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Abstract

This paper proves a Hall-Littlewood polynomial formula in a paper by Ram [Ram06]

using a theorem by Schwer [Sch06]. We review materials relating to root systems, affine

Weyl groups and affine Hecke algebras that are required to study alcoves, galleries and the

Hall-Littlewood polynomials. In order to prove the Hall-Littlewood polynomial formula,

we formulate in a special case Schwer’s formula in Theorem 5.5 [Sch06] computing right

multiplication of the alcove basis by standard basis elements. We show that Ram’s for-

mula for Hall-Littlewood polynomials in terms of positively folded alcove walks coincides

with the formulation of Schwer’s formula in terms of positively folded galleries.
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Chapter 1

Introduction

1.1 Thesis Problem

Hall-Littlewood polynomials (or Macdonald spherical functions) are of great interest

with many applications in the study of representation theory and combinatorics. They

are a basis for the algebra of symmetric functions depending on a parameter q, first arising

in P. Hall’s study of some counting problems in group theory [Hal59] and later defined

explicitly by D. Littlewood in [Lit61]. Hall-Littlewood polynomials interpolate between

Schur functions at q = 0 and monomial symmetric functions when q = 1. Therefore

they specialize to two well-known bases for the ring of symmetric functions. In [Mac71],

Macdonald gives a formula for spherical functions on a p-adic Chevalley group generalizing

Hall-Littlewood polynomials to all root systems. Schwer in [Sch06] proved a formula for

Hall-Littlewood polynomials in terms of positively folded galleries and Ram in [Ram06]

proved a formula for Hall-Littlewood polynomials in terms of positively folded alcove

walks.

In [Sch06], Schwer showed that right multiplication of an alcove basis element by

elements of the standard basis can be computed using positively folded galleries (Theorem

5.5 of [Sch06]). In [Ram06], Ram states a formula for Hall-Littlewood polynomials in

terms of positively folded alcove walks (Theorem 4.2 of [Ram06]). We prove that Ram’s

1



Hall-Littlewood polynomial formula follows from Schwer’s Theorem 5.5.

1.2 Outline

• In chapters 2-4, we review some concepts from root systems, reflection groups and

Hecke algebras, as background required for the thesis problem.

• In chapter 5, we discuss a paper by Schwer on galleries.

• In chapter 6, we discuss a paper by Ram on alcoves walks and Hall-Littlewood

polynomials.

• In chapter 7, we prove that Ram’s formula for Hall-Littlewood polynomials [Ram06,

Theorem 4.2] follows from Schwer’s formula describing right multiplication of an al-

cove basis element by a standard basis element in terms of positively folded galleries

[Sch06, Theorem 5.5].
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Chapter 2

Root Systems

2.1 Reflections and root systems

Definition 2.1.1 ([Hum90] p.3, [Hum78] p.42). Let E be a real euclidean space with

positive-definite symmetric bilinear form (·, ·). A reflection in E is an invertible linear

operator in E denoted by σ which sends a nonzero vector α to its negative −α, fixing the

reflecting hyperplane Hα orthogonal to α. The formula for such a reflection is written as:

σα(β) = β − 2(β, α)

(α, α)
α. (2.1)

Given a vector α ∈ E (α 6= 0), there exists a reflection σα through the reflecting

hyperplane Hα = {β ∈ E | (β, α) = 0} (shown in the following example).

Note. Recall that a symmetric real n × n matrix is a matrix A such that A = AT

where AT denotes the transpose of A. We call A positive definite if xTAx > 0 for all

x ∈ Rn\{0}. The matrix A is positive definite if and only if the corresponding bilinear

form (x, y) = xTAy is positive definite.

Example. (Figure 2.1) Let E be a euclidean space, and Hα a reflecting hyperplane.

3



Given a vector β in E, we have

σα(β) = β − 2

(
‖β‖ cosθ α

‖α‖

)
.

Since (β, α) = ‖β‖‖α‖cosθ and (α, α) = ‖α‖2, therefore

σα(β) = β − 2(β, α)

‖α‖
α

‖α‖
= β − 2(β, α)

(α, α)
α.

Hα

α β

σα(β)

θ

Figure 2.1: Reflection of β through Hα

Definition 2.1.2 ([Hum78] p.42, [Hum90] p.6). A finite subset Φ of a euclidean space

E is a root system in E if it satisfies the following:

(R1) Φ spans E and ~0 /∈ Φ ;

(R2) If α ∈ Φ, then ±α are the only scalar multiples of α in Φ;

(R3) If α ∈ Φ, then σα(Φ) = Φ;

(R4) If α, β ∈ Φ, then 〈β, α〉 :=
2(β, α)

(α, α)
∈ Z. (Note that 〈α, β〉 may not equal 〈β, α〉.)

Definition 2.1.3. α is called a root if α ∈ Φ (Definition 2.1.2).

Definition 2.1.4. We define the rank of the root system to be ` = dimE.

Example. (Figure 2.2) Given E is a one-dimensional euclidean space where ` = 1, then

we have, for α ∈ E and α 6= 0, Φ = {±α} is a root system, called A1.

4



−α α

Figure 2.2: Root system of type A1

Proof. (R1): span{±α} = span{α} = E.

(R2): Obviously true. ±α are the only multiples of ±α in Φ.

(R3): σα(α) = α− 2(α, α)

(α, α)
α = α− 2α = −α; σα(−α) = −σα(α) = −(−α) = α.

(R4) 〈α, α〉 =
2(α, α)

(α, α)
= 2 ∈ Z; 〈α,−α〉 =

2(α,−α)

(−α,−α)
= −2 ∈ Z; 〈−α, α〉 = −〈α, α〉 =

−2 ∈ Z; 〈−α,−α〉 = −〈α,−α〉 = 2 ∈ Z.

Therefore, Φ = {±α} is a root system.

Example. When ` = 2, we can get more than one root system. Figure 2.3 is a diagram

of the root system of type A2. See the next example.

α

β

Figure 2.3: Root system of type A2

Example. Let E = {x ∈ R`+1 | x1 +x2 + · · ·+x`+1 = 0}. Then we have the root system

Φ = {±(εi − εj) | 1 ≤ i < j ≤ `+ 1}. (This is a root system of type A`.)

Proof. (R1) |Φ| = (`+ 1)` which is finite.

E = span{ε1 − ε2, ε2 − ε3, . . . , ε` − ε`+1}, so Φ spans E.

Φ does not contain 0, since 1 ≤ i < j ≤ `+ 1.

(Note that E = span{ε1 − ε2, ε2 − ε3, . . . , ε` − ε`+1} is a linearly independent subset of

size ` in the `-dimensional vector space E.)
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(R2) It is clear to see that the only scalar multiples of εi − εj in Φ are ±(εi − εj).

