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Abstract

Modern Statistics has entered the era of Big Data, wherein data sets are too large,

high-dimensional, incomplete and complex for most classical statistical methods. This

analysis of Big data firstly focuses on missing data. We compare different multiple im-

putation methods. Combining the characteristics of medical high-throughput exper-

iments, we compared multivariate imputation by chained equations (MICE), missing

forest (missForest), as well as self-training selection (STS) methods. A phenotypic

data set of common lung disease was assessed. Moreover, in terms of improving the

interpretability and predictability of the model, variable selection plays a pivotal role

in the following analysis. Taking the Lasso-Poisson model as an example, we illus-

trate the robust random Lasso method in the Meta-analysis of multiple datasets for

variable selection. Thus, the real data analysis clarifies that missForest and STS

outperform MICE. Moreover, the simulation results show that although this method

is as effective in selecting important variables as using the random Lasso method,

meta-analysis based on the random Lasso is better in terms of coefficient estimation

and elimination of unimportant variables. In conclusion, We firstly propose a miss-

Forest random lasso (MFRL) method to complete the multiple imputation of the

high-dimensional data and robustly select important variables.
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Chapter 1

Introduction

Recently, the research of variable selections in high-dimensional incomplete data has

attracted a lot of attention. This kind of study includes two parts, missing data and

variable selections.

Missing data are commonly encountered in many data analyses. High-dimensional

data sets often lead to biased or less precise results under traditional statistical meth-

ods. Importantly, this problem has begun to be solved by the data mining methods,

aided by the rapidly developing computational power of artificial intelligence (Lee

and Siau (2001) [30]).

In addition, high-dimensional data present new challenges for variable selection in

regression analysis. Variable selection plays a pivotal role in regression analysis as it

identifies important variables that are associated with outcomes and have been shown

to improve predictive accuracy and interpretability of the resulting models. Variable

1



CHAPTER 1. INTRODUCTION 2

selection methods have been widely investigated for complete data including classi-

cal model selection methods, penalization methods and Bayesian variable selection

methods (Fan and Lv (2010) [15]).

1.1 Missing Data

In medicine, finance, transportation, telecommunications and a variety of other fields,

missing data are commonly encountered (Lee and Siau (2001) [30]). Since all statis-

tical analysis techniques strictly derive information from data sets, the quality of the

information depends to a large extent on the deviation of the data set. As one of the

important factors affecting the behavior of data, missing data may not only cause the

deviation of the estimator but also lead to the distortion of the estimator variance,

which reduces the efficiency of traditional statistical methods (Kang (2013) [26]).

Therefore, statistical approaches coping with missing data have naturally become a

crucial issue for researchers.

To introduce some notations, let X be a fully observable d-dimensional covariate.

Further, let Xobs be the observed value, let Xmis be the missing value and let δ be

the missing indicator function.

In term of missing data and data dependencies, Little and Rubin ((1989) [34]) clas-

sify the missing data mechanisms into three categories: (1) Missing not at random

(MNAR): the reason of missing data depends on the true value of the missing vari-
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able. That is, P (δ = 1|Xobs, Xmis) 6= P (δ = 1|Xobs). When δ = 0, it means the

data is observable. When δ = 1, it means the data is missing. (2) Missing at

random (MAR) (Rosenbaum and Rubin (1983) [49]): the missingness is not ran-

dom, but the probability of missing data depends on the value of the observable

variable in the sample. MAR provides asymptotically unbiased estimates. That

is, P (δ = 1|Xobs, Xmis) = P (δ = 1|Xobs) = π(Xobs), where π(z) is the selection

probability function. (3) Missing completely at random (MCAR): Whether the

data is missing or not does not depend on any observed or missing data. That

is, P (δ = 1|Xobs, Xmis) = P (δ = 1). MAR is the most commonly used in statistical

research (Little and Rubin (1989) [34]). Therefore, the missing mechanism of this

paper is based on this MAR assumption.

Historically, the approaches for dealing with missing data in the past can be classified

into three categories: deleting cases with missing values, grouping cases with miss-

ing values as a new class of values and filling cases with missing values. Firstly, the

simplest method of dealing with missing data is the complete data analysis method,

which consists of deleting the missing data and solely using the fully observed data for

statistical inference. Because the missing data information is ignored, this method

will lead to the loss of statistical efficiency. Meanwhile, if the missing data is not

completely at random, the estimates obtained by this method are usually biased.

Secondly, when the structure of the observed values is not comprehensive enough, it

is not reasonable to treat the missing values as a new class of values. Imputation

provides a tool for maximizing the reception of information for analyzing data with

complex missing data patterns. Therefore, scholars have been focusing on the study
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of missing value imputation methods.

Imputation techniques can be classified into two types, single imputation and multi-

value imputation. The former is divided into mean imputation, random imputa-

tion, regression imputation and regression random imputation; the latter is based on

Bayesian theory and on the expectation–maximization (EM) algorithm to achieve the

processing of missing data. There are two main disadvantages of the single imputa-

tion method. First, some approaches fundamentally change the original distribution

of data, resulting in sampling errors, such as mean imputation and regression imputa-

tion. Second, the single imputation method cannot accurately reflect the uncertainty

of the missing values, which usually underestimates the variance of the imputed es-

timator. However, since multiple imputation theory is based on single imputation

theory and overcomes the shortcomings of single imputation theory, this major paper

focuses on the selection of multiple imputation methods for high-dimensional data.

There are three main types of approaches to handle multiple imputation. Firstly, in-

verse probability weighting corrections are usually available (Horvitz and Thompson

(1952) [19]). However, inverse probability weighting approaches are always not appli-

cable in the complicated missing data patterns. Secondly, some approaches rely on

the improved models of missing data, such as using beta distribution to simulate the

molecular rotation of genes and work well in some traditional situations. With the in-

creasing trend of the number of variables (large p), variable analysis becomes cumber-

some to ensure the success of multiple imputation or maximum likelihood imputation.

Meanwhile, phenotypic data has been emerging in large numbers. Phenotypic data is
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data obtained by repeatedly observing the same group of individuals at different times

and in different spaces. It is hierarchical or multi-level data that is composed of time

series data and cross-sectional data. The complexity of phenotypic data with mixed

data types (multi-class classification, ordinal, and continuous) further exacerbates the

difficulty of modeling the joint distribution of all variables. Although some algorithms

are designed to analyze data sets with continuous variables and categorical variables,

the implementation of these complex methods in high-dimensional phenotypic data is

not straightforward. Estimation approaches through accurate statistical modeling of-

ten suffer from “dimensionality collapse” and overfitting, which means there are huge

data values in every dimension and overfitting happens easily. Thirdly, the prob-

lems of stochastic error in complicated data must be fully considered (Wallace, et al.

(2010) [60]). In recent years, the estimation of the missing values of high-throughput

experimental data has attracted enormous attention. Mass spectrometry data and

microarray data are two new major challenges. In addition, microarray data contain

completely continuous intensity measurements, while phenotypic data has a mixed

data type. This character invalidates most of the established microarray imputation

approaches for phenotypic data. Moreover, gene microarray data monitors gene ex-

pression for thousands of genes, and most genes are thought to be co-regulated in

a systemic sense with other genes, which results in a high degree of correlation of

variables and makes imputation more complicated. In addition, phenotypic data is

more likely to contain isolated variables that are “unattributable” to other observed

variables.
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1.2 Variable Selection in High-dimensional Data

In the fields of Genetics, Financial Mathematics, etc., the data dimension is getting

higher and higher with an abundance of irrelevant and redundant information. Since

high-dimensional data is often sparse data in nature, variable selection becomes one

of the core issues. Some variable selection methods in high-dimensional data have

been recommended (Fan and Lv (2010) [15]; Candes and Tao (2007) [8]).

Variable selection was originally proposed by Blum and Langley ((1997) [5]), Kohavi

and John ((1997) [28]). At that time, almost no data would fall into more than

40 features. The sample size was usually greater than the number of variables. In

this context, many traditional variable selection criteria have been proposed, such

as forward regression, the Akaike information criterion (AIC) (Akaike (1973) [1]),

the Bayesian information criterion (BIC) (Schwarz (1978) [52]), Mallows’Cp criteria

(Mallows (1973) [40]), and so on.

