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Key Points: 94 

• Tethyan ophiolite-hosted anorthosites are analogous to Archean anorthosites and both 95 

largely formed at oceanic convergent plate margins. 96 

• Archean anorthosite-bearing layered intrusions and associated greenstone belts are 97 

dismembered subduction-related ophiolites. 98 

• Geological characteristics of Archean terrains are consistent with the operation of plate 99 

tectonics since the Eoarchean. 100 
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Abstract 103 

Elucidating the petrogenesis and geodynamic setting(s) of anorthosites in Archean layered 104 

intrusions and Tethyan ophiolites has significant implications for crustal evolution and growth 105 

throughout Earth history. Archean anorthosite-bearing layered intrusions occur on every continent. 106 

Tethyan ophiolites occur in Europe, Africa, and Asia. In this contribution, the field, petrographic, 107 

petrological, and geochemical characteristics of 100 Tethyan anorthosite-bearing ophiolites and 108 

155 Archean anorthosite-bearing layered intrusions are compared. Tethyan anorthosite-bearing 109 

ophiolites range from Devonian to Paleocene in age, are variably composite, contain anorthosites 110 

with highly calcic (An44-100) plagioclase and magmatic amphibole. These ophiolites formed 111 

predominantly at convergent plate margins, with some forming in mid-ocean ridge, continental 112 

rift, and mantle plume settings. The predominantly convergent plate margin tectonic setting of 113 

Tethyan anorthosite-bearing ophiolites is indicated by negative Nb and Ti anomalies and magmatic 114 

amphibole. Archean anorthosite-bearing layered intrusions are Eoarchean to Neoarchean in age, 115 

have megacrystic anorthosites with highly calcic (An20-100) plagioclase and magmatic amphibole 116 

and are interlayered with gabbros and leucogabbros and intrude pillow basalts. These Archean 117 

layered intrusions are interpreted to have predominantly formed at convergent plate margins, with 118 

the remainder forming in mantle plume, continental rift, oceanic plateau, post-orogenic, 119 

anorogenic, mid-ocean ridge, and passive continental margin settings. These layered intrusions 120 

predominantly crystallized from hydrous Ca- and Al-rich tholeiitic magmas. The field, 121 

petrographic and geochemical similarities between Archean and Tethyan anorthosites indicate that 122 

they were produced by similar geodynamic processes mainly in suprasubduction zone settings. We 123 

suggest that Archean anorthosite-bearing layered intrusions and spatially associated greenstone 124 

belts represent dismembered subduction-related Archean ophiolites. 125 

1 Introduction 126 

An anorthosite is a leucocratic medium-grained to megacrystic intrusive igneous rock 127 

consisting of >90% plagioclase (An0-100) (Ashwal, 1993, 2010; Ashwal and Bybee, 2017). 128 

Anorthosites occur as Archean megacrystic anorthosites, Proterozoic massif-type anorthosites, 129 

Lunar anorthosites and inclusions or xenoliths within felsic to ultramafic rocks, and occur in 130 

layered mafic intrusions, oceanic settings and ophiolites (Wiebe, 1992; Ashwal, 1993, 2010; 131 

Ashwal and Myers, 1994; Ashwal and Bybee, 2017). Anorthosites have formed throughout Earth 132 

history, occur on every continent and are associated with volcanic and plutonic felsic to ultramafic 133 

rocks, with Proterozoic massif-type anorthosites forming the most volumetrically significant 134 

examples that can attain batholithic proportions (Wiebe, 1992; Ashwal, 1993, 2010; Ashwal and 135 

Myers, 1994; Ashwal and Bybee, 2017). Despite this, the petrogenesis of anorthosites remains 136 

enigmatic as indicated by the persistence of the longstanding ‘anorthosite problem’ (Bowen, 1917; 137 

Ashwal, 1993; Latypov et al., 2020). The ‘anorthosite problem’ centres on the petrogenesis of 138 

anorthosites, the composition of the parental magmas to anorthosites, the concentration of 139 

plagioclase required to form anorthosites, the tectonic settings in which anorthosites form, and the 140 

mechanism(s) of anorthosite emplacement. Despite anorthosites being globally volumetrically 141 
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minor, the resolution of the ‘anorthosite problem’ has major implications for the crystallization of 142 

cumulate igneous rocks, the tectonic settings in which mantle-derived magmas form, whether plate 143 

tectonics has operated throughout Earth history and Archean to Phanerozoic crustal evolution and 144 

growth. Anorthosites and closely associated leucogabbros are commonly included under the 145 

umbrella terms ‘gabbros’ or ‘gabbroic cumulates’, indicating that they may be more common than 146 

previously thought. Given this and the strong petrogenetic link between anorthosites and 147 

volumetrically more important gabbros, understanding the petrogenesis of anorthosites has even 148 

more important implications for the petrogenesis of gabbroic cumulate rocks, crustal evolution and 149 

growth throughout Earth history and the longevity of the operation of plate tectonics on Earth 150 

(Burke, 2011; Furnes et al., 2014; Kusky et al., 2018; Hastie and Fitton, 2019; Bauer et al., 2020; 151 

Turner et al., 2020; Guo and Korenaga, 2020; El Dien et al., 2020). Archean megacrystic 152 

anorthosite-bearing layered intrusions contain distinctive spherical calcic plagioclase megacrysts 153 

up to 45 centimetres in diameter and are thought to be restricted to the Archean (Ashwal, 1993, 154 

2010; Ashwal and Myers, 1994; Ashwal and Bybee, 2017). Given their perceived temporal 155 

restriction to the Archean, the petrogenesis and geodynamic settings of Archean anorthosites have 156 

important implications for Archean magmatic and geodynamic processes (Ashwal and Bybee, 157 

2017). 158 

Anorthosites occur in numerous Phanerozoic ophiolites that mostly formed in various 159 

suprasubduction zone geodynamic settings, namely volcanic arcs, forearcs and back-arcs (Ashwal, 160 

1993, 2010; Polat et al., 2018a). Polat et al. (2018a) highlighted the similarity between Phanerozoic 161 

anorthosite-bearing ophiolites and Archean anorthosite-bearing layered intrusions and concluded 162 

that the latter formed in arc-rift or back-arc geodynamic settings. Some of the Phanerozoic 163 

ophiolites that formed during the opening and closure of the Tethys oceans (Paleo- and Neo-164 

Tethys) and, therefore, the creation of the Alpine, Dinaride, Balkan, Taurus, Pontide, Caucasus, 165 

Zagros and Himalayan mountain ranges (Şengör, 1979, 1990; Dilek and Furnes, 2009; Şengör et 166 

al., 2019; Yılmaz, 2019) contain anorthosites and share petrological and geochemical similarities 167 

with Archean anorthosite-bearing layered intrusions (see Polat et al., 2018a). The petrological and 168 

geochemical similarities between these Tethyan ophiolites and Archean anorthosite-bearing 169 

layered intrusions include the fact that they both contain anorthosite-bearing mafic to ultramafic 170 

cumulate sequences that are spatially associated with pillow basalts, and both have depleted, 171 

subduction-derived N-MORB-normalized trace element patterns exhibiting variably negative Nb-172 

Ta-Ti anomalies and high large-ion-lithophile abundances (Dilek and Thy, 2009; Dilek and 173 

Furnes, 2009, 2011, 2014; Pearce, 2014; Ashwal and Bybee, 2017; Polat et al., 2018a). Given these 174 

similarities and considering the fact that they formed in the Phanerozoic and Archean, respectively, 175 

a comparison of the field, petrographic and geochemical characteristics and petrogenetic and 176 

geodynamic interpretations of Tethyan and Archean anorthosites will offer important insights into 177 

Archean magmatic and geodynamic processes. Furthermore, Tethyan anorthosite-bearing 178 

ophiolites offer an opportunity to better understand the petrogenesis and geodynamic settings of 179 

relatively modern anorthosites in the context of the well-studied Tethyan realm (Dilek and Furnes, 180 

2009). Moreover, a comparison between Tethyan and Archean anorthosites may offer insights into 181 
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why calcic megacrystic anorthosites are mainly restricted to the Archean. The characteristics of 182 

Tethyan anorthosite-bearing ophiolites and, therefore, their implications for anorthosite 183 

petrogenesis and mechanisms of crustal evolution and growth throughout Earth history have not 184 

been reviewed in the literature (see Dilek and Furnes, 2009).  185 

In this contribution, the geological and geochemical characteristics of 100 Tethyan anorthosite-186 

bearing ophiolites and 155 (211 occurrences) Archean anorthosite-bearing layered intrusions are 187 

reviewed. The evidence presented in the literature for the parental magmas and geodynamic 188 

settings proposed for the reviewed Tethyan and Archean anorthosite occurrences are evaluated to 189 

constrain the validity of these interpretations. The characteristics and nature of these Tethyan 190 

ophiolites and Archean anorthosites are compared to elucidate how anorthosites formed in the 191 

Archean, the tectonic settings in which these anorthosites formed and their parental magma 192 

compositions. These findings will have major implications for anorthosite petrogenesis, Archean 193 

and Phanerozoic crustal evolution and growth, and the geodynamic settings of Archean and 194 

Phanerozoic anorthosites.  195 

 196 

2 Geological Background and Data Presentation 197 

2.1 Tethyan anorthosite-bearing ophiolites 198 

Tethyan anorthosite-bearing ophiolites occur in a belt that stretches from northwestern Africa 199 

to China and are scattered across the Alpine-Himalayan mountain belts, such as the Alps, 200 

Dinarides, Balkans, Taurides, Pontides, Caucasus, Zagros, Himalayas and Maghrebides (see 201 

Figures 1-2; Figures S1-S4; Table S1; Şengör, 1990; Dilek and Furnes, 2009). The most well-202 

studied major Tethyan anorthosite-bearing ophiolites are shown in Figures 1-2, Table 1, Figures 203 

S1-S4 and Table S1. The major field and petrological characteristics and anorthite contents of 204 

these ophiolites and their interpreted tectonic settings are listed in Table S1. These ophiolites 205 

underwent greenschist- to granulite-facies metamorphism and variable deformation (Table S1). 206 

The Tethyan ophiolites listed in Table S1 are the products of the closure of the Paleo- and Neo-207 

Tethys, vary in age from Devonian to Paleocene and range in size from 7 km2 to up to 12,000 km2 208 

(Şengör, 1990). These anorthosite-bearing ophiolites originated from the opening and closure of 209 

the Tethys oceans, range from being highly fragmented (ophirags) and displaying an incomplete 210 

idealized ophiolite sequence (e.g. Koziakas, Greece) to preserving a near-complete, Penrose-type 211 

idealized ophiolite sequence (e.g. Troodos, Cyprus; Pindos, Greece; Mirdita, Albania; Kızıldağ, 212 

Turkey; Semail (Oman), Oman; Neyriz, Iran; Chilas Complex, Pakistan; Figure 2; Table S1; 213 

Anonymous, 1972, Dilek and Furnes, 2009, 2011). The majority of Tethyan and non-Tethyan 214 

anorthosite-bearing ophiolites and ophiolites in general do not preserve complete idealized 215 

ophiolite sequences and are variably composite (Şengör and Yılmaz, 1981; Okay and Tüysüz, 216 

1999; Şengör and Natal’in, 2004; Dilek and Furnes, 2009, 2011; Furnes and Safanova, 2019; 217 

Şengör et al., 2019; Yılmaz, 2019). 218 

An idealized anorthosite-bearing ophiolite section comprises, from top to bottom, marine 219 

sedimentary rocks, massive to pillowed ultramafic to felsic lavas and a sheeted dyke complex, an 220 

anorthosite-bearing mafic to ultramafic cumulate sequence, and a mantle section of harzburgites, 221 
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dunites, and chromitites (see Figure 2; Table S1). Plagiogranites intrude the lava, sheeted dyke 222 

complex and cumulate sequences (see Figure 2; Table S1; Dilek and Furnes, 2011, 2014). 223 

Anorthosites usually occur as centimetre- to decimetre-thick layers in Tethyan and non-Tethyan 224 

anorthosite-bearing ophiolites; however, the Cretaceous Neyriz Ophiolite (Iran) has an anorthosite 225 

sequence up to hundreds of metres thick (see Figure 2; Table S1; Sakkarinejad, 2003). The 226 

Cretaceous Chilas Complex Ophiolite (Pakistan) has numerous anorthosite layers up to 1 metre 227 

thick (Takahashi et al. 2007). The anorthosites in Tethyan anorthosite-bearing ophiolites contain 228 

fine-grained to megacrystic calcic (An44-100) plagioclase.  229 

 230 

2.2 Archean anorthosite-bearing layered intrusions 231 

Archean anorthosite-bearing layered intrusions occur on every continent and form a 232 

volumetrically minor part of many of the Earth’s main cratons (see Figure 3). The most well-233 

studied Archean anorthosite-bearing layered intrusions are shown in Figures 3-4, Table 2, and 234 

Table S2. A summary of the geological features of selected Archean anorthosite-bearing layered 235 

intrusions is presented in Table S2.  236 

Archean anorthosite-bearing layered intrusions range in age from Eoarchean to Neoarchean 237 

(≥3950 Ma to ≥2500 Ma) and vary in size from <1 km2 to >6,000 km2 (see Figure 3; Table S2). 238 

These intrusions occur as separate bodies, within greenstone belts or as enclaves within tonalite-239 

trondhjemite-granodiorite (TTG) batholiths (Table S2). Archean megacrystic anorthosite- and 240 

leucogabbro-bearing layered intrusions form ~60% of the Archean anorthosite-bearing layered 241 

intrusions occurrences listed in Table S2. These intrusions form an integral, yet volumetrically 242 

minor part of Archean cratons worldwide and usually form part of and intrude into greenstone 243 

belts (Ashwal, 1993, 2010; Ashwal and Myers, 1994; Ashwal and Bybee, 2017; Polat et al., 244 

