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Abstract: This paper investigates a three-echelon closed-loop supply chain (CLSC) consisting of a 

manufacturer, a distributor, and a retailer, where the retailer exhibits fairness concerns. Cooperative and non-

cooperative game theoretic analyses are employed to characterize interactions among different parties. 

Analytical results confirm the conventional wisdom: with the retailer’s fairness concerns, the channel profits 

under the decentralized and partial-coalition models underperform that under the centralized model. To find an 

appropriate profit allocation scheme to coordinate the supply chain system with fairness concerns, we resort to 

the cooperative game theory. To this end, we first derive the characteristic function form of the cooperative game 

based on the equilibrium profits under centralized, decentralized and different partial-coalition models. 

Subsequently, we propose three coordination mechanisms based on the Shapley value, nucleolus solution, and 

equal satisfaction to allocate surplus profit. The three mechanisms are then evaluated by using numerical 

experiments. We further examine how the retailer’s fairness concerns affect profit allocation under the three 

mechanisms. The key innovation is to incorporate the retailer’s fairness concerns into the coordination of a three-

echelon CLSC. Our contributions are twofold: First, cooperative game-theoretic mechanisms are put forward to 

coordinate the three-echelon CLSC with a fairness-minded retailer. Second, we investigate how the retailer’s 

fairness concerns affect the CLSC members’ pricing decision and surplus profit allocation. Our studies confirm 

that the resulting profit allocation schemes satisfy both individual and collective rationality and fall in the core of 

the cooperative game, thereby making the grand coalition stable and suggesting viable options to coordinate the 

CLSC system. Further analyses reveal that different coordination mechanisms benefit the three CLSC members 

differently. These research findings help CLSC managers to understand what options are available and identify 

possible pathways for them to foster cooperation and achieve equitable allocation of surplus profit. 

Keywords: Closed-loop supply chain; Cooperative game; Fairness concerns; Coordination; Profit allocation.
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Abstract: This paper investigates a three-echelon closed-loop supply chain (CLSC) consisting of a 

manufacturer, a distributor, and a retailer, where the retailer exhibits fairness concerns. Cooperative and non-

cooperative game theoretic analyses are employed to characterize interactions among different parties. 

Analytical results confirm the conventional wisdom: with the retailer’s fairness concerns, the channel profits 

under the decentralized and partial-coalition models underperform that under the centralized model. To find an 

appropriate profit allocation scheme to coordinate the supply chain system with fairness concerns, we resort to 

the cooperative game theory. To this end, we first derive the characteristic function form of the cooperative game 

based on the equilibrium profits under centralized, decentralized, and different partial-coalition models. 

Subsequently, we propose three coordination mechanisms based on the Shapley value, nucleolus solution, and 

equal satisfaction to allocate surplus profit. The three mechanisms are then evaluated by using numerical 

experiments. We further examine how the retailer’s fairness concerns affect profit allocation under the three 

mechanisms. The key innovation is to incorporate the retailer’s fairness concerns into the coordination of a three-

echelon CLSC. Our contributions are twofold: First, cooperative game-theoretic mechanisms are put forward to 

coordinate the three-echelon CLSC with a fairness-minded retailer. Second, we investigate how the retailer’s 

fairness concerns affect the CLSC members’ pricing decision and surplus profit allocation. Our studies confirm 

that the resulting profit allocation schemes satisfy both individual and collective rationality and fall in the core of 

the cooperative game, thereby making the grand coalition stable and suggesting viable options to coordinate the 

CLSC system. Further analyses reveal that different coordination mechanisms benefit the three CLSC members 

differently. These research findings help CLSC managers to understand what options are available and identify 

possible pathways for them to foster cooperation and achieve equitable allocation of surplus profit. 

Keywords: Closed-loop supply chain; Cooperative game; Fairness concerns; Coordination; Profit allocation.

1. Introduction

Increasing environmental pressure, stricter legislation, and competitive business environment 

have led more and more firms to engage in remanufacturing and recycling used products, 

resulting in closed-loop supply chains (CLSCs). A popular trend in CLSC management is that 

the members join coalitions and pool their critical resources to enhance their power in the 

supply chain (Jena and Sarmah, 2014; Leng and Parlar, 2009; Nagarajan and Sošić, 2008; 

Zhang and Liu, 2013). For example, it has been recognized that forging partnerships is key for 

automakers to succeed in recycling and remanufacturing auto parts in end-of-use automobiles 

(IRIS, 2010). In Europe, Tesla works with Umicore to recycle and recover electric vehicle 

batteries and resell them to battery manufacturers. This is not only an attractive recycling 

mechanism from an environmental perspective, but it also provides a substantial source of 

revenue (Gu et al., 2018). For distributors, they are closer to customers and have a better 



ACCEPTED MANUSCRIPT

2

understanding of market conditions. As such, they tend to be more receptive to 

remanufacturing and are willing to take more responsibility in collaborating with 

manufacturers (Li et al., 2011). In CLSCs, distributors often partner with manufacturers in 

collecting used products (Jena and Sarmah, 2014). For instance, as a distributor of a Japanese 

general machinery maker, Komatsu Ltd., Nanjing Gangjia Komatsu Construction Machinery 

Limited not only sells new products but also cooperates with Komatsu in renewing and 

reselling used products in Jiangsu and Xinjiang, China (Xiong and Wang, 2011). Similarly, 

Lei Shing Hong Machinery, the distributor of Caterpillar Machinery in Shanghai and Jiangsu, 

works with Caterpillar in remanufacturing old equipment and reselling it to the marketplace 

(Xiong and Wang, 2011). By forming strategic alliances and sharing information with other 

members in a CLSC, a firm can enhance both individual and channel profitability. Therefore, 

it has become a critical issue to understand how to foster cooperation in a CLSC (Chen et al., 

2017b).

Under a cooperative framework, how can supply chain members navigate through the 

competitive environment and be incentivized to remain committed to cooperation? An 

equitable profit allocation scheme serves as a viable solution. To address this issue, 

researchers have proposed many contracting forms, such as quantity discount, buy-back, two-

part tariff, revenue-sharing contracts and mail-in rebate (Govindan and Popiuc, 2014; Noori-

daryan et al., 2018; Saha et al., 2016; Taleizadeh et al., 2016; Taleizadeh et al., 2018b). 

Another line of thinking is to resort to the cooperative game theory as it examines all possible 

coalition outcomes and what players can achieve individually as well as through forming 

coalitions. In addition, it also addresses the stability and robustness of different coalitions and 

how surplus is allocated among coalition members (Nagarajan and Sošić, 2008). The first step 

in applying the cooperative game theory is to identify the set of all possible coalition 

outcomes and characterize its properties, thereby determining how players ultimately gain 

from different outcomes in this set. Existing applications of cooperative game models tend to 

address the allocation issue by employing any arbitrary coalition structure and assuming equal 

power among members (Granot and Sošić, 2003; Guajardo and Rönnqvist, 2016; Guardiola et 

al., 2009; Meca et al., 2004). This treatment makes it easy to identify the set of all possible 

coalition outcomes; however, a CLSC is featured with a more complex coalition structure 

where certain horizontal and vertical coalitions cannot be formed due to different reasons such 

as unequal power status among members. To understand the coalition structure of a CLSC, 

we first consider it in a non-cooperative environment and examine the case where different 

players carry out CLSC operations based on their individual considerations. This 
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noncooperative game model is subsequently employed to generate the set of all possible 

coalition outcomes, furnishing the basis for further analysis in the cooperative setting. 

Non-cooperative game theoretic models have been extensively employed in CLSC 

management to delineate the competitive environment, characterize interaction among players, 

and analyze pricing strategies and their implications on profitability. At the micro level, these 

models are convenient tools for examining the bargaining power of different members and 

determining contracting parameters based on equilibriums in a CLSC (Nagarajan and Sošić, 

2008). This equilibrium analysis is an important step that must be taken before cooperative 

game models can be entertained to address surplus profit allocation in a CLSC owing to 

cooperation between member firms.

To properly allocate the resulting surplus profit, the cooperative game theory provides 

many potential solutions. Among these alternatives, one-point solution concepts (Li, 2016) 

such as the Shapley value, the nucleolus solution, and the Equal Profit Method (EPM) are 

sensible choices as they each provide a unique allocation scheme if existent. The Shapley 

value is calculated by averaging a member’s marginal contributions to all coalitions under all 

possible orderings (Bilbao and Edelman, 2000). The nucleolus solution is derived by 

lexicographically minimizing the largest degree of dissatisfaction (Arin and Feltkamp, 1997). 

The EPM aims to allocate profit to each participant as equally as possible and can be 

formulated as a linear program (Frisk et al., 2010). These three cooperative game approaches 

will be employed as the basis to allocate surplus profit as a result of cooperation among CLSC 

members in this research. 

Generally, the aforementioned research assumes that the agents are completely rational. 

In reality, decision-makers often exhibit bounded rationality and demonstrate different social 

preferences such as fairness concerns. Although relatively limited studies incorporate 

noneconomic considerations into CLSCs, these behavioural factors do influence CLSC 

members’ decisions and channel profit (Ma et al., 2017). In today’s industrial practice, 

sustainable cooperation and fairness concerns widely coexist in CLSCs. For instance, Gree 

Inc., one of the world largest specialized air-conditioner manufacturer in China, establishes 

coalitions with different firms, such as Tianjian Recycling Development Co., Ltd and 

Shijiazhuang Green Recycling Co., Ltd, to assist them in remanufacturing and distributing  its 

products (Gree, 2018). These firms are not only involved in Gree’s import and export 

distribution business, but they also collect and remanufacture its used products. Gree and its 

supply chain partners coordinate their operations in many ways, and Gree often invests in 

their infrastructure construction such as collection and distribution networks. But supply chain 
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relationships are not always harmonious. Gome, one of the largest household appliance 

retailers in China, decided to terminate its cooperation with Gree in March 2004 after its 

demand for higher-than-normal kickbacks was rejected by Gree. Gome, in this case, was 

concerned with distributional fairness and wanted to capitalize on its dominating power in the 

retailing industry to extract more profit from the manufacturer. (Chen and Wu, 2013; Liu et 

al., 2015). This case demonstrates that a focal firm in a CLSC (e.g., the manufacturer) has to 

pay close attention to the coordination mechanism so that sustainable cooperation can be 

achieved when some partners are fairness-minded. Existing literature suggests that the 

channel profit usually suffers when supply chain members negotiate profit-sharing in typical 

coordination contracts under noneconomic preferences such as risk aversion and fairness 

concerns (Nagarajan and Sošić, 2008; Nie and Du, 2017). It remains largely unaddressed 

regarding how to formulate proper profit allocation schemes to facilitate cooperation at 

maximal channel efficiency with fairness-minded players. We attempt to address this issue by 

resorting to the cooperative game theory. 

More specifically, we incorporate the retailer’s fairness concerns into a typical three-

echelon CLSC consisting of a manufacturer (M), a distributor (D), and a retailer (R). Four 

scenarios are examined: (1) The centralized case where a central planner makes integrated 

decisions for the three members (CC); (2) The decentralized case where the three members 

make independent decisions (CD); (3) M and D form a coalition (MD); and (4) D forms a 

coalition with R (DR). This basic setting emphasizes D’s irreplaceable role in the CLSC so 

that M and R cannot form a coalition without D. This research attempts to address the 

following three questions: (1) How to derive equilibrium pricing decisions, production 

quantities and profits for the CLSC with R’s fairness concerns under the CC, CD, MD, and 

DR models based on the Stackelberg game setting? (2) How to allocate surplus profit by using 

cooperative game theoretic approaches? (3) What is the impact of R’s fairness concerns on 

the performance of the three proposed coordination mechanisms?

