Xenopus pitx3 target genes lhx1 and xnr5 are identified using a novel three-fluor flow cytometry–based analysis of promoter activation and repression

Lara Nicole Hooker
Validation Technologies, Inc, San Diego, California

Cristine Smoczer
Biochemistry and Genetics, University of Detroit Mercy School of Dentistry, Detroit, Michigan

Samuel Abbott
Biological Sciences, University of Windsor, Windsor, Ontario, Canada

Mohamed Fakhereddin
Biological Sciences, University of Windsor, Windsor, Ontario, Canada

John W. Hudson
Biological Sciences, University of Windsor, Windsor, Ontario, Canada

See next page for additional authors

Follow this and additional works at: https://scholar.uwindsor.ca/biologypub

Part of the Biology Commons

Recommended Citation

Hooker, Lara Nicole; Smoczer, Cristine; Abbott, Samuel; Fakhereddin, Mohamed; Hudson, John W.; and Crawford, Michael J., "Xenopus pitx3 target genes lhx1 and xnr5 are identified using a novel three-fluor flow cytometry–based analysis of promoter activation and repression" (2017). *Developmental Dynamics, 246*, 9, 1-13.
https://scholar.uwindsor.ca/biologypub/121

This Article is brought to you for free and open access by the Department of Biological Sciences at Scholarship at UWindsor. It has been accepted for inclusion in Biological Sciences Publications by an authorized administrator of Scholarship at UWindsor. For more information, please contact *scholarship@uwindsor.ca.*
Authors
Lara Nicole Hooker, Cristine Smoczer, Samuel Abbott, Mohamed Fakhereddin, John W. Hudson, and Michael J. Crawford
Xenopus pitx3 target genes *lhx1* and *xnr5* are identified using a novel three-fluor flow cytometry-based analysis of promoter activation and repression.

Keywords: flow cytometry, gene regulation, promoter analysis, Xenopus laevis, embryogenesis, laterality, pitx3, lhx1, xnr5, tyrosine hydroxylase
Xenopus pitx3 target genes lhx1 and xnr5 are identified using a novel three-fluor flow cytometry-based analysis of promoter activation and repression.

Lara N. Hooker¹, Cristine Smoczer², Samuel Abbott³, Mohamad Fakhereddin³, John W. Hudson³, Michael J. Crawford³*

¹Validation Technologies, Inc., 10815 Rancho Bernardo Rd, San Diego, CA 92127, USA
²Biochemistry and Genetics, University of Detroit Mercy School of Dentistry, 2700 Martin Luther King Jr Blvd, Detroit, MI 48208, USA
³Biological Sciences, University of Windsor, 401 Sunset Ave. Windsor, ON. N9B 3P4, Canada

*Author for correspondence: mcrawfo@uwindsor.ca Tel: (519) 253 3000 (x 2721)

Keywords: flow cytometry, gene regulation, promoter analysis, Xenopus laevis, embryogenesis, laterality, pitx3, lhx1, xnr5, tyrosine hydroxyase

Grant Sponsor: Natural Sciences and Engineering Research Council of CANADA Grant number 203459 to MJC and 05947 to JWH
ABSTRACT

Background: Pitx3 plays a well understood role in directing development of lens, muscle fiber, and dopaminergic neurons, however in Xenopus laevis, it may also play a role in early gastrulation and somitogenesis. Potential downstream targets of pitx3 possess multiple binding motifs that would not be readily accessible by conventional promoter analysis.

Results: We isolated and characterized pitx3 target genes lhx1 and xnr5 using a novel three-fluor flow cytometry tool that was designed to dissect promoters with multiple binding sites for the same transcription factor. This approach was calibrated using a known pitx3 target gene, tyrosine hydroxylase.

Conclusions: We demonstrate how flow cytometry can be used to detect gene regulatory changes with exquisite precision on a cell-by-cell basis, and establish that in HEK293 cells, pitx3 directly activates lhx1 and represses xnr5.
INTRODUCTION

The mammalian Pitx gene family belongs to the OAR (Otx, Arx, Rax) subgroup of paired-like transcription factors (TF). One member of this family, Pitx3, is expressed in the substantia nigra compacta where it is responsible for the maturation and final differentiation of mesencephalic dopaminergic neurons and also for the subsequent regulation of the dopamine rate-limiting enzyme, tyrosine hydroxylase (van den Munckhof et al., 2003; Smidt et al., 2004; Maxwell et al., 2005). Pitx3 also expresses in developing somites, lens placode, and in forming lens pit (Smidt et al., 1997; Semina et al., 1998; Smidt et al., 2004). In mice, Pitx3 is the causative locus for aphakia, a recessive deletion mutant resulting in small eyes that lack lenses (Semina et al., 1998). Similar mutant phenotypes are seen in humans (Semina et al., 1998; van den Munckhof et al., 2003). During myogenesis, both Pitx2 and Pitx3 participate in the differentiation of skeletal muscles (Coulon et al., 2007; L'Honore et al., 2007).

While Xenopus laevis pitx3 plays a similar role during eye development, it additionally expresses during gastrulation as well as later the in pre-somatic mesoderm, lateral plate mesoderm, differentiating somites, craniofacial regions, and in looping heart and gut (Pommereit et al., 2001; Khosrowshahian et al., 2005; Smoczer et al., 2013). In contrast to mammals, Xenopus pitx3 also affects laterality (left-right organ asymmetry) and somitogenesis (Khosrowshahian et al., 2005; Smoczer et al., 2013). Remarkably, these latter phenotypes are elicited by both gain of function as well as by morpholino-mediated translational knockdown (Smoczer et al., 2013). We decided to identify some of the pitx3 target genes that might mediate both eye as well as novel phenotypes.
We performed a microarray-based search for potential downstream target genes and defined a preliminary list of potential target genes based upon near-coincident timing and domain of expression. This list initially comprised roughly 80 candidates, however it was refined using RT-PCR followed by riboprobe *in situ* hybridization to those most likely to perform as legitimate *pitx3* targets (Hooker et al., 2012). We then further selected a subset of genes that possessed *pitx3*-binding motifs in their respective promoter/enhancer regions (based upon elements identified in *X. laevis* or *tropicalis* sequences and conserved in fish or mammalian species). Two likely play a conserved role in eye development and possess multiple *pitx3* binding motifs (*lhx1* and *xnr5*).

