

1. Surface pressure distribution
Figure 3 illustrates the cylinder surface pressure distribution for

four different roundness ratios: e/D = 0%, 1%, 4%, and 10%. The
time-averaged pressure coefficient is defined as

Cp = 2(p̄ − p0)/(ρU
2), (6)

where U is the oncoming flow velocity, ρ is the air density, p̄ is the
time-averaged static pressure on the cylinder surface computed over
a non-dimensional time period of T∗ = 190 after the first transitional
time period of T∗ = 95, and p0 is the static pressure in the free-
stream, which is set to be zero. To better analyze the roundness effect
on the surface pressure distribution, we further divide the cylinder
surface into four zones, as shown in Fig. 4, based on the observed key
features of the surface pressure. The angle, θ, is defined as the angular
position of an arbitrary point on the cylinder surface with respect to
the stagnation point (θ = 0○), which is used to describe the range of
those zones. The positive direction of θ is clockwise. Because of the
symmetric distribution pattern of Cp, only the time-averaged surface
pressure distribution in the upper half of the cylinder, i.e., 0○ ≤ θ
≤ 180○, is portrayed in Fig. 5 for the four zones. We choose different
scales in different subplots to better illustrate pressure differences in
different zones.

Figure 5(a) portrays Cp distribution in zone 1, which is
the region between the stagnation point (θ = 0○) and θ = 40○

where the cylinder surface is subjected to pressure. Results show
that although the cylinder mean surface pressure distribution is
marginally affected when the cylinder cross section deviates slightly
from the perfectly round shape, as reflected by the fact that the Cp
distribution in the e/D = 0% and 1% cases is almost identical, with
a further increase in e/D, Cp increases monotonically, the trend of
which is denoted by an arrow in Fig. 5(a). This could be caused by the
change in the curvature of the cylinder shape corresponding to dif-
ferent roundness ratios. At larger e/D, the increased curvature could
lead to a more considerable change in the surrounding flow direc-
tion, which would transfer into more momentum energy, impose
larger impulse on the cylinder surface, and result in an increase in
surface pressure. Besides, the angular position of the point where Cp
becomes zero is also found to increase monotonically with e/D. As

FIG. 5. Pressure coefficient Cp details at
different angular positions at Re = 104—
(a) zone 1: 0○ ≤ θ ≤ 40○, (b) zone 2: 40○

≤ θ ≤ 80○, (c) zone 3: 80○ ≤ θ ≤ 100○,
and (d) zone 4: 100○ ≤ θ ≤ 180○.
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can be seen from Fig. 5(a), it is 35○, 35○, 38○, and 40○ for e/D = 0%,
1%, 4%, and 10%, respectively.

As the flow passes over the beginning region of zone 2 (40○

≤ θ ≤ 80○), the surface of the cylinder starts to experience a nega-
tive Cp, i.e., suction, as shown in Fig. 5(b). The decreasing rate of
Cp is found to be monotonic with respect to e/D increment in the
region of 40○ ≤ θ ≤ 46○. The maximum absolute value of the suction,
1.57, is found in the e/D = 10% case. Again, in this region, we found
that Cp in e/D = 1% follows the pattern of the perfectly round cir-
cular cylinder of which the absolute value of Cp gradually increases
and then slowly decreases. However, when e/D > 1%, a much sharper
increase followed by a gradual decrease occurs in the absolute value
of Cp.

Zone 3 (80○ ≤ θ ≤ 100○) is the region where the flow separates
from the cylinder surface in the case of a perfectly round circular
cylinder. Again, as can be seen from Fig. 5(c), we found that the Cp
distribution pattern in the case of e/D = 1% is similar to that of the
perfectly round circular cylinder, whereas in the cases of e/D = 4%
and 10%, the absolute value of Cp shows a sharp increase followed
by a decrease in the region 87○ ≤ θ ≤ 95○. Unlike the case of e/D
= 4%, where the absolute value of Cp continuously increases before θ
reaches 90○, in the case of e/D = 10%, the absolute value of Cp experi-
ences a sharp reduction when θ changes from 80○ to 88○. In addition,
although Cp increases monotonically toward the leeward side in e/D
= 0% and 1% cases, when e/D = 10%, a sudden jump in Cp close
to the vertex of the cylinder cross section (θ = 90○) can be observed.
For example, in e/D = 10%, Cp is −1.05 at θ = 85○, it increases to −0.8
at around θ = 88○, and then it drops to −1.2 at round θ = 92○. The
geometric location of this sudden jump is denoted by a red arrow
in Fig. 2(d). Although the current study only consists of a pertur-
bation of the cylinder surface with eight wavelengths around the
cylinder circumference, the trend of this sudden jump agrees with
a recent wall-resolved LES by Cheng et al.13 at the location where
the cross-sectional shape has a sharp change.

Zone 4 (100○ ≤ θ ≤ 180○) is on the leeward side of the cylinder.
In this region [Fig. 5(d)], the pattern of the Cp distribution appears
stable. Overall, the absolute value of Cp in this region increases as
e/D increases. However, it is interesting to find that the minimum Cp
occurs for e/D = 4% rather than 10%. It can be observed in Fig. 3(c)
that the largest suction source on the cylinder leeward side occurs
for e/D = 4%, which would be related to the unique flow structure
around a circular cylinder with this level of geometric imperfection.
This will be further explored in Sec. III B 4.