The remainder of this paper is organized as follows. A brief review of literature is 

presented in Section 2. Section 3 describes the problem under consideration, followed by 

notation and assumptions in Section 4. Stackelberg equilibrium results are obtained for the 

centralized (CC), decentralized (CD), and two partial-coalition models (MD and DR) in 

Section 5. Three cooperative game theoretic mechanisms are then presented to coordinate the 

CLSC members in Section 6. Section 7 evaluates the performance of the three coordination 

mechanisms.  Section 8 concludes the paper.
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2. Literature review

In a multi-echelon CLSC, extensive game-theoretic analyses have been carried out from 

various perspectives, such as inventory systems (Hasanov et al., 2018), defective product 

returns (Taleizadeh and Noori-daryan, 2015; Taleizadeh et al., 2015), marketing effort 

(Zerang et al., 2018), product recycling uncertainties (Alamdar et al., 2018; Zhou et al., 2016), 

different channel power structures (Taleizadeh et al., 2017a), and channel selections 

(Taleizadeh et al., 2018a). Based on the research questions in this paper, we focus our review 

on the cooperation and coordination of three-echelon CLSCs, applications of cooperative 

game approaches to conventional supply chains and CLSCs, and coordination of supply 

chains with fairness concerns. 

2.1. Cooperation and coordination of multi-party CLSCs

A critical issue in channel operations is cooperation and coordination of CLSCs, which has 

attracted considerable attention in academia and practice. Most of the existing studies are 

concerned with two-echelon CLSCs, and limited research has been carried out regarding 

three-echelon CLSCs (Govindan et al., 2013; Heydari et al., 2017; Xie et al., 2017). For 

instance, within a dual-recycling CLSC consisting of a manufacturer, a retailer, and a third-

party collector, Taleizadeh et al. (2018a) develop an integrated two-tariff and cooperative 

advertising contract to coordinate the system and enhance each member’s profit. In a fuzzy 

three-echelon CLSC setting, Alamdar et al. (2018) examine all possible alliance strategies and 

propose a new coordination mechanism that combines a fixed payment with a cost sharing 

component. In a CLSC with a manufacturer, a third-party remanufacturer, and a retailer, 

Zhang and Ren (2016) formulate a coordinated pricing mechanism that combines two-part 

tariff with a revenue-sharing contract to coordinate this supply chain. Saha et al. (2016) 

examine a CLSC comprising a manufacturer, a retailer, and a third-party collector and design 

a three-way discount mechanism to coordinate the channel and achieve a win-win situation 

for the three members. These studies show how different contract designs can coordinate the 

system and achieve a win-win profit allocation for all CLSC members, but they tend to ignore 

the impact of different coalition/cooperation structures on the members’ bargaining powers in 

their negotiation for surplus profit allocation. To fill this gap in the literature, Ma et al. (2016) 

analyze the coalition formation process in a three-echelon CLSC consisting of a manufacturer, 

a retailer, and two recyclers. In the presence of a return policy, Taleizadeh et al. (2017b) 

perform a game-theoretic analysis on a joint pricing and alliance selection decision-making 

problem in a two-echelon retailer-led supply chain. Their focus is to compare profitability 
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under various coalition structures. Li et al. (2017) investigate different coalition strategies 

under a three-echelon reverse supply chain setting where a collector, a remanufacturer, and 

two retailers may form various coalitions. This study identifies maximal economic and social 

benefit in a centralized model, but it does not address how to divide “this bigger pie”. The 

aforesaid research indicates that non-cooperative game models are well suited to deal with 

coalition formation in supply chains and identify what potential gains may exist, but it 

remains an unsettled issue as to how surplus profit in a centralized system should be properly 

allocated to foster cooperation among members.

2.2. Applications of cooperative game approaches in supply chains

An increasing number of researchers have been applying cooperative game theoretical models 

to supply chain management (Fiestras-Janeiro et al., 2011). This body of literature can take 

two different lines of thinking, either from a cost or a profit allocation angle. 

The first stream of this literature addresses cost allocation in supply chains by using 

cooperative game theoretic models. For instance, Granot and Sošić (2003) study a 

decentralized supply chain system consisting of multiple retailers with stochastic demand. 

They examine the effect of different cost sharing rules among the retailers (e.g., Shapely value) 

on residual supply/demand. Leng and Parlar (2009) model a three-level supply chain where 

the characteristic function is obtained by computing the expected inventory cost of the three 

agents (i.e., a supplier, a manufacturer, and a retailer) in an information-sharing setting. After 

comparing different solution concepts in the cooperative game theory, they adopt the 

nucleolus solution to allocate inventory cost across the supply chain. These papers typically 

derive the characteristic function of cooperative game models by minimizing the total cost. 

       The second stream of existing research addresses profit allocation under different 

coalition structures in multi-echelon supply chains. To this end,  Jena and Sarmah (2014) first 

examine the coalition formation and the related optimal profit in different non-cooperative 

and cooperative cases in a CLSC comprising two competitive manufacturers and a retailer. 

Then, they obtain the characteristic function based on equilibrium solutions in non-

cooperative game models and develop a weighted Shapely value mechanism to distribute 

surplus profit in a fully coordinated model. Similarly, Zhang and Liu (2013) analyze coalition 

formation based on four non-cooperative models, thereby deriving the characteristic function 

for all coalitions and applying the Shapely value and asymmetric Nash negotiation to 

coordinate the supply chain system. It is worth noting that the Shapley value arises as the 

profit allocation scheme in the aforesaid two articles, but the resulting solution may not 
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necessarily make the grand coalition stable (Leng and Parlar, 2009). This motivates us to 

consider other allocation methods on top of the Shapley value approach such as the nucleolus 

solution (Leng and Parlar, 2009; Noori-Daryan et al., 2017). 

2.3. Supply chain coordination with fairness concerns

Another body of literature that is closely related to our research is channel coordination 

with fairness concerns. Along this line, Cui et al. (2007) incorporate fairness concerns into a 

dyadic supply chain comprising a manufacturer and a retailer and reveal that a simple 

wholesale price contract can coordinate such a channel when the retailer or both members are 

fairness-minded. By extending the linear demand function in Cui et al. (2007) to different 

nonlinear functions in the same supply chain setting, Caliskan-Demirag et al. (2010) perform 

a comparative analysis and find that an exponential demand function is easier to achieve 

coordination than the linear demand function. Yang et al. (2013) conceive cooperative 

advertising as a strategy to improve the performance of a supply chain consisting of one 

manufacturer and one retailer. Their study shows that cooperative advertising can coordinate 

the whole channel under certain conditions if only the retailer is fair-minded. Du et al. (2014) 

incorporate the newsvendor model into a dyadic supply chain where both the supplier and the 

retailer are fairness-minded. Their findings show that the traditional wholesale price contract 

can coordinate the fairness-minded channel based on affine transformation only if the scale 

factor falls within a small interval, implying that fairness concerns make it harder for channel 

coordination. Katok and Pavlov (2013) investigate the effect of three factors, fairness 

concerns, incomplete information, and propensity to make random errors, on the inefficiency 

of coordinating a simple supply chain with a supplier and a retailer. As for CLSCs, existing 

literature has investigated the impact of the retailer’s fairness concerns on equilibrium 

decisions (Liu et al., 2017b; Ma et al., 2017). Liu et al. (2017b) further devise a revenue-

sharing contract to coordinate a two-echelon CLSC with both members’ fairness concerns. 

These studies reveal that fairness concerns make it more complicated to coordinate a supply 

chain and existing research along this line is generally confined to two-echelon supply chains 

within a non-cooperative game setting. 

Based on the key features of our models, Table 1 frames our research in a proper 

literature context. The table reveals that the majority of extant literature concentrates on the 

coordination of supply chains in different two-echelon settings. Limited attention is dedicated 

to coordination by cooperative game approaches in multi-echelon CLSC settings. The focus 

of this paper differs from existing studies as it investigates the impact of R’s fairness concerns 
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on the coordination results in a three-echelon CLSC by employing three cooperative game 

approaches.
Table 1. Literature positioning of this research (Y=Yes; N=No)

Reference
Closed-loop 

supply chain?

Multi-echelon 

supply chain?

Coalition 

structures?

Fairness 

concerns?

Cooperative game 

approaches?

Hasanov et al. (2018) Y Y N N N

Taleizadeh et al. (2015) Y Y N N N

Taleizadeh and Noori-

daryan (2015)
Y Y N N N

Zerang et al. (2018) Y Y N N N

Alamdar et al. (2018) Y Y N N N

Zhou et al. (2016) Y Y N N N

Taleizadeh et al. 

(2017a)
Y Y N N N

Taleizadeh et al. 

(2018a)
Y Y N N N

Heydari et al. (2017) Y N N N N

Xie et al. (2017) Y N N N N

Taleizadeh et al. 

(2018a)
Y Y N N N

Alamdar et al. (2018) Y Y Y N N

Zhang and Ren (2016) Y Y Y N N

Saha et al. (2016) Y Y N N N

Ma et al. (2016) Y Y Y N N

Taleizadeh et al. 

(2017b)
Y Y Y N N

Li et al. (2017) Y Y Y N N

Granot and Sošić 

(2003)
N N Y N Y

Leng and Parlar (2009) N Y Y N Y

Jena and Sarmah 

(2014)
Y N Y N Y

Zhang and Liu (2013) N Y Y N Y

Noori-Daryan et al. 

(2017)
N Y Y N Y

Cui et al. (2007) N N N Y N

Caliskan-Demirag et al. 

(2010)
N N N Y N

Yang et al. (2013) N N N Y N

Du et al. (2014) N N N Y N

Katok and Pavlov 

(2013)
N N N Y N

Liu et al. (2017b) Y N N Y N

Ma et al. (2017) Y Y N Y N
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This research Y Y Y Y Y

More specifically, our paper is closely related to the studies conducted by Jena and 

Sarmah (2014) and Zhang and Liu (2013). The former applies cooperative games to CLSC 

coordination in a two-echelon setting with two competitive manufactures, but our game 

theoretic models are put in a three-echelon CLSC framework. On the other hand, while Zhang 

and Liu (2013) investigate a three-echelon green supply chain, their research does not account 

for remanufacturing or fairness concerns as we have considered in this paper. Moreover, Jena 

and Sarmah (2014) and Zhang and Liu (2013) only introduce one cooperative game model, 

the Shapley value approach, to coordinate their supply chains, but we put forward two 

additional cooperative game approaches to coordinate the CLSC. 

Next, we present our model settings and assumptions.

