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Abstract 

The absolute concentration of zinc in human fingernail clippings tested ex vivo was determined 

by 1064 nm laser-induced breakdown spectroscopy and confirmed by speciated isotope dilution 

mass spectrometry.  A nail testing protocol that sampled across the nail (perpendicular to the 

direction of growth) was developed and validated by scanning electron microscopy energy 

dispersive x-ray spectroscopy.  Using this protocol, a partial least squares regression model 

predicted the zinc concentration in five subjects’ fingernails to within 7 ppm on average.  The 

variation of the zinc concentration with depth into the nail as determined by laser-induced 
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breakdown spectroscopy was studied and found to show no systematic variation for up to 15 

subsequent laser pulses in one location.  The effects of nail hydration (dehydrated and 

overhydrated) and nail surface roughness on the assay were investigated to explain an anomalously 

large scatter observed in the measurements.  This scatter was attributed to the layered nature and 

the fibrous structure of the fingernails which resulted in non-uniform ablation as determined by 

scanning electron microscopy.  This work demonstrates that a protocol consisting of low pulse 

energy (<10 mJ) 1064 nm laser pulses incident on human fingernail clippings in an argon 

environment can produce quantifiable zinc emission in the laser-induced plasma and the measured 

zinc intensity can be used to accurately predict the nail zinc concentration.   

 

Index Headings: Laser-induced breakdown spectroscopy; LIBS; Fingernails; Zinc; Partial least 

squares regression 

 

1. Introduction 

 

Zinc is one of the most important nutritionally-obtained elements in the human body, playing an 

important structural role in proteins and figuring prominently in many important signaling 

pathways.1  Zinc is a component of over 3000 different mammalian proteins and is found in every 

organelle of every mammalian cell type, as well as fluids such as semen, pancreatic juice, saliva, 

and tears.2,3  Zinc deficiency is a leading cause of death among toddlers worldwide,4,5 and 

remediation of such deficiency by detection and supplementation has been identified by at least 

one organization as the most cost-effective improvement to world heath one could make.6 

 



Significantly, zinc is a critical component in the neurophysiology and pathology of signalling in 

the brain and the central nervous system (CNS).2,7,8,9  Evidence indicates that brain zinc is involved 

in the development of dementia/Alzheimer’s disease10,11 as well as autism,12 stroke, epilepsy, 

seizures, and a host of other pathologies.1 

 

Traditionally, the diagnosis of zinc deficiency has been made by drawing 10 mL of venous blood 

(preferably in the morning after overnight fasting), separating out the serum, and measuring the 

serum zinc concentration by laboratory instrumental methods such as mass spectrometry or atomic 

absorption spectroscopy.13,14  For at-risk populations, primarily in underserved countries and 

communities, these methods are clearly unsuitable.   Even though dietary zinc supplements are 

relatively inexpensive and essentially completely safe (up to 10-20 times the minimum daily 

requirement is routinely used),15 there is a general reluctance to prescribe or administer zinc 

supplements without some prior screening to detect deficiencies.  Indeed, the screening of at-risk 

populations is essential, as indicated in the “best practices” paper produced in 2008 by the 

Copenhagen Consensus.6  Furthermore, convenient and timely testing to determine the efficacy of 

supplementation is always desirable. 

 

Serum zinc is known to fluctuate dramatically in circadian rhythms and in response to zinc-rich 

meals, therefore it is possible that fingernail zinc (like bone zinc)16,17 could potentially be a superior 

measure of longer-term nutritional zinc status.  The fingernail concentrations of elements or 

chemicals such as selenium, nicotine, mercury, and ethanol metabolites have been used 

successfully in prior work to determine past oral intake of those substances.18,19,20,21  The 

concentration of zinc in hair (another keratinous tissue) has also been shown to reflect dietary 



intake.22,23   We have recently conducted a preliminary study linking fingernail zinc to blood serum 

in which the zinc measured in the fingernails of 30 elderly residents of a nursing home in Detroit 

was correlated with an assignment of “good zinc nutriture” or “poor zinc nutriture” based on their 

dietary phytate/zinc ratios obtained from serum.24  This study also included 17 Pakistani children 

from a group classified as “undernourished” by their local clinicians and in this case fingernail 

zinc was found to also be a good predictor of the subject’s zinc nutriture.   