However, with the development of science and technology, research on a large number

of variables and a small number of observations has increased dramatically. Using the

traditional methods mentioned above can be a challenge, and the computational time

grows exponentially with dimensions. Therefore, for the cases of large “p” and small

“n”, if we follow the traditional variable selection method, the calculation becomes

extremely heavy, and variable screening is also cumbersome to obtain. Thus, we need

to find some new approaches.

First of all, we considered how to select variables in the case of a linear model.
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The classical approaches are penalized least squares (PLS) and penalized likelihood

methods, which select variables and predict coefficients simultaneously. According

to the different penalty functions, we can also use bridge regression (Fu (1998) [16]),

Lasso (Tibshirani (1996) [57]) or the smoothly clipped absolute deviation (SCAD)

estimator (Fan and Li (2001) [14]). Although these methods are more robust than

the traditional ones, the performance of the corresponding estimates is also different

for distinct penalty functions. Statisticians continue to study and propose improved

methods. Zhao and Yu ((2006) [65]) named “the irrepresentable condition,” which

meant that when p grew with n and p � n, the Lasso model chose the almost suf-

ficient and necessary condition for matching. However, Lin et al. ((2009) [32]) and

Huang et al. ((2008) [20]) found that when the covariates were highly correlated,

“the irrepresentable condition” was not satisfied, and the selection of the Lasso esti-

mation model was inconsistent. Obtaining a consistent Lasso estimate of the model

became an important research issue. The elastic network estimate proposed by Zou

and Hasttie ((2005) [67]) is a combination of the ridge estimate and Lasso. This

method not only combines the advantages of both but also upgrades the consistency

of model selection. Bach ((2008) [4]) proposed “Bolasso” based on resampling. This

method guarantees a high probability of selecting important variables. Therefore,

under certain conditions, combining Bootstrap and Lasso can be used to obtain con-

sistent parameter estimates in the model.

In the second part of this research, for the complete high-dimensional data after mul-

tiple imputation, variable selection becomes fundamentally important. Meanwhile,

when researchers need to carry out a large-scale experiment, like a lung disease ex-
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periment, but with limited time, they can combine the results of previous studies on

the same topic and analyze them. This is a meta-analysis. It plays a pivotal role

in summarizing and synthesizing multidisciplinary scientific evidence. As the use of

data increases, the accuracy and precision of estimators can be improved. When the

dimensionality of the data set is high, variable selections need to be included in the

meta-analysis to upgrade the interpretability and prediction ability of the model.

Thus, it is essential to address the variable selections in high-dimensional incomplete

data. This problem can be solved in two parts. The first part focuses on missing data.

In the first chapter of this major paper, we compare different multiple imputation

methods. Combining the characteristics of medical high-throughput experiments, we

compared MICE, missForest, as well as STS methods. A phenotypic data set of lung

disease was assessed. In the second chapter, we review the corresponding rationale for

MICE, missForest and STS. In the third chapter, the real data analysis clarifies that

missForest and STS outperform MICE. The second part of the fourth chapter is about

variable selections. In terms of improving the interpretability and predictability of

the model, variable selection plays a pivotal role. Taking the Lasso-Poisson model as

an example, we introduce the robust random Lasso method in the Meta-analysis of

multiple datasets for variable selection. At last, we get the conclusion that MFRL is

our recommendation for variable selections in high-dimensional incomplete data.



Chapter 2

Literature Review

In the previous chapter, we focused on understanding the basic concepts. In this

chapter, we further study variable selections in high-dimensional incomplete data

from the perspective of historical development.

Missing data refers to data that have not been completely observed in the resulting

data set for some reason. In the past few decades, many scholars have conducted

comprehensive research and proposed several approaches to analyzing the data with

missing values. Although longitudinal data have their own characteristics, the method

of dealing with missing values in longitudinal data is also derived from the existing

methods. We can use the mean maximization imputation method, multiple impu-

tation method, mixed regression model and external estimation data to be related.

In particular, marginal models are more common methods (Troxel, et al. (1998) [59]).

9
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2.1 Progress in Research

The research on missing data in statistical analysis can be divided into the following

three periods (Kalton (2019) [23]).

The first period was the start-up period (1915 - 1950). The corresponding researchers

began preliminary research on missing data. Bowley (1915) first proposed the miss-

ing data problem and made a great contribution to the sampling method. In a social

condition survey, the uncertainty and error were classified into the non-sampling error

category. In 1926, the control for various sources of error was further emphasized.

Deming ((1944) [11]) conducted a good summary of the factors that should be consid-

ered when there were evaluating and controlling survey errors, including bias factors

that resulted in missing data due to non-response.

The second period was the period of special research and method development (1950s

- 1990s). A variety of classical approaches to dealing with the remedy of missing data

have been developed during this period.

To reduce the missing data in the investigation, it was generally necessary to start with

both prevention and ex post facto remedy. Early scholars also paid more attention to

pre-existing prevention methods and measures to reduce missing data. Pre-existing

prevention was also the easiest and most efficient way to deal with missing data. Kish

(1965), Lininger (1975), and Mosteller (1979) have separately discussed measures to

improve the response rate in the survey (Langer (2013) [29]). Politz and Deming

((1953) [44]), Orley and Peirce ((1966) [3]) and later Potthoff, et al. ((1993) [46])
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used different methods to determine the number of ideal attempts in the household

survey to reduce the lack of data due to the reasons, such that the respondent was

not at home. However, the method of prevention in advance was not a complete

method, and the problem has not been overcome. Therefore, many researchers have

conducted theoretical research and empirical exploration of the after-the-fact remedy

for missing data. Demimg and Stephan ((1940) [12]) proposed a reciprocal weighting

method based on sample extraction probability; Politz and Simmons ((1949) [45])

proposed a classic adjustment method for eliminating the need for call-backs. These

approaches were based on the number of respondents who were at home and could be

surveyed at the same time. The various weighting methods in the later stages were

based on these early ideas.

Actually, the imputation method was briefly used for remediation of unanswered items

in the project, while the weighting method was generally used for units that could not

answer. Many researchers have proposed new approaches and conducted extensive

discussions and improvements during this period. Methods, like mean imputation,

cold-deck imputation, hot-deck imputation, regression imputation and model impu-

tation, have been proposed. Nordbotten ((1963) [43]) and Schiffer, et al. ((1978)

[50]) explored the role of the cold-deck method in periodic surveys. Sonquist, Chaq-

man, Ford (1983) and Sander (1983) separately discussed and improved the hot-deck

imputation method (Andridge and Little (2010) [2]). Kalton and Kasprzyk (1986)

(Kalton and Anderson (1986) [24]; Kalton and Kasprzyk (1986) [25]) proposed a

distance function matching method (nearest neighbour imputation method) for tree

branch classification based on the hot-deck method to avoid the defects of regression
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imputation and hot-deck imputation.

In addition, Hansen and Hurwitz (1946) proposed a double-sampling method based

on traditional inferences, which was extensively discussed by Zarkovich ((1966) [64]),

Cochran ((1977) [9]) and Rao ((1973) [48]). Rao ((1972) [47]) and Singh ((1984)

[54]) published a large number of papers on the application of Bayesian methods in

the treatment of missing data. Importantly, Dempster, et al. ((1977) [13]) proposed

a data algorithm that effectively evaluated the incompleteness, namely the EM al-

gorithm. The EM algorithm was not only an effective calculation tool but also a

theoretical basis for subsequent missing value estimate methods. Based on this algo-

rithm, Rubin proposed multiple imputation methods in a series of papers in the early

1980s (Little and Rubin (1991) [35]). Currently, the improved approaches and applied

research based on multiple imputation methods still have a long-lasting impact.

During this period, classical theories on the study of missing data have also emerged

in large numbers. For example, Little and Rubin ((1991) [35]) systematically sum-

marized the theoretical framework of missing data mechanisms and some classical

approaches. These methods dealt with missing data in “Statistical Analysis with

Missing Data”, such as the likelihood function method and the EM algorithm. In the

topic of “Survey Errors and Survey Costs”, Groves ((1989) [18]) introduced the non-

response rate and proposed the corresponding statistical model. It was important

to emphasize that the “Incomplete Data Research Group” made a serious theoretical

study of missing data problems (Lessler (1992) [31]). These theories can be studied in

detail from Madow, et al. ((1983) [39]), Cox and Cohen ((1985) [10]), Kalton ((1988)
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[22]), and Little ((1988) [33]).

