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Understanding the factors shaping patterns of ecological resilience is critical
for mitigating the loss of global biodiversity. Throughout aquatic environ-
ments, highly mobile predators are thought to serve as important vectors
of energy between ecosystems thereby promoting stability and resilience.
However, the role these predators play in connecting food webs and promot-
ing energy flow remains poorly understood in most contexts. Using carbon
and nitrogen isotopes, we quantified the use of several prey resource pools
(small oceanic forage, large oceanics, coral reef, and seagrass) by 17 species
of elasmobranch fishes (n = 351 individuals) in The Bahamas to determine
their functional diversity and roles as ecosystem links. We observed remark-
able functional diversity across species and identified four major groups
responsible for connecting discrete regions of the seascape. Elasmobranchs
were responsible for promoting energetic connectivity between neritic, ocea-
nic and deep-sea ecosystems. Our findings illustrate how mobile predators
promote ecosystem connectivity, underscoring their functional significance
and role in supporting ecological resilience. More broadly, strong predator
conservation efforts in developing island nations, such as The Bahamas,
are likely to yield ecological benefits that enhance the resilience of marine
ecosystems to combat imminent threats such as habitat degradation and cli-
mate change.

© 2023 The Author(s) Published by the Royal Society. All rights reserved.
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1. Introduction
How ecosystems respond to human-induced stressors and
disturbance regimes has the potential to alter their ecological
functions [1]. Conserving the processes that promote ecologi-
cal resilience in the face of these changes is, therefore, key [2].
Ecological resilience can be defined, in part, by the propensity
of ecological systems to rebound following disturbances [3],
and is strongly mediated by levels of biodiversity, functional
complexity [4] and the diversity of energetic resource pools
supporting food-webs [5]. A critical mechanism proposed
to support high levels of ecological resilience is the mainten-
ance of strong energy and nutrient flow across habitats [5,6].
This can be facilitated by passive processes, such as current-
and wind-based transport of nutrients [7], or more active eco-
logical processes, such as the movements and foraging
interactions of large mobile consumers [8–10]. Predators
that feed across resource channels help link energy pathways,
and aid in the stability and resilience of food webs [5]. For
example, Rooney et al. [5] illustrated how food-web stability
is strongly mediated by predatory multi-channel feeding,
whereby individuals may feed across a distinct energetic
pathway with different rates of productivity and turnover.

Animals like whales and sharks that feed across multiple
food webs, migrate long distances or occupy diverse habitats,
connect disparate regions of the ocean [11]. Yet these
widespread functional roles often make them vulnerable to
individual- and population-level threats, including human
impacts. While some species of marine megafauna are
highly protected and are recovering (e.g. some whale and
sea turtle species, [12,13]), many sharks continue to experi-
ence high levels of overexploitation resulting in population
declines [14]. Given that sharks display a variety of functional
roles, including top-down control of food webs and connect-
ing trophic levels through their foraging behaviour [15],
their ongoing removal is likely to have long-term effects on
the structure and function of marine ecosystems [16]. This
therefore remains a critical area of research.

Quantifying how mobile marine predators serve as ener-
getic vectors is inherently challenging, owing to their cryptic
lifestyles combined with a lack of techniques that can reliably
resolve patterns of energy flow. However, the application of
biochemical tracers, such as naturally occurring stable isotopes,
can provide a non-lethal means for discerning patterns of pred-
ator-mediated energy flow among ecosystems [17]. This is
because carbon isotope values of animal tissues reflect primary
production pathways supporting the base of food-webs,
which are isotopically distinct across major producer groups
(e.g. C3 versus C4 photosynthetic versus chemoautotrophic pro-
duction). Nitrogen isotopes complement carbon isotopes
because of predictable, stepwise 15N fractionation between
predator and prey that reflects a consumer’s trophic position
within foodwebs [17].When combinedwith isotopic endmem-
bers (prey species that represent a single energetic resource
channel, [18]), an animal’s or population’s reliance on multiple
energetic pathways can be discerned, provided they are isotopi-
cally distinct [17,19]. This offers a means for determining the
extent to which consumers connect ecosystems themselves [9].

