
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Physics Publications Department of Physics 

4-1-2019 

A review of the use of laser-induced breakdown spectroscopy for A review of the use of laser-induced breakdown spectroscopy for 

bacterial classification, quantification, and identification bacterial classification, quantification, and identification 

Steven J. Rehse 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/physicspub 

 Part of the Physics Commons 

Recommended Citation Recommended Citation 
Rehse, Steven J.. (2019). A review of the use of laser-induced breakdown spectroscopy for bacterial 
classification, quantification, and identification. Spectrochimica Acta Part B: Atomic Spectroscopy, 154, 
50-69. 
https://scholar.uwindsor.ca/physicspub/194 

This Article is brought to you for free and open access by the Department of Physics at Scholarship at UWindsor. It 
has been accepted for inclusion in Physics Publications by an authorized administrator of Scholarship at UWindsor. 
For more information, please contact scholarship@uwindsor.ca. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/physicspub
https://scholar.uwindsor.ca/physics
https://scholar.uwindsor.ca/physicspub?utm_source=scholar.uwindsor.ca%2Fphysicspub%2F194&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=scholar.uwindsor.ca%2Fphysicspub%2F194&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/physicspub/194?utm_source=scholar.uwindsor.ca%2Fphysicspub%2F194&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


1 
 

A Review of the Use of Laser-Induced Breakdown Spectroscopy for Bacterial Classification, 
Quantification, and Identification 
 
Steven J. Rehse 
University of Windsor, Department of Physics, Windsor, Ontario, Canada N9B 3P4 
 
Abstract 
 
The use of laser-induced breakdown spectroscopy to determine the elemental composition of bacterial 
cells has been described in the peer-reviewed literature since 2003.  Fifteen years on, significant 
accomplishments have been reported that have served to clarify and underscore the areas of 
bacteriological investigation that LIBS is well-suited for as well as the challenges that yet remain to be 
faced.  This review will attempt to summarize the state of the field by surveying the available body of 
knowledge.  The early days of these experiments, roughly from 2003 to 2007, in which many of the most 
fundamental experiments were initially conducted will be described.  The more in-depth investigations 
that followed in the subsequent decade will then be detailed.  Many important aspects of performing 
LIBS on bacterial cells were reported on and are summarized here including: the use of chemometric 
algorithms for statistical classification of unknown spectra; the influence of the mounting substrate on 
classification; the effect of the testing gas atmosphere and the choice of bacterial cell growth nutrient 
medium on the measured LIBS spectrum; the efficacy of a LIBS-based test as a genus-level or strain–
level discrimination test; the ability of LIBS to determine the cell titer or concentration of cells in the 
initial sample; the effects that possible contaminations or interferents within the sample would have on 
the LIBS spectrum; the influence that environmental stresses the cells may be exposed to during growth 
and the state of reproductive health of the cells could have on the LIBS spectrum; the use of standoff or 
remote apparatus to minimize the risk to the operators during bacteriological identification of unknown 
specimens; and the combination of other optical modalities with LIBS to enhance the sensitivity or 
specificity of identification.  Lastly, tables are provided which summarize both every species of bacteria 
ever tested with LIBS as well as the major lessons learned by the community through 15 years of careful 
investigation.  
 
laser-induced breakdown spectroscopy; pathogens; bacteria 
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1. Introduction 
 
1.1 Overview 
The use of laser-induced breakdown spectroscopy (LIBS) as a powerful and flexible analytic tool for the 
rapid analysis and characterization of a specimen’s elemental composition has been investigated and 
reported on by a growing international community for approximately the last thirty years.  The results of 
these investigations have been widely published and disseminated and their broad conclusions have 
been summarized in a string of excellent monographs [1,2,3,4] and review articles [5,6,7,8,9] which have 
endeavored to advance the overall knowledge of the field. 
 
As described in detail in the above-referenced monographs and articles, LIBS is a laser-based 
spectroscopic technique that is utilized most frequently to perform rapid elemental analysis on a variety 
of targets of interest.  Briefly, in a typical LIBS experiment a pulse of laser light (usually a nanosecond, 
picosecond, or femtosecond duration pulse) is focused onto or into a target material which may be a 
solid, liquid, or gas.  The laser pulse ablates micrograms of mass which serve as a sample of the analyte 
material and it also creates a high-temperature micro-plasma which serves as a thermal excitation 
source for the ablated sample.  The thermodynamics and physics of the breakdown process are different 
for nanosecond and femtosecond pulses, but the end result is a plasma with an elemental composition 
that is reflective of the composition of the target material that can be used as an emission source for 
time-resolved optical emission spectroscopy.  This plasma emits light in part due to the spontaneous 
emission of thermally excited atoms and ions.  When dispersed in a spectrometer and detected by a 
suitable detector, the light from the plasma may be used to qualitatively identify the elemental 
composition of the original target or quantify the mass or concentration of trace elements in the target. 
 
As the number of researchers and research areas has grown, review articles have been published to 
effectively collate the knowledge gained from experimentation in specific area of investigations such as 
the use of LIBS for explosive detection [10], soil analysis [11], nuclear fusion technology [12], plant 
analysis [13], food analysis [14], archaeological science [15], geochemical and environmental analysis 
[16], and cultural heritage and space applications [17].   
 
Of particular importance to our group has been the investigation of the applicability and utility of LIBS in 
medical science, particularly as a pathology/histology laboratory tool or as a rapid point-of-contact 
assessment diagnostic.  This topic, which is sometimes broadly classified into the area of “biomedical 
applications,” has also received significant attention and has been summarized and reviewed in 
numerous outlets [18,19,20,21,22]. 
 
The focus of our group’s work has been specifically the use of LIBS for rapid pathogen identification and 
classification, and even more specifically the analysis of bacterial LIBS spectra (as opposed to the other 
infectious pathogens such as viruses and fungi) for diagnostic, biochemical, and bioanalytical 
applications.  The aim of this review is to summarize the current progress and understanding in this 
narrow, yet highly important, sub-field of biomedical applications.      
 
1.2 Scope 
The potential impact of a new LIBS-based rapid bacterial pathogen detection and identification 
technology is extremely broad, global in scale, and encompasses several scientific/health communities.  
Pathogen detection is of the utmost importance for health and safety reasons.  According to a 2007 
study, three areas of application account for over two thirds of all research in the field of pathogen 
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detection: the food industry, water and environment quality control, and clinical diagnosis [23], while 
military-biodefense constitutes a small niche market for this technology.   
 
Because of the global demand for pathogen detection technology and testing, it was recently reported 
that the pathogen-specific testing market was expected to grow at a compounded annual growth rate of 
4.5% with a total market value of $563 million [24].  The world biosensor market was evaluated at $7.3 
billion in 2003 and was expected to reach over $10 billion with the medical/health area being the largest 
sector [25].   
 
Seventy-six million foodborne illnesses occur each year in the US and account for 325,000 
hospitalizations and 5000 deaths [26].  The United States Department of Agriculture estimates $2.9–$6.7 
billion will be lost annually due to medical costs and lost productivity caused by major food pathogens 
[24].  Although significant progress continues to be made, the detection and identification of foodborne 
pathogens in this sector continue to rely on conventional culturing techniques which are very elaborate, 
time-consuming, and expensive.  The existing test methods are completed in a microbiology laboratory 
and are not suitable for on-site monitoring.  Pathogen detection using existing methods, such as enzyme 
linked immunosorbent assays (ELISA) and culture techniques for determining and quantifying pathogens 
in food have been well established [27].  In terms of speed, these methods cannot adequately serve the 
needs of food processors and regulatory agencies.  As a result, the food industry needs real time, 
portable pathogen detection sensors with higher sensitivity.  Rapid detection biosensors will minimize 
the need for the estimated 60,000 US based food processors to perform lengthy microbial testing and 
expensive immunoassays on materials suspected of carrying foodborne pathogens [24].  
 
Hospitals typically use their own laboratory for identifying bacterial pathogens.  A urine, sputum, or 
blood sample is sent to the laboratory and tests are performed to determine if a pathogen is present.  
Testing requires 24 h (typically) and with laboratory back-ups, results can take up to days.  The addition 
of the LIBS technology to diagnostic labs could minimize the suffering of patients, improve outcomes, 
and reduce hospital admissions and associated expenses by allowing the initiation of appropriate 
therapy based on immediate or “point-of-contact” diagnosis.  Beyond mere bacterial identification, LIBS-
based bacterial diagnostic/sensing technology could enable a variety of microbiological research of 
interest to both the diagnostician and the research microbiologist.  Several examples of such 
applications will be provided here.   
 
1.3 Non-bacterial pathogens 
The potential impact of a real-time LIBS diagnostic tool capable of sensitive and specific pathogen 
identification is clear.  Although this review will focus exclusively on bacterial pathogens, the use of LIBS 
for identifying other microbes or pathogens has also been reported, particularly when those non-
pathogenic microbes could confuse the results of a test for more harmful microorganisms.  Such 
microbes, or any other such material, can be classified as “confusants” or “interferents”: small or 
microscopic materials that can obscure the pathogen signature in the LIBS spectrum.  Their analysis for 
this reason, as well as their own intrinsic infectious capability, is warranted.  And while these organisms 
are outside the scope of this review, because they are often reported in studies with bacterial 
pathogens a quick summary of the work is provided here. 
 
Pollen spores occur ubiquitously in nature, particularly in outdoor environments, where they act as 
interferents for technologies designed to detect harmful bioagents such as Bacillus anthracis (B. 
anthracis) spores (responsible for anthrax).  Their presence in medical specimens is unexpected.  Early 
studies indicated a clear ability to reliably differentiate the LIBS spectrum of such naturally occurring 
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pollen (e.g. oak pollen, ragweed pollen) from the more important bacterial spores [28,29,30,31,32].  
Molds are a much more commonly occurring indoor interferent and may be expected to be encountered 
more frequently in clinical testing environments.  Studies have shown that the typical LIBS signature 
obtained from mold spores can be reliably differentiated from bacterial LIBS spectra with appropriately 
trained chemometric algorithms [29,31,32,33,34].   
 
Of more concern clinically are infectious fungal spores and yeasts [30].  The ability to identify single 
spores of the fungi Aspergillus versicolor and Penicillium brevicompactum using a novel electro-dynamic 
balance-assisted online LIBS apparatus with a dual laser-induced fluorescence (LIF) capability has been 
shown [35].  Significant differences in the concentrations of the very important elements of calcium, 
sodium and potassium were inferred from differences in the measured LIBS spectra with the LIF analysis 
adding the ability to rapidly differentiate these bioaerosols from other aerosol types.  The clinically 
significant infectious yeast Candida albicans (C. albicans) has been investigated because of its role as a 
significant source of nosocomial or hospital-acquired infections, and the ability to easily differentiate its 
LIBS spectrum from molds and other bacteria as well as the ability to differentiate specific strains from 
seven species of Candida (three strains per species) have been demonstrated [34,36].   
 
The use of LIBS for viral identification has been little-studied predominantly because the mass of a virus 
particle is approximately 109 times less than a bacterial cell due to their vast difference in size and also 
due to the lack of any trace inorganic or metal atoms (e.g. Ca, Mg, Na, or K) in the virus.  The presence of 
these metals and their strength in the elemental LIBS spectrum is typically what has provided LIBS with 
its strong bacterial differentiation capability.  Nonetheless, some initial experiments have been 
performed.  The ability of LIBS to detect the presences of an MS-2 bacteriophage, which can be used as 
a simulant of other select viral agents such as the Variola virus responsible for smallpox has been 
reported [37].  Significantly, the differentiation with LIBS of four strains of live hantavirus responsible for 
numerous infections across the American southwest was shown in 2012, the first reported 
demonstration of this capability [38]. 
 
 
1.4 Summary 
The remainder of this review will concern itself exclusively with those studies which utilized LIBS in 
bacterial systems.  The review will broadly be separated into two sections by chronology.  A review of 
the early years of LIBS-based bacterial identification and classification will summarize the initial 
demonstrations of this application as well as the initial investigations of chemometric algorithms for 
classification.  Early explorations of the use of femtosecond lasers (“femto-LIBS”) for bacterial analysis 
will be presented in this section as well.   
 
Then the more current work which has aimed to investigate much more specific and targeted aspects of 
a LIBS-based bacterial analysis will be discussed.  A list of current topics of great interest to the field 
which will be covered includes: a complete analysis of all the chemometric algorithms currently being 
investigated; the choice of testing substrate and its effect on the LIBS spectrum; the choice of testing gas 
environment; the nutrient medium used to culture the test samples; detection of bioaerosols as 
opposed to liquid or solid samples; detection of food contamination; the ability to differentiate 
individual strains within a given species or alternatively to only perform a genus-level identification; the 
effect of bacterial concentration, or titer, on the analysis; the effect of environmental stressors on the 
bacterial cell as reflected by changes in the LIBS spectrum and the effect that other contaminant 
confusants or interferents have on sensitivity and specificity; the use of standoff or remote LIBS systems 
for bacterial identification; and the combination of LIBS with other optical modalities (“hyphenated 
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LIBS”).  The review will conclude with a summarized list of the most important results that have been 
confirmed by multiple international research groups (Table 1) and a comprehensive table listing the 
taxonomic identification of all bacteria that have ever been tested with LIBS to date (Table 2), which 
may be of use to clinical researchers who may only be interested in work on a particular organism as 
opposed to a review of the broader field. 
 