A drawback of most reporter assays is that reporter gene expression is assayed in a heterologous population of transfected and untransfected cells, where estimation of the ratio between populations is difficult: lysates homogenize and average cellular results of transcription factor activity, so it is hard to assess quantitative effects on a per-cell-basis. To circumvent this shortcoming, other studies have deployed a dual luciferase reporter assay where the reporter vector and another bioluminescent gene driven by a constitutive promoter is introduced to serve as control for transfection efficiency (Stables et al., 1999). Although widely employed, this approach relies upon the presumption that both vectors have identical or at least similar transfection properties. Our putative targets have multiple candidate response elements that would not be easily dissected using either approach.

To address these shortcomings, we devised a novel flow cytometry-based protocol that works exquisitely well to link transcription factor input to promoter reporter output on a cell-by-cell basis. By counting only those cells that are co-transfected, we can
estimate how promoters work even if responses are non-linear. The system relies upon co-transfection of two plasmids: one comprises a CMV-eGFP IRES unit that is bicistronically linked to the transcription factor – in this case Pitx3 (input) called Pitx3-IRES-GFP; the other houses CMV-HcRed1 (target availability) orientated in opposition to a target-promoter driven reporter, CMV-HcRed/target promoter-DsRed (output). Since only those cells that are co-transfected are analyzed, differences in transfection efficiency between treatments are rendered irrelevant. In addition, a ratio between the two transfected plasmids can be generated for each cell: there is good quantitative data to indicate how much transcription factor is being expressed, how much target is available, and how much that target is activated/repressed. As proof of principle, we calibrated our system against a well-characterized promoter, murine tyrosine hydroxylase (Th). We have defined the range of transfection parameters within which the system reports with fidelity and in linear fashion – in other words, the range at which GFP accumulation and fluorescence is proportionate to pitx3 detectable on Western blots.

Based upon our preliminary slate of putative signaling targets, our suspicion is that pitx3 plays a heretofore uncharacterized role during gastrulation by regulating lhx1 and xnr5, and in a manner that explains why both pitx3 under- and over-expression leads to similar dorsal axis phenotypes.

RESULTS

Construction of the expression and reporter vectors. Our system relies on two participating plasmids. The first is a bicistronic expression vector, Pitx3-IRES-GFP, which harbors the transcription factor pitx3 and GFP (Fig.1), and that simultaneously
produces two proteins from a single mRNA transcript (Trouet et al., 1997). A corresponding pitx3 homeodomain-binding mutant was constructed by inserting a mutated form of pitx3 as the first coding sequence of the bicistronic unit. The L99P amino acid substitution within the DNA-binding homeodomain was modeled after one described for another paired-like homeodomain mixl1, shown to hinder binding of the transcription factor to its target DNA sequences and to act as a dominant negative inhibitor (Mead et al., 1996). This mutant, called Pitx3mutHD-ires-GFP, was tested to see if it served similarly in our studies. The second vector harbors the promoter reporter and a transfection calibration fluor (Fig.1B). Depending upon the promoter analysed, these vectors were called CMV-HcRed/Th-DsRed (to assess a previously characterized Tyrosine hydroxylase promoter activity), CMV-HcRed/lhx1-DsRed (to assess X. laevis lhx1 promoter activity), or CMV-HcRed/xnr5-DsRed (to assess X. laevis xnr5 promoter activity). Deletion mutants, CMV-HcRed/thmut350-DsRed, CMV-HcRed/lhx1mut709-DsRed, or CMV-HcRed/xnr5mut94-DsRed were also generated for promoters to serve as specificity controls by prohibiting pitx3 binding: th mutant (-350bp from ATG: TAATCC to TAccCC), xnr5 mutant (-94bp from ATG: TAAGCT to TcgaCT), and lhx1 mutant (-709bp from ATG: TAATGG to TccaTGG).

Calibration of pitx3 relative to eGFP in cells transfected with the bicistronic expression plasmid. In order to ensure the reliability and the linear operating range of the system, we established the correlation between the levels of the two proteins produced by the bicistronic vector. We assessed the ratio of eGFP and pitx3 in two separate experiments: one to determine plasmid concentration dependence, and a second to ensure that the ratio remains constant over time.
HEK293 cells were transiently transfected with four different dilutions of Pitx3-IRESGFP and assessed by Western blotting. This series allowed the maximum number of dilutions resulting in observable protein by pitx3 antibody. The protein band intensities for eGFP and pitx3 proteins were compared and linear regression analysis reveals a strong and consistent correlation between the two proteins across all concentrations (Fig.2).

Moreover, at these transfection concentrations both proteins have parallel accumulation rates across time. A set amount of Pitx3-IRESGFP was transfected into HEK293 cells and cell lysates were collected at 24 hours, 36 hours and 48 hours. The ratio between the pitx3 and GFP proteins levels is constant, with no statistically significant differences between time-points (Fig.2B). However the ratio between pitx3 and GFP protein levels at the 48 hour time-point could suggest unequal degradation/lifespan rates for the two proteins.

GFP protein concentrations correlate with GFP fluorescence in transfected cells. The total fluorescence for each population of transfected cells in the dilution and time-point experiments was plotted relative to the GFP protein band intensity analyzed by immunoblotting. This determines if changes in GFP fluorescence are accurately reflecting changes observed at the protein level. In triplicate experiments, regression analysis revealed a very strong correlation between GFP protein and fluorescence irrespective of the amount of vector that was transfected or post-transfection time of analysis (Fig.3).