2. Force coefficient
A summary of the mean drag coefficient, Strouhal number, and

root-mean-square of lift of cylinders for the studied cases is listed
in Table II. It is found that the Strouhal number, St , remains liter-
ally unchanged over the range of studied roundness for the normal
flow reference case. The current calculated mean drag coefficient
(CD = 1.14) and Strouhal number (St = 0.20) match well with the
experimental data (CD = 1.12 and St = 0.20) by Schewe26 in the
subcritical Reynolds number range. A slight discrepancy in CD is
observed for different roundness ratios. In particular, CD for the
e/D = 4% case is about 5% larger than that of the perfectly round
circular cylinder. It should be pointed out that the cross-sectional
geometry of the cylinder in the e/D = 4% case is the same as the one
studied in a recent wind tunnel test by Wang et al.15 They tested a

TABLE II. Mean drag coefficient, Strouhal number, and root-mean-square of lift for
the studied cylinders with/without roundness at attack angles α = 0○ and 45○.

Attack angle α Roundness ratio e/D CD St C′L

0○
0 1.14 0.20 0.23

1% 1.10 0.20 0.13
4% 1.20 0.20 0.17

10% 1.19 0.22 0.22

45○
0 0.51 0.15 0.07

1% 0.50 0.15 0.02
4% 0.55 0.15 0.05

10% 0.57 0.15 0.04

range of Reynolds numbers from Re = 5 × 104 to 4.5 × 105, which
covers the sub-critical and critical Reynolds number regimes. The
wind tunnel tested was conducted in a closed atmospheric facility
with a turbulence level of 0.14% in an empty test section. The tested
cylinder had a diameter of 0.09 m and an aspect ratio of L/D = 20.
They reported a minor difference of 2% in the CD value between the
tested cylinder (e/D = 4%, CD = 1.05) and the perfectly round cir-
cular cylinder (e/D = 0, CD = 1.07). It should be pointed out that
CD in the e/D = 4% case is larger than that in the e/D = 0 case from
the current numerical study, whereas the data in the experimental
study by Wang et al.15 showed that CD in e/D = 4% was 2% smaller
than that in the perfectly round cylinder. Due to the fact that the
relative difference of CD between cases of e/D = 4% and e/D = 0
is rather small, this difference might be attributed to many factors,
such as the Reynolds number, the turbulence intensity, and/or the
turbulence model used in the current study. In addition, we found
that the perfectly round circular cylinder has the highest value of
C′L, and the case of e/D = 1% has the lowest value of C′L in each
attack angle case. From the calculated data, it seems that C′L will
first decrease and then gradually increase, when e/D changes from
0% to 10%.

Figure 6 depicts the time history of the lift force coefficient
and their corresponding power spectra. The oscillating feature of
lift, which is observed in all four roundness ratio cases, implies the
presence of a periodic transverse excitation on the cylinder. How-
ever, their corresponding power spectra almost peak at the same
frequency. This is possibly due to the same projection area and the
relatively small variation of the cylinder cross section. The associated
flow structure will be discussed further in Sec. III B 4.

3. Wake velocity
To study how imperfect roundness would influence the near-

wake flow structure of a circular cylinder, the variation of the nor-
malized time-averaged streamwise velocity, U/U∞, along the wake
centerline is portrayed in Fig. 7, where U is the streamwise velocity
and U∞ is the oncoming flow velocity. The normalized recircula-
tion length, LB/D, where LB is the distance between the cylinder base
point and the location along the centerline where the streamwise
velocity changes from negative to positive, is found to be 1.11 for
the perfectly round circular cylinder (e/D = 0). A general decreasing
trend can be observed of the normalized recirculation length with
increasing e/D. The values of LB/D are 0.92, 0.85, and 0.93 for e/D
= 1%, 4%, and 10%, respectively.
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FIG. 6. Time history of span-wise averaged lift coefficient and corresponding power spectra E for different roundness ratios e/D at Re = 104: [(a) and (b)] 0%, [(c) and (d)]
1%, [(e) and (f)] 4%, and [(g) and (h)] 10%.

To further examine the velocity field within the recirculation
bubble, the wake field shown in Fig. 7(a) is divided into three regions,
covering the normalized downstream distance x/D from 0.50 to 0.55,
0.55 to 1.60, and 1.6 to 8.0, respectively. It is observed that for all
the imperfect roundness cases, the velocity field near the base point
(x/D = 0.5) is different from that of the perfectly round circular
cylinder case. Figure 7(b) shows that for a circular cylinder hav-
ing roundness imperfection, the velocity field near the base point is
positive, indicating that the flow is moving toward the downstream
direction. This is opposite to the case of the perfectly round circu-
lar cylinder. In the wake region (0.50 ≤ x/D ≤ 0.55), the maximum
velocity is found to increase monotonically from 0.0027 to 0.1111
with increasing roundness from e/D = 1% to 10%. Figure 7(c) shows
the normalized time-averaged streamwise velocity in the middle part
of the recirculation zone where the normalized downstream distance
is within the range of 0.55 to 1.6. In this region, the streamwise