2018a). Such megacrystic anorthosite- and leucogabbro-bearing layered intrusions intrude 245 

spatially and temporally associated pillow basalts and are intruded by TTG batholiths (Windley 246 

and Garde, 2009; Polat et al., 2018a). Anorthosites in Archean anorthosite-bearing layered 247 

intrusions can attain thicknesses of up to hundreds of metres and contain medium-grained to 248 

megacrystic (up to 45 centimetres in diameter) calcic (up to An100) plagioclase (Figures 4-5; Table 249 

S2).  250 

Based on textural and chemical evidence, amphibole in some Archean anorthosite-bearing 251 

layered intrusions has been interpreted to be of magmatic origin and be indicative of hydrous 252 

magmatism (Rollinson et al., 2010; Polat et al., 2011; Hoffmann et al., 2012; Mohan et al., 2013; 253 

Piaia et al., 2017; Santosh and Li, 2018; Sotiriou et al., 2019a, 2020). The textural evidence for 254 

magmatic amphibole includes serrated igneous boundaries with calcic plagioclase, whole-grain 255 

optical continuity and extinction, its occurrence as interstitial oikocrysts and its anhedral form 256 

(Rollinson et al., 2010; Polat et al., 2011; Hoffmann et al., 2012; Mohan et al., 2013; Piaia et al., 257 

2017; Santosh and Li, 2018; Sotiriou et al., 2019a, 2020). This textural evidence distinguishes 258 

magmatic amphibole from metamorphic amphibole, which does not have serrated grain 259 

boundaries, does not occur as interstitial oikocrysts and is euhedral (Sotiriou et al., 2020). Primary 260 

magnesiohornblende can also be distinguished from metamorphic actinolite in these layered 261 
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intrusions based on its higher Si apfu values (Leake et al., 1997; Sotiriou et al., 2020). The 2743 262 

Ma Mayville Intrusion in the Superior Province of Canada has well-preserved magmatic 263 

amphibole; however, some recrystallization to secondary actinolite has occurred (Sotiriou et al., 264 

2020). 265 

The ca. 2973 Ma Fiskenæsset Complex of western Greenland is one of the largest and the most 266 

studied Archean anorthosite-bearing layered intrusions in the world (Myers, 1985; Windley and 267 

Garde, 2009; Polat et al., 2009, 2010, 2011). Despite multiple phases of ductile deformation and 268 

up to lower granulite-facies metamorphism, the primary field relationships, and magmatic 269 

structures and textures are well preserved throughout the intrusion (Windley and Smith, 1974; 270 

Myers, 1985; Polat et al., 2009, 2010, 2011). The intrusion contains well-preserved dunite, 271 

hornblende peridotite, hornblende pyroxenite, hornblendite, gabbro, leucogabbro and anorthosite 272 

layers (Myers, 1985; Polat et al., 2009, 2011). 273 

Syn-tectonic TTG magmas intruded the Fiskenæsset Complex along numerous shear zones and 274 

dispersed its lithological units as trains of inclusions (Figures 6 and 7) (Myers, 1976; 1985; 275 

Windley and Garde, 2009; Polat et al., 2011, 2015). The presence of thrust fault imbrications and 276 

regional-scale overturned fold structures (Figure 7) in the Fiskenæsset region, and subduction zone 277 

trace element patterns in all units of the Fiskenæsset Complex and in the spatially and temporally 278 

associated basalts and TTGs are collectively consistent with convergent margin geodynamic 279 

processes in Mesoarchean.  280 

 281 

3 Characteristics of Tethyan and Archean anorthosites 282 

3.1 Temporal distribution  283 

3.1.1 Temporal distribution of Tethyan anorthosite-bearing ophiolites 284 

Figure 8 shows that Tethyan anorthosite-bearing ophiolites range in age from Devonian to 285 

Paleocene. Tethyan anorthosite-bearing ophiolites formed in each of the periods between the 286 

Devonian and Paleocene but predominantly formed in the Jurassic and Cretaceous (see Figures 8-287 

13).  288 

 289 

3.1.2 Temporal distribution of Archean anorthosite-bearing layered intrusions 290 

Figures 8-13 show that Archean anorthosites range from Eoarchean to Neoarchean in age 291 

(≥3950 to 2500 Ma). Neoarchean anorthosite-bearing layered intrusions predominate, followed by 292 

those of Mesoarchean, Paleoarchean and Eoarchean age (see Figures 8-13).  293 

 294 

3.2 Plagioclase anorthite content variations  295 

3.2.1 Tethyan anorthosite-bearing ophiolites 296 

Anorthosites in Tethyan anorthosite-bearing ophiolites are mainly characterized by highly 297 

calcic plagioclase (Figure 13; Table S1). The anorthite content ranges from An44 to An100, with the 298 
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more calcic compositions (An70-100) representing the crystallization of magmatic plagioclase and 299 

the more sodic compositions (An44-60) indicating the formation of metamorphic plagioclase (see 300 

Ashwal, 1993, 2010; Ashwal and Bybee, 2017; Table S1). The most frequent anorthite content of 301 

plagioclase from these ophiolites is An90, closely followed by An85-86 and An88 (Figure 11). The 302 

majority (88%) of these highly calcic anorthosite-bearing ophiolites have been interpreted to have 303 

formed in a subduction-related geodynamic setting, with the remainder forming in mid-ocean ridge 304 

or nascent ocean basin settings (Figure 11; Table S1). These findings highlight the strong link 305 

between subduction zone processes and highly calcic anorthosites (see Polat et al., 2018a). 306 

 307 

3.2.2 Archean anorthosite-bearing layered intrusions 308 

Like Tethyan ophiolites, Archean anorthosite-bearing layered intrusions also have 309 

predominantly very calcic plagioclase (Figures 13-14; Tables S1 and S2). The anorthite content 310 

varies from An20 to An100; however, most have plagioclase that is quite calcic, and a substantial 311 

proportion have narrow-ranging, high anorthite contents (see Figure 14; Table S2). The most 312 

frequent anorthite content of plagioclase from these layered intrusions is An70 followed by An76 313 

and An80 (Figure 14). There is more variability in the anorthite content of plagioclase from Archean 314 

anorthosites compared to Tethyan anorthosites, an observation that most likely reflects the fact 315 

that the former have been subjected to more metamorphic events and associated deformation and 316 

alteration than the latter (Ashwal, 1993, 2010; Ashwal and Bybee, 2017). The greater variation in 317 

the anorthite content of plagioclase from Archean anorthosites compared to Tethyan anorthosites 318 

may also reflect different petrogenetic processes, and the wider range of geodynamic settings in 319 

which the former were emplaced (Ashwal, 1993, 2010; Ashwal and Bybee, 2017). 320 

The maximum anorthite content of plagioclase from Archean anorthosites was consistently 321 

high from the Eoarchean to Neoarchean (see Figure 14; Table S2). Of the 63 Archean anorthosites 322 

that have calcic plagioclase, 46 (73%) were interpreted to have formed in a subduction zone setting 323 

(see Figure 14; Table S2). Most of the subduction zone setting interpretations proposed for Tethyan 324 

and Archean anorthosites (Table S2) have been based on high-precision incompatible element 325 

geochemistry (e.g., negative Nb-Ti anomalies; narrow-ranging low Nb/Th and Nb/La ratios), 326 

isotope geochemistry and mineral chemistry (e.g., plagioclase, chromite), and detailed field 327 

observations (Table 3; Tables S1 and S2). There are some subduction zone setting interpretations 328 

in Tables S1 and S2 that may not be based on all these lines of evidence; however, all the 329 

subduction zone setting interpretations have been based on incompatible element geochemistry 330 

and field observations. This supports the strong link between calcic anorthosites and subduction 331 

zone processes.  332 

 333 

4 Discussion 334 

 335 

4.1 Parental magmas 336 

4.1.1 Parental magmas to Tethyan anorthosite-bearing ophiolites 337 
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The composition of the parental magmas to Tethyan anorthosites have largely been proposed 338 

based on their major and trace element geochemistry and/or chromite chemistry (Table S1). It has 339 

been recognised that it is difficult to accurately constrain the parental magma composition of 340 

anorthosites in Phanerozoic ophiolites because of their cumulate origin (Ashwal, 1993); however, 341 

it has been shown that the high-precision major and trace element geochemistry of anorthosites is 342 

reflective of their parental magmas (Ashwal, 1993; Polat et al., 2011). The majority of the parental 343 

magma compositions proposed for Tethyan anorthosites are based on high-precision major and 344 

trace element geochemistry and/or chromite chemistry, indicating that the parental magma 345 

compositions listed in Table S1 are most likely reflective of the magmas from which Tethyan 346 

anorthosites crystallized.  347 

Although 52% of the Tethyan anorthosite-bearing ophiolites listed in Table S1 were interpreted 348 

to be of boninitic affinity, only 8% of the anorthosites in these Tethyan ophiolites were interpreted 349 

to have actually directly crystallized from a boninitic parental magma (see Figure 12). Over three-350 

quarters (75%) crystallized from tholeiitic basalt magmas, with island arc tholeiitic (14%), picritic 351 

(2%) and calc-alkaline (1%) magmas proposed for the remaining anorthosite-bearing ophiolites 352 

(Figure 12). The Devonian to Triassic and Paleocene age anorthosite-bearing ophiolites all 353 

crystallized from tholeiitic magmas (Figure 12; Table S1). The proportion of Jurassic (81%) and 354 

Cretaceous (66%) age ophiolites that crystallized from tholeiitic magmas is lower than those of 355 

Devonian to Triassic and Paleocene age. Moreover, there is a greater proportion of Tethyan 356 

anorthosites of Jurassic (10% and 7%) and Cretaceous (20% and 10%) age that crystallized from 357 

island arc tholeiitic and boninitic magmas, respectively (Figure 12; Table S1). Furthermore, 358 

approximately 3% of Cretaceous and 2% of Jurassic age Tethyan anorthosite-bearing ophiolites, 359 

respectively, crystallized from picritic and calc-alkaline magmas (Figure 12; Table S1). The 360 

considerable variation in the parental magmas to Tethyan anorthosite-bearing ophiolites can be 361 

accounted for by the fact that many ophiolites are composite and crystallized from more than one 362 

magma (Dilek and Furnes, 2009, 2011, 2014; Furnes et al., 2014, 2015). 363 

 364 

4.1.2 Parental magmas to Archean anorthosite-bearing layered intrusions 365 

The composition of the parental magmas to Archean anorthosites have also largely been 366 

proposed based on their major and trace element geochemistry and/or chromite chemistry (Table 367 

S2). It is well known that it is difficult to accurately constrain the parental magma composition of 368 

Archean anorthosites because of their cumulate origin and age (Ashwal, 1993); however, it has 369 

been shown that the high-precision major and trace element geochemistry of Archean anorthosites 370 

is reflective of their parental magmas (Ashwal, 1993; Polat et al., 2011). The majority of the 371 

parental magma compositions proposed for Archean anorthosites are based on high-precision 372 

major and trace element geochemistry and/or chromite chemistry, indicating that the parental 373 

magma compositions listed in Table S2 are most likely reflective of the magmas from which 374 

Archean anorthosites crystallized.  375 

Archean anorthosite-bearing layered intrusions crystallized from magmas of similar 376 

composition to those of the Tethyan anorthosite-bearing ophiolites (Figure 12; Table S2). These 377 
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layered intrusions predominantly crystallized from tholeiitic magmas (59%), followed by magmas 378 

of hydrous Al-rich tholeiitic (20%), boninitic (12%), hydrous tholeiitic (4%), high Al tholeiitic 379 

(3%), komatiitic basaltic (1%) and island arc tholeiitic (1%) composition (Figure 12; Table S2). A 380 

higher proportion of Archean anorthosite-bearing layered intrusions crystallized from boninitic 381 

magmas compared to Tethyan anorthosite-bearing ophiolites, even though a greater proportion of 382 

the latter are of boninitic affinity (see Figures 11-12; Tables S1-S2). Approximately 23% of the 383 

Archean anorthosite-bearing layered intrusions in Table S1 crystallized from hydrous and/or Al-384 

rich tholeiitic magmas, a characteristic that distinguishes these intrusions from Tethyan 385 

anorthosite-bearing ophiolites (Figure 12; Table S2). 386 

 387 

4.2 Geodynamic setting  388 

4.2.1 Geodynamic setting of Tethyan anorthosite-bearing ophiolites 389 

The majority of Tethyan anorthosite-bearing ophiolites have negative Nb and Ti anomalies, 390 

magmatic amphibole, highly calcic (up to An100) plagioclase, pyroclastic andesitic, boninitic and 391 

rhyolitic volcanic rocks and arc-derived chromites, characteristics that are indicative of their 392 

formation in a subduction zone setting (Table 3; Table S1; Pearce and Peate, 1995; Pearce, 2008; 393 

Dilek and Furnes, 2009, 2011, 2014; Furnes et al., 2014). Most of the remaining Tethyan 394 

anorthosite-bearing ophiolites formed in a mid-ocean ridge setting, have MORB chromites and 395 

low TiO2/Yb and Nb/Yb ratios, lack negative Nb and Ti anomalies and magmatic amphibole, and 396 

have variably calcic (An50-90) plagioclase (Table S1; Pearce, 2008, 2014; Dilek and Furnes, 2009, 397 

2011; Furnes et al., 2014). These Tethyan mid-ocean ridge anorthosites are spatially associated 398 

with pillow lavas and have plagioclase with anorthite contents that are not as consistently high as 399 

those of Tethyan anorthosites that formed in subduction zone settings (Table 3; Table S1; Pearce, 400 

