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Abstract

Despite the prevalence of lipid transbilayer asymmetry in natural plasma mem-

branes, most biomimetic model membranes studied are symmetric. Recent advances
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have helped to overcome the difficulties in preparing asymmetric liposomes in vitro,

allowing for the examination of a larger set of relevant biophysical questions. Here, we

investigate the stability of asymmetric bilayers by measuring lipid flip-flop with time-

resolved small-angle neutron scattering (SANS). Asymmetric large unilamellar vesicles

with inner bilayer leaflets containing predominantly 1-palmitoyl-2-oleoyl-sn-glycero-

3-phosphocholine (POPC) and outer leaflets composed mainly of 1,2-dimyristoyl-sn-

glycero-3-phosphocholine (DMPC), displayed slow spontaneous flip-flop at 37 ◦C (half-

time, t1/2 = 140 h). However, inclusion of peptides, namely gramicidin, alamethicin,

melittin, or pHLIP (i.e., pH-low insertion peptide) accelerated lipid flip-flop. For three

of these peptides (i.e., pHLIP, alamethicin, and melittin), each of which was added ex-

ternally to pre-formed asymmetric vesicles, we observed a completely scrambled bilayer

in less than 2 hours. Gramicidin, on the other hand, was pre-incorporated during the

formation of the asymmetric liposomes and showed a time resolvable 8-fold increase in

the rate of lipid asymmetry loss. These results point to a membrane surface-related (e.g.

adsorption/insertion) event as the primary driver of lipid scrambling in the asymmet-

ric model membranes of this study. We discuss the implications of membrane peptide

binding, conformation, and insertion on lipid asymmetry.

Introduction

In nature, the lipid bilayer leaflets of cell plasma membranes possess chemically distinct

lipids from one another, thus making the overall membranes asymmetric (an example of a

model asymmetric bilayer is depicted in Fig. 1a). Glycerophospholipids, a major component

of lipid bilayers, can differ from one another as follows: (i) degree of acyl chain unsaturation

Notice of Copyright This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-
AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the
publisher, by accepting the article for publication, acknowledges that the United States Government retains
a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States Government purposes. The Department of Energy
will provide public access to these results of federally sponsored research in accordance with the DOE Public
Access Plan (http://energy.gov/downloads/doe-public-access-plan).
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and length; (ii) headgroup chemistry; and (iii) type of bond (ester or ether) connecting the

acyl chains to their glycerol backbone. With differing glycerophospholipid compositions,

physical and chemical differences arise between the bilayer leaflets, which affect membrane

fluidity and structure and have been shown to influence membrane function and membrane-

associated protein activity.1,2

Maintaining membrane asymmetry is energetically expensive for cells and is accomplished

by ATP-fueled proteins such as flippases and floppases.3 Loss of asymmetry can lead to cell

death or apoptosis. Specifically, the migration of phosphatidylserine (PS) lipids from the

inner to the outer bilayer leaflet is a trigger for phagocytosis of dying cells.4,5 Interestingly,

greater protein reconstitution rates and activities are seen when studying asymmetric lipo-

somes when compared to their symmetric counterparts.6,7 Thus, in recent years there are an

increasing number of studies examining the role of lipid asymmetry on different proteins and

peptides.8–10 On the other hand, studies examining how macromolecules affect membrane

asymmetry are much less common.10

Beyond the relevant enzymes present in cells, we address the role that antimicrobial

peptides (AMPs) have on lipid flip-flop. AMPs are a highly conserved group of amphipathic

peptides and an integral part of the immune system of most, if not all, species of life.

Their mode of action is primarily based on disrupting key plasma membrane properties and

functions, such as electrochemical gradients, cell motility, and shape through lysis.11 In order

to do so, many will first bind and then insert themselves into the membrane, sometimes

forming higher ordered structures (e.g. pores) to permeabilize the membrane. However,

under certain conditions they have also been shown to accelerate lipid flip-flop,10,12–16 which

is thought to be pertinent to their cytotoxic effects.17 To our knowledge, no existing study

decouples the role of peptide binding to membranes and their transmembrane inserted state

on lipid flip-flop dynamics. This study will shed light on the mechanism through which

AMPs disrupt membranes, highlighting the possibility of lipid reorganization as a relevant

cause of cell death.
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Considerable research has been performed on passive, active, and nonenzyme-catalyzed

lipid flip-flop in order to gain an understanding of the energy needed to generate, maintain,

and disrupt lipid asymmetry. Many of these studies used spin- or fluorescent-labeled lipids

because of their widespread availability.3,12,18–20 However, bulky fluorescent probes can po-

tentially perturb the membrane and alter its physical properties, affecting lipid flip-flop in

the process.21,22 Furthermore, these techniques measure the translocation of the reporter

lipid, which is physically and chemically different from the host lipid of interest.22 As a re-

sult, probe-free techniques such as sum-frequency vibrational spectroscopy (SFVS)22,23 and

neutron reflectometry24 have gained some prominence as they allow measurements of lipid

kinetics without the use of extrinsic probes. Collectively, these techniques are sensitive to

chemical differences in leaflets by using isotopically labeled lipids that better resemble those

found in nature.