 
2. Early Days 
 
2.1 Initial studies 
The first papers describing the use of laser-induced breakdown spectroscopy for bacterial identification, 
detection, or characterization appeared in 2003 [29,30,39].  These articles describe proof-of-concept 
experiments that focused almost exclusively on showing that LIBS could indeed yield a sufficient analytic 
signal when performed on bacterial cells.  Morel et al. concluded that compressed bacterial pellets 
exhibited a homogenous composition which yielded an acceptable root-mean square deviation (RSD) of 
less than 10% when LIBS was used for sorting and detection [39].  These authors tested six different 
biotypes of bacteria, include three bacilli (spore forming) bacteria, and species of Escherichia, 
Staphylococcus, and Proteus.  This group expanded upon this work by developing an aerosol delivery 
system to illustrate the feasibility of using LIBS to detect biological aerosols [40].  The demonstration of 

the detection of single cells (1-5 m) in aerosol form had been demonstrated for the first time a year 
earlier by Hybl et al. in dense clouds and streams [30].  Dixon and Hahn expanded upon this work by 
detecting single Bacillus spores with a single particle detection efficiency of 0.28% based on the 
observation of calcium atomic emission lines, calcium being present in the amount of 2-3 fg/spore [41].  
Beddows and Telle also investigated the potential for LIBS to detect single-bacterial aerosol cells in real-
time by comparing this method with results from a mobile single-particle aerosol mass spectrometer 
[28].  They also suggested the use of a dual or hyphenated technique for the application, specifically 
making the case for a LIBS-Raman or LIBS-LIF measurement to improve upon limits of detection. 
 
Samuels et al., also working with three Bacillus species, concluded that discrimination amongst biotypes 
such as bacteria, pollen, and ovalbumin ablated on a solid testing substrate (porous silver substrates) 
was possible utilizing a principal component analysis (PCA), as was discrimination amongst bacteria if 
better chemometric modelling could be applied to the spectral analysis [29,42].  Hybl et al. had also 
reached this conclusion for aerosol systems in the same year by acquiring LIBS spectra from Bacillus 
globigii (B. globigii) and discriminating them from spectra obtained from other biotypes such as pollen, 
fungus/mold spores, growth media (LB broth and brain-heart infusion), and ovalbumin by also 
performing a principal component analysis [30].  Shown in Figure 1 are the results of these authors’ 
analysis, which shows a clear differentiation between the B. globigii and the other biotypes using only 
the first three principal component scores.  The spectra were acquired from a single laser shot and the 
data was down-selected to retain only the intensities of thirty strong lines observed in the spectra.  
Although these authors admitted that this study did not push the limits of chemometrics, both these 
2003 manuscripts provided early indications that the use of chemometric methods would play a 
powerful role in the utility of LIBS for bacterial identification. 
 
Using five strains of bacteria, including one Escherichia coli (E. coli) strain and four Bacillus strains, Kim et 
al. demonstrated that the bacterial composition as reflected in the LIBS spectrum does not change after 
aging and performed bacterial differentiation based on intensity ratios of calcium and phosphate 
relative to unidentified “organic species” [43].  Such emission features from the remnants of organic 
molecules and also from calcium and phosphorus are fairly ubiquitous in the LIBS spectra acquired from 
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biological specimens.  To overcome this, Kiel et al. showed that by restricting analysis only to those 
metals endogenously present and added by preferentially “tagging” cells using custom specific binding 
agents tagged with exotic metals such as scandium and europium, the identification of Bacillus spores 
could be performed with a high degree of confidence [44].   

 
Figure 1.  A principal component analysis of LIBS spectra was used to generate a 
three-dimensional scatter plot showing a clear differentiation of the spectra acquired 
from B. globigii bacterial spores (BG), three types of pollen, three types of 
fungal/mold spores, and three types of growth media.  Reprinted from reference 
[30].   

 
 
2.2 Early fs-LIBS 
The initial experiments to compare the analytical performance of femtosecond LIBS (“fs-LIBS”) to ns-LIBS 
when utilized with biological specimens were performed in 2003.  Femtosecond-LIBS on biological 
specimens is intrinsically difficult due to the low pulse energy common to most fs systems and the high 
water content of living biological cells both of which contribute to the formation of low signal-to-noise 

spectra.  In this study, 180 J pulses were used to analyze the epidermal wall of sunflower seedling 
stems.  Full LIBS spectra could not be obtained, but the Ca II emission was sufficient to allow precise 
analysis of the epidermal wall without completely destroying the peripheral cell wall.  Thus, one of the 
primary advantages of fs-LIBS, high spatial resolution with extremely non-destructive sampling, was 
retained [45].   
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These studies were quickly followed up by Baudelet et al. in a series of papers which investigated many 
aspects of fs-LIBS when applied specifically to bacterial cells [46,47,48,49,50].  The initial results clearly 
showed that fs-LIBS could yield high signal-to-noise spectra from solutions of bacteria deposited on 
cellulose membrane filters [46].  Shown in Figure 2 is a typical LIBS spectrum from this group obtained 
by ablating E. coli cells with a 4.5 mJ 120 fs 810 nm laser pulse.  Significantly, these spectra obtained by 
femtosecond excitation evidenced clear emission from a very weak potassium line not visible in ns-LIBS 
spectra and also strong emission from CN molecular bands.  The CN (0-0) band in bacterial LIBS spectra 
has been attributed to the direct ablation of native CN molecular bands and not recombination with 
ambient nitrogen within the plume post-ablation [46,49].  These molecular signatures can be clearly 
seen in the inset of Figure 2.  The kinetics or time evolution of that band head intensity thus can be used 
to provide a signature of the biological medium and differentiate it from a non-biological carbon-
containing substrate [47].  This intriguing idea was expanded upon and extended to the nanosecond 
regime when using UV (266 nm) quadrupled YAG pulses for the ablation of organic samples [50].  It was 
shown that the time evolution of the line intensities of O and N and the CN molecular band could be 
used to identify and discriminate native atomic or molecular species from organic targets from those 
generated through dissociation or recombination with ambient air molecules in the plasma.  To date, 
this idea has not been widely pursued for background discrimination in bacterial spectra. 

 
Figure 2.  A typical fs-LIBS spectrum obtained by ablating E. coli deposited on a 
nitrocellulose filter with a 4.5 mJ 120 fs 810 nm laser pulse.  The time-integrated 
broadband spectrum from 200 nm to 900 nm was collected by an Echelle 
spectrometer equipped with an intensified charge-coupled device camera.  Shown in 
the inset is the portion of the spectrum indicative of significant ablation of native CN 
and C2 molecular bonds.  Reprinted from reference [49] with the permission of AIP 
Publishing. 
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The fs-LIBS spectra possessed adequate signal-to-noise and contained sufficient information to allow a 
discrimination of five different species of bacteria based on the relative concentrations of Na, Mg, P, K, 
Ca, and Fe.  The discrimination was performed on line intensities from those elements using a method 
called trace element hyperspace classification (TEHC) [48].  The projection of the bacterial data into a 
lower dimensional space yielded an analysis of similarities in the biologic properties of the bacteria, 
showing a general grouping of four Gram-negative bacteria on the basis of their relative calcium 
concentration as compared to a Gram-positive species. 
 
 
3. Selected topics in the development of LIBS for bacterial identification and discrimination 
 
In the decade subsequent to the early experiments investigating the use of LIBS for bacterial 
identification (2003-2007), the number of approaches utilized by researchers for bacterial sample 
preparation, testing, and data analysis has exploded.  The number of different species of bacteria tested 
has grown as well to include more medically relevant species and strains, as opposed to a concentration 
on Bacillus or other spore-forming species and strains that function as surrogates for B. anthracis, the 
organism responsible for anthrax.  This indicates a shift in the area of emphasis being investigated from 
bio-terrorism protection to clinical diagnosis.  This section will summarize the progress made in these 
various areas, all of which must be more fully developed before LIBS can be realistically adopted as an 
accurate and reliable analytic technique for bacterial identification.   
 
3.1 Chemometrics 
While the experimental approaches for preparing, mounting, and then ablating bacterial specimens has 
varied widely from group to group, the choice of how to analyze the spectral data once obtained has 
always exhibited the greatest variation of any aspect of these experiments.  It is also the area that has 
evidenced the most dramatic progress and it continues to be an active area of research.  In some of the 
early experiments previously described, it was initially believed that a univariate analysis of the 
intensities or ratios of intensities of certain lines in the LIBS spectrum (e.g. Ca or Mg) could provide 
sufficient information to discriminate the bacteria [28,39,40,43,44].  Other groups utilized modified 
linear correlation techniques [42] comparing the relative intensities of one or several elements [48].   
 
3.1.1 PCA 
It was widely recognized that the mathematical machinery of multivariate analysis as utilized in efficient 
unsupervised or supervised chemometric algorithms could greatly enhance discrimination sensitivity 
and specificity.  Specifically, a principal component analysis (PCA) was quickly utilized and it was found 
that even one principal component (PC) could discriminate Bacillus spores from other biological 
interferents [29] and that the use of three PC’s could significantly discriminate Bacillus spores from 
other very similar biotypes [30] as was shown in Figure 1.  
 
The use of these chemometric algorithms provided at least two other significant benefits that were 
immediately appreciated.  First, the data reduction was significant, as LIBS spectral data are routinely 
composed of 1024 elements at a minimum, and frequently possess much larger array sizes.  A very large 
fraction of the information in the spectrum that allows reliable discrimination (the variance in the data) 
can be distilled to a small handful of variables, numbering anywhere from as small as one, two, or three 
as shown earlier, to a slightly larger number of variables as the complexity and similarity of the data 
increases.   
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Secondly, the construction of a multivariate analysis invariably involves the computation of the ratios of 
line intensities as opposed to absolute intensities.  That is, it is the relative intensity of every channel in 
the spectrum to every other part of the spectrum that is important, not the absolute intensity of any 
one channel or emission line.  This greatly reduces and can even eliminate the noise introduced by the 
intrinsic LIBS shot-to-shot variation and significantly reduces experimental complexity.  As observed by 
the authors in [30], this allowed them to completely ignore effects like chromatic focusing aberrations 
(of the plasma emission into the spectrometer), wavelength-dependent CCD response, or wavelength-
dependent spectrometer transmission due to grating efficiency.  Such effects, present in every 
spectrum, are not expected to change and should never alter the relative measured intensities.   
 
The issue of how best to utilize chemometric algorithms was examined by Munson et al. who proposed 
to specifically investigate a number of statistical strategies to compare discrimination potential in 
chemical and biological warfare simulants [32].  In this manuscript, they utilized linear correlation, PCA, 
and soft independent modeling of class analogy (SIMCA) and compared the performance of each in 
discriminating the single-shot LIBS spectra from three Bacillus organisms, B. thuringienesis, B. globigii, 
and B. cereus, from common interferents like pollen and mold.  To reduce the number of variables 
(wavelengths) in the analysis and lessen the computing requirements, the authors selected regions of 
the spectrum which contained major emission lines from known constituent elements and excluded 
other regions of the spectrum which apparently possessed little or no information relevant to 
discrimination.  This choice to only use a sub-set of the acquired data (“variable down-selection”) versus 
keeping all of the spectral data acquired (“full-spectrum analysis”) is still very much a topic of significant 
inquiry.   
 
In an important early work, Merdes et al. analyzed 2048 element data sets (full-spectrum analysis) with 
a PCA which reduced the data size to 11 dimensions or loadings and also with a linear discriminant 
analysis (LDA) which was performed on the 11 principal components obtained from the PCA [31].  They 
also performed a hierarchical cluster analysis (HCA) applied against their training set data to develop an 
objective classification tool to assist in classifying the members of a test set.  Utilizing these tools applied 
autonomously in Matlab code, they demonstrated a 1% false positive rate and a 3 % false negative rate 
for Bacillus subtillis (B. subtillis) specimens when being discriminated from molds, pollen, proteins, and 
starches.  The use of more supervised techniques (such as LDA) upon data that has first been pre-
processed by an unsupervised PCA to reduce the dimensionality of the data is now an extremely 
common technique, as is the use of the dendrogram output of an HCA for data classification.  For 
example, just recently Liao et al. have utilized a PCA followed by an HCA to discriminate 3D surface-
enhanced Raman spectroscopy (SERS) spectra (taken in conjunction with LIBS data) of E. coli, 
Staphylococcus aureus (S. aureus), and Salmonella typherium (S. typherium) [51].  An example of such a 
dendrogram resulting from a hierarchal cluster analysis is shown in Figure 3 
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Figure 3.  A typical dendrogram plot resulting from a hierarchal cluster analysis of 
four bacterial strains.  Reprinted from reference [51] with permission from Elsevier. 