(R3) Let α = εi−εj and εm−εn ∈ Φ. Since σ(−α) = σα and σα(−(εm−εn)) = −σα(εm−εn),

WLOG, we assume i < j and m < n.

σα(εm − εn) = εm − εn −
2(εm − εn, εi − εj)
(εi − εj, εi − εj)

(εi − εj)

= εm − εn − (δm,i − δn,i − δm,j + δn,j)(εi − εj)

=



εm − εn if m 6= i, j and n 6= i, j

εi − εn − (εi − εj) = εj − εn if m = i and n 6= i, j

εj − εn + (εi − εj) = εi − εn if m = j and n 6= i, j

εm − εi + (εi − εj) = εm − εj if m 6= i, j and n = i

εm − εj − (εi − εj) = εm − εi if m 6= i, j and n = j

εi − εj − 2(εi − εj) = −(εi − εj) if m = i and n = j

Thus we have shown that σα(Φ) = Φ.

(R4) We compute

〈εm − εn, εi − εj〉 =
2(εm − εn, εi − εj)
(εi − εj, εi − εj)

= δm,i − δn,i − δm,j + δn,j ∈ Z.

Therefore, Φ = {±(εi − εj) | 1 ≤ i < j ≤ `+ 1} is a root system.

Note. From the definition above, (R4) limits possible angles between α and β.

〈α, β〉 〈β, α〉 =
2(α, β)

(β, β)

2(β, α)

(α, α)
=

2‖α‖‖β‖cosθ
‖β‖2

2‖β‖‖α‖cosθ
‖α‖2 = 4cos2θ ∈ Z

Since cos2θ ∈ [0, 1], then 4cos2θ ∈ [0, 4]. cos2θ =

{
0,

1

4
,
1

2
,
3

4
, 1

}
cos2θ = 0 ⇒ θ = 90◦

cos2θ = 1/4 ⇒ θ = 60◦ or 120◦

6



cos2θ = 1/2 ⇒ θ = 45◦ or 135◦

cos2θ = 3/4 ⇒ θ = 30◦ or 150◦

cos2θ = 1 ⇒ θ = 0◦ or 180◦

Definition 2.1.5 ([Hum90] p.39). Φ is a root system in E. α∨ is the coroot of a root

α if it satisfies

α∨ =
2α

(α, α)
.

Note. Φ∨ = {α∨ | α ∈ Φ} is also a root system of E (proved in Exercise 2 [Hum78,

p.46]).

2.2 Simple roots and Weyl chambers

Definition 2.2.1 ([Hum78] p.47). A subset ∆ = {α1, . . . , α`} of Φ is a base of E if

∆ is a basis of E and every β =
∑̀
i=1

kiαi ∈ Φ satisfies the ki are all nonnegative or all

nonpositive integers.

Proposition 2.2.2 ([Hum78] p.48). Φ has a base.

Definition 2.2.3 ([Hum78] p.47). The roots belonging to a base ∆ are called simple

roots. If all integral coefficients ki in β =
∑̀
i=1

kiαi are nonnegative, we call β a positive

root (β � 0). If all integral coefficients ki are nonpositive, we call β a negative root

(β ≺ 0). We denote the collection of all positive roots by Φ+, all negative roots by Φ−,

where Φ− = −Φ+.

Example. In the previous example, we have the root system of type A`: Φ = {±(εi−εj) |

1 ≤ i < j ≤ ` + 1}. Thus we can show that ∆ = {εi − εi+1 | 1 ≤ i ≤ `} is a base for Φ.

Moreover, with the choice of the base ∆, we get Φ+ = {εi − εj | 1 ≤ i < j ≤ ` + 1} and

Φ− = {−εi + εj | 1 ≤ i < j ≤ `+ 1}.

Proof. Since E = {x ∈ R`+1 | x1 + x2 + · · · + x`+1 = 0} is `-dimensional and ∆ =

{ε1 − ε2, ε2 − ε3, . . . , ε` − ε`+1} is a linearly indpendent subset of E of size `, then ∆

7



is a basis of E. Moreover, εi − εj is a positive integer linear combination of ε` − ε`+1

(1 ≤ i < j ≤ `+ 1):

εi − εj = (εi − εi+1) + (εi+1 − εi+2) + · · ·+ (εj−2 − εj−1) + (εj−1 − εj).

And also,

−εi + εj = (−εi + εi+1) + (−εi+1 + εi+2) + · · ·+ (−εj−2 + εj−1) + (−εj−1 + εj).

Therefore, ∆ is a base for Φ.

Definition 2.2.4 ([Hum78] p.52). Let Φ be a root system. We call Φ irreducible if

Φ 6= Φ1 ∪ Φ2 such that (φ1, φ2) = 0 for all φ1 ∈ Φ1 and φ2 ∈ Φ2.

Definition 2.2.5 ([Hum78] p.47). Using the notation of Definition 2.2.1, we define the

height of a root β as ht(β) =
∑̀
i=1

ki.

Proposition 2.2.6 ([Hum78] p.47). Let λ, µ ∈ E. We have a partial order µ ≺ λ on E

if and only if λ− µ is a sum of α (α ∈ ∆).

Definition 2.2.7 ([Hum78] p.52). Let Φ be an irreducible root system. There is a unique

highest root β ∈ Φ such that for all α ∈ Φ, ht(α) < ht(β) for α 6= β (β is maximal

relative to the partial order ≺).

Definition 2.2.8 ([Hum78] p.48). For γ ∈ E, γ /∈ Hα for all α ∈ Φ, let Φ+(γ) = {α ∈

Φ | (γ, α) > 0} be the set of roots lying on one side of the hyperplane orthogonal to γ.

Since in a euclidean space E, the union of the finitely many hyperplanes Hα (α ∈ Φ)

cannot exhaust E, we call γ ∈ E regular if γ ∈ E −
⋃
α∈Φ

Hα. Otherwise, γ is singular.

Definition 2.2.9 ([Hum78] p.48). If γ is regular, then Φ = Φ+(γ)
⋃
−Φ+(γ). Then we

call α ∈ Φ+(γ) decomposable if α = β1+β2 for some βi ∈ Φ+(γ), and indecomposable

otherwise.

8



Proposition 2.2.10 ([Hum78] p.48). Let γ ∈ E be regular. Then the set ∆(γ) of all

indecomposable roots in Φ+(γ) is a base of Φ and every base is of this form.

Definition 2.2.11 ([Hum78] p.49). The hyperplanes Hα (α ∈ Φ) partition E into finitely

many regions. The connected components of E −
⋃
α∈Φ

Hα are called Weyl chambers.

Proposition 2.2.12 ([Hum78] p.49). Each regular γ ∈ E belongs to precisely one Weyl

chamber of E, denoted as C(γ).

Proposition 2.2.13 ([Hum78] p.49). If C(γ) = C(γ′), then γ and γ′ lie on the same side

of each hyperplane Hα(α ∈ Φ). Thus we have Φ+(γ) = Φ+(γ′) and ∆(γ) = ∆(γ′).