Among target areas for research on trophic coupling,
marine seascapes within subtropical and tropical latitudes
offer a valuable opportunity to understand patterns of preda-
tor-mediated ecosystem connectivity, due to the diversity of
species and distinct ecosystems that exist across very small

spatial scales [20]. In The Bahamas, acoustic telemetry and bio-
logging revealed that tiger sharks connect coral reef, carbonate
banks and seagrass meadows throughout their home range
[21], whereby the intermediary seagrass habitats appear to
serve as strategic navigation routes and connective pathways
between ecosystems [22,23]. At Palmyra Atoll, blacktip reef
sharks (Carcharhinus melanopterus), grey reef sharks (C. amblyr-
hynchos) and red snapper (Lutjanus fulvus) were shown to
derive energy from lagoon, forereef and oceanic environments,
with grey reef sharks connecting forereef and oceanic com-
ponents and potentially linking the epipelagic and deep-
water environment [9]. More broadly, similar patterns of
ecosystem connectivity have been observed across other
marine ecosystems such as estuaries (fishes and dolphins
[24]), open ocean (whales [25]) and the deep sea (dolphins
and whales [26]). However, a critical evaluation of predator-
mediated connectivity has yet to be undertaken at any great
scale, with most studies focusing on a relatively low number
of species. This precludes a comprehensive understanding of
predator-mediated ecosystem connectivity and the impli-
cations this may have for patterns of ecological resilience.

Here, we compile a large carbon and nitrogen stable iso-
tope dataset to quantify functional diversity displayed across
seventeen species of elasmobranch. Specifically, we establish
(1) how species use and therefore connect major energetic
resource pools and (2) key functional groups defined by inter-
specific resource use patterns. We use The Bahamas as a case
study system, where commercial longlining was banned in
1993 and the exclusive economic zone designated a shark sanc-
tuary in 2011. Bahamian ecosystems, therefore, provide a
unique opportunity to understand the functional role of elas-
mobranchs in the absence of significant fishing pressure. We
discuss our results within the context of ecosystem function
and patterns of ecological resilience.

2. Methods
(a) Declarations
All sampling was conducted between 2009 and 2020 under
research permits issued by the Bahamas Ministry of Agriculture
and Marine Resources, Department of Marine Resources.

(b) Compilation of elasmobranch stable isotope values
We compiled elasmobranch carbon and nitrogen stable isotope
values from several published studies [27–29], in addition to
several unpublished datasets. Animals were captured using a
variety of techniques including scientific longlines [30–32],
drum lines [21,22,33], gillnets [34], handlines [35,36], hand nets
[37] and benthic traps [28]. This included 351 individuals from
17 species sampled from around the Bahamian islands of
New Providence, Cat Island, Southern Exuma, South Eleuthera,
Andros and Bimini (figure 1). Deep-sea species were exclusively
sampled in northeast Exuma Sound and deep waters west of
North Bimini (figure 1). Specific information on animal capture,
sampling and stable isotope analyses for unpublished datasets
can be found in the electronic supplementary material (electronic
supplementary material, appendix S1).

Species were grouped based on their major habitat associ-
ation [38]. Neritic species (i.e. those commonly associated with
shallow ocean overlaying the continental shelf ) included black-
nose sharks (Carcharhinus acronotus), Caribbean reef sharks
(C. perezi), lemon sharks (Negaprion brevirostris), nurse sharks
(Ginglymostoma cirratum), bull sharks (C. leucas), southern
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stingrays (Hypanus americanus) and Atlantic chupare (Styracura
schmardae). Oceanic/semi-oceanic species included silky
sharks (C. facliformis), oceanic whitetip sharks (C. longimanus)
and tiger sharks (Galeocerdo cuvier). Deep-sea associated species
included Cuban dogfish (Squalus cubensis), smooth dogfish (Mus-
telus canis insularis), Mead’s catsharks (Scyliorhinus meadi), gulper
sharks (Centrophorus spp.), Atlantic sixgill sharks (Hexanchus
vitulus), bluntnose sixgill sharks (H. griseus) and sharpnose
sevengill sharks (Heptranchias perlo). Given similar habitat
characteristics between Bahamian islands and similar prevailing
biological oceanography (e.g. water temperature, primary pro-
duction pathways), it was assumed that stable isotope values
of elasmobranchs and primary producers would not differ
significantly between islands (see [29]).

The goal of this study was to address overall, long-term
patterns of resource use, therefore we only included data from
tissues with longer isotopic incorporation rates that are relatively
insensitive to short-term (i.e. seasonal) fluctuations in energetic
resource use. These included red blood cells (herein ‘RBCs’,
T95 = 41–582 days, [39,40]), white muscle (T95 = 173–1014 days,
[39,41–43]) and fin tissue (T95 = 30–726 days). Because there
were several species for which data were generated from mul-
tiple tissues, all isotope values were corrected for trophic
discrimination prior to statistical analyses (see electronic sup-
plementary material, appendix S1, electronic supplementary
material, table S1). Given the lack of trophic discrimination
factor values for elasmobranchs, we first used weighted averages
from all published studies for each tissue (electronic supplemen-
tary material, appendix S1; electronic supplementary material,
table S2). However, the weighted averages for muscle tissue
resulted in many species falling beyond the isotopic mixing
space, indicating that this value was an inappropriate estimate
for many species in this study. As a result, we assigned discrimi-
nation values for muscle tissue generated for adult lemon sharks,
which resulted in most species falling well within the isotopic
mixing space [18,44]. We selected this species due to the
close taxonomic relatedness to many species included in this