 
3.1.2 Neural Networks/Support Vector Machines 
Numerous other chemometric algorithms have been investigated.  Neural network (NN) analysis 
(sometimes referred to as “artificial neural networks”) was compared directly with multiple linear 
regression models to discriminate B. atrophaeous spores [52].  The NN models indicated that LIBS could 
possibly be as sensitive or more sensitive than other methods available at the time.  The study of NN 
models continues today [36,53,54] with many variants of the technique possible, including the use of a 
K-means classifier on the full-spectrum LIBS data for the discrimination of E. coli from S. aureus [55] and 
the use of a supervised technique utilizing self-organizing maps (SOM) upon spectra that were first pre-
processed in a PCA [56].  In this last, while the first five PC’s were seen to only retain 23% of the variance 
in the data, a plot of the scores of the first two PC’s showed a fairly consistent discrimination between 
Staphylococcus sciuri, S. aureus, and E. coli.  Overall classification success rates varied from as low as 
45% up to 100% for a variety of bacterial species and strains using this technique. 
 
Cisewski et al. investigated a new approach by using a linear model to pre-process spectra possessing 
13,701 channels to first reduce the dimensionality of their data and then built a classification model 
using a support vector machine (SVM) classification whose only goal was to categorize an unknown 
spectrum as a Bacillus spore or not [57].  The method performed well, exhibiting a 3% predication error, 
and demonstrated the impact that careful pre-processing, including outlier removal and wavelet 
transformation of the LIBS data, could have. 
 
3.1.3 Discriminant Function Analysis / Partial Least Squares 
Two of the most commonly reported chemometric algorithms have been discriminant function analysis 
(DFA) and partial least squares (PLS).  PLS is frequently performed with a subsequent analysis to further 
improve classification, such as with a discriminant analysis (PLS-DA) or a regression analysis (PLS-RA).  
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Our own group has made extensive use of a discriminant function analysis on down-selected variables 
(emission line intensities) from bacterial LIBS data.  Initially 19 variables (intensities) from six elements 
were utilized in a DFA to completely discriminate three strains of the bacteria E. coli from each other as 
well as the common yeast C. albicans and a wild type mold [34].  This was the first demonstration of 
strain-level discrimination in a bacterial system.  Pushing the specificity of this method, 19 independent 
variables were again used to produce nearly 100% discrimination between four strains of E. coli 
including a pathogenic strain (O157:H7) and to investigate discrimination based on spectrum alteration 
when two strains were cultured in different media [58].  Lastly, this identical technique was used to 
discriminate two strains of E. coli from Pseudomonas aeruginosa (P. aeruginosa), demonstrating no 
sensitivity to growth medium unless the membrane was intentionally altered by growth on a 
MacConkey agar which contained bile salts known to disrupt membrane integrity [59]. 
 
The number of independent variables used as predictor variables plays an important role in the ability of 
any chemometric algorithm to predict the membership class of an unknown dataset.  When possible, 
greater numbers of variables should be utilized as was shown when the number of variables was 
increased to 26 by ablating targets sequentially in two different gas environments [60] and then 31 by 
ablating in an argon environment [61].  Increasing the number of variables increased classification 
power, resulting in a 91.4% differentiation of P. aeruginosa specimens from E. coli specimens due almost 
completely to the variance in the data used to construct the first discriminant function (DF1).   
 
The number of independent variables in our data was reduced to 13 because of the decrease in overall 
emission intensity caused by shooting the bacteria on a watery agar substrate [62].  This analysis still 
yielded 100% discrimination between E. coli, Streptococcus viridans (S. viridans), and Mycobacterium 
smegmatis (M. smegmatis) (wild-type or WT strain) when used to investigate the effects of mixtures and 
concentrations.  Identical data acquisition and analysis were used to investigate the effects of metabolic 
stressors on the discrimination ability [63] and to construct a 669-spectrum library composed of spectra 
from five different bacterial genera (Escherichia, Streptococcus, Staphylococcus, Enterobacter, and 
Mycobacterium) and 13 distinct taxonomic groups (species and strains of those genera) [64].  The results 
of a DFA performed on the 699 spectra when used to construct a library in two different ways are shown 
in Figure 4.  In Figure 4a, the spectra were grouped in a library by their known genus, and in Figure 4b 
the spectra were grouped in a library according their known unique taxonomic identity.  These DFA 
libraries were tested using external validation techniques.  External validation means that none of the 
tested spectra was ever tested against a library that contained any other spectra of that organism 
acquired at the same time or in the same data run.  This validation was compared against a less-reliable 
“leave-one-out” classification (LOO).  The effect that using a LOO had on artificially improving sensitivity 
and specificity was reported and specifically warned against. 
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Figure 4.  The results of a discriminant function analysis of 699 LIBS spectra when the 
spectra are classified in two different ways.  In 4a, the spectra were classified in five 
groups based on their known genus-level identity.  In 4b, the spectra were classified 
into 13 groups based on their known species- or strain-level identity.  Data are 
plotted as a function of only their first three discriminant function scores for 
visualization.  Reprinted with permission from reference [64], [The Optical Society].  

 
 
This study also demonstrated the utility of using chemometric algorithms sequentially to assist in 
classifying highly similar specimens such as those from the genera Escherichia and Enterobacter, an idea 
promulgated earlier by Multari et al. to extract the maximum classification ability from a pre-compiled 
library of known spectra [65,66].  Specifically the five-genus level DFA was applied first to broadly 
classify unknown specimens as one of those five genera.  Utilizing that DFA model, 269 (89.97%) of the 
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299 Escherichia spectra were correctly classified and 21 spectra (7.02%) were incorrectly classified as 
Enterobacter.  The rest were incorrectly identified as another genus.  However, when those 299 spectra 
were analyzed in a two-class DFA using a library generated only from E. coli and Enterobacter cloacae (E. 
cloacae) spectra, 290 (96.99%) were correctly classified and only 9 (3.01%) were incorrectly classified as 
Enterobacter.   
 
The number of independent variables used to classify our 699-spectrum library was increased and the 
effect that this had on classification ability was investigated by constructing two new models: one of 24 
independent variables from sums and complex ratios formed from the 13 initial down-selected variables 
and one of 80 independent variables formed from simple ratios of the initial 13 variables [67].  This 
approach was first demonstrated successfully by Gottfried et al. in the discrimination of explosive 
residues [68,69].  Using this expanded “ratio model” the performance of DFA was compared directly to 
the performance of partial least squares – discriminant analysis (PLS-DA).  Both algorithms behaved 
adequately in this analysis, returning sensitivities and specificities greater than 90%.  Interestingly, it was 
observed that the DFA was a more appropriate algorithm when the identify of a specimen was 
completely unknown and a genus-level identification was directed, while a more precise identification at 
the species-level or strain-level could then subsequently be performed using a PLS-DA, which possessed 
superior discrimination ability between highly similar spectra.  No one algorithm was found to be 
preferred or superior in all circumstances using this 699-spectrum model.  Gottfried later provided an 
extensive description of a method to construct an optimal discrimination model when using PLS-DA 
which was found to be highly effective at discriminating LIBS spectra from residues of interest when 
sampled on various substrates and in the presence of similar and dissimilar interferents [37]. 
 
By ablating bacteria on more robust nitrocellulose paper filters, the number of independent variables 
used to characterize each spectrum in our analysis was increased recently to 164, constructed from 19 
down-selected emission intensities and simple ratios constructed from those 19 intensities.  1513 
spectra were classified using both DFA and PLS-DA in an externally validated classification.  Both 
algorithms possessed sensitivities and specificities greater than 97% in a four-genus library composed of 
Escherichia, Staphylococcus, Pseudomonas, and Mycobacterium [70].   
 
Other investigations of variations of PLS have been conducted.  Lewis et al. compared the use of both 
PCA and a PLS regression which required two sets of sample variables (obtained from the data and 
defined by the user) to describe the model to classify and discriminate bacteria isolated from reclaimed 
bauxite soils in Jamaica [71].  Both algorithms showed discrimination ability, but the authors concluded 
that due to its relations to linear discriminant analysis, PLS was the superior choice for pattern 
recognition when compared to PCA. 
 
In the work of Multari et al. above [65], the authors utilized a partial least squares approach known as 
PLS2, a method in which several variables may be modeled simultaneously in cases where there may be 
correlations between those variables.  Once an appropriate model is constructed, unknown specimens 
can be tested to produce so called predictor values or variables which typically run from 0 to 1 and 
relate the confidence in the assignment of the unknown test sample to one of the model sample classes, 
as is shown in Figure 5, a PLS-DA test for Mycobacterium identification.  In this analysis, spectra from 
four “non-Mycobacterium” genera were classified with a predictor variable scattered around 1, and the 
Mycobacterium spectra were classified with a predictor variable scattered around 0.  An external 
validation was performed by classifying spectra of M. smegmatis strain TA.  No spectra from that strain 
were used in the construction of the PLS library.  The predictor scores of the test spectra are shown at 
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the far right of Figure 5, with 100% of them classifying as Mycobacterium by falling below the 
discrimination line.   

 
Figure 5.  A five-genus PLS-DA test for Mycobacterium identification.  Spectra from 
four genera of bacteria were entered as a “non-Mycobacterium” class and spectra 
from two strains of Mycobacterium smegmatis (TE and WT) were entered as a 
Mycobacterium class.  Test spectra from a third Mycobacterium strain were tested 
with this PLS-DA (the orange x’s at far right) and were correctly classified 100% of the 
time.  Reprinted from reference [67] with permission from Elsevier. 

 
Multari et al. also utilized a single variable PLS combined with PCA [38,66,72].  In PLS1 only one variable 
is modeled.  Variations in a single response variable (defined typically as a Y variable) which again 
typically runs from 0 to 1 are correlated to variations in the predictor variables (defined typically as the X 
variables).  In the analysis of these bacterial spectra, the X-variable datasets were the full LIBS spectrum 
(4096 channels, each channel an independent variable) of the bacteria.  In the work of Putnam et al. [67] 
the X-variable datasets possessed either 24 or 80 independent variables, constructed from ratios of 
emission line intensities as described above.  In Malenfant et al. [70] the X-variable datasets were 164 
independent variables constructed from ratios of the emission line intensities.   
 
3.2 Testing substrates 
The mass of useful analytic material ablated when testing bacterial samples with LIBS will most likely be 
low due to the small number of cells present in realistic medical or food-preparation specimens.  No 
matter how low the mass, the cells must be prepared (“mounted”) on a target substrate prior to LIBS 
testing.  The exception to this is the testing of aerosols, described below.  Problematically, when the 
mass of analyte mounted on a testing substrate is small, it is expected that the underlying substrate will 
be unavoidably ablated with the desired analyte, particularly when nanosecond pulsed lasers such as 
the Nd:YAG laser, are used.  For low cell titers, the ratio of analyte mass to substrate mass in the 
resulting LIBS plasma can be small, and if the testing substrate is composed of many of the same 
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elements as the bacterial cells, a loss of diagnostic ability is expected.  Because this complication is 
almost certain to be encountered in any LIBS bacterial testing experiment that does not utilize culturing 
or re-growth to increase cell count, it has been noted that the choice of substrate can be expected to 
strongly impact the success of differentiation [38].  These authors noted that a careful study of how best 
to mount and then sample the bacterial specimen so as to produce the most optimal classification or 
discrimination must be considered to be an intrinsic part of the creation of any realistic LIBS-based 
diagnostic technology.  The substrate upon which the bacterial cells were mounted in every experiment 
described in this review is given in the summary Table 2 at the end of this review.  
 
3.2.1 Pressed pellets 
Early experiments avoided this problem altogether by utilizing freeze-dried or lyophilized bacterial cells.  
An unrealistically large number of cells could be accumulated in such a way to allow pressing into a solid 
“pellet,” which is an approach typically used for the LIBS testing of unknown powders or residues.  
Lyophilization is essentially a lengthy freeze-drying process that involves freezing at low temperatures (-

80 C) for an extended period of time (12-24 h) followed by a vacuum process for another extended 
period of time (12-24 h).  The result is a light dried powder that when sampled directly with LIBS, tends 
to be highly disturbed by the impact of the laser pulse [52,65] reducing the amount of analyte sample 
actually analyzed unless secured by some means, double-sided sticky tape being a common one [33].  
While the lyophilization process provides an unrealistically large amount of bacteria and requires 
entirely too much time to make it a realistically competitive diagnostic technology, the powder derived 
can then be compressed mechanically to form solid pellets that withstand pulsed-laser interrogation, 
possess a highly-uniform smooth testing surface, and produce higher intensity LIBS sparks due to the 
absence of water [39,40,48,57].  Such pellets can be repeatedly tested and may even be mixed with a 
chemically inert binder to provide greater stability [73].  The elemental composition of the pelletized 
samples, as determined by LIBS should be the same as in samples not prepared in such a way. 
 
