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ABSTRACT Methanol is a common solubilizing agent used to study of transmembrane proteins/peptides in biological and
synthetic membranes. Using small angle neutron scattering (SANS) and a strategic contrast matching scheme, we show that
methanol has a major impact on lipid dynamics. Under increasing methanol concentrations, isotopically-distinct 1,2-dimyristoyl-
sn-glycero-3-phosphocholine (DMPC) large unilamellar vesicle (LUV) populations exhibit increased mixing. Specifically, DMPC
transfer and flip-flop kinetics display linear and exponential rate enhancements, respectively. Ultimately, methanol is capable of
influencing the structure-function relationship associated with bilayer composition (e.g. lipid asymmetry). The use of methanol
as a carrier solvent, despite better simulating some biological conditions (e.g. antimicrobial attack), can help misconstrue lipid
scrambling as the action of proteins or peptides, when in actuality it is a combination of solvent and biological agent. As bilayer
compositional stability is crucial to cell survival and protein reconstitution, these results highlight the importance of methanol, and
solvents in general, in biomembrane and proteolipid studies.

Lipid bilayers form the structural backbone of cellular
membranes and possess marked lateral and transversal organi-
zation of lipids. This strict lipid organization has implications
in vital cellular processes, including protein function and
localization (1), vesicle fusion and budding (2), and apopto-
sis (3). Lipids undergo three types of spontaneous, diffusive
motion: they 1) exchange between bilayers (interbilayer trans-
fer/exchange), 2) translocate between bilayer leaflets (trans-
verse lipid diffusion/flip-flop), and 3) laterally diffuse within
the plane of the membrane surface. Herein, this study will
focus on the former two, as interbilayer exchange is linked
to how lipids arrive, remain and leave cellular membranes,
while lipid flip-flop disrupts the energy-driven maintenance
of membrane asymmetry, i.e. the compositional difference
between leaflets, in living cells. In essence, both dynamical
actions are intrinsically linked to bilayers and their compo-
sitional stability. Previous studies have externally induced
reorganization of lipids by outside factors, as seen in model
phospholipid membranes upon addition of cations (4), deter-
gents (5), and peptides (6–9). Here, we focus on how common
organic solvents also impact these dynamics.

As membranes do not exist in isolation, they are in con-
stant contact with compounds or solutions. Alcohols can be
commonly found in the external environment of membranes.
This proximity potentiates alcohol-membrane interactions,
which can cause changes in membrane composition (10).
For instance, methanol, the simplest alcohol, composed of

Figure 1: Schematic of the contrast matching scheme used.
Vesicles composed solely of d-DMPC (d54-DMPC) and h-
DMPC are placed together in a H2O/D2O (55/45) mixture,
contrast matched to an NSLD equal to fully mixed vesicles of
d-DMPC and h-DMPC. Over time, due to lipid exchange and
flip-flop, intensity loss can be monitored as vesicles mix and
near the contrast match point.
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a single methyl attached to a hydroxyl group is ubiquitously
utilized as a fuel source and chemical precursor in cells, and
in proteolipidic studies as an organic solvent of lipids and
proteins/peptides. Such alcohols have been shown to alter
lipid bilayer properties (11), making their study of great im-
portance. Despite this importance, studies on lipid dynamics
under the influence of alcohols are severely lacking. Several
computational studies have examined the interactions between
short-chain alcohols and lipid bilayers on a physical andmolec-
ular level (12, 13), but none on lipid exchange and flip flop
in detail. To date, experimental data on these effects are also
lacking and the limited experimental reports have come into
question due to the use of fluorescent probes (14, 15). These
probes can disrupt physicochemical bilayer properties and
have also demonstrated unreliable flip-flop rates, differing
depending on the type of fluorophore used, even within the
same lipid system (16). We surmise this issue to extend to
interbilayer exchange as well. To our knowledge, no such dy-
namical study has been conducted which examine methanol
and model bilayers in a probe-free manner. The present study
overcomes these pitfalls by using SANS as a noninvasive
and probe-free technique to quantify lipid dynamics in the
presence of methanol. SANS can temporally and spatially
monitor the molecular organization within samples, and has
proven to be a powerful tool in allowing the simultaneous
measurement of lipid flip-flop and exchange rates (17–20).

Here, we apply SANS to monitor lipid mixing of two dis-
tinct 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)
populations, one chain perdeuterated (d-DMPC) and the other
fully protiated (h-DMPC), in the presence of increasing deuter-
ated methanol (d-methanol) concentration. This measurement
is achieved by setting the ratio of H2O and D2O (here 45%
D2O), such that the water solvent neutron scattering length
density is matched to uniformly mixed d-DMPC/h-DMPC
vesicles. Unmixed vesicles will thus display contrast versus
the water solvent, resulting in heightened scattering intensity;
while, fully mixed samples will display scattering intensities
akin to the solvent background (i.e. a flat and featureless curve).
Thus, as h-DMPC and d-DMPC LUVs begin to mix via lipid
monomers transferring within and between bilayers, the mea-
sured intensity will decay and eventually reach an intensity
baseline, corresponding to a single population of completely
mixed vesicles (shown in Fig. 2a). The experimental scheme
can be seen in Fig. 1, while a more detailed protocol can
be found in the Supporting Material. A normalized intensity
decay was calculated from the collective scattering curves of
each sample and analyzed with a model for exchange/flip-flop
by Nakano et al. (Fig. 2b) (17). With this experimental set-up,
we are able to quantify both DMPC flip-flop (k f ) and exchange
(ke) rates under the influence of methanol.