 

The concentration of zinc and other trace elements may be quantified in fingernails using 

traditional analytical technique such as inductively-coupled plasma mass-spectrometry25 or x-ray 

fluorescence.26  Each of these methods exhibits insufficiencies for this particular application 

including complexity, lack of portability, the necessity of chemical digestion, the use of ionizing 

radiation, and the requirement of clipping.  It is our contention that the concentration of zinc as 

measured in the fingernail via laser-induced breakdown spectroscopy (LIBS) can serve as a 

surrogate assay for serum zinc concentration.  A LIBS zinc assay on nails in situ could be done 

safely and virtually non-invasively, and could provide results immediately so that appropriate zinc 

intervention could be commenced.  By performing point samples on the nail along the direction of 

nail growth this method could also be used to monitor changes in zinc nutriture over time due to 

supplementation.  This was demonstrated in a year-long study we performed recently.24 

 

LIBS has been utilized previously to elementally assay human fingernails27 as a potential method 

for the quick determination of health problems such as hyperthyroidism and hypothyroidism,28 the 

fungal infection onychomycosis,29 and the identification of opium addicted subjects.30  In these 



studies, the elements Al, C, Ca, Fe, H, K, Mg, N, Na, O, Si, Sr, and Ti were routinely observed, 

but not zinc. 

 

Rusack et al. utilized LIBS performed with a 1064 nm laser to study Mg, Ca, and Zn in human 

fingernails obtained from 11 subjects.31  Utilizing the Zn I line at 481 nm, a calibration curve with 

an R2 of 0.9896 was created after determination of absolute zinc concentration via atomic 

absorption spectroscopy.  The authors noted a quite large relative standard deviation in these 

measurements (approximately 15-20% which is also observed in this study) due to the imprecise 

ablation of mass out of the highly-layered fingernail.  They also concluded that pressed keratin 

pellets doped with zinc make poor test standard samples for the creation of a calibration curve to 

test a LIBS fingernail apparatus.   

 

In this work, the quantitative measurement of Zn in the fingernails from five subjects was 

investigated via laser-induced breakdown spectroscopy.  The variation in measured zinc amongst 

the fingers and between the left and right hand of each subject was investigated as was the effect 

of the state of hydration of the clipped nail.  SEM analysis including energy dispersive x-ray 

spectroscopy was performed to better interpret the LIBS results.  The zinc concentrations of nail 

clippings from the left hands of the subjects as determined by speciated isotope dilution mass 

spectrometry were used to prepare zinc calibration curves utilizing a multivariate partial least 

squares (PLS) regression.  Nail clippings from the right hands of the subjects were used to test the 

PLS model which predicted the actual zinc concentration to within 7 ppm with an average standard 

deviation of 14 ppm.  The fingernail content of subjects with low zinc nutriture can be as much as 



50 ppm lower than that of subjects with exemplary zinc intake (unpublished results), therefore a 

14 ppm uncertainty would still allow diagnosis of the severely deficient. 

 

2. Materials and Methods 

 

2.1 Equipment 

The apparatus used to perform these LIBS experiments has been described in detail elsewhere.32,33  

A 1064 nm Nd:YAG laser (Spectra Physics LAB-150-10) with 10 ns pulses operating at 10 Hz 

was used in all experiments.  Pulse energy was approximately 5 mJ/pulse.  The pulses were focused 

by a high-damage threshold AR-coated 5× infinite conjugate microscope objective with a long 

working-distance (LMH-5X-1064, OFR).  A CCD camera placed in line with this objective 

allowed observation of the nails as data was collected.  An alignment helium-neon laser was used 

to visualize the laser beam focus on the sample (Fig. 1).  Nails were held in the microscope 

objective focus on a steel sample holder inside a Plexiglas argon purge chamber mounted on a 

manual XYZ translation stage.  During data acquisition, the chamber was flushed with argon at a 

flow rate of 20 SCFH. 

