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ABSTRACT 

 

Dynamic risk management requires the risk measures to adapt to information 

at different times, such that this dynamic framework takes into account the time 

consistency of risk measures interrelated at different times. The value-at-risk (VaR) 

is one of the most well-known downside risk measures due to its intuitive meaning 

and broad range of applications in practice, however the static version embraces 

more popularity. This study investigates dynamic VaR modelling using four 

conditional volatility forecasting models: GARCH, TGARCH, GJRGARCH and 

IGARCH, and compares the forecasting output of the suggested GARCH-based 

volatility models. Since the predictive accuracy of Value-at-Risk (VaR) models is 

crucial for adequate capitalization, we perform backtesting on VaR forecasts and 

compare our suggested GARCH models, as well as different distributions for their 

innovations and confidence levels for VaR. 

 

Key words: Value at risk (VaR), GARCH, volatility, dynamic, forecast, 

backtesting, risk management 
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CHAPTER 1 

 

1. Introduction 

Uncertainty modelling is an integral part of financial practices, with applications in 

portfolio allocation, risk management, and financial contract pricing. The basic question 

of how much volatility we can anticipate for future prices of financial contracts has 

sparked a wide body of research into the statistical properties of price fluctuations and 

how we can use them to make better predictions. By taking into account some of the 

stylized effects of financial data, the ARCH (Autoregressive Conditional 

Heteroscedasticity) model proposed by Engle (1982) and GARCH (Generalized 

Autoregressive Conditional Heteroscedasticity) model developed by Bollerslev (1986), 

represent a landmark breakthrough in the field of financial modelling. Introducing the 

ARCH model won its author, Robert Engle, the Nobel Prize in 2003, among other 

honors. Its primary contribution is that it makes uncertainty a dynamic operation. Rather 

than assuming that future variance is constant, the ARCH and GARCH families of 

models recognize that it is a time-varying operation.  

It can be very costly to ignore the ARCH effect and underplay short-term volatility. Risk 

management mechanisms in investment portfolios must evaluate the likelihood of a 

significant loss. An analyst underestimates the inner risk of financial contracts by 

assuming constant uncertainty and can be shocked by extreme unforeseen losses in the 

investment portfolio. Similarly, banking regulations such as Basel III require banks to 

disclose their portfolio risk level systematically and on a regular basis. Given that banks 

serve as liquidity centers, a miscalculation of uncertainty and risk will endanger the 

financial system's stability, as an unforeseen financial shock will cause banks to rapidly 

liquidate financial contracts and increase their cash position.  

The value-at-risk (VaR) model, with all its challenges, is still the workhorse of risk 

management. One of VaR's major flaws is that it fails to account for volatility clustering, 

resulting in VaR limits being exceeded in serial dependence over time. As a consequence, 
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during a crisis, the risk is undervalued. Combining VaR with GARCH models, which 

take conditional volatility into account, is a powerful way to solve this problem. 

Value-at-Risk is rigorously empirical in that it employs mathematical techniques 

established in physics and engineering; however, it employs statistical techniques that 

depend on several assumptions. One of the most important of these assumptions is that 

the return on financial prices follows a normal distribution. 

In mathematics, economics, and finance, the issue of risk measurement is an ancient one. 

Regulators and financial executives have been concerned with financial risk management 

for a long time, and this history includes some VaR-like terms. VaR, on the other hand, 

did not become a distinct term until the late 1980s. The stock market crash of 1987 was 

the catalyst. This was the first major financial crisis in which a large number of 

academically trained quants were in high enough positions to be concerned about the 

firm's long-term survival, as Jorion points out (2007). 

Value-at-Risk (VaR) has become an industry standard indicator of business risk. It gives 

financial institutions details on the estimated worst loss at a given confidence level over a 

target horizon. Despite its significance and simplicity, there is no widely accepted 

formula for calculating a portfolio's VaR, and different models will result in substantially 

different risk measures. One of the most important considerations when using the VaR 

method to estimate market risk is the selection of the appropriate model; for example, a 

poorly defined model may be costly to the risk manager and lead to incorrect risk 

estimates. Furthermore, the massive losses suffered by financial institutions during the 

recent global financial crisis, in 2007–2008, have posed doubts about the risk models in 

place. These issues are directly related to the controversy between the financial sector, 

regulators, and academics about probabilistic market models for VaR forecasting, which 

can account for extreme events and increased volatility during financial market 

downturns. 

The prediction of market volatility is critical in obtaining accurate VaR measures, 

particularly given its time-varying existence and some prominent stylized facts of stock 

returns. Indeed, there is a lot of evidence that small-scale price variations alternate with 

large-scale price variations; this is known as volatility clustering. To capture the volatility 
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clustering effect, a number of econometric models have been proposed, the most 

commonly used of which is the GARCH model (Bollerslev, 1986). Former GARCH-

based VaR models used the normal distribution resulting from the Brownian motion 

assumption as a benchmark process for explaining return developments, drawing 

criticism that such a distributional assumption can not adequately capture the frequency 

of severe asset price shocks, as well as the amplitude of these shocks, and sometimes 

leads to risk underestimation. More specifically, we want to see if GARCH-type models 

can model conditional volatility and VaR for global stock market indices under different 

error distribution assumptions. We use the standard GARCH model, GJR, IGARCH, and 

TGARCH among the conditional volatility models.  

The aim of this study is to devise a method for accurately estimating Value at Risk in the 

face of time-varying volatility. Our time series data consists of S&P 500 index prices 

from 2013-2019 resulting in 1762 observations. We will provide a review of the related 

literature in the next section. In section 3 we provide information about the data and 

methodology used for this analysis. We present our empirical results in chapter 4 

followed by a conclusion in chapter 5.  

 

CHAPTER 2 

 

2. Literature review 

There is a substantial amount of literature on VaR and its forecasting efficiency under 

various model specifications. After the notorious 2008 financial crisis, more research has 

been done on strengthening and fixing the inadequacies of the VaR model, as well as its 

underlying volatility modelling.  

Nieto and Ruiz (2016) compared the forecasting potential of various GARCH-based VaR 

models to their alternatives in an updated report. Surprisingly, the analysis found that 

forecasting outcomes are affected by the number of out-of-sample observations as well as 

the time span being studied. They concluded that no single model outperforms another in 
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any situation. Furthermore, only the asymmetric EGARCH-based model with skewed 

Student’s-t distribution can be approved under the various model tests. 

When modelling financial market uncertainty, Bentes (2015) and Huang et al (2016) 

offer new justifications for accounting for long memory characteristics. The former 

applies various GARCH models to the forecasting of gold return volatility, demonstrating 

that the long memory FIGARCH outperforms its competitors. As a result, even after the 

financial crisis, the implementation of long memory models could boost empirical 

applications such as VaR. Nevertheless, Degiannakis et al (2013) examined returns from 

20 established stock market indices and discovered that, despite the evidence of 

persistence in the volatility process, accounting for long memory does not always boost 

the resulting VaR forecasts. Updated research on the efficiency of various GARCH-based 

VaR models can be found in Ardia and Hoogerheide (2014) and Abad et al (2014).  

