
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Odette School of Business Publications Odette School of Business 

2017 

Prioritization and aggregation of intuitionistic preference Prioritization and aggregation of intuitionistic preference 

relations: A multiplicative- transitivity-based transformation from relations: A multiplicative- transitivity-based transformation from 

intuitionistic judgment data to priority weights intuitionistic judgment data to priority weights 

Yibin Zhang 
Shanghai Lixin University of Commerce 

Kevin Li 
University of Windsor 

Zhou-Jing Wang 
Zhejiang University of Finance & Economics 

Follow this and additional works at: https://scholar.uwindsor.ca/odettepub 

 Part of the Business Commons 

Recommended Citation Recommended Citation 
Zhang, Yibin; Li, Kevin; and Wang, Zhou-Jing. (2017). Prioritization and aggregation of intuitionistic 
preference relations: A multiplicative- transitivity-based transformation from intuitionistic judgment data 
to priority weights. Group Decision and Negotiation, 26 (2), 409-436. 
https://scholar.uwindsor.ca/odettepub/137 

This Article is brought to you for free and open access by the Odette School of Business at Scholarship at 
UWindsor. It has been accepted for inclusion in Odette School of Business Publications by an authorized 
administrator of Scholarship at UWindsor. For more information, please contact scholarship@uwindsor.ca. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/odettepub
https://scholar.uwindsor.ca/odette
https://scholar.uwindsor.ca/odettepub?utm_source=scholar.uwindsor.ca%2Fodettepub%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/622?utm_source=scholar.uwindsor.ca%2Fodettepub%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/odettepub/137?utm_source=scholar.uwindsor.ca%2Fodettepub%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


 1 

Prioritization and aggregation of intuitionistic preference relations: A 1 

multiplicative- transitivity-based transformation from intuitionistic 2 

judgment data to priority weights  3 

 4 

Yibin Zhanga, Kevin W. Lib, Zhou-Jing Wangc* 5 

a School of Business and Administration, Shanghai Lixin University of Commerce, 6 

Shanghai 201620, China 7 

b Odette School of Business, University of Windsor, Windsor, Ontario N9B 3P4, Canada 8 

c School of Information, Zhejiang University of Finance & Economics, Hangzhou, 9 

Zhejiang 310018, China 10 

 11 

 12 

 13 

Acknowledgments 14 

This work is partially supported by the Ministry of Education, Humanities and Social 15 

Sciences Project (Grant No. 11YJA630202), the Innovation Program of Shanghai 16 

First-class Business Management Discipline, the National Natural Science Foundation of 17 

China under Grant Nos. 71572040 and 71271188, the Natural Sciences and Engineering 18 

Research Council of Canada Discovery Grant, and the Natural Science Foundation of 19 

Zhejiang Province under Grant No. LY15G010004. 20 

 21 

  22 

                                                 
* Corresponding author, Telephone: +86 571 85043562. Email: wangzj@xmu.edu.cn (Z.J. Wang). 

kevin
Typewritten Text
Group Decision and Negotiation, 26(2): 409-436, 2017.



 2 

Prioritization and aggregation of intuitionistic preference relations: A 23 

multiplicative- transitivity-based transformation from intuitionistic judgment data 24 

to priority weights  25 

Abstract 26 

This article proposes a goal programming framework for deriving intuitionistic fuzzy 27 

weights from intuitionistic preference relations (IPRs). A new multiplicative transitivity 28 

is put forward to define consistent IPRs. By analyzing the relationship between 29 

intuitionistic fuzzy weights and multiplicative consistency, a transformation formula is 30 

introduced to convert normalized intuitionistic fuzzy weights into multiplicative 31 

consistent IPRs. By minimizing the absolute deviation between the original judgment and 32 

the converted multiplicative consistent IPR, two linear goal programming models are 33 

developed to obtain intuitionistic fuzzy weights from IPRs for both individual and group 34 

decisions. In the context of multicriteria decision making (MCDM) with a hierarchical 35 

structure, a linear program is established to obtain a unified criterion weight vector, 36 

which is then used to aggregate local intuitionistic fuzzy weights into global priority 37 

weights for final alternative ranking. Two numerical examples are furnished to show the 38 

validity and applicability of the proposed models.  39 

Keywords: Intuitionistic preference relation (IPR), Multiplicative consistency, 40 

Intuitionistic fuzzy weight, Aggregation, Linear programming 41 

 42 

1. Introduction  43 

As a popular tool for tackling decision situations involving multiple and often 44 

conflicting criteria, the analytic hierarchy process (AHP) [21] has been widely applied in 45 

different contexts such as choice, ranking, and forecasting [10]. The original AHP is 46 

conceived to deal with crisp pairwise judgments furnished by the decision-maker (DM) 47 

or the analyst. However, with rapid development of information technology, the amount 48 

of data has been growing at exponential paces for decades. How to make sense of 49 

structured and unstructured big data has presented many challenges to the academics and 50 

practitioners. It is understandable that, in many cases, only imprecise judgments can be 51 



 3 

extracted from messy raw data. To further process the vague decision input, various fuzzy 52 

AHP methods have been developed based on the fuzzy set theory and hierarchical 53 

structure analysis [2, 3, 5, 8, 20, 26, 30, 46]. With these new developments, different 54 

preference relations have been introduced to characterize vague and uncertain judgment 55 

information, such as interval multiplicative preference relations [22], interval fuzzy 56 

preference relations [40], intuitionistic multiplicative preference relations [39], and 57 

intuitionistic preference relations (IPRs) [41]. 58 

Based on interval multiplicative preference relations, a number of prioritization 59 

approaches have been developed to obtain interval weights, such as goal programming 60 

models [29, 31], an eigenvector method-based nonlinear programming model [32], and 61 

consistency-test-based methods [18]. For interval fuzzy preference relations, Xu and 62 

Chen [45] introduce additive and multiplicative consistency based on normalized crisp 63 

weights and establish linear programming (LP) models to derive interval weights. Liu et 64 

al. [19] use a convex combination approach to define additive consistent interval fuzzy 65 

preference relations and put forward an algorithm to obtain interval weights based on a 66 

transformation formula between interval fuzzy and interval multiplicative preference 67 

relations. Wang and Li [34] employ interval arithmetic to define additive consistent, 68 

multiplicative consistent and weakly transitive interval fuzzy preference relations, and 69 

develop goal programming models to derive interval weights for both individual and 70 

group decisions. In addition, some approaches have been devised to aggregate local 71 

interval weights into global interval weights for MCDM problems with a hierarchical 72 

structure. For instance, Bryson and Mobolurin [4] propose a pair of LP models to 73 

aggregate local interval weights for each alternative, in which the lower and upper 74 

bounds of interval criterion weights are treated as constraints. Wang et al. [31] establish 75 

two nonlinear programming models to obtain the lower and upper bounds of a global 76 

interval weight, in which local interval weights are multiplicative and criterion weights 77 

are treated as decision variables for each alternative. 78 

When evaluating an alternative or criterion, a DM often faces massive and messy raw 79 

data in a dynamic environment, which may well present conflicting signals to the DM. In 80 

this case, it is reasonable to expect that the DM provide his/her membership assessments 81 

with hesitancy [9]. To characterize this hesitation, Atanassov [1] introduced intuitionistic 82 



 4 

fuzzy sets (IFSs) by explicitly considering nonmembership where the sum of membership 83 

and nonmembership does not necessarily add up to 1. Since its inception, IFSs have been 84 

widely applied to decision modeling [6, 7, 11-17, 23, 24, 27, 28, 33, 35-39, 41-44, 47, 48]. 85 

For instance, Szmidt and Kacprzyk [23] conceive an IPR as a fuzzy preference matrix 86 

and a hesitancy matrix, and employ a fuzzy majority rule to aggregate individual IPRs 87 

into a group fuzzy preference relation. Xu [41] adopts intuitionistic fuzzy numbers (IFNs) 88 

to define IPRs, and introduces multiplicative consistency and weak transitivity for IPRs 89 

by employing IFN operations [43]. Subsequently, based on the relationships among 90 

multiplicative consistent interval fuzzy preference relations, interval weights, and IPRs, 91 

Gong et al. [13] put forward another multiplicative consistency definition for IPRs and 92 

investigate how to derive interval priority weights by establishing goal programming 93 

models. In the context of additive IPRs, Gong et al. [12] introduce an additive 94 

consistency definition and develop a goal program and a least squares model to obtain 95 

intuitionistic fuzzy weights for an IPR. Wang [33] points out that the additive consistency 96 

transformation formulas in [12] do not always convert normalized priority weights into 97 

an IPR, and the consistency therein is defined in an indirect manner. As such, Wang [33] 98 

employs membership degrees in an IPR to define new additive transitivity conditions and 99 

investigates how to derive intuitionistic fuzzy weights by establishing goal programming 100 

models for both individual and group decision situations. In addition, Xu [44] develops 101 

an error-analysis-based approach to obtain interval priority weights from any IPR. 102 

It is well known that the definitions of consistency and prioritization play an 103 

important role in MCDM with preference relations. A literature review shows that Gong 104 

et al. [13] handle multiplicative consistency of IPRs in an indirect manner. The definition 105 

therein is based on the converted membership intervals and the associated interval 106 

priority weights rather than the DM’s original pairwise judgments. Although Xu [41] 107 

defines multiplicative consistency by using the DM’s original IPR judgments, a close 108 

examination reveals that such a multiplicative consistent IPR is technically nonexistent 109 

(See a further analysis in Section 3). Furthermore, little work has been carried out to 110 

aggregate local intuitionistic fuzzy weights into global priority weights in MCDM with a 111 

hierarchical structure. This paper is concerned with IPRs based on multiplicative 112 

transitivity. By directly employing the DM’s intuitionistic judgment information, a new 113 
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multiplicative consistency definition is proposed for IPRs. When all intuitionistic 114 

judgments are degenerated to fuzzy numbers, the multiplicative transitivity conditions are 115 

reduced to those of fuzzy reference relations proposed by Tanino [25]. Based on the 116 

relationship between intuitionistic fuzzy weights and multiplicative consistency, a 117 

transformation formula is introduced to convert normalized intuitionistic fuzzy weights 118 

into multiplicative consistent IPRs. For any IPR, a linear goal program is developed to 119 

obtain its intuitionistic fuzzy weights. This approach is then extended to group decision 120 

situations. In order to aggregate local intuitionistic fuzzy weights into global ones in 121 