Flow cytometry protocol for the three-fluor reporter assay. For acquisition of accurate signals from each fluorescent protein, we developed an optimal flow cytometry
protocol to separate the three fluors into discrete channels with minimal spectral overlap. The forward versus side scatter data is used to restrict the selection solely to viable cells. Each fluor is analyzed in a separate control and the appropriate voltage necessary for optimal fluor excitation is established (see Experimental Procedures Table 1). As controls to set-up experimental parameters, we used cells transfected separately with each of the vectors IRES-GFP, CMV-HcRed, CMV-DsRed, as well as with a combination of the IRES-GFP and HcRED1 empty vectors. The GFP signal is collected in channel FL1, the HcRED1 in channel FL5 (Fig.4, A and B). DsRed signal was collected in channel FL2. This allows us to gate on each fluor in order to minimize background fluorescence and to establish proper compensation for each signal to reduce spillover into other channels. These controls were run prior to each individual experiment. From the cells that were co-transfected with both GFP and HcRED1 control vectors, we collected 10^4 cells in the gate with active signal for both fluors (Figure 4C), and this co-expressing population was plotted on a FL2 histogram to collect the total background DsRed fluorescence that was subsequently subtracted from each experimental data set (Figure 4D).

The final step for each reporter experiment was to assess the degree to which incremental increases of the transcription factor affected the tested promoter. In some special cases, binding of transcription factor to one site facilitates subsequent binding to others. This is called co-operativity (Beachy et al., 1988). The cells expressing all three fluors were represented on a dot-plot with the DsRed as ratio of HcRed fluorescence: this accounted for the amount of reporter plasmid transfected (reporter output) correlated to GFP fluorescence (transcription factor input). A linear regression of the analysis permits us to assess the slope of activation or repression.
Calibration utilizing the previously characterized pitx3 and Tyrosine hydroxylase interaction. To test our new technique, we used the well-studied activity of pitx3 upon the murine Tyrosine hydroxylase (Th) promoter (Cazorla et al., 2000), CMV-HcRed/Th-DsRed. The two players in our system include the 1.5kb mouse Th promoter, which is sensitive via an active pitx3 binding site (Cazorla et al., 2000; Lebel et al., 2001), and the Xenopus pitx3 coding sequence contained in plasmid Pitx3-IRES-GFP. The homeodomains of murine and frog Pitx3 are identical. The HEK293 cell line was used, where Pitx3 is known to act as a repressor for Th (Cazorla et al., 2000). This cell line is useful for have a previously demonstrated ability to respond to pitx3, however recently has been shown to possess some intrinsic confounding features: the Human Protein Atlas project, at www.proteinatlas.org (Uhlen et al., 2015), indicates that it suffers the disadvantage of expressing both pitx1 and pitx2, transcription factors that encode near-identical homeodomains. The endogenous levels of the Th reporter were found to be very low in this cell line and therefore the repression induced by pitx3 was very small, although significant. Given the strong Th activation by cyclic AMP independent of pitx3 (Cazorla et al., 2000), we chemically activated the Th promoter with forskolin and thus allowed for a potentiation of pitx3 repressive activity. Using the novel reporter assay, we show that pitx3 represses Th output by approximately 80%, while the pitx3 homeodomain mutant, Pitx3mutHD-IRES-GFP, leaves expression unchanged (Fig.5). Conversely, by site-directed mutagenesis we mutated the known Pitx3 binding site within the Th promoter (Lebel et al., 2001) and, as expected, pitx3 has no significant effect on Th promoter activity in the absence of the critical binding site (Fig.6).

When cells that express all three fluors are assessed, and the reporter output
(DsRed) is normalized to its availability (HcRed), a super-abundance of pitx3 (indicated by GFP) produces no extra effect: the line is flat (Fig. 7). This indicates that once the critical pitx3-binding motif is occupied, additional concentrations of pitx3, and presumably subsequent occupancy of the remaining or cryptic sites, produce no effect. In other words, it is unlikely that binding at the critical site facilitates binding at other sites: there is no indication of transcription factor co-operativity in regulation of this gene.

lhx1 promoter tested as a novel direct target of pitx3. The *Xenopus laevis* promoter for *lhx1* was cloned into the reporter plasmid, *CMV-HcRed/lhx1-DsRed*, and assessed for reporter activity. *Lhx1* is significantly activated by *pitx3* (Fig.8) in HEK293 cells. To determine the site responsible for pitx3 binding in the targeted promoter, we interrogated the ENSEMBL.org database for the respective promoter sequences in *Xenopus tropicalis* and zebrafish. They were subsequently aligned using the MULAN software (Ovcharenko et al., 2005) and searched for conserved known Pitx3 binding sequences (TAAT(C/G)N) (Lebel et al., 2001). The sites that were conserved were mutated by site-directed mutagenesis and assessed for *pitx3*-inducible effects (Figures 8A and B).

When the promoter motif that binds pitx3 is mutated using plasmid *CMV-HcRed/lhx1mut-709-DsRed*, pitx3 influence on the reporter activity is abolished and the DsRed output returns to basal levels. Pitx3 input and the reporter output was linear.

Conversely, *xnr5* expression appears to be repressed by *pitx3* activity in HEK293 cells (Fig.9). VegT was used to activate *xnr5* that was assessed using reporter *CMV-HcRed/xnr5-DsRed*, and the pitx3 binding site that was found to have an effect resided between the TATA box and the ATG start methionine codon. When pitx3 was expressed,
fluorescence output diminished. When this binding motif was mutated (using plasmid CMV-HcRed/xnr5mut-94-DsRed), even in the absence of pitx3, expression of xnr5 diminished. This effect could be duplicated by mutation of the pitx3 homeodomain (Pitx3mutHD-IRES-GFP) to preclude activation of the wild type xnr5 promoter.

Expression of lhx1 is altered by pitx3 activity (Fig.10). When the lhx1 promoter’s pitx3 binding motif is impaired in tissue culture (Fig. 8), or in transgenics (compare Fig. 10A with A’), lhx1 expression is depressed. Lhx1 would normally express in the lip at gastrulation, and this is reflected by GFP expression in “wild-type” promoter/reporter transgenics. In transgenics lacking a pitx3 binding motif in the lhx1 promoter, gfp expression falls. While pitx3 morphants yield a phenotype that is less spectacular, lhx1 expression loses its characteristic and smoothly graded expression around the gastrulation lip such that the lateral lip mesoderm expresses more lightly than ventral lip (compare B to arrows in B’). The domain of gsc expression (a dorsal mesoderm marker) expands (compare arrows in C and C’), however t (a pan mesodermal marker at this stage) diminishes slightly at the lateral lip. (compare D and D’).