The third period was the time of the method perfection (from 1990s to the present).

During this period, there were fewer new ideas on non-response analysis, but more

researchers extended and improved the approaches. For example, many extended EM

algorithms, such as GEM algorithm (Dempster, et al. (1977) [13]), ECM algorithm

(Meng and Rubin (1993) [42]), ECME algorithm (Liu and Rubin (1994) [36]) and

parameter extended EM (PX-EM) algorithm (Liu, et al. (1998) [37]). Finally, with

the emergence of modern statistical methods, like support vector machines, neural

networks and the rapid development of computer technology and the application of

missing data research, this field has flourished (Goh and Lee (2019) [17]). We can

study them from non-parametric multiple imputation methods based on the concept

of “Generalized Regression Neural Networks” (GRNN) (Shalabi, et al. (2006) [53])

and the Random Forest algorithm (Tang and Ishwaran (2017) [56]).

2.2 Trends in Research Development

From the history of missing value research, we can learn how to gradually reveal

deeper statistical problems. On the theoretical method route, from the beginning of

the use of more traditional single-mean imputation to the recent statistical learning

methods, the method is gradually complex, more and more accurate.

In the past, because the cost of collecting data was too high, people often made deci-
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sions based on limited information. With the advent of the information age, technol-

ogy for discovering and searching for useful information grows rapidly. Data mining

technology has been rapidly developing and playing an essential role in business deci-

sion support, economics, management, medical research and so on. It includes mass

statistical learning methods such as decision trees, artificial neural networks, support

vector machines and random forests. For traditional statistical methods, a classical

model usually relies on a number of strong assumptions. The ideal assumptions of

the model are often difficult to be verified in the real data set. Therefore, the ac-

curacy of traditional statistical methods may not be as good as that of statistical

learning methods. The statistical learning method does not require a large number

of assumptions. It has strong accuracy for the model, and its effect on the large

sample high-dimensional data is often better than that of a traditional statistical

method. However, its model is equivalent to a black box, which is less explanatory

than that of a traditional statistical method. Statistical learning methods also rely on

the development of Computer Science. Many algorithms combined with their models

produce better results. These approaches can be used for data prediction. However,

there are few studies on the use of predictive models for high-dimensional phenotypic

dataset as well as for missing remedies and remedial effects. Therefore, in this major

paper, we use the existing computer technology to make use of multiple imputation,

missForest and STS scheme prediction. These approaches are used to simulate the

filling of high-dimensional phenotypic datasets with random missing values at differ-

ent missing rates. The advantages and disadvantages of the datasets are compared by

comparing the root mean square deviation (RMSD) of the datasets before and after

imputation. The concept of RMSD is defined at Section 2.3.
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2.3 Existing Work on Multiple Imputation

2.3.1 Multiple Imputation Algorithm

Multiple Imputation (MI) was first proposed by Dempster, et al. ((1977) [13]). The

main idea is to construct m different imputation values for each missing value in

the data set, subsequently generate m complete data sets, and then treat the m

complete data sets into one set to get the final result for the estimation of missing

data. The reason for constructing m imputation values for one missing is to simulate

the distribution corresponding to the estimated values under the assumptions, so

researchers can use these conditions to predict the actual posterior distribution of the

target variables. The difference from the previous simple imputation method is that

MI fills each missing value with an imputation method to reflect the uncertainty of

missing values. Multiple imputation has the following advantages:

1. By simulating the distribution of missing data, multiple imputation can better

preserve the intrinsic relationship between variables;

2. Compared to the simple estimation results given by single-value imputation,

multiple imputation provides a large amount of information to measure the

uncertainty of the estimation results;

3. The filling values are generated from multiple imputation. The variation be-

tween them can indicate the randomness of the missing data.

Commonly used approaches based on multiple imputation:
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1. Predictive Mean Matching (PMM): the residual term to the linear regression is

added to represent the randomness of the predicted value. The missing value is

filled with the closest one. The PMM method guarantees that the data used for

imputation is random, and the specific values for imputation are also based on

the actual observed values, so that the imputation value is close to the actual

value, which has accuracy and reliability.

2. Propensity Score (PS) method: a conditional probability that is first randomly

assigned to an observed variable. For each variable with a missing value, a

trend score is generated to indicate the probability of the sample missing, and

then the samples are grouped and each group is filled using the approximate

Bayesian method.

3. Markov Chain Monte Carlo (MCMC) is a commonly used method for posterior

distribution in Bayesian inference. It calculates the filling and posterior parts

by repeated loops, so as to extract the imputation values to fill the missing

data. In general, MCMC method is more advantageous in comparison to fully

parametric linear regression imputation. It is used in this major paper to impute

missing data.

In our study, three types of covariables are involved: continuous, ordinal, and nominal.

Since there are many clustering structures involved, we select the MCMC method in

MI. The philosophy behind the MICE methodology is below.
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Notation

Let Y = (Y1, . . . , Yp). For j = 1, . . . , p, let Yj be one of p incomplete variables. Y obs
j

and Y mis
j stand for the observed and missing parts of Yj respectively. The number

of imputation is equal to m with m ≥ 1. The hth imputed data set is denoted by

Y (h) where h = 1, . . . ,m. Let Y−j = (Y1, . . . , Yj−1, Yj+1, . . . , Yp), which denotes the

collection of the p − 1 components in Y except Yj. Let Q represent the quantity of

scientific interest. In practice, Q often stands for a multivariate vector. More pre-

cisely, Q encompasses any interesting model.

We assume that the completed data Y is a random sample of partial observations from

the p-variable multivariate distribution P (y|θ). Let the multivariate distribution of Y

be completely specified by θ (vector of unknown parameters). The question is how to

obtain the multivariate distribution of θ explicitly or implicitly. The MICE algorithm

obtains the posterior distribution of θ by iteratively sampling from the conditional

distribution of the form

P (y1|y−1, θ1)

...

P (yp|y−p, θp)

θ1, ..., θp as parameters are specific to the respective conditional densities and are not

necessarily the product of a factorization of the ‘true’ joint distribution P (y|θ). A
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simple draw is triggered from observed marginal distributions, the hth iteration of

chained equations is a Gibbs sampler that successively draws

θ
∗(h)
1 ∼ P (θ1|yobs1 , yh−12 , ..., yh−1p )

Y
∗(h)
1 ∼ P (y1|yobs1 , yh−12 , ..., yh−1p , θ

∗(h)
1 )

...

θ∗(h)p ∼ P (θp|yobsp , yh1 , ..., y(p− 1)h)

Y
∗(h)
1 ∼ P (yp|yobsp , yh1 , ..., y

h
p , θ
∗(h)
p ),

where yhj = (yobsj , y
∗(h)
j ) is the jth estimated variable at the hth iteration. It is ob-

served that the previous imputation Y
∗(h−1)
j enters Y

∗(h)
j merely by the relationship

with other variables. Therefore, unlike many other MCMC methods, this method

converges quickly. In addition, monitoring convergence is important. Usually, the

number of iterations is a small number, such as 10 - 20 times. In fact, the chain

equation refers to a series of missing data that the MICE algorithm can easily imple-

ment as a single variable process. m streams are executed by the MICE function in

parallel. Each stream generates an imputed data set.

The method has been found to be effective in many cases, important in practice and

easy to apply. Note that we can specify a model which does not follow a known joint

distribution. For example, two linear regressions specify a joint multivariate normal

given specific regularity condition. However, the coefficients of the joint normal dis-

tribution are unknown, but can be easily specified using the MICE framework. The

conditionally specified models can be incompatible in that the effects of incompati-
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bility on the quality of the imputation are unknown.

2.3.2 missForest

Missing forests (missForest) is a new nonparametric imputation method in recent

years. The principle of the algorithm is based on Random Forest, which is a rel-

atively common nonlinear modeling algorithm. Its advantages include at least two

points. First, it allows for special interactions and nonlinear features in data variables.