MCDM with a hierarchical structure, a linear program is devised to determine a unified 122 

criterion weight vector, which is subsequently used to synthesize individual intuitionistic 123 

fuzzy weights into a global priority weight for each alternative. 124 

The rest of the paper is organized as follows. Section 2 furnishes a brief review on 125 

multiplicative consistent fuzzy preference relations, IPRs, and comparison of IFNs. 126 

Section 3 defines multiplicative consistent IPRs and shows how to transform normalized 127 

intuitionistic fuzzy weights into a multiplicative consistent IPR. In Section 4, goal-128 

programming-based intuitionistic fuzzy weight generation approaches are developed 129 

based on individual and group IPRs. Aggregation of local intuitionistic fuzzy weights is 130 

investigated in Section 5. Two illustrative examples, consisting of a comparative study 131 

with existing approaches and an MCDM problem with a hierarchical structure, are 132 

presented in Section 6 to demonstrate the validity and practicality of the proposed models. 133 

The paper concludes with some remarks in Section 7. 134 

2. Preliminaries 135 

For an MCDM problem with a finite set of alternatives, let 1 2{ , ,..., }nX x x x=  be the 136 

set of n alternatives. In eliciting his/her preference over alternatives, a DM often utilizes a 137 

pairwise comparison technique, yielding a fuzzy preference relation ( )ij n nR r = , where 
ijr  138 

denotes a fuzzy preference degree of alternative ix
 
over 

jx  such that  139 

0 1, 1, 0.5ij ij ji iir r r r  + = =        for all , 1, 2,...,i j n=                              (2.1) 140 

0.5ijr   indicates that ix  is preferred to 
jx
 
and the greater the 

ijr , the stronger alternative 141 

ix
 
is superior to 

jx . 0.5ijr   signifies that 
jx  is preferred to ix

 
and the smaller the rij, 142 
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the stronger the preference is. 0.5ijr =  shows the DM’s indifference between 
ix
 
and 

jx . 143 

In particular, 1ijr =  indicates that 
ix  is absolutely preferred to 

jx , 0ijr =  implies 
jx  is 144 

absolutely  preferred to 
ix . 145 

    Tanino [25] proposes a multiplicative consistency definition for fuzzy preference 146 

relations and introduces the following transitivity conditions. 147 

Definition 2.1 [25] A fuzzy preference relation  ( )ij n nR r =   is called multiplicative 148 

consistent if it satisfies 149 

kj ijik

ki jk ji

r rr

r r r
=            for all , , 1, 2,...,i j k n=                             (2.2) 150 

As 1ij jir r= −  for all i, j = 1, 2, …, n, one can obtain  151 

                           ij jk kj jiki ik

ji kj ik ki jk ij

r r r rr r

r r r r r r
=        for all , , 1, 2,...,i j k n=                            (2.3) 152 

It has been found that, for a fuzzy preference relation ( )ij n nR r = , if there exists a 153 

weight vector 
1 2( , ,..., )T

n   =  such that   154 

                              
i

ij

i j

r


 
=

+
        for all , 1, 2,...,i j n=                                      (2.4) 155 

where 
1

1
n

i

i


=

=  and 0i   for 1, 2,...,i n= , then R is multiplicative consistent [42].  156 

In the presence of uncertainty and vagueness in real-world decision situations, DMs 157 

often experience hesitancy in offering their fuzzy preference judgments. To characterize 158 

this hesitation, Atanassov [1] generalizes the classic fuzzy sets by introducing the notion 159 

of intuitionistic fuzzy sets (IFSs), which furnishes a convenient vehicle to accommodate 160 

the DMs’ hesitation in their judgment.  161 

Let Z be a fixed nonempty universe set, an IFS A in Z is an object given by 162 

{ , ( ), ( ) | }A AA z z z z Z =                                                                   (2.5) 163 

where : [0,1]A Z → , : [0,1]A Z →   such that 0 ( ) ( ) 1A Az z  +  , .z Z   164 

( )A z  and ( )A z  denote, respectively, the membership and nonmembership degree of 165 

element z to set A. In addition, for each IFS A in Z , ( ) 1 ( ) ( )A A Az z z  = − −  is called the 166 

intuitionistic fuzzy index of A, representing the hesitation degree of z to A. Obviously, 167 
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0 ( ) 1A z  . If  ( ) 0A z = , for every ,z Z  then  ( ) 1 ( )A Az z = − , indicating that A is 168 

reduced to a fuzzy set, ' { , ( ) | }AA z z z Z=    . 169 

  For an IFS A  and a given z, the pair ( ( ), ( ))A Az z   is called an IFN [41, 43]. For 170 

convenience, the pair ( ( ), ( ))A Az z  is often denoted by ( , )v , where , [0,1]v   and 171 

1v +  . 172 

Definition 2.2 [41] An IPR R  on X  is an intuitionistic fuzzy set on the product set 173 

X X characterized by a judgment matrix ( )ij n nR r =  with ( , )ij ij ijr v= , where ( , )ij ijv
 

174 

indicates the intuitionistic preference degree of alternative 
ix
 
over 

jx  such that 175 

0 1, , , 0.5ij ij ij ji ij ji ii iiv v v v    +  = = = =
      

, 1, 2,...,i j n=            (2.6) 176 

For an IFN ( , )v = , its score function is defined as [6],  177 

( )S v = −                                                        (2.7) 178 

where ( ) [ 1,1]S   − , and its accuracy function is defined as [15] 179 

( )H v = +                                                        (2.8) 180 

where ( ) [0,1]H   . The score function can be loosely treated as the net degree of 181 

belonging to a certain set and the accuracy function measures the total amount of non-182 

hesitant information included in the intuitionistic judgment. As such, the score and 183 

accuracy functions are often used as a basis to compare two IFNs. By taking a prioritized 184 

sequence of these two functions, Xu [41] devises the following approach to comparing 185 

any two IFNs. 186 

Let 1 1 1( , )v =  and 2 2 2( , )v =  be two IFNs,  187 

if 1 2( ) ( )S S  , then 1  is smaller than 2 , denoted by 1 2  ; 188 

if  1 2( ) ( )S S  , then 1  is greater than 2 , denoted by 1 2  ; 189 

otherwise,  190 

      if  1 2( ) ( )H H  , then 1  is smaller than 2 , denoted by 1 2  ; 191 

if  1 2( ) ( )H H  , then 1  is greater than 2 , denoted by 1 2  ; 192 

otherwise 1 2 = . 193 

Based on the aforesaid score function, Wang [33] proposes a new definition of weak 194 
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transitivity for IPRs, and shows that additive consistent IPRs are always weakly 195 

transitive. 196 

Definition 2.3 [33] Let ( )ij n nR r =
 
be an IPR, R  is weakly transitive if ( ) 0ikS r   and 197 

( ) 0kjS r 
 
imply ( ) 0,ijS r   for all  , ,i j k = 1, 2, ...,n . 198 

3. Multiplicative consistency of intuitionistic preference relations 199 

This section employs the original intuitionistic judgment information to introduce a 200 

new multiplicative consistency definition for IPRs. It is first shown that multiplicative 201 

consistent IPRs under this definition are always weakly transitive, and a transformation 202 

formula is then put forward to convert normalized intuitionistic fuzzy weights into 203 

multiplicative consistent IPRs. 204 

As per Definition 2.2, we have 0 1ij  . If 0.5ij  , then 
1

1 1
1 1

ij

ij ij



 
− = 

− −
; if 205 

0.5ij = , then 1
1

ij

ij




=

−
; if 0.5ij  , then 0 1

1

ij

ij




 

−
. Similarly, if 0.5ijv  , then 206 

1
1 1

1 1

ij

ij ij

v

v v
− = 

− −
; if 0.5ijv = , then 1

1

ij

ij

v

v
=

−
; if 0.5ijv  , then 0 1

1

ij

ij

v

v
 

−
. 207 

Therefore, ( , )ij ijv
 
denotes that alternative ix  is preferred to 

jx  with a multiplicative 208 

degree of 
1

ij

ij



−
, and alternative ix  is non-preferred to 

jx  with a multiplicative degree of 209 

1

ij

ij

v

v−
. As ij jiv =  for all i, j = 1, 2, …, n, we have 

1 1

ij ji

ij ji

v

v




=

− −
. 210 

Based on the aforesaid analysis, multiplicative consistency of an IPR can be defined 211 

as follows. 212 

Definition 3.1 An IPR ( )ij n nR r =  with ( , )ij ij ijr v=
 
is called multiplicative consistent 213 

if it satisfies  214 

1 1 1 1 1 1

ij jk kj jiki ik

ij jk ki ik kj ji

    

     

        
=             − − − − − −        

  for all , , 1, 2,...,i j k n=    (3.1) 215 

The idea of the multiplicative consistency condition (3.1) can be graphically illustrated 216 

in Figure 1. 217 
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xi xk

xj

/ (
1

)

ij

ij




− / (1

)

jk

jk




−

/ (1 )ki ki −

/ (
1

)

ji

ji




−

/ (1 )ik ik −

/ (1

)

kj

kj




−

 218 

Figure 1. Illustration of the multiplicative transitivity condition 219 

If all IFNs ( , )ij ij ijr v=   are reduced to fuzzy numbers, i.e., 1ij ijv + =  for all i, j = 1, 220 

2, …, n, then the IPR R  is equivalent to a fuzzy preference relation ( )ij n nR r =  with 221 

ij ijr =
 
and  Eq. (3.1) is degraded to Eq. (2.3) . 222 

As ,ij ji ij jiv v = =  for all i, j = 1, 2, …, n, from (3.1), one can obtain  223 