velocity gradually reaches its minimum value and then increases to
zero. The e/D = 4% case is found to have the minimum U/U∞ of
−0.3. It is worth noting that a negative value of U/U∞ means oppo-
site flow direction with respect to the oncoming flow. In our study,
this minimum value of U/U∞ is not found in the case of e/D = 10%.
This indicates that the influence of circular cylinder roundness has
a nonlinear effect on the flow in the wake region. Another example
of this nonlinear relation is the length of recirculation zone, LB/D.
We found that LB/D decreases from 1.11 to 0.92 when the roundness
ratio increases from 0% to 1%. LB/D further decreases to a minimum
value of 0.85 when the roundness ratio is 4%. However, when the
roundness ratio further increases to 10%, LB/D ceases to decrease
but instead increases to 0.93. Figure 7(d) shows the time-averaged
streamwise velocity distribution in the far-wake region (x/D > 1.6).
In this region, the magnitude of velocity approaches asymptoti-
cally to a constant value. It can be observed that in this region, the
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FIG. 7. Time-averaged stream-wise
velocity along the wake centerline for
the cylinder with four different roundness
in different wake regions: (a) overall
distribution, (b) 0.50 ≤ x/D ≤ 0.55, (c)
0.55 ≤ x/D ≤ 1.60, and (d) 1.60 ≤ x/D
≤ 8.0. The secondary axes in each
subplots measure the distance between
the base point and the measured
locations.

magnitude of the streamwise velocity of a perfectly round circular
cylinder is always higher than that of the imperfectly round ones,
indicating that the roundness effect can propagate far into the wake
region.

To this point, the roundness effect in the normal flow case
has been studied, some monotonic and non-monotonic changes in
the cylinder surface pressure distribution have been observed. The
wake velocity profiles also show this consistency and inconsistency
due to the roundness effect. In Sec. III B, the flow field around
and flow-induced forces on an imperfectly round circular cylin-
der exposed to the flow with an attack angle of 45○ will be further
investigated.

B. Attack angle α = 45○

Flow around a circular cylinder at normal incidence has been
extensively investigated by researchers. Cases of a cylindrical body
exposed to flow at a non-zero attack angle are also commonly
encountered in engineering practice. Therefore, in this section, the
flow field around and aerodynamics associated with circular cylin-
ders having the same four levels of roundness, i.e., e/D = 0%, 1%,
4%, and 10%, when subjected to oncoming flow at an attack angle of
45○, will be further studied for Re = 104. Both the spatial and tempo-
ral variation of the lift force and the near-wake flow structure will be
examined in detail.

1. Sectional force coefficient
Figure 8 depicts the contour of the sectional CL for e/D = 0%,

1%, 4%, and 10% at Re = 104 when the attack angles are 0○ and 45○,
respectively. The definition of the sectional CL is similar to Eq. (4),
except that FL and L are the sectional force and the length of the
section, respectively, over which CL is calculated. The horizontal axis
represents the non-dimensional time, t∗. The vertical axis defines the

dimensionless span-wise location of the section LZ/D, where LZ is
the z-coordinate. To better scrutinize the flow structure, we continue
the simulation for a non-dimensional time period of T∗ = 154 after
t∗ = 291.

Overall, the presence of the von Kármán vortex shedding can be
recognized from the periodic pattern of the yellow (or red) and cyan
(or blue) stripes in Fig. 8. These yellow/cyan (or red/blue) stripes
can be used to identify the direction of the lift force acting on the
cylinder surface. For example, the yellow (or red) region in the con-
tour means that the cylinder is subjected to a positive lift force, i.e.,
the lift force is along the positive y-axis [Fig. 1(a)], whereas the cyan
(or blue) region represents a negative lift force. The yellow/cyan (or
red/blue) stripes in Figs. 8(a), 8(c), 8(e), and 8(g) show a similar pat-
tern as those in Figs. 11(a), 11(e), and 11(g) of our previous study,20

where these yellow/cyan (or red/blue) stripes are mostly perpendic-
ular to the horizontal axis t∗ in the contour of the sectional CL in
both studies. This phenomenon indicates that the flow structure is
synchronized over the entire cylinder span. It should be noted that
the cylinder studied in the previous work20 is a perfectly round one.
The similarity in the contour of the sectional CL between the two
sets of results suggests that the roundness has negligible impact on
the synchronization of the von Kármán vortex shedding over the
entire cylinder span in the normal flow (α = 0○) condition. How-
ever, it becomes complex when the flow approaches the cylinder at
a non-zero attack angle. When the attack angle is at α = 45○, the
contour of the sectional CL shows two distinct features. The first
noticeable feature is that the yellow/cyan (or red/blue) stripes start to
tilt in the t∗ − z domain when e/D = 1% and 4% [Figs. 8(d) and 8(f)],
whereas those in the perfectly round case [Fig. 8(b)] are still normal
to the horizontal axis t∗. Interestingly, when e/D = 10% [Fig. 8(h)],
the tilt pattern of the yellow/cyan (or red/blue) stripes is found to
only roughly exist until t∗ = 340. For example, the red/blue stripes
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FIG. 8. Sectional lift coefficient contours along the z-axis and time domain for an attack angle of 0○: (a) e/D = 0%, (c) e/D = 1%, (e) e/D = 4%, and (g) e/D = 10%; and for an
attack angle of 45○: (b) e/D = 0%, (d) e/D = 1%, (f) e/D = 4%, and (h) e/D = 10% at Re = 104.