 

Due to the curved anterior surface of the nail samples, horizontal translation of the nail sample 

caused the lens-to-sample-distance (LTSD) to vary, which, if unaccounted for, can add scatter to 

the LIBS measurements.  To compensate for the curvature of the fingernail, a heavily attenuated 

secondary helium-neon laser (Uniphase Model 155A) illuminated the nail sample through the 

purge chamber wall at an angle of approximately 45 degrees.  Changes of the LTSD due to nail 

curvature caused lateral motion of this secondary visible laser spot.  This spot was used to 



accurately and reproducibly adjust the LTSD to its nominal value, keeping the focal spot size of 

the LIBS laser constant. 

 

Laser-induced plasma emission was collected and relayed to the spectrometer via two matched 

off-axis replicated aluminum parabolic mirrors (3.81 cm diameter, 5.08 cm effective focal length) 

which focused the light into a 1-m steel encased multimode optical fibre (core diameter = 600 µm, 

numerical aperture (NA) = 0.22).  The fibre was coupled to an Echelle spectrometer equipped with 

a 1024×1024 pixel (24 μm2) intensified charge coupled device (ICCD) camera (LLA Instruments, 

Inc., ESA3000).  The spectrometer provided spectral coverage in the range from 200 to 840 nm 

and was controlled by a personal computer running manufacturer-provided software (ESAWIN 

v3.20) which controlled both the ICCD shuttering as well as the firing of the laser pulses.     

 

2.2 Fingernail Specimen Collection 

Nail samples were obtained from volunteers presenting no noticeable trauma or pathology to their 

nails.  All samples were acquired in accordance with University of Windsor research ethics 

approval #32272.  Nail clippings of the index, middle and ring fingers (both right and left hands) 

of five subjects were taken, providing a total of six nail clippings per subject.  Clippings were 

cleaned with acetone in an ultrasound bath for ten minutes and allowed to dry for 20-30 minutes.  

Clippings were then cut into approximately two mm by two mm fragments to provide a flat target, 

as shown in Fig. 1.  In the buffing study reported in section 3.5, nails were made smoother with an 

extremely fine grit titanium dioxide buffing board manufactured for use on fingernails.  Prior to 

clipping, nails were buffed vigorously for 20 seconds then clipped and ultrasonically cleaned with 

acetone to remove any potential residue from the buffing board.    



 

2.3 Optimization of LIBS Emission  

Data were acquired by collecting the emission from ten sequential laser pulses in one location prior 

to a lateral translation of the nail (across the nail perpendicular to the direction of growth).  Five 

such lateral locations were averaged in software to make one measurement spectrum (50 laser 

shots per spectrum).  In our standard testing protocol and unless otherwise stated ten such spectra 

were averaged and the standard deviation of those ten measurements (500 laser shots total) was 

calculated to determine the average emission intensity and uncertainty of the measurements due to 

shot-to-shot variation.  Because the image-intensified camera gain setting was variable, the 

observed emission intensity was relative and is reported here in arbitrary units (a.u.).  All intensities 

reported here are background-subtracted integrated areas under the curve as measured by the 

ESAWIN software.  To allow direct comparison of the data, once an appropriate gain setting was 

determined to utilize the maximum dynamic range of the camera without overflowing the CCD 

array, the gain was not changed for the duration of the study.   

 

In one study, single shot spectra were acquired from 15 sequential laser pulses without translating 

the nail to determine if vertical depth effects due to the striated layered structure of the nails were 

measureable.  Studies were performed to optimize the zinc emission intensity and signal-to-noise 

ratio.  These studies indicated an ICCD camera delay time of 1 μs and an ICCD camera opening 

(integration) time of 5 μs provided optimal experimental conditions for testing in argon.  Spectra 

were also acquired in air and helium, but possessed decreased intensity and signal-to-noise.   