Second, it can adapt to various structural forms of data, that is, it can process mixed

types of data with numerical classifications. The algorithm trains a Random Forest

model with the complete observations in the first step, then predicts the missing val-

ues, and finally repeats the iterations to address such missing value filling problems.

The more prominent feature of random forests is the ability to process mixed-type

data in both low- and high-dimensional structure, even in the complex case of data

interactions and nonlinear structure. Due to the accuracy and robustness of its pre-

dictions, Random Forest has been being fully applied in various fields and complex

issues. Stekhoven and Buhlmann ((2012) [55]) improved on this basis and proposed

the missForest algorithm. MissForest can use the partially observed complete data

set as a training set to train the random forest model to predict the missing values.

The random forest algorithm and the missing forest filling process are detailed below.

(1) Random Forest Algorithm. As a member of the cluster model, the algorithm,

first published by Breiman ((2001) [6]), is an effective extension of the classic

Bagging integrated learning approach. The basic learning device of the random
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forest is the decision tree, which is used to construct the Bagging-type inte-

grated learning. A modified tree is applied to learn algorithm that selects a

random subset of the features at each candidate split in the learning process.

The algorithm can be applied to handle classification problems and regression

problems. In addition, the algorithm utilizes Bootstrap sampling.

The random forest algorithm has some characteristics. Firstly, there is the Out

of Bag (OOB) estimate. Bootstrap is used in the Random Forest model to ex-

tract a small number of samples from the dataset. The probability of choosing

any one item (say x1) on the first draw is 1
n
. Therefore, the probability of not

choosing that item is (1− 1
n
). That’s just for the first draw; there are a total of

n draws, all of which are independent, so the probability of never choosing this

item on any of the draws is (1 − 1
n
)n. If n is large, the probability converges

to 1
e
≈ 0.368 because limn→∞(1 − 1

n
)n = 1

e
. That means nearly 36.8% of the

samples will not appear in the Bootstrap sample. These sample data can be

used to test the prediction error of the training model, which is called out-of-

bag. Secondly, there is random features. At the split node under each decision

tree, only some features enter the segmentation as candidates. This process is

equivalent to de-correlating the tree, so that the average value of the obtained

tree has a smaller variance. Finally, there is importance measure in variables.

The principle of the importance measure is to add random interference to the

variable and compare whether the OOB error estimate changes significantly. If

a large change occurs, the variable can be marked as an important variable.

(2) missForest filling process. Let us assume the data X = (X1, X2, ..., Xp) is a n×p
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matrix. If a missing value in a variable is filled, the data set can be divided into

the following four parts (Stekhoven and Buhlmann (2012) [55]).

1) y
(s)
obs represents the observed values of Xs.

2) y
(s)
mis represents the missing values of Xs.

3) x
(s)
obs represents the observed values other than Xs.

4) x
(s)
mis represents the missing values other than Xs.

Due to the randomness of missing data, x
(s)
obs is not completely known, and x

(s)
mis

is not completely missing. The filling process is as follows:

a) Initial filling of X using mean padding or other simple filling methods;

b) The missing columns in X are rearranged from small to large according to the

size of the missing rate. The index set of the missing column is recorded as M;

c) When the stop criterion γ is not met:

* Store the existing padding matrix, labeled as X imp
old ;

* For s ∈ M, putting the training sets y
(s)
obs and x

(s)
obs into a random forest model

for training; putting the testing set x
(s)
mis into the model and predict y

(s)
mis; using

the obtained predicted value y
(s)
mis to update the padding matrix, denoted as

X imp
new; filling in the remaining missing variables in M in turn; until the criteria

for iteration termination is met or the maximum number of iterations has been

reached;

d) Get the final filling matrix, denoted as X imp.
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The criteria for iteration termination γ is: if the difference between the new padding

matrix and the previous padding matrix becomes larger, the loop is stopped.

The difference for the set of continuous variables N is defined below (Stekhoven and

Buhlmann (2012) [55]).

∆N =

∑p
j=1

∑n
i=1(x

new
i,j − xoldi,j )2∑

j∈N
∑n

i=1(x
new
i,j )2

.

For the set of categorical variables F, the difference is

∆F =

∑p
j=1

∑n
i=1 Ixnew

i,j 6=xnew
i,j

NA
,

where NA is the numer of missing values in the categorical variables.

2.3.3 The Self-training Selection (STS) Scheme

The STS scheme learns the structure of the expression data. It selects the optimal

imputation algorithm by self-training. This is achieved by generating a small percent-

age of missing values among the data with complete expression profiles to simulate

the missing pattern in the original data, assuming that expression values are missing

at random. Results from the simulations indicate that this scheme picks the optimal

or near-optimal imputation algorithm in each case but at an increased computational

cost.

The STS procedure explicitly determines the optimal imputation algorithm for a par-
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ticular data set. This procedure is implemented by simulating missing values in the

subset of the expression matrix, filling these simulated missing values, and comparing

these imputed values to the known expression values. Although for different purposes,

this strategy has also been employed by others. Jornsten, et al. ((2005) [21]) used this

idea to find a convex combination of the imputation methods. Kim, et al. ((2005)

[27]) found the optimal number of nearest neighbors for the local least squares impu-

tation. The rank of each imputation method, in terms of RMSE, is recorded in each

simulation. The method with the smallest rank-sum statistic over multiple simulated

data sets is selected.

More specifically, we randomly remove another 5% of expression values from each

expression, and perform n iterations to generate data sets D
(k)(l)
j , l = 1, ..., n. For

each method Mi, the rank-sum statistic (Brock, et al. (2008) [7]) below are calculated

R(Mi, D
(k)
j ) =

n∑
l=1

RankMi
(RMSE(D

(k)(l)
j;Mi

, D
(k)
j )).

The STS scheme is formally defined as

SSTS(D
(k)
j ) = argminMi

R(Mi, D
(k)
j ).

As mentioned in some papers (Brock, et al. (2008) [7]), the n = 10 replicates are
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sufficient to determine the preferred imputation method. The null hypothesis that

all methods are equally effective (i.e., the rank-sum statistics are all identical) was

tested using Friedman’s test.

Overall, the STS selection schemes can in principle be used with any imputation al-

gorithms.

2.4 Assessment of Imputation Performance

2.4.1 Evaluating the Methods

We compared some typical imputation methods for different missing values in the sit-

uations of lung disease datasets. Imputation performance is evaluated by calculating

the root mean square error (RMSE) of continuous and ordinal variables as well as the

proportion of false classification (PFC) for nominal variables (Schmitt, et al. (2015)

[51]). In raw data, missing values are few and all missing values are unimportant

in the analysis of lung diseases. Thus, deleting the variables with missing values is

similar with treating the variables with the related coefficients to be zero. We have

a complete dataset from the original raw data set after deleting the varables with

missing values. In analysis of the real dataset, we simulated missing values at some

special rates to obtain the dataset with missing values. We imputed the missing val-

ues on the dataset and calculated the RMSE between the imputed value and the real

value for evaluating the performance. For continuous variables, the squared errors

are denoted as e2 =
(ŷij−yij)2
var(yj)

, where yij is the real value for subject i and variable j.
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For ordinal variables, e2 = (
ŷij−yij
p−1 )2, where p is the number of possible levels of yj.

For the nominal variable, e2 = χ(ŷij 6= yij), where χ(·) is an indicator function. The

RMSE for continuous and ordinary variables is denoted as
√
ave(e2). The PFC for

nominal variables is represented as ave(e). The RMSE and PFC are estimated from

20 randomly generated missing value dataset.

2.5 A Variable Selection Method - Random Lasso

Wang, et al. ((2014) [62]) proposed the Meta-Lasso method, which uses random

Lasso to select variables in some multiple high-dimensional data sets. It is necessary

to review Random Lasso.