Recently, we developed a novel probe-free assay using proton NMR to measure the rel-

ative flip-flop rates of phosphatidylcholine (PC) lipids in stress- and defect-free unilamellar

vesicle systems.25 The passive flip-flop rates were measured in large unilamellar vesicles

(LUVs) with an asymmetric distribution of isotopically-labeled phospholipids. Using this

system, flip-flop rates were found to be orders of magnitudes slower than those measured

on substrate-supported planar bilayers. The difference between the two sample preparations

was attributed to incomplete substrate coverage in the case of planar bilayers that led to

the formation of pore defects.25 Unlike passive lipid flip-flop, pores allow lipids to move from

one leaflet to the other without desolvating their headgroups by simple diffusion. The NMR

approach, however, is currently limited to choline-containing lipid systems. Moreover, in the

case of proteolipidic systems, charged amino acid residues can potentially chelate with the

NMR shift reagent (Pr3+), adversely affecting not only the NMR signal, but also protein

conformation, binding, insertion, and function. Currently, we are not aware of a probe-

free technique that measures lipid flip-flop rates in asymmetric vesicles in a non-headgroup

specific fashion.
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To address this, we explored the use of SANS, a technique that is differentially sensitive

to hydrogen’s isotopes, namely protium and deuterium (1H and 2H, respectively), to measure

lipid flip-flop in PC bilayers. Isotopic substitution of 1H for 2H imparts neutron contrast

to the system that can then be used to study structural and dynamical membrane features.

For example, SANS has been used to study the existence of lipid domains in living bacterial

membrane26 and the thickness of membranes reconstituted from natural lipid sources,26,27

including symmetric28 and asymmetric model membranes.29–31 Although the use of SANS

to measure lipid flip-flop rates is not a novel concept,32 until now it has only been applied to

symmetric model membranes.32–36 This is partly due to the technical difficulties associated

with preparing asymmetric vesicles of sufficient amounts and concentrations,37,38 and the

complicated experimental set-up and subsequent analysis of scattering profiles.

Here we describe a novel SANS approach to measure lipid flip-flop in asymmetric LUVs

(aLUVs). As a proof of concept, we first characterized aLUVs composed of PC lipids to

ensure that the neutron scattering signal was sufficiently different from that of symmetric

(scrambled) control samples. We then introduced peptides with different modes of membrane

interactions. For example, gramicidin (gA) forms ion channels when dimerized, and at

elevated concentrations, alamethicin (Alm) and melittin (Mel) form barrel-stave and toroidal

pores, respectively.39 Although pHLIP is not an AMP, it was chosen to represent both an

unstructured peripheral peptide and a transmembrane helix, depending on pH. For example,

at neutral pH, pHLIP adsorbs to the membrane surface but inserts into the membrane at

low pH.40 Initially, peptide influence on lipid asymmetry was tracked through the time-

dependent loss of the scattering signal, indicative of increased lipid flip-flop that, ultimately,

results in a scrambled bilayer. Importantly, the lipid scrambling effect was most pronounced

when the peptides were externally added to aLUVs, compared to when incorporated during

aLUV preparation. Our results lend insights to the study of proteolipidic systems, especially

with regard to peptide binding, conformation, and insertion on lipid bilayer asymmetry.
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Materials and Methods

Materials.

1,2-Dimyristoyl-d54-sn-glycero-3-phosphocholine [14:0(d27)/14:0(d27) PC, dC-DMPC] and

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine-d13 (16:0/18:1 PC-d13, dH-POPC) were

purchased from Avanti Polar Lipids, Inc. (Alabaster, AL) and used as received. Methyl-

β-cyclodextrin (MβCD) was purchased from Acros Organics (Thermo Fisher Scientific,

Waltham, MA). The centrifugal filter device, Amicon Ultra-15, was purchased from EMD

Millipore (Billerica, MA). 99.9% D2O and deuterated methanol (d-methanol) were purchased

from Cambridge Isotopes (Andover, MA). Praseodymium (III) nitrate hexahydrate (Pr3+)

was purchased from Alfa Aesar (Ward Hill, MA) and prepared as a 20 mM stock solution in

D2O. Alamethicin and melittin were purchased from Sigma-Aldrich (St. Louis, MO) and kept

as stock solutions in d-methanol. Gramicidin was purchased as a lyophilized powder from

Sigma-Aldrich (Oakville, ON, Canada) and kept as a stock solution in methanol. pHLIP

was purchased as a lyophilized powder from P3 Biosystems (Louisville, KY) with 95% pu-

rity as verified by reverse-phase high performance liquid chromatography (HPLC). Sodium

deuteroxide (NaOD) and deuterium chloride (DCl) were purchased from Sigma-Aldrich (St.

Louis, MO).