According to So and Yu (2006), different GARCH-based VaR models perform better at 

different significance levels. These results point to a new line of inquiry, which might 

look at the dominance and success of these VaR models over time periods with varying 

market conditions (causing a change in market regime). Given previous findings that the 

long-memory FIEGARCH was the dominant model for VaR forecasts in the South 

African industry, it is not immediately clear if it remains the preferred model when 

evaluated through individual sub-periods with varying market conditions.  

Tabasi et al. (2019) used GARCH models to model the volatility-clustering feature and 

found that using the t-student distribution function instead of the Normal distribution 

function improved model parameter estimation. 

Based on MSCI World Index data from 2006 to 2009, Husng et al. (2015) discovered that 

ARMA (1,1)-GARCHM (1,1) performs the best in terms of violation measures. 

Emenogu et al. (2020) discovered that the persistence of the GARCH models is robust, 

with the exception of a few cases where IGARCH and EGARCH were unstable. The 

SGARCH and GJRGARCH models also failed to converge for student t innovation; the 

mean reverting number of days for returns varied between models. 
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For all confidence levels, Altun (2018) found that GARCH models listed under the TSLx 

innovation distribution produce more accurate VaR forecasts than other competing 

models. 

Slim et al. (2017) claimed that in developed markets, the related models show signs of 

long memory, suggesting that the FIGARCH model is preferable to the GARCH and GJR 

models. In frontier and emerging markets, the GJR and GARCH are the most important 

specifications for capturing risk. This means that when analysing frontier markets, risk 

managers should favour models that account for asymmetry. 

Okpara (2015) used the VaR method to conduct a risk analysis of the Nigerian stock 

market. The study concluded that using the Akaike information criterion (AIC), the 

EGARCH model with student t innovation distribution could provide a more reliable 

estimate of VaR, and using the probability ratio tests of proportional failure rates on VaR 

derived from the EGARCH model. 

Apart from the above contradictory observations, there are ongoing questions about the 

accuracy and validity of GARCH-based VaR models. Hafer and Sheehan (1989), for 

example, looked at the sensitivity of VaR forecasts to different lag structures in the 

underlying time series. They conclude that VaR forecasts are responsive to changes in lag 

structure, and that the relative accuracy of VaR forecasts is strongly influenced by the 

forecast horizon chosen.  

According to Elenjical et al (2016), different VaR models perform better depending on 

the state or behaviour of the market when examined over periods of different market 

conditions. Similarly, Ng Cheong Vee et al. (2014) have discovered that if markets are 

classified, common models could be able to forecast their VaR accurately. 

According to Bali and Cakici (2004), stock size, liquidity, and VaR may explain cross-

sectional variance in expected returns better than beta and total volatility, and that the 

relationship between average returns and VaR is robust for various investment horizons 

and loss probability levels, with VaR having additional explanatory power for stock 

returns. 
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CHAPTER 3 

 

3. Data and Methodology 

Generally speaking, the development of risk measurement goes through three stages: 

firstly, the traditional risk measurement stage with variance and risk factors as the main 

indicators. Secondly, the modern risk measurement stage represented by the VaR, and 

finally risk measurement stage represented by Conditional VaR (CVaR). 

In this study, we focus on VaR method. We use the data on daily S&P 500 closing prices 

extracted from Yahoo finance database and in order to avoid possible structural breaks, 

we extract the data from 2013-2019 period resulting in 1762 daily observations during a 

time span of 7 years. The Standard and Poor's 500, or simply the S&P 500, is a free-float, 

weighted stock market index that includes 500 of the largest companies listed on US 

stock exchanges. It is one of the most widely tracked stock market indices. We use 

Rstudio software for programming and modeling data to provide our results. 

In this study, we use log return formula to obtain the return series of S&P 500 closing 

prices: 

𝑟𝑡 = ln𝑝𝑡 − ln 𝑝𝑡−1 

Where 𝑟𝑡 denotes the daily log returns and 𝑝𝑡 is the daily closing index price. 

 

3.1. Value at Risk (VaR) 

VaR is defined as the predicted loss at a specific confidence level over a given period of 

time. The VaR concept has emerged as the most prominent measure of downside market 

risk. It places a lower bound on losses at a given confidence level over a given forecast 

horizon. Thus, assuming that the VaR model is correct, realized losses will exceed the 

VaR threshold with only a small target probability 𝛼, typically chosen between 1% and 

5%.  

To obtain VaR we need to determine the following three factors: the length of the holding 

period, the size of the confidence interval and the period of the observation. 
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i. The length of the holding period is used to decide how long the maximum loss of 

assets must be calculated. This refers to whether the managers are worried about the 

assets' value at risk in a day, a week, or a month. 

ii. The confidence level, which is the frequency of possible confidence intervals that 

contain the true value of their corresponding parameter. 

iii. The observation period, also known as the historical window, is the overall length of 

time for the observations. For example, to consider the weekly returns volatility of an 

asset, we may choose an observation period of the previous 6 months or 1 year. The 

longer the historical data, the better, in order to avoid the influence of the business 

cycle. However, the longer the period, the greater the chance of market structural 

changes resulting in lower accuracy in representing future actual results. 

More specifically, according to the definition of VaR, conditional on the information 

until time t - h, the VaR on time t of one unit of investment is the 𝛼 quantile of the 

conditional return distribution, that is: 

𝑉𝑎𝑅𝑡 = 𝑞𝛼(𝑟𝑡|ℱ𝑡−ℎ) = inf{𝑥 ∈ ℝ|𝑃(𝑟𝑡 ≤ 𝑥|ℱ𝑡−ℎ) ≥ 𝛼} 

where 𝑞𝛼 denotes the quantile function, 𝑟𝑡 is the index return in period t, and ℱ𝑡−ℎ 

designates the information available at date t-h. When the expected returns, 𝑟𝑡 , are 

assumed to follow a location-scale distribution, they are regarded as a function of an 

innovation process, 𝜀𝑡. Therefore, under the specified probability level 𝛼, if the return is 

negative or we have a loss, the probability with which the observed loss exceed estimated 

loss can be expressed as follows: 

Pr(𝑟𝑡 ≤ 𝑉𝑎𝑅𝛼(𝑟𝑡)) = 𝛼 

According to our results we use an autoregressive model of order 1, AR (1) to model the 

returns process. The AR (1) model is defined as follows: 

𝑟𝑡 = 𝐾 + 𝑎𝑟𝑡−1 + 𝜀𝑡 

Where 𝜀𝑡 denotes the innovation at time t, K is a constant and 𝑎 is the AR (1) coefficient. 

For error terms we have: 𝐸(𝜀𝑡) = 0 

Now let  𝜇𝑡 = 𝐾 + 𝑎𝑟𝑡−1 , then we have: 𝑟𝑡 − 𝜇𝑡 = 𝜀𝑡 ⟹
𝑟𝑡−𝜇𝑡

𝜎𝑡
=

𝜀𝑡

𝜎𝑡
  



 

8 
 

Thus, we have:  𝑟𝑡 − 𝜇𝑡 = 𝜀𝑡 = 𝜎𝑡𝑧𝑡 where the sequence 𝑧𝑡 =
𝑟𝑡−𝜇𝑡

𝜎𝑡
  represent the 

standardized residuals from some probability distribution, D, with mean zero and unit 

variance. Thus, we have: 𝐸(𝜀𝑡
2) = 𝜎𝑡

2  and 𝜀𝑡~𝐷(0, 𝜎𝑡
2).       