In the case of xnr5, the 20% diminuition of activity seen in flow cytometry studies does not translate to visible changes to in vivo expression. In pitx3 morphants, the expression of xnr5 downstream effectors in the left-expressing laterality pathway (xnr1, lefty, and pitx2) are reduced or abolished, leading to morphological randomization of laterality (compare control injected Fig. 10 E, F, and G with E’, F’, and G’).

DISCUSSION

We have developed a novel and innovative reporter technique and tested its efficacy using a known pitx3 interaction before utilizing the assay to assess new potential targets for this transcription factor. An IRES plasmid could introduce a few variables since the two separately translated proteins might be post-translationally modified and degrade or clear at different rates. Before making this plasmid a component of our
system, we ensured that the detected GFP fluorescence accurately reflects the titers of pitx3 protein present in cells by demonstrating that the ratio between pitx3 and GFP is a reliable parameter within the concentration ranges deployed and that it was independent of concentration and time of analysis (Figures 2 and 3).

The novelty of the technique is enhanced by the introduction of a reporter plasmid which itself contains a constitutively driven fluorescent protein, HcRed1, to serve as an indicator for transfection efficiency and target availability. Flow cytometry permits us to analyze only the cells that are co-transfected: the analysis delivers quantitative data regarding transcription factor concentrations (input), candidate promoter plasmid availability, and candidate promoter reporter activity (output) (Figure 4).

To calibrate the specificity and sensitivity of the newly developed method, we tested the interaction between pitx3 and the murine Tyrosine hydroxylase promoter. Pitx3 operates by association with other co-factors such as MTA1 and Nurr1 to ensure efficient regulation of tyrosine hydroxylase (TH) (Cazorla et al., 2000; Reddy et al., 2011; Volpicelli et al., 2012), and therefore the outcome of this interaction is highly dependent upon the cellular context (Messmer et al., 2007; Medina-Martinez et al., 2009). We chose the HEK293 cells line where the interaction has been previously analyzed by luciferase assay and where murine Pitx3 is known to inhibit Th transcription (Cazorla et al., 2000). In order to increase the basal activity of the Th promoter we used forskolin to boost the levels of cAMP, which is known to bind to the cAMP-response element (CRE) on the Th promoter and induce its activation (Cazorla et al., 2000). Our data confirms a 70-80% repression by Xenopus pitx3 in both basal and forskolin-activated states; levels identical to those observed by luciferase assay (Cazorla et al., 2000) (Figure 5A). Mutating a site
in the Th promoter known to be responsible for pitx3 binding (Lebel et al., 2001), we were able to also confirm the specificity of our technique by prohibiting pitx3 interaction with the Th promoter (Figure 5B). Finally, we further confirmed specificity by testing a pitx3 homeodomain mutant to show that a binding-defective protein cannot induce transcriptional repression in the target gene. Flow cytometry is both expensive and time consuming, and does not translate well to dual-luciferase style promoter assays. We experimented with mimicking a dual luciferase assay using flow cytometry and found the samples to show uselessly high standard deviations (data not shown). We surmise this is because the laser excitation of fluors in cells extends the shoulders of excitation distribution curves, the experiment uncouples direct quantification of target availability and transcription factor input from reporter output, and this, combined with a smaller replicate size (3 versus 6 or more), leads to much higher variation. The advantage of the three fluor system is does not require an inferred plasmid transfection efficiency based upon an unlinked reporter, but the fluors can instead offer the possibility to gate quantification solely to the cell sub-populations that carry transcription factor and target, as that express a promoter-reporter. Dual luciferase assays are simpler, faster, and cheaper, and three fluor flow cytometry-based methods should only be considered when a promoter possesses more than a handful of likely binding motifs for a given factor.

Our two candidate pitx3 target genes are interesting insofar as they are known to play a role during gastrulation, early dorsal axis development, as well as later during eye development. Previous work has indicated that pitx3 expresses in fish hypoblast (Dutta et al., 2005), and in Xenopus pre-gastrula (RT-PCR), and dorsal mesoderm (in situ) (Khosrowshahian et al., 2005; Smoczer et al., 2013). Lhx1 is a LIM-class homeodomain
transcription factor that is expressed in several waves, the first of which is in Spemann’s
organizer where it expresses in the involuting mesodermal cells (Taira et al., 1992;
Hukriede et al., 2003). A second wave of expression occurs during tailbud stages in the
pronephric kidney and fore-, mid-, and hindbrain (Taira et al., 1992; Cirio et al., 2011).
Lhx1 is extremely important for anterior development of the embryo: *Lhx1* mutant mice
present a headless phenotype (Shawlot and Behringer, 1995). *Lhx1* directly targets and
activates *gsc* expression and may be responsible for maintained *gsc* expression during
late gastrulation within the prechordal plate (Mochizuki et al., 2000). In chicks, *Lhx1*
plays a critical role in retinal development (Kawaue et al., 2012; Inoue et al., 2013). In
the present study, *Xenopus lhx1* expression is identified as a *pitx3* target (assessed by
microarray, *in situ* hybridization), expression patterns overlap with *pitx3*, and the gene
contains multiple putative binding sites in its enhancer/promoter (Hooker et al., 2012).
Curiously, although *pitx3* unambiguously activates the *lhx1* reporter in tissue culture
(p=0.004), removal of a *pitx3* binding motif alone is sufficient to repress activity under
circumstances where no *pitx3* is present. We attribute this to the documented presence of
pitx1 and *pitx2* in HEK 293 cells (Uhlen et al., 2015). In the absence of a binding site,
these confounding factors that encode identical homeodomains cannot activate the
reporter. Significantly, when the *pitx3* binding site is removed, *pitx3* cannot activate
lhx1 (p=0.001).