Preparation of Asymmetric LUV Samples

aLUVs were prepared using a slightly modified methyl-β-cyclodextrin mediated exchange

protocol to that outlined by Doktorova et al.29,37 Briefly, dC-DMPC and dH-POPC in HPLC-

grade chloroform were dried into separate lipid films under a stream of nitrogen gas, and left

overnight in vacuo to remove any traces of solvent. The dC-DMPC and dH-POPC films were

then hydrated using 20% (w/w) sucrose and 20 mM NaCl solutions, respectively. dH-POPC

acceptor LUVs ( which “accepts” outer leaflet lipids from donor vesicles) were extruded

(31 passes) using 100 nm pore diameter disposable polycarbonate membranes (NanoSizer
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extruder, T&T Scientific). In the presence of MβCD (at MβCD:donor nominal ratio of 8:1),

dC-DMPC donor multilamellar vesicles (MLVs) were incubated for one hour with acceptor

dH-POPC LUVs (at a 3:1 donor-to-acceptor molar ratio) to promote outer leaflet exchange.

During this process, aLUVs with dH-POPC primarily in the inner leaflet and dC-DMPC in

the outer leaflet gradually form from the acceptor LUVs. Following this, aLUVs were purified

through a combination of centrifugation and centrifugal filtration where the H2O buffer so-

lution was exchanged for D2O to reduce neutron background signal. The final concentration

of aLUVs was determined to be 17 mg/mL based on total intensity measured by dynamic

light scattering (DLS) versus samples of known concentrations.

gA from a methanol stock solution was added at a peptide-to-lipid (P/L) molar ratio of

1/40 during the lipid film preparation step (i.e. pre-incorporated into the acceptor vesicles

as described in Doktorova et al.10). It should be noted that the addition of gA in methanol

to pre-formed aLUVs resulted in instantaneous peptide aggregation and was thus not used.

In contrast, Alm and Mel precipitated out of solution during the centrifugation steps of the

asymmetric vesicle preparation, and could not be incorporated directly into asymmetric bi-

layers, as was done in the case of gA. Alm and Mel were therefore introduced to pre-formed

aLUVs using d-methanol at a P/L ratio of 1/40. The d-methanol concentration in the sam-

ple was ∼3% (v/v), which, by itself, did not induce scrambling in aLUVs (see Fig. S4).

As previously described, monomeric pHLIP transitions from a mostly unstructured peptide

adsorbed to the membrane to an α-helical conformation when it inserts into the membrane

at low pH.41,42 In order to take advantage of these pH-sensitive conformers, aLUVs in a 10

mM sodium phosphate buffer solution (pH 7.9) were added to a lyophilized pHLIP powder

(weighed mass) at a P/L ratio of 1/150 and incubated for up to an hour. Afterwards, the pH

of the different aLUVs preparations was adjusted to alter pHLIP’s resulting orientation from

one that is membrane adsorbed (pH 7.9) to a transmembrane orientation (pH 4.6). Mea-

surements at pH 6.0 were also performed to capture any intermediate state(s) of pHLIP.40

pHLIP’s secondary structures in these different pH conditions was determined using circular
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dichroism (Fig. S3).

Quantifying aLUV Composition by GC/MS and solution 1H NMR.

To determine the lipid exchange efficiency of the asymmetric sample preparation, aLUV lipid

compositions were analyzed using a combination of gas chromatography/mass spectrometry

(GC/MS) and 1H NMR. A small aliquot of ∼20 µg lipids was subjected to transesterifi-

cation using acid-catalyzed methanolysis.29 The relative populations of the free fatty acid

chains were determined using GC/MS29 to yield the overall fraction of dC-DMPC and dH-

POPC. GC/MS measurements were performed on an Agilent 5890A gas chromatograph

(Santa Clara, CA) outfitted with a 5975C mass spectrometer. Taking advantage of the

unique retention times of chemically distinct acyl chains, aLUVs were determined to possess

38% dC-DMPC and 62% dH-POPC. The exchange efficiency of the asymmetric prep was

thus 76%, in good agreement with previous reports.25,29,43

1H NMR was used to determine the interleaflet lipid distribution of dC-DMPC and,

combined with the GC/MS results, the overall lipid composition of each leaflet. NMR

measurements were carried out at 50◦C with an Avance III 600 MHz spectrometer (Bruker,

Billerica, MA). Spectra were acquired using the Bruker TopSpin software and analyzed

using TopSpin 3.5. The outer and inner leaflet distribution of protiated PC headgroups was

determined through the addition of a 2 µL aliquot of 20 mM Pr3+ into 700 µL of aLUVs

with a concentration of ∼1 mg/mL. The addition of Pr3+ causes outer leaflet choline peaks

to shift downfield. NMR spectra were fit with a sum of Lorentzians; the peaks representing

the inner and outer leaflet cholines were then integrated to determine their areas, which are

directly proportional to the mol fraction of dC-DMPC in the outer and inner bilayer leaflets

(0.87 and 0.13, respectively). NMR spectra are shown in Fig. S1. The fact that some

donor dC-DMPC is present in the inner leaflet is not unexpected and in line with previous

observations.37 A summary of the NMR data can be found in Table S1 of the Supporting

Information.
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aLUV Structure Determined by DLS and Small Angle Scattering

DLS measurements to determine vesicle integrity in the presence of peptides and solvent as

a function of time were conducted on a Brookhaven BI-200SM system (Brookhaven Instru-

ments, Holtsville, NY). For the DLS measurements, aLUVs at a concentration of 17 mg/mL

were diluted by a factor of 1000 using ultrapure water and measured at room temperature.