3. Problem description

We consider a three-echelon CLSC consisting of a manufacturer (M), a distributor (D), and a 

fairness-minded retailer (R). To make the presentation gender-neutral, we hereafter refer to M 

as him, D as her, and R as it. In a decentralized setting, M produces new products, collects 

used products from the marketplace, and is responsible for remanufacturing. D then procures 

new and remanufactured products from M and wholesales them to R. R subsequently retails 

the products to the end market. In this decentralized model, M is modelled as the leader, 

followed by D, and lastly by R. Given R’s relatively weaker position in this setting and 

consistent with the general observation that agents at disadvantage are often concerned with 

fairness (Ho and Su, 2009; Ho et al., 2014), we assume that R has distribution fairness 

concerns with its upstream partner D. Our key concern is to coordinate this three-echelon 

CLSC with R’s fairness concerns by resorting to the cooperative game theory. 

To derive the characteristic function form of the cooperative game, we need to examine 

all possible coalitions and their related equilibriums. Given the specific supply chain structure, 

we assume that D has an irreplaceable position in the CLSC so that M and R cannot skip her 

to form a coalition. With this assumption, four models are considered as shown in Fig. 1: a 

centralized model CC where a central planner makes all decisions, a decentralized model CD 

where each member makes his/her/its own decisions sequentially from M, to D, and to R, and 

two partially cooperative models MD and DR where two partial coalitions MD and DR are 

formed and make centralized decisions within the respective coalition. In the MD (DR) model, 

the partial coalition MD (DR) is treated as a new unified decision agent and the CLSC is 
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essentially reduced to a two-echelon one. Under this setting, the partial coalition MD (DR) is 

modelled as the leader (follower) and the other partner R (M) is the follower (leader). Here, 

Models CC and CD, respectively, serve as top-line and bottom-line benchmark cases. 

In this research, we assume that R’s fairness concerns are reflected as an aversion to 

disadvantageous inequality relative to its immediate upstream partner (Ho and Su, 2009). 

Given this assumption, it is understandable that R’s fairness concerns become irrelevant in 

Models CC and DR as there will be no financial transactions (and, hence, distribution 

inequality) between D and R. But in Models CD and MD, R shows fairness concerns with D 

and MD, respectively. As such, when R is an independent agent, it is fairness-minded and its 

objective is to maximize its utility and other agents (individual members or coalitions) aim at 

profit maximization. If R joins coalition DR or the grand coalition T, fairness concerns 

become irrelevant and all agents (members or coalitions) seek to maximize their profits. 

Given the aforementioned model settings, we first derive equilibrium pricing, resulting 

quantities, and profits under the four models, CC, CD, MD, and DR. Then, the characteristic 

function form of the cooperative game is obtained based on the equilibrium results. 

Subsequently, three coordination mechanisms based on the cooperative game theory are 

proposed to allocate surplus profit among the three CLSC members. We then carry out 

numerical experiments to compare and evaluate the performance of the three coordination 

mechanisms, thereby garnering useful managerial insights for supply chain managers. 
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Fig.1. The non-cooperative and cooperative models of the three-echelon CLSC
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4. Notation and assumptions

It is assumed that new and remanufactured products coexist in the same market (Souza, 2013; 

Xiong et al., 2013). Based on the problem description, we employ the following symbols and 

notation throughout this paper:
Table 2. Parameters and decision variables

Symbol Definition

/nc rc Unit production cost of new/remanufactured products

/nm rm Unit wholesale price of new/remanufactured products charged by M to D

/nw rw Unit wholesale price of new/remanufactured products paid charged by D to R

/np rp Unit retail price of new/ remanufactured products

/nq rq Production quantity of new/remanufactured products

A Unit exogenous cost of recycling a used product

 Consumer value discount for remanufactured products

 Consumer’s willingness-to-pay for new products

 R’s fairness concern parameter, where  measures R’s disutility of earning less than D0 

i
j

Profit function of coalition  in model ,  and j = T (Model CC); M, j i { , , , }i CC CD MD DR

D, R (Model CD); MD, R (Model MD); M, DR (Model DR), where is the grand coalition.T
( )i

j
 The new or remanufactured product profit, where  and { , }n r  ( ) ( )i n i r i

j j j   
h
Ru R’s fairness utility in model , h { , }h CD MD

To make the analysis tractable, we make the following assumptions in this research.

Assumption 1. Problem dynamics are captured in a steady one-period model.

This paper considers one-period interactions among CLSC members (Liu et al. (2017a). 

This assumption is consistent with existing research and has been widely used in literature 

(Örsdemir et al., 2014; Xiong et al., 2013; Yan et al., 2015; Zou et al., 2016). This assumption 

allows us to focus on the impact of R’s fairness concerns on the CLSC members’ pricing 

decisions and profit allocation schemes. We also assume that there exist plenty of used 

products for remanufacturing  (Ma et al., 2017; Zou et al., 2016).

Assumption 2. Consumers are heterogeneous in their willingness-to-pay for a new product , 

which is uniformly distributed between 0 and 1. Consumers’ willingness-to-pay for a 

remanufactured product is a fraction  of , where .  [0,1) 

The utilities that a consumer receives from new and remanufactured products are 

 and , respectively. Following the utility maximization principle, ( )n nu p   ( )r ru p  

if , consumers will purchase the new product, resulting in a new product max{ ,0}n ru u
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demand function . If , consumers will purchase the ( , ) 1
1
n r

n n r
p pq p p




 


max{ ,0}r nu u

remanufactured product, leading to a remanufactured product demand function 

  
(Örsdemir et al., 2014; Yan et al., 2015). ( , )

1
n r r

r n r
p p pq p p

 


 


Assumption 3. A remanufactured product is cheaper to produce, i.e., . 0 1r nc c  

Due to recycling of used parts and components, remanufacturing is typically less 

expensive than producing a new product, i.e.  (Ma et al., 2016; Zou et al., 2016). 0 r nc c 

As consumers’ maximum willingness-to-pay for new products is normalized to 1, the unit 

production cost  must satisfy  to ensure positive demand for new products (Liu et al., nc 1nc 

2017a)  

Assumption 4. To ensure profitable remanufacturing, it is assumed that . + r nA c c

This assumption  allows M to enjoy a cost advantage so that he has an + r nA c c

incentive to engage in recycling and remanufacturing (Atasu et al., 2008; Souza, 2013), and 

offers both new and remanufactured products. If , it is not economically viable for + r nA c c

M to offer remanufactured products.  

Assumption 5. D has an irreplaceable distribution channel so that M cannot form a coalition 

with R without D’s participation.

This assumption is consistent with Leng and Parlar (2009) and Zhang and Liu (2013), 

where the midstream member in the supply chain is assumed indispensable. 

Assumption 6. Only R has fairness concerns with its immediate upstream decision-maker 

(individual D or coalition MD). R has no fairness concerns with M directly and the concern 

level stays constant regardless of the upstream member being an individual or a coalition. The 

other members are fairness-neutral. This assumption is consistent with the general observation 

that agents at a disadvantageous position are usually concerned with fairness (Ho and Su, 

2009; Ho et al., 2014). As R is a follower in our model setting and has a relatively weaker 

position in a CLSC, it is thus modelled to be the fairness-minded member in this research 

(Chen et al., 2017a).  

5. The equilibrium analysis

Next, we derive the equilibrium results for the four base models, CC, CD, MD and DR.

5.1. The centralized model (Model CC)
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We first consider the top-line benchmark case in which a centralized planner makes decisions 

for all CLSC members to maximize the system profit (see Fig. 1(a)). In this case, no financial 

transactions will be occurred between M and D or D and R, and the central planner sells to the 

end market directly. The channel profit function is formulated as:

.
,

max ( ) ( )
n r

CC
T n n n r r rp p

p c q p c A q      (1)

Eq. (1) characterizes the CLSC channel profit as two components: the profit from new 

and remanufactured products. The central planner makes the retail pricing decisions for the 

two types of products to maximize the channel profit. 

By first-order conditions, we have the following result.

Proposition 1. In the centralized model, the optimal selling prices, the resulting sales 

quantities of new and remanufactured products, and the channel profit are given as: 

, , , , and 1
2

*CC
n

np c


 *

2
rCC

r
cp A  

 * 1 ( )
2(1 )

n rCC
n

c c Aq 


   


 *

2 (1 )
rC

r
nC c cq A
 

 




. 
2 2

* (1 ) ( )
4 4 (1 )

n nC
T

rC c c A c 
 

   





Proof. See Appendix A.

For notational convenience, let 
 
and it is apparent that 

2 2(1 ) ( )
4 4 (1 )

n r nc c A cK 
 

  





. Then, we rewrite , where . Without causing confusion, we 0K  * *CC CC
T T K  * 1CC

T 

hereafter shall refer to profit coefficient  as j’s profit in model i,  , *i
j { , , , }i CC CD MD DR

.{ , , , , , }j M D R MD DR T

5.2. The decentralized model (Model CD)

In this model (see Fig. 1(b)), M and D are assumed to be fairness neutral while R has 

distributional fairness concerns with D. R cares about not only its own profit but also its profit 

relative to that of D. Therefore, R’s utility function is given as

,( )CD CD CD CD
R R D Ru      (2)

where  is R’s fairness concern parameter: the larger the  , the more the R is concerned 0  

with distributional fairness (Chen et al., 2017a). Eq. (2) accounts for R’s profit and disutility 

of its getting less profit than its upstream partner D. A more general model of fairness 

concerns considers both aversions to advantageous and disadvantageous inequality (e.g., Fehr 

and Schmidt (1999); Charness and Rabin (2002); Cui et al. (2007)). However, it has been 
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revealed that aversion to advantageous inequality is not as common as that to disadvantageous 

inequality (Loewenstein et al., 1989).  Ho and Su (2009)’s experiment even notes the absence 

of this aversion. As such, our research here follows this line of research by assuming that R’s 

fairness concern is uni-directional. A large body of literature has adopted this idea and 

introduced similar utility functions with only disadvantageous inequality (Bolton, 1991; Chen 

et al., 2017; Ho et al., 2014; Nie and Du, 2017). 

In this case, M and D maximize their profit while R pursues its utility maximization. The 

decision sequence is as follows: M first determines  and  for D to pay; then D sets  nm rm nw

and  for R to pay; finally, R decides its retail prices  and  and sells the products to rw np rp

consumers. Accordingly, the three-echelon Stackelberg game consisting of M, D, and R is 

formulated as

,

,

,

,

max ( )

. .max

. .ma

( )

( ) (

x ( )

)
n r

n r

n r

CD
Mm m

CD
Dw w

CD CD CD CD
R

n n n r r r

n n n

R Dp

r

Rp

r r

m c q m c

s t

s t

A

q w m q

u

q

w m





   

   





 



 

 



(3)

where . Eq. (3) characterizes the Stakelberg game for Model ( ) ( )n n n r r r
CD
R p w q p w q   

CD, where M moves first, followed by D, and then R. Here, M and D maximize their profits 

from new and remanufactured products and R maximizes its fairness-concerned utility, and 

decision variables are the wholesale and retail prices. This decentralized model is referred to 

as the Non-Cooperative Mechanism (NCM) and serves as a bottom-line benchmark for our 

comparative studies in Section 7. The following proposition furnishes the equilibrium result 

for this case.