1 1 1 1 1 1

ij jk kj jiki ik

ij jk ki ik kj ji

v v v vv v

v v v v v v

        
=             − − − − − −        

 for all , , 1, 2,...,i j k n=    (3.2) 224 

It is worth noting that the multiplicative consistency conditions given by Xu [41] (See 225 

Eq. (8) on page 2366) are inappropriate.  As per Xu [41], an IPR R
 
is multiplicative 226 

consistent if ij ik kjr r r= 
 
for all , , 1, 2,...,i j k n= , where   is a multiplicative operator 227 

between two IFNs. According to the IFN operational rules defined by Xu [41] (See 228 

Definition 4 on page 2366), one has ij ik kj  =  and ik ij jk  = . Hence, 229 

1ij ik kj ij jk kj kj jk kj kjv        = =  = = . However, this is impossible given that 230 

0 , 1kj kjv   and 1kj kjv +  . 231 

From Definitions 2.3 and 3.1, we have the following theorem. 232 

Theorem 3.1 Let ( )ij n nR r = be an IPR, if  R  is multiplicative consistent, then R  is 233 

weakly transitive. 234 

  Proof. Since R
 
is multiplicative consistent, by Definition 3.1, we have 235 

(1 )(1 )(1 ) (1 )(1 )(1 ) , , 1,2,...,ij ki jk ji ik kj kj ik ji jk ki ij i j k n           − − − = − − −  = . 236 

Note that , 1, 2,...,i j n = , ,ij ji ij jiv v = = . The aforesaid equation can be rewritten as 237 
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(1 )(1 )(1 ) (1 )(1 )(1 )ij ik kj ij ik kj kj ik ij kj ik ijv v v v v v     − − − = − − −          (3.3) 238 

Meanwhile, for , , 1, 2,...,i j k n = , one can obtain 239 

              

(1 )(1 )(1 ) (1 )(1 )( )

(1 )(1 )( (1 ))

(1 )(1 )( ) (1 )(1 )(1 )

ij ik kj ij ik kj ik kj ik kj ij ij ij

ik kj ik kj ij ij ij ij

ik kj ik kj ij ij ik kj ij ik kj ij

v v v v v v v

v v v v

v v v v v v

     

   

     

− − − = − − −

= − − − + −

= − − − + − − −

         (3.4) 240 

and  241 

(1 )(1 )(1 ) (1 )( )( )

(1 )( (1 ))( (1 ))

(1 )[( )( ) ( ) (1 )

(1 )( )] (1

kj ik ij kj ik ij ij ij ik ik ik kj kj kj

ij ij ik ik ik ik kj kj kj kj

ij ij ik ik kj kj ik ik kj kj

ik ik kj kj ik kj ij

v v v v v v v v

v v v v v

v v v v v

v v

     

    

    

    

− − − = − − −

= − − + − − + −

= − − − + − −

+ − − + − )(1 )(1 )

[ (1 )(1 )( ) (1 )(1 )( )]

(1 )(1 )(1 )

ik kj ij

ij kj ij kj ik ik ij ik ij ik kj kj

ik kj ij ik kj ij

v v v

v v v v v v

v v v

     

  

− −

= − − − + − − −

+ − − −

      (3.5) 242 

 It follows from (3.3), (3.4) and (3.5) that 243 

(1 )(1 )( )

(1 )(1 )( ) (1 )(1 )( )

ik kj ik kj ij ij

ij kj ij kj ik ik ij ik ij ik kj kj

v v v

v v v v v v

  

     

− − −

= − − − + − − −          (3.6) 244 

According to (2.7), if ( ) 0ikS r   and ( ) 0kjS r  , we get 0ik ikv −   and 0kj kjv −  , 245 

},,2,1{,, nkji  . On the other hand, for , 1, 2,...,i j n = , we have 0 1ij   and 246 

0 1ijv  . These lead to  247 

(1 )(1 )( ) (1 )(1 )( ) 0ij kj ij kj ik ik ij ik ij ik kj kjv v v v v v     − − − + − − −   248 

As per (3.6), it is certified that (1 )(1 )( ) 0ik kj ik kj ij ijv v v  − − −  , implying 249 

( ) 0ij ijv −  , or equivalently, ( ) 0ijS r  , the proof of Theorem 3.1 is thus completed.     ■ 250 

From Definition 2.2, we know that 
ijr  denotes the intuitionistic fuzzy preference 251 

degree of alternative ix  to 
jx . (1,0)ijr =  indicates that ix  is absolutely better than

jx , 252 

(0,1)ijr =  implies that  jx  is preferred to ix
 
without any uncertainty or hesitation, and 253 

(0.5,0.5)ijr =  means that the DM is indifferent between ix
 
and 

jx . As the preference 254 

values in R  are furnished as IFNs, it is sensible to expect that the priority weights 255 

derived from R  be IFNs rather than crisp values. 256 
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Denote a normalized intuitionistic fuzzy priority weight vector by  =  257 

1 2 1 1 2 2( , , , ) (( , ),( , ),...,( , ))T v v u v T
n n n

         =  with [33] 258 

, [0,1]v

i i

   , 1v

i i

 +  ,  
1 1

, 2
n n

v v

j i i j

j j
j i j i

n    
= =
 

 + −      1, 2,...,i n= ,    (3.7) 259 

where ( , )v
i i i

  =  (i = 1, 2, …, n) are IFNs and represent the membership and 260 

nonmembership degrees of alternative 
ix
 
as per a fuzzy concept of “importance”.  261 

Let  262 

(0.5,0.5)                                  

( , )
,      

1 1

v

jij ij ij i

v v

i j j i

i j

t t t
i j

 

 



   

=

 = = 

  + − + − 

                          263 

(3.8) 264 

then we have the following results. 265 

Theorem 3.2
 
Let ( )ij n nT t =  be a matrix defined by (3.8), then T  is a multiplicative 266 

consistent IPR. 267 

Proof.  It is apparent that, for all , 1, 2,...,i j n= , 
v

ji ijt t =  and 
v

ji ijt t= . As , [0,1]v

i i

   , 268 

we have 0 1
1

i

v

i j







 
 

+ −
 and 0 1

1

j

v

j i







 
 

+ −
.  Moreover, since  1v

i i

 +   for all 269 

i = 1, 2, …, n, it follows that 270 

(1 )(1 )v v

i j i j

     − −  271 

1
1 1

1

v

j j

v

i i





 

 

−
+  +

−
 272 

1
1

1 1 1

v
ji i

v v v

i j j i j i



  

 

     

−
 = −

+ − + − + −
 273 

Therefore, we have 1
1 1

ji

v v

i j j i



 



   
+ 

+ − + −
. As per Definition 2.2, T  is an IPR. 274 

On the other hand, since 275 

1 1 1 1 1 1 (1 )(1 )(1 )

ij jk j i j kki i k

v v v v v v

ij jk ki j k i i j k

t t t

t t t

       

  

    

     

        
= =             − − − − − − − − −        

 276 

and 277 
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1 1 1 1 1 1 (1 )(1 )(1 )

kj ji j i j kik i k

v v v v v v

ik kj ji k j i i j k

t tt

t t t

       

  

    

     

        
= =              − − − − − − − − −         

 278 

By Definition 3.1, T  is multiplicative consistent.                                        ■ 279 

From (3.8), it is easy to verify that IPR ( )ij n nT t =
 
is equivalent to a fuzzy preference 280 

relation if all intuitionistic fuzzy weights ( , )v

i i i

  =  ( 1, 2,...,i n= ) are degenerated to 281 

classical fuzzy weights, i.e., 1v

i i

 = − . In this case, (3.8) is reduced to (2.4), 282 

corresponding to the multiplicative consistency condition for fuzzy preference relations. 283 

The following corollary can be directly derived from Theorem 3.2. 284 

Corollary 3.1 For an IPR ( )ij n nR r = , if there exists a normalized intuitionistic fuzzy 285 

weight vector 1 2( , , , )T
n   =  such that  286 

(0.5,0.5)                                   

( , )
,         

1 1

jij ij ij i

v v

i j j i

i j

r v
i j



 

 

   

=

 = = 

  + − + − 

                            (3.9) 287 

then R  is multiplicative consistent. 288 

4. Goal programming models for generating intuitionistic fuzzy weights  289 

Base on the aforesaid multiplicative transitivity, this section develops goal programs 290 

for deriving intuitionistic fuzzy weights from individual and group IPRs. 291 

4.1 An individual decision model with IPRs 292 

As per Corollary 3.1, for an IPR ( )ij n nR r = , if there exists a normalized intuitionistic 293 

fuzzy weight vector 1 2( , , , )T
n   =  with , [0,1],( , ), v

i i

v
i i i

     =  1,v

i i

 +   294 

1

n
v

j i

j
j i

 
=


  and
1

2
n

v

i j

j
j i

n 
=


+ −   for  i = 1 ,2, … , n , such that  295 

(1 )v

ij i j i

    + − =                                                      (4.1) 296 

(1 )v

ij j i jv    + − =                                                       (4.2) 297 

then R  is multiplicative consistent. By Theorem 3.1, R  is also weakly transitive. 298 

However, in real-world decision situations, it is often a challenge for a DM to furnish a 299 

consistent IPR, especially when a large number of alternatives are involved. In this case, 300 

(4.1) and (4.2) will not hold. To handle these situations with inconsistent decision input, 301 
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(4.1) and (4.2) will have to be relaxed by allowing some deviations. Priority weights will 302 

then be derived by minimizing the absolute deviation from a multiplicative consistent 303 

IPR. Based on this idea, the following deviation variables are introduced:  304 

(1 )v

ij ij i j i

     = + − − , , 1, 2,..., ,i j n j i=                        (4.3)   305 

(1 )v

ij ij j i jv     = + − − , , 1, 2,..., ,i j n j i=                         (4.4) 306 

The smaller the sum of the absolute deviations, the closer the R  is to a multiplicative 307 

consistent IPR. As ij jiv =  and ij jiv = , one has (1 )v

ij ij i j i

     = + − − =
 

308 

(1 )v

ji i j iv    + − − = ji
 
for all , 1, 2,..., ,i j n j i=  . Therefore, the following nonlinear 309 

programming model is established for deriving intuitionistic fuzzy weights: 310 

1

1 1

1

min (| | | |)