In embryos, knockdown of *pitx3* does not entirely diminish *lhx1* expression: the
lateral dorsal lip seems to be the sole domain affected. One of the effects of *lhx1*
depletion is the disruption of protocadherin expression (Hukriede et al., 2003; Fossat et
al., 2015). Either too little or too much protocadherin impairs normal rotation of
presomitic mesoderm preliminary to the formation of discrete somites (Kim et al., 2000). Therefore, pitx3-induced disruption of protocadherin via lhx perturbation would explain why pitx3 over- or under-expression leads to identical segmentation phenotypes in Xenopus (Smoczer et al., 2013). Mutation of the pitx3 binding motif is sufficient to depress lhx1 promoter activity in vitro and the effect in transgenic embryos is more profound- expression appears to be almost completely impaired. By contrast, pitx3 knockdown only affects lateral mesoderm expression. We speculate that enhancers remote from the 3.8 kb lhx1 sequence tested must play a role in moderating pitx3-induced effects in vivo.

One perplexing element of xnr5 analysis was that mutation of the promoter motif critical to pitx-induced repression resulted in down-regulation even in the absence of pitx3. The site sits between the TATA box and ATG initiation codon. There are three possibilities. First, the binding motif could serve as a promiscuous site for other homeobox proteins that otherwise activate xnr5. Pitx1 and Pitx2, already present in HEK 293 cells are obvious candidates. Second, the mutation could impede the ability of other, nearby sites to function normally. One such candidate is M-CAT binding factor, a muscle specific factor that might utilize an overlapping binding motif on the opposite strand. Last, the mutation could adversely affect local chromatin topology to impede normal transcriptional initiation. Given the identification of xnr5 as a candidate locus by microarray; in situ hybridization studies following pitx perturbation; and repression that is reversible by mutation of the pitx3 homeodomain in our flow cytometry study, it seems likely that the binding site is legitimate.
Vg1 and xnr5 share responsibility for inducing mesoderm, and the onset of gastrulation requires xnr5 activity. Xnr5 then represses ectodermal genes via inhibition of the wnt pathway (Takahashi et al., 2000; Onuma et al., 2005; Luxardi et al., 2010; Tadjuidje et al., 2016). Xnr5 can act at a distance and is autoregulatory, however it is restricted by lefty and t (Sakuma et al., 2002; Cha et al., 2006; Ohi and Wright, 2007). T is a pan-mesodermal marker that acts as a transcriptional activator and it is later expressed in mesodermal cells fated to become notochord after gastrulation (Smith et al., 1991; Conlon et al., 1996). T and gsc are capable of inhibiting each other in late gastrulae: they refine head and trunk organizer regions for the prechordal plate (gsc) and notochord (t) (Mangold, 1933; Artinger et al., 1997; Mochizuki et al., 2000). Gsc is a potential target gene of pitx3 (Hooker et al., 2012). In pitx3-depleted embryos, we see an interrupted pattern of t expression around the forming blastopore of gastrulating embryos, compared to the continuous, mesoderm-encompassing expression domain in controls (Figure 10C and H). With the gsc-expressing domain larger than normal in morphants, pitx3 morphant embryos may exhibit errors in distinguishing these separate organizer regions for patterning the head and trunk. It is also possible that the diminution of both lhx1 and t in the lateral dorsal lip of pitx3 morphants is indicative of aberrant formation of the boundary separating dorsal from ventral. It would be worth assessing both of these possibilities in the future using antero-posterior and dorso-ventral probes. Finally, xnr5 has been identified as an upstream regulator of xnr1, lefty, and pitx2 (Tadjuidje et al., 2016). Our study, confirmed by in situ hybridization of the relevant downstream targets, places pitx3 one step further up in the hierarchical control of laterality, and explains
laterality phenotypes previously reported (Khosrowshahian et al., 2005; Smoczer et al., 2013).

Making use of different fluorescent proteins spread over a wide range of excitation and emission ranges, and the powerful tool of flow cytometry, we created a new assay to evaluate the output of a reporter gene on a cell-by-cell basis. In essence, each cell harbors an individual reporter assay, producing a cumulative, extremely accurate result that is derived from a selective and homogenous population. The assay also confers the benefit of permitting analysis in cases where high transfection efficiency is not possible while simultaneously permitting the detection of very slight variations of reporter output that might not be distinguishable by conventional methods. Our technical approach for promoter analysis has revealed a role for *lhx1* and *xnr5* as downstream targets of *pitx3*. The relationships that we have identified and intend to study will help to clarify the evolutionary divergence in the patterns of gastrulation and somite development between amphibians and amniotes.

EXPERIMENTAL PROCEDURES

Plasmid constructs

Plasmid names, function, and application are summarized in Table 1.

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Species Source</th>
<th>Functional Description</th>
<th>Test system</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRES-GFP</td>
<td>vector</td>
<td>calibration</td>
<td>in vitro HEK 293</td>
</tr>
<tr>
<td>CMV-HcRed</td>
<td>vector</td>
<td>calibration</td>
<td>in vitro HEK 293</td>
</tr>
<tr>
<td>CMV-DsRed</td>
<td>vector</td>
<td>calibration</td>
<td>in vitro</td>
</tr>
</tbody>
</table>

John Wiley & Sons, Inc.
Table 1. Summary of plasmids

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Species Source</th>
<th>Functional Insert</th>
<th>Utility</th>
<th>Test System</th>
</tr>
</thead>
<tbody>
<tr>
<td>pitx3-IRES-GFP</td>
<td>Xenopus laevis</td>
<td>pitx3 ORF</td>
<td></td>
<td>in vitro</td>
</tr>
<tr>
<td>pitx3mutHD-IRES-GFP</td>
<td>Xenopus laevis</td>
<td>pitx3 ORF homeodomain mutated L99P</td>
<td></td>
<td>in vitro</td>
</tr>
<tr>
<td>CMV-HcRed/\textit{Th}-DsRed</td>
<td>Mus musculus</td>
<td>Tyrosin Hydroxylase promoter driving DsRed</td>
<td></td>
<td>in vitro</td>
</tr>
<tr>
<td>CMV-HcRed/\textit{lhx1}-DsRed</td>
<td>Xenopus laevis</td>
<td>\textit{lhx1} promoter driving DsRed</td>
<td></td>
<td>in vitro</td>
</tr>
<tr>
<td>CMV-HcRed/\textit{xnr5}-DsRed</td>
<td>Xenopus laevis</td>
<td>\textit{xnr5} promoter driving DsRed</td>
<td></td>
<td>in vitro</td>
</tr>
<tr>
<td>CMV-HcRed/\textit{Th}mut-350-DsRed</td>
<td>Mus musculus</td>
<td>Tyrosin Hydroxylase promoter – pitx3 binding site at -350 mutated</td>
<td></td>
<td>in vitro</td>
</tr>
<tr>
<td>CMV-HcRed/\textit{lhx1}mut-709-DsRed</td>
<td>Xenopus laevis</td>
<td>\textit{lhx1} promoter – pitx3 binding site at -709 mutated</td>
<td></td>
<td>in vitro</td>
</tr>
<tr>
<td>CMV-HcRed/\textit{xnr5}mut-94-DsRed</td>
<td>Xenopus laevis</td>
<td>\textit{xnr5} promoter – pitx3 binding site at -94 mutated</td>
<td></td>
<td>in vitro</td>
</tr>
<tr>
<td>\textit{lhx1}-GFP</td>
<td>Xenopus laevis</td>
<td>\textit{lhx1} promoter driving GFP, I-Sce transgenic vector</td>
<td></td>
<td>in vivo transgenic Xenopus</td>
</tr>
<tr>
<td>\textit{lhx1}mut-709-GFP</td>
<td>Xenopus laevis</td>
<td>\textit{lhx1} promoter pitx3 binding site at -709 mutated, I-Sce transgenic vector</td>
<td></td>
<td>in vivo transgenic Xenopus</td>
</tr>
</tbody>
</table>