Proposition 2. In Model CD, equilibrium prices are obtained as , * 1
2

CD
n

nm c




, , , , and *

2
rCD

r
cm A  

 * 3 (5 3 )
4(1 2 )

CD
n

n nw c c





 


* 3 3( ) 5
4(1 2 )

r rCD
r

c A cw A  


    


 * 7
8

CD
n

np c




. The resulting equilibrium sales quantities and profits are * 7
8

rCD
r

c Ap  


, , , , , * 1 ( )
8(1 )

n rCD
n

c c Aq 


   


 *

8 (1 )
rD

r
nC c cq A
 

 


 * *CD C
M

D
M K  * *CD CD

D D K  * *CD CD
R R K 
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and , where , ,  * ** * *CD CD C CDD CD
T D TM R K        * 1

4
CD

M  * 1
8(1 2 )

CD
D








* 1 4

16(1 2 )
CD

R








and .* 7
16

CD
T 

Proof. The proof is furnished in Appendix B.

5.3. M and D form a coalition (MD)

In this model (see Fig. 1(c)), M and D form a coalition and are treated as a new decision-

maker who decides  and . Subsequently, R sets its retail price  and . Similarly, nw rw np rp

coalition MD is assumed to be fairness-neutral, and R has fairness concerns with its relative 

profit distribution with coalition MD. Similar to , R’s utility function in Model MD can be CD
Ru

stated as 

,( )MD MD MD MD
R R MD Ru     

where  is R’s fairness concern level which is the same as that in Eq. (2) as per Assumption 

6. In this case, coalition MD and R constitute a two-echelon Stackelberg game model where 

MD aims to maximize the profit of the coalition and R maximizes its utility . Similarly, MD
Ru

as coalition MD works as a new decision-maker, there will be no financial transactions 

between M and D within the coalition. Therefore, this partial-coalition model is formulated as

,
,

,

max ( ( ))

. .max ( )
n r

n r

MD
MDw w

MD MD MD MD
R R MD Rp

n n r r r

p

n

s

w c q w A q

t

c

u



   





  






(4)

where . In this model, coalition MD is pooled together by two ( ) ( )n n n r r r
MD
R p w q p w q   

independent members M and D, so MD incurs the same production costs for the new and 

remanufactured products as M. Furthermore, due to this alliance between M and D, the 

pricing competition between these two members disappears. Instead, they make joint 

decisions ( ) as an integrated agent to compete with the downstream member R. Given ,n rw w

the optimal decisions and profit of MD, R shows fairness concerns and makes decisions to 

maximize its fairness utility. 

The following proposition characterizes the equilibrium result.

Proposition 3. In Model MD, the equilibrium prices are given as 

, , , and * 1 3
2(1 2 )

n nMD
n

c cw  


  


 * 3( )
2(1 2 )

r
r

rMD c A cw A  


    


 * 3
4

MD
n

np c



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. The resulting optimal sales quantities and profits are * 3
4

rMD
r

c Ap  


, , , , and * 1 ( )
4(1 )

n rMD
n

c c Aq 


   


 *

4 (1 )
rD

r
nM c cq A
 

 


 * *MD MD
MD MD K  * *MD MD

R R K 

, where , , and .* *MD MD
T T K  * 1

2(1 2 )
MD

MD 





 * 1 4
4(1 2 )

MD
R







 * 3
4

MD
T 

Proof. The proof is included in Appendix C.

5.4. D and R form a coalition (DR)

In this model (as shown in Fig. 1(d)), D and R form a coalition. There will be no financial 

transactions between D and R, and as a result, there will be no profit distribution between D 

and R within this coalition, making R’s fairness concerns irrelevant in this case. The coalition 

DR interacts with the Stackelberg leader M in a noncooperative setting. Hence, the model is 

formulated as

.
,

,

max

. .max

( ) ( )

( ) ( )
n r

n r

DR
Mm m

DR
DR

n n n r r r

n n np p r r r

m c q m c A q

p m q pt qs m









   

  
(5)

In this setting, as R and D form a coalition and work together as a collective entity, this 

alliance removes the competition between D and R as well as R’s fairness concerns. M makes 

the same pricing decisions as he does in Model D, and the coalition DR makes joint pricing 

decisions ( ) to the final customers. The three-echelon decentralized model CD, is ,n rp p

transformed into a two-echelon supply chain with M as the Stackelberg leader and coalition 

DR as the follower, and both maximize their respective profit. 

This game is solved by backward induction and the equilibrium result is presented in 

Proposition 4.

Proposition 4. In Model DR, the equilibrium pricing decisions are obtained as , * 1
2

DR
n

nm c




, , and . The resulting optimal quantities *

2
rDR

r
cm A  

 * 3
4

DR
n

np c


 * 3
4

rDR
r

c Ap  


and profits are derived as , , , * 1 ( )
4(1 )

n rDR
n

c c Aq 


   


 *

4 (1 )
rR

r
nD c cq A
 

 


 * *DR DR
M M K 

, and , where , , and .* *DR DR
DR DR K  * *DR DR

T T K  * 1
2

DR
M  * 1

4
DR

DR  * 3
4

DR
T 

Proof. The proof is given in Appendix D.
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5.5. Comparative analysis of equilibrium results

By comparing the equilibrium results in Propositions 1-4, the following conclusions can be 

drawn.

Proposition 5. The wholesale prices of the new and remanufactured products in the three 

decentralized and partial-coalition models satisfy:

(1) , , and  where ;* *CD DR
n nm m * *CD DR

r rm m
* *

=0
i i

n rm m
 

 


 
{ , }i CD DR

(2) , , , and .* *CD MD
n nw w * *CD MD

r rw w
* *

0
MD CD

n nw w
 

 
 

 

* *

0
MD CD

r rw w
 

 
 

 

Proof. The proof is given in Appendix E.

Proposition 5(1) shows that M’s wholesale prices of new and remanufactured products in 

Model DR are the same as those in Model CD. This is understandable: From M’s perspective, 

he only marks up the wholesale prices once regardless of the downstream partner being a 

single member D or a coalition DR. Therefore, we have  and . In * *CD DR
n nm m * *CD DR

r rm m

addition, given that R only has fairness concerns with respect to D rather than M in Model CD 

(See Assumption 6) and it has no fairness concerns when it forms a coalition with D in Model 

DR, it is natural that M’s wholesale pricing decisions are independent of R’s fairness concern 

parameter  in these two models. So, one has  where .
* *

=0
i i

n rm m
 

 


 
{ , }i CD DR

Proposition 5(2) shows that the wholesale prices of new and remanufactured products 

charged by coalition MD are lower than those set by member D. This result is due to the 

cooperative strategy in Model MD that effectively eliminates the double marginalization 

between M and D, thereby allowing MD to charge lower wholesale prices while still 

enhancing the channel profit. Moreover, Proposition 5(2) demonstrates that the wholesale 

prices charged to R decrease in R’s fairness concern parameter . This is natural as the more 

the R is concerned with distributional fairness, the more profit its upstream partner D or MD 

will transfer to R. Proposition 5(2) further reveals that  and 
* *

0
MD CD

n nw w
 

 
 

 

. The reason is that coalition MD attains a profit in Model MD four times 
* *

0
MD CD

r rw w
 

 
 

 

as much as a single member D obtains in Model CD (  in Proposition 2 and * 1
8(1 2 )

CD
D









 in Proposition 3). As such, given R’s fairness concern parameter , * 1
2(1 2 )

MD
MD 





 
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coalition MD has much more room to lower the wholesale prices  than D can reduce ,MD MD
n rw w

her wholesale prices  for the new and remanufactured products. ,CD CD
n rw w

Proposition 6. The retail prices of new and remanufactured products in the four models 

satisfy:

(1)  and , ;
*

0
i

np







*

0
i

rp






{ , , , }i CC CD MD DR

(2) , ;* *i i
r np p { , , , }i CC CD MD DR

(3)  and .* * * *CC MD DR CD
n n n np p p p   * * * *CC MD DR CD

r r r rp p p p  

Proof. The proof is furnished in Appendix F.

Proposition 6(1) shows that R’s fairness concerns do not affect the retail prices of new 

and remanufactured products in the four models. This is natural for Models CC and DR as R 

has no fairness concerns given that it cooperates with its upstream partner D in these two 

cases. For the other two models, CD and MD, in anticipation of R’s fairness concerns, the 

upstream partner (member D or coalition MD) lowers the wholesale prices of new and 

remanufactured products to give up some profit margins (See Proposition 5), thereby allowing 

R to hold the retail prices steady and rake in more profit. 

Proposition 6(2) concludes that the retail price of the remanufactured product is always 

lower than that of the new product in each of the four models. This is clear given that 

consumers have a lower willingness-to-pay for remanufactured products. 

Proposition 6(3) compares the retail prices of new and remanufactured products across 

the four models. For both retail prices, the same relationship holds: Model CC has the lowest, 

Model CD has the highest, and Models MD and DR have the same value in the middle. This 

is due to the fact that Model CD has two mark-ups, first by M and then by D, Models MD and 

DR each has only one mark-up, and Model CC completely eliminates double marginalization. 

The different double-marginalization scenarios lead to distinct retail prices. 

Proposition 7. The sale quantities of new and remanufactured products in the four models 

satisfy:

(1)  and , ;
*

0
i

nq







*

0
i

rq






{ , , , }i CC CD MD DR

(2)  if ; otherwise, , ;* 0i
nq  1 r nA c c     * 0i

nq  { , , , }i CC CD MD DR

(3)  if ; otherwise, , ;* *i i
n rq q     2 11 r nA c c      * *i i

n rq q { , , , }i CC CD MD DR

(4) If ,  and .1 r nA c c     * * * *CD MD DR CC
n n n nq q q q   * * * *CD MD DR CC

r r r rq q q q  
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Proof. The proof is furnished in Appendix G.

Proposition 7(1) shows that R’s fairness concerns have no impact on the sale quantities 

of the new and remanufactured products in the four models. This result is in parallel with 

Proposition 6(1) where R’s fairness concerns do not affect the retail prices of these two 

products.

Proposition 7(2) indicates that positive demand for new products exists if and only if 

. Otherwise, only remanufactured products will be offered by the CLSC. 1 r nA c c    

Proposition 7(3) shows that a threshold  exists such that     2 11 r nA c c     

the sale quantity of new products is larger than that of the remanufactured products for the 

four models. It is worth noting that whether the quantity of remanufactured products exceeds 

that of new products depends on the structural parameters (i.e., , ,  and ) rather than  A nc rc

the fairness concern parameter (i.e., ). This is understandable as fairness concerns have no 

impact on the sale quantities of new and remanufactured products.

Proposition 7(4) compares the sale quantities of new and remanufactured products across 

the four models. We can observe that the sale quantities of these four models satisfy 

 and , corresponding to the relationships * * * *CD MD DR CC
n n n nq q q q   * * * *CD MD DR CC

r r r rq q q q  

of the retail prices among the four models in Proposition 6(3),  and * * * *CC MD DR CD
n n n np p p p  

. Given that the sale quantity depends on the retail price, the lower * * * *CC MD DR CD
r r r rp p p p  

the retailer price, the higher the sale quantity. Therefore, we have the highest sale quantity 

under Model CC, the lowest under Model CD, and the same middle value in Models MR and 

DR. 