 

2.4 Hydration of Nails 



The effect of the presence of liquid water in the nail specimen on the LIBS spectrum was 

investigated.  In an attempt to over-hydrate a nail specimen, clipped nail samples from each of 

three volunteers were soaked in distilled water for approximately 1 week and were then dried under 

a cool air gun for 1 hour before being cut into segments and tested.  As a control, nail samples 

from the same group of volunteers were cleaned in acetone before being air dried for 1 hour and 

then being cut into segments.  These segments were then tested in the argon environment using 

the standard LIBS protocol described in section 2.3.  Alternately, attempts were made to 

intentionally dehydrate the nails.  Clipped, cleaned, and segmented nail samples from three 

volunteers were heated in a 122°C oven for approximately 48 hours to drive off water in the nails.  

Once removed, the nails were kept in a desiccator to prevent any moisture from returning prior to 

LIBS testing.   

 

2.5 Scanning electron microscopy 

Scanning electron microscopy (SEM) studies were performed using a low-vacuum environmental 

SEM (Quanta 200 FEG, FEI) without carbon or gold coating.  Nail samples and a piece of stainless 

steel plate used for daily spectral calibration of the spectrometer system were imaged to compare 

ablation performance and crater size.  The SEM was equipped with an energy dispersive x-ray 

spectroscopy (EDS) apparatus which was used to make zinc concentration point measurements 

and line measurements on nail sections by monitoring the zinc K-alpha line. 

 

3. Results and discussion 

3.1. LIBS Spectra 



Fig. 2a shows a typical nail spectrum acquired in argon using the experimental parameters 

described in Section 2.3.  The strongest observed emission features have been identified along 

with the center wavelength of the emission line.  Along with the zinc analyte lines, the dominant 

emission was attributable to the carbon 247 nm line from the nail keratin and the spectroscopically 

intense emission lines from the ions of the metals calcium and magnesium, present in the nail at 

concentrations of approximately 2310 ppm and 570 ppm, respectively.34  The strong hydrogen 

alpha line at 656 nm is unobserved in the spectrum due to the presence of a spectral gap in the 

Echelle spectrometer’s wavelength coverage (no light is recorded in these spectral gaps.)  

Therefore this line commonly associated with the presence of water molecules could not be used 

to directly monitor fingernail hydration status.  Figs. 2b, 2c, and 2d show the spectrum in the 

regions of the strongest zinc emission lines from the singly-ionized Zn+ ion (Zn II 202.547 nm and 

Zn II 206.200 nm) and the neutral zinc atom (Zn I 213.855 nm).  Due to the intensity and the 

reduced shot-to-shot variation of the Zn II emission the sum of the integrated areas under the 

background-subtracted curve of the two Zn II lines was used in all experiments as the measurement 

of the LIBS zinc intensity.  The use of other emission lines, including the intense C I 247.856 line, 

for normalization was investigated but did not result in any improvement in precision or accuracy. 

 

3.2 Effect of Lateral Translation and Depth Measurements 

To determine if the data collection procedure described in section 2.3 was appropriate, studies 

were undertaken to search for any indication of a dependence of the measured LIBS zinc emission 

intensity on the lateral position across the nail or depth in the nail.  Fig. 3a shows the lateral scan 

direction and the result of ten sequential measurements across the nail (perpendicular to the 

direction of growth) with ten laser pulses at each location.  None of the three observed zinc analyte 



emission lines demonstrated any systematic trend or variation across the nail, but all did exhibit 

significant scatter.  Shown to the right of the intensities of each emission line is the average and 

the standard deviation of the ten measurements.  The sum of the strong Zn II lines possessed a 

fractional standard deviation (defined as the one-sigma standard deviation divided by the average) 

of 0.26.  The SEM-EDS measurements described in Section 2.5 confirmed this lateral uniformity.  

Fig. 3b shows a 1.4 mm line scan of the K zinc signal comprising 1400 measurements which 

spanned five LIBS craters (visible above the superimposed K signal in the image).  Below the 

SEM image is the K data, showing no systematic change in zinc concentration laterally. 