(1 ) 0, 1,2,..., 1, 1,...,

(

0 1,0

1 ) 0, 1,2,..., 1, 1,...,

. . 1, 2,...,,

,

1, 1

2

n n

ij ij

i j i
v

ij i j i ij
v

ij j i j ij

v v

i i i i
n

v v

j i i j

j
j i

J

i n j i n

v i n j i

n

n

s t i n















   



 

    

   

  
=

= =



−

+

= +

+ − − − = = − = +

+ − − − = = − =

    + 

 +

+

−

=





1

1,2,...,
n

j
j i

i n
=









=




             (4.5) 311 

where the first two lines represent the relaxed multiplicative consistent conditions from 312 

(4.3) and (4.4) and the remaining constraints ensure that the derived weights constitute a 313 

normalized intuitionistic fuzzy weight vector  . 314 

Similar to the treatment in Wang and Li [34], let 315 

                     
2

ij ij

ij

 
 −

−
   and 

2

ij ij

ij

 
 +

+
, 1,2,..., 1, 1,...,i n j i n= − = + ,               (4.6) 316 

2

ij ij

ij

 
 −

−

 
and 

2

ij ij

ij

 
 +

+
 ,  1,2,..., 1, 1,...,i n j i n= − = + .            (4.7) 317 

It is trivial to verify that ij ij ij  + −= − , 
ij ij ij  + −= + , 0ij ij + − =  , ij ij ij  + −= − , 318 

ij ij ij  + −= + , and 0ij ij + − =
 
for 1,2,..., 1, 1,...,i n j i n= − = + . Then, the optimization 319 

model (4.5) can be linearized as: 320 
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1 1

1

1

min ( )

(1 ) 0, 1,2,..., 1, 1,...,

(1 ) 0, 1,2,..., 1, 1,...,

0 1,0 1, 1, 1,2,...,
. .

n n

ij ij ij ij

i j i
v

ij i j i ij ij
v

ij

v v

i i i i

j

j i j ij i

j
j

j

J

i n j i n

v i n j i n

i
t

n
s

 











  

   

     





 



 

−
+ − + −

= =

=

+
+ −

+ −

= + + +

+ − − − + = = − = +

+ − − − + = = − =

    + 

+

=



1

,

0, 0, 0, 0 1,2,..

2 , 1,2,...

., 1, 1,

,

...,

n n
v v

i i j

j
i j

ij ij ij ij

i

i n j

n i

i n

n

  





 

+

=
 

− + −











 

 + −  =

  = − = +

 

          (4.8) 321 

Solving (4.8) yields an optimal intuitionistic fuzzy weight vector * * * *

1 2( , , , )T

n   =  322 

= * * * * * *

1 1 2 2(( , ), ( , ), , ( , ))v v v T

n n

         for ( ) .ij n nR r =   323 

If the optimal objective function value * 0J = , one can obtain 0ij ij ij ij   + − + −= = = = . 324 

This implies that R  can be expressed as (3.9) by the optimal intuitionistic fuzzy weight 325 

vector * . According to Corollary 3.1, R  is multiplicative consistent. 326 

4.2 A group decision model with IPRs 327 

Considering an IPR-based group decision problem with an alternative set 328 

1 2{ , ,..., }nX x x x=  and a group of p DMs 
1 2{ , ,..., }pd d d . Each DM kd

 
( 1,2,..., )k p=  329 

provides an IPR ( ) (( , ))k k k k

ij n n ij ij n nR r v = =  to express his/her preference on alternative 330 

set X . Let 1 2( , ,..., )T

p   =  be the DMs’ weight vector, satisfying 
1

1
p

k

k


=

=  and 0k   331 

for 1,2,...,k p= . 332 

In a group decision problem, different DMs typically have different subjective 333 

preferences, it is hard, if not impossible, to get a unified intuitionistic fuzzy weight vector 334 

1 2( , , , )T
n   =  such that the elements in kR

 
( 1,2,..., )k p=  can all be expressed as 335 

(3.9). In other words, the following conditions of multiplicative transitivity generally 336 

cannot be met for all DMs. 337 

(1 )k v

ij i j i

    + − = , 1,2,..., , 1,..., , 1, 2,...,i n j i n k p= = + =             (4.9)   338 

(1 )k v

ij j i jv    + − =  , 1,2,..., , 1,..., , 1, 2,...,i n j i n k p= = + =           (4.10) 339 

Similar to the treatment in Section 4.1, the following goal program is established to 340 

find a unified intuitionistic fuzzy priority vector for the group of IPRs. This modeling 341 
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principle is to minimize the weighted sum of the absolute deviations between the original 342 

IPRs and a multiplicative consistent IPR associated with the unified weight vector. 343 

1

1 1 1

min (| | | |)

(1 ) 0, 1,2,..., , 1,..., , 1, 2

0 1

,...,

(1 ) 0, 1,2,..., , 1,..., , 1, 2,...,

. . ,0 1, 1,21,

p n n
k k

k ij ij

k i j i
k v k

ij i j i ij
k

v v

i i

v k

ij

i

j i j i

i

j

J

i n j i n k p

v i n j i n k p

s t i 

 

 

  

    

 

 



 



−

= = = +

= +

+ − − − = = = + =

+ − − − = = = + =

    +  =



1 1

,...

2

,

, 1,2,...,
n n

v v

j i i j

j j
j i j i

n

n

i n    
= =
 








=


 + −



 

       (4.11) 344 

Let 345 

2

k k

ij ijk

ij

 
 −

−
 and 

2

k k

ij ijk

ij

 
 +

+
, 1,2,..., 1, 1,..., , 1, 2,...,i n j i n k p= − = + = ,     (4.12) 346 

2

k k

ij ijk

ij

 
 −

−

 
and 

2

k k

ij ijk

ij

 
 +

+
 , 1,2,..., 1, 1,..., , 1, 2,...,i n j i n k p= − = + = .     (4.13) 347 

Then ,| |,k k k

ij ij ij    and | |k

ij  can be expressed as 
k k k

ij ij ij  + −= − , k k k

ij ij ij  + −= + , 348 

k k k

ij ij ij  + −= −
 
and 

k k k

ij ij ij  + −= +  for 1,2,..., 1, 1,..., , 1, 2,..., .i n j i n k p= − = + =  349 

Accordingly, (4.11) can be linearized as the following goal program: 350 

1

1 1 1

min ( )

(1 ) 0, 1,2,..., , 1,..., , 1, 2,...,

(1 ) 0, 1,2,..., , 1,..., , 1, 2,...,

.
0 1

.

p n n
k k k k

k ij ij ij ij

k i j i
k v k k

ij i j i ij ij
k v k k

ij j i j ij ij

i

J

i n j i n k p

v i n j i n k p

s t

 

 



    

     

    



−
+ − + −

= = = +
+ −

+ −

= + + +

+ − − − + = = = + =

+ − − − + = = = + =

 



1 1

,0 1, 1,

2

1,2,...,

, 1, 2,...,

0, 0, 0, 0 1,2,..., , 1,..., , 1, 2,...,

,

v v

i i i
n n

v v

k k k k

i

j i i j

j j
j i j

j ij ij ij

i

i n

i n

i n j i n

n

k p



 



  

  

 



+ − +

= =
 

−

  + 






 =


=



    = = + =

+



−  

  (4.14) 351 

Given that (1 ) 0k v k k

ij i j i ij ij

      + −+ − − − + = , (1 ) 0k v k k

ij j i j ij ijv      + −+ − − − + =
 

352 

and 
1

1
p

k

k


=

= , it is easy to verify that 353 

( )

( )

1 1 1

1 1 1

1 0

1 0

p p p
k v k k

k ij i j i k ij k ij

k k k

p p p
k v k k

k ij j i j k ij k ij

k k k

v

 

 

        

       

+ −

= = =

+ −

= = =

 
+ − − − + = 

 

 
+ − − − + = 

 

  

  

                     (4.15) 354 
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Denote 
1 1 1

ˆˆ ˆ, ,
p p p

k k k

ij k ij ij k ij ij k ij

k k k

        + + − − + +

= = =

    and 
1

ˆ
p

k

ij k ij

k

  − −

=

 , then (4.14) can 355 

be simplified as the following linear program. 356 

( )

( )

1

1 1

1

1

ˆ ˆˆ ˆmin ( )

ˆ ˆ1 0, 1,2,..., , 1,...,

ˆ ˆ1 0, 1,2,...,

0 1,

, 1,...,

.
0

.
1,

n n

ij ij ij ij

i j i

p
k v

k i

v

i i

j i j i ij ij

k
p

k v

k ij j i j ij ij

k

J

i n j i n

v i n j i n

s t 

 

 

   

      

     

 

−
+ − + −

= = +

+ −

=

+ −

=

= + + +

 
+ − − − + =



= = + 
 
 

+ − − − + = = = + 

















1 1

1,2,...,

, 1, 2,...,

ˆ ˆˆ ˆ0, 0, 0, 0 1,2,..., , 1, . ,

1,

2

. .