𝑟𝑡 = 𝜇𝑡 + 𝜎𝑡𝑧𝑡 

Now, having the equation for 𝑟𝑡 we can obtain the equation for VaR as follows: 

𝑉𝑎𝑅𝑡
𝛼(𝑟𝑡+1) = 𝜇𝑡+1 + 𝜎𝑡+1𝑉𝑎𝑅𝑡

𝛼(𝑧) 

or 

𝑉𝑎𝑅𝑡
𝛼 = 𝜇𝑡 + 𝜎𝑡𝑞𝑧

𝛼 

where 𝜇𝑡 and 𝜎𝑡 are calculated recursively using the AR(1) and GARCH(1,1) equations 

and 𝑞𝑧
𝛼 is α percent quantile from the fitted distribution to 𝑧𝑡. 

As we can see from above equation for VaR, there are three components that result in an 

estimate or returns. The first component is 𝜇𝑡, which depends on how we model the mean 

of returns. However, as we will see in chapter 4, the mean of our return series is about 

zero, meaning that the accuracy of modeling the mean may not impose a great impact on 

modeling returns, and this fact is true for most of the other financial data. While the main 

component that can affect our return series and other financial data is 𝜎𝑡, since financial 

data are highly affected by their volatility. Thus, the more we can improve our 

predictions on volatility, the more we can achieve higher accuracy in predicting the VaR. 

The last component 𝑧𝑡, is related to the distribution of residuals. Thus, selecting a 

distribution which is a better representative of our data, will lead to a better forecast for 

our returns. In this study, we mainly focus on improving the volatility forecasts by 

comparing the results on four different GARCH models and we consider two 

distributions for residuals, being normal and student-t distribution, in order to provide 

related comparisons.   

As we can see from graph the below, although normal distribution and student-t 

distribution look similar in that they are both centered at zero and have a basic bell-shape, 

but t distribution is shorter and flatter around the center than the normal distribution. Its 

standard deviation is proportionally larger compared to the normal, which is why we see 



 

9 
 

the fatter tails on each side. Since fat tails are a well-known characteristic of financial 

data, we expect that considering a student-t distribution may provide better results in our 

modeling.   

 

 

 

3.1.1. Popular approaches of VaR calculation 

“One of the most difficult aspects of calculating VaR is selecting among the many types 

of VaR methodologies and their associated assumptions.” (Minnich, 1998) 

Although there are many different methods for calculating VaR, there are three main 

methods that are mentioned in the documented regulations related to financial services 

mainly the banking industry. 

 

i. Historical simulation Method 

The historical method simply re-organizes actual historical returns, putting them in order 

from worst to best. It then assumes that history will repeat itself, from a risk perspective. 

It picks an α quantile of the ordered historical series as the α% VaR. 

ii. Delta-Normal (Variance-Covariance) Method 

This method assumes that stock returns are normally distributed. In other words, it 

requires that we estimate only two factors—an expected (or average) return and a 
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standard deviation—which allow us to plot a normal distribution curve. The idea behind 

the variance-covariance is similar to the ideas behind the historical method—except that 

we use the familiar curve instead of actual data. The advantage of the normal curve is that 

we automatically know where the worst 5% and 1% lie on the curve. They are a function 

of our desired confidence and the standard deviation. 

iii. Monte Carlo Simulation 

The third method involves developing a model for future stock price returns and running 

multiple hypothetical trials through the model. A Monte Carlo simulation refers to any 

method that randomly generates trials, but by itself does not tell us anything about the 

underlying methodology. 

In this study, we provide some comparisons on our suggested method and the first two 

approaches mentioned above.  

 

3.2. Modeling volatility 

Financial econometrics and financial time series analysis help us understand how prices 

behave and how this insight can help us mitigate risk and make better decisions. This is 

done using time series models for forecasting, option pricing and risk management. 

Volatility modeling requires two main steps: 

• Specify a Mean equation (e.g. ARMA, AR, MA, ARIMA) 

• Model a Volatility equation (e.g. GARCH, ARCH) 

To determine the mean equation, we use the Box-Jenkins method which consists of three 

major steps: 

• Identification 

• Estimation 

• Diagnostic Checking 

Following the above-mentioned procedure, in order to identify the model we use the 

Akaike Information Criterion (AIC). AIC estimates the quality of each model relative to 

each of the other models. 
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𝐴𝐼𝐶 = ln
∑ 𝜀̂2

𝑇
+
2𝑘

𝑇
 

Where: ∑𝜀̂2 is the sum of squared residuals, T is the number of observations and k is the 

number of model parameters (p+q+1).  

It is obvious that when extra lag parameters are added to the model Sum Squared of 

Residuals decreases but overfitting problems may occur. AIC deals with both the risk of 

overfitting and underfitting. The model with the lowest AIC will be selected. 

The results in this study approve an ARMA(1,0) model for the mean of the return series. 

Thus for our volatility modeling an AR(1) model for the mean returns is assumed in all 

GARCH type models. 

The procedure for diagnostics checking includes observing residual plot and its ACF and 

PACF diagram, and check Ljung-Box test result. If ACF and PACF of the model 

residuals show no significant lags, the selected model is appropriate. 

To further test the hypothesis that the residuals are not correlated, we perform Ljung-Box 

test. 

𝑄𝐿𝐵 = 𝑇(𝑇 + 2)∑
�̂�𝑖
2

𝑇 − 𝑖

𝑚

𝑖=1

 

The 𝑄𝐿𝐵 statistic follows asymmetrically a 𝜒2 distribution with m-p-q degrees of 

freedom. The null hypothesis refers to  𝐻0:𝜌1 = 𝜌2 = ⋯ = 𝜌𝑚 = 0 

Previously we mentioned our returns equation as: 𝑟𝑡 = 𝜇𝑡 + 𝜀𝑡. Thus, we assume that the 

return series is decomposed into two parts, where 𝜇𝑡 is the predictable component and 𝜀𝑡 

is the unpredictable part or innovation process.  

We defined the unpredictable component as: 𝜀𝑡 = 𝜎𝑡𝑧𝑡 where 𝑧𝑡 is a sequence of 

independently and identically distributed random variables with zero mean and variance 

equal to 1. The conditional variance of 𝜀𝑡 is 𝜎𝑡, a time-varying function of the 

information set at time t−1. The next step is to define the second part of the error term 

decomposition, which is the conditional variance, 𝜎𝑡. For such a task, we can use a 

GARCH type model with one lag on ARCH and GARCH effects. 
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GARCH 

Developed by Bollerslev (1986), the conditional variance in the GARCH(1,1) 

specification with AR(1) mean model is represented by: 

𝑟𝑡 = 𝐾 + 𝑎𝑟𝑡−1 + 𝜀𝑡 

And by setting  𝜇𝑡 = 𝐾 + 𝑎𝑟𝑡−1 we have: 

𝜀𝑡 = 𝑟𝑡 −𝜇𝑡, 𝜀𝑡~𝐷(0, 𝜎𝑡
2)𝑖𝑖𝑑 

𝜎𝑡
2 = 𝜔 + 𝛼1𝜀𝑡−1

2 + 𝛽1𝜎𝑡−1
2  

Where the parameter 𝛼1 is the ARCH parameter and 𝛽1 is the GARCH parameter, and 

the conditional variance process is positive and stationary if the following conditions 

hold:  

𝜔 > 0, 𝛼1 > 0, 𝛽1 > 0𝑎𝑛𝑑𝛼1 + 𝛽1 < 1 

The restriction on ARCH and GARCH parameters (𝛼1,𝛽1) suggests that the volatility is 

finite. The GARCH(1,1) model can only handle short memory in the volatility process 

since its autocorrelation function decays rapidly with an exponential rate of 𝛼1 + 𝛽1. 