study. For RBCs, muscle, and fin clips we assigned trophic dis-
crimination factors of Δ13C = 1.88‰; Δ15N = 2.44‰, Δ13C =
1.3‰; Δ15N = 3.2‰ and Δ13C = 3.6‰; Δ15N = 0.4‰, respectively
(electronic supplementary material, appendix S1, electronic
supplementary material, table S1).

Lipids and urea have known isotopic effects that can alter
ecological interpretation (reviewed by [17,45]). For legacy data-
sets, however, it is often unattainable to ensure all samples are
treated in a uniform manner. However, we ensured that all data-
sets accounted for potential effects of lipids and/or urea in some
manner, either through chemical treatment or mathematical nor-
malization (for lipids only) where C:N was high (following DI
water rinses to remove urea; [46]). Chemical treatment was not
conducted on muscle tissue of a single bluntnose sixgill shark,
however the C:N ratio and bulk isotope values fell within the
range of lipid-extracted samples for closely related deep-water
species [47,48].

(c) Elasmobranch-mediated energy flow
We used stable isotope mixing models to evaluate how elasmo-
branchs connect ecosystems through energetic resource use (per
[9]). Thus, we adopted a well-established isotopic ‘end-member’
approach [9,18,49] to evaluate the reliance of elasmobranchs on
four major resource pools – oceanic forage, large oceanic predators
(herein ‘large oceanics’), coral reefs, and seagrass. The isotopic
mixing space was constructed from resampling published means
and s.d.s (n = 100) of key prey species [50] sampled fromThe Baha-
mas that are known to derive most energy from a single resource
pool. Prey isotope values spanned several geographical areas
including Eleuthera [51–53], Cat Island [27], Bimini [54], Inagua
and Long Island [55]. Oceanic forage species (δ13C = 18.0‰ ±
1.2‰, δ15N = 5.3‰ ± 0.7‰) included squid (unidentified
spp.) and flying fish (family Exocoetidae). Large oceanics
(δ13C =−16.7‰ ± 0.6‰, δ15N = 8.6‰ ± 1.2‰) were composed of
offshore piscivorous fishes including wahoo (Acanthocybium solan-
dri), dolphinfish (Coryphaena hippurus), blackfin tuna (Thunnus

N
50 km

Figure 1. General sampling locations (white hashed lines) of elasmobranchs included in this study. Species were sampled from a variety of neritic and oceanic
habitats from Bimini, New Providence, Andros, Southern Exumas, South Eleuthera and Cat Island.
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atlanticus), skipjack tuna (Katsuwonus pelamis) and yellowfin tuna
(Thunnus albacares). Coral reef endmembers (δ13C =−12.5‰ ±
1.7‰, δ15N = 8.3‰ ± 0.4‰) included mostly piscivorous reef
fishes that exhibit high fidelity to large coral reefs, including bar
jack (Caranx ruber), graysby grouper (Cephalopholis cruentata),
Nassau grouper (Epinephelus striatus), schoolmaster snapper
(Lutjanus apodus), yellowtail snapper (Ocyurus chrysurus)
and lane snapper (Lutjanus synagris). Seagrass endmembers
(δ13C =−8.4‰ ± 1.9‰, δ15N = 5.2‰ ± 3.0‰) included several
populations of green sea turtles (Chelonia mydas) and juvenile
and adult bonefish (Albula vulpes). Mean δ13C and δ15N (±s.d.)
for all endmember species can be found in the electronic
supplementary material (electronic supplementary material,
appendix 1; electronic supplementary material, table S2).

Bayesian mixing models were implemented in the R package
MixSIAR [56], which offers greater flexibility than traditional
mixing models by allowing for the inclusion of model covariates.
Here, we ran species-specific mixing models which included a
random effect of individual to quantify intraspecific variation
in resource use. These were compared to a null model (i.e. no
covariates) that assumes a uniform resource use distribution
across all individuals using leave one out cross validation and
Akaike weights [56]. Models were run for 100 000 iterations
across three Markov chains with a burn-in of 50 000 and thinning
interval of 50. Model convergence was assessed via Gelman-
Rubin diagnostics and Geweke statistics [56]. We also assessed
multiplicative error terms to ensure carbon and nitrogen isotope
data were sufficiently explained by model covariates [56]. For
sharpnose sevengill sharks, two energy channels were removed
from the mixing model to improve model convergence. This
was justified given that this species fell extremely close to a
single endmember (large oceanics) [18].