Definition 2.2.14 ([Hum78] p.49). By proposition 2.2.10 and proposition 2.2.13, Weyl

chambers are in one-to-one correspondence with bases. Write C(∆) = C(γ) if ∆ = ∆(γ).

We call C(∆) = C(γ) the fundamental Weyl chamber relative to ∆.

2.3 Weyl groups

Definition 2.3.1 ([Hum78] p.51). The Weyl group W of the root system Φ is the group

generated by the reflections σα for α ∈ Φ.

Proposition 2.3.2 ([Hum78] p.51). W is generated by the simple reflections σα for

α ∈ ∆.

Example. Root system of type A1: Φ = {±α}. The Weyl group of type A1: WA1 =

〈σα〉 = {1, σα}.

Proposition 2.3.3 ([Hum78] p.51). Let ∆ be a base of Φ and W be the Weyl group.

Then W acts transitively on bases (i.e., if ∆′ is another base of Φ, then σ(∆) = ∆′ for

some σ ∈ W ).

Definition 2.3.4 ([Hum90] p.118). Let T be the set of reflections in W . We write w′ → w

if w = w′s for some s ∈ T with `(w) > `(w′). We define w′ < w if there exists a sequence

9



w′ = w0 → w1 → ... → wn = w. Thus we call the partial order w′ ≤ w Bruhat order.

(Note: a partial order is a binary relation that is reflexive, antisymmetric and transitive.)

Proposition 2.3.5 ([Hum90] Proposition 5.7). For w ∈ W and α ∈ Φ+, we have wsα <

w ⇔ wα < 0 and wsα > w ⇔ wα > 0.

2.4 Weights

Definition 2.4.1 ([Hum78] p.67). For λ ∈ E, if 〈λ, α〉 =
2(λ, α)

(α, α)
∈ Z for all α ∈ Φ, then

we call λ a weight. The collection of all weights is denoted by Λ.

Definition 2.4.2 ([Hum78] p.67). λ ∈ Λ is dominant if 〈λ, α〉 ∈ Z are all nonnegative

for all α ∈ Φ+, strongly dominant if 〈λ, α〉 ∈ Z are all positive for all α ∈ Φ+. We

denote the set of all dominant weights as Λ+ .

Definition 2.4.3 ([Hum78] p.67). If ∆ = {α1, α2, . . . , α`}, then the vectors α∨i =
2αi

(αi, αi)

(1 ≤ i ≤ `) form a basis of E. Thus we let λ1, λ2, . . . , λ` be the dual basis

(
λi,

2αj
(αj, αj)

)
=

(λi, α
∨
j ) = δij. Since 〈λi, α〉 =

2(λi, α)

(α, α)
are all nonnegative for α ∈ ∆, the λi are dominant

weights, called fundamental dominant weights.

Note. σiλj = λj − δijαi where σi = σαi .

Example. Consider the root system of the type A2: {±(ε1− ε2),±(ε2− ε3),±(ε1− ε3)}

with simple roots α1 = ε1 − ε2 and α2 = ε2 − ε3. We can show that λ1 =
1

3
(2α1 + α2)

and λ2 =
1

3
(α1 + 2α2).

Proof.

〈λ1, α1〉 = 2
(2α1+α2

3
, α1)

(α1, α1)

=
2

3

(2(ε1 − ε2) + ε2 − ε3, ε1 − ε2)

(ε1 − ε2, ε1 − ε2)

=
1

3
(2ε1 − ε2 − ε3, ε1 − ε2)

= 1

10



〈λ1, α2〉 = 2
(2α1+α2

3
, α2)

(α2, α2)

=
2

3

(2(ε1 − ε2) + ε2 − ε3, ε2 − ε3)

(ε2 − ε3, ε2 − ε3)

=
1

3
(2ε1 − ε2 − ε3, ε2 − ε3)

= 0

〈λ2, α1〉 = 2
(α1+2α2

3
, α1)

(α1, α1)

=
2

3

(ε1 − ε2 + 2(ε2 − ε3), ε1 − ε2)

(ε1 − ε2, ε1 − ε2)

=
1

3
(ε1 + ε2 − 2ε3, ε1 − ε2)

= 0

〈λ2, α2〉 = 2
(α1+2α2

3
, α2)

(α2, α2)

=
2

3

(ε1 − ε2 + 2(ε2 − ε3), ε2 − ε3)

(ε2 − ε3, ε2 − ε3)

=
1

3
(ε1 + ε2 − 2ε3, ε2 − ε3)

= 1

Thus we have proved 〈λi, αj〉 = δi,j.

α1

α2

λ1

λ2

Figure 2.4: Fundamental dominant weights of type A2
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Chapter 3

Affine Weyl Groups

3.1 Affine hyperplanes

Definition 3.1.1. We recall that a hyperplane is a subspace with codimension one

relative to the space where it is embedded.

Example. In a three-dimensional euclidean space, a hyperplane is two-dimensional,

where the codimension is the difference one. A hyperplane in a two-demensional eu-

clidean space will be a line which is one dimensional.

Definition 3.1.2 ([Ram06] p.138). Let α be a root in Φ ⊂ E (Definition 2.1.2). We

define the affine hyperplane Hα,k as:

Hα,k := {λ ∈ E | (λ, α∨) = k}. (3.1)

Note ([Hum90] p.87). Hα,k = H−α,−k and Hα,0 = Hα.

Proposition 3.1.3 ([Hum90] p.88). wHα,k = Hwα,k for w ∈ W .

12



Proof.

wHα,k = {wλ : (λ, α∨) = k}

= {wλ : (wλ,wα∨) = k}

= Hwα,k

Definition 3.1.4 ([Hum90] p.88). We define the reflection sα,k through Hα,k as

sα,k(λ) := λ− ((λ, α∨)− k)α. (3.2)

Proposition 3.1.5 ([Hum90] p.88). wsα,kw
−1 = swα,k for w ∈ W .

Definition 3.1.6 ([Ram06] p.138). For λ ∈ E, we define t(λ) as the translation that

sends µ to λ+ µ for all µ ∈ E.

Note ([Ram06] p.138). sα,k = t(kα)sα = sαt(−kα).

Example ([Hum90] p.88). If λ ∈ E satisfies (λ, α∨) ∈ Z for all roots α, then

(a) t(λ)Hα,k = Hα,k+(λ,α∨)

(b) t(λ)sα,kt(−λ) = sα,k+(λ,α∨).

Proof. (a) We need to show that t(λ)Hα,k ⊂ Hα,k+(λ,α∨) and t(λ)Hα,k ⊃ Hα,k+(λ,α∨).