Increasing methanol concentrations had a profound effect
on the kinetics of DMPC monomers in free-floating LUVs.
Despite differences in vesicle size and investigative techniques,
our unperturbed DMPC flip-flop and transfer rates are in excel-
lent agreement withmany values previously found (17, 21–24).

In a closely related study, Gerelli et al. used neutron reflectom-
etry to measure DMPC flip-flop and exchange between vesicle
dispersions and adsorbed planar bilayers(25). The exchange
half-times for fluid-phase DMPC coincide with values found
here (time-scale of hours), while flip-flop was magnitudes
faster (≤ 2.5 min). As recently shown (16), the incomplete
surface coverage of planar bilayers led to microscopic defects,
which can facilitate lipid flip-flop and thus result in flip-flop
rates on the order of seconds to minutes. The present study,
with fully sealed vesicles, bypasses such issues. More sig-
nificantly, our results also reveal that methanol accelerates
both fluid-phase DMPC flip-flop and transfer rates (Table 1).
The flip-flop rate increases exponentially (Fig. 2c), while the
exchange rate increases linearly under the studied concentra-
tions. Our flip-flop finding is in line with Schwichtenhovel
and coworkers who found that radioactive and fluorescent
lipid probes in human erythrocytes demonstrated exponen-
tial acceleration of inward flipping rates in the presence of
1-alkanols (C2-C8) and alkyl diols (14). Methanol has by far
the weakest hydrophobic character in the short-chain alcohol
group yet seems to perturb the membrane through the same
or similar fashion as longer chained alcohols and alkyl diols.
While it has been shown that other short-chain alcohols affect
inward flipping rates, we provide new insights with regards
to both flip-flop and transfer rates while in the presence of
methanol. In general, at low methanol levels, DMPC under-
goes slower flip-flop than transfer, but at concentrations above
2 % (v/v) methanol the situation is reversed. Interestingly,
these observations suggest that methanol affects these two
dynamical processes in distinct ways.

Flip-flop has a large energy barrier resulting from the trans-
port of a polar, and often charged, lipid headgroup through
the hydrophobic core. This unfavorable process can be aug-
mented via intercalation of polar alcohol molecules within
the membrane which can cause short-lived transient pores
and/or increase in the membrane’s dielectric constant–both
can justify the enhanced flip-flop observed here, but the latter
is unlikely the major driving force as shown in past work
(26). During lipid transfer, it is thermodynamically unfavor-
able for the hydrophobic tails to pass through both the polar
headgroup region and aqueous phase. As exemplified by De
Cuyper et al. (27), an increase in acyl chain length reduces
the transfer of lipid monomers, presumably due to a greater
exposed hydrophobic moiety. They also saw that incorpo-
ration of polyalcohols into these lipid structures caused an
increase in transfer. In view of these results, alcohols can play
a significant role in masking a lipid’s hydrophobic character
within a polar environment. Therefore, increasing methanol,
an organic solvent which is fully miscible in water, should
lower the energy barrier associated with lipid transfer.

Fluorescence techniques and freeze-fracture electron mi-
croscopy have demonstrated short-chain alcohols promote
vesicle hemifusion and complete fusion, hypothetically byway
of outer leaflet disruption (28, 29). This fusing of individual
membrane vesicles provide sites of enhanced lipid exchange
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Figure 2: (a) SANS curve of d-DMPC and h-DMPC vesicles with 3% (v/v) d-methanol solvent. Periodic measurements were
conducted at 37 ◦C over 38 hours. (b) Normalized contrast decay curves of increasing d-methanol presence; continuous lines
indicate fitted curves used to derive flip-flop and lipid exchange rate constants. Each data point represents the normalized
integrated intensity of a single SANS curve similar to those found in panel a. (c) Plot of measured flip-flop and lipid exchange
rate constants as a function of d-methanol percent concentration. Solid lines represent curves of best fit.

via fusion pores which allows lateral diffusion of lipids to the
adjacent leaflet, yielding faster than expected lipid dynamics
(30). As a result, dynamic light scattering measurements of
size and polydispersity were taken before and after incubation
at multiple methanol concentrations; of which, neither cases
revealed significant changes, maintaining a vesicle diameter
of ≈140 nm and a polydispersity index (PDI) of 0.15 ± 0.02.
Significantly, these results suggest fusion events did not occur
as an increase in mean particle size and PDI would have been
observed.