,

v

i i
n n

v v

j i i

ij i

j

j j
j i

j ij i

j

j

i

i n

i n

i n n

n

j i



 

 

   

   + − +

=


−

=


+ 









 =

 =


     = =

−

+

+  

  (4.16) 357 

Solving this model, one can obtain a unified intuitionistic fuzzy weight vector 358 

* * * * * * * * * *

1 2 1 1 2 2( , , , ) (( , ), ( , ), , ( , ))T v v v T

n n n

           = =  for the group of IPRs 359 

( ) (( , ))k k k k

ij n n ij ij n nR r v = =  ( 1,2,...,k p= ). 360 

5. Aggregation of intuitionistic fuzzy weights 361 

For an MCDM problem with a hierarchical structure, let 1 2{ , ,..., }mC c c c=  be the set 362 

of upper-level criteria and 1 2{ , ,..., }nX x x x=  be the set of lower-level alternatives. 363 

Suppose the local intuitionistic fuzzy weights for criteria and alternatives have all been 364 

obtained using the proposed models in Section 4 as shown in Table 1, where 365 

1 1 2 2
(( , ), ( , ),..., ( , ))

m m

v v v T

c c c c c c

         is a normalized intuitionistic fuzzy weight vector for 366 

criteria 1 2{ , ,..., }mC c c c=  and 1 1 2 2(( , ), ( , ),..., ( , ))v v v T

j j j j nj nj

         is a normalized 367 

intuitionistic fuzzy weight vector for alternatives 1 2{ , ,..., }nX x x x=  with respect to the 368 

criterion  
jc  ( 1, 2,..., )j m= . According to (3.7), these weights satisfy the following 369 

normalization constraints: 370 

11

2,
k j jc

k

v
c c

m
v
c

k
k j

m

k
k j

m   
=


=


− + 
  

  1,2,...,j m=                       (5.1) 371 

1 1

2,kj

v
ij ij

n n
v
kj

k k
k i k i

n   
= =
 

−  +     1,2,..., , 1,2,...,i n j m= =            (5.2) 372 



 17 

Table 1. Aggregation of intuitionistic fuzzy weights 373 

1 1 2 2

1 2

1 11 11 12 12

Aggregated intuitionistic

fuzzy weightsAlternatives

____________________________________________________________________________

...

( , ) ( , ) ... ( , )

( , ) ( , ) ... (

m m

m

v v v

c c c c c c

v v

c c c

x

  

 

     

    
1 1

2 2

1 1

2 21 21 22 22 2 2

1 1 2 2

, ) ( , )

( , ) ( , ) ... ( , ) ( , )

...

( , ) ( , ) ... ( , ) ( , )
n n

v v

m m x x

v v v v

m m x x

v v v v

n n n n n nm nm x x

x

x

 

   

   

  

       

       

 

374 

 

From Table 1, we understand that 
jc

  and 
j

v

c  denote the degrees of membership 375 

and non-membership of criterion
jc ( 1, 2,..., )j m=

 
as per a fuzzy concept of “importance”. 376 

It is clear that the lowest importance degree of 
jc  is 

jc

  and the highest importance 377 

degree of 
jc
 
is 1

j

v

c−  when all hesitation is attributed to membership. As such, the 378 

importance degree of 
jc , denoted by 

jw , should lie between 
jc

  and 1
j

v
c− . Similarly, 379 

ij

  and 
v

ij  give the degrees of membership (or satisfaction) and non-membership (or 380 

dissatisfaction) of alternative ix ( 1,2,..., )i n=
 
on criterion 

jc
 
( 1, 2,..., )j m= .  381 

If 
1 2( , ,..., )T

mw w w   is a crisp weight vector normalized to 1, then 
1

0 1,
m

ij j

j

w
=

   382 

1

0 1
m

v

ij j

j

w
=

  and 
1 1 1 1

( ) 1
m m m m

v v

ij j ij j ij ij j j

j j j j

w w w w    
= = = =

+ = +  =     as 0 1,ij

 
 

383 

0 1, 1v v

ij ij ij

    +   and 
1

1
m

j

j

w
=

= . Therefore, for each alternative ix
 
( 1,2,..., )i n= , 384 

its aggregated value by incorporating criterion weights can be expressed as an IFN 385 

1 1

( , ) ( , )
m m

v v

i i ij j ij j

j j

z z w w  
= =

=   . 386 

As the aggregated value ( , )v

i iz z  reflects the overall membership and non- 387 

membership degree of alternative ix  to the fuzzy concept of “excellence”, the greater the 388 
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( , )v

i iz z , the better the alternative 
ix  is. Hence, a reasonable criterion weight vector 389 

1 2( , ,..., )T

mw w w  is to maximize ( , )v

i iz z .  390 

As per (2.7) and the comparison approach for any two IFNs in Section 2, the optimal 391 

membership 
iz

 
and non-membership v

iz
 
of an aggregated value for alternative 

ix  can 392 

be obtained by solving the following two linear programs: 393 

1

1

max

1 , 1,2,..., ,
. .

1.                             

j j

m

i ij j

j
v

c j c

m

jj

z w

w j m
s t

w

 





 
=

=

=

   − =



=





                                           (5.3) 394 

and 395 

1

1

min

1 , 1,2,..., ,
. .

1.                             

j j

m
v v

i ij j

j
v

c j c

m

jj

z w

w j m
s t

w





 
=

=

=

   − =



=





                                          (5.4) 396 

for each  1, 2,...,i n= . 397 

Solving (5.3) and (5.4) yields optimal solutions 
1 2( , , , )T

i i i imW w w w   =  and 398 

1 2( , , , )v v v v T

i i i imW w w w=  (i = 1, 2, …, n), respectively. 399 

Let  400 

1
i

m

x ij ij

j

w   
=

 ,  
1

i

m
v v v

x ij ij

j

w 
=

                                            (5.5) 401 

for each  1, 2,...,i n= . 402 

It is obvious that 0 1
ix

   and 0 1
i

v

x  . Since 1 v

ij ij

  − , we have 
ix

 =
 

403 

1 1 1

(1 ) 1
m m m

v v

ij ij ij ij ij ij

j j j

w w w     
= = =

 − = −   . On the other hand, 
1 2( , , , )T

i i i imW w w w   =  is an 404 

optimal solution of (5.3), it is also a feasible solution of (5.4) as they share the same 405 

constraints. Moreover, since 
1 2( , , , )v v v v T

i i i imW w w w=  is an optimal solution of the 406 

minimization problem (5.4), it is thus confirmed that 
1 1

i

m m
v v v v

x ij ij ij ij

j j

w w  
= =

=   . These 407 
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lead to
 

1
i i

v

x x

 +  . Therefore, the optimal aggregated value for alternative 
ix  408 

( 1, 2,...,i n= )  can be computed as an IFN ( , )
i i

v

x x

  . 409 

As the criterion weight vectors 
1 2( , , , )T

i i i imW w w w   =  and 
1 2( , , , )v v v v T

i i i imW w w w=  410 

are independently determined by solving 2n linear programs in (5.3) and (5.4), they are 411 

generally different for distinct alternatives, i.e., , v v

i l i lW W W W    for , 1, 2,..., ,i l n=  412 

l i . Therefore, based on the different criterion weight vectors for different alternatives, 413 

the aggregated values ( , )
i i

v

x x

   ( 1, 2,...,i n= ) tend not to furnish a fair comparison 414 

ground for ranking alternatives or selecting the best alternative(s). To circumvent this 415 

problem, it is necessary to derive a unified criterion weight vector for all alternatives. The 416 

following procedure is introduced to accomplish this task. 417 

(5.3) and (5.4) consider one alternative at a time. Generally, X is a non-inferior 418 

alternative set with no alternative dominating or being dominated by any other alternative. 419 

Hence, when all n alternatives are taken into account simultaneously, the contribution to 420 

the objective function from each individual alternative should be equally weighted as 421 

1/ n . Therefore, in parallel to (5.3) and (5.4), the following two aggregated linear 422 

programs are established. 423 

0

1 1

1

1
max

1 , 1,2,..., ,
. .

1.                             

j j

n m

ij j

i j
v

c j c

m

jj

z w
n

w j m
s t

w

 





 
= =

=

=

   − =



=





                                           (5.6) 424 

and 425 

0

1 1

1

1
min

1 , 1,2,..., ,
. .

1.                             

j j

n m
v v

ij j

i j
v

c j c

m

jj

z w
n

w j m
s t

w





 
= =

=

=

   − =



=





                                          (5.7)     426 

The minimization model (5.7) can be converted to an equivalent maximization linear 427 

program by multiplying its objective function with −1 as follows. 428 
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0

1 1

1

1
max

1 , 1,2,..., ,
. .

1.                             

j j

n m
v v

ij j

i j
v

c j c

m

jj

z w
n

w j m
s t

w





 
= =

=

= −

   − =



=





                                          (5.8)     429 

Now both (5.6) and (5.8) are maximization models with the same constraints. If the 430 

two objectives are equally weighted, they can be combined as a single linear program 431 

(5.9) for obtaining a unified criterion weight vector. 432 

1 1

1

1
max ( )

2

1 , 1,2,..., ,
. .

1.                             

j j

n m
v

ij ij j

i j
v

c j c

m

jj

z w
n

w j m
s t

w





 

 
= =

=

= −

   − =



=





                                           (5.9) 433 

    Denote the optimal solution of (5.9) by * * * *
1 2( , ,..., )mW w w w= , and use similar notation 434 

as that for (5.5) to define:  435 

*

1
i

m

x ij j

j

w  
=

 ,  
*

1
i

m
v v

x ij j

j

w 
=

                                            (5.10) 436 

As 0 1,0 1v

ij ij

      and 0 1v

ij ij

  +  , it follows that 0 1
ix

  , 0 1
i

v

x   437 

and 
* *

1 1

( ) 1
i i

m m
v v

x x ij ij j j

j j

w w    
= =

+ = +  =  . Therefore, the aggregated value ( , )
i i

v

x x

 
 
for 438 

alternative ix  ( 1,2,..., )i n=
 
based on the unified weight vector *W  constitutes an IFN. 439 

Theorem 5.1
 
Assume that IFNs ( , )

i i

v

x x

 
 
and ( , )

i i

v

x x

   are defined by (5.5) and (5.10), 440 

respectively, then ,
i i i i

v v

x x x x

       ( 1, 2,...,i n= ). 441 

Proof. Since (5.3), (5.4) and (5.9) have the same set of constraints, the optimal solution 442 

of (5.9), * * * *
1 2( , ,..., )mW w w w= , is also a feasible solution of (5.3) and (5.4). Furthermore, 443 

because 
1 2( , , , )T

i i i imW w w w   =  and 
1 2( , , , )v v v v T

i i i imW w w w=  are the optimal solutions of 444 

maximization model (5.3) and minimization model (5.4), respectively, it follows that 445 