Proposition 8.  The profits under the four models satisfy:

(1) ;* * * *CD DR MD CC
T T T T     

(2) , , and ;* 0.25CD
M  * * 0.1875CD CD

D R  
* *

0
CD CD

D R 
 

 
  

 

(3)  and ;* *DR CD
M M  * * *DR CD CD

DR D R   

(4) ; If , , otherwise, ; * *MD CD
R R  0 1  * * *MD CD CD

MD M D    * * *MD CD CD
MD M D   

.
* *

0
MD MD

MD R 
 

 
  

 

Proof. The proof is furnished in Appendix H.

Proposition 8(1) clearly illustrates that double marginalization plays a significant role in 

channel profitability across the four models. Without it in Model CC, the profit attains the 
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highest level; for the two partial-coalition models MD and DR, each is affected once with the 

same profit in the middle; Model CD achieves the lowest level since it is impacted twice. 

For the decentralized model CD, Proposition 8(2) shows that M’s profit stays constant at 

0.25 and the total profit of D and R is always 0.1875. The relative profit distribution reflects 

M’s leadership position in this CLSC model. In addition, when R’s fairness concern level 

increases with a larger , it is understandable that D gives up more of her profit to appease R, 

leading to a higher profit for R and a lower profit for D. Proposition 8(2) further reveals that 

R’s profit increases and D’s profit decreases at the same rate when  increases, resulting in a 

constant total profit for D and R. This result attests that R’s fairness concerns serve as a profit 

redistribution mechanism between R and its immediate upstream partner D. 

Compared to Model CD, Proposition 8(3) demonstrates that M’s profit is enhanced when 

D and R form a coalition. This can be deduced by examining Propositions 5 and 7: 

Proposition 5(1) confirms that M’s wholesale prices of new and remanufactured products in 

Model DR are the same as those in Model CD, and Proposition 7(4) indicates higher market 

demand for new (if any) and remanufactured products in Model DR than that in Model CD. 

Therefore, we have . Coalition DR achieves a higher profit than the total profit of * *DR CD
M M 

D and R when they act independently in Model CD thanks to the elimination of double 

marginalization between D and R in Model DR as well as R’s non-economic fairness 

concerns in Model CD. 

When M and D form a coalition, Proposition 8(4) indicates that R attains a higher profit 

than that in Model CD regardless of the value of . It can be verified that R’s unit profit 

margins of new and remanufactured products are both higher in Model MD than those in 

Model CD. Proposition 7(4) points out that the market demand for new (if any) and 

remanufactured products is higher in Model MD than that in Model CD. As such, R’s profit in 

MD is higher than that in CD. For coalition MD, it is more complicated. Proposition 5(2) 

signifies that the coalition gives up more profit margin to R than member D does in Model 

CD. For smaller , this extra concession does not hurt the coalition in the sense that (0,1) 

both M and D are better off by cooperating than by acting independently. However, if R’s 

fairness concerns are excessive (i.e., ), coalition MD becomes unstable as it is better off 1 

to dissolve the coalition by working on their own (i.e.,  if  where * * *MD CD CD
MD M D    1 

equality holds at ). As for , its interpretation is similar to the case in 1 
* *

0
MD MD

MD R 
 

 
  

 
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Proposition 8(2) and  serves as a profit redistribution vehicle between R and its upstream 

partner MD, which is a coalition here instead of an individual member D in Model CD. 

Proposition 9.  The optimal profits and sale quantities of new and remanufactured products 

under the four models satisfy:

(1) , where  , ,
* ( )

* ( )

i n
j
i r

j

 
 


  1 1

1
n r nc A c c




    


   
(1 )

r n rA c c A c 
 


   


 { , , , }i CC CD MD DR

and j corresponds to the relevant coalition(s) in a particular model i, where the coalition can 

be an individual member M, D, or R, a partial coalition MD or DR, or the grand coalition T;

(2)  , .
*

*

( )
(1 )

i
n r

i
r n

q A c
q c

 


 



{ , , , }i CC CD MD DR

Proof. The proof is furnished in Appendix I.

        Proposition 9 clearly shows that the ratio of the profit contribution from new products to 

that from remanufactured products is independent of R’s fairness concern parameter and 

remains constant at  for each relevant coalition in the four models. While this result 
( )

( )

i n
j
i r
j

 
 



is natural for models CC and DR where R’s fairness concerns are irrelevant, the impact of R’s 

concerns on the ratio of the profit contribution from new products to that from 

remanufactured products is exactly cancelled out for each coalition involved in models CD 

and MD. As for sales quantities of new and remanufactured products, Proposition 7(1) clearly 

shows that they are both independent of R’s fairness concern and, hence, the ratio 

 is also independent of . 
*

*

( )
(1 )

i
n r

i
r n

q A c
q c

 


 





Proposition 10. By examining the equilibrium solutions and profits in Models CD and MD 

when  with those when , one obtains the following result:0  0 

(1) , , , ;* *

0 0

CD CD
n nw w

  
 * *

0 0

CD CD
r rw w

  
 * *

0 0

MD MD
n nw w

  
 * *

0 0

MD MD
r rw w

  


(2) , , , .* *

0 0

CD CD
D D 

 
 

 * *

0 0

CD CD
R R 

 
 

 * *

0 0

MD MD
MD MD 

 
 

 * *

0 0

MD MD
R R 

 
 



Proof. The proof is given in Appendix J.

Propositions 5-8 indicate that R’s fairness concerns only affect the wholesale prices and 

related profit distributions under Models CD and MD. Proposition 10(1) shows that the 

upstream member D or coalition MD always offers lower wholesale prices for new and 

remanufactured products when R is fairness-minded compared to the case when R is fairness-

neutral. Proposition 10(2) is natural as R’s fairness concerns lead D in Model CD and MD in 

Model MD to transfer more of their profits to R. As such, fairness-minded R rakes in more 
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profit than a fairness-neutral R at the expense of member D in Model CD and coalition MD in 

Model MD.

From Propositions 5-10, we conclude that R’s fairness concerns do not affect the retail 

prices and sale quantities of the new and remanufactured products under the four models, 

leading to constant quantity and individual profit ratios of new to remanufactured products. 

R’s fairness concerns serve as a profit redistribution tool between R and its immediate 

upstream partner D in Model CD and DR in Model DR but do not affect the total channel 

profit. We can also conclude that cooperation enhances channel profit, and the more 

cooperative the CLSC members are, the higher the channel profit. However, it remains 

unsettled how the resulting surplus profit should be allocated among the supply chain 

members. Next, we shall resort to the cooperative game theory to address this issue.

6. Cooperative game theoretic coordination mechanisms for CLSCs with 

R’s fairness concerns 

In this section, the cooperative game theory is employed to address fair allocation of surplus 

profit among the three CLSC members. This research defines fair allocation from both 

individual and collective rationality angles: A fair allocation scheme must enhance each 

member’s individual profitability and collectively attain the maximum channel profit in the 

centralized case.

6.1. The characteristic function form of the cooperative game

A characteristic-function game is a pair  consisting of a set of n players  [ , ]N v {1,2, , }N n 

and a characteristic function , mapping every coalition  to a value  (Schmeidler, v S N ( )v S

1969). Given our CLSC setting, a cooperative game  is established in the characteristic-[ , ]N v

function form in which  represents the three CLSC members. Now we { , , }N M D R

compute the characteristic values of all possible coalitions, , , , , ( )v  ( )v M ( )v D ( )v R

, , , and . According to the cooperative game theory, the ( )v MD ( )v MR ( )v DR ( )v MDR

characteristic value of a coalition is the minimum profit that it can gain based solely on its 

own effort (Leng and Parlar, 2009). In other words, the characteristic value of a coalition 

represents its bottom line and reflects its bargaining power in the cooperative game. Taking 

R’s characteristic value  as an example. R’s profits in Models CD and MD are  ( )v R *CD
R K

and , respectively. Hereafter, coefficient  is employed as a proxy of  in our *MD
R K *i

j *i
j

analysis as it clearly indicates the profit allocation ratio for different coalitions as a fraction of 
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the channel profit in the centralized case. As per Leng and Parlar (2009) and Nagarajan and 

Sošić (2008), the characteristic value is calculated as .  Similar * * *( ) min{ , }CD MD CD
R R Rv R    

to , other characteristic values are obtained as shown in Table 3. Note that the ( )v R

characteristic value of an empty coalition is naturally zero,  and thus omitted here. ( ) 0v  

The value of coalition MR is zero owing to Assumption 5. 
Table 3. The characteristic function of the cooperative game with R’s fairness concerns

Coalition ( )M ( )D ( )R ( )MD ( )MR ( )DR ( )MDR

( )v S *CD
M *CD

D *CD
R *MD

MD 0 *DR
DR *CC

T

Value
1
4

1
8 16







1 4
16 32







1
2 4







0
1
4

1

6.2. Core guaranteed allocation mechanisms

Proposition 8 indicates that the channel achieves the maximum profit K when the three CLSC 

members form the grand coalition in the centralized model. We aim to find a stable allocation 

scheme so that all members are better off if they are willing to coordinate their decisions. 

Since the characteristic values in Table 3 are furnished as profit coefficients, we denote , Mx

, and  as the allocated profit coefficients to M, D, and R, respectively. A triple Dx Rx

 is called suitable if it satisfies the following two properties:( , , )M D Rx x x

(1) Individual rationality: , , and ;( )Mx v M ( )Dx v D ( )Rx v R

(2) Collective rationality: .( )M D Rx x x v MDR  

A triple  =  satisfying the aforesaid properties is called an imputation of ( )x   , ,M D Rx x x

the cooperative game (Straffin (1993), and the set containing all nondominated imputations is 

denoted by . To obtain and analyze a unique allocation scheme, Gillies (1959) introduces ( )I 

the core of an n-person cooperative game in the characteristic-function form as 

. In the context of our research, this formula ( ) ( ) ( ) ( ) ( ) for all i
i S

C v x v I v x v v S S N


 
    

 


can be rewritten as , , , , , ( )Mx v M ( )Dx v D ( )Rx v R  M Dx x v MD   M Rx x v MR 

and . D Rx x v DR 

If the core is nonempty, its implied allocation scheme makes the grand coalition stable as 

no member is willing to leave the coalition unilaterally. Next, we shall propose three different 

coordination mechanisms based on the cooperative game theory, each suggesting a unique 

allocation scheme. 
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Next, three cooperative game mechanisms are proposed to allocate surplus profit due to 

cooperation among the three members. For notational convenience, denote   as member j’s i
jx

allocated profit coefficient under mechanism i, i = SVM (Shapley value mechanism), NSM 

(nucleolus solution mechanism), ESM (equal satisfaction mechanism); j = M, D, R.

6.3. The Shapley Value Mechanism (SVM)

Shapley value (Shapley, 1953) is a widely accepted profit allocation mechanism in 

cooperative games, which is simply the average marginal contribution of each player if this 

player enters all possible coalitions in a completely random order. Given the cooperative 

game , , the Shapley value of each CLSC member is determined as[ , ]N v { , , }N M D R

,
,

( )[ ( ) ( \ )], , ,SVM
j

j S S N
x w S v S v S j j M D R

 

   (6)

where  is the characteristic value of the coalition formed by all members in  except ( \ )v S j S

for ,  represents the number of players in coalition , and  is j S S
(3 )!( 1)!

( )=
3

S S
w S

 
！

the weight factor. It is worth noting that the Shapley value may not be in the core and will 

thus make the grand coalition unstable. Therefore, the objective of SVM is not only to derive 

the Shapely value but also to investigate whether it is in the core.