 

To determine if it was appropriate to average ten sequential laser shots fired in one location on the 

nail, the depth dependence of the LIBS zinc emission was studied.  Spectra were acquired from 

single LIBS laser pulses and 15 pulses were fired in one location.  Fig. 4a shows the region around 

the Zn II emission line at 202 nm for the 15 spectra with four specific spectra denoted.  Fig. 4b 

plots the measures LIBS zinc intensity of the three analyte lines and gives the average and standard 

deviation of the 15 measurements.  In this specimen, no systematic behavior with depth was 

observed and the emission from shot #15 (taken last) was essentially as strong as the emission 

from shot #1 (taken first), while the emission from shot #14 was the weakest.  This should be 

interpreted as typical shot-to-shot variation, not a true variation of LIBS intensity with depth.  The 

actual depth of the laser shots is unknown, the SEM being unable to yield accurate depth 

information.  Multiple nail specimens were studied in this way and no consistent correlation with 

depth was overserved in any of the samples tested, however no more than 15 laser shots were ever 

used in any one location.  The data shown in Figure 4 were chosen as representative. 

 



3.3. Comparison of Fingers and Hands 

The LIBS zinc intensity as defined in 3.1 was obtained from clippings from the index, middle, and 

ring fingers of both hands of five subjects: S1, S2, S3, S4, and S6.  Samples from subject 5 were 

excluded due to lack of a complete set of nails from all fingers.  Fig. 5a shows the average measured 

LIBS zinc intensity from ten measurements on each finger.  The error bars are the one-sigma 

standard deviations of those averages.  There was no observed systematic trend in the nails 

obtained from any specific finger and due to the large shot-to-shot variation in the LIBS spectra 

there was no statistical difference between nails obtained from the three fingers of each subject.  

Therefore the three fingers were averaged together to obtain a single averaged value for each 

subject’s left-hand (L) and right-hand (R), shown in Fig. 5b.  Each value is an average of 30 spectra 

or 1500 total laser shots and the error bars are the one-sigma standard deviation of those 30 spectra.   

 

The values for left and right hand were also consistent within their uncertainty (5b), therefore it 

was deemed to be appropriate to combine the left and right hand data into a single measurement 

of zinc intensity for the subject.  This is shown in Fig. 5c which is the average of 60 spectra or 

3000 total laser shots.  Despite the large number of laser shots, the scatter of the measurements is 

still large, with an average fractional uncertainty of approximately 0.28.  To reduce this 

measurement shot noise, the zinc intensity of each spectrum was normalized to the carbon emission 

intensity as described in section 3.1.  The result of this is shown in Fig 5d, which shows that the 

normalization is effective at slightly improving the precision of the zinc quantification, reducing 

the fractional uncertainty to approximately 0.21, while not distorting the qualitative performance 

of the assay.   

 



3.4. Effect of Hydration 

A fractional uncertainty exceeding 0.20 (20% noise on the measurement) is not intrinsic to the 

LIBS method.  The fractional uncertainty of a flat stainless steel calibration standard measured 

daily using this same apparatus over many months was approximately 0.05, or 5%, although it can 

be larger for less intense emission lines.  It is known that the presence of water in a sample can 

have an impact on the formation of the LIBS plasma and therefore its temperature and emission 

intensity.  A study was conducted to see if the influence of the state of hydration of the nail sample 

was responsible for the observed shot-to-shot-variation.  Nails were soaked in water to over-

hydrate them prior to testing as described in section 2.4.  Three soaked samples (denoted “wet” A-

C in Fig. 6 and plotted with a filled column) and three control samples (denoted “control” A-C in 

Fig. 6 and plotted with an open column) were tested using the standard protocol of section 2.3.  

Fig. 6a shows no systematic effect of the soaking on the LIBS zinc emission.  The presence of 

liquid water in the nail sample should serve to reduce the overall LIBS emission intensity and 

specifically reduce the emission intensity from the zinc ions due to a substantially lower plasma 

temperature.  In fact, soaking increased the emission intensity in two of the cases (subjects A and 

B) and decreased the emission intensity in one case (subject C) although none of these changes 

was significant within the uncertainty of the measurement.  If the water was stored in small 

heterogeneous microscopic pockets within the nail structure, it was hoped that alternation of the 

amount of water content would impact the shot-to-shot variability of the LIBS measurements as 

well as the overall intensity.  Fig. 6b shows no systematic increase or decrease in the fractional 

standard deviation of the nail measurements.  In one case (subject B) the soaked sample exhibited 

significantly greater scatter of the measurements; in one case (sample C) the soaked sample 

exhibited significantly reduced scatter; and in one case (subject A) almost no difference was 



observed.   These results are consistent with no reproducible systematic effect due to the attempt 

to overhydrate the nail samples via extended soaking. 