clearly display this tilt pattern, as shown in the zoomed-in view [left
to Fig. 8(h)], at t∗ ≈ 320. Beyond that, the stripes become normal
to the t∗-axis again. The second feature is that the magnitude of
the sectional CL exhibits a moving pattern with the larger CL value
gradually traveling from the lower part (z = 0 − 10D) of the circular
cylinder to the upper part (z = 10 − 20D). It should be pointed out
that the color in Fig. 8 represents the value of the sectional CL. Based
on the color map, the red/blue represents a larger absolute value of
CL than that of yellow/cyan, so the red/blue stripes in Fig. 8 char-
acterize the localized maximum/minimum lift. This can be clearly
distinguished from the case of e/D = 4% shown in Fig. 8(f). A simi-
lar moving pattern of the red/blue stripes has also been observed in
our previous study20 for a perfectly round circular cylinder, but at
Re = 1.4 × 104 and at an attack angle of 30○. Based on the simulation
results, we speculate that the geometric imperfection in the cross-
sectional shape of a circular cylinder could disturb the separated flow
in a similar way as the combined effect of the Reynolds number and

the attack angle. With a further increase in e/D from 4% to 10%, this
moving pattern of red/blue stripes becomes much less obvious. As
shown in Fig. 2(d), when e/D = 10%, the cross-sectional shape of
an imperfectly round circular cylinder has relatively deep grooves,
which could possibly trap the axial flow and affect the formation of
the moving pattern.

The sectional lift force coefficient contour shown in Fig. 8 elu-
cidates much more details about the spatial and temporal variations
of the aerodynamic forces than a single mean force coefficient mea-
surement, e.g., CL or St . It is important to point out that this red/blue
stripe moving pattern is extremely sensitive to small perturbations.
Thus, if we view one set of moving red/blue stripes as one bundle,
e.g., the one enclosed in a white elliptical ring E1 (320 < t∗ < 360)
or a white elliptical ring E2 (360 < t∗ < 400), the existences of these
bundles do not always show an organized pattern, as illustrated in
Fig. 8(f). Instead, we found that this pattern has a strong irregu-
lar intermittent characteristic that the time interval between the two
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successive bundles varies from T∗ = 35 to T∗ = 70 under the same
conditions. A notable example of this is the time lag between two
bundles in Fig. 13(a). The reason could be attributed to factors such
as turbulence intensity, boundary condition, and even round-off
errors.

2. Cross correlation
To characterize the moving pattern of the red/blue stripes

shown in Fig. 8(f), we calculate the cross correlation function
between the sampled time series of CL at five span-wise locations.
The z-coordinates of these five locations (Zi, i = 1 to 5) are 4D, 8D,
11D, 13D, and 14D. A non-dimensional distance Sij between the two
adjacent span-wise locations (Zi and Zj) is defined as

Sij =
Zj − Zi

D
(i = 1 to 4, j = i + 1). (7)

The cross correlation of CL between the two span-wise locations Zi
and Zj is defined as

Rij = E[CLi(t)CLj(t + τ)], (i = 1 to 4, j = i + 1), (8)

where CLk(t) is the time history of CL at the span-wise location Zk
[k follows the same index rule in Eqs. (7) and (8)], τ is the time lag,
and E is the mathematical expectation.

Figures 9(b), 9(d), 9(f), and 9(h) show the cross correlogram
of CL for a circular cylinder at Re = 104 with four different levels of
roundness imperfection, i.e., e/D = 0%, 1%, 4%, and 10%, when the
attack angle is 45○. In addition, we also include the cross correlogram
of CL of the same four circular cylinders when the attack angle is 0○

in Figs. 9(a), 9(c), 9(e), and 9(g) for comparison. It can be seen in
Fig. 9(a) that when a perfectly round circular cylinder is placed nor-
mal to the flow, the CL cross correlation coefficient Rij would reach
a local maximum roughly every non-dimensional time period of
T∗ = 6.8 (or every dimensional time period of T = 0.36612 s) for all
four studied Sij cases. Given that the cylinder diameter is D = 0.09 m
and the oncoming flow velocity is U = 1.67 m/s, we can estimate
the non-dimensional frequency, St = D/(TU) = 0.1475. This agrees
very well with the result of St = 0.1490 determined based on the

FIG. 9. Cross correlogram of sectional CL: (a) e/D = 0%, (c) e/D = 1%, (e) e/D = 4%, and (g) e/D = 10%; and for an attack angle of 45○: (b) e/D = 0%, (d) e/D = 1%, (f) e/D
= 4%, and (h) e/D = 10% at Re = 104.
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span-wise averaged CL. However, when the attack angle is 45○,
although as shown in Table II, the Strouhal number of the e/D
= 4% and e/D = 0 cases is the same, the sectional CL contour of these
two cases are found to exhibit considerably different patterns, which
are portrayed in Figs. 8(b) and 8(f), respectively.

From the cross correlogram of CL in Fig. 9(f), it can be observed
that, besides the high frequency oscillation related to the von Kár-
mán vortex shedding, a relatively low frequency fluctuation also
exists, which amplifies the high frequency peaks once every few
cycles. Five typical amplified Rij are denoted by red dots and labeled
A, B, C, D, and E in Fig. 9(f). We found that the time interval between
any two adjacent red dots is closely related to the second feature, i.e.,
the moving pattern of the magnitude of the sectional CL discussed in
Fig. 8(f).