Small angle X-ray scattering (SAXS) experiments on aLUV and aLUV-peptide samples at 17

mg/mL were performed using a Rigaku BioSAXS-2000 (Rigaku Americas, The Woodlands,

TX) equipped with a Pilatus 100K detector and an HF007 rotating copper anode. Several

measurements of each sample were conducted at 37◦C and examined for radiation damage

before averaging. SAXS and SANS data (of the first time points) were jointly refined using

an asymmetric six-slab model that accounts for contributions from the lipid headgroups, acyl

chains, and terminal methyls of each leaflet to derive the structural parameters shown in Fig.

S2.30 aLUV control samples were well-fit by the asymmetric model, while those containing

peptides were best-fit by a symmetric bilayer.

Time-Resolved Flip-Flop using SANS

SANS measurements were conducted on the extended Q-range small angle neutron scattering

(EQ-SANS) diffractometer located at the Spallation Neutron Source, Oak Ridge National

Laboratory (ORNL, Oak Ridge, TN). The sample-to-detector distance was set to 1.6 meters

and the incident neutron wavelength, λ, at 4-8 Å, resulting in a q-range of 0.02-0.8 Å−1,

where q is the scattering vector and is determined as follows:

q =
4πsinθ

λ
, (1)

where 2θ is the angle of scattered neutrons with respect to the incident beam. 1 mm path

length quartz banjo cells (Hellma USA, Plainview, NY) used and neutrons were measured

using a were collected and counted on a 2D 3He detector. Scattering data were circularly av-
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eraged to produce a 1D scattering intensity curve as a function of q. The data were corrected

for empty cell and D2O background, sample transmission, and detector pixel sensitivity using

the ORNL Mantid software.44

aLUVs with and without peptides were studied using SANS to determine lipid flip-flop

rates. Flip-flop rates in the presence of pHLIP at different pH conditions were also studied.

Lipid samples of 17 mg/mL concentration were measured at 37 ◦C for one hour to collect

sufficient counting statistics high-q.

Modeling and Quantifying Lipid Flip-Flop Rates. During SANS measurements,

neutron scattered intensity I(q) was monitored as a function of q. At low-q, I(q) is dominated

by the size and shape of the LUVs, while at high-q the signal is primarily due to the average

structure normal to the plane of the bilayer (e.g. bilayer thickness). In our case, the scattered

intensity at high-q is enhanced by the interleaflet contrast due to bilayer asymmetry, as shown

in Fig. 1.

A normalized intensity decay scheme was used to quantify changes in scattered intensity

as a function of time, as given by the normalized total intensity, ∆I(t)/∆I(0),32

∆I(t)

∆I(0)
=

√
I(t)−

√
I(∞)√

I(0)−
√
I(∞)

, (2)

where I(t) is the integrated area underneath the scattering curve at time t after the start of

experimentation. I(0) and I(∞) represent, respectively, the integrated area at t = 0 of an

aLUV sample and after bilayer asymmetry is lost. The I(∞) time-point is of the same lipid

composition as our time-resolved samples, but the lipids are homogeneously mixed instead

of asymmetrically distributed. Because we are interested in observing changes to the bilayer

as a result of lipid flip-flop, the total scattering intensity at each time point was determined

by integrating the area under the scattered signal in the q-range 0.1 to 0.4 Å−1, where the

difference in scattering intensity of asymmetric and symmetric LUVs is most pronounced.

Plotting the normalized intensities as a function of time results in a decay curve that can be

fitted using one parameter to determine the lipid flip-flop rate constant, kf , i.e.
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∆I(t)

∆I(0)
= e(−2kf t), (3)

The flip-flop half time is then calculated as

t1/2 =
ln 2

2kf
. (4)

Determining Secondary Peptide Structure using Circular Dichro-

ism.

Circular dichroism (CD) was used to determine the secondary structure of the different pep-

tides after SANS and SAXS experimentation (see Fig. S3). CD spectra were acquired using

a Jasco (Easton, MD) J-815 spectropolarimeter equipped with a Peltier system. Spectra

were acquired at 37◦C using a 2 mm cuvette at a scan rate of 100 nm/min, recording 20-40

acquisitions. The final lipid concentration was 1 mM. Raw data were converted into a mean

residue ellipticity using

[θ] =
θ

10lc(N − 1)
, (5)

where θ is the measured ellipticity, l is the path length of the cell in cm, c is the protein

concentration in M, and N is the number of amino acids. Appropriate lipid blanks were

subtracted in all cases.