 

TGARCH 

The threshold GARCH model, developed by Zakoian (1993), is another model used to 

handle leverage effects, and a TGARCH(1,1) model is given by the following: 

𝜎𝑡 = 𝜔 + 𝛼1𝜎𝑡−1(|𝑧𝑡−1| − 𝜂11𝑧𝑡−1) + 𝛽1𝜎𝑡−1 

and 𝛼1𝑎𝑛𝑑𝛽1 are nonnegative parameters and |𝜂11| ≤ 1 satisfying conditions similar to 

those of GARCH models. 

 

GJRGARCH 

In financial markets, it is often the case that downward movements in the market are 

followed by higher volatility than upward movements of the same magnitude (Engle and 
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Ng, 1993). This asymmetry can be modeled using the GJR model of Glosten et al. 

(1993), where the impact of 𝜀𝑡−1
2  depends on the sign of the shock, that is: 

𝜎𝑡
2 = 𝜔 + 𝛼1𝜀𝑡−1

2 + 𝛽1𝜎𝑡−1
2 +𝛾1𝜀𝑡−1

2 𝐼𝑡−1 

Where 𝐼𝑡−1 is equal to unity if 𝜀𝑡−1 < 0 and zero otherwise. The conditional volatility is 

positive when parameters satisfy 𝜔 > 0, 𝛼1 + 𝛾1 > 0, 𝛽1 > 0 and 𝛾1 represents the 

leverage term. The process is covariance stationary if 𝛼1 + 𝛽1 +
1

2
𝛾1 < 1. The impact of 

shocks on conditional variance is asymmetric if 𝛾1 is significantly different from zero. 

This model allows positive shocks to have a stronger effect on volatility than negative 

shocks (Rossi 2004).  

 

IGARCH 

Integrated GARCH (IGARCH) models are unit-root GARCH models. The IGARCH(1, 

1) model is specified in Tsay (2005) as 

𝜎𝑡
2 = 𝜔 + (1 − 𝛽1)𝜀𝑡−1

2 + 𝛽1𝜎𝑡−1
2  

 

Where 0 <𝛽1  < 1. The model is also an exponential smoothing model for the 𝜀𝑡
2 series. 

To see this, we rewrite the model by repeated substitution as: 

𝜎𝑡
2 = (1 − 𝛽1)(𝜀𝑡−1

2 + 𝛽1𝜀𝑡−1
2 +𝛽1

2𝜀𝑡−3
3 +⋯) 

which is a well-known exponential smoothing formation in which 𝛽1 is the discounting 

factor (Tsay 2005). 

 

3.2.1. Evaluating accuracy of the model 

Mean Absolute Error (MAE) and Mean squared error (MSE) are two of the most 

common metrics used to measure accuracy for continuous variables. 

Mean Absolute Error (MAE): MAE measures the average magnitude of the errors in a set 

of predictions, without considering their direction. It’s the average over the test sample of 
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the absolute differences between prediction and actual observation where all individual 

differences have equal weight. It measures the average of the residuals in the dataset. 

𝑀𝐴𝐸 =
1

𝑛
∑|𝜎𝑡

2 − �̂�𝑡
2|

𝑛

𝑖=1

 

Mean squared error (MSE): MSE is a quadratic scoring rule that also measures the 

average magnitude of the error. It’s the square of the average of squared differences 

between prediction and actual observation. It measures the variance of the residuals. 

𝑀𝑆𝐸 =
1

𝑛
∑(𝜎𝑡

2 − �̂�𝑡
2)2

𝑛

𝑖=1

 

Both MAE and MSE express average model prediction error in units of the variable of 

interest. Both metrics can range from 0 to ∞ and are indifferent to the direction of errors. 

They are negatively oriented scores, which means lower values are better as an indication 

for more accuracy in the model. 

In MSE, since the errors are squared before being averaged, it gives large errors a lot of 

weight. As a result, when large errors are especially undesirable, the MSE should be 

more useful. On the other hand, when the total effect is proportionate to the real increase 

in error, MAE is more useful. For example, if error values increase from 3 to 6, the effect 

on the result is doubled. It is more common in the financial industry, where a loss of six 

is twice as bad as a loss of three. In contrast to a non-differentiable function like MAE, 

MSE is a differentiable function that makes mathematical operations easier. MAE is 

more robust to data that contains outliers.  

 

3.3. Back-testing procedure 

A historical backtest is a good way to check the model's performance. In backtesting a 

risk model, we compare the estimated VaR with the actual return over the period. A 

VaR exceedance occurs when the return is more negative than the VaR. 

In order to back-test the accuracy for the estimated VaRs, we compute the empirical 

failure rates. By definition, the failure rate is the number of times returns (in absolute 
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values) exceed the forecasted VaR. If the model is correctly specified, the failure rate 

should be equal to the specified VaR's level. In this study, the backtesting VaR is based 

on Kupiec's (1995) and Christoffersen (1998) for unconditional and conditional coverage 

tests. A variety of backtesting methods have been proposed to gauge the accuracy of VaR 

estimates. 

Backtesting is a formal statistical framework that consists in verifying if actual trading 

losses are in line with model generated VaR forecasts and relies on testing over VaR 

violations (also called the hit). A violation is said to occur when the realized trading loss 

exceeds the VaR forecast. We briefly present the backtesting methods used in our 

empirical assessment of VaR models regarding the following properties 

i.  Frequency: The unconditional coverage (UC) test (Kupiec, 1995) is the industry 

standard, owing to the fact that it is implicitly embedded in the Basel Committee on 

Banking Supervision's (2006, 2009) "traffic Light" scheme, which is still used by banking 

regulators as the reference backtest methodology. The test entails determining whether 

the realized coverage rate (α) of the VaR for a backtesting sample of T non-overlapping 

observations is equal to the theoretical coverage rate (α). This is the same as determining 

if the hit variable 𝐼𝑡(𝛼), which takes values of 1 if the loss exceeds the stated VaR 

measure and 0 otherwise, has a binomial distribution with parameter α. Under the UC 

hypothesis, the likelihood ratio (LR) test statistic follows a 𝜒2 distribution with one 

degree of freedom. That is: 

𝐿𝑅𝑈𝐶(𝛼) = −2 ln[(1 − 𝛼)𝑇−𝑁𝛼𝑁] + 2ln[(1 −
𝑁

𝑇
)
𝑇−𝑁

(
𝑁

𝑇
)
𝑁

]~𝜒2(1) 

where N is the number of VaR violations. 

ii.  Independence: By checking for the independence (IND) of the sequence of VaR 

violations, the unconditional backtesting framework is improved, resulting in a combined 

conditional coverage test (CC). The LR test of Christoffersen is used to determine risk 

models under the joint hypothesis of IND and right UC (1998). The Christoffersen 

(1998)’s LR test for independence against an explicit first-order Markov alternative is 

given by: 
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𝐿𝑅𝐼𝑁𝐷(𝛼) = −2 ln [(1 −
𝑁

