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Abstract 1 

Calcium ion batteries show promise as a high-density, next generation replacement for current 2 
lithium ion batteries. The precise chemical structure of the carbonate electrolyte solvent has a 3 
large impact on calcium battery efficacy. In this computational study, we have investigated the 4 
solvation behavior of calcium tetrafluoroborate in both neat carbonates and carbonate mixtures 5 
using combined molecular dynamics simulations and quantum mechanical calculations. Our 6 

results indicate that both neat ethyl methyl carbonate and a mixture of ethylene carbonate and 7 
diethyl carbonate show the highest free-energy of solvation for the Ca2+ ion, making them 8 
likely candidates for further focus. The cation’s interaction with the carbonyls of the 9 
coordinating solvents, rather than those with the tetrafluoroborate counterions, play the 10 
primary role in delocalizing the charge on Ca2+.  Detailed calculations indicate that the HOMO-11 

LUMO energy gap (Eg), electronic chemical potential (μ) and chemical hardness (η) of the 12 

calcium-carbonate complexes are directly proportional to the free energy of solvation of the 13 
complex. Comparison of these observed trends with our previous results from Li+, Na+ and 14 

Mg2+ ions show that this correlation is also observed in solvated magnesium ions, but not in 15 

lithium or sodium salts. This observation should assist in the rational design of next generation 16 
battery materials in the rational selection of additives, counterions, or electrolyte solvent.   17 
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1. Introduction 1 

  Rechargeable lithium-ion batteries (LIBs) are the predominant commercial power 2 

source for mobile phones, laptop computers, portable electronics, electric vehicles and 3 

miscellaneous power devices due to their high energy density, good rechargeability and long 4 

cycle-life.1,2 However, concerns surrounding future Li availability, cost, and safety have 5 

prompted the search for competitive alternatives to rechargeable LIBs.3 Important 6 

considerations for identifying alternative battery platforms include low-cost, improved safety, 7 

environmental compatibility, charge retention, adequate energy density, long cycle-life, and 8 

the rated capability. Recently, rechargeable batteries based on multivalent ions (Ca2+, Mg2+, 9 

Al3+) have garnered significant attention as candidates for replacing Li ion batteries due to their 10 

higher energy density.4-9 This parameter is particularly important, as batteries are increasingly 11 

used in transportation, and the size and mass of the unit can be a limiting factor. Calcium-ion 12 

batteries are proposed as a particularly promising system due to their low cost, high natural 13 

abundance and easy access, and low reduction potential.10-12 14 

  In order to design such batteries, a significant advancement in our understanding of 15 

electrode materials, electrolytes, and the interfacial dynamics of Ca2+ ions is required. While 16 

many recent studies have focused on the nature of potential electrode materials for Ca-ion 17 

batteries,13-17 examinations of optimal electrolyte compositions have been far less common.18 18 

Any suitable electrolyte must display sufficiently high conductivity, allow for high active 19 

species mobility, exhibit low dependence of conductivity on temperature, possess good 20 

electrochemical, mechanical and thermal stability, provide sufficient solubility for both 21 

electrolytes and non-electrolytes, have a low vapor pressure, and have a wide liquid 22 

temperature range.19-22 Ca-ion batteries normally employ organic solvents to dissolve the Ca 23 

salt. Ca(ClO4)2, Ca(BF4)2, Ca(PF6)2, and Ca(bis(trifluoromethane)sulfonimide) salts have been 24 

the preferred calcium sources due to their high solubility.13,18 Any feasible electrolyte 25 

candidate must dissolve a high concentration of these salts to generate the requisite high 26 

dielectric coefficient (ɛ) while retaining a low enough viscosity to maintain excellent ionic 27 

conductivity and sufficient thermal and electrochemical stability. Carbonate electrolytes are 28 

particularly suited and are commonly used in current Li-ion batteries19 and remain the likeliest 29 

choice for the development of sodium and calcium-based batteries.13,18,23 30 
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 There are two main classes of carbonate electrolytes: cyclic and acyclic (linear) carbonates 1 

and neither alone provides the required properties needed for an effective electrolyte. 2 

 The rate of the energy transfer in ion batteries is determined by the facility of ion transport 3 

within the electrolyte.24 This ion transfer efficiency is controlled by two parameters, the 4 

solvation of the ions by the electrolyte, and the rate of migration of the solvated ions to the 5 

electrode surface.25 Generally, solvents with a high dielectric constant (ε), such as the cyclic 6 

carbonates, provide excellent solubility of the salt, but their highly polar nature also leads to 7 

high viscosities decreasing the rate of ion transport. Conversely, linear carbonates, with a low 8 

ε, provide for fast ion transport but are also less able to solubilize the salt. Hence, in commercial 9 

ion batteries, a mixture of cyclic carbonates with high dielectric constant and acyclic 10 

carbonates with low viscosity have generally been used to enhance both the solubility of salt 11 

and the mobility of ions, simultaneously.26 The ethylene carbonate (EC) as a cyclic carbonate 12 

with high dielectric constant (ε = 89.78) is usually employed in the mixture with various acyclic 13 

carbonates19 because the presence of EC solvent in the mixture leads to form a very stable 14 

protective film (known as solid electrolyte interface (SEI)) on anode materials that prevents 15 

continuous electrolyte decomposition.18,19 In addition, the presence of linear carbonates such 16 

as DMC, EMC and DEC solvents in the binary mixtures usually lowers the charge voltage 17 

plateau and improves the reaction kinetics.19  The ideal electrolyte requires a careful analysis 18 

of this property trade-off to determine the proper mol fraction of the proper electrolytes. One 19 

recent experimental report explored a ternary system employing EC, DMC and EMC with 20 

slightly varying concentrations of calcium salts.27 This electrolyte was selected based on its 21 

success with lithium ion battery systems; however, it is unclear whether the same solvent 22 

effects that operate with lithium are relevant to calcium systems, the solvation may vary 23 

considerably as the cation-solvent interactions are dependent on the specific size and 24 

electronics of the system. 25 

 The nature of the anion-cation interaction also has a strong impact on the performance of a 26 

potential battery as it impacts the solvation structure and the solvent co-ordination number 27 

around the calcium center.28,29 The binding energy of these cation/anion complexes lies 28 

between those of the contact ion pair and the solvent separated pair. In a contact pair, 29 

conductance is poor, and this is observed if a lithium ion battery is prepared at too high a 30 

concentration-the solvated lithium is neutralized by the anion and the mobility under applied 31 
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potential is significantly reduced.28 We have found that 0.01 M dilute solutions are useful for 1 

the computational analysis to minimize this unfavorable process. In our previous studies into 2 