*

1 1
i i

m m

x ij ij ij j x

j j

w w       
= =

=  =   and 
*

1 1
i i

m m
v v v v

x ij ij ij j x

j j

w w   
= =

=  =  .                                 ■ 446 
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As per (2.7) and Theorem 5.1, we have (( , ))
i i i i i i

v v v

x x x x x xS        = −  − =
 

447 

(( , ))
i i

v

x xS   , indicating that, for each alternative
ix  ( 1, 2,...,i n= ), the score value of the 448 

aggregated IFN in (5.10) is always smaller than that obtained from individual models (5.3) 449 

and (5.4). 450 

Theorem 5.2
 
Let IFNs 

 
( , )

i i

v

x x

   ( 1, 2,...,i n= ) be defined by (5.10), then for each 451 

1, 2,...,i n= , 
1

k i

v

x x

n

k
k i

 
=


  and 
1

2
i

v

x k

n

k
k i

n 
=


+ −  . 452 

Proof. Since 1 1 2 2(( , ), ( , ),..., ( , ))v v v T

j j j j nj nj

         is a normalized intuitionistic fuzzy 453 

weight vector for the n alternatives on criterion  
jc  ( 1, 2,..., )j m= , as per (5.2), for each 454 

1, 2,...,i n= , we have  455 

* *

1

n
v

kj j ij j

k
k i

w w 
=


 
  
 
 
 

  ( 1,2,...j m= ) and * *

1

2)(
n

v

j kj j

k
k i

ij n w w 
=


 
 + −
 
 
 

   ( 1,2,...j m= ).  456 

As * * * *
1 2( , ,..., )mW w w w=  is a normalized crisp weight vector, by (5.10), one can obtain 457 

* * *

1 1 1 1 11
ik

n n m n m
v v

kj j ij j x

k k j k j
k i k i k i

m

x kj j

j

w ww     
= = = = =
  

=

  
  = =  =
 

 
 



   

  

      458 

and 459 

* * *

1 1

*

1 1 111

2 2 ( 2)
i k

m m m n n n
v v

x kj j x

j k k k
k i k i k i

m
v

ij j ij j kj j

j j j

n w n n w ww     
= = = = == =

  

  
   + =  = =   

    
 

− + − =



+ −



     460 

The proof of Theorem 5.2 is thus completed.                                                                  ■ 461 

Theorem 5.2 demonstrates that the aggregated IFN values derived from model (5.9) are 462 

normalized intuitionistic fuzzy weights. 463 

6. Numerical examples 464 

This section presents two numerical examples to illustrate how the proposed models 465 

are applied to an individual decision situation with IPRs as well as a group decision 466 

problem with a hierarchical structure.  467 
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Example 1. Assume that a DM provides the following IPR on an alternative set 468 

1 2 3 4{ , , , }X x x x x= . 469 

4 4 4 4

(0.5,0.5) (1/ 3,2 / 3) (1/ 5,4 / 5) (1/ 4,3/ 4)

(2 / 3,1/ 3) (0.5,0.5) (1/ 3,2 / 3) (2 / 5,3/ 5)
( ) (( , )

(4 / 5,1/ 5) (2 / 3,1/ 3) (0.5,0.5) (4 / 7,3/ 7)

(3/ 4,1/ 4) (3/ 5,2 / 5) (3/ 7,4 / 7) (0.5,0.5)

ij ij ijR r v 

 
 
 = = =
 
 
 

 470 

In R , the diagonal elements are always (0.5, 0.5), indicating the DM’s indifference 471 

between any alternative and itself.  The cells off the diagonal represent the DM’s pairwise 472 

comparison result between two alternatives. For instance, 12 (1/ 3,2 / 3)r =  denotes a 473 

degree of 1/3 to which alternative 1x
 
is preferred to 

2x , and a degree of 2/3 to which 474 

alternative 1x
 
is non-preferred to 

2x . The remaining elements in R  can be interpreted in 475 

a similar fashion. 476 

By plugging R  into (4.8), one can obtain the optimal objective function value * 0J = , 477 

and the corresponding optimal intuitionistic fuzzy weight vector as: 478 

               1 2 3 4( , , , ) ((0.1,0.9),(0.2,0.8),(0.4,0.6),(0.3,0.7))T T    = =  479 

As * 0J = , R  is multiplicative consistent. According to (2.7), one has 480 

 
1 2 3 4( ) 0.8, ( ) 0.6, ( ) 0.2, ( ) 0.4S S S S   = − = − = − = −  481 

Since
3 4 2 1( ) ( ) ( ) ( )S S S S      , the ranking order of the four alternatives is 482 

3 4 2 1x x x x . 483 

Next, Algorithm (I) developed by Xu [41] will be applied to the same IPR R  and the 484 

ranking result will be compared with our proposed approach. 485 

According to Algorithm (I) (n = 4, m = 1) in [41], a priority vector is obtained as 486 

((0.3312,0.6688), (0.4919,0.5081), (0.6543,0.3457), (0.5889,0.4111)) .T

 Based on the 487 

comparison method for IFNs in Section 2, one has 
3 4 2 1x x x x . 488 

It is worth noting that this priority vector does not satisfy the intuitionistic fuzzy 489 

weight normalization condition (3.7) as 
1 2 3 41.4774 0.4111 v     + + =  = . If the 490 

derived priority weight vector is the evaluation result for eliciting final ranking, it does 491 

not matter whether it is normalized. However, if this priority weight vector will be used 492 

as decision input for further aggregation such as the priority weights for alternatives 493 
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against criteria in the hierarchical decision structure in Section 5, it is important to 494 

normalize the priority weights so that heterogeneous dimension problems can be avoided. 495 

Xu [44] presents an error-analysis-based method to obtain interval priority weights 496 

for both consistent and inconsistent IPRs. By employing Eqs. (13) and (15) in [44], an 497 

interval priority weight vector is obtained as: ([0.1903,0.1903),[0.2417,0.2417],  498 

[0.2948,0.2948],[0.2732,0.2732])T , which is equivalent to an IFN vector: 499 

((0.1903,0.8097),(0.2417,0.7583),(0.2948,0.0.7052),(0.2732,0.7268))T   500 

As per the ranking approach in [44], the four alternatives are ranked as: 501 

3 4 2 1x x x x . 502 

Gong et al. [13] propose a linear programming model to derive an interval priority 503 

weight vector from IPRs. These interval weights are then used for ranking alternatives. 504 

Using linear program (21) in [13], the optimal interval weight vector is obtained as 505 

([0.1,0.1],[0.2,0.2],[0.4,0.4],[0.3,0.3])T , which can be expressed in an IFN form as 506 

((0.1,0.9),(0.2,0.8),(0.4,0.6),(0.3,0.7))T . According to the IFN comparison method in 507 

Section 2, one has 
3 4 2 1x x x x . 508 

On the other hand, since 1ij ijv + =  for all i, j = 1, 2, 3, 4,  R  is equivalent to the 509 

following fuzzy preference relation.   510 

4 4

0.5 1/ 3 1/ 5 1/ 4

2 / 3 0.5 1/ 3 2 / 5
( )

4 / 5 2 / 3 0.5 4 / 7

3/ 4 3/ 5 3/ 7 0.5

ijR r 

 
 
 = =
 
 
 

 511 

    As per Definition 2.1, this is a multiplicative consistent fuzzy preference relation. Next, 512 

a comparative study is conducted for the proposed method herein and another approach to 513 

generating priority weights for multiplicative consistent fuzzy preference relations in [42].   514 

According to Theorem 9 in [42], 
4 4( )ijR r =  can be transformed into an equivalent 515 

multiplicative consistent preference relation 
4 4( )ijP p =  with /ij ij jip r r= .  516 

4 4

1 1/ 2 1/ 4 1/ 3

2 1 1/ 2 2 / 3
( )

4 2 1 4 / 3

3 3/ 2 3/ 4 1

ijP p 

 
 
 = =
 
 
 

 517 
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As per Eq. (9) in [42], the priority weight vector derived from P is computed as W =  518 

4 4 4 4

1 2 3 41 1 1 1
, , , ) (0.1,0.2,0.4,0.3)(1/ 1/ 1/ 1/ T T

i i i ii i i i
p p p p

= = = =
=    , which is equivalent 519 

to an intuitionistic fuzzy weight vector ((0.1,0.9),(0.2,0.8),(0.4,0.6),(0.3,0.7))T . 520 

Hence, the ranking of all alternatives is 3 4 2 1x x x x . 521 

The intuitionistic fuzzy priority weight vectors and ranking results based on the 522 

models in Xu [41, 42, 44], Gong et al. [13] and our approach are summarized in Table 2. 523 

Table 2. A comparative study for the intuitionistic preference relation R  524 

Model Reference Priority weight vector 1 2 3( , , )T    Ranking  

Algorithm (I) Xu [41] ((0.3312,0.6688), (0.4919,0.5081),

(0.6543,0.3457), (0.5889,0.4111))
T  3 4 2 1x x x x  

Eqs. (13) and (15) Xu [44] ((0.1903,0.8097),(0.2417,0.7583),
(0.2948,0.0.7052),(0.2732,0.7268))T  

3 4 2 1x x x x  

(21) Gong et al. [13] ((0.1,0.9),(0.2,0.8),(0.4,0.6),(0.3,0.7))T  3 4 2 1x x x x  

Theorem 9 and 

Eq. (9) 

Xu [42] ((0.1,0.9),(0.2,0.8),(0.4,0.6),(0.3,0.7))T  3 4 2 1x x x x  

(4.8) This article ((0.1,0.9),(0.2,0.8),(0.4,0.6),(0.3,0.7))T  3 4 2 1x x x x  

  525 

Table 2 demonstrates that the ranking results based on the five different approaches 526 

are identical although the priority weight vectors obtained from the models in Xu [41, 44] 527 

differ from the results derived from the remaining three methods. For this degenerated 528 

fuzzy preference relation, the proposed approach in this article yields the same priority 529 

weights as those obtained from the models in Xu [42] and Gong et al. [13]. In our opinion, 530 

the difference in the derived priority weight vectors is due to the fact that the models in 531 