To further evaluate the degree to which different species con-
nected multiple resource pools we calculated Pielou’s evenness
[57]. This was calculated using the proportional contributions
of each resource pool to species diet and provides values
between 0 and 1, where = 0 low evenness (i.e. a species relies
solely upon a single resource channel), and 1 = high evenness
(i.e. a species relies similarly on all available resource pools).
Species exhibiting high evenness values are assumed to be
greater ecosystem connectors.

(d) Functional diversity of elasmobranchs
We adopted hierarchical K-means clustering using the R package
NbClust [58] to determine the diversity of functional roles dis-
played by elasmobranch species. Median estimates of energetic
resource use were calculated from all individuals, for each species
and normalized to Euclidean distances prior to clustering. The
most appropriate number of clusters was explored using mean
within sum-of-squares (WSS) and average silhouette width [58].
The final cluster designation was based on the results of pre-
processing algorithms combined with visual scrutiny of the result-
ing dendrogram.We removed species with low sample sizes (n = 1
or 2) from clustering, which included the bluntnose sixgill shark,
sharpnose sevengill shark and Mead’s catshark.

Finally, we evaluated isotopic niche area for each functional
group (as inferred through hierarchical clustering) as a proxy
for trophic niche variation [59]. We calculated estimates of
niche area and proportional pairwise overlap using 95% kernel
utilization distributions (KUDs) in the R package rKIN [59,60].

3. Results
Carbon and nitrogen stable isotope values were compiled for
17 elasmobranch species (n = 351 individuals) that associate
with neritic, oceanic/semi-oceanic and deep-water ecosys-
tems (table 1). Across sampled elasmobranchs, raw δ13C

and δ15N values (i.e. prior to TDF correction) ranged from −
17.1‰ (silky shark) to−5.4‰ (nurse shark) and 2.5‰ (Atlantic
chupare) to 14.4‰ (bull shark), respectively (figure 2). The
greatest ranges of δ13C and δ15N values (where n > 3) were
observed for nurse sharks (δ13C =−14.8‰ to −5.4‰) and
bull sharks (δ15N = 10.0‰ to 14.4‰), and the lowest ranges
were observed for gulper sharks (δ13C =−16.4‰ to −15.8‰;
δ15N = 10.3‰ to 11.0‰) (figure 2).

(a) Elasmobranch-mediated energy flow
Bayesian isotope mixing models revealed that elasmobranch
species were generally reliant upon a mixture of energetic
resource channels (figure 3). High resource use diversity was
observed for many neritic species including blacknose, nurse
and Caribbean reef sharks (figure 3). Most oceanic species
were heavily reliant upon large oceanic and oceanic forage
species, with little use of neritic resource channels (e.g. coral
reefs and seagrass). Several deep-water species, such as the
Atlantic sixgill and smooth dogfish exhibited use of both neri-
tic and oceanic prey resources (figures 2 and 3). We observed
the highest intraspecific variation in resource use by lemon
sharks, nurse sharks, and Cuban dogfish (figure 3). Uniform
resource use (i.e. consistent reliance upon the same resource
pools across individuals) was observed across many neritic,
oceanic and deep-water species, particularly oceanic whitetip
sharks, silky sharks and tiger sharks (figure 3). Across the four-
teen species included in hierarchical cluster analysis, Pielou’s
evenness values were generally high and ranged from 0.55
(gulper shark) to 0.99 (smooth dogfish) (figure 4).

(b) Functional diversity of elasmobranchs
Hierarchical cluster analysis revealed at least four distinct
species clusters based on the average use of available prey
resource channels (figure 5; electronic supplementarymaterial,
appendix S1 and figure S1). The first cluster was defined as
neritic ecosystem connectors (herein, NECs) and comprised neri-
tic species, including blacknose sharks, nurse sharks, southern
stingrays and Atlantic chupares, which derived most energy
from seagrass and coral reef prey (figure 5). The second cluster,
neritic–oceanic connectors (herein, NOCs), included neritic, ocea-
nic/semi-oceanic and deep-sea associated species that use all
available resource channels. NOCs included Cuban dogfish,
smooth dogfish, Caribbean reef sharks and lemon sharks. A
third cluster, oceanic omnivores (i.e. trophic omnivores; herein,
OOs), included oceanic whitetip sharks, silky sharks and
gulper sharks. Oceanic omnivores displayed a mixed reliance
on oceanic forage and large oceanic resource channels, thereby
connecting lower and upper components of oceanic foodwebs.
The final group was defined as higher oceanic predators (herein,
HOPs) and comprised species displaying a strong reliance on
the large oceanic resource channel. This group comprised
tiger sharks, Atlantic sixgill sharks and bull sharks.