 

To investigate the effect of extreme drying, nail samples obtained from the same three subjects, 

A, B, and C were dehydrated as described in section 2.4 (denoted “dried” A-C in Fig. 7 and plotted 

with a filled column).  Standard nail samples were also tested as a control (denoted “control” A-C 

in Fig. 7 and plotted with an open column).  This attempt to dehydrate the nail samples also did 

not systematically alter the LIBS zinc emission as shown in Fig. 7a, with one case (sample B) 

showing significantly decreased intensity; one case (sample C) showing slightly greater intensity; 

and one case (sample A) showing approximately no change.  Again, any observed shift was not 

statistically significant within the uncertainty of the measurements.  Similarly, dehydration did not 

reduce the shot-to-shot variation of the measurements as anticipated as shown in Fig. 7b.  One 

sample (B) showed a significant decrease in the scatter of the measurements, but the other two 

showed slight increases.   

 

The results of these experiments imply that the state of hydration of the nails was not the most 

significant factor in determining the overall zinc emission intensity in the plasma or the observed 

variation in measured intensity.  This is fortuitous, as nails tested in any future in situ LIBS nail 

analysis device used for clinical screening will not be controlled as rigorously as the “controls” in 

these experiments.  However, these nails will also not be exposed to the extreme conditions of 

hydration or dehydration utilized in these experiments which appeared to have little reproducible 

effect. 

 



3.5. Effect of Surface Roughness 

To determine if the intrinsic surface roughness of the nail contributed significantly to the 

observed shot-to-shot scatter, nails were mechanically buffed smooth as described in section 2.2.  

Fig. 8 shows SEM images of the control (8a) and smoothed (8b) nail, as well as the average Zn II 

LIBS emission intensity from each of these two samples (8c).  Four ablation craters on a square 

grid are visible in both 8a and 8b and the difference in surface roughness due to the buffing is 

appreciable, although it was not quantified.  Both samples yielded identical LIBS Zn II emission 

intensity within uncertainty (8c), but the buffed nail possessed significantly reduced scatter in the 

measurements.  The control nail had an average Zn II emission intensity of 1097.9 ± 221.2 a.u. 

while the buffed nail had an average Zn II emission intensity of 1076 ± 122.3 a.u.  Buffing 

reduced the fractional standard deviation by almost 50% from 0.20 to 0.11.  As this test was not 

performed until near the end of the investigation, buffing was not added to the standard 

preparation protocol of the nails, but will be in future studies.  To determine if buffing left any 

residue on the nails that could be detected by LIBS, a qualitative analysis of the nail buffer was 

performed.  Consistent Ti emission was observed in the nail buffer spectra but not in the nail 

spectra, indicating that if the nail buffer left any residue on the nails, it was removed during the 

ultrasound cleaning process described above. 

  

The larger than expected deviation of the LIBS measurements made on a single nail specimen can 

be explained by non-uniform ablation by the 1064 nm Nd:YAG laser due to the structure of the 

fingernail.  Fig. 9a shows a 60x magnification SEM image of an array of single-shot LIBS craters 

formed in a nitrocellulose filter medium by our apparatus and Fig. 9b is a magnified view of one 

ablation crater in this filter medium showing a diameter of approximately 65 microns.  For 



comparison, Fig. 9c shows a single shot LIBS crater in our stainless steel calibration plate under 