6.4. The Nucleolus Solution Mechanism (NSM)

Now we present the nucleolus solution concept that aims to minimize the largest degree of 

dissatisfaction of an allocation scheme (Schmeidler, 1969). By applying it to our cooperative 

game , we calculate the nucleolus solution as follows:[ , ]N v

.min  (7)

,
  for any

. .
NSM
l

l S
NSM NSM NSM C
M D R T

v S x S N
s t

x x x






   

   


(8)

where  can be treated as the “unhappiness” of the unhappiest player  (Leng and Parlar, 

2009). This linear programming model can be solved iteratively to find the nucleolus solution 

of the problem. It is noted that the nucleolus is always in the core if it exists.

6.5. The Equal Satisfaction Mechanism (ESM)



ACCEPTED MANUSCRIPT

25

If a central planner wishes to encourage supply chain members to cooperate and form the 

grand coalition, one possible mechanism is to equalize their satisfaction by properly allocating 

the profit. Loosely speaking, satisfaction is defined as the ratio of the allocated profit to the 

ideal income. More specifically, denote member j’s ideal income by , which is calculated jr

by (Dai and Chen, 2012)

.( ) ( \ )jr v MDR v MDR j  (9)

Then, given member ’s allocated profit , its satisfaction can be defined asj jx

.j j js x r (10)

Understandably, the ideal income  is usually unattainable, but it furnishes an upper jr

bound for the allocated profit for player  and it is reasonable for the player to expect a j

dividend of (Tijs, 1987). It is apparent that the higher the , the more satisfied the ( )v MDR js

player is with the allocated profit. 

Following the idea in Frisk et al. (2010)’s Equal Profit Method, we propose a new profit 

allocation mechanism that minimizes the maximum pairwise satisfaction difference, which is 

referred to as the Equal Satisfaction Mechanism (ESM). Given the cooperative game in the 

characteristic-function form , the ESM is formulated as the following linear program:[ , ]N v

min f (11)

Subject to ,  , , ,  and g hf s s g h M D R g h     (12)

( ),ESM
h

h S
x v S S N



  (13)

( )ESM
h

h N
x v N



 (14)

( ) ( ) ( ( ) ( ))ESM ESM ESM
R D Rx x x v R v D v R      (15)

, ,0ESM
hx  , ,h M D R (16)

Constraint (12) measures pairwise satisfaction differences between any two members, 

which allows the objective function  to minimize the largest satisfaction difference. f

Constraints (13) and (14) ensure that the optimal allocation is in the core. Constraint (15) 
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guarantees that R’s utility under ESM is no less than that under NCM. Therefore, the ESM 

allocation scheme aims to equalize all members’ satisfaction while securing individual 

rationality, stability of the grand coalition, and improved utility for R.

7. Numerical experiment and comparative studies

In this section, by setting , we first illustrate the solution process of profit allocation 0.9 

under the three coordination mechanisms presented in Section 6. Then, detailed comparative 

studies are carried out to examine how R’s fairness concern parameter  affects profit 

allocations among the three CLSC members and R’s utility under the three coordination 

mechanisms. This comparison sheds insights on the advantages and disadvantages of the three 

coordination mechanisms from different angles.

7.1. Solution process of profit allocations under the three coordination mechanisms

To obtain profit allocation schemes under the three coordination mechanisms in Section 6, we 

first set R’s fairness concern parameter at . By plugging this value into the 0.9 

characteristic function in Table 3, we have
Table 4. The characteristic values when  0.9 

Coalition ( )M ( )D ( )R ( )MD ( )MR ( )DR ( )MDR

 v S *CD
M *CD

D *CD
R *MD

MD 0 *DR
DR *CC

T

Value 0.25 0.0848 0.1027 0.3393 0 0.25 1

The next step is to check if the core of this game is empty (see Section 6.2 for more 

details). The core of this three-player game is computed by the toolbox TUGlab (Mirás Calvo, 

2006) and graphically illustrated in the barycentric coordinates as shown in Fig. 2, where the 

nonempty core is specified as the shaded area.

The third step is to calculate the profit allocation schemes under the three coordination 

mechanisms. Given the characteristic values in Table 4, the following calculations can be 

carried out.

(1) By solving Eq. (6), we can obtain the allocation scheme under SVM as 

,  and .0.3586SVM
Mx  0.401SVM

Dx  0.2403SVM
Rx 

(2) By solving the linear program given by (7) and (8), we derive the allocation scheme 

under NSM as ,  and .0.4375NSM
Mx  0.2723NSM

Dx  0.2902NSM
Rx 

(3) From Eq. (9), the ideal profit allocation coefficients are determined for the three 

members as , , and . Subsequently, the allocation scheme under 0.75Mr  1Dr  0.6607Rr 
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ESM is derived by solving the linear program given in (11)-(16) as , 0.3111ESM
Mx 

, and .0.4148ESM
Dx  0.2741ESM

Rx 

It is clear from Section 6.4 and 6.5 that the allocation schemes from NSM and ESM are 

automatically in the core if existent. The aforesaid calculations confirm their existence. So, 

our final step is to examine whether the SVM solution falls within the core as it is well known 

that the SVM always has a solution, but it is not necessarily in the core. Fig. 2 clearly shows 

that the allocation solutions under SVM, NSM and ESM are all located in the core. This 

indicates that the three allocation schemes here can all make the grand coalition stable.

(0.8125,0.0848,0.1027) (0.25,0.6473,0.1027)

(0.25,0.0848,0.6652)

NSM

SVM

ESM

Fig. 2. Core and the solutions under the three coordination mechanisms ( )0.9 

7.2. Comparative studies: profit allocations and R’s utility under the three coordination 

mechanisms

Fig. 2 in Section 7.1 confirms that, at  the solutions from the three coordination 0.9, 

mechanisms all fall within the core and, hence, result in unique profit allocation schemes for 

the three CLSC members. In this section, by changing the fairness concern parameter  from 

0 to 5 in increment of 0.2, we carry out extensive comparative studies to assess the 

performance of the three coordination mechanisms relative to the benchmark case NCM from 

two aspects: profit allocations and R’s utility. Our numerical studies verify that the 

characteristic functions for these  values all have non-empty cores and the corresponding 

profit allocation schemes are enforceable as they fall within the core and make the grand 

coalition stable. 

7.2.1. Comparison of profit allocations under the three coordination mechanisms
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Table 5 lists the profit allocation results for the three members at different values of  under 

the three cooperative mechanisms and the benchmark noncooperative case NCM, which can 

be graphically illustrated in Fig. 3. This figure visually compares the profit allocation between 

each of the three coordination mechanisms and the NCM, where the solid lines show the 

results for the coordination mechanisms and dashed lines are for the NCM. In addition, the 

black, blue, and red lines signify the profits for M, D, and R, respectively. Fig. 3(a) compares 

the individual profits between the SVM and NCM, Fig. 3(b) illustrates the difference in profit 

allocation under NSM and NCM, Fig. 3(c) and 3(d) show the differences in profits between 

NCM and ESM with and without R’s utility constraint, respectively. To differentiate the ESM 

with R’s utility constraint from that without the constraint, we hereafter refer them to as ESM 

and NESM, respectively. All the profits in these figures are shown as a fraction of K. The 

dashed lines in the four sub-figures clearly demonstrate that, under NCM, M’s profit stays 

constant as R is only concerned with distributional fairness with D, which does not affect M. 

When , R has no fairness concerns and D’s profit is higher than R’s. When  increases, 0  

R’s profit increases and D’s profit decreases. R’s and D’s profit lines insect at  = 0.5. Fig. 3 

clearly demonstrates that M, D, and R all have higher profits under the three coordination 

mechanisms compared to those under NCM. Collectively, our calculations indicate that SVM, 

NSM, and ESM with and without R’s utility constraint can fully coordinate the CLSC by 

achieving the optimal channel profit under the centralized setting. 

1 2 3 4 5

0.1

0.2

0.3

0.4

x j

xM
NCM x D

NCM xR
NCM

xM
SVM x D

SVM xR
SVM

(a)  Individual profits under SVM and NCM

1 2 3 4 5

0.1

0.2

0.3

0.4

x j

xM
NCM x D

NCM xR
NCM

xM
NSM x D

NSM xR
NSM

(b) Individual profits under NSM and NCM
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1 2 3 4 5

0.1

0.2

0.3

0.4

x j

xM
NCM x D

NCM xR
NCM

xM
ESM x D

ESM xR
ESM

    
(c) Individual profits under ESM and NCM

1 2 3 4 5

0.1

0.2

0.3

0.4

x j

xM
NCM x D

NCM xR
NCM

xM
NESM x D

NESM xR
NESM

(d) Individual profits under NESM and NCM
Fig.3. Individual profit comparisons between the three coordination mechanisms and NCM

More specifically, Fig. 3(a) indicates that, under SVM, D is allocated the largest share of 

the channel profit, followed by M and, then, R. This differs from the NCM case where M 

takes the largest share due to its leadership role in the CLSC. This result is due to the 

allocation principle under SVM, which is based on the average marginal contributions of the 

three members by entertaining different coalitions. Given Assumption 5, it is impossible for 

M and R to form a coalition owing to D’s irreplaceable position in the CLSC. This is 

characterized by , which decreases M’s and R’s marginal contributions but ( ) 0v MR 

increases D’s marginal contribution. Under this assumption, D basically takes over the 

leadership role and, hence, is allocated the largest share of the total profit. Furthermore, as 

SVM is derived based on the characteristic function, the allocated profits under SVM reflect 

the general trend of the characteristic function. In NCM, it is understandable that  and ( )v D

 decrease in R’s fairness concern parameter  while  increases in . As such, ( )v MD  ( )v R 

the allocated profits for M, D, and R under SVM in Fig. 3(a) clearly follow the same pattern: 

the lines change more rapidly when  is small and get flatter when  becomes bigger. 

Fig. 3(b) demonstrates that the profit allocation under NSM resonates the trend under 

NCM: M’s profit stays constant, R’s profit increases in , while D’s profit decreases in   

and intersects R’s profit line at . Another feature is that, compared to NCM, each 0.5 

member under NSM receives an identical profit increment of  regardless of the value 0.1875K

of . This result is due to the surplus profit distribution principle under NSM, which 

iteratively minimizes the “unhappiness” of the unhappiest player. To fairly increase every 

member’s happiness under the cooperative framework, NSM evenly splits the channel profit 

increment  among M, D, and R compared to NCM. Thus, each member receives an 0.5625K

equal surplus profit of . 0.1875K
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Fig. 3(c) and 3(d) compare profit allocations between ESM and NCM, where Fig. 3(c) 

includes R’s utility constraint (15) and Fig. 3(d) drops it. Without accounting for R’s utility 

constraint (15), Fig. 3(d) shows a similar pattern of profit allocations as Fig. 3(a) for the three 

members,  , which is consistent with the relationship of the three SVM SVM SVM
D M Rx x x 

members’ ideal income coefficients (i.e., ). The difference is that the equalization D M Rr r r 

of satisfactions shifts R’s profit up and M’s profit down. By incorporating R’s utility 

constraint (15) in ESM, Fig. 3(c) confirms that the same relationship  only ESM ESM ESM
D M Rx x x 

holds for small enough . This result is reasonable as the basic idea of ESM is to minimize 

the satisfaction differences among the three members. When , Fig. 3(c) shows 1.08809 

that R’s profit increases and D’s and M’s profits decrease at rapid paces. Once  extends 

beyond 1.08809, R’s utility constraint (15) becomes binding, and the rate of profit change 

decreases slightly for the three members. When  further increases to , the equal  2.485 

satisfaction constraint (12) starts kicking in. The joint effect of constraints (12) and (15) 

causes D’s and R’s profits to jump down and M’s profit to jump up, helping to close the 

satisfaction gaps among the three members. Thereafter, M’s and R’s profits increase and D’s 

profit decreases in  at much slower paces. For large enough , we have    ESM ESM ESM
M R Dx x x 

in Fig. 3(c), as opposed to  for all  in Fig. 3(d). In summary, Fig. 3(c) NESM NESM NESM
D M Rx x x  

and Fig. 3(d) clearly show how R’s utility constraint (15) in ESM affects the surplus profit 

allocation among the three members under ESM.