𝑇
)𝑇−𝑁(

𝑁

𝑇
)𝑁]

+ 2ln[(1 − �̂�01)
𝑛00�̂�01

𝑛01(1 − �̂�11)
𝑛01�̂�11

𝑛11]~𝜒2(1) 

where 𝑛𝑖𝑗; i, j=0,1 is the number of times we have 𝐼𝑡(𝛼)=j and 𝐼𝑡−1(𝛼)=i  with  �̂�01 =

𝑛01/(𝑛00 + 𝑛01) and �̂�11 = 𝑛11/(𝑛10 + 𝑛11). The LR statistic for the CC test is then 

given by: 

𝐿𝑅𝑐𝑐(𝛼) = 𝐿𝑅𝑈𝐶(𝛼) + 𝐿𝑅𝐼𝑁𝐷(𝛼)~𝜒
2(2) 

 

The unconditional coverage test of Kupiec examines whether the sum of expected versus 

actual exceedances given the tail probability of VaR occur as estimated, while 

Christoffersen's conditional coverage test examines both the unconditional coverage and 

the independence of the exceedances. Both the joint and the separate unconditional test 

are reported since it is always possible that the joint test passes while failing either the 

independence or unconditional coverage test. 

 

 

CHAPTER 4 

 

4. Empirical Results 

In this section we provide the results. As we can see from figure 1, the time series of 

daily index price is not stationary. Non-stationary processes have means, variances and 

covariances that change over time. Using non-stationary time series data leads to 

unreliable forecasting. A stationary process is mean reverting, i.e., it fluctuates around a 

constant mean with constant variance. In order to resolve this issue, we mostly use 

differencing. Thus, in the first step, we obtain the log return series for the S&P 500 index. 

By calculating the log returns we will employ a log transform and first difference and 

then we check whether the non-stationarity issue is solved. 
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Figure1- Daily S&P 500 closing prices – 2013-2019 

 

Red line denotes the average closing price for this particular timeframe. The time series 

plot appears in clusters, high in certain periods and low in certain periods. It evolves over 

time in a continuous manner and is thus, volatile.  

Table 1- Augmented Dicky-Fuller test results for S&P 500 prices 

Model Dickey-Fuller Critical value 

Type 1: No constant and no trend 2.6263 

Type 2: With constant but no trend  1.4301 

Type 3: With constant and with trend 4.2748 

Alternative hypothesis: stationary  

 

Although it can be evident from figure 1 that the time series for index prices is non-

stationary, but we also run a Dicky-Fuller test to check for stationarity. Table shows that 

the null hypothesis of non-stationary is not rejected for all 3 types of Dicky-Fuller test. So 

the index price series is non-stationary and we need to employ a first difference 

transformation by using the return of the index prices. 
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4.1. S&P 500 returns series overview 

Based on figure 2, we can see that the return series looks stationary. The excess kurtosis 

and fat tails are obvious in the histogram, but we can confirm numerically that the 

kurtosis of the empirical distribution of our sample (3.581421) exceeds that of a normal 

distribution (which is equal to 3). Table 1 shows the descriptive statistics of the return 

series.  

Table 2- Descriptive statistics of return series 

Number of Observations  1761 

Minimum  -0.041843 

Maximum  0.048403 

Mean  0.000463 

Median 0.000593 

Variance  0.000066 

Standard Deviation 0.008102 

Skewness -0.513383 

Excess Kurtosis 3.581421 

Jarque Bera 1022.6 

  
Jarque-Bera statistic is significant at 0.01 level, 

rejecting the null hypothesis of normality 

From the basic statistics of the log return of the index prices, we observe that the mean is 

about zero and the distribution of log returns has large kurtosis (fat tails). We observe this 

further using histogram and Q-Q plot. The negative skewness and the high positive 

kurtosis indicate that the distribution of the return series has a long left tail and is 

leptokurtic. Jarque-Bera (JB) statistics also reject the null hypothesis of normal 

distribution at the 1% level of significance. 
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Figure 2 – Time series and histogram of returns 

 

Figure 3 – Q-Q Plot for the returns

The Q-Q plot of the returns also show the same result. 



 

20 
 

Figure 4 – Comparison with normal distribution 

 

On figure 4, Density plots are shown for stock returns (blue) and normally distributed 

data (red). Vertical lines of the lower plot represent the normal corresponding quantile for 

α = 0.05 (light green) and α = 0.01 (dark green). The lower plot indicates that for 95% 

significance, normal distribution usage may overestimate the value at risk. However, for 

99% significance level, a normal distribution would underestimate the risk. In the 

parametric method to calculate a static VaR, Normal Distribution is adopted to capture 

the market risk under general market conditions. One key problem of a VaR that resulted 

from considering a normal distribution and providing a static VaR is that it does not 

properly account for volatility clustering, which means that VaR limits are breached in 

serial dependence across time. As a result, risk is underestimated during a crisis. A 

powerful approach to solve this problem is to combine VaR with GARCH models, which 

take conditional volatility into account. 
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4.2. Modelling the mean  

4.2.1. Stationarity 

To verify the stationarity of the returns, we utilize the Augmented Dickey-Fuller test 

where the null hypothesis indicates non-stationary time series. 

 

Table 3 - Augmented Dickey-Fuller Test for S&P 500 returns 

Model Dickey-Fuller Critical value 

Type 1: No constant and no trend -15.4*** 

Type 2: With constant but no trend  -15.7*** 

Type 3: With constant and with trend -15.6*** 

Alternative hypothesis: stationary 

*** significant at 0.01 level 

 

 

As we can see the null hypothesis of non-stationarity is rejected at 0.01 level, thus we can 

consider the return series as stationary. 

 

4.2.2. Identifying the mean model 

Table 4: Selecting the ARMA model 

ARMA Model AIC 

 ARMA(2,2) with non-zero mean  Inf 

 ARMA(0,0) with non-zero mean  -11960.19 

 ARMA(1,0) with non-zero mean -11967.71 

 ARMA(0,1) with non-zero mean -11959.53 

 ARMA(0,0) with zero mean -11956.45 
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 ARMA(2,0) with non-zero mean -11966.83 

 ARMA(1,1) with non-zero mean  -11965.82 

 ARMA(2,1) with non-zero mean -11966.60 

 ARMA(1,0) with zero mean -11964.01 

We can see that ARMA(1,0) with non-zero mean has the lowest AIC:  -11967.71. With 

the process above we computed AIC scores for various ARMA models and we infer that 

the appropriate model is a 1-order Autoregressive (AR(1)). 

4.2.3. Estimating the mean model 

Using AR(1) as the selected model, the results are as follows: 

 

Table 5 - AR(1) estimation results 

 

Therefore, the mean model can be described as: 

𝑟�̂� = 0.0005 − 0.0268𝑟𝑡−1 

Although AR(1) has the lowest information criterion, but based on the results we see that 

AR(1) coefficient is not significant. However we include it in our modeling since 

considering an AR(1) for the mean model is suggested in the related literature with this 

study.  

AR(1) -0.0268

(0.0239)

Cons 0.0005 **

(0.0002)

log likelihood 5982.73

AIC -11959.5

BIC -11943

*,**, *** denotes significant at 10%, 5% and 1% respectively

statndard errors are in brakets
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4.2.4. Diagnostic Checking for mean model 

We derive the residuals from the fitted AR(1) model and run the diagnostic tests on 

residuals. Both ACF and PACF plots are similar, and autocorrelations seem to be equal to 

zero. The lower plot in figure 5 represents the histogram of the residuals compared to a 

standard normal distribution. 