2008, 2014; Dilek and Furnes, 2009, 2011; Furnes et al., 2014).  401 

Tethyan anorthosites have also been interpreted to have formed in rift settings on the basis of 402 

their higher La/Yb, Nd/Sm and Zr/Y ratios relative to those that have been interpreted to have 403 

formed in subduction zone and mid-ocean ridge settings, negative εNd values, and were emplaced 404 

into older gneisses and are spatially and temporally associated with clastic sedimentary rocks and 405 

volcanic rocks (Table 3; Table S1; Pearce, 2008, 2014; Dilek and Furnes, 2009, 2011; Furnes et 406 

al., 2014). Mantle plume related Tethyan anorthosites have high TiO2/Yb and Nb/Yb ratios and 407 

are spatially and temporally associated with picrites (Table 3; Table S1; Pearce, 2008, 2014; Dilek 408 

and Furnes, 2009, 2011; Furnes et al., 2014). Most of the geodynamic settings proposed for 409 

Tethyan anorthosites have been based on a combination of high-precision whole-rock major and 410 

trace element geochemistry and field observations. Some of the earlier studies on Tethyan 411 

anorthosite-bearing ophiolites listed in Table S1 did not utilize high-precision major and trace 412 

element geochemistry; however, their geodynamic interpretations have largely been corroborated 413 

by more recent studies. 414 

 Tethyan anorthosite-bearing ophiolites have been interpreted to have formed in a variety of 415 

geodynamic settings, including arc, forearc, back-arc, mid-ocean ridge, continental rift, and mantle 416 
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plume settings (Figure 9; Table S1). Approximately 77% of all Tethyan anorthosite-bearing 417 

ophiolites formed in subduction-related settings (Figure 10), namely arc, forearc and back-arc. 418 

Almost a quarter (23%) of the Tethyan anorthosite-bearing ophiolites listed in Table S1 formed in 419 

a subduction-unrelated setting (Figure 10). Most of the subduction-unrelated Tethyan anorthosite-420 

bearing ophiolites formed in a mid-ocean ridge geodynamic setting, with the remainder forming 421 

in continental rift and mantle plume settings (Figure 9). In a recent study, Furnes et al. (2020) 422 

reached the same conclusions about the tectonic settings of Tethyan ophiolites, indicating that 76% 423 

and 24% of ophiolites in the Alpine-Himalayan Orogenic Belt have subduction-related and 424 

subduction-unrelated origins, respectively. 425 

There is considerable temporal variation in the geodynamic settings of Tethyan anorthosite-426 

bearing ophiolites (Table S1). This temporal variation in the geodynamic settings of Tethyan 427 

anorthosite-bearing ophiolites has implications for the evolution of the Tethys Ocean. The Paleo-428 

Tethys Ocean most likely underwent contraction because of the subduction of Paleo-Tethyan 429 

oceanic crust from the Devonian to Jurassic (Table S1; Şengör and Yılmaz, 1981; Şengör, 1990; 430 

Dilek and Furnes, 2009; Şengör et al., 2019). Opening of the Neo-Tethys Ocean occurred in the 431 

Triassic and Jurassic, as indicated by a large proportion of Tethyan anorthosite-bearing ophiolites 432 

of these ages having formed in a mid-ocean ridge setting (Dilek and Furnes, 2009, 2011). The 433 

contraction and closure of the Neo-Tethys Ocean from the Jurassic to the Eocene is suggested by 434 

the increasing proportion of subduction-related Tethyan anorthosite-bearing ophiolites with time 435 

(Dilek and Furnes, 2009). 436 

 437 

4.2.2 Geodynamic setting of Archean anorthosite-bearing layered intrusions 438 

As indicated in Figure 9 and Table S2, most Archean anorthosite-bearing layered intrusions 439 

have been interpreted to have formed in an arc or back-arc setting. The subduction zone setting 440 

interpretations proposed for these layered intrusions are predominantly based on negative Nb and 441 

Ti anomalies, narrow-ranging low Nb/Th and La/Th ratios and close spatial and temporal 442 

relationships with volcanic and plutonic rocks that formed in arc settings (Table 3; Table S2). The 443 

occurrence of calcic plagioclase megacrysts, magmatic amphibole and arc-derived chromites in 444 

these layered intrusions have also been cited as evidence for these subduction zone setting 445 

interpretations (Table 3; Table S2). Proponents of vertical tectonics have proposed that negative 446 

Nb and Ti anomalies reflect element mobility or crustal contamination rather than a subduction 447 

zone setting (Bédard, 2006, 2018; Bédard et al., 2013). Crustal contamination and element 448 

mobility origins for the negative Nb and Ti anomalies exhibited by Archean anorthosite-bearing 449 

layered intrusions have been discounted for most of the layered intrusions listed in Table S2 based 450 

on their petrography, and trace element and isotope geochemistry. Crustal contamination alone 451 

does not rule out the operation of plate tectonics in the Archean, given that this process is common 452 

in Phanerozoic Andean-type arcs, continental rifts, and intra-continental hot spots. Subduction 453 

zone processes have been shown to be the most efficient and common mechanisms for generating 454 

negative Nb and Ti anomalies in igneous rocks (Murphy, 2007; Pearce, 2008; Hastie and Fitton, 455 

2019; Roman and Arndt, 2020; van de Löcht et al., 2020). Furthermore, negative Nb anomalies in 456 
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Archean anorthosite-bearing layered intrusions (e.g., Fiskenæsset Complex, Greenland) have been 457 

demonstrated to be reflective of their sub-arc mantle wedge sources as opposed to fractional 458 

crystallization (Polat et al., 2011). 459 

 As is the case with Tethyan anorthosite-bearing ophiolites, most Archean anorthosite-bearing 460 

layered intrusions have been interpreted to have formed in a subduction-related geodynamic 461 

setting (Figures 9-10; Table S2). A greater proportion (85%) of Archean anorthosite-bearing 462 

layered intrusions formed in a subduction-related setting than Tethyan anorthosite-bearing 463 

ophiolites (see Figures 9-10; Tables S1 and S2). Archean anorthosite-bearing layered intrusions 464 

are interpreted to have formed in a variety of subduction-related (arc, forearc, back-arc and 465 

synorogenic) and subduction-unrelated (mid-ocean ridge, continental rift, mantle plume, oceanic 466 

plateau, post-orogenic, anorogenic, passive continental margin and quasi-platform) geodynamic 467 

settings (Figure 9; Table S2). The vast majority of subduction-related Archean anorthosite-bearing 468 

layered intrusions formed in arc setting, followed by a back-arc setting (Figure 9). Most of the 469 

subduction-unrelated Archean anorthosite-bearing layered intrusions are interpreted to have 470 

formed in a mantle plume setting (Figure 9; Rowe and Kemp, 2020). 471 

The Archean anorthosite-bearing layered intrusions that have been interpreted to have formed 472 

in a mantle plume setting were assigned this tectonic setting based on being spatially and 473 

temporally associated with komatiites, komatiitic basalts and picrites, and their high TiO2/Yb and 474 

Nb/Yb ratios (Table 3; Table S2). These layered intrusions have also been interpreted to have 475 

formed in an oceanic plateau setting based on the same evidence and having chromites that are 476 

suggestive of such a setting (Table 3; Table S2). A mid-ocean ridge setting has been proposed for 477 

some Archean anorthosite-bearing layered intrusions having high TiO2/Yb and Nb/Yb ratios, 478 

MORB-derived chromites and low and variably calcic (An50-90) plagioclase, and lacking negative 479 

Nb and Ti anomalies and magmatic amphibole (Table 3; Table S2; Furnes et al., 2014). 480 

Furthermore, these layered intrusions are spatially associated with MORB pillow lavas (Table 3; 481 

Table S2). Archean anorthosite-bearing layered intrusions have also been interpreted to have 482 

formed in rift settings based on their higher La/Yb, Nd/Sm and Zr/Y ratios relative to those that 483 

have been interpreted to have formed in subduction zone, mid-ocean ridge, and oceanic plateau 484 

settings, negative εNd values, their emplacement into older gneisses and being spatially and 485 

temporally associated with clastic sedimentary rocks and volcanic rocks (Table 3; Table S2). The 486 

Archean anorthosite-bearing layered intrusions that have been interpreted to have formed in 487 

synorogenic, post-orogenic and anorogenic settings were assigned these tectonic settings on the 488 

basis of their high La/Yb, Nd/Sm and Zr/Y ratios and their emplacement into Archean gneisses 489 

(Table 3; Table S2). As is the case with Tethyan anorthosites, most of the geodynamic settings 490 

proposed for Archean anorthosites were based on a combination of high-precision major and trace 491 

element geochemistry and field observations. Some of the earlier studies on the Archean 492 

anorthosite-bearing layered intrusions listed in Table S2 did not utilize high-precision major and 493 

trace element geochemistry; however, their geodynamic interpretations have largely been 494 

corroborated by more recent studies that did involve the use of high-precision whole-rock 495 

geochemistry. 496 
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Eoarchean anorthosite-bearing layered intrusions formed in arc, forearc, and oceanic plateau 497 

geodynamic settings (Table S2). During the Paleoarchean, Archean anorthosite-bearing layered 498 

intrusions formed in arc, forearc, and back-arc geodynamic settings (Table S2). By the 499 

Mesoarchean, Archean anorthosite-bearing layered intrusions still predominantly formed in 500 

subduction-related (arc, back-arc and forearc) geodynamic settings, with 90% of these forming in 501 

such settings (Table S2). The remainder of the Mesoarchean anorthosite-bearing layered intrusions 502 

formed in subduction-unrelated (mid-ocean ridge, mantle plume, passive continental margin, and 503 

continental rift) geodynamic settings (Table S2). The proportion of subduction-unrelated Archean 504 

anorthosite-bearing layered intrusions increased to 17% in the Neoarchean; however, the vast 505 

majority (83%) of Neoarchean anorthosite-bearing layered intrusions formed in subduction-related 506 

(arc, back-arc, forearc and synorogenic) geodynamic settings (Table S2). The subduction-507 

unrelated Neoarchean anorthosite-bearing layered intrusions formed in mantle plume, continental 508 

rift, post-orogenic, anorogenic and quasi-platform geodynamic settings (Table S2).  509 

 510 

4.3 Petrogenesis  511 

4.3.1 Tethyan anorthosite-bearing ophiolites 512 

Tethyan anorthosites occur in the layered gabbroic section of ophiolites (Table S1; Furnes et 513 

al., 2014). The majority of these formed away from older continental crust, based on their low 514 

incompatible trace element abundances, depleted trace element patterns and positive εNd values 515 

(Table S1; Bortolotti et al., 2004; Dilek and Furnes, 2009; Furnes et al., 2014). The vast majority 516 

crystallized from tholeiitic or island arc tholeiitic magmas (Figure 12; Table S1; Dilek and Furnes, 517 

2009; Furnes et al., 2014). They have low La/Nb, Th/Nb, Zr/Y, La/Yb and Th/Yb ratios and 518 

depleted N-MORB-normalized trace element patterns, corroborating that they are of tholeiitic 519 

affinity and were derived by high-degree partial melting of a depleted mantle source (Saunders et 520 

al., 1980; Stern et al., 2003; Dilek and Furnes, 2009; Ross and Bédard, 2009; Furnes et al., 2014; 521 

Saccani, 2015; Golowin et al., 2017; Table S1). These anorthosites predominantly formed from 522 

tholeiitic magmas in mainly subduction zone settings, with some forming in mid-ocean ridge, 523 

continental rift, and mantle plume settings. The presence of magmatic amphibole in some of these 524 

Tethyan ophiolites indicates that they crystallized from hydrous magmas in an arc setting (Claeson 525 

and Meurer, 2004; Jagoutz et al., 2007; Rollinson, 2008; Kakar et al., 2014; Moghadam et al., 526 

2014; Šegvic et al., 2014; Morris et al., 2017). The high anorthite contents (up to An100) of 527 

plagioclase and the presence of magmatic amphibole in anorthosites from these ophiolites indicate 528 

that they crystallized from a hydrous arc tholeiitic magma at shallow depths of 6-9 km (Sisson and 529 

Grove, 1993; Takagi et al., 2005). Calcic plagioclase in Tethyan anorthosites has also been shown 530 

to have crystallized at shallow depths from anhydrous tholeiitic magmas in a mid-ocean ridge 531 

setting, as evidenced by the lack of magmatic amphibole in these anorthosites (e.g., Monte 532 

Maggiore, France; Piccardo and Guarnieri, 2011).  533 

Given that 89% of Tethyan anorthosite-bearing ophiolites have been interpreted to have formed 534 

from tholeiitic or island arc tholeiitic magmas and that these ophiolites have calcic (up to An100) 535 
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plagioclase, we suggest that most of them crystallized from hydrous Ca- and Al-rich magmas 536 

(Takagi et al., 2005). The boninitic affinity Chilas Complex crystallized from an initially hydrous 537 

picritic magma (Khan et al., 1989; Jan et al., 1993; Jagoutz et al., 2006, 2007; Hébert et al., 2012; 538 

Petterson, 2018). The high Al2O3/TiO2 (>25) and Zr/SmN (>1) ratios and extremely-depleted, U-539 

shaped N-MORB-normalized trace element patterns of a large proportion of well-studied and well-540 

known Tethyan anorthosite-bearing ophiolites, such as the Troodos, Pindos, Mirdita, Kızıldağ, 541 

Semail (Oman) and Neyriz ophiolites, indicate that they had initially boninitic parental magmas 542 

(Crawford, 1989; Dilek and Furnes, 2009; Furnes et al., 2014; Table S1). These geochemical 543 

characteristics suggest that their initially boninitic parental magmas were derived by large-degree 544 

partial melting of an extremely-depleted sub-arc harzburgitic mantle wedge source that was 545 

hydrated by slab-derived fluids and metasomatized by slab sediment- or oceanic slab-derived melts 546 

(Crawford, 1989; Dilek and Furnes, 2014; Ishizuka et al., 2014; Woelki et al., 2018; Wyman, 547 