Results

Lipid flip-flop can be monitored with SANS using asymmetric vesicles with in-

terleaflet hydrogen/deuterium contrast

To monitor lipid flip-flop using time-resolved SANS, we first sought to determine if major

scattering differences exist between aLUVs and symmetric LUVs. It is well-known that the
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aLUV scattering form factor has minima with non-zero intensity, in contrast to that of sym-

metric LUVs.45 Previous studies have used this feature to identify lipid asymmetry and build

models to fit such data, extracting key bilayer parameters and leaflet compositions.29,30,46

Fig. 1b shows modeled I(q) curves based on LUVs with equal fractions of dH-POPC

(deuterated headgroup) and dC-DMPC (perdeuterated acyl chains) at 37 ◦C. The model

accounts for the scattering contributions from the individual bilayer leaflets.30 Fig. 1b shows

a substantial intensity increase in the q-range 0.15 - 0.3 Å−1 for bilayers containing an

asymmetric distribution of dH-POPC in the inner leaflet and dC-DMPC in the outer leaflet.

To demonstrate this experimentally, we produced different model systems in order to mimic

and maximize the dynamic range observed between the modeled asymmetric and symmetric

curves. These systems possessed either isotopic asymmetry, i.e. the same lipid species but

different isotopic labeling (not shown), or compositional asymmetry, where the individual

leaflets possess chemically different lipid species.

Of the different samples studied, the aLUVs composed of dH-POPCinn/dC-DMPCout

(Fig. 1a) possessed the greatest dynamic scattering range, as can be seen from the high-q

data (0.1 - 0.4 Å−1) shown in Fig. 1c. Compared to its relatively featureless scrambled

counterpart, these aLUVs display appreciable “uplift” in scattering intensity in the vicinity

of the first minima (∼0.18 Å−1), which we attribute to the asymmetric distribution of lipids

with different chemical makeups (Fig. 1b). This dynamic range was deemed suitable to

monitor the bilayer transition from asymmetric to symmetric. Importantly, the modeled data

bears a strong resemblance to the experimental data (Fig. 1b) and any minor differences can

be attributed to potential deviations in lipid composition, bilayer thickness, polydispersity,

and background scattering between the model and experimental.

A transmembrane peptide pre-incorporated into asymmetric vesicles increases

the rate of lipid flip-flop

Control aLUVs and aLUVs with gA pre-incorporated were prepared separately, yet both

scatter similarly as a function of q (Fig. 1c). This finding, coupled with the minimal loss
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Figure 1: (a) Cartoon of an asymmetric bilayer. Dark shaded components indicates deuter-
ated moieties. (b) Predicted neutron scattering curves of asymmetric (dH-POPCinn/dC-
DMPCout) and symmetric vesicles calculated using a six-slab bilayer model.30 (c) I(q) scat-
tering data from three different samples: (1) compositionally asymmetric LUVs with their
inner leaflets composed mainly of dH-POPC and outer leafet of dC-DMPC (pink circles);
(2) aLUVs with a 1/40 P/L ratio of gA (purple triangles); and (3) uniformly mixed LUVs
with same dH-POPC and dC-DMPC ratios (navy squares). Scattering curves are overlaid
to highlight similarities and differences.

of gA seen in this type of asymmetric proteoliposome preparation,10 lends confidence for

this method of sample preparation for studies using SANS. It was also observed that gA in

its transmembrane state does not contribute noticeably to the neutron scattering intensity,
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Figure 2: High-q SANS data as a function of time showing an aLUV control (peptide-free,
a). All measurements were conducted at 37 ◦C for one hour. For clarity purposes, not all
measured curves are shown. (b) Normalized total intensity decay as a function of time in
hours. Two plots are shown: aLUVs in the absence (black squares) and presence of gA (red
circles) (P/L ratio of 1/40). Decays are the result of passive and peptide-enhanced lipid
flip-flop, respectively. Continuous bold lines are best fits to the data used to determine the
flip-flop rate constant (kf ) and flip-flop half-time (t1/2). (c) Gramicidin-incorporated aLUVs
at a P/L of 1/40.

meaning the measured ensemble average of the bilayer structure is unchanged. Although it

is known that gA causes bilayer thinning or thickening depending on the conditions,47 these

deformations are likely to occur locally and, as a result, could not be detected by SANS in

the present study or SAXS previously.10

Over the course of almost 3 days, the leaflet compositions of unperturbed fluid-phase

aLUVs are practically unaltered as the aLUV scattering intensity data only show a slight

decay (Fig. 2a). Because a complete minima decay was not collected, due to experimental

time constraints often associated with SANS experimentation, an I(∞) time-point (repre-

senting a homogeneously mixed LUV of the same overall lipid composition, as shown in Fig.