Figure 5 – AR(1) residuals 

 

 

To check whether the residuals are correlated or not, we perform Ljung-Box test. 
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Table 6 - Box-Ljung test for AR(1) residuals 

X-squared df p-value 

17.879 12 0.1194 

H0: ρ1=ρ2=⋯=ρm=0 

 

From Ljung Box test result, we observe that the residuals are not correlated as the p-value 

is greater than 0.05 and hence we cannot reject the null hypothesis of no autocorrelation 

and we conclude that the residuals behave like white noise and there is no indication of 

pattern that might be modeled. Although ACF & PACF of residuals have no significant 

lags, the time series plot of residuals shows some cluster volatility meaning that the 

volatility changes over time and its degree shows a tendency to persist, i.e., there are 

periods of low volatility and periods where volatility is high, which is a common 

behavior of GARCH process. Since the model does not represent recent changes or 

integrate new details, it is important to note that ARMA is a tool for linearly modelling 

data, and the forecast width remains constant. The Generalized Autoregressive 

Conditional Heteroscedasticity (GARCH) model is used to model volatility.  

We perform an Arch test to check for Arch effects in residuals: 

Table 7 - ARCH LM-test 

Chi-squared Df p-value 

132.03 1 < 2.2e-16 

   
Null hypothesis: no ARCH effects 

Because the p-value is less than 0.05, we reject the null hypothesis and conclude that 

ARCH(1) effects exist. 

 

4.3. Volatility modeling 

The most commonly used GARCH model, and one that is usually appropriate for 

financial time series as well, is a GARCH(1,1) model. Thus, for maintaining simplicity 
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and concordant with the related literature we consider four GARCH type models with 

one lag on ARCH and GARCH effects, to define the second part of the error term 

decomposition, which is the conditional variance. 

Granger and Andersen (1978) discovered that although the ARMA residuals themselves 

may not appear to be correlated over time, some of the series modelled by Box and 

Jenkins (1976) have autocorrelated squared residuals, and thus proposed that the ACF of 

the squared time series could be useful in defining nonlinear time series. The ACF and 

PACF of the squared residuals, according to Bollerslev (1986), are useful in identifying 

and checking GARCH behavior. Thus, the GARCH process is valid when the squared 

residuals from ARMA model are correlated. ACF and PACF plots clearly indicate 

significant correlation. 

 

Figure 6 – Squared residuals from AR(1) model 
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We can also perform Ljung-Box test to check for the existence of correlation in squared 

residuals. 

Table 8 - Box-Ljung test for AR(1) squared residuals 

X-squared df p-value 

585.57 12 2.2e-16 

H0: ρ1=ρ2=⋯=ρm=0 

We can see that the null hypothesis of no correlation is rejected, so there is correlation in 

squared residuals.  

We can check for the conditional heteroscedasticity of the residuals by running the 

GARCH model and then check for the significance of 𝛼1 and 𝛽1 parameters. 

 

Table 9 – Fitted GARCH (1,1) with AR (1) mean model 

 

Panel A: Estiamtion results

µ 0.0008 *** 0.0009 *** 0.0005 *** 0.0006 *** 0.0009 *** 0.0009 *** 0.0005 *** 0.0006 ***

(0.0001) (0.0001) (0.0001) (0.0001) (0.0002) (0.0001) (0.0001) (0.0001)

AR(1) -0.0670 *** -0.0689 *** -0.0655 ** -0.0579 *** -0.0704 *** -0.0693 *** -0.0763 *** -0.0594 ***

(0.0246) (0.0227) (0.0302) (0.0218) (0.0258) (0.0239) (0.0284) (0.0228)

ω 0.0000 *** 0.0000 0.0005 *** 0.0004 *** 0.0000 0.0000 0.0000 *** 0.0000 ***

0.0000 (0.0000) (0.0001) (0.0001) (0.0000) (0.0000) 0.0000 0.0000

α1 0.2066 *** 0.2066 *** 0.1297 *** 0.1333 *** 0.2798 *** 0.2340 *** 0.0000 0.0000

(0.0214) (0.0314) (0.0183) (0.0148) (0.0648) (0.0727) (0.0058) (0.0193)

β1 0.7262 *** 0.7630 *** 0.8376 *** 0.8446 *** 0.7202 NA 0.7660 NA 0.7824 *** 0.7851 ***

(0.0280) (0.0692) (0.0205) (0.0174) (NA) ( NA) (0.0183) (0.0151)

η11 1.0000 *** 1.0000 ***

(0.1594) (0.1203)

γ1 0.3081 *** 0.3386 ***

(0.0504) (0.0480)

Panel B: Diagnostics tests

Weighted Ljung-Box

Lag[1]  0.9140 0.8656 0.6808 0.1718 0.7980 0.7724 1.5600 0.2228

(0.3390) (0.3522) (0.4093) (0.6785) (0.3717) (0.3795) (0.2116) (0.6369)

Lag[2*(p+q)+(p+q)-1][2] 0.9167 0.8657 0.6813 0.1738 0.7982 0.7725 1.5690 0.2296

(0.7887) (0.8171) (0.9055) (0.9993) (0.8523) (0.8649) (0.4000) (0.9980)

Lag[4*(p+q)+(p+q)-1][5] 1.8738 1.7795 1.2291 0.7093 1.6633 1.6477 2.4750 1.1071

(0.7473) (0.7737) (0.9069) (0.9807) (0.8051) (0.8092) (0.5735) (0.9295)

Jarque-Bera 1078.7 *** 1080.4 *** 1077.4 *** 1070.5 *** 1081.8 *** 1080.8 *** 1087.2 *** 1071.8 ***

AIC -7.0377 -7.1096 -7.1168 -7.1700 -7.0297 -7.1096 -7.0883 -7.1520

BIC -7.0221 -7.0910 -7.0981 -7.1482 -7.0173 -7.0941 -7.0696 -7.1302

SIC -7.0377 -7.1097 -7.1168 -7.1700 -7.0297 -7.1096 -7.0883 -7.1520

HQIC -7.0319 -7.1028 -7.1099 -7.1619 -7.0251 -7.1039 -7.0814 -7.1439

Robust statndard errors are in brakets in panel A

Weighted Ljung-Box Test on Standardized Residuals (H0 : No serial correlation) with p-values are in brakets

AIC(Akaike), BIC (Bayes), SIC (Shibata) and HQIC (Hannan-Quinn) are information criterion

Jarque-Bera test on GARCH model residuals ( H0: Residuals are normally distributed)

*, **, *** denotes significant at 10%, 5% and 1% respectively

GARCH TGARCH IGARCH GJRGARCH

Normal Student-t Normal Student-t Normal Student-t Normal Student-t
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In all models, both 𝛼1 and 𝛽1  are significantly different from zero, therefore it is 

reasonable to assume time-varying volatility of the residuals. 

Based on the Weighted Ljung-Box test on standardized residuals, the null hypothesis of 

no serial correlation is not rejected thus, we can confirm that there is no serial correlation 

in GARCH models residuals. TGARCH model provides the lowest information criteria in 

both cases with student-t or normal distribution. Considering student-t distribution for 

innovations in all GARCH models result in lower information criterion.    