2019). Boninites typically lack plagioclase (Crawford, 1989); therefore, the boninitic magmas 548 

likely underwent olivine and pyroxene fractionation at depth to form the hydrous Ca- and Al-rich 549 

tholeiitic magmas from which Tethyan anorthosites crystallized. Based on this finding, Tethyan 550 

anorthosites did not crystallize directly from boninitic parental magmas as proposed by the 551 

literature (Table S1), but rather crystallized from hydrous Ca- and Al-rich tholeiitic magmas that 552 

fractionated from boninitic parental magmas. Nonetheless, the involvement of boninitic magmas 553 

in the petrogenesis of Tethyan anorthosites indicates that they formed at an early stage in the 554 

evolution of Tethyan subduction zones in a forearc setting (Crawford, 1989; Stern and Bloomer, 555 

1992; Dilek and Furnes, 2009, 2011; Furnes et al., 2014, 2015). 556 

 557 

4.3.2 Petrogenesis of Archean anorthosite-bearing layered intrusions 558 

Just as with Tethyan anorthosite-bearing ophiolites, most Archean anorthosite-bearing layered 559 

intrusions crystallized mainly from tholeiitic (hydrous Al-rich tholeiitic, hydrous tholeiitic, high-560 

Al tholeiitic or island arc tholeiitic) magmas (Figure 12; Table S2). The Neoarchean Black Thor 561 

Intrusive Complex in Canada was interpreted to have crystallized from a komatiitic basaltic 562 

magma (Figure 12; Table S2; Carson et al., 2015). The low Zr/Y, La/Yb and Th/Yb ratios exhibited 563 

by Archean anorthosite-bearing layered intrusions corroborate their interpreted tholeiitic affinity 564 

(Table S2; Ross and Bédard, 2009). The high Ca and Al contents of the anorthosites and 565 

leucogabbros from these Archean anorthosite-bearing layered intrusions, combined with their 566 

tholeiitic affinity and their having magmatic amphibole, strongly indicate that they crystallized 567 

from hydrous Ca- and Al-rich tholeiitic magmas (Table S2; Polat et al., 2018b; Sotiriou et al., 568 

2019a, b). The positive εNd values, negative Nb and Ti anomalies, low incompatible trace element 569 

abundances and highly-depleted N-MORB-normalized trace element patterns of Archean 570 

anorthosite-bearing layered intrusions indicate that they were generated by high-degree partial 571 

melting of very depleted sub-arc harzburgitic mantle wedge sources (Saunders et al., 1980; Pearce 572 

and Peate, 1995; Stern et al., 2003; Pearce, 2008; Polat et al., 2011, 2018a; Saccani, 2015; Golowin 573 

et al., 2017; Sotiriou et al., 2019a, b, 2020). Archean anorthosites and leucogabbros have high Ca 574 

and Al contents and highly calcic (up to An100) plagioclase, indicating that their mantle source may 575 
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have been refertilized by oceanic slab crust-derived Al2O3- and SiO2-rich adakitic or TTG melts 576 

prior to the generation of their hydrous boninitic and primitve arc tholeiitic parental magmas 577 

(Rollinson et al., 2010; Polat et al., 2011; Woelki et al., 2018; Wyman, 2019; Sotiriou et al., 2019a, 578 

b). Most Archean anorthosite-bearing layered intrusions crystallized from tholeiitic magmas in a 579 

subduction zone setting; however, the remainder crystallized from similar magmas in mantle 580 

plume, continental rift, oceanic plateau, post-orogenic, anorogenic, mid-ocean ridge, quasi-581 

platform and passive margin settings (Figures 9 and 12; Table S2). 582 

The boninitic primary magmas likely underwent olivine and pyroxene fractionation at depth to 583 

form the hydrous Ca- and Al-rich tholeiitic magmas from which Archean anorthosites crystallized. 584 

In Archean boninitic magmas, fractionation of olivine and pyroxene must have occurred at depth 585 

to form the magmas from which anorthosites crystallized. Based on this finding, most Archean 586 

anorthosites did not crystallize directly from boninitic parental magmas as proposed by the 587 

literature (Table S2), but rather crystallized from hydrous Ca- and Al-rich tholeiitic magmas that 588 

fractionated from boninitic primary magmas. Nevertheless, the involvement of boninitic magmas 589 

in the formation of Archean anorthosites signifies that they formed early in the evolution of an arc 590 

(Crawford, 1989; Stern and Bloomer, 1992; Furnes et al., 2014, 2015). 591 

The identification of magmatic amphibole in gabbroic cumulates has been interpreted to reflect 592 

their crystallization from hydrous magmas in a subduction zone geodynamic setting (Claeson and 593 

Meurer, 2004). Magmatic amphibole has been identified in anorthosites and leucogabbros in the 594 

Archean megacrystic anorthosite-bearing Fiskenæsset, Naajat Kuuat, Bird River, Mayville, 595 

Sittampundi, Konkanhundi and São José do Jacuipe layered intrusions, which have all been 596 

interpreted to have formed in a subduction zone setting (Rollinson et al., 2010; Polat et al., 2011, 597 

2012; Hoffmann et al., 2012; Mohan et al., 2013; Piaia et al., 2017; Santosh and Li, 2018; Sotiriou 598 

et al., 2019a, 2020). The Neoarchean Mayville Intrusion in the western Superior Province of 599 

Canada contains abundant well-preserved magmatic amphibole that occurs interstitially to 600 

cumulus calcic plagioclase megacrysts (Sotiriou et al., 2020). Magmatic amphibole occurs 601 

interstitially to the megacrysts and as oikocrysts that envelop smaller plagioclase crystals in these 602 

Archean intrusions (Polat et al., 2011, 2012, 2018a; Hoffmann et al., 2012; Mohan et al., 2013; 603 

Sotiriou et al., 2019a, 2020). The magmatic amphibole in these Archean megacrystic anorthosite-604 

bearing layered intrusions most likely crystallized from an interstitial hydrous melt due to this melt 605 

reacting with cumulus plagioclase (Claeson and Meurer, 2004; Sotiriou et al., 2020). These 606 

Archean intrusions have been interpreted to have crystallized from hydrous magmas in a 607 

suprasubduction zone geodynamic setting (Polat et al., 2011, 2012; Hoffmann et al., 2012; Mohan 608 

et al., 2013; Polat et al., 2018a; Sotiriou et al., 2019a, 2020). The oldest magmatic amphibole-609 

bearing Archean anorthosites occur in the island arc-related 2985 Ma Naajat Kuuat Complex in 610 

western Greenland, suggesting that hydrous arc magmatism has occurred since the Mesoarchean. 611 

Archean anorthosite-bearing layered intrusions have anorthosites and leucogabbros that are 612 

predominantly comprised of highly calcic (up to An100) plagioclase, which indicate that they 613 

crystallized from hydrous arc tholeiitic magmas at shallow depths of 6-9 km (Morrison et al., 1985; 614 

Phinney et al., 1988; Sisson and Grove, 1993; Takagi et al., 2005). The shallow crystallization 615 
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depths and pressures of Archean anorthosite-bearing layered intrusions is further indicated by the 616 

fact that the Mayville Intrusion was found to have crystallized at depths of 6-9 km (average: 7.5 617 

km) and pressures of 2-3 kbars (average: 2.5 kbars). The hydrous Ca- and Al-rich tholeiitic 618 

magmas to Archean megacrystic anorthosites and leucogabbros most likely formed through the 619 

fractionation of olivine and pyroxene prior to the accumulation and crystallization of highly calcic 620 

plagioclase, amphibole and pyroxene from hydrous tholeiitic magmas at shallow depths (Ashwal, 621 

1993; Hoffmann et al., 2012; Souders et al., 2013; Polat et al., 2018a; Sotiriou et al., 2019a). 622 

 623 

4.4 Are Tethyan calcic anorthosites analogues for Archean calcic anorthosites? 624 

Calcic anorthosite-bearing layered intrusions were thought to be mostly restricted to the 625 

Archean (Ashwal, 1993, 2010; Ashwal and Bybee, 2017; Polat et al., 2018a). The abundance of 626 

calcic anorthosites in the Phanerozoic has not been well-documented in the literature. Ashwal 627 

(1993) described numerous Phanerozoic calcic anorthosites that form part of ophiolites and layered 628 

intrusions and occur as xenoliths and inclusions. Polat et al. (2018a) reported 23 Phanerozoic 629 

anorthosite-bearing ophiolites and showed that most of these ophiolites formed in a 630 

suprasubduction zone geodynamic setting. Based on the 100 Tethyan anorthosite-bearing 631 

ophiolites listed in Table S1, it is proposed here that Phanerozoic anorthosite-bearing ophiolites 632 

and calcic anorthosites are far more common than previously thought. 633 

There is still considerable debate regarding the style of tectonics that operated in the Archean, 634 

a debate centred around whether uniformitarian (horizontal plate movements) or non-635 

uniformitarian (vertical, sagduction) tectonics was the dominant style (Polat et al., 2012; Foley et 636 

al., 2014; Foley, 2018; Kusky et al., 2018; Hastie and Fitton, 2019; Wyman, 2019; Roman and 637 

Arndt, 2020; Bauer et al., 2020; Liu et al., 2020; Nutman et al., 2020; van de Löcht et al., 2020). 638 

It is well-established that uniformitarian or plate tectonics has been operating throughout the 639 

Proterozoic and Phanerozoic right up until the present day (e.g., Furnes et al., 2014, 2015). Indeed, 640 

over 82% of all Phanerozoic anorthosite-bearing ophiolites formed at a mid-ocean ridge or 641 

subduction zone, settings that are linked to the operation of plate tectonics with oceanic crust being 642 

created at the former and consumed at the latter (Maruyama et al., 2010; Furnes et al., 2014). As 643 

such, finding lithologies in the Archean that have petrographical, petrological, mineralogical, and 644 

geochemical similarities to equivalents in the Phanerozoic has major implications for whether plate 645 

tectonics operated early in the Earth’s history.  646 

The anorthosites in Tethyan ophiolites have highly calcic (up to An100) plagioclase, contain 647 

magmatic amphibole, are often interlayered with leucogabbros and gabbros and are spatially 648 

associated with pillow lavas (Table S1). Over three-quarters of Tethyan calcic anorthosite-bearing 649 

ophiolites formed in a subduction zone setting and have geochemical (e.g., negative Nb and Ti 650 

anomalies) characteristics and field (e.g., pyroclastic flows), petrographic (e.g., magmatic 651 

amphibole) and mineral chemistry (e.g., chromite) evidence that are strongly indicative of this 652 

convergent margin setting (Table S1). Archean anorthosites share many field, petrographical, 653 

petrological, mineralogical, and geochemical similarities with Tethyan anorthosites (Tables S1-654 

S2). Archean anorthosites are dominated by quite calcic (up to An100) plagioclase and contain 655 
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magmatic amphibole (Table S2; Polat et al., 2018a). These anorthosites are often interlayered with 656 

leucogabbros and gabbros and often intrude pillow basalts (Polat et al., 2018a). Approximately 657 

85% of Archean anorthosite-bearing layered intrusions have been interpreted to have formed in a 658 

subduction zone geodynamic setting and exhibit geochemical (e.g., negative Nb and Ti anomalies) 659 

characteristics and field, petrographic (e.g., magmatic amphibole) and mineral chemistry (e.g., 660 

chromite) evidence that are strongly indicative of this and suggest that they are very similar to 661 

Tethyan anorthosites (Tables S1-S2). Tethyan and Archean anorthosites predominantly also have 662 

high plagioclase An contents and pyroxene Mg# that substantially overlap with one another and 663 

exhibit positive correlations when plotted (Figure 15), further suggesting that they are analogous 664 

and formed from hydrous magmas in a suprasubduction zone setting (e.g., Yamasaki et al., 2006; 665 

Goodenough et al., 2014). The high H2O contents of these hydrous magmas would have stabilized 666 

highly calcic plagioclase and Ca-rich pyroxene (diopside or augite) on the liquidus and facilitated 667 

their crystallization (e.g., Takagi et al., 2005). Tethyan and Archean anorthosites predominantly 668 

formed in convergent margin settings; however, some formed in subduction-unrelated settings 669 

(Figure 16). The involvement of boninitic parental magmas in the petrogenesis of Tethyan and 670 

Archean anorthosites suggests that these rocks formed at an early stage in the evolution of Tethyan 671 

and Archean arc systems (Crawford, 1989; Stern and Bloomer, 1992; Furnes et al., 2014, 2015). 672 

Evidence for Tethyan calcic anorthosites being analogous to their Archean counterparts is 673 

demonstrated by the field, petrological, petrographical, geochemical, petrogenetic and 674 

geodynamic similarities between the Mesoarchean Fiskenæsset Complex in Greenland and the 675 

Cretaceous Kızıldağ Ophiolite in Turkey, which are prime examples of Archean and Tethyan 676 

anorthosite occurrences. The Mesoarchean (ca. 2973 Ma) 500 km2 Fiskenæsset Complex in the 677 

Bjørnesund block of the North Atlantic Craton of Greenland is the most well-studied and well-678 

known Archean calcic megacrystic anorthosite-bearing layered intrusion in the world (Figures 4-679 

7; Myers, 1985; Windley and Garde, 2009; Polat et al., 2011, 2018a). This complex intrudes 680 

pillow-bearing amphibolites and is intruded by TTG gneisses (Myers, 1976, 1985; Polat et al., 681 

2011). The Fiskenæsset Complex has a total thickness of ~550 metres and is comprised of 682 

anorthosites, leucogabbros, gabbros, pyroxenites, peridotites and chromitites that exhibit well-683 

preserved igneous layering and minerals and cumulate textures, despite having been subjected to 684 

polyphase deformation and amphibolite- to granulite-facies metamorphism (Figure 5; Myers, 685 

1985; Polat et al., 2011). The anorthosites and leucogabbros contain very calcic plagioclase (An75-686 