The largest niche area was observed for NECs (41.8‰2),
followed by HOPs (41.3‰2), NOCs (19.4‰2) and OOs
(4.9‰2) (table 2, figure 5). Pairwise isotopic overlap was
greatest between NOCs and NECs (greater than 50%), OOs
and HOPs (greater than 70%) (table 3), and NECs and
HOPs (greater than 78%). Moderate niche overlap was
observed between NECs and NOCs, NECs and HOPs,
OOs and NOCs, HOPs and NECs, and HOPs and NOCs
(27–34%). Low niche overlap was observed between NECs

royalsocietypublishing.org/journal/rspb
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and OOs (1% – 7%), OOs and NECs, and HOPs and OOs
(less than 10% (table 3, figure 5).

4. Discussion
As climate change and human impacts continue to threaten
ecosystem stability, management and conservation groups
in many regions have been increasingly forced to set priori-
ties, such as the increased expansion of marine protected

areas [63]. As such, some habitats, like coral reefs, have
been given more attention than others despite the inherent
connectivity between ecosystems. Here we provide an evalu-
ation of predator-mediated ecosystem connectivity from The
Bahamas archipelago, highlighting the functional connec-
tions facilitated by sharks and rays between disparate
habitats. We observed functional diversity within and
across elasmobranch species which were found to energeti-
cally couple neritic and oceanic waters, including the deep-
sea. Patterns of evenness suggested that most species are

Table 1. Primary habitat association, size range, sample size and mean (± 1 s.d.) carbon and nitrogen stable isotope values (bulk and TDF corrected) for 17
species of elasmobranch sampled from The Bahamas.

scientific name common name habitat

total
length
(cm) n δ13C δ13CTDF δ15N δ15NTDF reference

Carcharhinus

acronotus

blacknose shark neritic 103–119 9 −10.7 −12.2 (0.8) 9.6 6.7 (0.5) this study

Carcharhinus

leucas

bull shark neritic 227–278 7 −13.8 −15.2 (1.3) 13.1 10.0 (1.3) this study

Carcharhinus perezi Caribbean reef

shark

neritic 81–190 69 −11.6 −13.5 (1.0) 9.0 6.5 (0.7) this study

Ginglymostoma

cirratum

nurse shark neritic 113–246 53 −9.9 −11.4 (2.6) 8.9 6.1 (0.9) [29]; this study

Styracura

schmardae

Atlantic chupare neritic 25–120 20 −9.6 −13.3 (1.3) 4.8 4.4 (1.1) [29]

Hypanus

americanus

southern

stingray

neritic 45–102 20 −8.1 −11.8 (0.7) 7.0 6.6 (1.1) [29]

Negaprion

brevirostris

lemon shark neritic 65–269 46 −12.4 −14.2 (1.5) 8.8 6.3 (0.7) this study

Carcharhinus

falciformis

silky shark oceanic/

semi-

oceanic

106–212 13 −16.0 −17.3 (0.9) 9.7 6.5 (0.7) this study

Carcharhinus

longimanus

oceanic whitetip

shark

oceanic/

semi-

oceanic

194–307 38 −15.5 −17.2 (0.2) 9.4 6.5 (0.7) [27]; this study

Galeocerdo cuvier tiger shark oceanic/

semi-

oceanic

155–304 26 −12.7 −14.5 (1.6) 10.1 7.5 (1.2) this study

Centrophorus spp. gulper shark deep sea 70–104 9 −16.1 −17.4 (0.2) 10.6 7.5 (0.2) [28]

Heptranchias perlo sharpnose

sevengill

shark

deep sea 63–87 2 −16.5 −17.8 (0.5) 12.8 9.6 (0.6) [28]

Hexanchus vitulus Atlantic sixgill

shark

deep sea 120–151 4 −13.8 −15.1 (0.6) 11.2 8.1 (0.0) [28]

Hexanchus griseus bluntnose sixgill

shark

deep sea > 300 1 −12.1 −14.0 8.9 6.5 this study

Mustelus canis

insularis

smooth dogfish deep sea 78–107 11 −11.7 −13.9 (1.5) 9.1 7.0 (1.2) [28]; this study

Scyliorhinus meadi Mead’s catshark deep sea 50 1 −14.1 −15.4 8.0 4.9 [28]

Squalus cubensis Cuban dogfish deep sea 39–77 22 −14.1 −15.4 (0.7) 10.0 6.8 (0.7) [28]
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rarely reliant on a single resource pool, and therefore connect at
least two different ecosystems in space and time. These findings
underscore the value of predator biodiversity in facilitating the
conditions required to ensure ecological resilience, specifically
energy and nutrient flow across habitats [3,64].