LiPF6,
30 NaClO4,

31,32 and Mg(ClO4)2,
33 the cations did not interact with their anion at these 3 

concentrations and were instead completely solvated by the carbonate electrolyte. However, 4 

calcium has been reported to interact with the tetrafluoroborate anion.34 For this study we have 5 

chosen Ca(BF4)2 as the model electrolyte. The choice of anion is based on experimental results: 6 

calcium tetrafluoroborate is reported to be stable and compatible with battery chemistry unlike 7 

the perchlorate salt.18,34 8 

 A series of experimental,35-37 quantum chemical38-41 and molecular dynamics 9 

simulation30,40,42,43 studies have been performed to understand how the Li+ ion is solvated by 10 

both pure carbonates and mixtures of carbonates. However, as the solubility of each ion is 11 

different, systems that perform well for Li-ion batteries are not necessarily appropriate for 12 

other types of batteries. Accordingly, to aid in the determination of appropriate electrolytes for 13 

a Na-ion battery, we have previously reported on our integrated computational-experimental 14 

approach to rank-order the suitability of various cyclic and acyclic organic carbonates and their 15 

binary mixtures.31 In a second phase of this study, the solvation structure, coordination number 16 

around the Na+ ions in both pure and binary mixture of carbonates, and the dynamic behavior 17 

of the Na+ ions in these solvents were investigated using density functional theory (DFT) 18 

calculations.32 We have also carried out a similar investigation into Mg2+ ion solvation 19 

behavior by pure carbonate solvents and their binary mixtures at the electronic structure level 20 

using molecular dynamics simulations (MD) and density functional theory.33 Our studies 21 

strongly indicated that the preferred carbonate electrolytes for both Na+ and Mg2+ ions are 22 

different from those that work best for Li+ ions. Our theoretical work was in agreement with 23 

the experimental results reported by others.30-33 Furthermore, the dynamics of these ions in 24 

these solvents, the solvation structure of ions, and the coordination number around these ions 25 

in the carbonate solvents are quite different from one another and from Li+. Expanding these 26 

validated approaches to Ca2+ systems is a logical extension, especially considering that there 27 

is far less experimental evidence for the design of the ideal electrolyte with calcium ions. A 28 

computational study could assist in the identification of promising systems. 29 

  Ponrouch and coworkers recently applied a binary mixture of ethylene carbonate (EC) 30 

and propylene carbonate (PC) for the development of a new rechargeable battery technology 31 
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using calcium anodes.18 This binary mixture forms surface passivation layers, known as a solid 1 

electrolyte interphase (SEI) on the calcium anodes. However, the choice of solvent appears 2 

empirical, as there is no published systematic investigation identifying optimal electrolytes for 3 

Ca-ion batteries, and no scan of solvents has been reported. This study seeks to provide 4 

theoretical insight into this question and predict this information. We have approached this 5 

question using a series of the advanced theoretical analyses. These include combined-6 

molecular dynamics calculations and electronic structure calculations to predict the solvation 7 

ability of the carbonates, including pure carbonate solvents (ethylene carbonate (EC), dimethyl 8 

carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), propylene 9 

carbonate (PC), vinyl carbonate (VC), butylene carbonate (BC)) and four equimolar binary 10 

mixtures (EC:PC, EC:DMC, EC:EMC, and EC:DEC, see Figure S1 in the supporting 11 

information).31 Choosing these binary mixtures allows for comparison with our previous 12 

results while allowing for an analysis of the relative benefits of cyclic and acyclic carbonates 13 

both in combination and alone.30-33 The choice of binary solvents is based on both Ponrouch’s 14 

choice of employing an EC:PC mixture in his recent report, and on our previous analyses of 15 

other ion-batteries that employed these mixtures. The number of carbonate molecules 16 

coordinated to each Ca2+ ion, and the coordination mode of the Ca2+ ion to the carbonate 17 

molecules, were then determined. This was accompanied by comprehensive thermochemical 18 

calculations of the Ca2+•••carbonate solvent (Ca2+•••O) and Ca2+•••tetrafluoroborate (Ca2+•••F) 19 

structures and their electronic properties using the M06-2X/6-311++G(d,p) level of theory. All 20 

of these results are then compared to our previous reports that investigated the behavior of Li+, 21 

Na+ and Mg2+ ions. 22 

2. Computational Methods and Details  23 

2.1. Molecular Dynamics Simulations 24 

  Molecular dynamics simulations were performed with NAMD version 2.9,44,45 as 25 

carried out in our previous studies.30,32,33 Initial configurations for each system were generated 26 

with Packmol in a simulation box with dimensions of 30 × 30 × 30 Å3. The calcium ion, 27 

tetraborate anion and the cyclic and acyclic carbonates were modeled using a non-polarizable 28 

force field Charmm General Force Field (CGENFF). Energy minimization was performed on 29 

all systems for 500 steps using the steepest descent technique. Production runs (20.0 ns in an 30 

isobaric–isothermal ensemble at 1.0 atm and 300 K) were performed. For all calculations, the 31 
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temperature was maintained at 300 K using Langevin dynamics and a constant pressure was 1 

maintained at 1.0 atm using the Nose–Hoover algorithm. A time step of 1.0 fs was used for the 2 

integration of Newton's equation of motion. Periodic boundary conditions were used in all the 3 

three spatial coordinates. Long-range electrostatic interactions were calculated with Particle–4 

mesh Ewald algorithm. A switching function was applied for all Lennard–Jones interactions 5 

at 12.5 Å for a 14.0 Å cut–off.   6 

          According to the radial distribution functions, g(r), computed from our MD simulation 7 

trajectories (Figure 1a), we find that the Ca2+ ion interacts strongly with the carbonyl (C=O) 8 

oxygen of the carbonate solvents at the average distance of ~ 2.36 Å, which defines the width 9 

of the first solvation shell, and weakly with the ether oxygen in the carbonate solvents at the 10 

average distance of ~ 4.5 Å. Resonance (charge delocalization) between the ether oxygen 11 

atoms and C=O group in the carbonate solvents increases the electron density on the oxygen 12 

atom in the C=O group and decreases it on the ether oxygen atoms. Therefore, the presence of 13 

resonance increases the basicity of the oxygen atom in the C=O group compared to the ether 14 

oxygen atoms. Therefore, the Ca ion interacts strongly with the oxygen atom in the C=O group 15 

and has only a weak interaction with the ether oxygen atoms. The peak height from the radial 16 

distribution function (RDF) of the interaction of the calcium ion with the carbonates can be 17 

used as a metric to illustrate the strength of the calcium-carbonate interaction (Figure 1b). The 18 