98) megacrysts up to 40 centimetres in diameter, alongside magmatic amphibole, clinopyroxene 687 

and orthopyroxene (Figure 5; Polat et al., 2011; Huang et al., 2014). These megacrystic 688 

anorthosites and the Fiskenæsset Complex as a whole exhibit negative Nb and Ti anomalies 689 

relative to Th and REE, very low incompatible trace element abundances and positive εNd values 690 

that are not accounted for by or do not indicate alteration-induced element mobility or 691 

contamination by pre-existing crust (Polat et al., 2011). Based on these field, petrological, 692 

petrographical and geochemical characteristics and mineral chemistry data, the primitive hydrous 693 

arc tholeiite parental magma to the Fiskenæsset Complex was interpreted to have formed by high-694 

degree partial melting of a sub-arc hydrous depleted harzburgitic mantle source in a 695 
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suprasubduction zone setting (Polat et al., 2011; Huang et al., 2014). This primary magma 696 

underwent olivine and pyroxene fractionation to form the hydrous Ca- and Al-rich tholeiitic 697 

magma from which calcic megacrystic anorthosites and leucogabbros subsequently crystallized at 698 

a shallow depth during emplacement into pillow basalt-bearing oceanic crust (Polat et al., 2011, 699 

2018a; Huang et al., 2014). The calcic plagioclase megacrysts in the anorthosites and leucogabbros 700 

from this complex formed from this hydrous Ca- and Al-rich tholeiitic magma due to its remaining 701 

at high temperatures (1000-1200°C) and calcic plagioclase remaining on the liquidus for a 702 

protracted period (Polat et al., 2018a). These megacrysts attained their large sizes through a 703 

combination of Ostwald ripening and by interaction with new melts or melts expelled from lower 704 

down in the magma chamber (Polat et al., 2018a).The diverse trace element patterns exhibited by 705 

the Fiskenæsset Complex (Polat et al., 2009, 2011; Huang et al., 2014) likely reflect multiple 706 

parental magmas. 707 

The calcic anorthosites in the Cretaceous (92 Ma) Kızıldağ Ophiolite in southeastern Turkey 708 

(Bağci et al., 2005; Dilek and Thy, 2009) share close field, petrological, petrographical, 709 

geochemical, petrogenetic and geodynamic similarities with the Fiskenæsset Complex. This 710 

ophiolite consists of, from bottom to top, tectonized mantle harzburgites, ultramafic to mafic 711 

cumulates, plagiogranites, sheeted dykes, basaltic to boninitic (sakalavites) pillow lavas and 712 

marine sedimentary rocks (Bağci et al., 2005; Dilek and Furnes, 2009; Dilek and Thy, 2009). The 713 

anorthosites alternate with leucogabbros and gabbros and occur in the ultramafic to cumulate 714 

section, which is spatially associated with and intrusive into the tholeiitic sheeted dykes that acted 715 

as feeders for the basaltic to boninitic pillow lavas above (Bağci et al., 2005; Dilek and Thy, 2009). 716 

These field relationships and petrological associations bear close resemblance to the Archean 717 

anorthosites in the mafic to ultramafic cumulates of the Fiskenæsset Complex and the amphibolitic 718 

rocks derived from pillowed basaltic precursors into which it intrudes (e.g., Polat et al., 2011, 719 

2018a; Huang et al., 2014). The Kızıldağ (An89-94) and Fiskenæsset anorthosites are also 720 

petrographically very similar, for they both contain calcic plagioclase and magmatic amphibole, 721 

clinopyroxene and orthopyroxene (Bağci et al., 2005; Dilek and Thy, 2009; Polat et al., 2011, 722 

2018a; Huang et al., 2014). Just as with the Fiskenæsset Complex, the Kızıldağ Ophiolite also 723 

exhibits the negative Nb and Ti anomalies (relative to Th and REE) and very low immobile trace 724 

element abundances that are indicative of derivation by high-degree partial melting of a sub-arc 725 

hydrous depleted harzburgitic mantle source in a suprasubduction zone setting (Bağci et al., 2005; 726 

Dilek and Thy, 2009; Polat et al., 2011, 2018a). The Kızıldağ Ophiolite is of tholeiitic, island arc 727 

tholeiitic and boninitic affinity, highlighting the great similarity between the parental magmas to 728 

its and the Fiskenæsset Complex’s anorthosites (Bağci et al., 2005; Dilek and Thy, 2009; Furnes 729 

et al., 2014; Polat et al., 2011, 2018a). Just as with the Fiskenæsset megacrystic anorthosites, the 730 

highly calcic plagioclase in the Kızıldağ anorthosites formed from a hydrous tholeiitic magma at 731 

a shallow depth under high PH2O conditions (Bağci et al., 2005; Dilek and Thy, 2009). 732 

The field, petrological, petrographic, and geochemical similarities between Archean 733 

anorthosite-bearing layered intrusions and Tethyan calcic anorthosite-bearing ophiolites strongly 734 

indicate that they largely formed by similar processes at convergent plate margins (Figure 16). 735 
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This indicates that Archean anorthosite-bearing layered intrusions and their associated greenstone 736 

belts are close analogues of Tethyan and Altaid anorthosite-bearing ophiolites and ophirags 737 

(Şengör and Natal’in, 2004). Furnes et al. (2015) and Dilek and Furnes (2011) concluded that 738 

Precambrian greenstone belts represent different ophiolite types. Therefore, Archean anorthosite-739 

bearing layered intrusions and their associated greenstone belts conform to the ophiolite definition 740 

proposed by Dilek and Furnes (2011): “suites of temporally and spatially associated ultramafic to 741 

felsic rocks related to separate melting episodes and processes of magmatic differentiation in 742 

particular tectonic environments.” There is a paucity of dome and basin structures, which are 743 

thought to be suggestive of vertical tectonics, associated with Archean anorthosite-bearing layered 744 

intrusions (Table S2; Bédard, 2006, 2018; Bédard et al., 2013; Polat et al., 2015). This observation, 745 

coupled with the occurrence of low-angle thrust faults, indicates that these layered intrusions 746 

formed through modern-style plate tectonics rather than vertical, sagduction tectonics (Polat et al., 747 

2015; Sotiriou et al., 2020). 748 

 The major differences between Tethyan ophiolites/ophirags and Archean anorthosite-bearing 749 

layered intrusions and associated greenstone belts is that the former have a much larger proportion 750 

of mantle rocks and thinner anorthosite sequences than the latter. These differences can be 751 

attributed to the greater crustal thickness (20-30 km) of Archean oceanic crust that stemmed from 752 

higher degrees of partial melting of the mantle and higher mantle potential temperatures (Sleep 753 

and Windley, 1982), resulting predominantly in the accretion of the upper part of the oceanic crust 754 

during orogenesis (Kusky et al., 2018). The subduction of 20-30 km thick oceanic crust has been 755 

proposed to be unfeasible by advocates of vertical tectonics (Bédard, 2006, 2018; Bédard et al., 756 

2013); however, Hastie and Fitton (2019) demonstrates that subduction of thick oceanic crust did 757 

occur and led to the formation of TTGs batholiths. These differences and the more frequent and 758 

significant occurrence of slab melting and shallow slab subduction at this time can also account 759 

for the greater volume of megacrystic anorthosites and leucogabbros in the Archean (Windley and 760 

Garde, 2009; Rollinson et al., 2010; Polat et al., 2011, 2018a). Archean anorthosite-bearing layered 761 

intrusions and their host greenstone belts represent dismembered subduction-related Archean 762 

anorthosite-bearing ophirags (Şengör and Natal’in, 2004).  763 

 764 

5 Conclusions 765 

1. Tethyan Devonian to Paleocene anorthosite-bearing ophiolites are more common than 766 

previously thought.  767 

2. Tethyan anorthosites have highly calcic (up to An100) plagioclase and magmatic amphibole, 768 

are interlayered with leucogabbros and gabbros and spatially associated with pillow lavas. 769 

Archean anorthosites have calcic (up to An100) plagioclase megacrysts and magmatic 770 

amphibole, are interlayered with leucogabbros and gabbros and intrude greenstone belts. 771 

3. The majority of Tethyan anorthosite-bearing ophiolites formed in an arc setting, with the 772 

remainder forming in mid-ocean ridge, continental rift, and mantle plume settings. Similarly, 773 

the majority of Archean anorthosite-bearing layered intrusions formed in an arc setting, with 774 
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the remainder forming in mantle plume, oceanic plateau, continental rift, post-orogenic, 775 

anorogenic, mid-ocean ridge, quasi-platform, and passive margin settings.  776 

4. Tethyan ophiolite-hosted anorthosites crystallized from hydrous Al- and Ca-rich tholeiitic 777 

magmas that fractionated from more primitive hydrous primary magmas. Archean anorthosites 778 

also crystallized from hydrous Al- and Ca-rich tholeiitic magmas. 779 

5. Tethyan ophiolite-hosted anorthosites are analogous to Archean anorthosites and both largely 780 

formed at intra-oceanic convergent plate margins. 781 

6. Archean anorthosite-bearing layered intrusions and their host greenstone belts are interpreted 782 

to represent dismembered Archean subduction-related ophiolites and ophirags. 783 

7. Lithological characteristics, field relationships, and the geochemistry of Archean anorthosite-784 

bearing layered intrusions and spatially and temporally associated greenstone belts and 785 

granitoids suggest that a form of plate tectonics has been in operation since the Eoarchean. 786 
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Figure captions 1855 

Figure 1. Map showing the distribution of Tethyan anorthosite-bearing ophiolites and the location 1856 

of the Tethysides (modified after Şengör et al., 2018). The locations of selected Tethyan 1857 

anorthosite-bearing ophiolites are based on information from the references cited in Table S1. 1858 

 1859 

Figure 2. Stratigraphic columns for the Neyriz and Chilas Complex Tethyan anorthosite-bearing 1860 

ophiolites (modified after Takahashi et al. (2007) and Moghadam et al. (2014). The stratigraphic 1861 

column for the Chilas Complex ophiolite encompasses the ultramafic-mafic-anorthosite (UMA) 1862 

association east of Chilas Town in Pakistan. 1863 

 1864 

Figure 3. World map showing the distribution and age of Archean anorthosite occurrences 1865 

(modified after Zhou et al., 2016) based on information from the references cited in Table S2. The 1866 

numbers correspond to the occurrences listed in Table S2. 1867 

 1868 

Figure 4. Stratigraphic columns for the Fiskenæsset Complex, Bird River Sill, Mayville Intrusion 1869 

and Doré Lake Complex Archean megacrystic anorthosite-bearing layered intrusions (modified 1870 

after Polat et al. (2011), Yang et al. (2011), Yang and Gilbert (2014) and Mathieu (2019)). 1871 

 1872 

Figure 5. Field photographs of Archean calcic megacrystic anorthosite-bearing layered intrusions. 1873 

(a) Megacrystic leucogabbros from the Fiskenæsset Complex, Greenland. (b) Megacrystic 1874 

anorthosites interlayered with chromitites from the Fiskenæsset Complex, Greenland. (c) 1875 

Magmatic layering in the Fiskenæsset Complex, Greenland. (d) Megacrystic anorthosite from the 1876 
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Mayville Intrusion, Canada. Primary, cumulate textures and igneous minerals are well preserved. 1877 

plag: plagioclase, i-amp: igneous amphibole.  1878 

 1879 

Figure 6. Simplified geological map of the Fiskenæsset region, southwestern Greenland, showing 1880 

the distribution of TTG gneisses, Fiskenæsset Complex, amphibolites (basalts), and granites 1881 

(modified after Myers, 1976, 1985).  1882 

 1883 

Figure 7. (a-b) Emplacement of a tonalite sheet along a thrust fault zone between two layers of 1884 

anorthosite-leucogabbro at Sinarssuk in the Fiskenæsset anorthosite-bearing layered intrusion 1885 

(modified from Polat et al., 2015). (c) A simplified cross-section of the Fiskenæsset region from 1886 

Grædefjord, through Majorqap qâva, to Bjørnesund; F1 and F2 represent the folds formed during 1887 

first and second folding episodes (modified from Myers, 1985).  1888 

 1889 

Figure 8. Pie diagrams showing the temporal distribution of (a) Tethyan anorthosite-bearing 1890 

ophiolites and (b) Archean anorthosite-bearing layered intrusions. 1891 

 1892 

Figure 9. Pie diagrams showing the proportion of the different geodynamic settings of (a) Tethyan 1893 

anorthosite-bearing ophiolites and (b) Archean anorthosite-bearing layered intrusions. 1894 

 1895 

Figure 10. Pie diagrams showing the proportion of subduction-related versus subduction-1896 

unrelated (a) Tethyan anorthosite-bearing ophiolites and (b) Archean anorthosite-bearing layered 1897 

intrusions. 1898 

 1899 

Figure 11. Pie diagrams showing the proportion of boninitic versus non-boninitic (a) Tethyan 1900 

anorthosite-bearing ophiolites and (b) Archean anorthosites-bearing layered intrusions.  1901 

 1902 

Figure 12. Pie diagrams showing the respective proportions of the parental magmas to (a) Tethyan 1903 

anorthosite-bearing ophiolites and their proportions and (b) Archean anorthosites-bearing layered 1904 

intrusions.  1905 

 1906 

Figure 13. (a) Temporal variation in the anorthite (An) content of plagioclase in anorthosites from 1907 

Tethyan anorthosite-bearing ophiolites. The inset is a frequency graph showing the distribution of 1908 

the plagioclase An content of Tethyan anorthosite-bearing ophiolites. (b) shows the corresponding 1909 

tectonic setting of the Tethyan anorthosite-bearing ophiolites containing plagioclase that have 1910 

known An contents. These anorthite contents were derived from the cores and rims of plagioclase 1911 

crystals and are igneous and metamorphic in origin. 1912 

 1913 

Figure 14. (a) Temporal variation in the anorthite (An) content of plagioclase in Archean 1914 

anorthosite-bearing layered intrusions. The inset is a frequency graph showing the distribution of 1915 

the plagioclase An content of Archean anorthosite-bearing layered intrusions. (b) shows the 1916 
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corresponding tectonic settings of Archean anorthosite-bearing layered intrusions that have 1917 

plagioclase with known An contents. These anorthite contents were derived from the cores and 1918 

rims of plagioclase crystals and are igneous and metamorphic in origin. 1919 

 1920 

Figure 15. Plagioclase An content versus pyroxene Mg# plot for Tethyan anorthosite-bearing 1921 

ophiolites and Archean anorthosite-bearing layered intrusions.  1922 

 1923 

Figure 16. A schematic diagram showing the geodynamic settings of Tethyan anorthosite-1924 

bearing ophiolites and Archean anorthosite-bearing layered intrusions. MOR: Mid-ocean ridge. 1925 