(a) Ecosystem connectivity and functional diversity of
Bahamian elasmobranchs

Neritic ecosystem connectors (NECs) comprised species that
facilitated energy flow between seagrass and coral reef
environments and included blacknose sharks, nurse sharks
and two larger-bodied stingray species. These findings align
with the known habitat use of these species and their physical
mobility between neritic regions of the seascape [37], which
comprise a large portion of The Bahamas Exclusive Economic
Zone [21,22]. Individuals within this functional group were
not homogeneous, with NECs exhibiting the broadest isotopic
niche and significant overlap with other functional groups.
This suggests considerable variation among individuals—a
trend that was particularly evident within nurse sharks.
Such variation indicates that not all sharks and rays in this
functional group link coral reef and seagrass habitats equally,
and individual differences may buffer populations from dis-
turbance events, such as habitat degradation [65], climate
change [66] and species invasions [67]. We thus draw
two major conclusions from NECs: (1) this functional group
is critical for facilitating energetic transfer between seagrass
and coral reef environments, and (2) species within this
group may be buffered from environmental disturbance due
to the use of multiple prey resource pools [5] provided ener-
getic needs can be adequately sustained by remaining
undisturbed pools.

The second functional group, neritic–oceanic connectors
(NOCs) comprised species that predominantly relied upon
coral reef and oceanic-derived energy (figure 5), which is sup-
ported by existing knowledge of vertical movement behaviors

(reviewed by [68]). Caribbean reef sharks relied upon energy
derived from seagrass, coral reef and oceanic forage species,
reflecting their movements across ecotones [21–23,29]. Their
reliance on oceanic forage species may also, in part, explain
the functionality of commonly observed deep-diving beha-
viours [62,68,69]. Several deep-sea elasmobranchs, namely
Cuban dogfish and smooth dogfish were assigned to this
group, because both species were reliant upon oceanic and
coral reef-derived energy. In regions such as the Exuma
Sound, these dogfishes typically occupy depths of 300–900 m
along the slope [31,61], which probably receives significant
inputs of carbonate matter washed off shallow banks and
algal-covered reef walls. Based on vertical habitat preferences
[31,61], it isplausible that both speciesmayprovideaconnection
between theneritic extent of the slope (abutting thenear-vertical
reef wall) and deep benthic environments, which could be
particularly important for deep-sea habitats that typically
exhibit low levels of productivity. Our findings here suggest
that this connectivity may, in part, be mediated by the vertical
movements of both large- and smaller-bodied sharks within
this functional group.

Oceanic omnivores (OOs) such as oceanic whitetip sharks
and silky sharks relied upon amix of oceanic forage and larger
oceanic prey [27]. Despite their large body sizes, these findings
suggest that these species may not constitute true apex preda-
tors in offshore, oceanic ecosystems of The Bahamas, but
rather feed across multiple trophic levels. This is certainly
true for silky sharks, for which data were only available for
juvenile and subadult individuals. This functional group
exhibited the narrowest isotopic niche and lowest overlap
with other functional groups, which suggests a uniform func-
tional role among individuals that is largely divergent from
other sampled taxa. These species likely serve as connectors
of lower and upper trophic levels within oceanic food webs.
For oceanic whitetip sharks, which routinely performmesope-
lagic excursions [35,36,70], individuals may facilitate energetic
connectivity between epi- and mesopelagic zones.

10
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Figure 2. Mean δ13C and δ15N values (± 1 s.d.) adjusted for trophic discrimination for 17 species of elasmobranch spanning neritic (triangles), oceanic/semi-oceanic
(squares), and deep-water (circles) associated habitats. Values are shown relative to four major prey resource pools: large oceanics, oceanic forage, coral reefs, and
seagrass/banks.
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Higher oceanic predators (HOPs), the fourth functional
group, comprised bull sharks, tiger sharks, and Atlantic sixgill
sharks, which exhibited a strong reliance on large oceanic prey.
For Atlantic sixgill sharks, it is likely that cluster designations
may in part, represent opportunistic reliance upon larger sinking
carrion such as whales and larger fishes, which are commonly
observed in deep-water environments of the eastern Bahamas
[71], rather than active hunting of large pelagic fishes. A surpris-
ing assignment was that of bull sharks to this group, which
commonly traverse neritic ecosystems [72]. This observation
could be explained by their common occurrence in Bahamian
marinas where they are highly provisioned with offshore offal

(O.N.S. 2023, personal communication), or by known move-
ments across the oceanic environment of the Florida straits
during migrations between The Bahamas and Florida [73].