250x magnification, while 9d shows the same type of ablation on the fingernail, at the same 250x 

magnification.  The differences in size and uniformity due solely to the laser-material interaction 

are immediately apparent.  Fig. 9e shows a 70x magnification SEM image of a 5x5 grid of LIBS 

craters in a fingernail and Fig. 9f is a magnified view of the ablation structure outlined by the 

square in 9e.  Each crater was created by ten laser pulses in each location.  It is readily apparent 

that the uniformity of the ablation process in the filter medium and steel is high, while in the 

fingernail no two ablation events appear identical or even similar.  In the center of the nail on the 

left of Fig. 9e the laser appears to have ablated almost no material at all, resulting in no obvious 

crater, while on the right side of the image in 9e the laser appears to have caused the layered nail 

structure to peel back (shown in a magnified view in Fig. 9f) or flake away in a highly uncontrolled 

and irreproducible way.  The damage to the nail material also exhibited a directional 

inhomogeneity, as evidenced by the tendency of ablation features to stretch diagonally from the 

upper left corner of 9e to the lower right corner.  No such directional asymmetry is present in the 

apparatus, as evidence by the highly circular ablation shown in 9a, 9b, and 9c.  Similar ablation 

was observed in all the nail samples tested in this study.  Thus the layered nature and the fibrous 

structure of the fingernails were responsible for the non-uniform ablation observed in figure 9, 

which explains the scatter observed in the measurements reported in this manuscript.  

 

This behavior may also explain the observation by Rusack et al.31 that pressed keratin pellets were 

not an effective LIBS calibration standard for a LIBS fingernail assay using a 1064 nm laser.  

Pressed keratin pellets created from a uniform homogenous powder would possess no such 



asymmetrical striations or vertical layering, yielding more reproducible ablation, but not 

effectively modeling the behavior of a true fingernail.  

 

It is believed that the weak interaction of the 1064 nm Nd:YAG with the keratin nail is responsible 

for this effect, allowing the ablation to occur or initiate at depth rather than in a more controlled 

manner on or near the surface of the nail.  Experiments are underway to replace the 1064 nm laser 

with the quadrupled and tripled Nd:YAG harmonics at 266 nm and 355 nm, respectively.  The 

absorption coefficient of bulk keratin is greater at both of these wavelengths than at 1064 and the 

absorption at 266 nm is approximately 10 times greater than at 355.35  As shown, however, the 

ablation properties of bulk keratin and human fingernails may not correlate well, and we know of 

no published reports of ultraviolet LIBS performed on fingernails. 

 

3.6 Calibration via Multivariate analysis 

Absolute zinc concentrations for the five tested nail samples were obtained by speciated isotope 

dilution mass spectrometry (SIDMS).  A partial least squares (PLS) regression (PLS_Toolbox, 

Eigenvector, Inc.) was performed on the data using the 30 left hand measurements from each 

subject to create the regression model and using the 30 right hand measurements to test the model.  

It was assumed that all the fingers possessed the same zinc concentration, although only nails from 

one finger were tested with SIDMS for each subject.  The results of the analysis are shown in Table 

1 and Figure 10.  Figure 10 is a plot of the average predicted PLS concentration versus the actual 

SIDMS concentrations.  The error bars are the one-sigma standard deviations of the 30 predictions 

(given in Table 1) and the line is a linear fit to the predictions possessing a Pearson’s R of 0.945 

and an adjusted R-squared of 0.858.  Taken in toto, the five predictions differed from the actual 



concentrations by an average of 6.8 ppm (an average percent uncertainty of 5%), well below the 

one-sigma uncertainty.  The average standard deviation exhibited by all the predictions was 14 

ppm, with an average fractional uncertainty on the predictions of 12%.  

 

4. Conclusions 

Nutritional zinc present in human fingernails is quantifiable using the very rapid assay of laser-

induced breakdown spectroscopy (LIBS).  LIBS measurements performed on human nail clippings 

with a 1064 nm laser exhibited a high degree of variability and intrinsic measurement scatter that 

was found to not depend upon the state of hydration of the nail, the lateral position sampled across 

the nail, or the depth within the nail at which the plasma is formed (up to a depth achieved by 15 

laser pulses).  Surface roughness was found to be a contributing factor, and buffing the nail smooth 

prior to testing reduced the standard deviation of the measurements by a factor of almost two.  