ΔG(sol) values of the Ca2+-ion complexes computed from quantum mechanics (QM) 19 

calculations correlate positively with the interaction strength of carbonyl groups in the first 20 

solvation shell. 21 

 22 
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Figure 1. (a) Ion–oxygen radial distribution functions for Ca2+ solvated in the pure carbonates 1 

and their binary mixtures, obtained from MD simulations. The population at 2.3 Å is due to 2 

interactions with the carbonyl oxygens, that at 4.4 Å is due to interactions with the ether 3 

oxygens, and those above 7 Å are due to weak interactions with the subsequent solvation shells; 4 

(b) Correlation between the free energy of solvation with the amplitude of the interaction 5 

strength of carbonyl groups in the first solvation shell (r = 0.83). 6 

 7 

 We computed the most probable clusters from this large and diverse population of ~ 20,000 8 

configurations obtained from the 20 ns isothermal-isobaric, NPT, molecular dynamics (MD) 9 

simulations. The maximum probable cluster size for each carbonate system was determined 10 

according to our previously published protocol.32 Based on a distance criterion of 3.0 Å for 11 

Ca2+-O (oxygen of the carbonate), we calculated a variety of Ca-carbonate coordinated 12 

clusters. The 3.0 Å corresponds to the minimum in the first solvation peak as seen in the radial 13 

distribution function for interaction of the carbonates with the calcium ion. We then computed 14 

the number integrals for Ca2+ ion interaction with carbonates and found that the oxygen 15 

coordination number corresponds to the cluster size of the Ca-carbonate complex (Figure S2).   16 

 Figure S3 provides the distribution of such various size Ca2+-coordinated carbonate clusters 17 

for the seven neat carbonates and the four associated equimolar mixtures: each carbonate 18 

prefers a particular cluster size. For EC, PC and VC, we saw that the most populated clusters 19 
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corresponded to size 8. In BC and DMC, cluster sizes of 6 dominate the entirety of the 20 ns 1 

simulation runs. For the equimolar mixture of EC:EMC, we observed a cluster size of 9. 2 

Similarly, the cluster sizes were determined for the calcium in other carbonates and their 3 

equimolar mixtures. These cluster sizes are stable throughout the entirety of the simulation 4 

with > 70 % life-time occurrence and are much larger in size than those we observed in any of 5 

Mg2+, Li+, or Na+-coordinated carbonate clusters. We also noticed that the tetraborate anion 6 

interacts strongly with the calcium ion as seen from Figure S4. This is in stark contrast to Li+, 7 

Na+ and even Mg2+ where the cation-anion interaction was not significant throughout the entire 8 

simulation (Figure S5).  9 

 The most favourable Ca2+-carbonate cluster configurations obtained from the MD 10 

simulations were then subjected to detailed thermochemistry calculations using a first principle 11 

DFT method to better understand the electronic properties in the Ca2+-coordinated carbonate 12 

clusters. 13 

2.2. Density Functional Quantum Chemical Calculations 14 

 Quantum chemical calculations to further investigate the structural and electronic 15 

properties of the maximum probable cluster size for each system were performed using the 16 

Gaussian 09 package.46 Full optimization, energetic, structural and electronic analyses were 17 

carried out using M06-2X (Minnesota 2006 functional with double Hartree-Fock exchange) 18 

developed by Truhlar and coworkers,47,48 in combination with the 6-311++G(d,p) basis set. 19 

This functional has already been used for metal-ion battery systems in the literature and has 20 

been repeatedly shown to accurately represent non-covalent interactions.32,33,48-51 A vibrational 21 

frequency calculation was carried out for each structure to ensure the absence of imaginary 22 

frequencies, confirming each structure as a minimum on the potential energy surface. Zero-23 

point vibrational energies were determined for each optimized geometry and were incorporated 24 

into the binding energy calculations. The binding energy (ΔEb) of Ca2+••• carbonate solvent 25 

systems was calculated according to equation 1:  26 

 27 

ΔEb = E(Complex) – (n1.E(Carbonate) + n2.E(BF4
-
) + E(Ca

2+
 ion))                  (1) 28 

where n1 represents the number of interacting carbonate solvent molecules and n2 the number 29 

of coordinating  [BF4]¯ anions. E(Carbonate), E(BF4
-
), E(Ca

2+
 ion), and E(Complex) are the energies of the 30 

carbonate solvent, the [BF4]¯ anion, the Ca2+ ion, and the complete solvated complex 31 
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respectively. Binding energy values were corrected for basis set superposition errors (BSSEs)  1 

using the counterpoise method suggested by Boys and Bernardi.52 2 

 The enthalpy of solvation (ΔH(sol)) and the free energy of solvation (ΔG(sol)) of the 3 

complexes were calculated at 298.15 K using equation 2: 4 

ΔX(sol) = X(Complex) – (n.X(Carbonate) + n.X(BF4
-
) + X(Ca

2+
 ion))            (2) 5 

                                     X = H (enthalpy) or G (free energy) 6 

where X(Complex) is the free energy (or enthalpy) of the complex of Ca2+ ion with the carbonate 7 

solvents and [BF4]¯ anions, X(Carbonate) is the free energy (or enthalpy) of the carbonate solvents, 8 

X(BF4
-
) and X(Ca

2+
 ion) are the free energy (or enthalpy) of the [BF4]¯ anions and Ca2+ ion, 9 

respectively, and n is the number of carbonate solvents and [BF4]¯ anions in the complexes. 10 

The entropy (S) of solvation (ΔS(sol)) was also calculated at 298.15 K using the calculated 11 

ΔH(sol) and ΔG(sol) values, according to the following equation: 12 

(sol) (sol)

(sol)

( H  - G )
S  = 

298.15

 
              (3) 13 

Further analysis using quantum chemical calculations were employed to provide 14 

improved characterization of the electronic structure of these complexes. Second-order 15 

perturbation theory analysis of the Fock matrix was carried out to evaluate the donor–acceptor 16 

interactions (Ca2+•••O and Ca2+•••F) using a natural bond orbital (NBO) methodology. In these 17 

interactions, electrons partially delocalize from the localized natural bond orbitals of the 18 

idealized Lewis structure into an empty non-Lewis orbital. For each donor NBO (i) and 19 

acceptor NBO (j), the stabilization energy E(2) associated with the delocalization i → j is 20 

estimated by the following equation53: 21 

where 
j and 

i  are NBO orbital energies and F


 is the Fock operator.     22 

A natural population analysis (NPA)54 was conducted using a NBO analysis53 at the 23 