These numerical studies confirm that the aforesaid three coordination mechanisms can 

fully coordinate the CLSC by achieving the optimal channel profit under the centralized case. 

In addition, Fig. 3 clearly shows that the resulting surplus profit allocation schemes can 

improve profitability for every CLSC member. As each coordination mechanism follows a 

unique principle to encourage cooperation, different CLSC members tend to gain differently 

under these three mechanisms. Nevertheless, it is further verified that these allocation 

schemes fall in the core of the cooperative game, making the grand coalition stable and 

furnishing viable options for the three members to collaborate with each other for individual 

and collective betterment. 

Table 5 also displays each member’s increased profits for different values of  under 

each coordination mechanism compared to the benchmark case NCM. Based on the results 

from this numerical experiment, one can obtain the average increased profits for the three 

members under the three coordination mechanisms as listed in the last row of Table 5 and 

graphically illustrated in Fig. 4. From Fig. 4, it is clear that, except for the case NSM when the 
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three members are equally rewarded by an equal increased profit, D and R are, on average, 

better off than M. The primary reasons are due to D’s indispensable position in this supply 

chain and R’s fairness concerns. Fig. 4 clearly shows that D, on average, achieves a higher 

profit enhancement than R does, implying that D’s irreplaceable position in the CLSC plays a 

more significant role in profit allocation than R’s fairness concerns do. On the other hand, M 

is still incentivized to join the grand coalition as his profit will also be enhanced under these 

coordination mechanisms compared to NCM.

Fig.4. Comparisons of each member’s average increased profits relative to the NCM

7.2.2. Comparison of R’s utility under the three coordination mechanisms

Fig. 5 graphically displays how R’s utility changes with its fairness concern parameter  

under the benchmark case NCM and the three coordination mechanisms.

1 2 3 4 5

0.2

0.2

0.4

0.6
UR

 
Retailer utility of SVM Retailer utility of NSM

Retailer utility of ESM Retailer utility of NCM

Fig.5. Comparisons of R’s utilities
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Table 5. Profit allocations for the three members under NCM and the three coordination mechanisms
Manufacturer Distributor Retailer


NCM SVM IP NSM IP ESM IP NCM SVM IP NSM IP ESM IP NCM SVM IP NSM IP ESM IP

0 0.2500 0.3854 0.1354 0.4375 0.1875 0.3333 0.0833 0.1250 0.4479 0.3229 0.3125 0.1875 0.4444 0.3194 0.0625 0.1667 0.1042 0.2500 0.1875 0.2222 0.1597 
0.2 0.2500 0.3735 0.1235 0.4375 0.1875 0.3231 0.0731 0.1071 0.4271 0.3200 0.2946 0.1875 0.4308 0.3236 0.0804 0.1994 0.1190 0.2679 0.1875 0.2462 0.1658 
0.4 0.2500 0.3669 0.1169 0.4375 0.1875 0.3176 0.0676 0.0972 0.4155 0.3183 0.2847 0.1875 0.4235 0.3263 0.0903 0.2176 0.1273 0.2778 0.1875 0.2588 0.1685 
0.6 0.2500 0.3627 0.1127 0.4375 0.1875 0.3143 0.0643 0.0909 0.4081 0.3172 0.2784 0.1875 0.4190 0.3281 0.0966 0.2292 0.1326 0.2841 0.1875 0.2667 0.1701 
0.8 0.2500 0.3598 0.1098 0.4375 0.1875 0.3120 0.0620 0.0865 0.4030 0.3165 0.2740 0.1875 0.4160 0.3295 0.1010 0.2372 0.1362 0.2885 0.1875 0.2720 0.1710 
1 0.2500 0.3576 0.1076 0.4375 0.1875 0.3103 0.0603 0.0833 0.3993 0.3160 0.2708 0.1875 0.4138 0.3305 0.1042 0.2431 0.1389 0.2917 0.1875 0.2759 0.1717 

1.2 0.2500 0.3560 0.1060 0.4375 0.1875 0.3063 0.0563 0.0809 0.3964 0.3155 0.2684 0.1875 0.4084 0.3275 0.1066 0.2475 0.1409 0.2941 0.1875 0.2853 0.1787 
1.4 0.2500 0.3547 0.1047 0.4375 0.1875 0.3013 0.0513 0.0789 0.3942 0.3153 0.2664 0.1875 0.4018 0.3228 0.1086 0.2511 0.1425 0.2961 0.1875 0.2969 0.1883 
1.6 0.2500 0.3537 0.1037 0.4375 0.1875 0.2973 0.0473 0.0774 0.3924 0.3150 0.2649 0.1875 0.3963 0.3190 0.1101 0.2540 0.1439 0.2976 0.1875 0.3064 0.1963 
1.8 0.2500 0.3528 0.1028 0.4375 0.1875 0.2938 0.0438 0.0761 0.3909 0.3148 0.2636 0.1875 0.3918 0.3157 0.1114 0.2563 0.1449 0.2989 0.1875 0.3144 0.2030 
2 0.2500 0.3521 0.1021 0.4375 0.1875 0.2909 0.0409 0.0750 0.3896 0.3146 0.2625 0.1875 0.3879 0.3129 0.1125 0.2583 0.1458 0.3000 0.1875 0.3211 0.2086 

2.2 0.2500 0.3515 0.1015 0.4375 0.1875 0.2885 0.0385 0.0741 0.3885 0.3144 0.2616 0.1875 0.3846 0.3105 0.1134 0.2600 0.1466 0.3009 0.1875 0.3269 0.2135 
2.4 0.2500 0.3509 0.1009 0.4375 0.1875 0.2863 0.0363 0.0733 0.3876 0.3143 0.2608 0.1875 0.3817 0.3085 0.1142 0.2615 0.1473 0.3017 0.1875 0.3320 0.2177 
2.6 0.2500 0.3505 0.1005 0.4375 0.1875 0.3337 0.0837 0.0726 0.3868 0.3142 0.2601 0.1875 0.3506 0.2780 0.1149 0.2628 0.1479 0.3024 0.1875 0.3157 0.2008 
2.8 0.2500 0.3501 0.1001 0.4375 0.1875 0.3350 0.0850 0.0720 0.3860 0.3140 0.2595 0.1875 0.3469 0.2749 0.1155 0.2639 0.1484 0.3030 0.1875 0.3181 0.2026 
3 0.2500 0.3497 0.0997 0.4375 0.1875 0.3362 0.0862 0.0714 0.3854 0.3140 0.2589 0.1875 0.3436 0.2722 0.1161 0.2649 0.1488 0.3036 0.1875 0.3202 0.2041 

3.2 0.2500 0.3494 0.0994 0.4375 0.1875 0.3373 0.0873 0.0709 0.3849 0.3140 0.2584 0.1875 0.3407 0.2697 0.1166 0.2658 0.1492 0.3041 0.1875 0.3221 0.2055 
3.4 0.2500 0.3491 0.0991 0.4375 0.1875 0.3382 0.0882 0.0705 0.3843 0.3138 0.2580 0.1875 0.3381 0.2676 0.1170 0.2666 0.1496 0.3045 0.1875 0.3237 0.2068 
3.6 0.2500 0.3488 0.0988 0.4375 0.1875 0.3390 0.0890 0.0701 0.3839 0.3138 0.2576 0.1875 0.3357 0.2656 0.1174 0.2673 0.1499 0.3049 0.1875 0.3252 0.2079 
3.8 0.2500 0.3486 0.0986 0.4375 0.1875 0.3398 0.0898 0.0698 0.3835 0.3137 0.2573 0.1875 0.3336 0.2638 0.1177 0.2679 0.1502 0.3052 0.1875 0.3266 0.2089 
4 0.2500 0.3484 0.0984 0.4375 0.1875 0.3405 0.0905 0.0694 0.3831 0.3137 0.2569 0.1875 0.3317 0.2622 0.1181 0.2685 0.1504 0.3056 0.1875 0.3279 0.2098 

4.2 0.2500 0.3482 0.0982 0.4375 0.1875 0.3411 0.0911 0.0691 0.3828 0.3137 0.2566 0.1875 0.3299 0.2608 0.1184 0.2691 0.1507 0.3059 0.1875 0.3290 0.2106 
4.4 0.2500 0.3480 0.0980 0.4375 0.1875 0.3416 0.0916 0.0689 0.3824 0.3135 0.2564 0.1875 0.3283 0.2594 0.1186 0.2696 0.1510 0.3061 0.1875 0.3300 0.2114 
4.6 0.2500 0.3478 0.0978 0.4375 0.1875 0.3422 0.0922 0.0686 0.3821 0.3135 0.2561 0.1875 0.3269 0.2582 0.1189 0.2700 0.1511 0.3064 0.1875 0.3310 0.2121 
4.8 0.2500 0.3477 0.0977 0.4375 0.1875 0.3426 0.0926 0.0684 0.3819 0.3135 0.2559 0.1875 0.3255 0.2571 0.1191 0.2704 0.1513 0.3066 0.1875 0.3319 0.2128 
5 0.2500 0.3475 0.0975 0.4375 0.1875 0.3431 0.0931 0.0682 0.3816 0.3134 0.2557 0.1875 0.3242 0.2560 0.1193 0.2708 0.1515 0.3068 0.1875 0.3327 0.2134 

AIP 0.1043 0.1875 0.0725 0.3151 0.1875 0.2931 0.1431 0.1875 0.1969 
IP: increased profit compared to the case under NCM; AIP: Average increased profit compared to the case under NCM
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For the benchmark case NCM where the three members make their independent decisions, 

as R’s fairness concerns bring down D’s profit and bump up R’s profit, R’s utility 

understandably increases in  as shown in the increasing black line in Fig. 5. As all the three 

coordination mechanisms enhance R’s profitability to various degrees, it is natural that R’s 

utility is higher under SVM, NSM, and ESM than that under NCM when its fairness concerns 

are not too strong. As a matter of fact, given that NSM equally splits the surplus profit among 

the three members, R’s utility under NSM is simply shifted up by a constant compared to the 

NCM case, which is plotted as a parallel increasing green line in Fig. 5. Under ESM, R’s 

utility first decreases in  when it is small. At , R’s utility constraint becomes  1.08809 

binding and the blue line coincides with the black line in Fig. 5. As for SVM, D receives the 

highest profit allocation among the three members. Although R’s profit is enhanced, its 

fairness concerns drives its utility down as  increases. At , R’s utility breaks  0.746711 

even with the case in NCM. Thereafter, R’s utility suffers a loss under SVM compared to that 

under NCM. When  further increases beyond , its utility even turns negative as  2.82542 

shown in the red declining line in Fig. 5. 