3.2.2 Aerosols 
To avoid the sampling of a mounting substrate completely, several authors have tested bacterial cells or 
spores in aerosol form, where the only LIBS background expected will be from the atmospheric testing 
environment or background interferents such as dust, pollens, etc.  Much of this work occurred early on 
in the investigation of the LIBS diagnostic ability and has been discussed earlier.  Dixon and Hahn 
carefully investigated single-shot LIBS detection of B. atrophaeous in a stream of pure dry air with the 
carbon dioxide removed [41].  Light scattering allowed a total particle count within the aerosol stream.  
By monitoring the calcium emission at 393.4 and 393.6 nm, 12,000 laser shots produced 35 confirmed 
spore hits when operating at a 5 Hz repetition rate in an aerosol concentration of 5 cm-3.    
 
Hybl et al. investigated aerosol detection in both dense clouds formed from laser-induced shock-wave 
disruption of piles of powder and also single particle detection in a dilute air stream [30].  Using an 
Nd:YAG laser operating with a variable repetition rate between 1 and 10 Hz they were able to achieve 
aerosol hit rates between a maximum of one hit per 10 shots and a minimum of 1 hit per 50 shots.  In 
the dense clouds, reliable LIBS spectra were acquired on every laser pulse.  The authors determined that 
most likely air concentrators and/or separate pre-LIBS “cueing” or pre-triggering detection would be 
necessary to increase sensitivity. 
 
In a more recent study, Saari et al. were able to trap and levitate single fungal spores and bacteria 
particles in an electro-dynamic balance (EDB) trap [35].  The use of EDB allows accurate and repeatable 
trapping position, which is required for optical interrogation of the particle when using a LIBS laser beam 

with a beam waist diameter of 19 m.  Such particles can be measured with both laser-induced 



16 
 

fluorescence (LIF) and LIBS without the need for the pre-triggering required in an online flow aerosol 
system.  LIF and LIBS spectra were obtained with a Czerny-Turner spectrometer equipped with an 
intensified CCD camera.  Single-particle single-shot LIBS spectra acquired from such particles possessed 
adequate single to noise for such elements as calcium, sodium, and potassium.  The authors observed 
that when performing such single spore/particle detection, a major limitation may be impurities in the 
deionized water used to prepare the specimens prior to testing. 
 
Many authors have attempted to ablate live bacterial cells from culture directly on the surface of the 
growth medium (some form of culturing agar) used to grow them [43,53,54,56,66].  The approach is 
complicated as the colony produced during culturing is not controlled for size or cell number, is not 
“washed” clean of growth medium contaminants prior to ablation, and lacks the mechanical stability or 
rigidity required for high shot-to-shot repeatability.  Indeed it was observed by one group explicitly that 
especially when performing nanosecond laser ablation (i.e. with an Nd:YAG laser) an observed 
“splashing” of the bacterial cells greatly complicated the analysis as the experimental conditions were 
not at all well-controlled [74].  They noted that living cells presented a higher splashing compared to 
that of sonicated or autoclaved bacteria, due to morphological changes that occur to the cell during 
these procedures.  As noted earlier, ablation of a small number of bacterial cells invariably involves 
ablating some amount of the underlying substrate.  Growth media frequently possess many of the 
elements observed in bacterial LIBS spectra, albeit in different proportions.  Multari et al. observed that 
every time the culturing medium was changed the development of an entirely new algorithm 
incorporating LIBS spectra data from that medium was required to allow efficient discrimination [66].  
These complications suggests that this method is sub-optimal, as the growth medium chemical 
composition can change depending upon the manufacturer of the medium material, the water used to 
make it, and the skill of the technician making the growth plates.  Building these variations into a 
discrimination algorithm, while necessary, is moving away from a true chemical identification of the 
microorganism. 
 
To avoid this complication our group advocated depositing the cells after culture as a thin film on a 
nutrient-free 0.7% agar medium [34,58,59,61].  This medium provided an essentially background-free 
LIBS spectrum, allowing a very sensitive biochemical discrimination down to the strain-level.  More 
recently, we have utilized a highly convenient microbiological filter medium, which provides a highly 
stable, reproducible, but non-background-free (especially from carbon) mounting substrate [70].  Such 
filters, fabricated from nitrocellulose paper, nylon, or other material, have been used extensively by 
other groups due to their ubiquity and availability [44,47,49,75].  
 
3.2.3 Food contamination 
The detection and identification of bacteria responsible for foodborne illness presents its own unique 
challenges to this field.  The testing substrates that may be encountered can be expected to vary widely 
and may include actual food surfaces.  Several groups have investigated organisms responsible for 
foodborne illness on their own and on surfaces that may be encountered in food-handling or food-
preparation environments.  Yuan et al. acquired spectra from E. coli aspirated onto a filter medium and 
on a sausage, and also from the sausage itself [76].  Based on the measured Na, K, and Mg emission 
lines, a subtle difference between the blank sausage and the sausage charged with bacteria was 
observed.     
 
Barnett et al. studied the very important organisms Salmonella enterica (S. enterica) serovar 
Typhimurium, which is a Gram-negative foodborne pathogen responsible for salmonella [77].  Because 
this infection is most commonly caused by ingestion of raw meat or dairy products, the bacteria were 
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inoculated into liquid samples of milk, chicken broth, and brain heart infusion.  LIBS was performed with 

a 266 nm laser after 1 L of cells harvested from those three food media was deposited on a silicon 
wafer.  A DFA was used to investigate the ability to discriminate different species of bacteria as well as 
to differentiate milk spiked with varying concentrations.  The DFA analysis worked well, but could not 
perform as well as polymerase chain reaction (PCR) or quantitative real-time PCR (qPCR), which the 
authors also performed. 
 
Multari et al. studied the important foodborne pathogens E. coli O157:H7 and S. enterica.  They 
performed a PLS1 analysis of LIBS spectra acquired from live bacteria that had been deposited on 
various foodstuffs such as eggshell, milk, bologna, ground beef, chicken, and lettuce and also on various 
food–preparation surfaces such as a metal drain strainer and a cutting board [72].  The authors also 
collected LIBS data by ablating directly on swabs that are commonly used to wipe surfaces for hygiene 
surveillance and compliance.  In all cases a differentiation of the organisms was demonstrated once a 
suitable PLS1 model was constructed which incorporated the various background materials.   
 
Finally Gamble et al. investigated the water and wash-waters commonly used in food-processing plants 
[73].  They studied the pathogens Pseudomonas putida, Listeria innocua, S. aureus, and S. enterica 
serovar Typhimurium (which is commonly referred to by its serovar identification only as S. typhimurium 
or by its more proper taxonomic identification, S. Typhimurium).  Six different types of buffer solutions 
and wash waters with different cation concentrations and pH’s were used to rinse the bacteria prior to 
autoclaving and overnight lyophilization.  Lyophilized bacteria were pelletized in a 15-ton press and 
stabilized with microcrystalline cellulose.  A PCA was used to generate five principal component scores 
reflective of the main variance in the dataset and then a Mahalanobis discriminant analysis (MDA) was 
used for classification.  Using the five PC scores, the four genera were discriminated from each other 
with 100% classification accuracy.  Also, within each genus the bacteria isolated using different water 
types were differentiable.  From this fact the authors concluded that the water source used in 
purification or isolation of the cultures must be precisely controlled for both pH and the presence of 
mineral cations.  The use of deionized water was recommended over other sources such as reverse 
osmosis, distilled, and especially tap water due the presence of trace minerals in those types of water.   
 
3.3 Nutrient media/culturing environment 
The choice of nutritional media upon which or within which to culture bacterial specimens prior to 
testing with LIBS has been an important experimental parameter that has been investigated by many 
authors.  The intent of the experiments has been to determine the extent to which the local chemical 
environment present during cell reproduction can ultimately influence the cell’s elemental composition 
and thus the measured LIBS signature.   
 
In an early experiment, Morel et al. utilized two different growth media, an organic compound-based 
medium and a mineral compound-based medium and showed that the measured phosphorus to carbon 
ratio was reproducible, so no noticeable effect was observed in the LIBS analysis [39].  While Kim et al. 
did not utilize different nutrient media, they initially recognized that the length of time in the culture 
medium could impact a LIBS spectrum, observing that as Bacillus species grew they could selectively 
take up certain elements out of the culture medium [43].  This effect was especially evident during 
Bacillus sporulation, a process which does not occur for many medically significant bacteria. 
 
In 2007, Diedrich et al. showed that a discrimination based on a multivariate analysis (DFA) could be 
independent of the growth medium by culturing a non-pathogenic strain of E. coli in both a liquid TSB 
broth and on a solid TSA plate [58].  Expanding on this earlier work, Rehse et al. carefully investigated 
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the effect that culturing on three different solid agar media had on a pathogenic strain of P. aeruginosa 
[59].  The LIBS spectra from the media themselves (a trypticase soy agar (TSA) plate, a blood-agar plate, 
and a MacConkey agar plate) were also obtained and investigated.  Importantly, the MacConkey agar 
contained bile salts, a medium deliberately chosen to induce bacterial membrane changes.  The results 
of this experiment showed that by intentionally altering the membrane biochemistry, a significant and 
reproducible alteration of the LIBS spectrum could be induced, but that all three classes of Pseudomonas 
grown in such a way could still be reliably discriminated from two strains of E. coli. 
 
To further investigate this effect, Rehse et al. added a fourth nutrient medium, a TSA plate containing 
intentionally doped deoxycholate at a 0.4% concentration, to alter both P. aeruginosa and E. coli to a 
maximum extent [61].  Spectra from the media were also compared.  Two important conclusions 
resulted from this; first that the source of Ca and Mg observed in the LIBS plasma could be located at 
least in part to the Gram-negative outer membrane and second that the accuracy of discrimination 
between two genera of bacteria remained greater than 90% regardless of the nutrient medium upon 
with the bacteria were cultured.  Changes in the environment of the reproducing cell could indeed be 
measured by LIBS, but such changes did not inhibit the accurate identification of the bacteria.     
 
This result was confirmed by Marcos-Martinez et al. who investigated P. aeruginosa, E. coli and S. 
Typhimurium cultured on three different media: an LB agar; a MacConkey agar, and a Brucella anaerobic 
agar [53].  In these experiments, only differences measured between the three bacterial groups resulted 
in classification using a neural network analysis, with no apparent dependence on the growth medium, 
and the authors thus concluded that the identification did not depend on the culture medium.  In 
addition, the identification analysis was stable over a long period of time and it was observed that minor 
changes in the experimental conditions did not alter sample identification.  Subsequent groups have also 
investigated the LIBS spectra obtained directly from the media, but could only conclude that sometimes 
bacterial specimens could be classified as a nutrient broth in a PLS-DA classification but that different 
nutrient media could be accurately classified, if desired [37,75]. 
 
In a demonstration of the utility of environmentally-induced elemental cellular changes, Lewis et al. 
demonstrated the successful use of fs-LIBS for discriminating amongst various soil bacteria recovered 
from a variety of soil/growth environments which presumably could exert significant chemical stress on 
the bacterial cells [71].  They concluded that it was the chemical composition of the bacteria (as 
influenced by the local soil chemistry) measured by the LIBS fingerprint which served as the basis for 
successful sample classification. 
 
Malenfant intentionally altered the metal content of E. coli by culturing specimens on a typical TSA 
medium plate that was doped with zinc sulfate solutions at concentrations of 0, 100, 200, and 300 ppm 
[78].  While zinc was not readily distinguishable from noise in the typical E. coli LIBS spectrum, cells 
grown in the presence of such environmental zinc showed substantial uptake of the element, even after 
triple washing to insure the removal of contaminating residual growth medium on the outside of the 
cells.  This uptake in cellular zinc as measured by the LIBS spectrum showed a linear relationship with 
environmental zinc.  This is shown in Figure 6, where the phosphorus emission at 213.62 nm and the 
zinc emission at 213.86 nm are shown for E. coli cells grown in varying concentrations of zinc.  The 
intensity of that zinc line normalized by the carbon 247 nm emission intensity shows a highly linear 
dependence on the zinc concentration present in the culture medium.  Conversely, cells grown in an 
excess of magnesium, readily observed in typical E. coli LIBS spectra, showed no such uptake. 
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Figure 6.  LIBS spectrum from E. coli cells cultured in an over-abundance of elemental 
zinc.  As the concentration of zinc in the culture medium was varied from 0 ppm to 
300 ppm, a corresponding increase in the LIBS zinc emission was observed (a).  No 
corresponding change in the phosphorus emission was observed, indicating there 
was no change in the number of cells being tested.  A plot of the measured zinc LIBS 
emission intensity normalized by the carbon emission intensity at 247 nm resulted in 
a highly linear dependence of the observed cellular LIBS emission on environmental 
zinc concentration (b).     

 
It has been mentioned that the water utilized in the preparation of the nutrient media (and in 
subsequent washing or preparation steps) can play a significant role in changing the measured LIBS 
spectrum.  The water can alter the observed metal content for elements such as Mg, Ca, Na, and K [73].  
The use of DI water when possible is suggested, although of course, bacterial isolates obtained from 
medical specimens without subsequent culturing will not have such tight controls [35].   
 
 
3.4 Strain discrimination 
For bacteria prepared in a nominally identical manner, the most sensitive identification/classification 
possible would be between strains of a single species.  The difference between strains is expected to be 
small, due to the lack of large cellular changes from strain to strain.  It is important to clarify that it is not 
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the genetic difference between strains that a LIBS-based measurement is able to differentiate, but 
rather the resulting cellular biochemistry changes that are expressed by the different genetic variants. 
 