2) was used to normalize the integrated area of the intensity curves. Fits using equation

3 on the normalized integrated intensity from Fig. 2a revealed a flip-flop rate constant of

2.48 x 10−3 h−1, as shown in Fig. 2b. Converting the flip-flop rate constant to half-time

using equation 4, the calculated half-time of 140 hours for peptide-free aLUVs is in good

agreement with previous NMR results,10 albeit slower than those found with LUVs doped

with fluorescent or spin labelled lipids18,19,48 and orders of magnitude slower than the rates
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reported for supported bilayers.22–24 When compared to the flip-flop half-times found by

Nakano et al. in free-floating vesicles (DMPC t1/2 = ∼8.5 h, POPC t1/2 > 1000 h both at

37 ◦C),32,33 our aLUVs display a t1/2 much slower than pure DMPC, but slightly faster than

flip-flop in POPC vesicles.

As shown in Fig. 2c, pre-incorporation of gA into aLUVs resulted in an accelerated decay

of the scattered intensity, indicative of a continuous loss of membrane asymmetry. Fitting

the normalized integrated total intensity showed that the presence of transmembrane gA

reduced the flip-flop halftime from 140 h to 18.1 h – an almost 8-fold reduction in t1/2 and

in good agreement with differential scanning calorimetry and NMR data.10

Externally added peptides result in rapid and complete loss of lipid asymme-

try

We also carried out experiments where aLUV controls were mixed either with Mel, Alm

or pHLIP (at 3 different pH values) to determine the effects of membrane-surface events

(such as binding and insertion) on bilayer asymmetry. Interestingly, the scattering curves

did not decay in the same manner as observed with gA. In fact, the aLUV-peptide curves in

Fig. 3a-e resemble those of the scrambled LUV control, i.e. the aLUVs lost their asymmetry

within the first hour after preparation. The key differences between them are the method of

peptide addition and peptide species: gA was incorporated during aLUV formation, Mel and

Alm (Fig. 3a-b, respectively) introduced to aLUVs using d-methanol, and pHLIP powder

to aLUVs in phosphate buffer with the addition of DCl to adjust the pH ((Fig. 3c-e).

Regardless, the samples, where the peptide was added externally after the aLUVs were

prepared, display the same effects on aLUV scattering. Specifically, bilayer asymmetry was

affected over the same time period, regardless of differences in the peptide’s physical state

or concentration, solvent type, pH, or mode of action.

As we altered pHLIP’s orientation from surface-bound to partially inserted and then to

inserted (as indicated by CD, see Fig. S3), we observe the same bilayer scrambling effects

of the PC lipids, which is depicted in Fig. 3c-e. It therefore appears that bilayer scrambling
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results from an event that is not associated with pHLIP’s secondary structure or membrane

partitioning. In pHLIP’s case, lipid flip-flop appears to be headgroup dependent as previous

results have suggested that pHLIP does not promote flip-flop of PS lipids.9 We rationalize

this by the fact that PS and pHLIP are both negatively charged and thus repel each other.49

Since only PS distribution was monitored in the previous study, the effect of pHLIP on PC

flip-flop was not elucidated.

We also looked into any potential loss of asymmetry as a result of having methanol in

solution. Using time-resolved SANS and symmetric protiated and deuterated DMPC vesi-

cles, we previously showed that methanol at volumes as low as 0.5% increases the rate of

DMPC vesicle mixing, and, in turn, DMPC flip-flop.50 In those experiments, liposomal mix-

tures were incubated with methanol for one hour prior to mixing of the two isotopic DMPC

populations. Aiming to learn whether enhanced lipid dynamics also occur in aLUVs, the

maximum administered volume (3% v/v) of methanol, used to introduce Alm and Mel, was

added to peptide-free aLUVs. Here, the introduction of methanol was followed by SANS

measurement to capture any immediate lipid scrambling. The resulting SANS scattering

pattern revealed no substantial decay in the first SANS minima (see Fig. S4), which in-

dicates that methanol is not the primary driver of bilayer scrambling, pointing instead to

a predominantly peptide-mediated mechanism of lipid flip-flop observed in this study. The

present result is not necessarily a contradiction to our past work. One hour (the time aLUV

samples were measured on SANS here) of data collection only produces 10-20% of the total

intensity decay curve in pure symmetric DMPC vesicles.50 In other words, in both sym-

metric and asymmetric instances, d-methanol did not initiate an immediate and complete

scrambling of lipid bilayers. To note, samples containing gA and pHLIP were methanol-free.

To further verify that peptides were the primary cause of lipid scrambling, we monitored

for the possibility of vesicle fusion, which can potentially increase the rate of lipid bilayer

scrambling. Besides pHLIP,41 the other peptides studied are known to promote vesicle fu-

sion,51 especially at concentrations of P/L ≥ 1/50.52 However, DLS measurements taken
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Figure 3: (a-e) High-q SANS data as a function of time showing aLUV scattering curves
after the external addition of melittin (a), alamethicin (b), and pHLIP (c-e). The individual
L/P ratios are displayed in each graph. All measurements were conducted at 37 ◦C. For
clarity purposes, not all measured curves are shown. (f) Cartoon of proposed mechanism
of peptide-induced lipid flip-flop. Shown in the top panel of (f) are the peptide monomers
in a random coil conformation and an asymmetric bilayer composed of chemically distinct
leaflets. Peptide binding, shown in the bottom, initiates a conformational change from a
random coil to α-helical. This adsorption, and likely subsequent insertion events leads to
bilayer reorganization and loss of lipid asymmetry.

prior to peptide addition and after incubation dismiss this possibility, as the average particle

diameter was unaffected (data not shown). This result also rules out the “carpet” mech-

anism where vesicles disintegrate into polydisperse peptidolipid structures.53 We can thus

confidently conclude that the observed changes in scattering are due to lipid flip-flop and

not the result of large-scale structural reorganization.