From an energy flow perspective, it remains unclear the
extent to which these species connect regions of the oceanic
food web, given the lack of empirical data on vertical habitat
preference and movement trajectories. Based on the high
δ15N values of HOPs, it could be inferred that these species
occupy apex positions throughout oceanic food webs, but
the moderate body sizes of individuals sampled (TL = 120–
304 cm), suggest that this is unlikely. Instead, we predict
that bluntnose sixgill sharks, deep-diving great hammerhead
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Figure 3. Relative use of large oceanic (LO), oceanic forage (OF), coral reef (CR), and seagrass/banks (SB) energetic resource pools by 17 species of elasmobranchs
from The Bahamas (n = 351). Colours represent primary habitat associations where green = neritic, blue = oceanic/semi-oceanic, and grey = deep-sea. Boxplots
comprise median estimates from each individual, for each species, derived from 100 000 posterior draws.
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sharks (Sphyrna mokarran), and toothed whales may assume
this role for the deeper oceanic environment in The Bahamas
[31]. However, we did not have sufficient data to support this
inference within the confines of this study. Further, these
regions also support a variety of large, deep-diving toothed
whales [74] that may fill this ecological role. Despite assessing
14 different species, expanding the taxonomic resolution of

mobile predators studied in the context of energy flow is clearly
required for a more holistic understanding of ecosystem struc-
ture and function. For Bahamian elasmobranchs, this may
include greater attention on the collection of samples from
species such as blacktip sharks (C. limbatus), great hammer-
head sharks (Sphyrna mokarran), bonnethead sharks (Sphyrna
tiburo) and yellow stingrays (Urobatis jamaicensis).
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When considering deep water elasmobranchs in the fourth
functional group, physiological processes such as tissue catabo-
lism could be responsible for high δ15N values [75]. Similarly,
the nitrogen physiology of deep-water sharks is unique relative
to other vertebrates, whereby individuals must balance concen-
trations of urea and trimethylamine n-oxide to maintain
osmotic balance under high hydrostatic pressures [76]. If this
requires alteration to overall nitrogen balance [77], such as the
mobilization of nitrogen from structural tissues to synthesize
urea and/or TMAO, this may leave the residual δ15N values
of tissues 15N-enriched. While the δ15N patterns of deep-sea
elasmobranchs may be linked to both physiological and eco-
logical processes [48], low δ13C values for species such as
Atlantic sixgill and sharpnose sevengill sharks indicate an
exclusive reliance upon oceanic resource pools, suggesting
these species are unlikely to be critical connectors of ecosystems.

(b) Implications for connectivity and resilience
Although these findings have specific implications for Bahamian
seascapes (asoutlinedabove), theyarehighly relevantwhencon-
sidering the broader role of marine predators in terms of
ecosystem connectivity and resilience. Our results highlight
how, when faced with diverse energetic resource pools, mobile
predators are rarely reliant upon energy derived from a single
energetic pathway, as reflected in consistentlyhighPielou’s even-
ness values (all > 0.5). These observations agree with those
reported across avarietyofmarine, freshwaterand terrestrial set-
tings and are strongly tied to theories of ecosystem structural
asymmetry and stability [78]. For example, previous work has
suggested that the use of phytoplanktonic and detrital energy
channels by predators, diversifies ecosystem linkages and can
increase overall stability [5,6]. Similarly, the ecological coupling
ofmarine and freshwater foodwebs by highly mobile predators
may increase the resilience of estuarine systems that frequently
experience extreme weather events (e.g. [24]). This is due
to disparity of productivity and energetic turnover between dis-
tinct energetic pathways, which buffers against long-term

perturbations. Although the overall rate of energetic turnover
has yet to be determined for energy channels supporting many
sub-tropical ecosystems, this offers a challenging, albeit critical
avenue for further work. Similarly, exploring how predators
may shift resource acquisition in response to environmental
and anthropogenic cues is required to fully appreciate themech-
anisms driving stability [79]. Such information is essential for
predicting the long-term, ecosystem-wide effects of chronic
stressors, such as climate change.