⊆: Let µ ∈ t(λ)Hα,k. Then µ = λ+ν where ν ∈ Hα,k. Thus (µ, α∨) = (λ, α∨)+(ν, α∨) =

(λ, α∨) + k, so µ ∈ Hα,k+(λ,α∨). Thererfore t(λ)Hα,k ⊂ Hα,k+(λ,α∨).

⊇: Let µ ∈ Hα,k+(λ,α∨). Then (µ, α∨) = k + (λ, α∨). Let µ = ν + λ. Then (µ, α∨) =

(ν, α∨)+(λ, α∨) = k+(λ, α∨). Thus (ν, α∨) = k so that ν ∈ Hα,k. Therefore µ ∈ t(λ)Hα,k

and so Hα,k+(λ,α∨) ⊂ t(λ)Hα,k.

Thus we have shown that t(λ)Hα,k = Hα,k+(λ,α∨).

13



(b)

t(λ)sα,kt(−λ)(µ) = t(λ)(sα,k(µ− λ))

= t(λ)(µ− λ− ((µ− λ, α∨)− k))α

= t(λ)(µ− λ− ((µ, α∨)− (λ, α∨)− k))α

= µ− ((µ, α∨)− k − (λ, α∨))α

= sα,k+(λ,α∨)(µ)

Therefore t(λ)sα,kt(−λ) = sα,k+(λ,α∨).

3.2 Affine Weyl groups

Definition 3.2.1 ([Hum90] p.88, [Ram06] p.138). The affine Weyl group Wa is the

group generated by the reflections sα,k for α ∈ Φ and k ∈ Z. Note that wt(λ)w−1 = t(wλ)

[Ram06, p.139]. Thus

Wa = Λr oW = {t(λ)w : λ ∈ Λr, w ∈ W} where Λr =
∑
α∈Φ+

Zα. (3.3)

3.3 Alcoves

Definition 3.3.1 ([Hum90] p.89). An alcove is a connected component of

E −
⋃

α∈Φ+,
k∈Z

Hα,k (3.4)

where Hα,k are affine hyperplanes.

Note ([Hum90] p.90). The affine Weyl group acts transitively on the collection of all

alcoves.

Definition 3.3.2. Let A◦ be the alcove with walls Hα (α ∈ ∆) and Hα̃,1, where α̃∨ is

14



the highest root in Φ∨.

Proposition 3.3.3 ([Ram06] p.139). Wa is in bijection with the alcoves of E via w ↔

wA◦.

Proposition 3.3.4 ([Hum90] Proposition 4.3.1). Let Sa = {sα : α ∈ ∆} ∪ {sα̃,1}. Then

Wa = 〈t : t ∈ Sa〉.

Definition 3.3.5 ([Hum90] p.89, [Ram06] p.139). Since W normalizes the translation

group corresponding to Λ, we may define the extended affine Weyl group

We = Λ oW (3.5)

Definition 3.3.6 ([Ram06] p.139, [Yee19] Definition 5.5). We define the difference

between We and Wa to be the group

Ω = We/Wa
∼= Λ/Λr. (3.6)

Ω is isomorphic to the stabilizer of A◦ in We. The stabilizer is isomorphic to Λ/Λr via

sending g to the coset g(0) + Λr.

Definition 3.3.7 ([Sch06] p.6). We
∼= Ω nWa. For ν ∈ We, we define the length of ν

as `(w) where ν = wg for w ∈ Wa and g ∈ Ω.

3.4 Counting hyperplanes

Definition 3.4.1 ([Hum90] p.12, p.91). For all w ∈ Wa, w can be written as a product

of simple reflections

w = s1s2 · · · sk

where the si belong to Sa. We call such an expression a reduced expression when k is

minimal. Then k is called the length of w, written as `(w) = k.
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Definition 3.4.2 ([Hum90] p.91). Let Hα,k be a hyperplane where α ∈ Φ+. Then H+
α,k

and H−α,k denote the affine half-spaces

H+
α,k = {λ ∈ E | (λ, α∨) > k} and H−α,k = {λ ∈ E | (λ, α∨) < k}. (3.7)

Definition 3.4.3 ([Hum90] p.91). Let Hα,k be a hyperplane. Hα,k separates alcoves A

and B if A,B belong to different half-spaces defined by Hα,k.

Lemma 3.4.4 ([Hum78] p.93, [Hum90] p.92). Let w = s1s2 · · · sk be a reduced expression

in Wa (w 6= 1). Then setting Hi to be the affine hyperplane corresponding to si, the

following k hyperplanes

H1, s1H2, s1s2H3, . . . , s1s2 · · · sk−1Hk

are all distinct and form the set of affine hyperplanes separating A◦ and wA◦.

3.5 Bruhat order

Definition 3.5.1 ([Hum90] p.118). Let w ∈ Wa, T be the set of all reflections in Wa

where T =
⋃

w∈Wa

wSaw
−1. We write w′ → w if w = w′t for some t ∈ T with `(w) > `(w′).

Define w′ ≤ w if there exists a sequence w′ = w0 → w1 → ... → wn = w. Then ≤ is a

partial order called Bruhat order.

Remark ([Hum90] p.119). Definition 2.3.4 and Definition 3.5.1 have a one-sided appear-

ance. Note that if we let w = w′t with `(w) > `(w′) and t ∈ T , then w = (w′t(w′)−1)w′

where w′t(w′)−1 ∈ T .

Proposition 3.5.2 ([Hum90] p.119). v < w if and only if v−1 < w−1.

Proof. ⇒: Suppose v < w. Then there exists a sequence v = w0 → w1 → · · · →

wk = w where wi = wi−1ti (ti ∈ T the set of reflections in Wa). Then wi
−1 = tiw

−1
i−1 =

w−1
i−1(witiw

−1
i−1) where wi−1tiw

−1
i−1 ∈ T . Thus w−1

i−1 → w−1
i . We have v−1 = w−1

0 → w−1
1 →
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· · · → w−1
k = w−1. Therefore, v < w ⇒ v−1 < w−1.

⇐: We already have v < w ⇒ v−1 < w−1. Apply the sentence again, we have v−1 <

w−1 ⇒ (v−1)−1 < (w−1)−1 which is v−1 < w−1 ⇒ v < w. Therefore, v < w if and only if

v−1 < w−1.
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Chapter 4

Hecke Algebras and Affine Hecke

Algebras

4.1 Hecke algebras

Definition 4.1.1 ([Yee19] Definition 5.1). Let K be the field of fractions of Z[q
1
2 , q−

1
2 ].