Normalization of the LIBS zinc intensity by other LIBS spectra emission features, specifically the 

intense carbon emission at 247 nm, was not found to significantly improve measurement accuracy 

or precision in this protocol.  Non-uniform ablation due to the layered nature and the fibrous 

structure of the fingernails was observed by scanning electron microscopy in all the samples tested 

in this study and was found to be the dominant source of measurement uncertainty.  In spite of 

this, a partial least squares regression model built from the left hand zinc measurements of five 

subjects was constructed and used to test the right hand zinc measurements, yielding predictions 

that differed from the actual concentration by an average of 6.8 ppm and possessing a standard 

deviation of 14 ppm, or 12% fractional uncertainty.   

 



A study with a greater number of overall participants which includes a pool of “zinc deficient” 

participants now needs to be conducted.  Still, these preliminary results are highly encouraging for 

future in situ screening measurements, as the fingernail content of subjects with low zinc nutriture 

are expected to be as much as 50 ppm lower than that of subjects with exemplary zinc intake.  

Therefore, while the uncertainty of the measurements as shown in figure 10 is relatively large and 

may preclude precise zinc quantification in finger nails, the uncertainty obtained in these 

experiments would still allow a rapid determination of deficient or non-deficient on the basis of 

the LIBS measurement alone which was the intent of this study.  

 

The LIBS measurement is not only more convenient and simpler to perform than the traditional 

blood serum measurement, but it is also expected to be much more robust and indicative of zinc 

nutritional status.  The serum measurement is unreliable and simply not indicative of zinc 

nutritional status because serum zinc varies strongly with the time of day and in response to diet 

(the time of eating as well as the glucose content) and also other physiologic conditions such as 

intestinal disease, pregnancy, infection and even strenuous physical exercise.36    

 

It is believed that performing the LIBS measurements with ultraviolet wavelength lasers that are 

attenuated much more readily by the nail material yielding more intense plasmas and more 

controlled laser ablation will provide an even greater amount of measurement stability which is 

necessary to reduce the observed shot-to-shot variation even further.  In addition, the increased 

LIBS intensity and reproducibility would allow a decrease in the number of laser shots or 

accumulated spectra required to accurately quantify fingernail zinc in a rapid screening diagnostic. 
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Figure captions 

Fig. 1. The experimental apparatus utilized in this work. 

Fig. 2. A full LIBS spectrum from a fingernail sample (a) and the spectral regions of interest (b-

d).   

Fig. 3. Measured LIBS zinc intensity as a function of lateral distance across the fingernail (a).  

Energy dispersive x-ray measurement of the zinc K line strength superimposed on an SEM image 

of the nail with LIBS craters clearly visible (b). 

Fig. 4. The overlapped spectra from fifteen sequential single-shot LIBS spectra acquired in a single 

location (a).  No consistent trend as a function of depth in the nail was observed.  The measured 

zinc emission intensities for the 15 laser pulses (b). 

Fig. 5. The averaged zinc intensity from ten measurements on each finger (middle, ring, index 

only) from both hands of five subjects (a).  The measurements of all fingers combined per hand 

(b) and combined per subject (c).  The measurement per subject after normalization by the carbon 

247 nm line. 



                                                                                                                                                                                           

Fig. 6. The effect of overhydration of a fingernail specimen prior to LIBS testing on the measured 

LIBS zinc emission intensity (a) and the standard deviation of the intensity measurements (b). 

Fig. 7. The effect of dehydration of a fingernail specimen prior to LIBS testing on the measured 

LIBS zinc emission intensity (a) and the standard deviation of the intensity measurements (b). 

Fig. 8. Scanning electron micrographs of a control fingernail (a) and a nail smoothed by buffing 

(b).  LIBS zinc intensity measurements were similar for both nails but the buffed nail possessed 

smaller scatter in the measurements (c).  

Fig. 9. Scanning electron micrographs of LIBS craters formed in a nitrocellulose filter medium 

(a,b), a stainless steel calibration plate (c), and a fingernail (d,e,f).  (b) A magnified view of the 

box shown in (a).  (f) A magnified view of the box shown in (e).   

Fig. 10. The predicted zinc concentration from five fingernail samples as a function of the actual 

zinc concentration as determined by SIDMS.  The line is a fit to the predictions to show the 

linearity of the model performance (Pearson’s R of 0.945). 
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