The first demonstration of a discrimination between strains of a single organism with near 100% 
accuracy was performed by Diedrich et al. in 2007 when three strains of E. coli were discriminated 
utilizing a DFA [34].  All strains were easily differentiated from a C. albicans yeast and the medium on 
which they were grown.  Intriguingly, the two K-12 strains in this work (one a laboratory K-12 strain and 
one a derivative of that strain) were clearly similar in composition compared to the third environmental 
strain, Nino C.  This provided more evidence that it was a true chemical classification being produced, 
not merely an algorithmic differentiation.  A pathogenic strain of bacteria (E. coli O157:H7, also known 
as enterohemorrhagic E. coli or EHEC) was differentiated from two non-pathogenic strains and an 
environmental strain of the same organism for the first time by Diedrich et al. who showed a 
classification accuracy of the four organisms of 97.8%, 84%, 73.1%, and 88%.  In this analysis, the 
environmental strain Nino C possessed the most significantly different LIBS spectrum compared to the 
other microorganisms.  This was the first demonstration of the use of LIBS on a common medical 
pathogen, and the ability to discriminate the pathogen from the non-pathogenic strain of E. coli was 
confirmed in subsequent studies [62,64].  This E. coli strain discrimination was enhanced in a dual-gas 
experiment which utilized both argon and helium sequentially when acquiring LIBS spectra [60].  To 
confirm the stability of strain discrimination, samples of E. coli strain Nino C were tested after being 
autoclaved, exposed to ultraviolet light and left untreated and these spectra were easily discriminated 
from the closely related E. coli ATCC 25922.  The three Nino C strains produced identical spectra and 
were not differentiable from each other but were differentiated 100% from the ATCC 25922 strain [63].  
In this article, the Nino C strain was also cultured in two different media, including the MacConkey 
medium mentioned earlier.  The two specimens of Nino C were classified as indistinguishable from each 
other, while being discriminated with 100% accuracy from the HF4714 and ATCC 25922 strains. This is 
shown very clearly in Figure 7, which shows the first two discriminant function scores of two DFA tests 
run on the various specimens.  In a much more recent study investigating the dual use of 3D SERS and 
LIBS, specimens of E. coli K12 and ATCC 25922 were reliably differentiated by a principal component 
analysis on the basis of their 3D SERS spectra, but LIBS differentiation was not attempted on the 
specimens.  
 
The rise of antibiotic resistant strains of bacteria (sometimes referred to as multiply drug-resistant or 
MDR strains) has been an ominous development in modern medical microbiology.  Previously easily 
treated microorganisms have achieved high levels of resistance to the most common antibiotic 
therapies, leaving physicians with very few, and sometimes with no remaining options for treatment.  
Some of the most ubiquitous of these are the methicillin-resistant strains of Staphylococcus aureus 
(MRSA).  The first discrimination of these microbes was shown in 2010 by Multari et al. who showed 
that it was possible to differentiate lyophilized samples of E. coli, three clonal MRSA strains, and one 
unrelated MRSA strain using a PLS2 analysis for discrimination [65].  Spectra from ten unknown samples 
were 100% correctly matched to the five reference spectra in a blind study.  This investigation was 
significantly expanded when Multari et al. added multiple strains to their analysis, showing 
discrimination and identification of eight S. aureus strains including four MRSA strains, three of them 
clinical strains and one a laboratory derived mutant of one of those clinical strains [66].  A correct 
identification was obtained from thirteen distinct specimens including Acinobacter baumannii, B. 
subtilis, E. coli K12, Klebsiella pneumonia, P. aeruginosa, and the eight Staphylococcus strains.  One 
hundred spectra were acquired from each specimen, 50 were used to build identification models and 50 
were used to test the models.  Using a specifically constructed sequential algorithm, all specimens were 
identified in under 2 minutes. 
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Figure 7.  Examples of robust E. coli strain differentiation.  (a) The first two 
discriminant function scores of a DFA performed on five specimens: three samples of 
E. coli strain C (live, autoclaved, and exposed to UV radiation), one sample of E. coli 
strain ATCC25922, and one sample of M. smegmatis.  (b) The first two discriminant 
function scores of a DFA performed on four specimens: two samples of E. coli strain C 
(cultured on TSA and MacConkey agar), one sample of E. coli strain HF4714 (cultured 
on TSA), and one sample of E. coli strain ATCC25922 (cultured on TSA).  In all cases, 
the E. coli strains are easily differentiated from each other, but an individual strain, 
when prepared, grown, or treated in a different manner, is classified 100% correctly 
as itself. 

 
A combined Raman spectroscopy and LIBS approach was used to investigate MRSA strain differentiation 
by testing E. coli CCM 3954, S. aureus CCM 4223, S. aureus CCM 47540 (MRSA), S. aureus CCM 3953 
(methicillin sensitive or MSSA), Staphylococcus sciuri, and Staphylococcus pseudointermedius directly on 
an agar growth plate [56].  A PCA was performed on the spectral data, which were then classified using a 

(a) 

(b) 
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supervised version of Kohonen’s self-organizing maps, which is a form of neural networks analysis.  
Using this method, the LIBS-only classification accuracy of the strains ranged from 45% to 100%. 
 
A total of 40 strains from a variety of different bacterial species, including E. coli, P. aeruginosa, 
Klebsiella pneumoniae, S. Typhimurium, Salmonella pullorum, and Salmonella salamae were tested by 
Manzoor et al. [54].  As performed in [56], specimens were tested directly on the agar medium upon 
which they were grown and a neural networks (NN) analysis was performed.  Eighty spectra from a 
single growth plate were used to construct the NN model for each strain, and 20 spectra from three 
different plates were used to test the model (external validation).  Successful classification with 
accuracies better than 95% showed that an NN model constructed from different strains allowed highly 
accurate discrimination of strains from the same species, implying that multidrug-resistance and other 
genetic variations impart significant changes to the elemental composition of the cells that can be 
detected efficiently by LIBS.   
 
 
3.5 Genus and species discrimination 
In many situations a strain-level identification may not be necessary to inform the timely initiation of 
appropriate pharmacological therapy.  It is often necessary only to have a genus-level identification of 
the infectious pathogen (i.e. Pseudomonas, Streptococcus, or Staphylococcus).  Alternately, some genera 
have so many species and sub-species that an exact knowledge of the particular strain is not ever 
achieved or necessary.  Therefore in many cases the ability of LIBS to rapidly identify the species, or 
even just the genus, of the organism could be extremely useful.  Mohaidat et al. demonstrated this in 
2012 with a five-genus DFA that yielded sensitivities of approximately 85% and specificities above 95% 
when tested with an external validation [64].  This result was improved upon by Putnam et al. who 
obtained a sensitivity in excess of 91% and a specificity greater than 95% in an externally validated DFA 
[67].  In the 2014 study by Manzoor et al. referenced above, the authors performed a species-level test 
on genera and species most commonly responsible for hospital-acquired infections, including 
Escherichia, Pseudomonas, and three strains of Salmonella [54].  Based on their NN analysis, these 
authors concluded that classification of the organisms was based on the major differences in the 
bacterial LIBS spectral fingerprint at the species level.  Gamble et al. utilized a PCA on LIBS spectra after 
preprocessing and demonstrated complete classification of replicates prepared in an identical fashion of 
specimens of Listeria, Pseudomonas, Staphylococcus, and Salmonella [73].  Prochazka et al. were able to 
reliable classify three species of Staphylococcus with 100% accuracy, even when spectra from E. coli and 
three different strains of S. aureus were included in the test, but only when LIBS spectral data was fused 
with Raman data [56]. 
 
3.6 Concentration/titer 
The dependence of the accuracy of a LIBS-based classification on the number of cells present in the 
specimen (or ablated into the LIBS plasma) is a critically important question.  In a clinical specimen, the 
number of cells should vary widely, from a low titer in a specimen from a pre-symptomatic patient, to a 
high titer in a specimen obtained from a diagnosed infection.  Obviously, in cases of food contamination 
or hygiene surveillance, the cell counts may be even lower, ranging all the way down to zero in a 
properly sterilized environment.  Thus it is not merely the limit of detection (LOD - the number of cells 
required to reliably provide an adequate LIBS signature to guarantee detection) or the limit of 
identification (LOI – the number of cells required to reliably provide a LIBS signature with enough 
spectral information to guarantee classification at some desired sensitivity/specificity) that are of 
concern, but also the impact on the sensitivity and specificity that the cell count or titer has.  Ideally the 
spectrum obtained from a single cell should be classified exactly the same as the spectrum from a 
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sample with, i.e., 109 cells, the relative ratio of elements being identical in those two cases.  However, 
due to changes in the LIBS plasma, these two spectra may not classify identically.  In some cases, the 
operator may not desire the classification to be the same, allowing a quantification of the titer in the 
sample due to its classification against a pre-compiled library. 
 
These effects were investigated by Rehse et al. who performed several experiments to elucidate these 
effects in 2010 [62].  Samples of M. smegmatis were prepared with a standard concentration of 
approximately 5x108 colony forming units (CFU)/mL and several serial dilutions.  The total measured 
LIBS emission intensity (the integrated area under the curve of all measured LIBS emission lines) was 
found to depend linearly with concentration.  In addition all the reduced concentration specimens were 
classified with 100% accuracy using a precompiled library constructed only from the most concentrated 
“control” specimens, even when a closely related mutant strain of the same species was included in the 
DFA as an interferent.  Lastly, replacement of a fraction of the M. smegmatis cells (10%, 20%, 30%, 40%) 
with cells from a different species did not negatively impact classification accuracy until over 30% of the 
original cell count had been replaced by a substitute “contaminant” type of cell in a two-class DFA.  This 
experiment was conducted to simulate unintentional contamination of a clinical specimen subsequent 
to its removal from the patient. 
 
The linear dependence of the total LIBS emission intensity with concentration was confirmed in 2018 by 
Liao et al. who demonstrated this for both E. coli and S. aureus concentrations spanning four decades, 
from 104 CFU/mL up to 108 CFU/ml with R2 values greater than 0.97 [51].  Malenfant et al. also reported 
a linear dependence of the total LIBS emission intensity on the cell concentration when a large number 
of cells were deposited on a nitrocellulose filter testing medium [70].  In this study, approximately 105 

cells were ablated per laser shot.  This study showed a saturation or flattening out of the response curve 
at concentrations above 1011 CFU/mL. 
 
Barnett et al. tested concentrations of S. enterica that spanned eight decades (101 to 108 CFU/mL) as 
measured by DNA concentrations in the specimens prior to LIBS testing [77].  In blood-heart infusion, 
chicken broth, and milk, LIBS detection limits were 105 CFU/mL.  Using a DFA, these concentrations were 
reliably discriminated from E. coli and the blood-heart infusion, but it was not clear whether the DFA 
could provide any reliable quantitative information about the concentration.  The spectra from the 
various concentrations did not reliably classify as separate distinct classes. 
 
Multari et al. tested concentrations of E. coli and S. enterica that spanned five decades from 
approximately 10 CFU/mL up to 106 CFU/mL [72].  They showed that S. enterica in milk could easily be 
differentiated from uncontaminated milk, regardless of the concentration of the pathogen.  E. coli on 
eggshells could be differentiated with 100% accuracy from uncontaminated esggshells (spiked with TSB 
as an interferent) regardless of the concentration of E. coli used.  In addition, E. coli and S. enterica at 
various concentrations could be discriminated from each other with 100% accuracy when tested on 
eggshells.  This is shown in Figure 8.   
 
Lastly, as discussed earlier in the section on aerosols, spectra from single spores can be detected, 
demonstrating an LOD of one cell (e.g. [35]).  To date, no attempt has been made to investigate the LOI 
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of such systems and classify an organism based on its single-cell LIBS spectrum, mostly due to the poor 
signal-to-noise in such spectra. 

Figure 8.  Differentiation of E. coli from S. enterica when tested on a common food 
surface (eggshells) is independent of cell concentration.  Reprinted with permission 
from reference [72].  Copyright (2013) American Chemical Society. 

 
 
3.7 Environmental stressors 
Because the identification and classification of bacterial cells is performed in part on the basis of their 
elemental cellular chemistry, of great concern is the potential change in the measured LIBS spectrum 
due to real elemental changes in the bacterial cell.  Such changes could be caused by environmental 
factors which induce a biochemical response in the cell.  These environmental stressors include 
influences which can result in complete cell lysis (such as autoclaving or vortex/ultrasonic agitation), loss 
of reproductive ability (exposure to ultraviolet light), and more subtle changes in cellular chemistry.   
 