Xu [41, 44] employ different aggregation schemes and do not incorporate the 532 

normalization constraints. Furthermore, Xu’s method [42] can only be applied to 533 

multiplicative consistent fuzzy preference relations. Compared to the proposed model in 534 

this article, the linear program in Gong et al. [13] need more constraints and decision 535 

variables.  536 

Example 2. This example is adapted from [47]. Consider a two-level group decision 537 

problem with a hierarchical structure. A core enterprise has to select its supply chain 538 

partner for spare parts. The partner selection decision is made based on the following five 539 

main criteria: product quality ( 1c ), cost and delivery time ( 2c ), supplier flexibility and 540 

responsiveness ( 3c ), financial status ( 4c ), and trust and information sharing ( 5c ). 541 
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The upper-level concern of this core enterprise is to generate a weighting scheme for 542 

these five criteria. At the lower level, the selection committee is responsible for assessing 543 

spare parts suppliers based on these criterion weights. The hierarchical structure of this 544 

supply chain partner selection problem is shown in Fig. 2. 545 

 546 

Fig. 2 A hierarchical structure of a supply chain partner selection problem 547 

Assume that an upper level committee consisting of four senior executives is set up 548 

to generate a weighting scheme for the five criteria, and the executive weights are 0.4, 0.3, 549 

0.2 and 0.1, respectively. Each executive is required to furnish his/her pairwise 550 

comparisons for the five criteria as an IPR as shown in Table 3. 551 

By employing the linear program (4.16), one can get the optimal objective function 552 

value * 0.3491995J = , and an optimal criterion weight vector as 553 

((0.3026,0.6468), (0.1987,0.7508), (0.1222,0.8273), (0.1255,0.8311), (0.0910,0.8935))
T . 554 

Based on these criterion weights, five potential suppliers, denoted by x1, x2, x3, x4 555 

and x5, are assessed by a lower level committee. Assume that three managers are involved 556 

in the assessment and each manager carries the same weight in the partner selection 557 

process. The IPR assessments for the five potential partners with respect to each criterion 558 

are summarized in Tables 4-8. 559 

560 

Supply chain partner selection 
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delivery 
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Financial 

status 
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… 

 

Partner 
 

 

C5: Trust and 
information 
sharing 
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Table 3. Intuitionistic preference relations for the four executives on the five criteria 561 

1 2 3 4 5

____________________________________________________________________________________________________

________________________________________________________________________

Expert Criteria     c c c c c

____________________________

#1 (0.50,0.50) (0.70,0.20) (0.65,0.25) (0.40,0.40) (0.60,0.25)1
(0.20,0.70) (0.50,0.50) (0.55,0.40) (0.50,0.45) (0.70,0.20)2
(0.25,0.65) (0.40,0.55) (0.50,0.50) (0.65,0.25) (0.55,0.353

c

c

c )

(0.40,0.40) (0.45,0.50) (0.25,0.65) (0.50,0.50) (0.55,0.40)4
(0.25,0.60) (0.20,0.70) (0.35,0.55) (0.40,0.55) (0.50,0.50)5

#2 (0.50,0.50) (0.60,0.30) (0.75,0.15) (0.60,0.30) (0.70,0.20)1
(0.30,0.60) (0.50,0.50) (02

c

c

c

c .50,0.30) (0.55,0.30) (0.65,0.25)

(0.15,0.75) (0.30,0.50) (0.50,0.50) (0.50,0.45) (0.60,0.30)3
(0.30,0.60) (0.30,0.55) (0.45,0.50) (0.50,0.50) (0.55,0.25)4
(0.20,0.70) (0.25,0.65) (0.30,0.60) (0.25,0.55) (0.50,0.55

c

c

c 0)

#3 (0.50,0.50) (0.50,0.30) (0.53,0.35) (0.65,0.30) (0.55,0.25)1
(0.30,0.50) (0.50,0.50) (0.50,0.30) (0.65,0.20) (0.62,0.30)2
(0.35,0.53) (0.30,0.50) (0.50,0.50) (0.65,0.30) (0.60,0.40)3
(0.30,0.65) (0.20,0.65) (4

c

c

c

c 0.30,0.65) (0.50,0.50) (0.52,0.45)

(0.25,0.55) (0.30,0.62) (0.40,0.60) (0.45,0.52) (0.50,0.50)5
#4 (0.50,0.50) (0.45,0.52) (0.55,0.42) (0.52,0.30) (0.54,0.25)1

(0.52,0.45) (0.50,0.50) (0.65,0.10) (0.60,0.25) (0.52,2

c

c

c

________________________

0.30)

(0.42,0.55) (0.10,0.65) (0.50,0.50) (0.65,0.25) (0.65,0.35)3
(0.30,0.52) (0.25,0.60) (0.25,0.65) (0.50,0.50) (0.52,0.25)4
(0.25,0.54) (0.30,0.52) (0.35,0.65) (0.25,0.52) (0.50,0.50)5

c

c

c

____________________________________________________________________________

562 

 563 

 564 

Table 4. IPRs for the five potential partners with respect to c1 565 

1 2 3 4 5

____________________________________________________________________________________________________

_______________________________________________________________________

Expert Candidate     x x x x x

_____________________________

#1 (0.50,0.50) (0.55,0.30) (0.46,0.40) (0.48,0.40) (0.50,0.30)1
(0.30,0.55) (0.50,0.50) (0.36,0.50) (0.40,0.50) (0.60,0.35)2
(0.40,0.46) (0.50,0.36) (0.50,0.50) (0.42,0.40) (0.65,0.23

x

x

x 8)

(0.40,0.48) (0.50,0.40) (0.40,0.42) (0.50,0.50) (0.70,0.25)4
(0.30,0.50) (0.35,0.60) (0.28,0.65) (0.25,0.70) (0.50,0.50)5

#2 (0.50,0.50) (0.65,0.30) (0.55,0.35) (0.52,0.32) (0.55,0.35)1
(0.30,0.65) (0.50,0.50) (2

x

x

x

x 0.25,0.60) (0.35,0.60) (0.58,0.30)

(0.35,0.55) (0.60,0.25) (0.50,0.50) (0.55,0.30) (0.75,0.20)3
(0.32,0.52) (0.60,0.35) (0.30,0.55) (0.50,0.50) (0.80,0.15)4
(0.35,0.55) (0.30,0.58) (0.20,0.75) (0.15,0.80) (0.50,0.5

x

x

x 50)

#3 (0.50,0.50) (0.62,0.30) (0.48,0.40) (0.45,0.40) (0.52,0.35)1
(0.30,0.62) (0.50,0.50) (0.30,0.60) (0.40,0.50) (0.58,0.32)2
(0.40,0.48) (0.60,0.30) (0.50,0.50) (0.45,0.50) (0.62,0.28)3
(0.40,0.45) (0.50,0.40)4

x

x

x

x

____________________________________________________________________________________________________

(0.50,0.45) (0.50,0.50) (0.72,0.18)

(0.35,0.52) (0.32,0.58) (0.28,0.62) (0.18,0.72) (0.50,0.50)5x

 566 
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 568 

Table 5. IPRs for the five potential partners with respect to c2 569 

1 2 3 4 5

____________________________________________________________________________________________________

_______________________________________________________________________

Expert Candidate     x x x x x

_____________________________

#1 (0.50,0.50) (0.60,0.24) (0.62,0.30) (0.58,0.25) (0.45,0.25)1
(0.24,0.60) (0.50,0.50) (0.34,0.52) (0.32,0.55) (0.62,0.32)2
(0.30,0.62) (0.52,0.34) (0.50,0.50) (0.56,0.28) (0.60,0.23

x

x

x 0)

(0.25,0.58) (0.55,0.32) (0.28,0.56) (0.50,0.50) (0.72,0.15)4
(0.25,0.45) (0.32,0.62) (0.20,0.60) (0.15,0.72) (0.50,0.50)5

#2 (0.50,0.50) (0.25,0.50) (0.30,0.55) (0.25,0.65) (0.25,0.45)1
(0.50,0.25) (0.50,0.50) (2

x

x

x

x 0.35,0.50) (0.38,0.48) (0.38,0.40)

(0.55,0.30) (0.50,0.35) (0.50,0.50) (0.46,0.30) (0.55,0.30)3
(0.65,0.25) (0.48,0.38) (0.30,0.46) (0.50,0.50) (0.58,0.20)4
(0.45,0.25) (0.40,0.38) (0.30,0.55) (0.20,0.58) (0.50,0.5

x

x

x 50)

#3 (0.50,0.50) (0.30,0.62) (0.32,0.58) (0.15,0.70) (0.40,0.52)1
(0.62,0.30) (0.50,0.50) (0.46,0.54) (0.36,0.56) (0.45,0.35)2
(0.58,0.32) (0.54,0.46) (0.50,0.50) (0.30,0.58) (0.50,0.40)3
(0.70,0.15) (0.56,0.36)4

x

x

x

x

____________________________________________________________________________________________________

(0.58,0.30) (0.50,0.50) (0.58,0.28)

(0.52,0.40) (0.35,0.45) (0.40,0.50) (0.28,0.58) (0.50,0.50)5x
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Table 6. IPRs for the five potential partners with respect to c3 573 

1 2 3 4 5

____________________________________________________________________________________________________

_______________________________________________________________________

Expert Candidate     x x x x x

_____________________________

#1 (0.50,0.50) (0.35,0.50) (0.25,0.55) (0.18,0.65) (0.35,0.45)1
(0.50,0.35) (0.50,0.50) (0.35,0.58) (0.27,0.60) (0.55,0.30)2
(0.55,0.25) (0.58,0.35) (0.50,0.50) (0.25,0.45) (0.65,0.23

x

x

x 5)

(0.65,0.18) (0.60,0.27) (0.45,0.25) (0.50,0.50) (0.40,0.30)4
(0.45,0.35) (0.30,0.55) (0.25,0.65) (0.30,0.40) (0.50,0.50)5

#2 (0.50,0.50) (0.38,0.50) (0.28,0.55) (0.18,0.72) (0.45,0.25)1
(0.50,0.38) (0.50,0.50) (2

x

x

x

x 0.38,0.52) (0.30,0.60) (0.55,0.45)