M06-2X/6-311++G(d,p) level of theory. This quantifies the magnitude of the charge transfer 24 

between the Ca2+ ion and its associated carbonate solvent and [BF4]¯ anion molecules. The 25 

Wiberg bond index (WBI),55,56 as a criterion for determining the bond order between two 26 

atoms, was calculated for the interactions between the Ca2+ ion and the O atom of the carbonyl 27 

2
(2)  i |F| j  

E 2          (4)
j i 



 
= −

−
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groups of the carbonate solvents and the F atoms of [BF4]¯ anions to evaluate the strength of 1 

the interaction. 2 

The quantum theory of atoms in molecules (QTAIM)57 analysis was also used to 3 

characterize the nature and strength of interaction of Ca2+ ion with both the carbonate solvents 4 

and the [BF4]¯ anions using the AIM2000 program.58 The nature of these interactions was 5 

further analyzed using noncovalent interaction (NCI) plots as implemented in Multiwfn-3.2 6 

and VMD.59,60 The HOMO and LUMO orbital energies, the HOMO-LUMO energy gap (Eg), 7 

and the global molecular descriptors such as electronic chemical potential (μ; µ = (EHOMO + 8 

ELUMO)/2), chemical hardness (η; η = (ELUMO - EHOMO)/2), global softness (S; S = 1/η) and 9 

electrophilicity index (ω; ω = µ2/2η)61-63 were calculated for the carbonate solvents and their 10 

complexes with the Ca2+ ion using Koopmans’ theorem.64 11 

 12 

3. Results and Discussion 13 

3.1. Determination of the Optimized Geometries and Energetics of Carbonate-Solvated 14 

Ca2+-Ion Complexes 15 

 MD simulations provided preferred initial configurations of the calcium ion complexes 16 

formed in EC, VC, PC, BC, DMC, EMC, DEC and the binary mixtures of EC:PC, EC:DMC, 17 

EC:EMC and EC:DEC. The DFT calculations were carried out using the M06-2X/6-18 

311++G(d,p) method to describe the solvation behavior of Ca2+ ion in the various carbonate 19 

solvents as this level of theory has proven sufficient for previous studies.30,33,65 We were able 20 

to determine the strength and nature of the ion’s interaction with carbonate solvents and then 21 

use these values to rank order the Ca2+ solvation capacity of the carbonate solvents and binary 22 

mixtures. These optimized geometries, along with the Ca2+•••O and Ca2+•••F distances (in Å) 23 

associated with the interaction of Ca2+ ion with carbonate solvents and the [BF4]¯ counterions 24 

in the first solvation shell, are provided as Figures S6 and S7. 25 

Unlike the Li+, Na+ and Mg2+ ions we had previously examined,30,32,33 the solvation 26 

structure of the Ca2+ ion is highly solvent dependent. We found that the Ca2+ ion is solvated by 27 

4-8 carbonate solvents and either one or two [BF4]¯ anions depending on the solvent. The 28 

average number of carbonate solvents and anions in the first coordination shell of the lowest 29 

energy complex is provided in Table 1. The optimized geometries in Figures S6 and S7 show 30 

that the [BF4]¯ anions form mono-coordinated complexes with the Ca2+ ion in the Ca2+(EC), 31 
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Ca2+(VC), Ca2+(PC), Ca2+(BC), Ca2+(DMC), Ca2+(EC:PC), Ca2+(EC:DMC) and 1 

Ca2+(EC:DEC) complexes, whereas in the Ca2+(EMC), Ca2+(DEC) and Ca2+(EC:EMC) 2 

complexes, the calcium ion forms a bifurcated interaction using two F atoms on two different 3 

counterion molecules. Whether the anion is mono-coordinated or bi-coordinated to the Ca2+ is 4 

determined by the number and geometry of solvent and anion molecules in the coordination 5 

sphere of a given solvent-calcium combination. Importantly, the anion is part of this first 6 

solvation shell. This was not seen for the other cations.  7 

There are several factors that contribute to this different behavior. Calcium is the lone 8 

fourth row ion in this series and has a full 3p shell. This allows for charge distribution 9 

unavailable to the other ions and changes the solvent-ion distances. The average carbonate-ion 10 

distance is approximately 2.4 Å for these calcium clusters compared to 2.2, 2.0 and 1.9 Å for 11 

sodium, magnesium and lithium respectively.30,32,33 With this greater space provided by this 12 

longer interaction length, there are additional possibilities for the different solvents to organize 13 

around the calcium center. A second key factor involves the higher cell potential obtained with 14 

calcium as opposed to magnesium as the stronger coulombic interactions between calcium and 15 

the carbonate result in higher viscosities and consequently lower ion mobility than that 16 

observed for lithium or sodium cations.66 These stronger interactions with the solvent would 17 

suggest that electrolyte choice might prove more important for calcium compared to the other 18 

ions where this is not as important a factor. Finally, the strength of the cation-anion interaction 19 

is stronger for calcium than for any of the other systems. This is supported by our radial 20 

distribution function analysis of the cation-anion distances (Figure S5). These distances are far 21 

greater for the other systems meaning that the first solvation shell for other cations is dominated 22 

by the carbonate solvents whereas there is far more balance in the case of the calcium ions. 23 

Together these factors help explain the structural complexity observed for calcium compared 24 

to the other ions. 25 

Both the number of carbonate solvents and their spatial arrangement affect the 26 

interaction mode and behavior of the [BF4]¯ anions. As shown in Table 1, the carbonate: anion 27 

ratio is higher for complexes with mono-coordinated [BF4]¯ than for those in which the [BF4]¯ 28 

anions form a bifurcated interaction. Therefore, [BF4]¯ anions tend to mono-coordinate to the 29 

Ca2+ ion due to a lack of space in the first coordination shell. This leads to a weaker interaction 30 

for these mono-coordinated [BF4]¯ anions than for the bi-coordinated [BF4]¯ anions, as is 31 
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suggested by the smaller values for the sums of electron density (∑ρ(r)) at the bond critical 1 

points (BCPs) for the mono- vs bi-coordinated systems (Table S1). 2 

The carbonate solvents interact with the Ca2+ ion through the lone pair electrons of their 3 

carbonyl groups (Ca2+•••O interactions) and the [BF4]¯ anions are coordinated to the Ca2+ ion 4 

by the lone pair electrons of their fluorine atoms (Ca2+•••F interactions). The average distance 5 

between the calcium and the coordinating atoms range between 2.30 – 2.50 Å, and depend on 6 

the type of carbonate solvent (cyclic vs acyclic) as well as on the number and orientation of 7 

the coordinating solvent and [BF4]¯ molecules surrounding the Ca2+ ion. Shorter carbonyl-8 