Mohaidat et al. investigated this in 2011 by attempting to observe a change in LIBS signature as a 
function of the metabolic state of the cell by exposing specimens to bactericidal ultraviolet radiation and 
autoclaving samples prior to LIBS testing [63].  These tests were performed on representative Gram-
negative samples, E. coli, and representative Gram-positive samples, S. viridans.  Utilizing a DFA, the 
samples of E. coli C were all classified identically as E. coli C, whether reproducing in the log-phase, killed 
via autoclaving, or rendered inactive by exposure to ultraviolet light.  In addition, these specimens were 
readily discriminated from specimens of M. smegmatis and another strain of E. coli (ATCC25922).  The S. 
viridans samples behaved identically, indicating that LIBS spectra were not sensitive to the metabolic 
state of the cell in this regards, which suggests that for practical biosafety reasons, biospecimens could 
very well be autoclaved first prior to LIBS testing, removing any hazard to operators.  Both specimens 
possessed LIBS spectra of identical absolute intensity (within uncertainty), indicating no inherent loss of 
signal from inactivated or heal-killed cell. 
 
As well, they tested cells that had lapsed into a dormant state by sitting at room temperature on 
nutrition free (abiotic) surfaces for periods of time ranging up to nine days.  Again, all dormant cells 
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classified identically with the cells actively reproducing in the log-phase and those exposed to ultraviolet 
light and autoclaved.  Lastly, they investigated intentional cell membrane alteration by exposing E. coli 
cells to substrates which could be expected to exert a detergent-like action on the cell membrane, 
particularly a MacConkey agar growth medium containing 0.1% deoxycholate.  Spectra from these cells 
were altered from those grown on standard growth media but exhibited no changes in classification 
accuracy compared to E. coli grown on standard growth media and were easily differentiated from two 
other strains of E. coli.  As mentioned earlier, this result was also confirmed by Marcos-Martinez [53] 
using a similar MacConkey agar medium. 
 
Understanding the effect of the metabolic state of the cells on a LIBS-based classification is of the 
utmost importance and has been studied recently.  Multari et al. tested E. coli and S. enterica cells that 
were both viable and heat-killed utilizing a PLS1 algorithm [72].  Differences in the measured LIBS 
spectra could be used to construct appropriate algorithms to differentiate the killed class from the 
viable cells.  However, when killed and viable cells were grouped together in a test performed on ground 
beef, these spectra were still readily differentiable from a control spectrum of ground beef 
uncontaminated by any E. coli.  This confirms the results observed earlier that cellular differences may 
be observed and utilized for a LIBS-based classification of the metabolic state of the cells, but the 
differences are quite subtle and do not intrinsically alter the spectra so significantly that an incorrect 
identification would result when trying to discriminate against other bacterial types.   
 
Sivakumar et al. investigated the use of both fs-LIBS and ns-LIBS to investigate the effect that two types 
of inactivation, autoclaving and sonication, had on the acquired LIBS spectra [74].  Using E. coli K12 as a 
model system, fs-LIBS proved to be effective for monitoring the metabolic state of the cells when 
spectra were analyzed with a PCA and unknown spectra were tested using a SIMCA.  Key differences in 
the measured relative intensities of Mg, P, K, Na and Ca lines enabled this differentiation.  Nanosecond-
LIBS did not perform as well as fs-LIBS in this regards, but the authors concluded that the sonicated and 
autoclaved bacteria were still differentiable from live bacteria, as Multari et al. observed above.  
Malenfant et al. confirmed this observation [70] by showing that spectra from autoclaved E. coli 
possessed detectable and reproducible alterations compared to spectra from viable E. coli.  These 
autoclaved specimens were still classified with 100% accuracy with live E.coli specimens in a four genus 
DFA which discriminated E. coli from S. epidermidis, M. smegmatis, and P. aeuruginosa. 
 
Farid et al. have explored this idea further by utilizing LIBS to show the difference between viable and 
non-viable cells due to graphene-oxide exposure [79].  E. coli and S. aureus specimens were ablated with 
nanosecond laser pulses after exposure to graphene-oxide at various concentrations and decreases in 
the measured elemental intensities were observed in both genera of bacteria.  Importantly, these 
authors point demonstrate the use of LIBS as a tool not merely for bacterial identification or 
classification, but as a rapid and relatively inexpensive all-optical spectroscopic technique for probing 
membrane composition to ultimately determine the anti-bacterial mechanism of the graphene-oxide 
material.  This is one of the many examples of experiments which could be performed with this “atomic 
microbiology” technique, which are generally complementary to the more developed suite of 
“molecular microbiology” tools and tests. 
 
3.7.1 Environmental testing gas 
The effect of the bath gas environment on LIBS-based bacterial classification has not been extensively 
studied.  The vast majority of LIBS researchers continue to perform experiments in either an air 
atmosphere, for convenience, or in a noble-gas environment to enhance plasma emissions.  Rehse et al. 
examined this by ablating P. aeruginosa in both air and argon and observed that the increase in LIBS 
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emission allowed a reduction in the number of laser pulses required, advantageous for most bacterial 
experiments where the amount of sample can be almost vanishingly small [61].  In addition, the 
enhancement in phosphorus emission, particularly from lines in the wavelength range of 203 to 256 nm 
was seen to significantly enhance discrimination ability, as phosphorus is a key element in the 
phospholipid bilayer membranes present in many bacteria.  The use of sequential argon and helium 
testing on the same specimen was investigated by Rehse et al. who observed a reduction in scatter and 
an enhancement in discrimination between two strains of E. coli and a single strain of S. mutans when 
the spectra from specimens ablated in both environment were combined to create a pseudo-spectrum 
as opposed to the discrimination obtained in either gas independently [60].  
 
Farooq et al. compared and contrasted bacterial LIBS performance in air, argon, and helium 
environments [80].  Specimens of E. coli and Micrococcus luteus mounted on a glass slide were ablated 
by a 1064 nm laser.  The authors noted differences in the emission intensities from the important lines 
of carbon at 193 nm and 247 nm and the hydrogen alpha line at 656 nm.  Intriguingly, emission lines 
from nickel were observed in one of their test specimens, but only when measured in the argon 
environment, indicating that small but significant elemental differences may not be observed when 
ablated in an ambient air environment. 
 
 
3.8 Interferents 
Due to the low analyte mass or volume inherent in the ablation of a small number of bacterial cells, it is 
probable that many LIBS spectra may be “contaminated” by emission from other elements which may or 
may not be present in the bacteria.  Such elements may be introduced to the plasma from the ablation 
substrate, from contamination of the substrate, or from contamination of the sample before it is 
mounted upon the substrate.  Such contaminants may be organic or inorganic and are referred to as 
interferents.  When present in large numbers or in high concentrations, the LIBS emission from 
interferents can mask the desired bacterial LIBS emission, precluding detection or identification.   
 
In 2007, Xu et al. performed initial experiments to investigate whether fs-LIBS could be used to detect 
and differentiate some very similar agricultural-activity related bioaerosols, including barley, corn, and 
wheat grain dust when ablated at standoff distances up to 4 m [81].  No bacteria were tested.  Ratios of 
measured LIBS intensities of Mg, Si, Al, and Mn allowed an efficient discrimination of these bioaerosol 
types.  Since Si, Al, and Mn are not traditionally observed in bacterial LIBS plasmas, these bioaerosol 
interferents should be differentiable from bacterial spectra.  No chemometric analysis was attempted 
on these data.  In addition, nonlinear fluorescence of fragments induced by the femtosecond filaments 
was observed and could be used to discriminate organic interferents from other carbon-containing 
inorganic interferents.  
 
Gottfried investigated an extensive list of interferents and their influence on the detection of B. 
antrharis spores and E. coli [37].  Interfering lines in the plasma emission were created by ablation on 
aluminum, steel, and polycarbonate substrates.  As well, potential environmental interferents included 
dolomitic limestone and ovalbumin.  Other interferents which would possess spectra similar to bacteria 
which were included in the test included Luria broth, phosphate-buffered saline with 1% bovine serum 
albumin, and 1 M chloroform among others.  All spectra were obtained in isolation and a list of observed 
emission lines was created.  Using ratios of observed emission lines, PLS-DA models were constructed.  
Full spectrum models were also created, but the author observed that such spectra also contained 
emission from the substrate and the atmosphere which allowed an inaccurate classification based on 
matrix effects, rather than real elemental differences.  While these full-spectrum models gave the best 
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overall performance (with the caveat just noted,) the intensity/ratio models were very useful for 
differentiating samples with fewer spectral features, specifically the E. coli bacteria.   
 
Cisewski et al. utilized an SVM classification to discriminate powders of Bacillus spores from a large 
variety of interferents (referred to by the authors as confusants) [57].  Interferents used were too 
numerous to list here but included items such as flour, backing soda, chalk, laundry detergent, 
ibuprofen, baby powder, and other similar powders all pressed into pellets by a 20 ton press.  The SVM 
classification utilizing several other standard statistical technique to improve performance including 
outlier rejection provided quite good classification accuracy with prediction errors between 0.0% and 
3.4%.  Unfortunately only pure substances were tested in this study, and no bacterial spore specimens 
were ever mixed with any of the interferents to provide a true simulation of sample contamination, 
limiting the relevance of these conclusions. 
 
Mohaidat et al. performed the first simulation of a clinical diagnostic test by demonstrating that 
biomolecule and elemental interferents present in a urine specimen did not in any way negatively effect 
the classification of S. epidermidis cells harvested from a nominally sterile urine environment [64].  
Classification was performed using a DFA library constructed from spectra obtained from three species 
of Staphylococcus, none of which had ever been exposed to the sterile urine environment.  No attempt 
was made to identify the type of interferents present in such a clinical biofluid. 
 
By ablating bacterial samples directly on various agar media such as blood agar, cysteine heart agar and 
an unknown agar, Multari et al. have shown that given the careful construction of medium-specific PLS 
algorithms, the interferents present in the plasma due to the inevitable ablation of some of the agar 
medium upon which the bacterial cells are mounted do not restrict the overall classification ability [38].  
Such a result had been shown earlier by Diedrich et al. who discriminated strains of E. coli from each 
other regardless of the growth medium used (a TSA plate or a TSB liquid nutrient medium) [58] and by 
Rehse et al. who demonstrated 100% discrimination of E. coli from P. aeruginosa when specimens were 
cultured on TSA, blood agar, and MacConkey agar nutrient plates [59].  None of these specimens was 
ablated directly on those various growth media, but the samples were not washed extensively prior to 
LIBS testing. 
  
 
3.9 Stand-off / remote testing 
In one of the earliest demonstrations of what the authors referred to as remote detection and 
differentiation, Xu et al. showed that fs-LIBS (800 nm Ti-sapphire system, 45 fs pulse duration operating 
at 10 Hz) could be used to detect and differentiate similar agricultural activity related bioaerosols, at 
standoff distances up to 4 m [81].  The beam was focused in air using a 1 m lens onto compressed dust 
samples and emission was collected by a 30 cm diameter aluminum mirror located 4.7 m away from the 
LIBS spark.  High signal-to-noise spectra were collected from the fs-LIBS plasma in this configuration, and 
as mentioned earlier fluorescence from CN and C2 molecular bands generated in this process were used 
to discriminate organic interferents.  No bacteria were tested in this paper. 
 
In a subsequent expansion of this idea, Chin et al. explored the use of “filament-induced” fluorescence 
and filament-induced breakdown spectroscopy (FIBS) to identify remote targets [82].  The authors refer 
to this as remote-FIBS or R-FIBS.  In this study, filament-induced spectra were acquired from aluminum 
samples located 50 m and 32 m away from the detection system in a remote LIDAR configuration and 
also from simulated biological agents such as egg white, yeast, and grain.  Again no bacteria were tested.  
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Using an alternate approach, Gottfried et al. developed a double-pulse standoff LIBS (ST-LIBS) system 
which could detect a variety of hazardous target materials at tens of meters distance [33].  In this 
configuration, two nanosecond 1064 nm laser pulses were delivered by a commercial 35.56 cm (14 in.) 
Schmidt-Cassegrain telescope to targets at 20 m.  LIBS emission was collected by the same telescope.  
Specimens of the anthrax surrogate B. subtilis var. niger (also referred to as B. globigii) and the mold 
Alternia alternata were applied directly to a double-sided sticky tape mounting medium.  No evidence of 
the mounting tape was observed in the collected spectra.  Single-shot spectra obtained in this way 
possessed good signal-to-noise and included strong elemental and molecular lines, but many elemental 
lines expected by the authors, such as Ba, Fe, Li, Mn, Sc, Si, and Sr, were not observed.  It is worth noting 
that these lines are not observed in a majority of the bacterial studies referenced in this review.  A 
significant conclusion of this work was that the use of two optimally timed pulses provided dramatically 
enhanced performance over single pulse LIBS at these distances. 
 
In a subsequent study, Gottfried et al. demonstrated the discrimination of this B. subtilis from the 
biological interferents ovalbumin, A. alternata, and B. thuringiensis with only 2% false negatives and 0% 
false positives [68].  Spectra were collected with the same apparatus at 20 m and analyzed utilizing both 
a PLS-DA and a linear correlation.  Typical results for this analysis are shown in Figure 9, which shows 
representative single-shot spectra acquired with this apparatus, as well as showing the results of a PLS-
DA performed on one of the micro-organisms and one of the interferents.  The authors noted that for 
explosive detection, standoff distances up to 100 meters may be possible, but for biologicals and 
pathogens, the relative weakness of the essential phosphorus emission may limit the utility of this 
approach to 20 m or less. 
 