It is worth pointing out that based on the existing experimen-
tal studies3,16 and a field record,27 one of the distinctive response
characteristics of a wind-induced divergent type of bridge stay cable
vibration, i.e., dry inclined cable galloping, is the low frequency oscil-
lation compared to that induced by the von Kármán vortex shed-
ding. Therefore, it is speculated that although the current numerical
results are obtained by assuming a stationary condition of the cylin-
ders, this low frequency amplification pattern of the lift identified in
Fig. 8(f) for an imperfectly round circular cylinder (e/D = 4%) at an
attack angle of 45○ and a Reynolds number of 104 could be a poten-
tial excitation source, which might lead to an aerodynamic instability
of a cable and result in a large amplitude or even divergent oscillation
of cables, such as dry inclined cable galloping.

3. Sectional Cp contour
To further study the spatial flow structure inferred from

Fig. 8(f), the instantaneous surface pressure distribution on the
cylinder for the case of e/D = 4% at an attack angle of 45○ and
Re = 104 is examined. The definition of the instantaneous Cp is sim-
ilar to Eq. (6), except that p̄ is replaced by the instantaneous static
pressure. Figure 10 shows the distribution of instantaneous surface
pressure by unfolding the cylinder surface. The x-axis represents the
angular position of an arbitrary point along the circumference of the
cylinder, whereas the y-axis represents the span-wise position of the
point. The surface pressure distribution at six time instants, t∗ = 565,
569, 572, 576, 579, and 582, are shown in Fig. 10.

It can be distinguished from Fig. 10 that at each time instant,
there are two red regions, 0○ < θ < 30○ and 330○ < θ < 360○, in the
surface pressure distribution map, indicating that these two regions
of the cylinder surface are under pressure. The rest of the cylin-
der surface is subjected to suction (in green or blue). This pattern
agrees with that of the mean pressure distribution given in Fig. 3(c).
Besides, Fig. 10 also provides the spatial variation of Cp at a given
time instant. For instance, at time instant t∗ = 565, the Cp values are
low in the region 80○ < θ < 180○ and 0 < LZ/D < 5 shown in Fig. 10(a),
which is denoted by a red rectangular box. A local minimum value
of CP is identified to be −1.135, which is at the location of θ = 156○

and LZ/D = 2.68.
Interestingly, it is observed that this local low Cp (or high suc-

tion) region shifts to the lower left side at time instant t∗ = 569,
as marked by the red rectangular box in Fig. 10(b). Such a region
is found to move to the lower right side in Fig. 10(c) at t∗ = 572
with respect to that in Fig. 10(b). The same moving pattern of the

low CP (or high suction) region can be identified at the three sub-
sequent time instants in Figs. 10(d)–10(f). The Cp distribution maps
shown in Fig. 10 portray the instantaneous flow structure around
an imperfectly round circular cylinder with e/D = 4%. A low Cp
value indicates a possible existence of a vortex structure in the vicin-
ity of the region. Although there exists several experimental3,28 and
numerical4 studies investigating the flow structure around a cylinder
at various attack angles, the knowledge of the flow structure within
the cylinder recirculation zone is still limited. It is worth noting that
this local low Cp region is not purely resulted from the von Kármán
vortex shedding; otherwise, the entire span should show a similar CP
distribution pattern. We speculate that there might be a unique flow
structure that moves along the cylinder axial direction.

Combining Figs. 10(a)–10(f), we can observe that the lowCp (or
high suction) region denoted by the red rectangular box in Fig. 10(a)
propagates along the axial direction with an “S” pattern. We draw
a sketch and use a black dashed line to illustrate how this low Cp
(or high suction) region moves along the cylinder span-wise direc-
tion in Fig. 10(g). In addition, we utilize the red cross to indicate
the geometric center point of the red rectangular box in Figs. 10(a)–
10(f). If we estimate the moving speed of the “S” pattern along the
cylinder axial direction using the geometric centers of the regions
enclosed by the red rectangular box in Figs. 10(b) and 10(c), and
the time lag between the time instants associated with these two fig-
ures, this speed is determined to be 1.25 m/s. On the other hand, the
free-stream velocity component in the cylinder span-wise direction
is 1.17 m/s. The agreement on these two speeds strongly suggests that
the “S” pattern shown on the pressure coefficient maps is strongly
related to the near-wake flow along the cylinder axial direction. In
Sec. III B 4, we will examine this unique flow structure using flow
visualization techniques in detail.

4. Particle trajectory
To further study the “S” pattern movement of the low CP (or

high suction) region observed in Fig. 10 and discussed in Sec. III B 3,
the flow structure surrounding a cylinder in the case corresponding
to Fig. 8(f) is visualized by the trajectory of a massless particle. The
origin of the selected particle is at x = 1.7562D, y = −0.8889D, and
z = 4.6911D. To illustrate how the flow structure evolves in time, we
pick three non-dimensional time stamps, t∗ = 565, 569, and 572, in
Fig. 11, which correspond to the time stamps shown in Figs. 10(a)–
10(c), respectively. To clearly display the three-dimensional flow
structure, three different views are used to capture the particle tra-
jectory in Fig. 11. Figures 11(a), 11(d), and 11(g) show the leeward
side view of the particle movement, whereas Figs. 11(b), 11(c), 11(e),
11(f), 11(h), and 11(i) provide two additional views, respectively,
from the right and the left side of the cylinder by assuming that the
observer faces the oncoming flow. These surfaces are denoted in red
at the top of each column of subplots in Fig. 11. To have a better view
of the suction force variation on the leeward side of the cylinder, the
range of the color map used for illustrating surface pressure distri-
bution is set to correspond to a pressure coefficient variation from
−0.7 to 0.