The Hecke algebra H is the K-algebra with K-basis {Tw}w∈W such that for all s ∈ S

and w ∈ W ,

TsTw = Tsw if `(sw) > `(w) (4.1)

TsTw = qTsw + (q − 1)Tw if `(sw) < `(w). (4.2)

We define

T̃w = q−
1
2
`(w)Tw. (4.3)

Then we get another presentation of H with a K-basis {T̃w}w∈W such that for all s ∈ S

and w ∈ W ,

T̃sT̃w = T̃sw if `(sw) > `(w) (4.4)

T̃sT̃w = T̃sw + (q
1
2 − q−

1
2 )T̃w if `(sw) < `(w) (4.5)
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4.2 Affine Hecke algebras

Definition 4.2.1 ([Yee19] Definition 5.7). The affine Hecke algebra Ha is the K-

algebra with K-basis {T̃w}w∈We and the relations:

T̃vT̃w = T̃vw if v, w ∈ We and `(vw) = `(v) + `(w) (4.6)

T̃ 2
s = (q

1
2 − q−

1
2 )T̃s + T̃1 s ∈ Sa. (4.7)

Ha is also the K-algebra with K-basis {Tw}w∈We with the relations

TvTw = Tvw if v, w ∈ We and `(vw) = `(v) + `(w) (4.8)

Ts
2 = (q − 1)Ts + qT1 s ∈ Sa. (4.9)

Definition 4.2.2 ([Sch06] p.7). We define an involution on H

·̄ : H → H

such that Tw = T−1
w−1 for w ∈ W and q

1
2 = q−

1
2 and an involution on Ha

·̄ : Ha → Ha

such that Tw = T−1
w−1 for w ∈ We and q

1
2 = q−

1
2 . Then T̃w = T̃−1

w−1 for w ∈ We.
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Chapter 5

Schwer’s Paper “Galleries,

Hall-Littlewood Polynomials and

Structure Constants of the Spherical

Hecke Algebra”

5.1 Generalized alcoves and affine Weyl groups

Definition 5.1.1 ([Sch06] p.6). Let A be the set of alcoves. We define the set of gen-

eralized alcoves as

Ã := {(A, µ) ∈ A× Λ | µ ∈ A}. (5.1)

There is an embedding A ↪→ Ã via A 7→ (A, µ) where µ is the unique element in A∩Λr.

There is a natural free We-action on Ã by the natural action in the two components. In

particular, Λ acts on Ã by translation in both components.

Note ([Sch06] p.6). The bijection We → Ã extends Wa → A.

Let λ ∈ Λ. Recall from Definition 3.1.6 the definition of t(λ). Let τλ = t(λ) ∈ We.

Definition 5.1.2 ([Sch06] p.7). We define qν = q`(ν) for ν ∈ We. Recall that for ν = wg

20



where w ∈ Wa and g ∈ Ω, `(ν) = `(w).

Lemma 5.1.3 ([Sch06] p.7). Let A be a generalized alcove. Then it can be written in the

form: A = µ + wA◦ where µ ∈ Λ and w ∈ W . We call µ the weight of A and w the

direction of A. We denote them as wt(A) := µ and δ(A) := w.

Definition 5.1.4 ([Sch06] p.7). Let λ ∈ Λ+. We define

qλ = q
1
2
`(τλ). (5.2)

Definition 5.1.5 ([Sch06] p.3). We define

ρ∨ =
1

2

∑
α∨∈(Φ∨)+

α∨. (5.3)

Definition 5.1.6 ([Sch06] p.7). Let µ ∈ Λ. We define qµ := qλq
−1
λ′ where µ = λ− λ′ for

λ, λ′ ∈ Λ+.

Lemma 5.1.7 ([Sch06] Lemma 2.3). `(τµ) = 2(ρ∨, µ) for µ ∈ Λ+. Thus qµ = q(ρ∨, µ) for

µ ∈ Λ+.

Proof. `(w) is equal to the number of distinct hyperplanes Hα,k separating A◦ and wA◦

[Ram06, p.144]. Thus `(τµ) equals the number of hyperplanes separating A◦ and τµA◦,

where τµA◦ = µ+A◦. Thus if we fix α ∈ Φ+, hyperplanes Hα,k separating A◦ and µ+A◦

are: Hα,1, Hα,2, ..., Hα,(µ,α∨). Then we get

2(ρ∨, µ) = 2

(
1

2

∑
α∨∈(Φ∨)+

α∨, µ

)
=

∑
α∨∈(Φ∨)+

(α∨, µ) = `(τµ). (5.4)

Therefore, `(τµ) = 2(ρ∨, µ).

Lemma 5.1.8. qµ = qλq
−1
λ′ = q(ρ∨,λ)q−(ρ∨,λ′) = q(ρ∨,λ)−(ρ∨,λ′) = q(ρ∨,λ−λ′) = q(ρ∨,µ).

Definition 5.1.9 ([Sch06] p.8). Let µ ∈ Λ. We define Xµ := q−1
µ TτλT

−1
τλ′
∈ Ha where

µ = λ− λ′ for λ, λ′ ∈ Λ+. For λ ∈ Λ+, Xλ = q−1
λ Tτλ .
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5.2 Galleries

Definition 5.2.1 ([Sch06] p.9). A gallery σ of type t = (t1, ..., tk) with ti ∈ Sa ∪

Ω connecting generalized alcoves A and B is a sequence of generalized alcoves: A =

A0, . . . , Ak = B, such that

Ai+1 =


Aiti+1 (ti+1 ∈ Ω)

Ai or Aiti+1 (ti+1 ∈ Sa)
.

Definition 5.2.2 ([Sch06] p.10). We define the direction of the first generalized alcove

δ(A0) to be the initial direction, the weight of the last generalized alcove wt(Ak) to be

the weight of the gallery, and δ(Ak) to be the final direction.

Definition 5.2.3 ([Sch06] p.6). Let A ∈ A and s ∈ Sa and let Hα,k be the hyperplane

separating A and As. We define A ≺ As if As ⊂ H+
α,k, A ⊂ H−α,k and A � As if

A ⊂ H+
α,k, As ⊂ H−α,k.

Proposition 5.2.4 ([Sch06] p.6). Let w ∈ W and s ∈ S. We have Aw ≺ Aws if and only

if w > ws (relative to Bruhat order).

Definition 5.2.5 ([Sch06] p.10). The gallery σ has a positive s-direction at i if ti+1 =

s, Ai+1 = Ais, where Ai ≺ Ai+1. σ has a negative s-direction at i if ti+1 = s, Ai+1 =

Ais, where Ai � Ai+1. The gallery σ is s-folded at i if ti+1 = s and Ai+1 = Ai. The

folding is positive if Ai � Ais, and negative if Ai ≺ Ais.

Definition 5.2.6 ([Sch06] p.10). A gallery σ is called a positively folded gallery if all

foldings in σ are positive.