Expression plasmid (\textit{pPitx3-IRES-GFP}). The \textit{pitx3} coding sequence was PCR-amplified from \textit{pBSK-pitx3} (NM_001088554) with primers harboring adaptors for \textit{XhoI} and \textit{EcoRI}, and cloned into the \textit{pCI-Neo/IRES-GFP} [F64L/S65T] bicistronic vector (kindly provided by Dr. J. Eggermont). The rationale for using a bicistronic vector as...
opposed to a fusion protein lies in the known intramolecular folding that occurs in the Pitx2 protein. In the absence of cofactors binding to it, the C-terminal region of the protein comes in direct contact with the N-terminus and masks the homeodomain preventing the transcriptional activation of the target genes (Amendt et al., 1999). A DNA binding mutant (BM) was produced through site-directed mutagenesis, by mutating the leucine into a proline at position 39 of the pitx3 homeodomain sequence – in the hinge region between helix II and III (L99P).

TH Reporter plasmid. The *pCS2-HcRED1* vector was generated through PCR-amplification of the *HcRED1* sequence from *pCAG-HcRED1* (Add Gene collection) and subsequent ligation into the *XhoI/ClaI* sites of *pCS2-*. The reporter cassette was built by PCR-amplifying 1.5kb upstream from ATG of the murine tyrosine hydroxylase promoter from the *3805-4 mTH* vector (kind gift from Dr. R. Palmiter). The amplicon was sub-cloned into the *EcoRI/SmaI* restriction sites of *pDsRED* express-N1 (Clontech). Subsequently the *mTH-DsRed*-express reporter cassette was PCR-amplified out of the previous vector and cloned in opposite orientation to *HcRED1* using the *SacII/KpnI* restriction sites of a second multiple cloning site of *pCS2-HcRED1*. This produced the dual-fluor vector *pHcRED1/mTH-DsRed*. For a control, a critical Pitx3-binding motif (underlined) in the *TH* promoter (Lebel et al., 2001) was mutated (small case) to form a *KpnI* site (bold) (*CTTGGGTAATCCAGC* → *CTTGGGTACC*CCAGC).

Lhx1 promoter and mutant (*pHcRed/lhx1-DsRed*). The *lhx1* reporter plasmid was created by PCR-amplification of the *lhx1* promoter from plasmid *xLim1:luciferase Ex-I:A* (kind gift from Dr. Igor Dawid) and cloned into *EcoRI* and *BamHI* sites of *pDsRED*-express-N1. The *lhx1:DsRED* transcription cassette was again PCR-amplified and blunt
cloned in reverse direction into the PvuII site of pCS2-HcRED1. An lhx1 mutant promoter was generated via site-directed mutagenesis utilizing primers CCC TGG TAA ACC ATg gAG CAC CCC GGC AGG and CCT GCC GGG GTG CTc caT GGT TTA CCA GGG. to introduce a novel NcoI site (TAATGG mutated to TccaTGG).

Lhx1 promoter-eGFP reporter and transgenic embryos. The lhx1 promoters (either wild type or mutant described above) were cloned into the NotI/BamHI sites of pBS SK I-SceI (gift of Dr. T. Pieler) to create lhx1-GFP and lhx1mut-709-GFP. Transgenics were generated as previously described (Loeber et al., 2009).

The Xnr5 promoter was PCR-amplified using primers (KpnI adaptor) (ACT AGG TAC CCC TCG GTA ACT TAT CAT ATC) and (BamHI adaptor) (CGG GAT CCC GAA GCT TCC AGT GAA TCT T) from Xenopus laevis gDNA template isolated from adult Xenopus laevis liver to yield a 773bp amplicon (-12 to -785 from ATG) that was ligated into the pDsRed-express-N1 vector. The Xnr5:DsRed transcription cassette was then PCR-amplified using primers (KpnI adaptor) (ACT AGG TAC CCC TCG GTA ACT TAT CAT ATC) and (SacII adaptor) (TTC CCG CGG GGA CCC TAT CTC GGT CTA TTC) to yield a 1856bp amplicon that was ligated into the pCS2:HcRed vector.

Xnr5:DsRed/pCS2:HcRed Mutant B. Site-directed mutagenesis was used to mutate the putative pitx3 binding site (-228) in the Xnr5 promoter using primers CAG GTG ACA GGT TCg Cgg ATC CTA TGC TAA TAA G and CTT ATT AGC ATA GGA Tec GGG AAC CTG TCA CCT G to introduce a novel BamHI site (TAATCC mutated to TAggCC).

Xnr5:DsRed/pCS2:HcRed Mutant C. Site-directed mutagenesis was used to mutate another putative pitx3 binding site (-94) in the Xnr5 promoter using primers CCT
TAG GAA TGA AGT cga CTT CTG AGC ATG ACT and AGT CAT GCT CAG AAG tgc ACT TCA TTC CTA AGG to introduce a novel SalI site (TAAGCT mutated to TCgacT).