Given R’s noneconomic fairness concerns, one can see that profit enhancement does not 

necessarily lead to higher utility for R under the three coordination mechanisms. From R’s 

utility perspective, NSM brings in the highest utility gain, while SVM and ESM only benefit 

R’s utility when R is not so concerned with distributional fairness. 

The analytical and numerical studies shed important managerial insights on operating the 

CLSC. Firstly, the equilibrium analysis in Section 5 confirms the conventional wisdom: With 

R’s fairness concerns, it remains true that the more cooperative the CLSC, the higher the 

channel profit. This result motivates us to consider coordinating the supply chain system from 

a cooperative game perspective instead of relying on traditionally contracting design based on 

a noncooperative framework. Secondly, the three proposed cooperative game approaches are 

viable mechanisms to coordinate the CLSC system as each offers a unique allocation scheme 

that satisfies both individual and collective rationality. As different coordination mechanisms 

benefit the three members differently, the resulting allocation schemes furnish diverse 

perspectives and can serve as sensible starting points for the supply chain partners to negotiate 

a final deal based on their relative power standing in the system. Thirdly, for the fairness-

minded R, its enhanced profit is not necessarily translated into a higher utility compared to the 

benchmark noncooperative mechanism, especially when its fairness concern level is high and 

SVM is adopted as the basis for allocating surplus profit. In this case, D should be prepared to 
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give up more profit to entice the retailer to remain in the grand coalition for the betterment of 

every member (higher profit for M and D and higher utility for R). 

8. Conclusions

Based on a three-echelon CLSC consisting of M, D, and R, this paper takes R’s fairness 

concerns into account under four scenarios: the centralized (CC), decentralized (CD), and two 

partial-coalition models (MD and DR). Equilibrium analyses are first carried out for these 

four models. Analytical results reveal that the more decentralized the supply chain system, the 

more the channel profit suffers. In Models CD and MD where R’s fairness concerns are in 

effect, the corresponding parameter  serves as a tool to redistribute the profits between R 

and its immediate upstream partner (D or MD) without affecting the relevant channel 

profitability. In addition, it is understandable that the larger the , the more the profit will be 

transferred to R. Based on the equilibrium results, the characteristic function of the 

cooperative game is derived. Subsequently, three coordination mechanisms, the Shapley value, 

nucleolus solution, and equal satisfaction are proposed to allocate surplus profit among the 

three CLSC members. Numerical studies confirm that the resulting surplus profit allocation 

schemes satisfy both individual and collective rationality and fall in the core of the 

cooperative game, thereby making the grand coalition stable and suggesting viable options to 

coordinate the CLSC system. Comparative analyses are carried out to examine how R’s 

fairness concern parameter  affects profit allocations among the three CLSC members and 

R’s resulting utility under the three coordination mechanisms. While all members achieve 

higher profits under the three coordination mechanisms compared to the decentralized case, 

numerical experiment reveals that D receives the highest profit share under SVM, M gets the 

largest profit under NSM, and the three CLSC members tend to be more equitably rewarded 

under ESM. From R’s utility perspective, its enhanced profit does not always translate into 

higher utility: While R always enjoys higher utility under NSM than that under NCM, for 

large , it tends to suffer a utility loss under SVM compared to NCM, thereby deterring the 

fairness-concerned R from joining the grand coalition.

Significant opportunities exist for future research. For instance, this paper only considers 

coordination mechanisms based on the cooperative game methods. It is well known that 

different contracting forms based on non-cooperative game models can also coordinate supply 

chains. It is a worthy topic to carry out a comparative study between these two classes of 

coordination models. In addition, this research considers a three-echelon CLSC with one 

member at each echelon. It is worthwhile to extend this research to a more complex CLSC 
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network structure with two or more members at one or more echelons. In this article, fairness 

concerns are characterized by R’s aversion to disadvantageous inequality and the other two 

members are assumed to be fairness-neutral. It would be interesting to incorporate other 

members’ fairness concerns as well as peer-induced fairness concerns (Ho et al., 2014) into 

the model and examine their impact on the supply chain operations and surplus profit 

allocation.

Appendix A. Proof of Proposition 1

Substituting the demand functions  and  into the profit function  and ( , )n n rq p p ( , )r n rq p p CC
T

taking partial derivatives of the channel profit with respect to retail prices, we have 
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This proves Proposition 1. 

Appendix B. Proof of Proposition 2

In Model CD, the supply chain members make decisions independently, where M and D 

maximize their individual profit functions and R maximizes its utility function. This is 

modelled as a Stackelberg game where M first makes his wholesale price decisions mn and mr, 

then D determines her wholesale prices wn and wr, and finally, R sets its retail prices of new 
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and remanufactured products pn and pr and sells them to the end market. The backward 

induction method is used to solve this model as follows.

First, substituting demand functions  and  into R’s utility function ( , )n n rq p p ( , )r n rq p p

 and taking partial derivatives, one has , , CD
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Subsequently, we determine D’s optimal wholesale prices of new and remanufactured 

products as  and , and R’s * 3 5 3
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Proposition 2 is thus confirmed.

Appendix C. Proof of Proposition 3

In Model MD, coalition MD and R constitute a two-echelon Stackelberg game model where 

the coalition is the leader and R the follower. Similarly, backward induction is employed to 

solve this model. 

Substituting demand functions  and  into R’s utility function and ( , )n n rq p p ( , )r n rq p p MD
Ru

taking partial derivatives, one has , , and 
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This indicates that R’s utility function  is strictly joint concave in  and  and has a MD
Ru np rp

unique optimal solution. Solving the first-order conditions  and  leads to 0
MD
R

n

u
p





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R’s optimal response functions 
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and remanufactured product quantities 
 
and  as functions of the *( , )MD

n n rq w w *( , )MD
r n rq w w

coalition’s wholesale prices wn and wr.



ACCEPTED MANUSCRIPT

38

Next, substituting  
 
and  into coalition MD’s profit function *( , )MD

n n rq w w *( , )MD
r n rq w w

 and taking partial derivatives, we have , MD
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 and, hence, coalition MD’s profit function 
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 is strictly joint concave in  and  and has a unique optimal solution. By the first-MD
MD nw rw

order conditions  and , we get MD’s optimal wholesale prices 0
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Plugging them into R’s response functions results in the optimal retail prices of new 

and remanufactured products  and . Subsequently, we obtain * 3
4

MD
n

np c


 * 3
4

rMD
r

c Ap  


the quantities of new and remanufactured products as  and 
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4 1
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We then complete the proof of Proposition 3.

Appendix D. Proof of Proposition 4

In Model DR, M and coalition DR constitute a two-echelon Stackelberg game model with M 

being the leader and DR the follower. Once again, backward induction is applied to obtain 

equilibrium solutions.

Plugging demand functions  and  into coalition DR’s profit function ( , )n n rq p p ( , )r n rq p p

and taking partial derivatives, we have , , and 
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profit function  is strictly joint concave in  and  and has a unique optimal solution. DR
DR np rp
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By examining the first-order conditions  and , we obtain R’s optimal 0
DR
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


0
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
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response functions 
 
and . Accordingly, we can * , 1

2
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2

rDR
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express the optimal quantities of new and remanufactured products as 
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Substituting  
 
and  into M’s profit function  and taking *( , )DR
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partial derivatives, one confirms that , , and 
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unique optimal solution. By the first-order conditions  and , we obtain 0
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M’s optimal wholesale prices  and .* 1
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r
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One can then determine DR’s optimal retail prices of new and remanufactured products 

as  and , thereby obtaining equilibrium quantities of new and * 3
4
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n
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

 * 3
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rDR
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profits of M, coalition DR and the channel as , , and , * 1
4
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2
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4
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respectively.

Proposition 4 is thus proved.

Appendix E. Proof of Proposition 5

Comparing M’s wholesale prices of new and remanufactured products in Models CD and DR 

in Propositions 2 and 4, we can get:

, .* * 0CD DR
n nm m  * * 0CD DR

r rm m 

Similarly, by examining D’s wholesale prices in Model CD and MD’s wholesale prices in 

Model MD, it is easy to see that 

,  .* * (1 )(1 3 ) 0
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nCD MD
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
 
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Taking partial derivatives of the optimal wholesale prices of new and remanufactured 

products with respect to R’s fairness concern parameter , we have:

, , and ; 2

* 1 0
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Proposition 5 is then verified.

Appendix F. Proof of Proposition 6

Taking partial derivatives of the retail prices of new and remanufactured products with respect 

to R’s fairness concern parameter , it is easy to confirm that

, .
* *

0
i i

n rp p
 

 
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 
{ , , , }i CC CD MD DR

Subtracting the retail price of the remanufactured product from that of the new product 

under each of the four models, it is trivial to verify that
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Comparing the optimal retail prices of new and remanufactured products across the four 

models in Propositions 1-4, one can confirm that
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CD D nR
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Proposition 6 is thus proved.

Appendix G. Proof of Proposition 7

Taking partial derivatives of the sale quantities of new and remanufactured products with 

respect to R’s fairness concern parameter  , it is easy to confirm that

, { , , , }i CC CD MD DR .
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0
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Given the optimal sale quantities of new products  under  
 

* 1
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Subtracting the sale quantities of remanufactured products from that of new products 

under each of the four models, it is trivial to verify that
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Comparing the optimal sale quantities of new and remanufactured products across the 

four models in Propositions 1-4, we can confirm that
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Proposition 7 is thus proved.

Appendix H. Proof of Proposition 8

By examining the optimal channel profits under different models in Propositions 1-4, it is 

obvious that

, , and ;* * 1 0
4

CC MD
T T    * * 0MD DR

T T   * * 5 0
16

DR CD
T T   

Taking partial derivatives of D’s and R’s optimal profits with respect to R’s fairness 

concern parameter  under Model CD, one has
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Subtracting M’s profit under Model DR from that under Model CD, we can get:
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.* * 1 0
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Subtracting the total profit of D and R under Model CD from coalition DR’s profit under 

Model DR, we have:
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Taking partial derivatives of MD’s and R’s optimal profits under Model MD with respect 

to R’s fairness concern parameter , we confirm that
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The proof of Proposition 8 is thus completed.

Appendix I. Proof of Proposition 9

Given the equilibrium pricing decisions and sale quantities of the new and remanufactured 

products under various models, we can calculate their optimal profits as follows:
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Proposition 9(2) can be directly derived from Propositions 1-4.

The proof of Proposition 9 is thus completed.

Appendix J. Proof of Proposition 10
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The proof of Proposition 10 is thus completed.
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Highlights

 We study a three-echelon closed-loop supply chain with a fairness-minded retailer.
 Game analyses are conducted to characterize interactions among different parties.
 Three cooperative game coordination mechanisms are used to allocate surplus profit.
 Different coordination mechanisms offer distinct options to supply chain managers.
 We examine the impact of the retailer’s fairness concerns on profit allocation.
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