Definition 5.2.7 ([Sch06] p.10). Let σ be a positively folded gallery of type t. We

denote: the number of positive s-directions as ms(σ); the number of positive s-folds as

ns(σ); the number of negative s-directions as os(σ).
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Definition 5.2.8 ([Sch06] p.10). Let σ be a positively folded gallery of type t. We define

Lσ =
∏
s∈Sa

qms(σ)(q − 1)ns(σ). (5.5)

Definition 5.2.9 ([Sch06] p.14). Let A ∈ Ã. Define

XA = q−wt(A)qδ(A)Xwt(A)T̄δ(A). (5.6)

Proposition 5.2.10 ([Sch06] p.14). The set {XA}A∈Ã is a basis of Ha, called the alcove

basis.

Definition 5.2.11 ([Sch06] p.15). Let A,B be generalized alcoves and Γ+
t (A,B) be the

set of all positively folded galleries of type t connnecting A and B. Then we define

Lt(A,B) =
∑

σ∈Γ+
t (A,B)

Lσ. (5.7)

Theorem 5.2.12 ([Sch06] Theorem 5.5). For ν ∈ We, let t be the type of a minimal

gallery connecting A◦ and Aν. For A ∈ Ã and ν ∈ We, we have

XATν =
∑
B∈Ã

Lt(A,B)XB. (5.8)

23



Chapter 6

Ram’s Paper “Alcove Walks, Hecke

Algebras, Spherical Functions

Crystals and Column Strict

Tableaux”

6.1 Alcove walks

Definition 6.1.1 ([Ram06] p.139). We denote the walls of the dominant Weyl chamber

as Hα1 , Hα2 , . . . , Hαn and extend this so that Hα0 , Hα1 , Hα2 , . . . , Hαn are the walls of A◦

with corresponding reflections s0, s1, . . . , sn.

Proposition 6.1.2 ([Ram06] p.139). g ∈ Ω acts on A◦ by an automorphism which gives

a permutation of the walls Hα0 , Hα1 , Hα2 , . . . , Hαn, hence a permutation of 0, 1, . . . , n, so

that gsig
−1 = sg(i) for g 6= 1.

Proposition 6.1.3 ([Ram06] p.139). The extended affine Weyl group We acts freely on

Ω × E, and we have We → Ã, w 7→ w−1A◦, so that g−1A◦ is in the same place as A◦

except on the gth “sheet” of Ω× E.

24



Definition 6.1.4 ([Ram06] p.139, p.141). Number the alcove walls in a We-equivariant

way: the numbering of the walls of wA◦ is the w image of the numbering of the walls of

A◦ for w ∈ We.

Definition 6.1.5 ([Yee19] p.286). An alcove path from A to B is a sequence of alcoves

A = A0
R1−→ A1

R2−→ · · · R`−→ A` = B where for 1 ≤ i ≤ `, Ai−1 and Ai are adjacent.

Ri is the affine reflection corresponding to the affine hyperplane separating Ai−1 and Ai:

Ai = RiAi−1.

Definition 6.1.6 ([Ram06] p.143). Recall that K is the field of fractions of Z[q
1
2 , q−

1
2 ].

Let g ∈ Ω, g(i) be the index such that gsig
−1 = sg(i). The walls of A◦ are labelled

0, 1, 2, . . . , n. The alcove walk algebra A is the K-algebra with generators g ∈ Ω and

for 1 ≤ i ≤ n

i

− +

positive i-crossing

(c+
i )

i

− +

negative i-crossing

(c−i )

i

− +

positive i-fold

(f+
i )

i

− +

negative i-fold

(f−i )

with relations

c+
i = c−i + f+

i and c−i = c+
i + f−i

and

g


i

− +

 =


g(i)

− +

 g, g


i

− +

 =


g(i)

− +

 g,
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g


i

− +

 =


g(i)

− +

 g, g


i

− +

 =


g(i)

− +

 g.

Definition 6.1.7 ([Ram06] p.143). An alcove walk is a word in the generators of A

such that

(a) the tail of the first step is in the fundamental alcove A◦

(b) at every step, the head of each arrow and the tail of the next arrow are in the same

alcove.

Definition 6.1.8 ([Ram06] p.144). The type of an alcove walk p is the sequence of labels

on the arrows, corresponding to the folds and wall crossings of the walk.

Definition 6.1.9 ([Ram06] p.153). An alcove walk p is positively folded if all foldings

in p are positive.

Definition 6.1.10 ([Ram06] p.149). Let p be an alcove walk from wA◦ to wt(p)+ϕ(p)A◦

where w ∈ W . We define ι(p) = w as the initial direction of p, wt(p) as the weight of

p, and ϕ(p) as the final direction of p.

Definition 6.1.11 ([Ram06] p.145). The affine Hecke algebra Ha is the quotient of

the alcove walk algebra by the relations

c+
i = (c−i )−1, f+

i = q
1
2 − q−

1
2 , f−i = −(q

1
2 − q−

1
2 )

and we say nonfolded alcove walks p = p′ if they have the same ending alcove. (Note that

the affine Hecke algebra only remembers the ending alcove of a walk.)

Definition 6.1.12 ([Ram06] p.146). Let Ha be the affine Hecke algebra. We define T̃−1
w−1

as the image in Ha of a minimal length alcove walk from A◦ to wA◦ and Xλ as the image

in Ha of a minimal length alcove walk from A◦ to τλA◦ for w ∈ W and λ ∈ Λ.
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Proposition 6.1.13 ([Ram06] Proposition 3.2). Ha coincides with the usual definition

of the affine Hecke algebra.

Proposition 6.1.14 ([Ram06] Proposition 3.2).

XλXµ = Xλ+µ = XµXλ for λ, µ ∈ Λ. (6.1)

6.2 Hall-Littlewood polynomials

Definition 6.2.1 ([Ram06] p.151). We define an element 1̃0 in Ha by

T̃−1
w−11̃0 = q−

1
2
`(w)1̃0 (6.2)

for w ∈ W .

An explicit formula for 1̃0 is

1̃0 =
1

W0(q−1)

∑
w∈W

q
−`(w)

2 T̃−1
w−1 (6.3)

where W0(t) =
∑
w∈W

t`(w) is the Poincaré polynomial of W .

Definition 6.2.2 ([Ram06] p.151, [Yee19] p.283). We define K[Λ] = span{Xµ : µ ∈ Λ}.

Proposition 6.2.3 ([Ram06] p.151). {Xµ1̃0 : µ ∈ Λ} is a basis of Ha1̃0. Then there

exists a vector space isomorphism K[Λ]→ Ha1̃0, f 7→ f 1̃0.

Definition 6.2.4 ([Yee19] p.284). The spherical Hecke algebra is 1̃0Ha1̃0.