2.5.1 Limitations and Improvements of Lasso

Before the introduction of Random Lasso, we have to discuss the limitations of

Lasso. Suppose there are n sets of observations (x1, y1), · · · , (xi, yi), · · · , (xn, yn),

i = 1, · · · , n, of which the observations of the ith group xi = (xi1, · · · , xip) and the

observations yi of the response variable Yi have undergone mean correction process-

ing, so there is no need to consider the intercept value. Let us consider the following

linear model:

yi =

p∑
j=1

βjxij + εi, εi ∼ N(0, σ2) (2.1)
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When using the Lasso method to predict the coefficient β = (β1, β2, · · · , βp), the

following term (2-2) is minimized.

n∑
i=1

(yi −
p∑
j=1

βjxij)
2 + λ

p∑
j=1

|βj| , (2.2)

where λ is a non-negative adjustment parameter. When λ is sufficiently large, some

estimation coefficients will be accurately contracted to 0. However, there are still two

drawbacks in this Lasso method. First, when the number of variables p is larger than

the sample size n, Lasso can solely select at most n variables. Second, when highly

related explanatory variables are used, this method cannot select all of these highly

related explanatory variables. Only one or a part of them can be selected, and the

other coefficients are compressed to zero.

In order to eliminate these two limitations of Lasso, Zou and Hastie ((2005) [67])

proposed the Elastic-Net method. When using this method to predict the coefficient

β, one minimizes the following optimization function.

n∑
i=1

(yi −
p∑
j=1

βjxij)
2 + λ1

p∑
j=1

|βj|+ λ2

p∑
j=1

β2
j , (2.3)

where both λ1 and λ2 are non-negative adjustment parameters. Since there is a

penalty term of L2 norm in function (2.3), the number of variable selection is not

limited by the sample size, which eliminates a limitation in the Lasso method. How-

ever, because of the penalty term of the L2 norm, the new limitations arise. The L2

norm is a penalty term for ridge regression, and this addition will make the coefficient

estimates of highly correlated variables close to each other. This method can select
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or not select all highly correlated variables with similar true coefficients. Meanwhile,

it does not have the ability to predict the coefficients of corresponding variables at

different degrees. It is even more difficult to accurately estimate the variable coeffi-

cients of different symbols.

Zou ((2006) [66]) proposed another Lasso method, adaptive Lasso, to overcome the

limitations. This method is based on optimization function.

n∑
i=1

(yi −
p∑
j=1

βjxij)
2 + λ

p∑
j=1

ωj |βj| (2.4)

In the above term, ωj =
∣∣∣β̂olsj ∣∣∣−r, where r is a constant and r > 0. Meanwhile, β̂olsj is

the ordinary least squares estimate of βj. Adaptive Lasso has a good performance-

asymptotic property that Lasso does not have. In adaptive lasso, when the number

of variables p is constant, the sample size n tends to infinity, and the adjustment

parameter λ tends to 0 at a certain rate. It is proved that the probability of choosing

the true model is 1. If the true model is provided in advance, the estimated coefficient

has the same asymptotic normal distribution as the true model provided in advance.

This property was defined by Fan and Li ((2001) [14]) and it was named as ”Oracle”

property. Although adaptive Lasso has good asymptotic properties, its estimation

depends on ordinary least squares. Thus, when ordinary least squares estimation is

uncertain, adaptive Lasso is definitely worse than Lasso in terms of prediction per-

formance.

In recent years, many scholars have proposed several improvements to Lasso. For
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example, the SCAD (Smoothly Clipped Absolute Deviation) method proposed by

Fan and Li ((2001) [14]) slows down two limitations of Lasso; Fused lasso method

proposed by Tibshirani ((2005) [58]) selects variables for ordinal variables; the Group

Lasso method proposed by Yuan and Lin ((2006) [63]) selects variables for grouped

variables; the Relaxed Lasso method proposed by Meinshausen ((2007) [41]) addresses

the shortcomings of Lasso over-compressing variables.

In 2011, Wang, et al., who proposed the random Lasso method (Wang, et al.(2011)

[61]), broke through the limitations of Lasso. Compared with adaptive Lasso, Re-

laxed Lasso and Fused Lasso, this method can select all or highly unselected highly

relevant variables into the model. The selection is also not limited by the sample size,

especially when the degree of influence of the variables and the signs are different.

The flexibility of coefficient estimation is more obvious.

2.5.2 The Principle of Random Lasso

In practice, we often have merely one data set. However, dividing the available data

set directly into parts is not an effective way to use the data. The Bootstrap method

produces distinct data sets by repeatedly sampling observations from the original

data set, rather than repeatedly obtaining independent data sets from the popula-

tion. Each bootstrap sample may include only a subset of highly correlated variables.

Thus, the bootstrap method has a decomposed correlation ability. For each bootstrap

sample, if q ≤ p and p is the total number of variables, q candidate variables can be

randomly selected. This is the basic idea of random Lasso. The procedure of extract-
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ing feature attributes and sample sets is similar with the random forest method.

Random Lasso in principle is a two-step method. In each step, the bootstrap sam-

ple generated by the Bootstrap method produces similar expected perturbations to

multiple data sets. To maintain the maximum flexibility of the method, the number

of randomly selected candidate variables in each step of the model can be different.

q1 candidate variables are randomly selected in each bootstrap sample in the first

step, and q2 candidate variables are randomly selected in each bootstrap sample in

the second step. q1 and q2 are two adjustment parameters, where q1 ≤ p, q2 ≤ p, and

p is the total number of variables.

2.5.3 The Algorithm of Random Lasso

The algorithm of the random Lasso method is divided into two parts, the importance

measure and the variable selection for generating all coefficients. The specific algo-

rithm is as follows:

Step1. Generate importance measure for all coefficients:

1a. B bootstrap samples with sample size n are drawn from the original training set;

1b. For the ith bootstrap sample bi (i = 1, · · · , B), randomly select q1 candidate

variables, and apply the Lasso method to obtain the estimated βj. The coefficient of

the unselected variable is estimated to be 0;

1c. Calculate the importance measure I1, · · · , Ip of p variables X1, · · · , Xp. The
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importance measure of Xj is

Ij =

∣∣∣∣∣A−1j
B∑
i=1

β̂
(bi)
j

∣∣∣∣∣ ,
where Aj is the number of times that the jth variable Xj is selected in the B bootstrap

samples;

Step2. Variable selection:

2a. Re-extract B bootstrap samples with sample size n from the original training set;

2b. For the ith bootstrap sample bi (i = 1, · · · , B), randomly select q2 candidate vari-

ables. At this time, q2 candidate variables are selected with a certain probability. The

probability that each variable is selected is proportional to the importance measure

calculated in 1c. After selection, we apply the Lasso method to obtain the estimated

βj, and the coefficient of the unselected variable is estimated to be 0;

2c. Calculate the final estimates of βj,

β̂j = A
′−1
j

B∑
i=1

β̂
(bi)
j ,

where A
′
j is the number of times the jth variable Xj is selected in the B bootstrap

samples.

In step 1c, in all bootstrap samples, the average coefficient value of each explanatory

variable is used to generate an importance measure for the explanatory variable,

which is beneficial for variable selection and coefficient estimation in the second step.

It is done because, intuitively, for an important variable, the estimated coefficients in
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different bootstrap samples may always be large, so the average value of the coefficient

estimates will be large. However, for an unimportant variable, even if the signs are

different, the estimated coefficients in different bootstrap samples may still be small,

and the average value of the coefficient estimates is close to zero. Therefore, we

choose the absolute value of the mean of the estimates to be a measure of importance

for each explanatory variable. In step 2c, the average of the estimated coefficients

of each variable from the B bootstrap samples is used as the predicted value of the

coefficients corresponding to the final explanatory variable.
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Numerical Results

In this chapter, some typical imputation methods and variable selection methods are

implemented by using real data and simulated datasets.

3.1 Analysis in Real Data (COPD Dataset)

Phenotypic data are high-dimensional, which have a mixture of continuous, ordinal

and nominal covariates. In particular, the chronic obstructive pulmonary disease

(COPD) is one of the major sequelae of Wuhan Novel Coronavirus Pneumonia from

young people to the elderly. The COPD data set with missing values is an example

of large phenotypic data sets. It was derived from the COPD study of the database

of Genotypes and Phenotypes (dbGaP) (www.ncbi.nlm.nih.gov). There are a few

mising values in the COPD data set. The variables with missing values in the raw

COPD data are not important for the data analysis mainly because the related med-

ical follow-up research support is lacking. As same as treating the variables with the

32
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related coefficients to be zero, we deleted these few variables with missing values.