 1926 

Table captions 1927 

Table 1. A list of the most well-studied major Tethyan anorthosite-bearing ophiolites (based on 1928 

information from Taylor and Nesbitt, 1988; Sakkarinejad, 2003; Bortolotti et al., 2004; Jagoutz 1929 

et al., 2006; Dilek and Thy, 2009; Goodenough et al., 2010; Piccardo and Guarnieri, 2011; 1930 

Saccani and Tassinari, 2015; Alparslan and Dilek, 2018; Kapsiotis et al., 2019). 1931 

 1932 

Table 2. A list of the most well-studied major Archean anorthosite-bearing layered intrusions 1933 

(based on information from Garson and Livingstone, 1973; Myers, 1988; Barton Jr., 1996; 1934 

Boudreau et al., 1997; Paixão and Oliveira, 1998; Polat et al., 2011, 2018a, b; Mohan et al., 1935 

2013; Zhou et al., 2016; Sotiriou et al., 2019a). 1936 

 1937 

Table 3. Evidence presented in the literature for the different geodynamic settings proposed for 1938 

Tethyan (T) and Archean (A) anorthosites (based on Tables S1 and S2; Pearce, 2008, 2014; 1939 

Furnes et al., 2014, 2015; Polat et al., 2018a). 1940 

 1941 

Supporting Information 1942 

Figure S1. Map showing the distribution and ages of Tethyan anorthosite-bearing ophiolites in 1943 

Italy, France, Corsica, and the Balkans (modified after Dilek and Furnes, 2009). 1944 

 1945 

Table S1. Tethyan anorthosite-bearing ophiolite occurrences. 1946 

 1947 

Figure S2. Map showing the distribution and ages of Tethyan anorthosite-bearing ophiolites in the 1948 

Balkans, Greece, Cyprus, Turkey, Armenia, and the Middle East (modified after Dilek and 1949 

Furnes, 2009).  1950 

 1951 

Table S2. Archean anorthosite-bearing layered intrusion occurrences. 1952 

 1953 

Figure S3. Map showing the distribution and ages of Tethyan anorthosite-bearing ophiolites in 1954 

Iran and Oman (modified after Dilek and Furnes, 2009). 1955 

 1956 
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Figure S4. Map showing the distribution and ages of Tethyan anorthosite-bearing ophiolites in the 1957 

Himalayas (modified after Dilek and Furnes, 2009). 1958 

 1959 

 1960 
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Table 1. A list of the most well-studied major Tethyan anorthosite-bearing ophiolites.

Ophiolite Age Absolute Age (Ma)

China

Animaqen Triassic

Quanzhou Jurassic 167

Xigaze Cretaceous 124-127

Greece

Pili Valley Jurassic-Triassic

Othrys Jurassic 169

Makrirrakhi Jurassic 169

Petrota (Evros) Jurassic 169

Pindos Jurassic 165

Armenia

Vedi Jurassic 178.7

Sevan-Akera Jurassic 165

Stepanavan Jurassic ~160-168

Turkey

Küre Jurassic 169

Mersin Cretaceous 94

Kızıldağ Cretaceous 92

Karadağ Cretaceous

Albania

Mirdita Jurassic 165

Algeria

Bou-Maïza Jurassic

France

Pineto Jurassic

Monte Maggiore Jurassic

Oman

Masirah Cretaceous 140

Semail Cretaceous 96

India

Andaman Cretaceous 94

Naga Hills Paleocene-Cretaceous ~56-72

Iran

Neyriz Cretaceous 92

Cyprus

Troodos Cretaceous 92

Pakistan

Chilas Complex Cretaceous 85

Muslim Bagh Cretaceous-Jurassic 65-87; 118-157

Iraq

Mawat Cretaceous 81-95



Table 2. A list of the most well-studied major Archean anorthosite-bearing layered intrusions.

Layered intrusion Age Absolute Age (Ma)

Canada

Shawmere Neoarchean 2765

Pipestone Lake Neoarchean 2758

Bird River Neoarchean 2743

Euclid Lake Neoarchean 2743

Mayville Neoarchean 2742.8

Doré Lake Neoarchean 2728

Ring of Fire Neoarchean 2727-2734

Bad Vermilion Lake Neoarchean 2716

Bell River Neoarchean >2700

Cauchon Lake Neoarchean >2700

Love Lake Neoarchean ~2562

Big Trout Lake Neoarchean >2500

Greenland

Ivisaartoq Mesoarchean 3075

Naajat Kuuat Mesoarchean 2985

Fiskenæsset Mesoarchean 2973

Nunataarsuk Mesoarchean 2914

Storø Mesoarchean 2800-3060

Fredrikshåb Neoarchean >2700

Uivak Neoarchean 2698

Scotland

Isle of Lewis Mesoarchean >3000

Ness Mesoarchean >3000

South Harris Mesoarchean >3000

Loch Laxford Mesoarchean <3000

India

Holenarasipir Paleoarchean 3285-3290

Nuasahi Mesoarchean 3119-3123

Badampahar Mesoarchean 3090

Bhavani Mesoarchean 2898

Agali Hill Neoarchean 2547

Sittampundi Neoarchean 2541

Devanur Neoarchean 2528-2545

Western Australia

Manfred Eoarchean 3730

Andover Mesoarchean 3016

Millindinna Mesoarchean 2950-2970

Munni Munni Mesoarchean 2925

Windimurra Mesoarchean 2813

South Africa



Onverwacht Paleoarchean 3450

Messina Paleoarchean 3344

Stella Mesoarchean 3033.5

Brazil

Lagoa da Vaca Mesoarchean 3161

Senador Elói de Souza Mesoarchean 3033

Rio Jararé Mesoarchean 2841

São José do Jacuipe Neoarchean 2583.7

United States of America

Stillwater Neoarchean 2701



Table 3. Evidence presented in the literature for the different geodynamic settings proposed for Tethyan (T) and Archean (A) anorthosites.

Evidence Arc (T/A) Mid-ocean ridge (T/A)

Geochemistry Negative Nb and Ti anomalies; Absence of negative

Narrow-ranging low Th/Nb Nb and Ti anomalies;
and La/Nb ratios Low TiO2/Yb and 

Nb/Yb ratios

Chromite chemistry Arc-related MORB-related

Field relationships Spatially and temporally Spatially and temporally

associated with arc pyroclastic, associated with MORB

massive and pillowed volcanic volcanic and plutonic

and plutonic rocks rocks

Mineralogy Calcic plagioclase (An80-100); 

Magmatic amphibole

Crustal contamination Minimal to significant None



Table 3. Evidence presented in the literature for the different geodynamic settings proposed for Tethyan (T) and Archean (A) anorthosites.

Rift (T/A) Mantle plume (T/A) Oceanic plateau (A)

High La/Yb, Nd/Sm High TiO2/Yb and Nb/Yb High TiO2/Yb and Nb/Yb 

and Zr/Y ratios ratios ratios

Oceanic plateau-related

Emplaced into older Spatially and temporally Spatially and temporally 

gneisses; Spatially associated with komatiites, associated with komatiites

and temporally komatiitic basalts and picrites  and komatiitic basalts

associated with

clastic sedimentary

and volcanic rocks

Significant None to significant None to significant



Synorogenic (A) Anorogenic/post-orogenic (A)

High La/Yb, Nd/Sm High La/Yb, Nd/Sm

and Zr/Y ratios and Zr/Y ratios

Emplaced into older Emplaced into older

gneisses gneisses

Significant Significant
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Table S1. Tethyan anorthosite-bearing ophiolite occurrences. 

Ophiolite Location Age Age (Ma) Size (km
2
)

1. Deli Jovan Serbia Devonian 405-406 ~300

2. Jinshajjiang-Ailaoshan suture belt China Devonian 374-387

3. East Gangma Co China Carboniferous 354-357

4. Dongzhulin China Carboniferous 347 3-4 kilometres wide

5. Guoganijanian China Carboniferous 345 90

6. Jingshajjiang China Carboniferous 329-346 12000

7. Shusong (Jinsha River) (2 occurrences) China Carboniferous 329-340

8. Wusnihei (Hegenshan) China Carboniferous 300 ~80

9. Chaogenshan (Hegenshan) China Permian 298

10. Animaqen China Triassic (minimum age)

11. Pili Valley Greece Jurassic-Triassic

12. Bolu Turkey Jurassic

13. Montgènevre France Jurassic 198

14. Dongco China Jurassic 187

15. Mt. Kalnik Croatia Jurassic 185-189

16. Dongqiao China Jurassic 184

17. Vedi Armenia Jurassic 178.7

18. Amdo China Jurassic 177

19. Beila China Jurassic 172-184 ~400

20. Borja Bosnia and Herzegovina Jurassic 171

21. Krivaja-Konjuh Bosnia and Herzegovina Jurassic 171 ~2000

22. Makrirrakhi Greece Jurassic 169

23. Othrys Greece Jurassic 169 1500

24. Petrota (Evros) Greece Jurassic 169 16

25. Küre Turkey Jurassic 168.8 ~150

26. Quanzhou China Jurassic 167

27. Aspropotamos (Pindos) Greece Jurassic 165 Several kilometres long 

28. Dramalas (Pindos) Greece Jurassic 165 1200

29. Mirdita Albania Jurassic 165

30. Sevan-Akera Armenia Jurassic 165

31. Smolicas Mountains (Pindos) Greece Jurassic 165 100

32. Dengqen China Jurassic 164

33. Stepanavan Armenia Jurassic ~160-168

34. Banovina Croatia Jurassic 160-166

35. Pineto Corsica (France) Jurassic ~10

36. Chenaillet France/Italy Jurassic 153-165

37. Brezovica Serbia Jurassic 149-192

38. Bistrica Serbia Jurassic 148-163

39. Zlatibor Serbia Jurassic 148-163

40. Kangareh mafic intrusion Iran Jurassic 148 ~25

41. Bracco Italy Jurassic

42. Bracco Gabbro Complex Italy Jurassic 12

43. Levanto Italy Jurassic

44. Monte Maggiore Corsica (France) Jurassic ~3600

45. Piemonte Italy Jurassic 1870-1920 metres thick

46. Rocchetta Vara Italy Jurassic

47. Scogna Italy Jurassic

48. Bou-Maïza Complex Algeria Jurassic

49. Komi Leibadi mélange Greece Jurassic

50. Koziakas Greece Mesozoic (Jurassic?)

51. Apuseni Romania Cretaceous-Jurassic 8000

52. Masirah Oman Cretaceous 140 450

53. Ljubić Serbia Cretaceous 136

54. Xigaze China Cretaceous 124-127

55. Band-e-Zeyarat/Dar Anar Iran Cretaceous-Jurassic 121-146

56. Kahnuj Iran Cretaceous-Jurassic 121-146 ~800

57. Dare Anar Complex (Kahnuj) Iran Cretaceous-Jurassic 121-146

58. Sapat-Jijal Pakistan Cretaceous 118 ~180

59. Asa China Cretaceous 114-118

60. Birjand Iran Cretaceous 107-113

61. Semail (Oman) Oman Cretaceous 96 11200

62. Andaman India Cretaceous 94

63. Mersin Turkey Cretaceous 94 1500

64. Pozantı-Karsantı Turkey Cretaceous 94 1300

65. Kızıldağ Turkey Cretaceous 92 1000

66. Neyriz Iran Cretaceous 92 602

67. Limassol Forest Complex Cyprus Cretaceous 92

68. Troodos Cyprus Cretaceous 92

69. Burdur (Lycian) Turkey Cretaceous 91

70. Köyceğiz (Lycian) Turkey Cretaceous 91

71. Marmaris (Lycian) Turkey Cretaceous 91

72. Yeşilova (Lycian) Turkey Cretaceous 91

73. Mt. Medvednica Croatia Cretaceous-Jurassic 85-150

74. Haji Abad Iran Cretaceous 85-95 2000

75. Chilas Complex Pakistan Cretaceous 85 12000



76. Mawat Iraq Cretaceous 81-95

77. Göksun (Kahramanmaraş) Turkey Cretaceous 81-84

78. Mount Ragola (External Ligurides) Italy Cretaceous ~72-86 400-500 metres thick

79. Mt. Prosara Bosnia and Herzegovina Cretaceous 71

80. Nal Pakistan Cretaceous 70 ~7

81. Kuluncak Turkey Cretaceous 67-73 ~50

82. Sabzevar Iran Cretaceous ~66-100 Up to 4500

83. Khoy Iran Cretaceous 65-101

84. Muslim Bagh Pakistan Cretaceous-Jurassic 65-87; 118-157 ~330

85. Baft Iran Cretaceous

86. Fannuj Iran Cretaceous

87. Harsin Iran Cretaceous

88. Ispendere Turkey Cretaceous ~40

89. Karadağ Turkey Cretaceous ~105

90. Sahneh Iran Cretaceous

91. Shahr-Babak Iran Cretaceous

92. Southern Caspian Sea Iran Cretaceous 1800

93. Berit Turkey Cretaceous

94. Sava Depression Croatia Paleocene-Cretaceous 62-110

95. Mt. Požeška Gora Croatia Paleocene-Cretaceous 62-73

86. Nehbandan Iran Paleocene-Cretaceous ~60-100 250

97. Naga Hills India Paleocene-Cretaceous ~56-72 400-3000

98. Fanuj-Maskutan Iran Paleocene-Cretaceous

99. Waziristan Pakistan Paleocene 55-66 ~2000

100. Khost Afghanistan Paleocene 55-66



Anorthosite thickness Grain size (cm)  Plag. An (mol. %) Pyroxene Mg# Olivine Fo

77-92 87-94 83-84

Small dykes

Veins

Blocks

Metre- to decametre-scale olistoliths

Coarse

50-90

0.05-0.40 50-93 65

64-79 72-92 78-84

Layers/bands Fine to medium 90-100

Coarse

Dykes

Layers Fine to medium 50-89 60-82

80-85 65

50-90

20 centimetre- to 4 metre-thick layers

50-90

2.0

Layers

0.1-1.0 metre-thick cyclic units

Layers

Up to 1 metre-thick layers 86-90 91-94 90

Centimetre- to decametre-thick layers up to 20 metres long 0.2-3.0

Layers

Layers

Lenses

~125 metre-long by 20 metre-thick lense/phacoid

77-86

50-90

44-78 69-83

Layers

1-10 centimetre-thick layers Coarse 78-82 79-89

0.2-0.5 92-96 77-95

Medium 86-88 85

Small bodies 89-94 83-88

Up to hundreds of metres 82-100 81-84

Massive anorthosite dykes 90-93 86-97

Massive anorthosite dykes/Layers 90-93 86-97

Calcic 

Calcic 

Calcic 

Calcic 

50-90

Dykes and sills

Up to 1 metre-thick layers 83-98 65-91



Layers 85

0.07-0.30 81-94 78-93 82-83

Blocks Medium to coarse

50-90

Lenses 1-2 metres in diameter Phaneritic 70-100

73-94 75-92

Thin layers 0.2-0.5 88-93 77-98

Layers 3.0-5.0 86-88 69-84

Dykes, sills, veins and layers

Layers

50-90

Rare bands ≤2.0

Bands

70-90

0.20-0.60 Calcic 

50-90

50-90

Medium 72-97 76-88

Layers ~80

73-77



Amphibole Mg# Interpreted geodynamic setting Parental magma(s) to anorthosites Boninitic affinity