Ca2+ distances correlate with more favorable ΔH(sol) and ΔG(sol), with a small offsetting penalty 9 

in ΔS(sol). As shown in Figure 1b, the ΔG(sol) values of the Ca2+-ion complexes have good 10 

correlation with the interaction strength of carbonyl groups in the first solvation shell. The 11 

greater the ΔG(sol) values, the stronger is the interaction of oxygen atoms of the carbonyl groups 12 

with the Ca2+ ion in the first solvation shell. The least favored systems note the inverse 13 

relationship, with less favorable enthalpy and Gibbs free energy terms, but lesser penalties to 14 

entropy. Closer association of the carbonyl electrolytes to the calcium core improves solvation. 15 

The tetrafluoroborate plays a lesser role in determining the free energy of solvation as there is 16 

no clear correlation between these distances and the thermodynamic parameters. 17 

 18 

Table 1. The ratio of carbonate: anion, average Ca2+•••O and Ca2+•••F bond lengths and 19 

thermochemical properties of the Ca2+••• carbonate solvent complexes. 20 
 21 

Structures Coordinated species Ca2+-O(Å) Ca2+-F(Å) aΔEb (kcal/mol) ΔH(sol)(kcal/mol) ΔS(sol)(cal/mol.K) ΔG(sol)(kcal/mol) 

(EC)2+Ca 8EC:1BF4
- 2.40 2.32 -498.97 -520.98 -366.27 -411.77 

(VC)2+Ca 8VC:1BF4
- 2.48 2.37 -467.32 -486.24 -340.94 -384.59 

(PC)2+Ca 8PC:1BF4
- 2.52 2.31 -482.93 -503.44 -353.87 -397.93 

(BC)2+Ca 6BC:2BF4
- 2.41 2.39 -538.43 -556.14 -316.72 -461.71 

(DMC)2+Ca 6DMC:2BF4
- 2.45 2.41 -531.28 -548.19 -342.37 -446.11 

(EMC)2+Ca 4EMC:2BF4
- 2.36 2.38 -524.60 -535.80 -244.00 -463.05 

(DEC)2+Ca 4DEC:2BF4
- 2.38 2.41 -520.77 -533.57 -246.79 -459.99 

(EC:PC)2+Ca 5EC:3PC:1BF4
- 2.42 2.38 -483.11 -504.35 -359.06 -397.30 

(EC:DMC)2+Ca 7EC:1DMC:1BF4
- 2.43 2.36 -489.75 -509.49 -357.69 -402.84 

(EC:EMC)2+Ca 4EC:2EMC:2BF4
- 2.47 2.43 -539.39 -556.63 -314.79 -462.77 

(EC:DEC)2+Ca 4EC:2DEC:2BF4
- 2.43 2.36 -550.86 -569.93 -327.85 -472.18 

aThese reported binding energies (ΔEb) have been corrected by BSSE. 22 
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 The thermochemical properties of Ca2+••• carbonate solvent complexes, including 1 

binding energy (ΔEb), enthalpy, entropy, and free energy of solvation are summarized in Table 2 

1. The binding energy (ΔEb) is indicative of the compatibility of the Ca2+ ion with the various 3 

carbonates. The binding energy is strongly dependent on the type of carbonate solvent, the 4 

number of carbonate solvents, the number and nature of the [BF4]¯ coordination, and the 5 

coordination mode of the Ca2+ ion.32 In all Ca2+••• carbonate solvent complexes, both the 6 

carbonate solvents and [BF4]¯ anions are coordinated to the Ca2+ ion through the oxygen atoms 7 

of carbonyl groups and the fluorine atoms, respectively. As mentioned above, the arrangement 8 

of [BF4]¯ anions and the strength of their interaction with the Ca2+ ion depend on the number 9 

of carbonate solvents in the first coordination shell. An increase in the number of [BF4]¯ anions 10 

from one to two in the Ca2+••• carbonate solvent complexes, irrespective of the behaviour of 11 

the carbonate solvents, enhances the ∑ρ(r) values at the BCPs of Ca2+•••F interactions and thus 12 

increases the binding energy values, possibly due to minimizing the charge on the complex. 13 

For example the EC:DEC system, with 2 counterions and 6 solvent molecules, is almost 100 14 

kcal/mol lower in energy than the VC-solvated system. These calculations imply that the 15 

highest binding energies are seen for the butylene carbonate (BC, -538.43kcal/mol) and the 16 

equimolar mixture of ethylene carbonate and diethyl carbonate (EC:DEC, -550.86kcal/mol). 17 

Despite the significant differences in binding energy, all systems are enthalpically highly 18 

favorable.  19 

 Carbonate solvation decreases the number of translational degrees of freedom of the 20 

carbonate solvents and [BF4]¯ anions and leads to the negative values of ΔS(sol). However, the 21 

enthalpy term dominates the interaction ensuring these are favorable processes.30-33 In addition, 22 

all calculated ΔG(sol) values are negative and show that these systems are both exothermic and 23 

exergonic.30-33 In general, for all systems, the greater the enthalpy term, the greater is the 24 

magnitude of the free energy of solvation. 25 

 Ranking the carbonate systems based on the calculated free energy of solvation 26 

(ΔG(sol) rather than binding energy, ΔEb) of the Ca2+ ion provides the following order EMC> 27 

BC> DEC> DMC> EC> PC> VC for the pure carbonate solvents and EC:DEC> EC:EMC> 28 

EC:DMC> EC:PC for the binary mixtures of carbonate solvents. According to these orders, 29 

the EMC and EC:DEC solvents are the best electrolytes among pure and binary mixtures of 30 

carbonate solvents for the Ca2+-ion batteries, respectively. The latter result is particularly 31 
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interesting as neither solvent on its own is particularly suitable, but the combination appears to 1 

allow each solvent to compensate for the deficiencies of the other. 2 

 The calculated free energies of solvation of the Ca2+ ion are compared with those of 3 

Li+, Na+ and Mg2+ ions in Figure 2.4,32,33 A larger free energy of solvation correlates to higher 4 

solubility. The comparison illustrates the clear trend in solubility: ΔG(sol)(Ca2+)  >  ΔG(sol)(Mg2+)  5 

> ΔG(sol)(Li+) > ΔG(sol)(Na+). As the enthalpy term dominates, this is the same trend that is 6 

observed for the free energy of binding as well. Within this series, the divalent ions, Mg2+ and 7 