Thus, we can analyze the complete real data. Then, hypothetical missing can be

performed in the complete real data.

With the trend of small number of subjects and large number of variables in the

complex phenotypic data, it becomes cumbersome to ensure success of modeling the

joint distribution of all variables or using common multiple imputation. It also brings

challenges that there are highly correlated structure of the data. According to the

progression recent years, which are described in Chapter 2, some traditional statis-

tical methods are not analyzed in this paper, such as group lasso. We typically and

meaningfully compare the MICE, missForest, and STS methods in this study.

For implementing MICE in the comparative analysis, we have to remove variables

with sparse (i.e. having less than 10% of the total obserbations). Even with the fil-

tering treatment in MICE, missForest and STS methods outperformed MICE method

in the COPD data.

In figure 3.1, 3.2 and 3.3, we use “con” to represent continuous data, “nom” to rep-

resent nominal data and “ord” to represent ordinal data.
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Figure 3.1: 5% MI by MICE (left), MF (middle) and STS (right) in COPD data. In
continuous data and ordinal data, RMSE is lower in MF method and STS method
than that in MICE. In nominal data, PFC is lower in MF method and STS method
than that in MICE.
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Figure 3.2: 20% MI by MICE (left), MF (middle) and STS (right) in COPD data.
In continuous data, RMSE is higher in MF method and STS method than that in
MICE. In nominal data, PFC is lower in MF method and STS method than that in
MICE. In ordinal data, RMSE is lower in MF method and STS method than that in
MICE.
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Figure 3.3: 40% MI by MICE (left), MF (middle) and STS (right) in COPD data.In
continuous data, RMSE is higher in MF method and STS method than that in MICE.
In nominal data, PFC is lower in MF method and STS method than that in MICE.
In ordinal data, RMSE is lower in MF method and STS method than that in MICE.
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In the comparative study of the imputation methods available for the large pheno-

typic data of COPD, missForest method outperforms MICE method in nominal and

ordinal data types in all missing levels. Merely in the 20% and 40% missing continu-

ous data part of COPD data, MICE does not encounter difficulty in comparison with

missForest. The large variances in MICE limited its application to some real data.

This is consistent with other reports (Stekhoven and Buhlmann (2012) [55]; Jornsten,

et al. (2005) [21]; Kim, et al. (2005) [27]), which illustrate unstable performance of

MICE. In addition, missForest usually was among the state-of-the-art imputation

methods, especially in terms of stability and accuracy. STS method is identified to

be in the top level for imputation in the COPD phenotypic data, if we do not consider

the implementing time.

3.2 Simulation Results

Before simulation research, we discuss why do we use Poisson distribution in our sim-

ulation?

This study focuses on pneumonia. Some pneumonias, such as the Wuhan novel coro-

navirus pneumonia, are diffuse in lung. They have long-term disease characteristics.

For each uninfected or infected individual, we only consider 0 and 1, without consid-

ering any decimals, such as 0.5. Thus, Poisson distribution can be modeled to this

kind of count data.
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In this subsection, we perform a simulation study of the proposed meta-analysis

method based on random Lasso in the Lasso-Poisson regression model, and compare

it with the random Lasso method based on the Lasso-Poisson regression model in a

separate data set. Consider the equation in a Poisson regression model:

E(Y |X) = eXβ, (3.1)

The simulation data is generated from the model (3.1), where Y has Poisson distribu-

tion. In the mth data set, let xmi = (xmi,1, · · · , xmi,p)
′

be the observed value of the ith

sample. Let ymi be the observed value of the response variable Ymi ∼ Poisson(αm)

of the ith sample in the mth data set.

The number of explanatory variables is p = 8, the eight explanatory variables are

pairwise related, and the correlation coefficients of xj1 and xj2 are ρ(xj1 , xj2), which

satisfies ρ(xj1 , xj2) = 0.5|j1−j2|. The true values of the explanatory variable coefficients

of the M data sets are all the same, βm = (3, 1.5, 0, 0, 2, 0, 0, 0).

To simplify the calculation procedure, in the simulation, the sample size of M = 10

data sets is the same, which is nm = 50. The number of bootstrap samples drawn in

each data set is also the same, which is Bm = 200.

The relative model error (RME) is depicted below to evaluate the prediction perfor-

mance of each predictive model. Suppose that the fitted coefficient vector is β̂ and



CHAPTER 3. NUMERICAL RESULTS 39

the true coefficient vector is β0, then the relative model error is defined below:

RME =
(β̂ − β0)

′∑
(β̂ − β0)

σ2
, (3.2)

where
∑

is the covariance matrix of the predictor X, that is
∑

= Cov(X), that is,

cov(xj1 , xj2) = 0.5|j1−j2|, and σ in the equation (3.2) is the standard deviation of the

error term in the linear model (3.1) (Fan and Li (2001) [14]).

We perform 500 replicates for each example and calculate the average values of RME

and β̂. To simplify the calculation, we introduce the threshold tn = 1
n
. When the

absolute value of the coefficient estimate of the explanatory variable Xj is greater

than the threshold tn, the explanatory variable is selected.

We have a meta-analysis method based on the random Lasso in the Lasso-Poisson

regression model and a random Lasso method in the Lasso-Poisson regression model

on a separated dataset. In terms of prediction accuracy and the number of times

of the explanatory variables to be selected, the performance of these two methods

is compared. Besides, the number of selected unimportant explanatory variables is

compared in the simulation. In the cells of the table, the numbers above are from the

meta-analysis, and the numbers in parentheses are from the analysis of the separated

data sets.
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Table 3.1: Coefficient estimate of the important explanatory variables

β̂1 β̂2 β̂5

M1
2.84840

(2.83816)
1.45589

(1.39140)
1.86907

(1.83228)

M2
2.88814

(2.88282)
1.42026

(1.37989)
1.86756

(1.85117)

M3
2.87732

(2.83076)
1.40564

(1.36609)
1.90109

(1.89337)

M4
2.87861

(2.82295)
1.44834

(1.37708)
1.84709

(1.82158)

M5
2.87357

(2.84734)
1.37415

(1.35640)
1.91652

(1.85213)

M6
2.91475

(2.89460)
1.43756

(1.40661)
1.92419

(1.87455)

M7
2.90875

(2.87308)
1.39048

(1.34687)
1.87854

(1.80311)

M8
2.90965

(2.89453)
1.41928

(1.38135)
1.87012

(1.80409)

M9
2.88199

(2.81149)
1.42789

(1.41138)
2.02593

(1.91989)

M10
2.92532

(2.88283)
1.37689

(1.26099)
1.87189

(1.80681)
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Table 3.2: Coefficient estimate of the unimportant explanatory variables

β̂3 β̂4 β̂6 β̂7 β̂8

M1
0.02467

(0.05131)
0.01493

(0.01839)
0.08327

(0.09455)
0.01449

(-0.0489)
0.02017

(-0.0385)

M2
0.00404

(0.00877)
0.01534

(0.05789)
0.00941

(0.03165)
0.00515

(0.02440)
-0.00132
(0.00201)

M3
0.01266

(0.01882)
0.00865

(0.04185)
0.01182

(0.02513)
-0.00110
(0.00112)

-0.00206
(0.00796)

M4
0.00903

(0.02483)
-0.00611
(0.01851)

-0.01227
(-0.0268)

0.002448
(-0.0245)

-0.00357
(-0.0155)

M5
0.00420

(0.02749)
0.004679

(-0.00526)
0.01459

(0.02129)
-0.00162
(0.00787)

0.00180
(-0.0623)

M6
0.01852

(0.02540)
0.01970

(0.02367)
-0.01112
(0.01312)

-0.00846
(0.03938)

0.01849
(0.05445)

M7
-0.01223
(0.01327)

0.0201
(0.03069)

0.00646
(-0.0155)

0.01463
(-0.0152)

0.00387
(0.01047)

M8
-0.00559
(0.01679)

-0.00064
(-0.00922)

0.01804
(0.03708)

0.00196
(-0.0121)

-0.01394
(-0.0145)

M9
0.00180

(-0.00212)
0.01094

(0.04778)
0.01845

(0.02576)
-0.00255
(0.01231)