Definition 6.2.5 ([Ram06] p.151, [Yee19] p.284). The ring of symmetric functions is

K[Λ]W . By a theorem of Bernstein, K[Λ]W is the centre of Ha. There is an isomorphism

called the Satake isomorphism

Φ : K[Λ]W → 1̃0Ha1̃0, f 7→ f 1̃0.
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Definition 6.2.6 ([Ram06] p.153). For µ ∈ Λ, the Hall-Littlewood polynomial

Pµ(X; q−1) ∈ K[Λ]W is defined by

Pµ(X; q−1)1̃0 =

( ∑
w∈Wµ

q−
1
2
`(w)T̃−1

w−1

)
Xµ1̃0 (6.4)

where Wµ is the stabilizer of µ and W µ is a set of minimal length coset representatives

for the cosets in W/Wµ.

Theorem 6.2.7. Fix λ ∈ Λ+. Let pλ = c+
i1
· · · c+

i`
be a minimal length alcove walk from

A◦ to λ+A◦ and Bq(pλ) = {positively folded alcove walks of type (i1, . . . , i`) beginning at

wA◦ where w ∈ W λ }. Then

Pλ(X; q−1) =
∑

p∈Bq(pλ)

q−
1
2

(`(ι(p))+`(ϕ(p))−f(p))(1− q−1)f(p)Xwt(p) (6.5)

where ι(p) is the alcove where p begins, wt(p) + ϕ(p)A◦ is the alcove where p ends and

f(p) is the number of folds in p.

We will prove that this theorem follows from Schwer’s Theorem 5.5 (Theorem 5.2.12

of this paper).
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Chapter 7

Research Problem

In this chapter, we will show that Theorem 6.2.7 follows from Theorem 5.2.12.

Lemma 7.0.1. For λ ∈ Λ+, Xλ = T̃τλ and T̃τλ = q−
1
2
`(τλ)Tτλ.

Lemma 7.0.2. For µ ∈ Λ, Xµ (Definition 5.1.9) = Xµ (Definition 6.1.12).

Proof. Recall that µ = λ − λ′ ∈ Λ where λ, λ′ ∈ Λ+, qµ = q(ρ∨,µ) (Lemma 5.1.8) and

Xµ := q−1
µ TτλT

−1
τλ′

(Definition 5.1.9).

Xµ = q−(ρ∨,µ)TτλTτλ′

= q−(ρ∨,µ)(T̃τλq
1
2
`(τλ))(T̃−1

τλ′
q−

1
2
`(τλ′ )) from (4.3)

= q−(ρ∨,µ)q`(τλ)/2q−`(τλ′ )/2T̃τλT̃
−1
τλ′

= q−(ρ∨,µ)q(ρ∨,λ)q−(ρ∨,λ′)T̃τλT̃
−1
τλ′

from Lemma 5.1.7

= q−(ρ∨,µ)q(ρ∨,λ−λ′)T̃τλT̃
−1
τλ′

= q−(ρ∨,µ)q(ρ∨,µ)T̃τλT̃
−1
τλ′

= T̃τλT̃
−1
τλ′

= Xλ(Xλ′)−1

= Xµ

(7.1)
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Now we would like to prove Theorem 6.2.7 using Theorem 5.2.12.

Recall Theorem 6.2.7: Fix λ ∈ Λ+. Let pλ = c+
i1
· · · c+

i`
be a minimal length alcove

walk from A◦ to λ+ A◦ and Bq(pλ) = {positively folded alcove walks of type (i1, . . . , i`)

beginning at wA◦ where w ∈ W λ }. Then,

Pλ(X; q−1) =
∑

p∈Bq(pλ)

q−
1
2

(`(ι(p))+`(ϕ(p))−f(p))(1− q−1)f(p)Xwt(p) (7.2)

where ι(p) is the alcove where p begins, wt(p) + ϕ(p)A is the alcove where p ends and

f(p) is the number of folds in p.

Proof. Recall Theorem 5.2.12. Fix λ ∈ Λ+ and w ∈ W . We choose A as Aw ∈ We and ν

as τλ, where Aw = wA◦. Then t is the type of a minimal gallery connecting A◦ and τλA◦

and Theorem 5.2.12 becomes

XAwTτλ =
∑
B∈Ã

Lt(Aw, B)XB. (7.3)

By Lemma 5.1.3, A is of the form wt(A) + δ(A)A◦ for unique wt(A) ∈ Λ and δ(A) ∈ W .

Then wt(Aw) = 0 and δ(Aw) = w. Recalling Definition 5.2.9, we rewrite XAwTτλ as

XAwTτλ = q−wt(Aw)qδ(Aw)Xwt(Aw)T̄δ(Aw)Tτλ

= qδ(Aw)T̄δ(Aw)Tτλ

= qwT̄wTτλ

= q`(w)T−1
w−1Tτλ .

(7.4)

From (4.3) and Definition 5.1.9, we get

T̃w = q−
1
2
`(w)Tw ⇔ T̃w−1 = q−

1
2
`(w)Tw−1

⇔ T̃−1
w−1 = T−1

w−1q
1
2
`(w)

⇔ T−1
w−1 = T̃−1

w−1q
− 1

2
`(w),

(7.5)
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Xλ = q−1
λ Tτλ ⇔ Tτλ = qλXλ

⇔ Tτλ = q
1
2
`(τλ)Xλ.

(7.6)

Thus

XAwTτλ = q`(w)T−1
w−1q

1
2
`(τλ)Xλ

= q
1
2
`(w)T̃−1

w−1q
1
2
`(τλ)Xλ

= q
1
2
`(w)T̃−1

w−1q
1
2
`(τλ)Xλ by Lemma 7.0.2.

(7.7)

Thus

q
1
2
`(w)T̃−1

w−1q
1
2
`(τλ)Xλ =

∑
B∈Ã

Lt(Aw, B)XB. (7.8)

Now, we look at
∑

B∈Ã Lt(Aw, B)XB.

q
1
2
`(w)T̃−1

w−1q
1
2
`(τλ)Xλ =

∑
B∈Ã

Lt(Aw, B)XB

=
∑
B∈Ã

( ∑
σ∈Γ+

t (Aw,B)

Lσ

)
XB

=
∑
B∈Ã

( ∑
σ∈Γ+

t (Aw,B)

(∏
s∈Sa

qms(σ)(q − 1)ns(σ)

))
XB

=
∑
B∈Ã

( ∑
σ∈Γ+

t (Aw,B)

(∏
s∈Sa

qms(σ)(q − 1)ns(σ)

))
q−wt(B)qδ(B)Xwt(B)T̄δ(B)

=
∑
B∈Ã

( ∑
σ∈Γ+

t (Aw,B)

(∏
s∈Sa

qms(σ)+ns(σ)(1− q−1)ns(σ)

))
q−wt(B)qδ(B)Xwt(B)T̄δ(B)

=
∑
B∈Ã

( ∑
σ∈Γ+

t (Aw,B)

(∏
s∈Sa

qms(σ)+ns(σ)(1− q−1)ns(σ)

))
q−wt(B)qδ(B)Xwt(B)T

−1
δ(B)−1

(7.9)