Suprasubduction zone No

Back-arc basin Tholeiitic No

Suprasubduction zone Tholeiitic No

Rift

Suprasubduction zone Tholeiitic No

Mid-ocean ridge Tholeiitic No

Continental arc

Mantle plume No

Suprasubduction zone No

Mid-ocean ridge? Tholeiitic No

Intra-oceanic arc

Mid-ocean ridge

Mid-ocean ridge Tholeiitic No

Intra-oceanic arc back-arc basin Tholeiitic No

Back-arc basin

Intra-oceanic arc back-arc basin Tholeiitic No

Back-arc basin Tholeiitic/calc-alkaline No

Intra-oceanic arc back-arc basin Tholeiitic No

Subduction zone Yes

Suprasubduction zone Yes

Suprasubduction zone Yes

Forearc suprasubduction zone Yes

Forearc suprasubduction zone Yes

Suprasubduction zone Tholeiitic Yes

Continental back-arc Boninitic/island arc tholeiitic/tholeiitic Yes

Volcanic arc?

Back-arc to forearc suprasubduction zone Boninitic/island arc tholeiitic/tholeiitic Yes

Suprasubduction zone Boninitic/island arc tholeiitic/tholeiitic Yes

Back-arc to forearc suprasubduction zone Boninitic/island arc tholeiitic/tholeiitic Yes

Back-arc suprasubduction zone Tholeiitic Yes

Suprasubduction zone Boninitic/island arc tholeiitic/tholeiitic Yes

Intra-oceanic arc back-arc basin Tholeiitic Yes

Back-arc basin Tholeiitic No

Back-arc basin

Nascent mid-ocean ridge Tholeiitic No

Mid-ocean ridge

Mid-ocean ridge

Forearc suprasubduction zone Yes

Forearc suprasubduction zone Yes

Intra-oceanic arc Tholeiitic No

Spreading ocean No

Nascent mid-ocean ridge MORB-type No

Spreading ocean No

Mid-ocean ridge Silica-rich basaltic No

Mid-ocean ridge

Spreading ocean No

Spreading ocean No

Convergent margin Tholeiitic No

Intra-oceanic subduction zone

Suprasubduction zone Tholeiitic Yes

Spreading ocean ridge Tholeiitic No

Nascent ocean basin Tholeiitic Yes

Mid-ocean ridge

Forearc basin Tholeiitic/boninitic Yes

Subduction zone Basaltic No

Back-arc suprasubduction zone Tholeiitic No

Back-arc suprasubduction zone Tholeiitic No

Forearc suprasubduction zone Boninitic Yes

Intra-oceanic back-arc basin Tholeiitic No

Intra-oceanic arc Tholeiitic Yes

Suprasubduction zone Boninitic/island arc tholeiitic/tholeiitic Yes

Intra-oceanic arc Island arc tholeiitic/tholeiitic Yes

Suprasubduction zone Yes

Suprasubduction zone Island arc tholeiitic/boninitic Yes

Back-arc to forearc suprasubduction zone Boninitic/island arc tholeiitic/tholeiitic Yes

Back-arc suprasubduction zone Island arc tholeiitic/tholeiitic Yes

Back-arc suprasubduction zone Tholeiitic Yes

Back-arc suprasubduction zone Tholeiitic Yes

Suprasubduction zone Tholeiitic Yes

Suprasubduction zone Tholeiitic Yes

Suprasubduction zone Tholeiitic Yes

Suprasubduction zone Tholeiitic Yes

Back-arc basin Yes

Suprasubduction zone Boninitic/island arc tholeiitic Yes

Intra-oceanic suprasubduction zone Picritic Yes



Subduction zone Tholeiitic Yes

Suprasubduction zone Yes

Nascent ocean basin No

Back-arc basin

Intra-oceanic subduction zone?

Intra-oceanic subduction zone Island arc tholeiitic Yes

Intra-oceanic island arc Tholeiitic Yes

Back-arc suprasubduction zone Basaltic No

Suprasubduction zone Island arc tholeiitic Yes

Island arc suprasubduction zone Tholeiitic No

Suprasubduction zone No

Mid-ocean ridge/plume No

Suprasubduction zone Island arc tholeiitic Yes

Forearc suprasubduction zone Tholeiitic Yes

Mid-ocean ridge/plume No

Intra-oceanic arc Island arc tholeiitic No

Subduction zone Tholeiitic Yes

Suprasubduction zone

Back-arc basin

Back-arc basin

Back-arc suprasubduction zone Tholeiitic Yes

Subduction zone No

Mid-ocean ridge Tholeiitic T-MORB No

Back-arc suprasubduction zone No

Back-arc suprasubduction zone No



Ophiolite geochemical affinity 

100% MORB

66% Boninitic, 17% IAT, 17% MORB

66% Boninitic, 17% IAT, 17% MORB 

12% Boninitic, 60% IAT, 28% MORB 

25% IAT, 75% MORB

66% Boninitic, 17% IAT, 17% MORB

MORB

57% Boninitic, 14% IAT, 29% MORB

50% IAT, 50% MORB 

3% Boninitic, 90% IAT, 7% MORB

33% IAT, 67% MORB



100% MORB

15% IAT, 85% MORB

100% MORB
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Table S2. Archean anorthosite-bearing layered intrusion occurrences.