It can be seen from Fig. 11 that the trajectory of the selected
particle follows a wavy path winding around the base point (or
θ = 180○ in Fig. 4). Clearly, this wavy path has a three-dimensional
characteristic, which suggests that the motion of the studied
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FIG. 10. Surface pressure contour for the case e/D = 4% at Re = 104 at non-dimensional time instants t∗: (a) 565, (b) 569, (c) 572, (d) 576, (e) 580, and (f) 583; and (g) a
schematic diagram illustrating the trajectory of a high suction region.

particle can be decomposed into two components, with one being
tangent to the cylinder circumference and the other along the
cylinder axis.

As shown in Figs. 11(a), 11(d), and 11(g), a localized dark blue
region appears at different locations of the cylinder surface as time
goes by. This dark blue region indicates where the instantaneous low
CP (or high suction) occurs and thus the presence of a vortex struc-
ture. Assume an observer stands in the cylinder wake and faces the
oncoming flow, then it can be seen that this instantaneous low CP

(or high suction) zone moves from the right side of the cylinder lee-
ward surface at t∗ = 565 to the left side at t∗ = 569 and swings back
again to the right side at t∗ = 572. The relocation of this low CP (or
high suction) zone at t∗ = 565, 569, and 572 is shown more clearly
in Figs. 11(b), 11(f), and 11(h) using the two additional views from
the right and the left side of the cylinder. Since the studied parti-
cle would be “pulled” toward the high suction zone, it would thus
be “pulled” toward the right leeward side of the cylinder surface at
t∗ = 565, then toward the left at t∗ = 569, and so on, i.e., the particle
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FIG. 11. Particle trajectory of the case
e/D = 4% at an attack angle of 45○

at Re = 104: [(a)–(c)] at t∗ = 565,
[(d)–(f)] at t∗ = 569, and [(g)–(i)]
at t∗ = 572; the surface pressure coeffi-
cient on the cylinder is also contour from
−0.7 to 0; the region of the contour in
each column is denoted by the red curve
of the circle on the top of each column.

would continuously alternate its motion direction along the tangent
of the cylinder circumference. Based on the time interval between
Figs. 11(a) and 11(g), which isT∗ = 7, it can be deduced that the non-
dimensional oscillating frequency of the tangential movement of the
particle is about 0.143, which agrees well with the Strouhal number
of 0.147 obtained earlier for this case (Table II). This implies that the
tangential component of the observed wavy motion of the studied
particle or the “S” pattern movement of the low CP (or high suction)
region is induced by the formation and shedding of the von Kármán
vortices.

The axial component of the particle motion is related to the
secondary flow on the leeward side of the cylinder surface. To better
illustrate the formation of this secondary flow, we use the stream-
trace visualization technique to capture the surrounding flow struc-
ture, as shown in Fig. 12(a). It is observed that when the flow
approaches and passes the cylinder at a non-zero attack angle, at any
arbitrary cross section of the cylinder, part of the flow is trapped
within the recirculation zone, which is indicated by the black arrow
A in Fig. 12(a). Subsequently, the trapped flow travels downward
along the cylinder axial direction. As an accumulating effect of such
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FIG. 12. Instantaneous stream-trace of the studied cases at an attack angle of 45○

at Re = 104: (a) e/D = 4% and (b) e/D = 0.

a downward flow component from all the sections along the cylin-
der span, a strong secondary flow is formed, which is often referred
to as the axial flow.3 The presence of this secondary axial flow would
“push” the flow around the leeward side of the cylinder surface and
that in the near-wake to move along the cylinder axial direction.
Thus, as time progresses, the low CP (or high suction) region would
not only alternate its location along the tangential direction of the
cylinder circumference but also continuously travel along the cylin-
der axial direction, which leads to the formation of a unique flow
structure that moves in an “S” pattern in the cylinder near-wake, as
shown in Figs. 10 and 11.

Besides, it is observed that this newly formed axial flow is not
stable. Instead of remaining in the recirculation zone while moving
along the cylinder axial direction, it would “escape” after a short
while by forming vortices and shedding from the cylinder surface.
The formation and shedding of the axial vortices would interact with
other flow structures, i.e., the von Kármán vortices, in the near-wake
and continue to travel farther downstream to the far-wake region.
The “escaped” axial flow or the shedded axial vortex is designated by
the black arrow B in Fig. 12(a).

For comparison, we also calculate the stream-trace for the per-
fectly round circular cylinder case, portrayed in Fig. 12(b). Although
the formation of the axial flow and the shedding of the axial vor-
tex have also been identified, compared to the case of e/D = 4%
[Fig. 12(a)], the detached shear layer of a perfectly round circular
cylinder is found to be farther away from the cylinder surface. This
phenomenon can also be inferred from Fig. 7(c) of which in the nor-
mal flow case, when e/D = 4%, it has the shortest recirculation length,
while that of the perfectly round circular cylinder is the longest. This
implies that the presence of the roundness imperfection of a circu-
lar cylinder would allow retaining the secondary axial flow in the

recirculation zone for a longer time and thus enhance its strength
before shedding.