 
3.10 LIBS combined with alternate optical modalities for bacteriological discrimination 
As evidenced clearly in the remote experiments described earlier, the all-optical nature of the LIBS 
measurement suggests that the combination of LIBS with another laser-based optical spectroscopic 
technique is expected to enhance the discrimination ability of the technique and lower the limits of 
detection.  This idea was clearly considered by Beddows and Telle who envisioned the combination of 
LIBS with either Raman spectroscopy, laser-induced fluorescence, or both for bioaerosol identification 
[28].  They proposed utilizing an initial low intensity laser for bioaerosol particle sizing and triggering, 
where the particle size could also add diagnostic information.  In their conception, a second laser pulse 
of suitable wavelength chosen to limit the intrinsic fluorescence would illuminate the sample to 
generate Raman emission.  Additionally, a third ultraviolet pulse could be used subsequently to obtain a 
UV-fluorescence spectrum.  Finally, a fourth nanosecond laser pulse would be used to destructively 
interrogate the sample by generating a LIBS spectrum.  No such experiments were conducted, but a 
proposed prototype was discussed. 
 
As already mentioned, the complementary information provided by analysis of the filament-induced 
fluorescence, particular molecular emission from CN and C2 provided valuable diagnostic information 
when fs-LIBS or R-FIBS is conducted [81,82].  By measuring the decay profiles of this fluorescence, 
differences in native CN and C2 bonds present in biological specimens from those due to recombination 
with atmospheric constituents can be observed, which was first noted by Baudelet et al. [47,49]. 
 
Rather than study the time dependence of fluorescence, Saari et al. collected the full fluorescence 
spectrum from 320 nm to 820 nm after excitation with a 355 nm tripled Nd:YAG pulse [35].  A 355-nm 
filter was used to block out the excitation wavelength and significant and repeated differences were 
observed in the spectra collected from the fungal spores Aspergillus versicolor and Penicillium 
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brevicompactum and the bacterial spore B. aureus.  By using an electro-dynamic balance, essentially 
background-free data were obtained from bioaerosols generated from water suspensions and the 
combined LIBS/LIF measurements enabled a high-sensitivity repeatable classification of the bioaerosols. 

 
 
 
 
 
 
 
 
Figure 9.  (a) Single shot spectra 
acquired from (top to bottom) B. 
globigii, ova, B. thuringiensis, and 
mold acquired using the double 
pulse standoff LIBS system shown in 
(b) at a 20 m standoff distance.  
Samples were prepared by 
spreading several milligrams of 
powders on double-sided tape.  (c) 
The predictions scores for (top to 
bottom) B. globigii and Arizona road 
dust based on a PLS-DA model 
showing 100% classification of the 
B. globigii spectra and almost 
similar performance for the road 
dust.  In this figure, known spectra 
used to build the model are 
identified above the prediction line 
and to the left of the figure (model 
sample index) while the unknown 
spectra are to the right of the figure 
(test sample index) and are 
identified by virtue of being above 
the prediction line.  Adapted from 
references [33 and 68]. 
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It is perhaps most obvious that the combination of elemental LIBS information with molecular Raman 
information affords the greatest possibility for increasing classification performance when classifying 
bacteria.  Non-enhanced Raman spectroscopy has also demonstrated bacterial classification and 
discrimination at the strain level, even before techniques such as surface-enhancement or tip-
enhancement are introduced (see, for example, Hamasha et al. [83].)  It is hardly surprising that the 
addition of this modality should enhance LIBS-based discrimination, yet no consensus on how such “data 
fusion” is to be performed exists.  Prochazka et al. merged their data by simply appending the LIBS 
spectrum from 200 nm to 900 nm with the Raman spectrum obtained from 632.551 cm−1 – 1723.820 
cm−1 to generate a pseudo-spectrum from 200 nm to 1407.02 nm [56].  A PCA was used to discriminate 
these spectra, and the Raman part of the spectrum was found to contain more variance than the LIBS 
part, as can be seen in Figure 10.  Representative spectra from both modalities is also provided for 
reference.  The LIBS portion of the spectrum however played a critical role for PC1, which always 
contains the most significant variance. 
 
Liao et al. introduced silver nanoparticles into a suspension of S. aureus to take advantage of the well-
known surface-enhancement afforded by the nanoparticles [51].  The authors utilized a custom-built 
LIBS/Raman apparatus utilizing 1064 nm ns LIBS pulses and a 532 nm cw laser for Raman excitation.  The 
silver content of the nanoparticles was readily apparent in the LIBS spectra acquired with this apparatus.  
Interestingly, while the authors demonstrated a PCA-derived classification of E. coli and S. aureus and 
utilized the LIBS spectra to calculate a limit of quantification, they do not appear to have fused the data, 
or used the two modalities together in any way to improve overall classification.  Thus the utility of 
coming the two modalities was not made evident.  As noted, more studies need to be conducted to 
determine how best to fuse the data acquired with the two techniques. 
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Figure 10.  (a) A typical LIBS spectrum of S. aureus (methicillin resistant strain) 
acquired from the surface of a growth medium plate.  (b) A typical Raman 
spectrum acquired from the same specimen (in red).  (c)  The loading of PC1 
(top) and PC2 (bottom) for the fused LIBS/Raman data.  The LIBS data comprises 
the loadings up to 900 nm, demonstrating that the Raman data accounts for the 
largest contribution to the variance of the data.  However several emission lines 
in the LIBS data show loading contributions of equal intensity in PC1.  Reprinted 
from reference [56] with permission from Elsevier. 
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4. Summary and Outlook 
 
4.1 Summary 
Over the course of approximately 15 years, the use of LIBS for rapid bacterial classification or detection 
has been improved from initial proof-of-concept experiments to sophisticated experiments that clearly 
demonstrate clinical utility.  A summary of the most significant conclusions described in this review are 
provided in Table 1. 
 
 

Table 1 
A summary of the most significant conclusions described in this work. 

A LIBS spectrum bacterial classification utilizing an appropriately constructed library can provide a 
sensitive and specific test (high rates of true positives, low rates of false positives) to rapidly identify 
an unknown bacterial specimen or to differentiate between possible identifications. 
 
This LIBS spectral fingerprint: 

 Is robust, reliable, and persistent through time (multiple tests spanning years on the same 
strains of bacteria).  Minor changes in experimental conditions do not alter sample 
identifications. 

 Is capable of strain-level discrimination. 

 Is relatively growth-medium independent. 

 Is easily differentiable from other types of bio-organisms (molds, fungi, yeast). 

 Is independent of the state of growth of the cells (how “old” the bacteria are). 

 Is relatively independent of whether the bacteria are live or dead (or inactivated by UV light).  
Some differences are observed in killed bacterial cells, particularly when fs-LIBS is used. 

 Can be used for discrimination even when other types of bacteria or interferents are present 
(mixed samples, residual growth media, ablated substrates, other biotypes). 

 Can be obtained from urine specimens. 

 Can be obtained from even a single bacterial cell. 

 Can be obtained at standoff distances up to 20 m. 

 Can be fused with data from other optical modalities for enhanced discrimination. 

 Can be differentiated using a large variety of chemometric techniques (no single technique 
demonstrates greatly improved performance.) 

 Can be acquired with nanosecond pulses of any wavelength as well as femtosecond pulses. 

 
The wide variety of bacteria which have been tested with LIBS offers evidence of the utility of the 
approach.  Because the technique is not biochemically based, a single apparatus can identify any and all 
of the bacteria that are ablated in the LIBS plasma.  A summary of all the bacteria that have ever been 
tested in a LIBS apparatus, as well as an identification of the substrate upon which this analysis was 
performed, the state of the bacteria, the specific chemometric routine used in identification, and the 
type of laser utilized in the test are presented in table 2. 
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Table 2 
A summary of all the bacterial species/strains tested with LIBS. 

Micro-organism Reference Form Chemometric 
utilized 

Laser 
wavelengtha 

Acinetobacter baumannii ATCC 
BAA-1789 

66 Colony on blood agar PCA/PLS1 1064 

Acinetobacter baylyi 48 
Pellet, freeze-dried 
powder 

Hyperspace 
projection of 
trace elements 

810 (fs) 

Acinetobacter calcoaceticus 
[FJ816073]b 

71 Colony on glass slide PCA/PLS-RA 800 (fs) 

Arhodomonas sp. [EU308280] 71 Colony on glass slide PCA/PLS-RA 800 (fs) 

Bacillus anthracis var. Sterne 44 
Thin lawnc on nylon 
filter 

None 1064 

Bacillus anthracis var. Sterne 38 
Thin lawn on agar, 
glass slide 

PCA/PLS1 1064 

Bacillus atrophaeous 41 
Spore, aerosol 
stream 

None 1064 

Bacillus atrophaeous 52,37 
Dried film on Al disk, 
steel disk, 
polycarbonate disk 

NN, 
MLSRA,PLS-DA 

1064 

Bacillus atrophaeous 57 
Pellet, freeze-dried 
powder 

SVM 1064 

Bacillus aureus 35 Spore, EDB trap None 355 

Bacillus cereus 6E1 29,32 
Thin lawn on silver 
membrane filter 

PCA, linear 
correlation, 
and SIMCA 

1064 

Bacillus cereus ATCC 14603 57 
Pellet, freeze-dried 
powder 

SVM 1064 

Bacillus globigiid BG-1 39,40 
Pellet, freeze-dried 
powder  

None 1064 

Bacillus globigii BG-1 40 
Spore, aerosol 
stream  

None 1064 

Bacillus globigii BG-2 39,40 
Pellet, freeze-dried 
powder  

None 1064 

Bacillus globigii BG-2 40 
Spore, aerosol 
stream  

None 1064 

Bacillus globigii var. niger 29,42,32 
Thin lawn on silver 
membrane filter 

PCA, linear 
correlation, 
and SIMCA 

1064 

Bacillus globigii var. niger 30 

Continually 
refreshed dense 
aerosol cloud (from 
powder) and aerosol 
stream 

PCA 1064 
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Bacillus globigii var. niger 35,68 
Powder on double-
sided sticky tape 

No, linear 
correlation, 
PCA, PLS-DA 

1064x2 (DP) 

Bacillus globigii 168 43 
Colony (wet) on LB 
medium 

None 532 

Bacillus globigii  47 
Thin film lawn on 
cellulose nitrate 
membrane filter 

None 
810 (fs), 
1064 

Bacillus globigii 48 
Pellet, freeze-dried 
powder 

Hyperspace 
projection of 
trace elements 

810 (fs) 

Bacillus globigii 31 
Dried powder on 
solid substrate 

PCA, HCA, 
PCA+LDA 

1064 

Bacillus globigii ATCC 23857 66 Colony on blood agar PCA/PLS1 1064 

Bacillus megaterium QM B1551 43 
Colony (wet) on LB 
medium 

None 532 

Bacillus megaterium PV361 43 
Colony (wet) on LB 
medium 

None 532 

Bacillus stearothermophilus 
ATCC 12979 

57 
Pellet, freeze-dried 
powder 

SVM 1064 

Bacillus thurengensis 39,40 
Pellet, freeze-dried 
powder  

None 1064 

Bacillus thurengensis var. 
kurstaki 

29,32 
Thin lawn on silver 
membrane filter 

PCA, linear 
correlation, 
and SIMCA 

1064 

Bacillus thurengensis var. 
kurstaki 

44 
Thin lawn on nylon 
filter 

None 1064 

Bacillus thurengensis T34 43 
Colony (wet) on LB 
medium 

None 532 

Bacillus thuringiensis ATCC 
51912 

57 
Pellet, freeze-dried 
powder 

SVM 1064 

Bacillus sp. [GQ392044] 71 Colony on glass slide PCA/PLS-RA 800 (fs) 

Bacillus sp. [GQ226038] 71 Colony on glass slide PCA/PLS-RA 800 (fs) 

Bacillus sp. [HM026606] 71 Colony on glass slide PCA/PLS-RA 800 (fs) 

Enterobacter cloacae 
[FJ194527] 

71 Colony on glass slide PCA/PLS-RA 800 (fs) 

Enterobacter cloacae ATCC 
13047 

64,67 
Thin lawn on 
nutrient-free agar 

DFA, PLS-DA 1064 

Enterobacter sp. [CP000653] 71 Colony on glass slide PCA/PLS-RA 800 (fs) 

Enterobacter sp. [GU586319] 71 Colony on glass slide PCA/PLS-RA 800 (fs) 

Enterobacter sp.[FJ194525] 71 Colony on glass slide PCA/PLS-RA 800 (fs) 

Erwinia chrysanthemi 48 
Pellet, freeze-dried 
powder 

Hyperspace 
projection of 
trace elements 

810 (fs) 

Escherichia coli 39,40 
Pellet, freeze-dried 
powder 

None 1064 
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Escherichia coli 47,49 
Thin lawn on 
cellulose nitrate 
membrane filter 

None 
810 (fs), 
1064 

Escherichia coli 48 
Pellet, freeze-dried 
powder 

Hyperspace 
projection of 
trace elements 

810 (fs) 