Occurrence Location Age

1. Nulliak Supracrustal Assemblage Labrador, Canada Eoarchean

2. Tula Mountains, Napier Metamorphic Complex (2 localities) Antarctica Eoarchean

3. Itsaq Gneiss Complex Greenland Eoarchean

4. Nuvvuagittuq (Porpoise Cove) greenstone belt Québec, Canada Eoarchean

5. Ujaragssuit layered xenolith Greenland Eoarchean

6. Manfred Complex Western Australia, Australia Eoarchean

7. Acasta Gneiss Complex Northwest Territories, Canada Paleoarchean-Eoarchean

8. Mount Webber Gabbro Western Australia, Australia Paleoarchean

9. Mponono Intrusive Suite Eswatini (Swaziland) Paleoarchean

10. Onverwacht Sills South Africa Paleoarchean

11. Messina Complex South Africa Paleoarchean

12. Mentzel Plutonic Association (Saglek Area) Labrador, Canada Paleoarchean

13. Holenarasipir Complex (Dodkadnur) India Paleoarchean

14. Holenarasipir Complex (Honnavalli) India Paleoarchean

15. Hopedale Block Labrador, Canada Paleoarchean

16. Lagoa da Vaca Complex Brazil Mesoarchean

17. Bangur Gabbro Complex India Mesoarchean

18. Nuasahi massif (Iron Ore Group) India Mesoarchean

19. Kurihundi Intrusion India Mesoarchean

20. Nuggihalli Complex India Mesoarchean

21. Kuliana Gabbro-Anorthosite Suite India Mesoarchean

22. Badampahar Gabbro-Anorthosite Intrusion India Mesoarchean

23. Ivisaartoq greenstone belt Greenland Mesoarchean

24. Ujarassuit greenstone belt Greenland Mesoarchean

25. Stella Layered Intrusion South Africa Mesoarchean

26. Senador Elói de Souza Complex Brazil Mesoarchean

27. Andover Intrusion Western Australia, Australia Mesoarchean

28. Tessiuyakh Gabbro Complex (Nain-Okhakh Area) Labrador, Canada Mesoarchean

29. Ness Scotland, U.K. Mesoarchean

30. Sindhuvalli India Mesoarchean

31. South Harris Complex Scotland, U.K. Mesoarchean

32. Isle of Lewis and Harris (2 occurrences) Scotland, U.K. Mesoarchean

33. Younger Suite (Saglek Area) Labrador, Canada Mesoarchean

34. Loch Laxford Scotland, U.K. Mesoarchean

35. Achiltibuie Scotland, U.K. Mesoarchean

36. Drumbeg Scotland, U.K. Mesoarchean

37. Naajat Kuuat Complex Greenland Mesoarchean

38. Fiskenæsset Complex Greenland Mesoarchean

39. Novengilla Suite, Rooiwater Complex South Africa Mesoarchean

40. Millindinna Intrusion Western Australia, Australia Mesoarchean

41. Munni Munni Intrusion Western Australia, Australia Mesoarchean

42. Severnyi Massif Russia Mesoarchean

43. Nunataarsuk Complex Greenland Mesoarchean

44. Amsaga (6 occurrences) Mauritania Mesoarchean

45. Guelb el Azib Layered Complex Mauritania Mesoarchean

46. Bhavani Complex India Mesoarchean

47. Gebel El Asr Complex Egypt Mesoarchean

48. Dåvøya, West Troms Basement Complex Norway Mesoarchean

49. Helgøya, West Troms Basement Complex Norway Mesoarchean

50. Hersøya, West Troms Basement Complex Norway Mesoarchean

51. Kristoffervalen, West Troms Basement Complex Norway Mesoarchean

52. Lille Måsværet, West Troms Basement Complex Norway Mesoarchean

53. Nordkvaløya-Rebbenesøya, West Troms Basement Complex Norway Mesoarchean

54. Ringvassøya, West Troms Basement Complex (2 occurrences) Norway Mesoarchean

55. Stor Skorøya, West Troms Basement Complex Norway Mesoarchean

56. Store Måsværet, West Troms Basement Complex Norway Mesoarchean

57. Vanna, West Troms Basement Complex (2 occurrences) Norway Mesoarchean

58. Rio Jararé Sill Brazil Mesoarchean

59. Andammen, West Troms Basement Complex Norway Mesoarchean

60. Gråtind Migmatite, West Troms Basement Complex (3 occurrences) Norway Mesoarchean

61. Grøtøya, West Troms Basement Complex Norway Mesoarchean

62. Kvaløya, West Troms Basement Complex (2 occurrences) Norway Mesoarchean

63. Rebbenesøya, West Troms Basement Complex (3 occurrences) Norway Mesoarchean

64. Ringvassøya, West Troms Basement Complex (2 occurrences) Norway Mesoarchean

65. Sandøya, West Troms Basement Complex Norway Mesoarchean

66. Vengsøya, West Troms Basement Complex Norway Mesoarchean

67. Fishtrap Lake Intrusion Ontario, Canada Mesoarchean

68. Highbank Lake Intrusion Ontario, Canada Mesoarchean

69. Windimurra Intrusion Western Australia, Australia Mesoarchean

70. Storø greenstone belt Greenland Mesoarchean

71. Nachvak Fjord Labrador, Canada Mesoarchean

72. Northern Labrador Labrador, Canada Mesoarchean

73. Arveprinsen Ejland Greenland Mesoarchean

74. Innarsuaq Greenland Mesoarchean

75. Rensdyrnunatak Greenland Mesoarchean

76. Boye Sø Anorthosite Complex Greenland Mesoarchean



77. Dingo Intrusion Western Australia, Australia Mesoarchean

78. Maitland Intrusion Western Australia, Australia Mesoarchean

79. Mount Sholl Intrusion Western Australia, Australia Mesoarchean

80. Sherlock Intrusion Western Australia, Australia Mesoarchean

81. Modipe Gabbro Complex Botswana/South Africa Neoarchean

82. Gaborone Granite Suite Botswana/South Africa Neoarchean

83. Shawmere Anorthosite Complex Ontario, Canada Neoarchean

84. Pipestone Lake Anorthosite Complex Manitoba, Canada Neoarchean

85. Kolmozero Complex Russia Neoarchean

86. Bird River Sill (8 intrusive bodies) Manitoba, Canada Neoarchean

87. Cat Lake Intrusion Manitoba, Canada Neoarchean

88. Coppermine Bay Intrusion Manitoba, Canada Neoarchean

89. Euclid Lake Intrusion Manitoba, Canada Neoarchean

90. New Manitoba Mine Intrusion Manitoba, Canada Neoarchean

91. Mayville Intrusion Manitoba, Canada Neoarchean

92. Gebel Kamil Complex Egypt Neoarchean

93. Big Mac Intrusion Ontario, Canada Neoarchean

94. Black Thor Intrusive Complex Ontario, Canada Neoarchean

95. Thunderbird Intrusion Ontario, Canada Neoarchean

96. Butler East Intrusion Ontario, Canada Neoarchean

97. Butler West Intrusion Ontario, Canada Neoarchean

98. Ring of Fire Intrusive Suite (5 intrusions) Ontario, Canada Neoarchean

99. Croal Lake Intrusion Ontario, Canada Neoarchean

100. Doré Lake Complex Québec, Canada Neoarchean

101. Wabassi Main Intrusion Ontario, Canada Neoarchean

102. Haines Gabbroic Complex Ontario, Canada Neoarchean

103. Bad Vermilion Lake Anorthosite Complex Ontario, Canada Neoarchean

104. Stillwater Complex Montana, U.S.A. Neoarchean

105. Dåfjord Gneiss, West Troms Basement Complex Norway Neoarchean-Mesoarchean

106. Bantoro Leucogabbro Sierra Leone Neoarchean

107. Bear Head Lake Complex Manitoba, Canada Neoarchean

108. Bell River Complex Québec, Canada Neoarchean

109. Cauchon Lake Anorthosite Complex Manitoba, Canada Neoarchean

110. Fredrikshåb Area Greenland Neoarchean

111. Godthåb-Ameralik Area Greenland Neoarchean

112. Hairy-Butterfly Lakes Complex Manitoba, Canada Neoarchean

113. Ivigtut Area Greenland Neoarchean

114. Kasila Group Sierra Leone Neoarchean

115. Minago River Complex Manitoba, Canada Neoarchean

116. Sample Creek Liberia Neoarchean

117. Split Lake Anorthosite Complex Manitoba, Canada Neoarchean

118. Tingmiarmiut Area Greenland Neoarchean

119. Ferguson Lake Igneous Complex Northwest Territories, Canada Neoarchean

120. Laughland Lake Intrusion Nunavut, Canada Neoarchean

121. Angmagssalik Area Greenland Neoarchean

122. Skjoldungen Alkaline Igneous Province (14 individual unnamed intrusions) Greenland Neoarchean

123. Stærkodder Intrusion Greenland Neoarchean

124. Uivak Intrusion Greenland Neoarchean

125. Vend Om Intrusion Greenland Neoarchean

126. Achinsk Complex Russia Neoarchean

127. Patchemvarek Massif Russia Neoarchean

128. Tsaga Massif Russia Neoarchean

129. Medveh'e-Shchuch'eoerskii Massif Russia Neoarchean

130. Yellowknife greenstone belt Northwest Territories, Canada Neoarchean

131. Ikongwe Massif Tanzania Neoarchean

132. Axis Lake Intrusion Saskatchewan, Canada Neoarchean

133. Kalarsky Complex Russia Neoarchean

134. Masanikere Intrusion India Neoarchean

135. Konkanhundi Gabbro-Anorthosite Suite India Neoarchean

136. São José do Jacuipe Gabbro-Anorthosite Stratiform Complex Brazil Neoarchean

137. Curaçá Valley (18 intrusions) Brazil Neoarchean

138. Nurlaty Massif Russia Neoarchean

139. Tuimazy Massif Russia Neoarchean

140. Love Lake Leucogabbro Saskatchewan, Canada Neoarchean

141. Agali Hill Ophiolite India Neoarchean

142. Sittampundi Anorthosite Complex India Neoarchean

143. Devanur Ophiolite India Neoarchean

144. Main Range Massif Russia Neoarchean

145. Big Trout Lake Complex Ontario, Canada Neoarchean

146. Tongyu Anorthosite Complex China Neoarchean

147. Upernavik Greenland Neoarchean

148. Aniyapuram Mafic-Ultramafic Complex India Neoarchean

149. Attappadi India Neoarchean

150. Jequié Complex Brazil Neoarchean

151. Nilgiri Block India Neoarchean

152. Yishui Ophiolite China Paleoproterozoic-Neoarchean

153. Monchegorsk Intrusion Russia Paleoproterozoic-Neoarchean

154. Queen Maud Block Northwest Territories, Canada Paleoproterozoic-Neoarchean

155. Santa Maria do Chico Complex Brazil Paleoproterozoic-Neoarchean



Age (Ma) Size (km
2
) Anorthosite thickness Grain size (cm) Megacrystic? Plag. An (mol.%)

>3950

>3927 <1 Layers 50-70

>3850 ~3000 Centimetre-thick layers

3825 Layers

3810 80 Up to 20 centimetre-thick layers 22-76

3730 <10 2.0-30.0 Yes 75-95

3590-4000 Layers Up to 1 centimetre Yes

3580-3590 0.04 ≤0.6

~3450 >10 ≤10.0 Yes

3450 >10 92-94

3344 >100 ≤10.0 Yes 70-85

>3318 <10

~3290 <10 300 metres Fine-grained 92-95

3285 <10 50 metres Fine-grained 92-95

>3200 <10

3161 32 Yes 53-67

3122

3119-3123 ~10 Layers

>3100 <10 63-74

3100 <10 88

3090-3120 1 Layers ≤0.4 76-85

>3090 ~30

3075 ~700 Metres to kilometres

3070

3033.5 12

3033 ~50 92-97

3016 140

>3000 <10 ≤10.0 Yes 63-88

>3000 Andesine

>3000 <10 89-94

>3000 46 61-84

>3000

>3000 <10

<3000 4.8 ≤3.0 Yes

<3000

<3000

2985 ≤3.0 Yes 80

2973 ~500 Up to 150 metres ≤40.0 Yes 75-98

~2970

2950-2970 150

2925 135

2920 45-65

2914 ~35 2.0-5.0 Yes 77-89

>2900

>2900 ≤15 ≤0.3

2898 ~30 0.5-5 metres

2845 200 70-81

~2842 ~4

~2842 ~50

~2842 ~10 

~2842 ~2

~2842 ~2

~2842 ~65

~2842 ~350 (in total)

~2842 ~10 

~2842 ~4.5

~2842 ~550 (in total)

2841 ~84 Megacrystic Yes

>2835 ~12

>2835 ~100 (in total)

>2835 ~12

>2835 ~550 (in total)

>2835 ~130 (in total)

>2835 ~170 (in total)

>2835 ~8

>2835 ~20

~2810 270 Layers Medium to coarse 31-71

~2810 420 Layers Medium to coarse 24-99

~2810 2200 Layers ~75

2800-3060 ~25

>2800 <10

>2800 <10

~2800 Layers

~2800 Layers

~2800 Layers

~2800 ~25 Layers ≤10.0 Yes



2 kilometres thick

18

>2785

2782-2785 >6000

2765 560 ≤45.0 Yes 65-95

2758 ~10 Up to 150 metres 2.0-25.0 Yes 75-80

2750 ~20 ≤4.0 Yes 64-85

2743 ~15 Up to 90 metres ≤3.0 Yes 70-85

~2743? ~0.30

2743 ~0.80 ≤2.0 Yes 76-94

2743 ~0.30 ≤3.0 Yes

2743 ~0.40

2742.8 ~15 350 metres ≤3.0 Yes 63-99

2741 400 46-54

2734 120 Layers up to 4 centimetres thick Medium to coarse 20-90

2734 ~6 Layers Medium to megacrystic Yes 78-87

2734 ~75 Layers Medium 37-86

2733-2734 ~30 Layers Medium 37-86

2733-2734 ~100 Layers Medium 37-86

2733-2734 ~140 (combined)

2733

~2728 250 ≤5.0 Yes 60-80

2727 42 Fine to coarse 31-96

2722 27 ≤2.0 Yes

2716 100 1.0-20.0 Yes 75-81

2701 ~4400 73-79

2700-2850

>2700 100 metre-thick sheet Layers ≤10.0 Yes 50-84

>2700 <10 64-84

>2700 550 60-80

>2700 ~20 ≤15.0 Yes 64-84

>2700 <10 35-81

>2700 ~500 60-82

>2700 ~25 64-84

>2700 <10 35-75

>2700 >10 50-85

>2700 25 64-84

>2700 1-5 centimetre-thick layers

>2700 30 85-95

>2700 <10 >70

~2700 ≤3.5 Yes

~2700 ~50 ≤6.0 Yes 70-85

2698 <10
2698 Layers

2698 Layers

2698 Layers

2698 Layers

2678 120 56-94

2662 0.5-2.0 centimetres Yes 65-85
2660-2670 70-85
2660

2658-2722 ~2000

2643 95 60-70

2630 <20 Layers Megacrystic Yes

2623 1000 10 -> 70

~2600 <10 ~60

2594-2627 35 Coarse 50-90

2583.7 ≤5.0 Yes 31-70

2580

2570 1000 40-58

2570 1800 46-65

~2562 >40 1-5 centimetre-thick layers Medium 60

2547 <1 Up to 10 metre-thick lenses ≤1.0 Yes

2541 >30 80-100

2528-2545 ~24

2501-2505 440 50-70

>2500 ~300 ≤10.0 Yes 51-75

>2500 >15

>2500 <10 ~70

2495-2538 Layers/veins Medium 50-64

2493-2507 400 63-76

2460-2500

2124-2550



Pyroxene Mg# Olivine Fo Amphibole Mg# Interpreted geodynamic setting

Subduction zone

Intra-oceanic island arc

Suprasubduction zone

Forearc to volcanic arc suprasubduction zone

Subduction zone

Oceanic plateau

Subduction zone

Arc

Subduction zone/mantle plume-derived intraplate

Backarc to forearc suprasubduction zone

Arc

Proto-arc

Island arc

Island arc

Back-arc basin

68-71 Passive continental margin

Suprasubduction zone

Suprasubduction zone

Subduction zone

Suprasubduction zone

77-85 Suprasubduction zone

Mantle plume

Forearc to volcanic arc suprasubduction zone

Back-arc to forearc suprasubduction zone

Subduction zone

Arc

Subduction zone

Back-arc basin

Intra-oceanic arc

Island arc

Island arc

Island arc

Subduction zone

Intra-oceanic arc

Island arc

Island arc

Island arc

71 Suprasubduction zone

Back-arc

Subduction zone

Subduction zone

Mid-ocean ridge

Subduction zone

Suprasubduction zone

Suprasubduction zone

Volcanic arc

Volcanic arc

Arc

Arc

Arc

Arc

Arc

Arc

Arc

Arc

Arc

Arc

Mantle plume-derived continental rift

Arc

Arc

Arc

Arc

Arc

Arc

Arc

Arc

53 Mantle plume

Mantle plume

67-70 Mantle plume-derived continental rift

Intra-oceanic suprasubduction zone

Subduction zone

Subduction zone

Island arc

Island arc

Island arc

Island arc



Subduction zone

Subduction zone

Subduction zone

Subduction zone

Subduction zone

Synorogenic

72-85 Arc

Back-arc

Quasi-platform

71-82 Chilean-style continental back-arc

Back-arc

Convergent margin

Back-arc

Back-arc

51-82 Chilean-style continental back-arc

Volcanic arc

Mantle plume

Mantle plume

Mantle plume

Mantle plume

Mantle plume

Mantle plume

Mantle plume

Back-arc suprasubduction zone

44-84 19-84 Arc

Japan-style mature intra-oceanic continental back-arc

Intra-oceanic arc

61-77 Subduction zone

Arc

64-88 Subduction zone

Arc

Back-arc basin

Arc

Arc

Arc

Arc

Arc

Subduction zone

Arc

Subduction zone

Arc

Subduction zone

Back-arc basin

Continental rift

Subduction zone
Subduction zone

Subduction zone

Subduction zone

Subduction zone

Anorogenic

Quasi-platform

Anorogenic

Anorogenic

Volcanic arc suprasubduction zone and plume

Post-orogenic

Oceanic arc

Post-orogenic/back-arc

Active continental margin

Continental arc

60-75 Continental arc

Arc

Post-orogenic

Post-orogenic

Subduction zone

Suprasubduction zone

Suprasubduction zone

Suprasubduction zone

Synkinematic

Intracratonic rift

Island arc

Arc

Suprasubduction zone

Arc

Island arc

Arc

Suprasubduction zone

Synkinematic

Incipient continental rift
Arc



Parental magma(s) Boninitic affinity

No

No

Hydrous boninitic Yes

Tholeiitic/picritic No

Basaltic No

No

No

Hydrous tholeiitic No

No

No

No

No

Tholeiitic No

Yes

No

Yes

Basaltic No

Boninitic/island arc tholeiitic Yes

Yes

Mafic No

No

Olivine tholeiitic No

No

No

No

No

No

No

Hydrous high Al basaltic No

Hydrous high-Al and Mg melts No

No

Hydrous tholeiitic No

Hydrous high Al tholeiitic? No

Hydrous high Al tholeiitic No

Tholeiitic No

Tholeiitic No

Basaltic No

High Fe and Ti basaltic No

Tholeiitic No

Tholeiitic No

No

No



No

No

No

No

Mantle-derived No

Aluminous tholeiitic No

Tholeiitic No

No
Hydrous primitive arc tholeiitic/Ca- and Al-rich tholeiitic No

Tholeiitic? No

Tholeiitic? No

Tholeiitic No

Tholeiitic? No
Hydrous primitive arc tholeiitic/Ca- and Al-rich tholeiitic No

High Fe and Ti basaltic No

Komatiitic basaltic No

Mafic No

Mafic No

Mafic No

No

Basaltic No

Hydrous Ca- and Al-rich tholeiitic/boninitic Yes

No

Boninitic Yes

Basic to intermediate No

Tholeiitic No

Tholeiitic No

No

No

Tholeiitic No

No

Basic to intermediate No

Tholeiitic No

Tholeiitic No

No

Basaltic No

No

No
Mafic No

Mafic No

Mafic No

Mafic No

No

Basaltic No

No

High Al basaltic No

Hydrous tholeiitic No

No

Hydrous aluminous tholeiitic Yes?

No

Silicic high Mg (boninitic) Yes

No

Primitive tholeiitic No

Tholeiitic No

Silicic high Mg (boninitic) Yes

No
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