Ca2+ are notably more soluble than monovalent Li+ and Na+. This result is in good agreement 8 

with the results reported by Okoshi and coworkers who determined that the Mg2+ ion has a 9 

remarkably larger de-solvation energy in electrolyte solvents than Li+ and Na+ ions because of 10 

its double positive charge.67 Similarly, Ponrouch et al. experimentally determined that 11 

carbonate electrolyte solutions of Mg2+ and Ca2+ exhibit significantly stronger cation-carbonate 12 

interactions than solutions of Li+ and Na+.66 This means that the divalent cations will have 13 

lower mobility in the electrolyte solution, and this will have a detrimental impact on their 14 

efficiency for battery discharge rates. 15 

 A key feature to achieve the required long cycle life of metal-ion batteries is the 16 

selection of the proper electrolyte system able to readily both solvate (to discharge the battery) 17 

and desolvate (to charge the battery) the ion.18 Calcium tetrafluoroborate is readily solvated by 18 

all of carbonate solvents as indicated by the highly exothermic and exergonic energies 19 

calculated above. Although, this means that desolvation is energetically expensive, this need 20 

not be the case. The desolvation process at the solid electrolyte interphase can be facilitated by 21 

increasing the temperature of the system employing anions with a delocalized negative charge, 22 

such as bis(trifluoromethylsulfonyl)imide (TFSI), modifying the presence of additives, and 23 

redesigning electrodes to have a larger free energy of interaction with the ion.18,66 These 24 

interventions will likely prove necessary for calcium-based batteries, as they clearly have a 25 

much higher energy of desolvation than the other three cations. These analyses will form the 26 

basis of a future study. 27 

This observation, the expected difficulty of desolvation, is in good agreement with the 28 

results of Ponrouch et al. who required an elevated temperature (100 °C) to demonstrate 29 

feasible calcium plating using carbonate electrolytes.18 A clear priority for the future 30 
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development of Ca-ion batteries will be to reduce the operating temperature required for 1 

effective desolvation as much as possible. 2 

Figure 2. Comparison of the free energy of solvation of Li+, Na+, Mg2+ and Ca2+ ions in various 3 

acyclic and cyclic carbonates and their binary mixtures as calculated at the M06-2X/6-4 

311++G(d,p) level of theory, labels are provided for the first series only for clarity. The free 5 

energy of solvation of Li+, Na+ and Mg2+ ions has been reproduced from our previous studies 6 

for comparison purposes only.30,32,33 7 

 8 
 To gain further insight into the degree of charge transfer between the solvated Ca2+ ions 9 

and their coordinating solvents and [BF4]¯ anions, NBO analysis was carried out at the M06-10 

2X/6-311++G(d,p) level of theory. The amount of charge transfer (∆qCa
2+) in each complex is 11 

defined as the difference between the charge of an isolated Ca2+ ion and the charge of the Ca2+ 12 

ion in the corresponding complexes (ΔqCa
2+ = qCa

2+
(Isolated) – qCa

2+
(Complexed)). The charge transfer 13 

occurs from carbonate solvents and [BF4]¯ anions to the Ca2+ ion through Ca2+•••O and 14 

Ca2+•••F interactions. The highest calculated charge transfers for pure carbonate complexes 15 
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and binary mixture complexes were determined for Ca2+(VC) (0.6488e) and Ca2+(EC:DEC) 1 

(0.6162e), respectively. 2 

An NBO analysis to evaluate the donor–acceptor interactions (Ca2+•••O and Ca2+•••F) 3 

showed that they are present mostly between the lone pairs of oxygen atoms (lp(O)) in the 4 

carbonyl groups and the lone pairs of the fluorine atoms (lp(F)) in the [BF4]¯ anions with the 5 

unoccupied lp*orbital of the Ca2+ ion (lp(O)⟶lp*
(Ca

2+
) and lp(F)⟶lp*

(Ca
2+

)). The total values of 6 

donor-acceptor stabilization energies (∑E(2)) of the Ca2+•••O and Ca2+•••F bonds in the studied 7 

complexes are listed in Table S1. 8 

The highest value of ∑E(2) is observed for Ca2+(VC) (423.23 kcal/mol). To evaluate the 9 

bond strength of Ca2+ with carbonate solvents and [BF4]¯ anions, the Wiberg bond index was 10 

also calculated for all complexes. The sum of the Ca2+•••O and Ca2+•••F Wiberg bond indices 11 

(∑WBI(Ca
2+

•••O) and ∑WBI(Ca
2+

•••F)) demonstrates that the Wiberg index of the Ca2+•••O 12 

interactions is greater than that of the Ca2+•••F interactions. This means that the Ca2+•••O are 13 

more important for delocalizing the charge on calcium than the anionic counterion. The 14 

QTAIM analysis of these interactions also supports this contention (Tables S1 and S2). The 15 

sum of electron density (∑ρ(r)) at the bond critical points (BCPs) of the Ca2+•••O interactions 16 

is higher than that at the BCP of the (Ca2+•••F) bonds. Both of these calculations, independent 17 

and complementary methods to measure the relative importance of interactions, indicate that 18 

the Ca2+-carbonate interactions are stronger than those between Ca2+ and [BF4]¯. This same 19 

conclusion can be reached by examining the HOMO and LUMOs of these systems (Figures 20 

S8 and S9). 21 

 The interaction of the Ca2+ ion with both the carbonate solvents and [BF4]¯ anions can 22 

be further probed by analyzing their infrared (IR) spectra (Figure S10). Vibrational analysis on 23 

the optimized structures of isolated carbonate solvents and their complexes with Ca2+ ion 24 

shows that the C=O stretching frequencies in carbonate solvents and their binary mixtures can 25 

be affected by the presence of a Ca2+ ion. The greatest changes in vibrational frequencies 26 

between the isolated and complexed systems are related to the frequencies arising from the 27 

carbonyl groups. These stretching frequencies become red-shifted after binding with the Ca2+ 28 

ion, indicating that C=O bonds are weakened due to the redistribution of the electron density 29 

around the oxygen atoms that arises upon complexation. The changes in the vibrational 30 

frequencies of C=O groups are in line with the corresponding bond lengths and electron 31 
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densities observed for the C=O groups. These observations are in good agreement with the 1 

results reported in the literature.30,32,33,68,69 2 

 In order to understand the nature of the interactions between the Ca2+ ion and the 3 

ligands, the values of the electron density Laplacian (∇2ρ(r)), the kinetic energy density (G(r)), 4 

the potential energy density (V(r)) and the total energy density (H(r)) at the BCPs of Ca2+•••O 5 

and Ca2+•••F bonds were also determined (Table S2). From the strongly positive values of 6 