Discussion

As mentioned, the externally added peptides interact with the membrane through very

different mechanisms. However, regardless of their mode of action, amino acid sequence,

length, and conformation, they all disrupt membrane asymmetry, hinting at a general mode
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of action. Even though pHLIP is not an AMP, it is possible that pHLIP and AMPs share

certain features that allow them to disrupt membrane asymmetry despite differences in how

they interact with membranes. Our findings point to this scenario – one which implies that

perhaps all natural and de novo peptides and proteins may be capable of causing substantial

lipid flip-flop.

It has been suggested that any membrane-interacting molecules, at sufficient quantities,

are able to influence membrane properties54 by compromising the mechanical integrity of

the bilayer. Therefore, at high peptide-to-lipid (P/L ≥ 1/40) concentrations, changes to the

membrane may be due to an overwhelming number of peptides interacting simultaenously

with the membrane and not necessarily a specific AMP mode of action. However, with

respect to the current study, the non-pore forming pHLIP at a P/L ratio of 1/150 refutes

this possibility. At this non-membrane permeabilizing concentration,55 the peptide was seen

to eliminate membrane asymmetry, while the presence of gA in the membrane at higher

concentrations (P/L = 1/40) did not rapidly scramble the bilayers. Instead, we observed

a gradual loss of asymmetry. Our data therefore suggest that the enhanced lipid flip-flop

observed for pHLIP, Alm, and Mel is related to their activity at the membrane surface (see

Fig. 3f).

For lytic AMPs, an initial mode of action involves interaction with cellular membranes.

Most AMPs begin in the aqueous extracellular matrix as randomly coiled monomers and

undergo a conformational change upon contact with the membrane, forming a variety of

secondary structures that allow for peptide penetration and eventual membrane permeation.

However, few studies have looked into the potential of peptide binding to the membrane

as a disrupter of lipid asymmetry. Fattal et al. suggested that if a “perturbation mode”

of action (also known as interfacial activity, where peptides in a non-oligomeric, surface-

bound state disturb the physicochemical properties of adjacent lipids54) indeed existed, lipid

flip-flop would occur upon peptide binding to the bilayer12 – a notion in agreement with

the data presented in the current study. Decoupling the binding and transmembrane steps
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showed that the peptides that underwent a binding step initiated rapid and complete lipid

asymmetry loss, in contrast to the gA case.

At similar P/L concentrations, gA did not cause 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD)

conjugated PC lipids to experience “appreciable” lipid flip-flop12(> 96 h), suggesting gA is

better capable of enhancing the translocation of biologically relevant lipids than those mod-

ified covalently. This difference can be attributed either to an unfavorable steric interaction

between the NBD fluorophore and the peptide, or that the bulkiness of the fluorophore im-

pede movement through the peptide-induced defect. In Fig. 2b, gA (18.1 h) and gA-free (140

h) half-times show an almost 8-fold decrease when gA is pre-incorporated into aLUVs. This

result is, for the most part, in good agreement with that of Anglin and coworkers (2-10 fold

increase in gel-phase di18:0 PC bilayers). The similarity in time-scales (hours) yet difference

in lipid phase-state (fluid vs. gel) is intriguing as the rate of lipid flip-flop has been shown to

be phase-dependent18,25 – with flip-flop in gel-phase membranes being much slower. Bilayer

geometry, incomplete surface coverage in planar bilayers, and possible substrate-lipid interac-

tions in supported bilayers are possible explanations for these difference in time-scales.14,25,36

Nevertheless, gA activity appears to be independent of lipid phase state.

In its surface-adsorbed state, pHLIP can perturb lipid membranes to a greater extent

than when inserted.55 This may also be true for Alm and Mel, which can adopt a surface-

bound state.56 In their monomeric forms, Alm and Mel are embedded just below the lipid

headgroups, lying parallel to the membrane plane (not inserted).57 In this surface-bound

state, they induce membrane thinning57 that can compromise membrane integrity by creating

local defects that can accelerate lipid flip-flop – a notion that is in agreement with previous

reported findings.25,58

A surface-adsorbed peptide that lies below the headgroups would change the effective

area of that (outer) leaflet, which would lead to global stresses across the membrane. This

area imbalance may then result in disruption of the sustained partitioning of the hydropho-

bic and hydrophilic regions present in the bilayer, allowing for the transbilayer movement of
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solutes, peptides, and lipids.54 This type of stress (normal to the bilayer plane) is different