(c) Caveats and considerations
While previous research on our study species supports the
inferences we draw from our results, we must acknowledge
several important assumptions. We acknowledge that for
many species, individuals may display ontogenetic shifts in
diet, which may explain the relatively high individual-level
variability seen within lemon sharks, nurse sharks and
Cuban dogfish (figure 2). The goal of this study, however,
was to provide a general species-level overview of energetic
resource use. For many species (i.e. deep-sea and oceanic/
semi-oceanic), the use of specific primary production channels
is unlikely to change across ontogeny. Future studies should
aim to investigate how the functional role of different species
changes across size, to develop conservation strategies for
specific life-history stages. Second, we recognize that several
shark species did not fall directly within the isotopic mixing
space [18,80], including bull sharks and sharpnose sevengill
sharks (figure 2). However, isotope values of most individuals
were extremely close to a single end member, promoting high
confidence that individuals use a specific energetic resource
channel. This observation partly reflects challenges associated
with the use of a unified mixing space for seventeen different
species comprising data generated from multiple tissues and
associated TDFs, which remain poorly defined for elasmo-
branchs. Moreover, this pattern could be driven by variation
in isotopic baselines between sampling locations, most likely
due to localized nutrient dynamics [81]. If this were the case,

Table 2. Isotopic niche area of four elasmobranch functional groups identified through use of four primary production channels. Areas are based on 95% kernel
utilization distributions.

functional group species composition nindividuals niche area (‰2)

neritic ecosystem connectors (NECs) blacknose shark, nurse shark, southern stingray, Chupare stingray 102 41.8

neritic–oceanic connectors (NOCs) lemon shark, Caribbean reef shark, Cuban dogfish, smooth dogfish, 148 19.4

oceanic omnivores (OOs) oceanic whitetip shark, silky shark, gulper shark 60 4.9

higher oceanic predators (HOPs) Atlantic sixgill shark, tiger shark, bull shark 37 41.3

Table 3. Isotopic niche overlap between four elasmobranch functional groups identified through use of four primary production channels. Overlap estimates are
proportions (0–1) based on 95% Kernel Utilization Distributions (KUDs).

functional group
neritic ecosystem
connectors

neritic–oceanic
connectors

oceanic
omnivores

higher oceanic
predators

neritic ecosystem connectors — 0.312 0.004 0.332

neritic–oceanic connectors 0.67 — 0.070 0.786

oceanic omnivores 0.036 0.277 — 0.725

higher oceanic predators 0.336 0.369 0.086 —

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

290:20230262

9

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

28
 M

ay
 2

02
4 



baseline δ15N values would be most impacted among islands
of varying population densities with notable differences in
run-off and sewage treatment. While we are not able to expli-
citly explore differences in isotopic baselines among islands
using the data presented, the relatively low standard devi-
ations of most elasmobranchs and literature-derived prey
stable isotope values used to derive the mixing space, indicate
these effects are relatively small. Work by Shipley et al. [29] pro-
vides the only known compilation of baseline isotope values
for the wider Bahamas, which suggested relatively low spatial
variation, at least for some primary producers referenced in
this study (e.g. seagrass). Further work exploring baseline
differences among islands would greatly improve knowledge
of local nutrient dynamics and how this impacts isotopic base-
line composition, which provides a useful avenue for future
work. Finally, we acknowledge the relatively low sample
sizes for some species, which pertain largely to species cap-
tured from deep-sea environments, such as bluntnose sixgill
shark, Atlantic sixgill shark and Mead’s catshark. This reflects
the logistical challenges associated with sampling deep-water
species in remote regions of The Bahamas; this gap will be
filled by focused sampling of deep-water species in the future.

5. Conclusion
Across The Bahamas, the assemblage of sub-tropical elasmo-
branch species occupies a diversity of functional roles that
facilitate energy flow across discrete components of the seas-
cape. The observed energetic connectivity between disparate
ecosystems, such as connecting neritic waters and the deep-
sea are considered to increase overall stability through asyn-
chronous ecosystem effects (see [5]). Marine protected areas,
such as The Bahamas shark sanctuary, will have ecological spil-
lover effects extending well beyond habitat and ecosystem
boundaries due to the mobile nature of many elasmobranch
species [21,22,28,35,36,47,48,61,62,82]. Successful predator con-
servation efforts in island nations, including the shark
sanctuary of The Bahamas, will potentially yield ecological
benefits for ecosystem structure, function and resilience,
which may catalyze the broader adoption of similar measures
across other countries. This is imperative, given many small
developing, low-lying nations face continued threats from
overfishing [83] combined with the severe effects of global cli-
mate change [84], which is likely to intensify throughout much
of the Anthropocene. However, despite conservation efforts,
many large mobile predators are still being removed from
ocean ecosystems in vast quantities [85,86]. Our findings
strongly suggest that large-scale removal of predators may

decouple intrinsic energetic linkages that are critical for long-
term stability.
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