(0.55,0.28) (0.52,0.38) (0.50,0.50) (0.38,0.52) (0.40,0.50)3
(0.72,0.18) (0.60,0.30) (0.52,0.38) (0.50,0.50) (0.46,0.24)4
(0.25,0.45) (0.45,0.55) (0.50,0.40) (0.24,0.46) (0.50,0.5

x

x

x 50)

#3 (0.50,0.50) (0.50,0.40) (0.52,0.28) (0.60,0.20) (0.52,0.38)1
(0.40,0.50) (0.50,0.50) (0.50,0.40) (0.54,0.36) (0.40,0.45)2
(0.28,0.52) (0.40,0.50) (0.50,0.50) (0.56,0.24) (0.40,0.50)3
(0.20,0.60) (0.36,0.54)4

x

x

x

x

____________________________________________________________________________________________________

(0.24,0.56) (0.50,0.50) (0.35,0.55)

(0.38,0.52) (0.45,0.40) (0.50,0.40) (0.55,0.35) (0.50,0.50)5x

 574 



 28 

 575 

Table 7. IPRs for the five potential partners with respect to c4 576 

1 2 3 4 5

____________________________________________________________________________________________________

_______________________________________________________________________

Expert Candidate     x x x x x

_____________________________

#1 (0.50,0.50) (0.58,0.32) (0.36,0.44) (0.32,0.48) (0.56,0.34)1
(0.32,0.58) (0.50,0.50) (0.46,0.40) (0.32,0.58) (0.65,0.25)2
(0.44,0.36) (0.40,0.46) (0.50,0.50) (0.48,0.40) (0.68,0.23

x

x

x 2)

(0.48,0.32) (0.58,0.32) (0.40,0.48) (0.50,0.50) (0.76,0.14)4
(0.34,0.56) (0.25,0.65) (0.22,0.68) (0.14,0.76) (0.50,0.50)5

#2 (0.50,0.50) (0.45,0.35) (0.40,0.30) (0.42,0.46) (0.56,0.34)1
(0.35,0.45) (0.50,0.50) (2

x

x

x

x 0.35,0.55) (0.38,0.52) (0.52,0.38)

(0.30,0.40) (0.55,0.35) (0.50,0.50) (0.58,0.28) (0.78,0.12)3
(0.46,0.42) (0.52,0.38) (0.28,0.58) (0.50,0.50) (0.72,0.20)4
(0.34,0.56) (0.38,0.52) (0.12,0.78) (0.20,0.72) (0.50,0.5

x

x

x 50)

#3 (0.50,0.50) (0.46,0.34) (0.42,0.48) (0.35,0.55) (0.68,0.22)1
(0.34,0.46) (0.50,0.50) (0.48,0.52) (0.42,0.48) (0.60,0.30)2
(0.48,0.42) (0.52,0.48) (0.50,0.50) (0.47,0.43) (0.74,0.16)3
(0.55,0.35) (0.48,0.42)4

x

x

x

x

____________________________________________________________________________________________________

(0.43,0.47) (0.50,0.50) (0.78,0.12)

(0.22,0.68) (0.30,0.60) (0.16,0.74) (0.12,0.78) (0.50,0.50)5x

 577 
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 579 

Table 8. IPRs for the five potential partners with respect to c5 580 

1 2 3 4 5

____________________________________________________________________________________________________

_______________________________________________________________________

Expert Candidate     x x x x x

_____________________________

#1 (0.50,0.50) (0.55,0.35) (0.30,0.60) (0.40,0.45) (0.48,0.42)1
(0.35,0.55) (0.50,0.50) (0.20,0.70) (0.35,0.55) (0.45,0.50)2
(0.60,0.30) (0.70,0.20) (0.50,0.50) (0.68,0.22) (0.75,0.23

x

x

x 0)

(0.45,0.40) (0.55,0.35) (0.22,0.68) (0.50,0.50) (0.55,0.25)4
(0.42,0.48) (0.50,0.45) (0.20,0.75) (0.25,0.55) (0.50,0.50)5

#2 (0.50,0.50) (0.48,0.40) (0.30,0.60) (0.25,0.70) (0.35,0.52)1
(0.40,0.48) (0.50,0.50) (2

x

x

x

x 0.42,0.48) (0.35,0.55) (0.55,0.35)

(0.60,0.30) (0.48,0.42) (0.50,0.50) (0.46,0.34) (0.58,0.22)3
(0.70,0.25) (0.55,0.35) (0.34,0.46) (0.50,0.50) (0.65,0.25)4
(0.52,0.35) (0.35,0.55) (0.22,0.58) (0.25,0.65) (0.50,0.5

x

x

x 50)

#3 (0.50,0.50) (0.56,0.34) (0.48,0.42) (0.40,0.50) (0.32,0.58)1
(0.34,0.56) (0.50,0.50) (0.42,0.48) (0.26,0.64) (0.34,0.56)2
(0.42,0.48) (0.48,0.42) (0.50,0.50) (0.42,0.46) (0.46,0.44)3
(0.50,0.40) (0.64,0.26)4

x

x

x

x

____________________________________________________________________________________________________

(0.46,0.42) (0.50,0.50) (0.58,0.22)

(0.58,0.32) (0.56,0.34) (0.44,0.46) (0.22,0.58) (0.50,0.50)5x
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Similarly, by using model (4.16), a normalized intuitionistic fuzzy weight vector for 582 

alternative xi with respect to criterion cj (i, j=1, 2, …, 5) can be obtained as shown in 583 

columns 1-5 in Table 9, where the first row lists the upper level criterion weights 584 

obtained earlier. 585 

Table 9. Intuitionistic fuzzy weights for alternatives under each criterion and the 586 

aggregated intuitionistic fuzzy assessments. 587 

1 2 3 4 5 Aggregated intuitionistic

___________________________________________________________________________________________

(0.3026,0.6468) (0.1987,0.7508) (0.1222,0.8273) (0.12

_____

5

____

Candidate      c c c c c

fuzzy weights

________________________________________________________________

5,0.8311) (0.0910,0.8935)

(0.2359,0.7007) (0.1285,0.8124) ( , ) ( , ) (

____________________________________

0.1273 0.7968 0.1669 0.74821x 0.1445 0.8111

0.1555 0.8099 0.1778 0.8222 0.1695 0.8203 0.1263 0.

, ) (0.1727,0.7621)

(0.1283,0.8440) ( , ) ( , ) ( , ) ( , ) (0.1484,0.8283)

(0.2040,0.7326) ( , ) ( , ) (

8378

0.2059 0.7498 0.1778 0.7441 0.1726 0.7425 0.2271, ) ( ,0 ) (0.7285

2

3

x

x .1985,0.7396)

(0.1783,0.7584) ( , ) ( , ) (0.2000, ) ( , ) (0.1937,0.70.2143 0.7351 0.1730 0.7296 0.7155 0.2239 0.7317

0.1072

396)

(0.0745,0.9010) ( , ) ( , ) (0.8337 0.1186 0.8099 0.0515 0.8887 0.1091 0.8465, ) ( , ) (0.0908,0.8616

__

)

_

4

5

x

x

_________________________________________________________________________________________________

 588 

Plugging these normalized intuitionistic fuzzy assessments and criterion weights into 589 

(5.9), the following linear program is established. 590 

1 2 3 4 5

1 2 3

4 5 1 2 3 4 5

3.1157 3.1295 3.1281 3.1547 3.1247 /10max ( )
0.3026 0.3532,0.1987 0.2492,0.1222 0.1727,  

. .
0.1255 0.1689,0.091 0.1065, 1.

z w w w w w
w w w

s t
w w w w w w w

= − − − − −
     


    + + + + =

 591 

Solving this linear program yields an optimal solution as: 592 

* * * * * *
51 2 3 4

0.3532,0.2421,0.1727,0.1255,0.10, 5, 6( , , ) ( )T TW w w w w w= =  593 

By applying (5.10), one can obtain the aggregated intuitionistic fuzzy weight 594 

( , )
i i

v

x x

 
 
for each alternative  xi (i=1, 2, …, 5) as shown in the last column of Table 9. 595 

As per (2.7), the score function value is calculated for each aggregated weight as 596 

1 1 2 2 3 3 4 4
( , ) ( , ) ( , ) ( , )( ) -0.5894, ( ) -0.6799, ( ) -0.5411, ( ) -0.5459,v v v v

x x x x x x x xS S S S          = = = =597 

5 5
( , )( ) -0.7708v

x xS   = . By using the IFN comparison method in Section 2, a full ranking of 598 

the five potential suppliers is derived as 53 4 1 2x x x x x . 599 

7. Conclusions 600 

This article is concerned with individual and group decisions with IPRs. The key 601 

modeling idea is to establish a goal programming framework for deriving intuitionistic 602 

fuzzy weights. The research starts with introducing an innovative multiplicative 603 

consistency definition for IPRs. By examining the inherent link between intuitionistic 604 
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fuzzy weights and multiplicative consistency of IPRs, a transformation formula is put 605 

forward to convert normalized intuitionistic fuzzy weights into multiplicative consistent 606 

IPRs. Then deviation variables are defined to gauge the difference between a DM’s 607 

original judgment and its converted multiplicative consistent IPR, thereby two linear goal 608 

programs are proposed to obtain intuitionistic fuzzy weights from IPRs for both 609 

individual and group decision problems. Subsequently, a linear program is established to 610 

obtain a unified criterion weight vector for MCDM with a hierarchical structure, these 611 

weights are then employed to aggregate local intuitionistic fuzzy weights into global 612 

priority weights. Finally, two numerical examples are presented to show how the 613 

proposed models can be applied. 614 

The research reported in this article can be further extended along a number of lines. 615 

For instance, if the DM can accept limited inconsistency, a worthy topic is to examine 616 

acceptable multiplicative consistency, thereby developing decision models with 617 

acceptable multiplicative consistent IPRs. Another potential research problem is to 618 

investigate how to rectify multiplicative inconsistency and improve consistency for IPRs.  619 

 620 

 621 
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