The characteristics of the “S” pattern movement of the low CP
(or high suction) region has been discussed earlier in Sec. III B 4. To
further investigate how this unique flow feature would affect aero-
dynamics of an imperfectly round circular cylinder, a comparison
has been made between the flow structure around such a geometri-
cally imperfect circular cylinder with e/D = 4% at an attack angle
of 45○ over the time duration with and without the presence of
the “S” pattern. Figure 13(a) presents the sectional lift coefficient
contour of the studied cylinder along the z-axis during 467 < t∗

< 606, whereas Fig. 13(b) gives a zoomed-in view of the sectional CL
contour when 565 < t∗ < 592, which includes the six time instants
discussed in Sec. III B 3. As shown in Figs. 13(a) and 13(b), the mov-
ing pattern of the red/blue strips during t∗ = 565 and 588, as marked
by a white elliptical ring (denoted by E5) in Figs. 13(a) and 13(b),
forms a complete “S” pattern movement of the low CP (or high suc-
tion) region when it travels from one cylinder end to the other. If
we draw a horizontal line at an arbitrary span-wise location of the
cylinder in Fig. 13(b), a continuous alternating pattern of the color
between blue (or cyan) and red (or yellow) can be observed, which,
according to the color map, represents the presence of the alternat-
ing sectional lift direction at that specific location. This alternating
pattern of the sectional lift direction results from the shedding of
the conventional von Kármán vortex. Besides, another phenomenon
can also be observed, which is denoted by a white elliptical ring in
Fig. 13(a) where the absolute value of the sectional lift within a short
time duration becomes much larger than those in the neighboring
regions. This amplification of sectional CL occurs intermittently, as
indicated by the repeated appearance of the red/blue stripe bundle
in Fig. 13(a) as time goes by. The same phenomenon has been noted
in Fig. 8(f) and discussed in Sec. III B 1. Nevertheless, as has been
pointed out earlier, the time interval between the two adjacent bun-
dles of red/blue stripes is multiple times of the time duration of a
conventional von Kármán vortex shedding. It is roughly five times
(time lag between E1 and E2) in Fig. 8(f) and ten times (time lag
between E3 and E4) in Fig. 13(a). This would lead to an intermittent
amplification of the sectional lift at a frequency much lower than that
of the von Kármán vortex shedding. Naturally, the question then is
what causes this intermittent amplification pattern of the sectional
lift?

To clarify the underlying mechanism, the flow structure at the
cylinder span-wise location of Lz/D = 4.69 is further explored for the
time instants with and without the occurrence of intermittent sec-
tional lift amplification. A horizontal plane is introduced along the
same direction as the free-stream velocity and intercepts the cylin-
der at Lz/D = 4.69, as shown schematically at the left bottom corner
of Fig. 13(c). The vorticity component within this plane is calculated
by the dot product of the vorticity vector and the normal vector of
the plane. It ranges from −100 s−1 to 100 s−1 and can be utilized to
interpret the formation of vortices in the cylinder wake. Besides, the
stream-trace technique is applied to visualize the three-dimensional
flow structure.

The characteristics of the flow field, associated with the four
von Kármán vortex shedding events, will be discussed in detail. They
occur at time instants t∗ = 570, 573, 586, and 589 and are designated
by letters A, B, C, and D, respectively, in Fig. 13(b). Among the four,
events A and B occur within the bundle of the red/blue stripes when
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FIG. 13. Illustration of the mechanism of the moving force pattern observed in the contour of sectional CL: (a) the time history from 467 < t∗ < 606; (b) a zoomed-in view on
the time history 565 < t∗ < 592; the flow structure at (c) t∗ = 570, (d) t∗ = 573, (e) t∗ = 586, and (f) t∗ = 589; and contours of the vorticity component (g) t∗ = 570 and 586,
and (h) t∗ = 573 and 589.

the sectional lift is amplified. If we assume that the observer stands
upstream of the cylinder and faces it, then one will see the shed-
ding of the von Kármán vortex from the right side of the cylinder
in events A and C and from the left side of the cylinder in events B
and D. To distinguish the shedding side of the von Kármán vortex,
letters A and C are enclosed in a circle box, whereas letters B and D
are enclosed in a square. Figures 13(c), 13(e), and 13(g) portray the
respective stream trace and vorticity component in the plane Lz/D
= 4.69 for events A and C of which the rolling shear layer is shown
in red, whereas those associated with events B and D are illustrated

in Figs. 13(d), 13(f), and 13(h) with the rolling shear layer shown in
blue.