-0.03232
(0.04227)

M10
0.01484

(0.01858)
0.01547

(0.01863)
-0.00841
(0.01866)

-0.00604
(0.01681)

0.00370
(-0.0186)

Table 3.3: Average RME times 100
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

RME
57

(104)
56

(95)
65

(119)
60

(107)
59

(128)
63

(101)
67

(121)
66

(114)
62

(99)
60

(122)
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Table 3.4: Numbers of unimportant variables to be selected
X3 X4 X6 X7 X8

M1
4

(11)
6

(7)
4

(10)
7

(14)
8

(10)

M2
6

(19)
8

(9)
5

(13)
6

(11)
7

(10)

M3
3

(12)
6

(18)
5

(10)
7

(12)
5

(11)

M4
2

(14)
3

(10)
4

(8)
4

(12)
4

(12)

M5
6

(15)
3

(13)
3

(17)
3

(10)
3

(13)

M6
6

(14)
3

(8)
5

(12)
3

(14)
4

(16)

M7
6

(8)
6

(8)
6

(11)
2

(12)
1

(10)

M8
5

(13)
4

(8)
3

(8)
4

(15)
6

(10)

M9
3

(5)
6

(7)
3

(11)
4

(9)
5

(14)

M10
5

(11)
6

(11)
7

(12)
6

(9)
1

(7)

In Table 3.1 and Table 3.2, we present the estimated value of the important explana-

tory variables and the estimated value of the unimportant explanatory variable coef-

ficients. The estimated value obtained by the coefficients based on the meta-analysis

method of random Lasso in multiple data sets is closer to the true coefficient value

than the coefficient estimated value obtained by using the random Lasso method for

multiple data sets respectively. From the average RME in Table 3.3, it is pointed out

that the average RME obtained by the meta analysis method is smaller. In Table 3.4,

the number of occurrences are summarized when unimportant explanatory variables

are studied in 500 simulations by using these two methods. As can be seen from the

table, the number of occurrences that a meta-analysis method selects unimportant
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variables is smaller than that of other method. In summary, the performance of the

meta-analysis method of random Lasso has a significant advantage over the predictive

performance of using random Lasso method in the 10 respective data sets.



Chapter 4

Concluding Remarks

This major paper explores how to handle variable selection in high-dimensional miss-

ing data from two aspects. First, we compared and studied the imputation effects

based on panel data under MICE, missForest, and STS methods. The results show

that MICE, as a non-parametric model, has extremely high time efficiency, and has a

good imputation effect on high missing rate phenotypic data. Although the missFor-

est and STS based on modern statistical learning methods are inferior to MICE in

time efficiency, they usually have better imputation effects. An imputation method

can reduce the bias of the estimated amount caused by missing data. It should be

noted that the method is not a panacea, and different imputation methods are suit-

able for different occasions. Therefore, before performing missing value imputation,

studying the structure of the data can upgrade the effect of the imputation method.

Second, we studied the application of random Lasso in variable selection and combines

it with meta-analysis. In the count data sets of the Lasso-Poisson regression model,

44
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the estimated coefficients of the explanatory variables based on the meta-analysis

method of random Lasso in multiple data sets are better than those of separated

data sets. The coefficient estimate based on the meta-analysis method should be

closer to the true coefficient value, and the effect of removing unimportant variables

is significant. Even when multiple explanatory variables are highly correlated, the

meta-analysis method based on random Lasso in multiple data sets still has good

predictions.

There are at least five aspects of novelty in this study. First, this is a systematic com-

parative study of approaches for estimating missing values for large-scale phenotypic

data. We compare the three existing methods (missForest, multivariate imputation

by chained equations (MICE) and self-training selection (STS)). Second, we indicate

missForest and STS significantly impute the correct missing values for each data type

in a given data set, though STS selection method is time-consuming. Third, we illus-

trate the importance of variable selection by using random lasso method in a discrete

model simulation. Fourth, we use meta-analysis to further analyze high-dimensional

data sets. Fifth, MFRL approach is firstly illustrated as a principled method of ad-

dressing variable selections in high-dimensional incomplete data.

In conclusion, we suggest missForest for imputation and random Lasso for variable

selection in high-dimensional incomplete data (Liu, et al. (2016)[38]). We name this

method as MFRL. However, further investigations are needed. This work should

contribute to data mining methods.
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[2] Rebecca Andridge, Roderick Little. (2010). A Review of Hot Deck Imputation for

Survey Non-response. International Statistical Review, Volume 78, 40-64

[3] Orley Ashenfelter, William Peirce. (1966). Industrial Conflict: The Power of Pre-

diction. ILR Review, Volume 20, 92-95

[4] Francis Bach. (2008). Bolasso: model consistent lasso estimation through the

bootstrap. Proceedings of the 25th international conference on Machine learning,

ACM, 33–40.

[5] Avrim L. Blum, Pat Langley. (1997). Selection of relevant features and examples

in machine learning. Artificial Intelligence, Volume 97, 245-271

[6] Leo Breiman. (2001). Statistical Modeling: The Two Cultures (with comments

and a rejoinder by the author). Statistical Science, Volume 16, 199-231

46



BIBLIOGRAPHY 47

[7] Guy Brock, John Shaffer, Richard Blakesley, Meredith Lotz, George Tseng .

(2008). Which missing value imputation method to use in expression profiles:

a comparative study and two selection schemes. BMC Bioinformatics, Volume 9,

1-12

[8] Emmanuel Candes, Terence Tao. (2007). The Dantzig selector: Statistical estima-

tion when p is much larger than n. Statistica Sinica, Volume 35, 2313-2351

[9] William Cochran. (1977). Sampling Techniques. John Wiley & Sons, New York

[10] Brenda Cox, Steven Cohen. (1983). Methodological issues for health care surveys.

Marcel Dekker Inc., New York

[11] Edward Deming. (1944). On Errors in Surveys. American Sociological Review,

Volume 9, 359-369

[12] Edwards Deming, Frederick Stephan. (1940). On a Least Squares Adjustment of

a Sampled Frequency Table When the Expected Marginal Totals are Known. The

Annals of Mathematical Statistics, Volume 11, 427-444

[13] A. P. Dempster, N. M. Laird, D. B. Rubin. (1977). Maximum Likelihood from

Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society,

Volume 39, 1-38

[14] Jianqing Fan, Runze Li. (2001). Variable Selection via Nonconcave Penalized

Likelihood and its Oracle Properties. Journal of the American Statistical Associ-

ation, Volume 96, 1348-1360



BIBLIOGRAPHY 48

[15] Jianqing Fan, Jinchi Lv. (2010). A Selective Overview of Variable Selection in

High Dimensional Feature Space. Statistica Sinica, Volume 20, 101–148

[16] Wenjiang J. Fu. (1998). Penalized Regressions: The Bridge versus the Lasso.

Journal of Computational and Graphical Statistics, Volume 7, 397-416

[17] R. Y. Goh, L. S. Lee. (2019). Credit Scoring: A Review on Support Vector Ma-

chines and Metaheuristic Approaches. Advances in Operations Research, Volume

2019, 1-30

[18] Robert M. Groves. (1989). Survey Errors and Survey Costs. John Wiley & Sons,

New York

[19] Daniel G. Horvitz, Donovan J. Thompson. (1952). A Generalization of Sampling

Without Replacement from a Finite Universe. Journal of the American Statistical

Association, Volume 47, 663-685

[20] Jian Huang, Shuangge Ma, Cun-Hui Zhang. (2008). Adaptive Lasso for sparse

high-dimensional regression models. Statistica Sinica, Volume 18, 1603-1618

[21] Rebecka Jornsten, Hui-Yu Wang, William J. Welsh, Ming Ouyang. (2005). DNA

microarray data imputation and significance analysis of differential expression.