The sum of the two parameters (𝛼1 + 𝛽1)  is less than 1, which is good for not resulting 

in explosive volatility predictions. Since the sum of the parameters is close to one this 

means that the volatility dies down slowly i.e., it reverts to mean slowly. 

Large GARCH lag coefficients,𝛽1, indicate that shocks to conditional variance take a 

long time to die out, so volatility is ‘persistent’. As for the asymmetric model GJR-

GARCH, we see that the 𝛾1 coefficient is positive and statistically significant, clearly 

showing how the volatility reacts differently to bad news with respect to good news. 

Thus, when the bad news hits the market and returns are negative, volatility increases 

strongly. 

Jarque Bera Test Shows that residuals from GARCH models are not normally distributed 

since the null hypothesis that the data is normally distributed is rejected. 

 

4.4. Forecasting  

The returns data has 1761 observations. We use the first 1261 observations to make the 

initial estimation for the GARCH model. The remaining 500 observations are used for 

validation and testing. 

4.4.1. Forecasting volatility 

We use the data from the first 5 years to generate forecasts for the last 2 years based on a 

rolling estimation. Figure 7 shows how well the GARCH models capture the volatility of 

returns. 
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Figure 7 – Volatility forecasting  

 

Based on Figure 7, we can see that GARCH models provide the best results in forecasting 

volatility comparing to unconditional and moving average volatilities. However, to 

determine which GARCH model has a better performance we need to employ some other 

measures. 

Here we use 3 forecasting error criteria to compare the forecasting performance of our 

GARCH models based on 500 observations as our test data. 

 

Table 10 – Comparing forecasting accuracy of GARCH models 

 

We can see that the results on all the measures are very close. TGARCH provides a lower 

MSE while standard GARCH provides a lower MAE and the lowest DAC is for 

GJRGARCH. We cannot conclude which GARCH model provides a better performance 

based on these measures. 

Normal Student-t Normal Student-t Normal Student-t Normal Student-t

MSE 0.00008963 0.00008973 0.00008956 0.00008947 0.00008973 0.00008973 0.00008961 0.00008953

MAE 0.00652798 0.00653038 0.00654405 0.00653576 0.00653006 0.00653045 0.00655096 0.00653424

DAC 0.55000000 0.55200000 0.51400000 0.54400000 0.54600000 0.55200000 0.51200000 0.55000000

MSE: mean squared error, MAE: mean absolute error and DAC: directional accuracy of the forecast versus realized returns.

GARCH TGARCH IGARCH GJRGARCH
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4.4.2. Forecasting Value at Risk (VaR) 

If we use historical data, we can estimate VaR by taking the 5% quantile value. For our 

data, this estimation is: -0.01381972 or we can say that for 95% confidence level, the 

worst daily loss will not exceed 1.38% of the S&P 500 closing prices. 

 

Figure 8 – Historical Value at Risk 

 

Red bars refer to returns lower than 5% quantile. 

 

Modelling Value at Risk with GARCH (1,1) 

In order to illustrate this method, we apply GARCH (1,1) models with normal and 

student-t distributions and with confidence level 95% and 99% to provide comparisons. 
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Figure 9 – 95% VaR forecasting 

As we can see from the plot, the VaR-GARCH combination is way more realistic and 

lowers the VAR limit when volatility clustering occurs, whereas for the static VaR (red 

line) we observe serial limit breaches. 

Figure 10 – 99% VaR forecasting 
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We can see that a 99% VaR provides a too conservative forecast, and it seems that it’s 

overestimating the risk. Thus, it’s required to employ a back testing procedure to 

understand that how the provided forecasts, differ in reality and which model provides a 

better performance. 

 

4.5. Back-testing 

We use two methods for back-testing in this study. Table 10 shows the results for Kupiec 

and Christopherson’s methods comparing different GARCH models and confidence 

levels of 95% and 99%. 

 

Table 11 – Back testing results 

 

Kupiec's unconditional coverage compares the number of expected versus actual 

exceedances given the tail probability of VaR, while the Christoffersen test is a joint test 

of the unconditional coverage and the independence of the exceedances. Based on the 

results for confidence level 95%, considering a t distribution for innovations results in 

underestimating the risk while a normal distribution has a better performance. On the 

other hand, a student-t distribution provides a better performance comparing to normal 

distribution for a confidence level 99%, however, it seems that a 99% confidence level 

Normal Student-t Normal Student-t Normal Student-t Normal Student-t

Panel A: α = 5% 

Expected Exceed 25 25 25 25 25 25 25 25

Actual VaR Exceed 38 38 35 38 31 38 31 35

Actual Percentage Exceedance 7.60% 7.60% 7% 7.60% 6.20% 7.60% 6.20% 7.00%

Unconditional Coverage (Kupiec)

LR.uc Statistic 6.181 ** 6.181 ** 3.765 * 6.181 ** 1.413 6.181 ** 1.413 3.765 *

Conditional Coverage (Christoffersen)

LR.cc Statistic 7.706 ** 7.706 ** 3.936 6.195 ** 1.416 7.706 ** 1.416 3.936

Panel B: α = 1% 

Expected Exceed: 5 5 5 5 5 5 5 5

Actual VaR Exceed: 15 11 15 9 13 11 14 10

Actual %: 3.00% 2.20% 3.00% 1.80% 2.60% 2.20% 2.80% 2.00%

Unconditional Coverage (Kupiec)

LR.uc Statistic 13.162 *** 5.419 ** 13.162 *** 2.613 8.973 *** 5.419 ** 10.994 *** 3.914 **

Conditional Coverage (Christoffersen)

LR.cc Statistic 13.699 *** 6.848 ** 13.699 *** 4.739 * 9.887 *** 6.848 ** 11.704 *** 5.665 *

Null-Hypothesis for Kupiec: Correct Exceedances

Null-Hypothesis for Christoffersen: Correct Exceedances and Independence of Failures

Backtest Length: 500 observations

*,**, *** denotes significant at 10%, 5% and 1% respectively

GARCH TGARCH IGARCH GJRGARCH
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appears unrealistically conservative which results in rejecting the null hypothesis of 

“correct exceedances” for most of the models.  

Now we compare the back-testing results for α=5%. At this level, both GJRGARCH and 

IGARCH provide the most accurate exceedances with a normal distribution for 

innovations in GARCH modeling.  

Since a GJRGARCH model assumes that there is asymmetry between negative shocks 

and positive shocks, which is almost always the case for financial data, we suggest a 

GJRGARCH model with normal distribution for innovations to provide a 95% VaR 

forecast for modeling our data.  

For a 99% VaR based on the backtesting results a TGARCH-VaR model is selected with 

student-t distribution for the innovations. 