Comparing the stream-trace of events A and B in Figs. 13(c)
and 13(d) with that of events C and D in Figs. 13(e) and 13(f), it
can be seen that the axial flow in events A and B stays very close
to the cylinder leeward side surface. At the time instant of t∗ = 570
and 573, the axial flow rolls up and forms vortex. Furthermore, the
proximity of the axial flow to the cylinder surface allows it to entrain
more flow from the cylinder near-wake during the axial vortex for-
mation process and leaves a region with higher suction. This renders
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the rolling up of the shear layer from the cylinder side to be drawn
closer to its leeward surface. This is clearly reflected in Figs. 13(g)
and 13(h) of which the vortex core of events A and B, as indicated by
the red arrow, located closer to the cylinder leeward surface when
compared with those in events C and D. Therefore, when a con-
ventional von Kármán vortex is formed and shedded, more flow
would be entrained from the cylinder near-wake and leads to a fur-
ther increase in the suction. The combined effect of the axial vortex
and von Kármán vortex formation and shedding would then result
in a much larger transverse lift due to higher suction on the lee-
ward side of the cylinder surface, i.e., the amplification of the lift. For
events C and D, however, since the axial flow is not closely attached
to the cylinder surface, its formation would have much less impact
on the flow in the cylinder near-wake as well as on the formation
location of the von Kármán vortex [Figs. 13(g) and 13(h)] and thus
the transverse lift on the cylinder.

It has been pointed out in Secs. III A 3 and III B 4 and also
shown in Figs. 7(c) and 12 that, compared to a perfectly round circu-
lar cylinder, an imperfectly round one would have a shorter recircu-
lation length and would be able to retain more axial flow closer to the
cylinder leeward surface. The intensified axial flow, when rolls up,
would generate a stronger axial vortex and promote the entrainment
of more flow from the cylinder near-wake. As explained earlier, the
interaction between the formation of the axial vortex and conven-
tional von Kármán vortex would result in an enhanced transverse
lift. Since the frequency of axial vortex formation is a few times
lower than that of the von Kármán vortex, the transverse lift act-
ing on an imperfectly round circular cylinder would be amplified
intermittently.

Stay cables on real cable-stayed bridges could have the round-
ness imperfection of their cross-sectional shape caused by various
factors including manufacturing process, assemblage, shipping, and
storage. This could considerably alter the surrounding flow field and
form a unique flow structure similar to that observed in the current
study. The imperfect roundness in a real cable could cause an inter-
action between the axial vortex and the conventional von Kármán
vortex, which would amplify the transverse lift intermittently. This
could ultimately develop into an excitation source to trigger large-
amplitude or even divergent cable motion, such as dry inclined cable
galloping.

It should be pointed out that the flow pattern observed in the
current study is different from the trailing edge vortex behind a
curved cylinder. For example, Gallardo et al.29 studied a curved
cylinder using LES and they observed a swirling pattern. In their
study, those swirling structures formed on both sides of the cylin-
der and there were no interactions between them. The scale of the
“S” pattern observed in the current study is larger than the swirling
structure documented by Gallardo et al.29 The current particle tra-
jectory shows that the flow moves back and forth between the two
sides of the cylinder around the leeward base point, whereas the
swirling structures never crossed the centerline, as shown in Fig. 5(b)
of their paper.

IV. CONCLUDING REMARKS
The impact of the roundness imperfection in the cross-

sectional shape of a circular cylinder on its neighboring flow struc-
ture and the associated aerodynamic forces has been numerically

scrutinized using delayed detached eddy simulation at a Reynolds
number of 104 and an attack angle of 0○ or 45○. Four levels
of roundness imperfection, represented by the roundness ratio
e/D = 0%, 1%, 4%, and 10%, respectively, have been investi-
gated. The surface pressure distribution, the aerodynamic forces,
and the wake structure have been examined in detail. Results
show that compared to a perfectly round circular cylinder, the
presence of roundness imperfection could have a considerable
impact on the surrounding flow structure and cause a subse-
quent influence on the surface pressure and the aerodynamic
forces.

In the normal flow condition, the cylinder mean surface pres-
sure distribution is found to be sensitive to the change in the
roundness of the cross section. Although for a small imperfection
of e/D = 1%, CP closely follows the distribution pattern of a per-
fectly round circular cylinder, with the increase in e/D, CP increases
monotonically on the cylinder windward surface. This monotonic-
ity fades on the leeward side, where the minimum CP is observed
to occur in the case of e/D = 4%. The roundness imperfection
has a nonlinear effect on the size of the recirculation zone, with
that of the perfectly round circular cylinder being the largest and
the one with e/D = 4% being the smallest. However, the pres-
ence of roundness imperfection has a negligible influence on the
span-wise synchronization of von Kármán vortex formation and
shedding.

When the flow approaches a circular cylinder at an attack angle
of 45○, a unique tilted and moving pattern of the yellow/cyan (or
red/blue) stripes representing the von Kármán vortices is observed
on the sectional CL contour, with the occurrence of a larger sec-
tional lift (red/blue stripes) gradually shifting from one end of the
cylinder to the other as time goes by. From the instantaneous CP
distribution contour, the location of the low CP (or high suction)
zone is observed to vary with time and move in an “S” pattern. The
current study found that the presence of the roundness imperfec-
tion could induce the formation of a stronger axial vortex and its
interaction with the conventional von Kármán vortex to intermit-
tently amplify the transverse lift acting on the cylinder. In the current
study, the strongest interaction is found in the case of e/D = 4%
where several incidents of sectional transverse lift amplification are
captured during a short period of time. Considering the fact that real
bridge stay cables on site also have the issue of roundness imper-
fection in their cross-sectional shape, it is therefore speculated that
this geometric imperfection would similarly introduce an intermit-
tently amplified transverse lift to a cable and trigger aerodynamically
unstable or even divergent motion, such as the dry inclined cable
galloping.
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