All vectors were sequenced for verification of cloning and mutagenesis accuracy. Plasmid DNA was purified using Qiagen Maxi/Midi preparation columns.

Cell cultures. HEK293 cells (kindly gifted by Dr. O. Vacratsis) were cultured in high glucose DMEM (Fisher Scientific) supplemented with 10% fetal bovine serum (Invitrogen) and Penicillin-Streptomycin (500UI and 500ug respectively; Sigma-Aldrich), under standard conditions.

Transient transfections. HEK293 cells were split 24 hours prior to transfection and were 40% confluent at the day of transfection. For the reporter assays, cells grown in 100mm dishes were transfected with 13ug DNA in 750uL DMEM with 25uL 1mg/ml polyethylenimine (PEI; Sigma) (Durocher et al., 2002). A combination of 9ug promoter-reporter vector: 4ug IRES expression vector (later used to express pitx3) was found to be optimal for the flow cytometric detection of both GFP and HcRed transfection control fluors. The DNA/ polyethylenimine transfectant was introduced to cells in plain media, and 4-6 hours post-transfection the serum-free media was replaced with complete media. To the Tyrosine hydroxylase experiments 10uM forskolin (LLC Lab) was added after 24 hours and cells were analyzed 48 hours post-transfection. For dilution experiments, various concentrations of expression vector were transfected in combination with titres of pCS2- to yield a total of13ug of DNA for any given transfection. 48 hours post-transfection cells were trypsinized and separated: 2ml were reserved for flow cytometry and 8ml for protein isolation. Time-point experiments were conducted similarly, with
cells transfected with 13μg of DNA and analyzed 24, 36 and 48 hours post-transfection by flow cytometry and Western blotting.

Immunoblotting. Total protein was isolated from cell lysates and 50μg was loaded for SDS-PAGE. Proteins were detected as follows: 32kDa pitx3 1:2000 (ProSci Inc. 1\(^{\circ}\) Rabbit Antibody: PAS 3131/3132), 47kDa a-actin 1:10,000 (Sigma 1\(^{\circ}\) Rabbit Antibody: A2066), 27kDa eGFP 1:5000 (Torrey Pines Biolabs Inc. 1\(^{\circ}\) Rabbit Antibody: TP401), Chemicon International 2\(^{\circ}\) Goat Antibody: AQ132P (1:10,000). Protein bands were detected with SuperSignal West Pico Chemiluminescent Substrate (Thermo Scientific) using an Alpha Innotech imager equipped with AlphaEase Fluor Chem HD2 software.

Flow Cytometry. Transfected cells grown for 48 hours in a dark environment were washed with PBS, trypsinized, and re-suspended in the appropriate volume of PBS to conduct flow cytometry utilizing a Beckman Coulter Cytomics FC500 system and the filter/detector system in Table 2 for maximum detection and separation of the three fluors used. Both the uniphase Argon ion and coherent red solid-state diode lasers were enabled. Using CXP software (Beckman Coulter), forward and side scatter enabled the gating of viable single cells. Samples containing each plasmid transfected individually were employed to set gates for the respective fluor, to subtract background fluorescence, and to allow for compensation of their overlapping emission spectra. For each treatment, 10,000 co-transfected cells expressing both GFP and HcRed1 were collected and the total fluorescence intensity for the reporter gene DsRed was calculated. The ratio between fluorescence intensities for the promoter reporter DsRed and its in-vector transfection control gene, HcRed, were related to the fluorescence intensity for GFP (indicative of
transcription factor pitx3) using Weasel software (Walter and Eliza Hall Institute of Medical Research). All experiments were conducted in triplicate.

<table>
<thead>
<tr>
<th>Channel Detector</th>
<th>Fluorescent Protein</th>
<th>Colour</th>
<th>Excitation Peak (λ_{max})</th>
<th>Emission Peak (λ_{max})</th>
<th>Filter</th>
<th>Voltage</th>
<th>Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>FL1</td>
<td>eGFP (F64L/S65T)</td>
<td>Green (red-shifted)</td>
<td>490 nm</td>
<td>510 nm</td>
<td>525BP</td>
<td>329</td>
<td>1.0</td>
</tr>
<tr>
<td>FL2</td>
<td>DsRed</td>
<td>Red-orange</td>
<td>557nm</td>
<td>579nm</td>
<td>575BP</td>
<td>332</td>
<td>1.0</td>
</tr>
<tr>
<td>FL5</td>
<td>HcRED</td>
<td>Far-red</td>
<td>588nm</td>
<td>618nm</td>
<td>640LP</td>
<td>500</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Table 2: Flow cytometry system standardization. Different types of optical filters (Band-pass (BP) and long-pass (LP)) are employed to achieve optimal fluor separation.

Statistical analysis. SPSS software was used to assess statistical differences in the total DsRed fluorescence generated in the different conditions of the reporter assay. To determine the effect of pitx3 on a promoter, we used a one-way ANOVA test corroborated with a contrast test to compare the basal levels of the promoter reporter. This was assessed after pitx3 exposure following co-transfection with the wild type or homeodomain binding mutant (BM). For the binding site mutants we employed a T-test to compare the DsRed output of the mutant under basal conditions with the one exposed to pitx3. Tests were considered significant when p<0.05.

RNA in situ hybridizations were performed essentially as previously described (Harland, 1991)

Acknowledgements

This work was supported by Natural Sciences and Engineering Research Discovery Grant 203459 to MJC and 05947 to JWH. Thanks are due to Kristi Thompson of the Leddy Library Academic Data Centre, and to Chantal Dings-Avery for help and advice on statistical analysis.
References

Reddy SD, Rayala SK, Ohshiro K, Pakala SB, Kobori N, Dash P, Yun S, Qin J, O'Malley...