Multiplying by the element 1̃0 (6.2.1) on both sides and simplifying, we get:

q
1
2
`(w)T̃−1

w−1q
1
2
`(τλ)Xλ1̃0 =

∑
B∈Ã

( ∑
σ∈Γ+

t (Aw,B)

(∏
s∈Sa

qms(σ)+ns(σ)(1−q−1)ns(σ)

))
q−wt(B)qδ(B)Xwt(B)

T−1
δ(B)−11̃0 (7.10)
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q−
1
2
`(w)T̃−1

w−1X
λ1̃0 =

∑
B∈Ã

( ∑
σ∈Γ+

t (Aw,B)

(∏
s∈Sa

qms(σ)+ns(σ)(1−q−1)ns(σ)

))
q−`(w)− 1

2
l(τλ)q−wt(B)qδ(B)

Xwt(B)T
−1
δ(B)−11̃0. (7.11)

Since t is the type of a minimal gallery connecting A◦ and τλA◦, then

`(τλ) =
∑
s∈Sa

(ms(σ) + ns(σ) + os(σ)). (7.12)

for all σ ∈ Γ+
t (Aw, B).

Also, we show that

q−wt(B) = q−(wt(B),ρ∨) = q
1
2

(
∑

(−ms(σ)+os(σ))−`(δ(B))+`(w)). (7.13)

Proof. It is equivalent to show that q(wt(B),2ρ∨) = q
∑

(ms(σ)−os(σ))+`(δ(B))−`(w). (wt(B), 2ρ∨)

is the number of Hα,k where α > 0, k > 0 minus the number of Hα,k where α > 0, k ≤ 0

separating A◦ and A◦ + wt(B), and
∑
s∈Sa

(ms(σ) − os(σ)) is the number of Hα,k where

α > 0, k > 0 minus the number of Hα,k where α > 0, k ≤ 0 separating wA◦ and

δ(B)A◦ + wt(B). Therefore

(wt(B), 2ρ∨) =
∑
s∈Sa

(ms(σ)− os(σ)) + `(δ(B))− `(w) (7.14)

since A◦ and wA◦ are separated by `(w) Hα,0, and A◦ + wt(B) and δ(B)A◦ + wt(B) are

separated by `(δ(B)) Hα,(α∨,wt(B)).

Apply equations 7.12 and 7.13 and simplify:

q−
1
2
`(w)T̃−1

w−1X
λ1̃0 =

∑
B∈Ã

( ∑
σ∈Γ+

t (Aw,B)

(∏
s∈Sa

qms(σ)+ns(σ)(1−q−1)ns(σ)

)
q−

1
2

(ms(σ)+ns(σ)+os(σ))

)

q−`(w)q−wt(B)qδ(B)Xwt(B)T
−1
δ(B)−11̃0 (7.15)
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=
∑
B∈Ã

( ∑
σ∈Γ+

t (Aw,B)

(∏
s∈Sa

q
1
2

(ms(σ)+ns(σ)−os(σ))(1−q−1)ns(σ)

))
q−`(w)q−wt(B)qδ(B)Xwt(B)T

−1
δ(B)−1

1̃0. (7.16)

By (4.3), we can rewrite T̃δ(B) = q−
1
2
`(δ(B))Tδ(B):

T̃δ(B) = q−
1
2
`(δ(B))Tδ(B) ⇔ T̃δ(B)−1 = q−

1
2
`(δ(B))Tδ(B)−1

⇔ T̃−1
δ(B)−1 = T−1

δ(B)−1q
1
2
`(δ(B))

⇔ T−1
δ(B)−1 = T̃−1

δ(B)−1q
− 1

2
`(δ(B)).

(7.17)

Thus

q−
1
2
`(w)T̃−1

w−1X
λ1̃0 =

∑
B∈Ã

( ∑
σ∈Γ+

t (Aw,B)

(∏
s∈Sa

q
1
2

(ms(σ)+ns(σ)−os(σ))(1− q−1)ns(σ)

))
∏
s∈Sa

(q
1
2

(−ms(σ)+os(σ)))q
1
2

(−`(δ(B))+`(w))q`(δ(B))q−`(w)Xwt(B)T̃−1
δ(B)−1q

− 1
2
`(δ(B))1̃0 (7.18)

=
∑
B∈Ã

( ∑
σ∈Γ+

t (Aw,B)

(∏
s∈Sa

q
1
2
ns(σ)(1− q−1)ns(σ)

))
q−

1
2
`(δ(B))+ 1

2
`(w)q`(δ(B))q−`(w)Xwt(B)T̃−1

δ(B)−1q
− 1

2
`(δ(B))1̃0

=
∑
B∈Ã

( ∑
σ∈Γ+

t (Aw,B)

(∏
s∈Sa

q
1
2
ns(σ)(1− q−1)ns(σ)

))
q−

1
2
`(δ(B))+ 1

2
`(w)q`(δ(B))q−`(w)Xwt(B)q−`(δ(B))1̃0

=
∑
B∈Ã

( ∑
σ∈Γ+

t (Aw,B)

(∏
s∈Sa

q
1
2
ns(σ)(1− q−1)ns(σ)

))
q−

1
2
`(δ(B))− 1

2
`(w)Xwt(B)1̃0

=
∑
B∈Ã

( ∑
σ∈Γ+

t (Aw,B)

(
q−

1
2

(`(w)+`(δ(B))
∏
s∈Sa

q−ns(σ)(1− q−1)ns(σ)

))
Xwt(B)1̃0

(7.19)

Now replacing positively folded galleries with positively folded alcove walks in the

above formula gives Theorem 6.2.7. Since Γ+
t (Aw, B) is the set of all positively folded

galleries of type t starting in wA◦ (5.2.11) while Bq(pλ) is the set of all positively folded

alcove walks of type t which begin at wA◦ (w ∈ W λ the minimal length coset represen-

tatives of the cosets in W/Wλ for λ ∈ Λ+), we may switch
∑

w∈Wλ

∑
B∈Ã

∑
σ∈Γ+

t (Aw,B) to
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∑
p∈Bq(pλ). Moreover, wt(B) is equivalent to wt(p); the sum of positive folds

∑
s∈Sa ns(σ)

= f(p); the final direction δ(B) = ϕ(p) and `(w) = initial direction ι(p) since the gallery

σ starts from wA◦.

Therefore, we finish the proof showing that

∑
w∈Wλ

(q−
1
2
`(w)T̃−1

w−1)X
λ1̃0 =

∑
p∈Bq(pλ)

q−
1
2

(`(ι(p))+`(ϕ(p))−f(p))(1− q−1)f(p)Xwt(p)1̃0

Pλ(X; q−1)1̃0 =
∑

p∈Bq(pλ)

q−
1
2

(`(ι(p))+`(ϕ(p))−f(p))(1− q−1)f(p)Xwt(p)1̃0

(7.20)
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