An interesting result that we obtain is that, although we expected that a student-t 

distribution may perform better for having fat tails, but our results approved a normal 

distribution for 95% lenel and a t distribution for 99%. We can can find an explanation 

for this in table 12: 

 

Table 12 – Normal and student-t distribution quantiles 

  Shape α = 0.01  α = 0.05 

Student-t 3.038383744 -2.627861 -1.368716 

Normal - -2.326348 -1.644854 

 

Normal distribution has a bigger quantile at α = 0.05 than t distribution, thus it provides a 

bigger VaR 95% which results in less exceedances in backtesting. On the other hand, t 

distribution has a bigger quantile in α = 0.01 resulting in bigger VaR 99% and 

accordingly less exceedances in backtesting at this level. Thus, we conclude that the 

chosen distribution for GARCH innovations may provide different performance in 

different levels of confidence for VaR forecasts. One distribution may not provide good 

results in all levels of confidence. 
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4.6. Performance of suggested VaR model 

Here we want to see how our selected model performs in reality and how it can be used 

practically. Figure 11 shows volatility over time plotted with the log returns. Figure 12 

depicts graphically the actual exceedances from our selected GJRGARCH-VaR model. 

Based on results from table 6, the suggested GJRGARCH(1,1) model can be defined as 

follows: 

𝜎𝑡
2 = 0.308062𝐼(𝜀𝑡−1 < 0)𝜀𝑡−1

2  + 0.782385𝜎𝑡−1
2  

Where 𝐼(𝜀𝑡−1 < 0) is an indicator function, which takes the value one if the 

corresponding lagged conditional standard deviation is less than zero. 

 

Figure 11 – Volatility forecasting with GJRGARCH (1,1) 
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Figure 12-Actual exceedances from GJRGARCH (1,1)-VaR 95% model 

  

The red points illustrate exactly 31 exceedances as calculated in table 10. Based on the 

graph, we can see that even the exceedances are not so far from the suggested model.  

For example, assume that today is 30-May-2019 and we have 1000 shares of the S&P 

500 index with a market price of 2788.86. We are interested to know how much the 

potential loss on our portfolio will be tomorrow.  

 

Table 12 – Predicted loss for actual days 

  

Index 

price 

No. of 

shares 

Portfolio 

value Real loss 

VaR 

95% 

Max predicted 

loss 

2-Jan-2019 2,510.03 1,000 2,510,030 - - - 

3-Jan-2019 2,447.89 1,000 2,447,890 -62,140 -0.0234 -58,734 

30-May-2019 2788.86 1,000 2,788,860 - - - 

31-May-2019 2752.06 1,000 2,752,060 -36,800 -0.0152 -42,391 
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Based on our forecasted VaR 95% for 31-May-2019 the potential loss will be 42,391 

which is providing a good coverage for the real loss of 36,800. 

VaR is also useful when we want to compare the riskiness of different portfolios. This is 

especially important when evaluating how closely a portfolio manager conformed to the 

stated risk tolerance of his fund. Corporate Treasuries and Banks use VaR for the same 

purpose. They need to have an idea of how their market exposures behave under normal 

market conditions. It is a risk management cliché, but you know that you have a bad risk 

management regime in place if you are surprised by the extent of any gains or losses that 

you sustain. 

 

CHAPTER 5 

 

5. Conclusion 

Having high levels of volatility in financial markets, it's critical to put in place an 

efficient risk management strategy to protect against market risk. VaR has become the 

most common risk measurement method for organizations and regulators in this context. 

Furthermore, employing dynamic risk measures has been successfully implemented in a 

variety of fields where high volatility is imposing immense impact on the market.  

In this study, we perform a dynamic volatility forecasting using four GARCH type 

models, being GARCH, TGARCH, IGARCH and GJRGARCH models with one lag on 

ARCH and GARCH effects each. The model suggested for the mean of return time series 

is AR(1) which is selected through a Box-Jenkins methodology due to having the lowest 

information criterion (AIC) in comparison with other possible ARMA models with 

maximum lag of two. The suggested AR-GARCH models are employed to provide 

forecasts on Value at Risk (VaR) at different confidence levels of 95% and 99%.  

We extract the data for this study from Yahoo finance database on S&P 500 daily prices 

for a time span of 7 years from 2013 to 2019 resulting in 1762 observations on the index 
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closing prices. In order to obtain a stationary time series for our analysis, we compute the 

log return of the index prices with 1761 observations to provide our results.  

Our analysis on the return series shows evidence of non-normality and fat tails, 

consequently for our analysis we consider both normal and student-t distributions and 

provide comparisons on their results. Accordingly, we have 8 comparisons on volatility 

modelling including four GARCH type models with two distributions for their 

innovations each and we have 16 comparisons on the VaR forecasts considering 

confidence intervals of 99% and 95% in addition to the 8 volatility results.  

Our results on volatility modelling show that, a TGARCH model with student-t 

distribution for the innovations, provides the lowest information criteria, however, based 

on MSE and MAE measures we cannot judge the performance of each model. 

Our backtesting results on VaR forecasts, show that GJRGARCH and IGARCH with 

normal distribution for innovations both provide the lowest exceedances in 95% level and 

at 99% confidence level, TGARCH with student-t distribution provides the best results 

on backtesting. Since there is always asymmetry between the negative and positive 

shocks in financial data, and GJRGARCH assumes such asymmetry in modelling, we 

suggest a GJRGARCH with normal innovations for modelling a 95% VaR. However, 

based on the risk appetite of the users, one may choose TGARCH with student-t 

distribution at 99% confidence interval as it provides a much more conservative measure 

and consequently more costly regarding the required capital charge or other risk cushions 

based on the risk management strategies. Based on these results, we find that the 

confidence level considered for forecasting VaR is a decisive factor in selecting a proper 

distribution for GARCH innovations which can result in better VaR forecasts. Ignoring 

this fact, may result in lower accuracy of var forecasts in different confidence levels. 

Our results are based on an index from the 500 largest companies listed on stock 

exchanges in the United States during a specific period of time and we might have found 

different results for different periods of other financial data, especially when market 

conditions change. As a result, we expect that no single model can be defined as the best 

performer across all returns data sub-periods. Related literature to this study highlights 

the possible pitfalls of using VaR as a risk management method to specify the minimum 
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regulatory capital requirement under varying market conditions. Failure to account for 

such market changes may result in serious model misspecifications and incorrect model 

selections. Depending on market conditions or the regime of the sub-period being 

studied, the resulting VaR forecasts can be significantly over- or under-estimated, but 

they tend to be stable over a longer time horizon. As a result of these misunderstandings, 

firms and financial intermediaries that manage risk using VaR can find themselves with 

insufficient capitalizations. 

In reality, dynamic volatility has the following consequences: financial returns are more 

likely than expected to result in significant losses (the "fat tail" effect); uncertain periods 

appear to cluster, with large price fluctuations within days. As a recent and realistic 

example, equity markets encountered extreme volatility in 2020, owing primarily to the 

COVID-19 incident. When considering the historical distribution of price changes, such 

events are highly unexpected. Thus, in addition to employing accurate VaR modelling we 

need to have proper scenario analysis and stress testing procedures to foresee the rare 

events that are not predicted by models based on normal conditions historical data. 

Our findings in this study also point to a number of areas in which further research is 

required. To improve the accuracy of VaR estimations, one potential avenue is to impose 

model-switching mechanisms rather than parameter switching. The inherent benefit stems 

from the ability to switch between the best performing models for VaR estimation as 

market conditions adjust and the market enters a new regime. Alternatively, as suggested 

by Nieto and Ruiz (2016), further research into the implementation of bias corrections to 

enhance the forecasting of GARCH models could be conducted in order to reach more 

conclusive results on the performance of VaR models across various market regimes. 

Finding more appropriate distributions for GARCH innovations would be another 

suggestion. 
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