Bioinformatics, Volume 21, 4155–4161

[22] Graham Kalton. (1988). Model in the Practice of Model Sampling. Journal of

Official Statistics, Volume 18, 129-154



BIBLIOGRAPHY 49

[23] Graham Kalton. (2019). Developments in Survey Research over the Past 60

Years: A Personal Perspective. International Statistical Review, Volume 87, S10-

30

[24] Graham Kalton, Dallas Anderson. (1986). Sampling Rare Populations. Journal

of the Royal Statistical Society, Volume 149, 65-82

[25] Graham Kalton, Daniel Kasprzyk. (1986). The Treatment of Missing Survey

Data. Survey Methology, Volume 12, 1-16

[26] Hyun Kang. (2013). The prevention and handling of the missing data. Korean

Journal of Anesthesiology, Volume 64, 402–406

[27] Hyunsoo Kim, Gene Golub, Haesun Park. (2005). Missing value estimation for

DNA microarray gene expression data: local least squares imputation. Bioinfor-

matics, Volume 21, 187–198

[28] Ron Kohavi, George H. John. (1997). Wrappers for feature subset selection.

Artificial Intelligence, Volume 97, 273-324

[29] Gary Langer. (2013). Comment. Journal of Survey Statistics and Methodology,

Volume 1, 130–136

[30] Sang Jun Lee, Keng Siau. (2001). A review of data mining techniques. Industrial

Management & Data Systems, Volume 101, 41-46

[31] Judith Lessler, William Kalsbeek. (1992). Nonsampling error in surveys. John

Wiley & Sons, New York



BIBLIOGRAPHY 50

[32] Zhengyan Lin, Yanbao Xiang, Caiya Zhang. (2009). Adaptive Lasso in high-

dimensional settings. Journal of Nonparametric Statistics, Volume 21, 683-696

[33] Roderick Little. (1988). Missing-Data Adjustments in Large Surveys. Journal of

Business & Economic Statistics, Volume 6, 287-296

[34] Roderick Little, Donald Rubin. (1987). Statistical Analysis with Missing Data.

John Wiley & Sons, New York

[35] Roderick Little, Donald Rubin. (1991). Statistical Analysis with Missing Data.

Journal of Educational Statistics, Volume 16, 150-155

[36] Chuanhai Liu and Donald Rubin. (1994). The ECME Algorithm: A Simple Ex-

tension of EM and ECM with Faster Monotone Convergence. Biometrika, Volume

81, 633-648

[37] Chuanhai Liu, Donald Rubin, Ying Nian Wu. (1998). Parameter Expansion to

Accelerate EM: The PX-EM Algorithm. Biometrika, Volume 85, 755-770

[38] Ying Liu, Yuanjia Wang, Yang Feng, Melanie Wall. (2016). Variable Selection

and Prediction with Incomplete High-dimensional Data. The Annals of Applied

Statistics, Volume 10, 418-450

[39] William Gregory Madow, Harold Nisselson, Ingram Olkin. (1983). Incomplete

Data in Sample Surveys. Academic Press, New York

[40] Cohn L. Mallows. (1973). Some Comments on Cp. Technometrics, Volume 15,

661-675



BIBLIOGRAPHY 51

[41] Nicolai Meinshausen. (2007). Computational Statistics & Data Analysis. Sci-

enceDirect, Volume 52, 374-393

[42] Xiao-Li Meng and Donald Rubin. (1993). Maximum Likelihood Estimation via

the ECM Algorithm: A General Framework. Biometrika, Volume 80, 267-278

[43] Svein Nordbotten. (1963). Automatic Editing of Individual Statistical Observa-

tions. Standards and Studies, New York

[44] Alfred Politz, Edwards Deming. (1953). On the Necessity to Present Consumer

Preferences as Predictions. Journal of Marketing, Volume 18, 1–5

[45] Alfred Politz, Willard Simmons. (1949). An Attempt to Get the “Not at Homes”

into the Sample Without Callbacks. Journal of the American Statistical Associa-

tion, Volume 44, 9-16

[46] Richard Potthoff, Kenneth Manton, Max Woodbury. (1993). Correcting for Non-

availability Bias in Surveys by Weighting Based on Number of Callbacks. Journal

of the American Statistical Association, Volume 88, 1197-1207

[47] J. N. K. Rao. (1972). Bayesian Optimization in Sampling Finite Populations.

Journal of the American Statistical Association , Volume 67, 439-443

[48] J. N. K. Rao. (1973). On Double Sampling for Stratification and Analytical

Surveys. Biometrika, Volume 60, 125-133

[49] Paul R. Rosenbaum, Donald B. Rubin. (1983). The central role of the propensity

score in observational studies for causal effects. Biometrika, Volume 70, 41-45



BIBLIOGRAPHY 52

[50] Michael Schiffer, Alan Sullivan, Timothy Klinger. (1978). The Design of Archae-

ological Surveys. World Archaeology, Volume 10, 1-28

[51] WPeter Schmitt, Jonas Mandel, Mickael Guedj. (2015). A Comparison of Six

Methods for Missing Data Imputation. Journal of Biometrics & Biostatistics,

Volume 6, 1-6

[52] Gideon Schwarz. (1978). Estimating the Dimension of a Model. The Annals of

Statistics, Volume 6, 461-464

[53] Luai Al Shalabi, Zyad Shaaban, Basel Kasasbeh. (2006). Data Mining: A Pre-

processing Engine. Journal of Computer Science, Volume 2, 735-739

[54] Bahadur Singh, J. Sedransk. (1984). Bayesian Inference and Sample Design for

Regression Analysis when there is Nonresponse. Biometrika, Volume 71, 161-170

[55] Daniel Stekhoven, Peter Buhlmann. (2012). MissForest—non-parametric missing

value imputation for mixed-type data. Bioinformatics, Volume 28, 112–118

[56] Fei Tang, Hemant Ishwaran. (2017). Random forest missing data algorithms.

Statistical Analysis and Data Mining: The ASA Data Science Journal, Volume

10, 363-377

[57] Robert Tibshirani. (1996). Regression Shrinkage and Selection via the Lasso.

Journal of the Royal Statistical Society, Volume 58, 267-288

[58] Robert Tibshirani, Michael Saunders, Saharon Rosset, Ji Zhu, Keith Knight.

(2005). Sparsity and smoothness via the fused lasso. Journal of the Royal Statis-

tical Society, Volume 67, 91–108



BIBLIOGRAPHY 53

[59] Andrea B. Troxel, Stuart R. Lipsitz, David P. Harrington. (1998). Marginal

Models for the Analysis of Longitudinal Measurements with Nonignorable Non-

Monotone Missing Data. Biometrika, Volume 85, 661-672

[60] Meredith Wallace, Stewart Anderson, Sati Mazumdar. (2010). A stochastic mul-

tiple imputation algorithm for missing covariate data in tree-structured survival

analysis. Statistics in Medicine, Volume 29, 3004–3016

[61] Sijian Wang, Bin Nan, Saharon Rosset, Ji Zhu. (2011). Random lasso. The An-

nals of Applied Statistics, Volume 5, 468-485

[62] Dongshi Wang, Yanqiu Wang, Yingying Wang, Rena Li, Chenglin Zhou. (2014).

Impact of physical exercise on substance use disorders: a meta-analysis. PLoS

One, Volume 9, e110728

[63] Ming Yuan, Yi Lin. (2006). Model selection and estimation in regression with

grouped variables. Journal of the Royal Statistical Society, Volume 68, 49–67

[64] Slobodan Zarkovich. (1966). Quality of Statistical Data. Food and Agriculture

Organization of the United Nations

[65] Peng Zhao, Ben Yu. (2006). On model selection consistency of LASSO. Journal

of Machine Learning Research, Volume 7, 2541-2563

[66] Hui Zou. (2006). The Adaptive Lasso and Its Oracle Properties. Journal of the

American Statistical Association, Volume 101, 1418-1429



BIBLIOGRAPHY 54

[67] Hui Zou and Trevor Hastie. (2005). Regularization and Variable Selection via the

Elastic Net. Journal of the Royal Statistical Society. Series B (Statistical Method-

ology), Volume 67, 301-320



Vita Auctoris

Mr. Tao Sun was born in 1972 in Zhengzhou, China. He had a medical degree

from Peking University and obtained an undergraduate degree in Statistics from the

Western University. He is currently a candidate for the Master of Science degree in

Statistics at the University of Windsor. He hopes to graduate in 2020.

55


	On Variable Selections in High-dimensional Incomplete Data
	Recommended Citation

	tmp.1588209704.pdf.KBqaN