∇2ρ(r) and H(r) at the BCPs formed between O atoms of carbonate solvents and Ca2+ ion 7 

(Ca2+•••O) as well as between F atoms of [BF4]¯ anions and Ca2+ ion (Ca2+•••F), it can be 8 

concluded that the Ca2+•••O and Ca2+•••F interactions are classified as clear electrostatic 9 

interactions. The electrostatic nature of the Ca2+•••O and Ca2•••F interactions was also revealed 10 

by noncovalent interaction (NCI) plots which display a scatter plot of the magnitude of the 11 

electron density represented by the second eigenvalue of the density Hessian, sign(λ2)ρ, at 12 

points with a given low-reduced density gradient s(r) value (Figure 3).70 These plots refine the 13 

analysis of the type and strength of noncovalent interactions. The sign of λ2 and the electron 14 

density (ρ) value determine the type and strength of noncovalent interactions, respectively. A 15 

negative sign of λ2 is indicative of strong attractive interactions (i.e. electrostatic interactions, 16 

hydrogen bond interactions and halogen bond interactions) whereas a positive value is typical 17 

of strong repulsive interactions, including steric effects. Values near zero indicate van der 18 

Waals interactions. In the plots, the strength of these noncovalent interactions at a given 19 

reduced density gradient (RDG) isosurface is represented using a colorimetric scale. Blue, 20 

green and red indicate strong attraction, weak Van der Waals interactions, and strong repulsive 21 

interactions respectively. Figure 3 illustrates a scatter plot of RDG versus sign(λ2)ρ and a 3D 22 

representation of the reduced density gradient (RDG, 0.5 a.u.) for the Ca2+(EC) complex 23 

superimposed on the molecular structure. The surfaces calculated between both the carbonyls 24 

of the carbonate solvents and the fluorides of the trifluoroborates with the Ca2+ core are bright 25 

blue indicating the presence of strong electrostatic attractive interactions. This observation is 26 

in good agreement with the results obtained from QTAIM analysis. On the other hand, the 27 

green regions between carbonate solvents and the [BF4]¯ anions show that the presence of Van 28 

der Waals interactions organize the co-ordination sphere. Similar plots are provided for the 29 

other complexes as Figure S11. 30 

 31 
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 1 

 2 

Figure 3. The scatter plot of reduced density gradient (RDG) versus sign(λ2)ρ and 3D graphic 3 

of reduced density gradient (RDG, 0.5 a.u.) for the Ca2+(EC) complex. Blue, green, and red 4 

colors indicate the strong attractive, weak vdW, and strong repulsion interactions respectively. 5 

An insert provides a zoom of the interactions immediately around the calcium center. Similar 6 

plots for other systems are provided as Figure S11. 7 

 8 
 Ion complexation will change the electronic structure of the components. To analyze 9 

this effect, the HOMO and LUMO orbital energies and the HOMO-LUMO energy gap (Eg) 10 

were calculated for the isolated carbonate solvents and the Ca2+-ion complexes (Table S3, and 11 

Figure S8). For two cases, EMC, and 1:1 EC:DEC, the HOMO-1 and LUMO+1 orbitals were 12 

also modeled (Figure S9). In all complexes, the HOMO and LUMO (and HOMO-1 and 13 

LUMO+1) are located primarily on the electrolyte molecules. The HOMO density is localized 14 

to carbonyl functionalities oriented in close association with the calcium center. The LUMO 15 

densities are located on the most distal electrolyte molecules. The tetrafluoroborate 16 

functionalities have a small contribution to these FMOs, and there is no observable density on 17 
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the calcium center for any of the systems. The degree of change in the energies of the frontier 1 

molecular orbitals (FMOs) depends on the solvent. DEC has almost no decrease in the HOMO 2 

energy upon complexation, while EC and VC show a 2 eV decrease and BC demonstrates a 3 

slight increase upon complexation. In contrast, the energies of the LUMOs universally become 4 

more negative upon complexation. These shifts lead to changes in the HOMO-LUMO energy 5 

gap of the carbonate solvents when coordinated. The HOMO−LUMO energy gap of un-6 

coordinated EC, VC, PC, BC, DMC, EMC, and DEC solvents falls within the range of 8.58 to 7 

10.26 eV. This energy gap decreases upon interaction with the Ca2+ ion (Figure S12). The 8 

HOMO−LUMO energy gap of the mixed solvent systems (PC, EMC and DEC with EC) is 9 

generally smaller than that found in the one-solvent complexes with the exception of the 10 

EC:DMC. We propose that this arises because of the reorganization and subsequent weakening 11 

of the interaction between these acyclic carbonates and the tetrafluoroborate with the calcium 12 

centre upon exposure to the cyclic EC. Calculating the electron density at the bond critical 13 

points shows that the interaction between the carbonyl oxygen of the acyclic carbonates and 14 

the calcium ion decreases by between two and four-fold in the mixed system compared to the 15 

pure carbonate system (Table S4). We see a similar decrease in the electron density at the bond 16 

critical point for the anion-calcium interaction. This is always offset by the addition of a new 17 

interaction with EC, which is always stronger than that with the acyclic carbonate in the mixed 18 

systems, but is still lower than that of the acyclic carbonate alone. Except in the case of DMC 19 

where the larger number of ECs in the cluster leads to a higher electron density at the bond 20 

critical point. One of the reasons for this difference in behaviour is that different numbers of 21 

EC molecules displace the acyclic carbonates in the complexes. This is especially the case for 22 