Further biophysical studies, using elastic SANS and small
angle X-ray scattering (SAXS), were applied. SANS and
SAXS are complementary techniques used to probe sample
structure, and known to be extremely sensitive to membrane
lamellarity and lipid bilayer structure. For example, multil-
amellarity can be signified by the appearance of Bragg peaks
in the scattering data. The fact both SANS and SAXS yielded
curves that displayed diffuse scattering (i.e. no detectable
sharp Bragg peak in Fig. S1 found in the Supporting Mate-
rial), multilamellar bilayers did not evolve under the presence
of d-methanol. Collectively, these qualitative findings indi-
cate that methanol did not alter the vesicles’ morphological
structure.

To determine if a defect-mediated mechanism can account
for the rate enhancements, we examined pertinent bilayer
properties. Previous simulation and experimental studies
on model membranes revealed that the area per lipid (AL)
generally increases with increasing alcohol concentrations,
irrespective of lipid saturation and chain length (12, 31).
The in silico study, in particular, found that this led to greater
transient defects that provided lipid headgroups an opportunity
to traverse the bilayer core and flip-flop (12). However, due to
differences in lipid and alcohol concentrations between their
systems and ours, we conducted our own structural analysis.
A joint refinement of SANS and SAXS data was applied to

robustly derive these structural features (32). As shown in
Fig. S1, the scattering profiles of pure lipid and methanol-
treated samples are indiscernible. In terms of relevant bilayer
structural parameters, they are essentially unchanged (shown
and explained in Fig. S1) and match well with previously
reported DMPC data (33). These results do not outright
disagree with previous studies. For example, Klacsova et al.
observed changes in AL and bilayer thickness (DB) of a di-
unsaturated PC system hydrated with varying concentrations
of aliphatic alcohols of different chain lengths, C8−18 (34);
it was generally seen that shorter chain lengths imparted
fewer effects on bilayer properties. With methanol having
the smallest alkyl group, it makes sense that its effect on
membrane structure is more difficult to detect. A plausible
mechanism of methanol perturbation could be instead due
to a decrease in chain order, often seen under increasing
short-chain alcohol levels (35). However, an increase in AL

is also associated with such a change but, as seen here, the
AL remains static. Thus, the most likely explanation must
involvemethanol inducing short-range and perhaps short-lived
defects, which are thus difficult to discern via methods that
measure a global structural average, such as the biophysical
techniques used in this study.

Traditionally, protein and peptide reconstitution have re-
lied on either solvent addition or pre-incorporation with lipids
prior to thin film hydration, the choice being dependent on
the folding nature of the proteins/peptides. With the former,
short-chain alcohols, including methanol, are popular carrier
solvents used in studies on peptide activity (36, 37), channel
activity conductance (38), the critical structural motifs of pro-
teins (39), and physical interactions between proteins and lipid
bilayers (40). Our data suggest that even low concentrations
of methanol, commonly used in these studies, has a profound
effect on the compositional stability of membranes. In special-
ized cases involving lipid asymmetry, methanol-induced lipid
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Table 1: DMPC Flip-Flop and Exchange Half-Times and Rate Constants

d-Methanol Flip-Flop Exchange
(v/v % ) t1/2 (mins) k f (x10−3 mins−1) t1/2 (mins) kt (x10−3 mins−1)

0 87.2 ± 1.1 8.0 ± 0.1 62.8 ± 0.3 11.0 ± 0.05
0.5 78.1 ± 2.6 8.9 ± 0.3 54.8 ± 0.4 12.6 ± 0.1
1.0 58.3 ± 1.4 11.9 ± 0.3 53.0 ± 0.4 13.1 ± 0.09
2.0 47.8 ± 1.3 14.5 ± 0.4 44.3 ± 0.3 15.6 ± 0.1
3.0 16.7 ± 1.3 41.6 ± 3.3 40.8 ± 0.2 17.0 ± 0.1

scrambling can have unwanted consequences: lipid vesicles
and likely other geometric setups exposed to methanol will
have their asymmetric stability dramatically reduced many
folds. Such an effect limits the time of study and possible
applicable techniques and assays. Because the response to
methanol will vary depending on phospholipid composition,
cholesterol content, and buffer of the studied membrane, ideal
solvents that do not perturb membranes must be determined,
as well as the use of assays that can evaluate individual leaflet
compositions and/or the degree of membrane asymmetry.
These adaptations can help ensure experimental protocols
have not altered bilayer composition. Our findings further
highlight an additional complication when adding proteins or
peptides externally; for example, in studies on antimicrobial
peptides (AMP), though AMP attack is better simulated in
this manner, these studies have the potential to incorrectly
assign the cause of the enhanced lipid kinetics to the AMP,
when in actuality it may be due to the carrier solvent or some
combination of the two. Ultimately, this work highlights the
importance of understanding the interplay between the system
of interest and the carrier solvent on lipid mobility.
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SUPPLEMENTARY MATERIAL
An online supplement to this article can be found by visiting
BJ Online at http://www.biophysj.org.
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