Escherichia coli IHII/pHT315 43 
Colony (wet) on LB 
medium 

None 532 

Escherichia coli K-12 (AB), Hfr-
K12, HF4714, C (Nino C), 
O157:H7, ATCC 25922 

34,58,60, 
62,63,64, 
67 

Thin lawn on 
nutrient-free agar 

DFA, PLS-DA 1064 

Escherichia coli 70 
Thin lawn on 
cellulose nitrate 
membrane filter 

DFA, PLS-DA 1064 

Escherichia coli O157:H7 ATCC 
4389 

72 

Thin lawn on ground 
beef, bologna, 
chicken, milk, 
eggshell, lettuce, 
drain, cutting board, 
swab 

PCA/PLS1 1064 

Escherichia coli 75 
Thin lawn on filter 
paper 

None 1064 

Escherichia coli 76 
Thin lawn on filter 
paper and sausage 

None 1064 

Escherichia coli DH5α 65 Freeze-dried powder PCA,PLS2 1064 

Escherichia coli 77 
Thin lawn on silicon 
wafer 

DFA 266 

Escherichia coli  OV2 53 
Colony on LB, 
MacConkey, Brucella 
agar medium 

NN 1064 

Escherichia coli  ATCC 15597 37 
Dried film on Al disk, 
steel disk, 
polycarbonate disk 

PLS-DA 1064 

Escherichia coli K12 ATCC 10798 66 Colony on blood agar PCA/PLS1 1064 

Escherichia coli 80 
Thin lawn on glass 
slide 

None 1064 

Escherichia coli MC6-RP11, 
QCB1 

54 Colony on LB agar NN 1064 

Escherichia coli K12 74 
Thin lawn on 
plexiglass 

PCA/SIMCA 
1064, 775 
(fs) 

Escherichia coli 55 Unknown 
K-means 
classifier and 
NN 

1064 

Escherichia coli CCM 3954 56 Colony on MH agar 
PCA, Self-
Organizing 
Maps (NN) 

532 
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Escherichia coli K12, ATCC 
25922 

51 
Thin lawn on silicon 
wafer 

PCA, HCA 1064 

Escherichia coli ATCC 25254 79 
Thin lawn on 
plexiglass substrate 

None 1064 

Francisella tularensis vaccine 
strain 

38 
Thin lawn on agar, 
glass slide 

PCA/PLS1 1064 

Klebsiella pneumoniae ATCC 
13882 

66 Colony on blood agar PCA/PLS1 1064 

Klebsiella pneumonia K21P, 
K18P, K17P, K16R, K11CM, 
K11P, K7P,K6P, K3C, K2P 

54 Colony on LB agar NN 1064 

Listeria innocua 73 
Pellet, freeze-dried 
powder 

PCA, 
Mahalanobis 
discriminant 
analysis (MDA) 

266 

Methylophilus methylotrophus 
[AB193724] 

71 Colony on glass slide PCA/PLS-RA 800 (fs) 

Methylophilus sp. [AY436800] 71 Colony on glass slide PCA/PLS-RA 800 (fs) 

Methylophilus sp. [EU375653] 71 Colony on glass slide PCA/PLS-RA 800 (fs) 

Methylophilus sp. [GQ175365] 71 Colony on glass slide PCA/PLS-RA 800 (fs) 

Micrococcus luteus 80 
Thin lawn on glass 
slide 

None 1064 

Mycobacterium smegmatis 
wild-type, TE, TA 

62,63,64,67 
Thin lawn on 
nutrient-free agar 

DFA, PLS-DA 1064 

Mycobacterium smegmatis 70 
Thin lawn on 
cellulose nitrate 
membrane filter 

DFA, PLS-DA 1064 

Paenibacillus sp. [AY728023] 71 Colony on glass slide PCA/PLS-RA 800 (fs) 

Pantoea agglomerans 
[FJ611822] 

71 Colony on glass slide PCA/PLS-RA 800 (fs) 

Proteus mirabilis 39,40 
Pellet, freeze-dried 
powder 

None 1064 

Pseudomonas aeruginosa M841 53 
Colony on LB, 
MacConkey, Brucella 
agar medium 

NN 1064 

Pseudomonas aeruginosa 59 
Thin lawn on 
nutrient-free agar 

DFA 1064 

Pseudomonas aeruginosa 70 
Thin lawn on 
cellulose nitrate 
membrane filter 

DFA, PLS-DA 1064 

Pseudomonas aeruginosa 
[HM036358] 

71 Colony on glass slide PCA/PLS-RA 800 (fs) 

Pseudomonas aeruginosa ATCC 
33580 

66 Colony on blood agar PCA/PLS1 1064 

Pseudomonas aeruginosa PA1-
PA19 

54 Colony on LB agar NN 1064 
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Pseudomonas putida 73 
Pellet, freeze-dried 
powder 

PCA, 
Mahalanobis 
discriminant 
analysis (MDA) 

266 

Salmonella enterica serovar 
Typhimuriume 77 

Thin lawn on silicon 
wafer 

DFA 266 

Salmonella enterica ATCC 8324 72 

Thin lawn on ground 
beef, bologna, 
chicken, milk, 
eggshell, lettuce, 
drain, cutting board, 
swab 

PCA/PLS1 1064 

Salmonella pollorum 1JVC, 
1/1Km, 2/1Km 

54 Colony on LB agar NN 1064 

Salmonella salamae 2JVC, 
1/2Km, 2/2Km 

54 Colony on LB agar NN 1064 

Salmonella typhymurium 
LB5010 

53 
Colony on LB, 
MacConkey, Bucella 
agar medium 

Neural 
networks 

1064 

Salmonella typhimurium SL-
1344, 1/22Km, 2/22Km 

54 Colony on LB agar NN 1064 

Salmonella typhymurium 73 
Pellet, freeze-dried 
powder 

PCA, 
Mahalanobis 
discriminant 
analysis (MDA) 

266 

Salmonella typhymurium 51 
Thin lawn on silicon 
wafer 

PCA, HCA 1064 

Shewanella oneidensis 48 
Pellet, freeze-dried 
powder 

Hyperspace 
projection of 
trace elements 

810 (fs) 

Staphylococcus aureus 39,40 
Pellet, freeze-dried 
powder 

None 1064 

Staphylococcus aureus MRSA: 
LP9, MM61, MM66, MM66-4 

65 Freeze-dried powder PCA,PLS2 1064 

Staphylococcus aureus 62,64,67 
Thin lawn on 
nutrient-free agar 

DFA,PLS-DA 1064 

Staphylococcus aureus 77 
Thin lawn on silicon 
wafer 

DFA 266 

Staphylococcus aureus SH1000, 
SH1000-1, RN4220, RN4220-fail, 
MRSA: LP9, MM61, MM66, 
MM66-4 

66 Colony on blood agar PCA/PLS1 1064 

Staphylococcus aureus 73 
Pellet, freeze-dried 
powder 

PCA, 
Mahalanobis 
discriminant 
analysis (MDA) 

266 
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Staphylococcus aureus 55 Unknown 
K-means 
classifier and 
NN 

1064 

Staphylococcus aureus 51 
Thin lawn on silicon 
wafer 

PCA, HCA 1064 

Staphylococcus aureus CCM 
4223, CCM 4750 (MRSA), CCM 
3953 (MSSA) 

56 Colony on MH agar 
PCA, Self-
Organizing 
Maps (NN) 

532 

Staphylococcus aureus ATCC 
25923 

79 
Thin lawn on 
plexiglass substrate 

None 1064 

Staphylococcus epidermidis 64 
Thin lawn on 
nutrient-free agar 

DFA,PLS-DA 1064 

Staphylococcus epidermidis 70 
Thin lawn on 
cellulose nitrate 
membrane filter 

DFA, PLS-DA 1064 

Staphylococcus 
pseudointermedius 

56 Colony on MH agar 
PCA, Self-
Organizing 
Maps (NN) 

532 

Staphylococcus saprophyticus 62,64,67 
Thin lawn on 
nutrient-free agar 

DFA, PLS-DA 1064 

Staphylococcus sciuri 56 Colony on MH agar 
PCA, Self-
Organizing 
Maps (NN) 

532 

Streptococcus mutans 60,62,64,67 
Thin lawn on 
nutrient-free agar 

DFA, PLS-DA 1064 

Streptococcus viridans 62,63,64,67 
Thin lawn on 
nutrient-free agar 

DFA,PLS-DA 1064 

aall lasers have ns pulse duration unless otherwise noted 
bGenbank accession number 
cLawn usually denotes a liquid suspension deposited on a substrate then allowed to dry for a variable 
amount of time to form a thin, dry or semi-dry film.  A colony means a growth accumulation region 
not in suspension or dispersed in a liquid. 
dBacillus globigii is also known as Bacillus subtilis 
eS. enterica serovar Typhimurium is commonly referred to by its serovar identification only as S. 
typhimurium or by its more proper taxonomic identification, S. Typhimurium 

 
 
4.2 Outlook 
The body of literature summarized here makes clear that the use of a LIBS-based diagnostic to identify 
unknown bacteria in a specimen, and to differentiate those bacteria from the normal non-pathogenic 
flora that are to be found ubiquitously in nature is eminently feasible.  While the fundamentals have 
been well-established there are several important questions that yet remain to be answered which 
should provide research impetus for years to come.   
 
The single most important advance that could be initiated is the use of a LIBS-diagnostic in a clinical 
environment such as a clinic or hospital microbiology laboratory.  The majority, if not all, of the 
experiments performed here were done in a research setting within either a university, institute, or 
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company.  And while clinical microbiologists and pathologists have been involved, the extent of these 
collaborations has usually been to provide LIBS practitioners, who are usually not microbiologists, with 
credible and realistic samples to test.  This is not the same as performing experiments on actual samples 
obtained in a clinical environment, either human or otherwise (perhaps the use in a veterinary 
environment may occur first due to the lowered regulatory thresholds.)  In any case, tests should be 
performed on actual clinical specimens that have been obtained in duplicate by medical personnel using 
the standard collection protocols and these specimens should be then tested with both LIBS and via 
whatever modality is in use at that institution so that a true comparison of the accuracy of the LIBS test 
against other gold-standard methods can be performed.  In addition to the accuracy of the results, this 
would also allow for the first time an analysis of the workflow burden that the introduction of a new test 
would introduce to a clinical setting as well as illuminate any savings in time that would be gained.  Of 
course, it is obvious that the results of any such tests could in no way be used to direct patient 
treatment, as this is a completely unregulated and unapproved (as of yet) testing modality.  But it would 
be a crucial first step toward initiating trials that could lead to regulatory approval. 
 
The lowest number of cells that can be detected with the LIBS diagnostic has been measured in a variety 
of experiments (as detailed in section 3.6) in a research setting, and has been shown to be quite low.  
What remains to be demonstrated is whether the number of cells obtained in a clinical specimen is 
adequate for sensitive and specific identification and whether it is consistently distinguishable from 
“negatives,” or specimens containing no bacteria.  As negative samples are routinely acquired in clinical 
environments which now require an ever-increasing number of tests to err on the side of caution, the 
rate of false-positives on negative samples will need to be exceedingly low for the test to be accepted by 
clinical microbiologists. 
 
Another important area of concern is the testing of “mixed samples.”  A mixed sample is one in which it 
would be typical to find numerous types of different bacteria, most of which are non-pathogenic and do 
not need to be treated.  One example of this would be a swab of the inside of the mouth, another is the 
gastrointestinal tract.  The only investigations of this were discussed in section 3.6.  Because the LIBS 
spectra of bacteria do not possess great diversity and almost all spectra contain the same atomic and 
ionic emission lines, the extent to which a pathogenic microorganism could be identified in the presence 
of a background of non-pathogenic flora is unknown.  The utility of a LIBS test on specimens derived 
from such a mixture of bacteria utilizing the techniques currently available cannot at this time be 
evaluated.   
 
A final area of interest showing significant promise is the use of a LIBS test not as a tool for 
microbiological identification in a clinical setting, but rather as a rapid and convenient assay of cellular 
elemental composition.  It is this use of the technique, referred to here as atomic microbiology, which 
could provide research microbiologists with a new laboratory tool.  The alteration of cellular chemistry 
due to environmental or pharmacological influences is an area of microbiological study, and it has been 
shown that the LIBS assay is an effective technique for monitoring changes in this biochemistry as 
discussed in section 3.3.  The development of a convenient benchtop instrument easily usable by non-
experts and a suitable mounting protocol for specimens to be tested with such an instrument would 
allow the introduction of the LIBS technique into such studies.  The presence of such a tool in a 
microbiology laboratory might then initiate new research areas which could make use of the ready 
availability of the high-throughput, fairly straightforward and inexpensive assay.  
 
So it should be clear that the next step in the introduction of a LIBS-based diagnostic into clinical 
medicine or microbiology research is the continuing inclusion of experts in these areas of science into 
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teams containing LIBS experts and the increasing exportation of LIBS technology from the LIBS 
laboratories into those other settings.  Continued cooperation between LIBS practitioners and the 
ultimate end-users of the technology is the most certain way to insure the early adoption of the 
technology into those fields. 
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