General structure of expression and reporter plasmids. (A) Expression plasmid with ORF of pitx3 bicistronically linked to eGFP. (B) Reporter plasmid with the reporter gene DsRed-express driven by the tested promoter, cloned in opposite orientation from the transfection control gene HcRed1 driven constitutively by CMV.
Correlation between the pitx3 and GFP proteins. The proteins were assayed by Western blotting and the amount of each protein was assessed as the optical integrated density value of the respective band. (A) Regression analysis to correlate the levels of pitx3 and GFP proteins in cells transfected with different concentrations of expression vector. (B) Ratios between the levels of pitx3 and GFP protein in cells transfected with a set concentration of expression vector and analyzed at 24, 36 and 48 hours post-transfection. There is no statistically significant difference between time points of this range.
Correlation between GFP protein and GFP fluorescence. The GFP protein levels were determined by Western blotting and evaluated as the optical density of the band on the blot. A percentage of the total cells were used to detect the fluorescence using flow cytometry. (A) Regression analysis to correlate GFP protein levels and GFP fluorescence in cells transfected with 4 decreasing concentrations of expression vector by 1.3 fold. (B) Linear regression between the GFP protein and fluorescence in cells transfected with equal concentrations of expression vector and evaluated at 3 different times post-transfection.
Figure 4: Flow cytometer set-up to detect the three fluors in the new reporter assay. (A) Gate set-up was arranged to minimize spectral overlap and background. For eGFP in FL1 for cells transfected with the IRES-GFP control vector relegates GFP counts to the right of the vertical line in quadrant G4. (B) Cells transfected with CMV-HcRed control plasmid, recorded in FL5 and gated for HcRed1 expression relegates HcRed counts to above the horizontal line in quadrant G1. (C) Gated population of 10,000 cells expressing eGFP, HcRed1, and DsRed (Ds Red, indicative of promoter activity is counted in quadrant G2). (D) Histogram of DsRed output in FL2 for the population of eGFP and HcRed co-expressing cells.
Pitx3 represses the Th (tyrosine hydroxylase) promoter. The Th reporter (plasmid CMV-HcRed/Th-DsRed) was tested, under conditions of presence or absence of forskolin, to see how it responded to vectors for pitx3 absent (IRES-GFP), pitx3 protein (pitx3-IRES-GFP), or pitx3 mutHD expressing a homeodomain mutant (pitx3mutHD-IRES-GFP). ANOVA demonstrated that statistically significant differences existed. A post-hoc Tukey test determined specifically which comparisons were significant and p values are reported above. ns – denotes no significant difference.
The Th (Tyrosine hydroxylase) promoter binding motif for pitx3 is important for repression. Wildtype and mutant Th reporters (wt - CMV-HcRed/Th-DsRed; mutant - CMV-HcRed/Thmut-350-DsRed) were tested under conditions of the presence or absence of pitx3 (absent - plasmid IRES-GFP; pitx3 present – plasmid pitx3-IRES-GFP). ANOVA demonstrated that statistically significant differences existed. A post-hoc Tukey test determined specifically which comparisons were significant and p values are reported above. ns – denotes no significant difference.

80x75mm (300 x 300 DPI)
Th promoter is activated in linear fashion by pitx3. Transcription factor activity was assessed in cells expressing all three fluors, by plotting the normalized DsRed output to the GFP input and determining the generated trend line.
For Peer Review

lhx1 promoter activation by pitx3. Vectors for pitx3 absent (IRES-GFP), pitx3 protein (pitx3-IRES-GFP), or pitx3 mutHD expressing a homeodomain mutant (pitx3mutHD-IRES-GFP) were tested for their ability to activate a wildtype lhx1wt promoter-driven DsRed reporter (CMV-HcRed/lhx1-DsRed), and a pitx3 binding motif mutant lhx11mut-709 promoter-driven DsRed reporter (CMV-HcRed/lhx1mut-709-DsRed). ANOVA demonstrated that statistically significant differences existed. A post-hoc Tukey test determined specifically which comparisons were significant and p values are reported above. ns – denotes no significant difference.

lhx1 promoter activation by pitx3. Vectors for pitx3 absent (IRES-GFP), pitx3 protein (pitx3-IRES-GFP), or pitx3 mutHD expressing a homeodomain mutant (pitx3mutHD-IRES-GFP) were tested for their ability to activate a wildtype lhx1wt promoter-driven DsRed reporter (CMV-HcRed/lhx1-DsRed), and a pitx3 binding motif mutant lhx11mut-709 promoter-driven DsRed reporter (CMV-HcRed/lhx1mut-709-DsRed). ANOVA demonstrated that statistically significant differences existed. A post-hoc Tukey test determined specifically which comparisons were significant and p values are reported above. ns – denotes no significant difference.

107x136mm (300 x 300 DPI)
The xnr5 promoter is repressed by pitx3. Wildtype and mutant xnr5 reporters (wt - CMV-HcRed/xnr5-DsRed; mutant - CMV-HcRed/xnr5mut-3-94-DsRed) were tested under conditions of the presence or absence of pitx3 (absent - plasmid IRES-GFP; pitx3 present – plasmid pitx3-IRES-GFP), as well as in the presence or absence of an activator, vegT, or a pitx3 homeodomain mutant pitx3mutHD-IRES-GFP. ANOVA demonstrated that statistically significant differences existed. A post-hoc Tukey test determined specifically which comparisons were significant and p values are reported above. ns – denotes no significant difference.

125x186mm (300 x 300 DPI)
For Peer Review

Differential gene expression at early gastrula stages and during laterality. (A, A′) A GFP reporter expresses when the pitx3 binding site in the lhx1 promoter is intact (A), but is down-regulated when mutated (split exposure image in A′; both fluorescence images exposed 19 seconds). (B-D) Vegetal view of embryos injected with control-morpholino (CMO) display wildtype gene expression patterns. (B′-D′), but pitx3-morpholino (P3MO) affects gene expression during the beginning of gastrulation. Dorsal lip is oriented to the top. Note the lateral depression of lateral lhx1 and t (arrows in B′ and D′ respectively) and expansion of gsc expression in P3MO embryos knockdown embryos (compare C and C′ arrows). (E-G) Genes participating in the laterality signal cascade are normally expressed in left lateral plate mesoderm (arrows). (E′-G′) In morphants where pitx3 is knocked down, expression of xnr5 downstream targets xnr1, lefty and pitx2 is decreased or absent in the left lateral plate mesoderm (arrows).

175x169mm (300 x 300 DPI)