DMC where a large number of EC molecules are present in the first solvation shell, especially 23 

compared with the other mixtures (7EC:1DMC:1BF4 vs 5EC:3PC:1BF4
-, 4EC:2EMC:2BF4

-, 24 

4EC:2DEC:2BF4
-, Table 1). Hence, it seems that the stronger interaction of EC with Ca2+ 25 

compared to any of PC, DMC, EMC, DEC or BF4
- highlights the ability of the very small EC 26 

molecule to perturb charge distribution and the strength of the interactions, which in turn 27 

affects charge transfer as manifested in the HOMO/LUMO energies. This stronger interaction 28 

raises the HOMO-LUMO energy gap relative to the pure solvent mixture for DMC alone. The 29 

weaker interactions lower the HOMO-LUMO energy gaps of the other solvents in a mixture 30 

with EC relative to the solvents alone.  31 
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The shifting of the frontier molecular orbital energies upon complexation affects the 1 

oxidative and reductive potentials of the related systems facilitating solvation, charge transfer, 2 

and modifying the polarity of the first solvation shell.71 3 

The shifting of the HOMO and LUMO orbital energies of the carbonate solvents upon 4 

ion complexation also affects the global molecular descriptors of the carbonate solvents, 5 

including their electronic chemical potential (μ), chemical hardness (η), global softness (S) and 6 

electrophilicity index (ω) (Table S3 and Figure S12). The μ and η values of carbonate solvents 7 

decreases upon ion complexation. In addition, these values are also lower when EC is used as 8 

a co-solvent to the PC, DMC, EMC and DEC solvents, than when those four carbonates are 9 

used alone. A low HOMO-LUMO energy gap indicates less stability and a higher degree of 10 

reactivity for a chemical system. A soft molecule with a small HOMO-LUMO energy gap will 11 

be more polarizable than a hard molecule with a large HOMO-LUMO energy gap. Based on 12 

this criterion, the Ca2+-ion complexes are predicted to be softer (lower η value) and have higher 13 

reactivity than the carbonate solvents alone. The electrophilic nature of carbonate solvents is 14 

evaluated using the electrophilicity index (ω), which measures the stabilization in energy when 15 

the carbonate solvents and their complexes gain an additional electronic charge from the 16 

environment. The electrophilic nature of carbonate solvents increases through complexation 17 

with Ca2+ ion and through the addition of EC as a co-solvent (Figure S12). Curiously, these 18 

various parameters, the energies of the HOMO and LUMO and the values of μ and ω, appear 19 

to be correlated with the free energy of solvation (Figures 4 and 5). 20 

 21 
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 1 

 2 

 3 
Figure 4. Relationship between (a) Free energies of solvation and HOMO orbital energies and 4 

(b) Free energies of solvation and LUMO orbital energies of the Mg2+ and Ca2+-ion complexes. 5 

The correlation coefficient between the HOMO/LUMO orbital energies and the free energy of 6 

Ca2+•••carbonate solvent complex is 0.80 and 0.98 respectively. The data related to Mg2+-ion 7 

complexes has been taken from our previous study.33 8 

 9 
 10 

We observe a very strong correlation between the free energy of solvation and the 11 

HOMO/LUMO orbital energies of both the divalent Mg2+ (r = 0.87 and 0.99, respectively) and 12 

Ca2+-ion (r = 0.80 and 0.98, respectively). This makes intuitive sense, as the energy of solvation 13 

dominates the energies of these systems, and solvation for these systems is driven by carbonyl-14 

calcium interactions; however, the correlation is remarkable considering the impact that other 15 

factors could play, and the reason for the even better correlation with the energy of the LUMO 16 

is not clear. This is especially the case as the density in the LUMO is located asymmetrically 17 

on the periphery of the solvated complex. This same relationship is not apparent for the 18 

monovalent sodium and lithium ions where the free energy of solvation is largely independent 19 

of the nature of the carbonate solvent (data not shown). 20 

Similarly, Figure 5 plots μ and ω for the carbonate complexes with all for cations as a 21 

function of the free energy of solvation. The μ values of the Mg2+ and Ca2+-ion complexes 22 

increase proportionally to the free energy of solvation, while the ω values for these complexes 23 

decrease. This is clearly not the case for the Li+ and Na+-ion complexes (calculated from our 24 

previously obtained data),30,32 where no such correlation is observed. A correlation would be 25 

expected as these parameters would have a strong effect on the charge-discharging mechanism 26 

of the carbonate electrolytes. The lack of a correlation with the monovalent ions is curious. 27 

Finally, these results suggest that the HOMO-LUMO gap might be a useful surrogate for 28 

battery efficiency when divalent ions are considered. This could form the basis for the 29 

computational screening of potential electrolytes to identify the most promising ratios and 30 

mixtures for maximizing the solubility, and charge density, of future Ca-ion battery systems. 31 

 32 

  33 
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Figure 5. Relationship between free energy of solvation and (a,b) electronic chemical potential 1 

(μ) and (c,d) electrophilicity index (ω) of the Li+, Na+, Mg2+ and Ca2+-ion complexes. b) the 2 

correlation between electronic chemical potential (μ) and free energy of solvation for Mg2+ and 3 

Ca2+ are 0.95 and 0.90, respectively. d) the correlation between electrophilicity index (ω) and 4 

free energy of solvation for Mg2+ and Ca2+ are 0.98 and 0.95, respectively. No such correlation 5 

exists for the mono-valent ions – Lithium or Sodium. 6 

 7 

3. Conclusions 8 

In this study, the solubility and solvation behavior of Ca2+ ion in pure carbonate solvents 9 

(EC, VC, PC, BC, DMC, EMC and DEC) and four binary mixtures of carbonates (EC:PC, 10 

EC:DMC, EC:EMC, and EC:DEC) are investigated using combined molecular dynamics 11 

(MD) simulations and density functional theory (DFT) calculations. These calculations 12 

identify pure EMC and the binary mixture EC:DEC are the best electrolytes for potential Ca2+ 13 

ion batteries. 14 
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A comparison between the free energy of solvation of Ca2+ ion in the carbonate solvents 1 

with our previously reported Li+, Na+ and Mg2+ ions, indicates that calcium is far more soluble 2 

than any of the other cations. 3 

The Ca2+ ions are stabilized by the oxygen atoms of carbonyl groups and fluorine atoms 4 

of [BF4]¯ anion. NBO and QTAIM analyses show that the Ca2+•••O interactions are far 5 

stronger than Ca2+•••F interactions. QTAIM analysis and noncovalent interaction (NCI) plots 6 

also reveal that these interactions (Ca2+•••O and Ca2+•••F) are strong and electrostatic in nature. 7 

The calculated infrared (IR) frequencies of carbonyl groups (C=O) in the carbonate solvents 8 

and their complexes show that the stretching frequency of C=O groups become red-shifted 9 

after binding with Ca2+ ion. These changes are consistent with the bond length extension and a 10 

decrease in electron density in the C=O groups. Electronic structure calculations show that the 11 

Eg, μ and η values of carbonate solvents decrease upon interaction with Ca2+ ion and addition 12 

of EC solvent, which in turn increases the reactivity of carbonate solvents. Furthermore, the 13 

electrophilic nature of carbonate solvents increases with Ca2+ ion complexation and addition 14 

of EC solvent. This simplifies the attainment of additional electronic charge from the 15 

environment. The results of this study provide deeper insight into the rational design and 16 

selection of novel electrolytes required for a feasible Ca-ion battery. 17 
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