from that produced by gA, possibly leading to the different outcomes observed here. As

previously described,10 gA-induced stress (directed radially outwards from the transmem-

brane peptide) comes from the high gA concentration (P/L = 1/40) at which, because of

the local deformations around gA, the bilayer is unable to relax to its unperturbed state,

since the gA dimers are too close to one another. These local deformations enhance the

formation of defects, which reduces the free energy barrier to lipid flip-flop by destabilizing

adjacent bilayer structure and/or lipid packing near the peptide.10 We postulate that the

interfacial activity of a peptide on the membrane surface induces a far greater stress upon

the bilayer than when in its transmembrane state. This postulation is corroborated by a

finding in which the number of lipids affected by adsorbed pHLIP is a factor of ∼5-10 greater

than transmembrane pHLIP.59 We thus believe there exists a direct correlation between the

amount of stress induced by the peptide (which seems dependent on its orientation) and its

ability to propagate lipid flip-flop events.

At a critical P/L concentration, AMPs will transition from laying on the membrane

surface to inserting themselves into the membrane, spanning both bilayer leaflets.56 In the

present study, Alm and Mel are seen to primarily adopt an α-helical structure and thus

inserted orientation (see Fig. S3). This is significant. as what was suggested previously,16

the act of peptide insertion can help transfer lipids across bilayer leaflets as lipids can be

co-transported with the plunging peptide. Along with the potential for dynamic conversion

between inserted and non-inserted states, the co-transport process should be very effective

at disrupting lipid organization.

This insertion step, as well as membrane binding, is missing in the case of gA as it was

already pre-incorporated into the bilayer. We speculate that adding gA externally would

yield similar results on the basis that the other three peptides examined differ drastically

in amino acid composition and sequence length. Furthermore, as seen with pHLIP, a spe-

cific secondary structure and pore-formation are not pre-requisites to causing complete lipid
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scrambling; thus, the delayed formation of helical gA channels (due to the accumulation of

gA on the outer leaflet, instead of being present on both leaflets) would not affect the bilayer

scrambling process as gA inserts itself into the bilayer.

An interesting point to note, with regards to the flip-flop halftime measured here for

POPC and DMPC aLUVs, the observed value of ∼140 h is magnitudes slower than in pure

DMPC LUVs32 and faster than the imperceptible POPC flip-flop33. Taking into considera-

tion interleaflet coupling8, we suggest that the POPC-enriched leaflet may suppress lipids in

the DMPC-enriched leaflet from flipping inward, giving rise to the observed half-time. Lipid

flip-flop is known to be affected by bilayer thickness, among other properties8,18. In this case,

either the thicker POPC inner leaflet is inhibiting DMPC from flipping inwards or, because

POPC is not undergoing lipid flip-flop, there is an equal exchange of DMPC between the

leaflets to compensate for any leaflet area imbalance, resulting in a lack of net change in

leaflet composition. The equal exchange of DMPC between leaflets, is possible because some

outer leaflet lipids will leak into the inner leaflet during aLUV formation (∼5-10%), allowing

for the bidirectional diffusion of DMPC. Ultimately, the introduction of lipid asymmetry is

seen to influence both POPC and DMPC translocation rates.

Though the current study does not provide unequivocal support for a peptide-based

mechanism of lipid flip-flop, it does provide insights regarding membrane-peptide interactions

affecting bilayer asymmetry and their possible importance in biological membranes. AMP

action does not always lead to complete membrane destruction, which has clearly been

demonstrated by the present SANS and DLS data. In search of another plausible mecha-

nism, we delved into the action of AMPs onto lipids, specifically their dynamics and overall

organization within the bilayer. Complete lipid scrambling of asymmetrically organized lipid

bilayers was found. For lipid scrambling to be of biological relevance in the action of AMPs,

a fast, or even immediate, effect is needed and desirable – one which precedes the perme-

abilization of the membrane. This study shows that such a case is possible. Our findings

also reveal the importance of evaluating vesicle asymmetry in studies involving peptides and
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proteins as peptide reconstitution was shown to destabilize the organizational integrity of

aLUVs.

Conclusions

Although there are a number of different techniques that can measure lipid flip-flop, there

are few that can do so in a probe-free and non-headgroup specific manner. Here, we demon-

strated how SANS could be used to reliably monitor lipid flip-flop in aLUVs made of dH-

POPCinn/dC-DMPCout. In these vesicles, lipid flip-flop half-times approaching 6 days were

observed, in good agreement with some previous results and in contrast with those obtained

from supported bilayers. The pre-incorporation of gA into aLUVs increased lipid flip-flop

rates by a factor of almost 8, compared to peptide-free aLUVs. The addition of Alm, Mel

and pHLIP (at three different pH conditions) also eliminated membrane asymmetry. Im-

portantly, it was shown that peptides adsorbed to membrane surfaces may have a much

greater effect on lipid flip-flop than when inserted. This result highlighted a possible general

mechanism of AMP action, which may be important to initiating cell death.
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