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Event-Based Robust Control Techniques 
for Wheel-Based Robots Under 
Cyber-Attack and Dynamic Quantizer 

Mobin Saeedi, Jafar Zarei, Mehrdad Saif, and Allahyar Montazeri 

Abstract Nowadays, mobile robots are becoming an increasingly significant part of 
daily human life. Humanoid robots, wheeled mobile robots, aerial vehicles, mobile 
manipulators, and more are examples of mobile robots. As opposed to other robots, 
they are capable of moving autonomously, with sufficient intelligence to make deci-
sions in response to the perceptions they receive from their environment. In today’s 
world, cooperative tasks and the ability to control robots via networks make them a 
component of cyber-physical systems (CPSs). In this study, mobile robots that are 
acting as a part of CPSs are examined. Data-network burden, signal quantizers, cyber 
security, delayed transition, and robust performance are some of the challenges they 
face. A total of three sections are then devoted to addressing these issues in detail. 
As a first step, the governing equation for mobile robots is explained, and then 
their robust and resilient behavior of them is examined by establishing the event-
triggered adaptive optimal terminal sliding mode control (AOTSMC) approach for 
nonlinear uncertain dynamic systems that are subjected to denial-of-service (DoS) 
cyber attacks. In this case, it is assumed that the conveyed signal is being corrupted 
randomly by an attacker. In this situation, it is essential to design the closed-loop 
controller parameters in such a way that the performance can be maintained under 
malicious attacks while the communication resources are preserved. Due to the unre-
alistic nature of delayed-free communication, the stability analysis is conducted for 
a general form of uncertain nonlinear delayed input dynamic systems. The quanti-
zation effect on the closed-loop control system is then analyzed in conjunction with 
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robust behavior and event-based data transmission. A novel criterion is established to 
adjust dynamic quantizers’ parameters according to the variation of event-triggering 
error, enabling the quantizer to be more accurate and facilitating implementation 
procedures. Finally, simulation results validate the presented methodology. 

Keywords Mobile robots · Cyber-physical system (CPS) · Event-triggered 
methodology · Terminal SMC · DoS cyber attack · Dynamic quantizer 

1 Introduction 

There has been an unstoppable development in cyber-physical systems (CPS) in the 
engineering field in the last decade. They are constantly under development to become 
more secure, precise, and capable of making real-time adjustments in the engineering 
and manufacturing fields. Cyber-based control of robotic mobile devices gives them 
greater flexibility in terms of their application in different areas of industry, such 
as warehouse management systems, product assembly, distribution, and hazardous 
environments [ 1, 2]. The importance of this issue motivates us to present the current 
study in which the limitations and considerations of cyber-based mobile robots are 
addressed. Described in the following two subsections is a review of the CPSs, mobile 
robots, their dynamic behavior, and their challenges. A typical cyber-based control 
structure for mobile robots is shown in Fig. 1. 

Fig. 1 A typical cyber-based mobile robot control system
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1.1 Background 

In recent years, there has been a growing interest in CPSs as a result of rapid advance-
ments in digital communications [ 3]. These new areas require integrating physical 
systems, microprocessor-based controllers, and sensors through shared cyber layers 
to achieve desired objectives. As a result of the emergence of such systems, a new 
research area has emerged that provides control analysis of critical industries, such 
as oil and gas industry, health care services, as well as the robotic field [ 4]. 

Despite the fact that CPS systems offer increased availability and flexibility, there 
are a number of limitations associated with them, including packet dropout [ 5, 6], 
cyber-attacks [ 7– 9], fading data [ 10], quantization of signals [ 11– 13], and com-
munication delay [ 14]. Satisfying the limited network bandwidth is an important 
issue while cyber layer is deployed to transmit data-packets. To cope with this prob-
lem, event-triggered data transitions have been developed as an alternative to time-
triggered data transitions. Based on the research conducted on the event-triggering 
schemes, it has been found that it is an effective tool for reducing communication 
burdens, improving robustness against packet dropouts, and reducing vulnerabilities 
to cyber attacks [ 15, 16]. 

As opposed to traditional time-based methods that cyclically transmit signals 
within predetermined time instances, an event-triggered terminology would be 
viewed as a sample-based scheme. There are certain criteria that allow the transmis-
sion of measured data at a periodic time intervals that save communication resources 
while maintaining stability. Although the use of event-based methodology provides 
an analytical approach to make different control theories applicable to the CPSs in 
the presence of constraints in the network layer, proving Zeno-free behavior of the 
designed closed-loop, increased computational load in the design phase [ 17– 21]. 

When it comes to event-triggering criteria and signal quantization, theory and 
practice are intertwined in CPSs. It is very important to maintain control precision 
and stability in physical systems controlled by digital communication, which involves 
constraints including maximum allowable resolution of analog to digital converters 
(ADC) [ 22], quantization errors [ 23], and the adjustment of sensitivity parameters in 
dynamic quantizers [ 24]. It has been shown that most studies by considering certain 
linear dynamics, present a quantization terminology or demonstrate criteria based 
on the continuous evolution of the quantizer sensitivity over time [ 24– 26]. Applying 
these approaches to physical experiments in which time-varying desired responses 
are included in nonlinear uncertain dynamics does not lead to satisfactory results. 

Cyber networks also face a number of challenges when it comes to controlling 
uncertain dynamic systems. The fulfillment of predefined control tasks for uncertain 
linear and nonlinear dynamics is always one of the essential researchers’ concerns. 
Then, a lot of robust technics have been established to achieve this target. Among 
them, one of the most successful control schemes to deal with uncertain dynamic sys-
tems is sliding mode control (SMC) approaches [ 27– 29]. Several studies have been 
conducted in the area of SMC, and various terminologies have been adopted, includ-
ing event-triggered SMC [ 25, 30, 31], finite-time convergence [ 32, 33], switched
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systems [ 20], adaptive control [ 32, 34, 35], and cyber security [ 36– 38]. Under event-
triggering criteria, a super-twisting sliding mode controller is proposed in [ 19, 39, 
40]. A sliding mode controller was developed in [ 41] for the quadruple-tank multi-
input multi-output process with input delay. The terminal sliding mode controller is 
implemented in [ 32, 33] to find finite-time convergence. 

In this work, the problem of event-triggered terminal SMC (ETSMC) in the 
presence of a malicious DoS attacks for uncertain nonlinear dynamic systems is 
investigated. Meanwhile, to consider the quantization problem, the new event-based 
dynamic quantizer is developed to reach maximum accuracy by adjusting the quan-
tizer sensitivity. The novelty of this work would be categorized as: 

• Presenting a new event-based optimal terminal SMC to achieve stability in regula-
tion and tracking tasks for a nonlinear dynamic in the presence of uncertain terms 
under DoS attacks. 

• In order to maintain stability under the presented control scheme despite being 
attacked by cyber criminals, a unique criterion is developed to take into account 
the DoS attack characteristics. despite being attacked by cyber criminals. 

• A new dynamic quantizer approach in the presence of event-based methodology 
is provided to achieve stability and accuracy in different practical constraints. 
The next subsection investigates the governing dynamic equation of wheeled 
mobile robots (WMRs). 

1.2 Motivations 

Throughout the past few decades, a large quantity of investigation is performed 
on controlling nonholonomic wheeled mobile robots (WMRs). Among the control 
research topics that have been investigated for nonholonomic systems, the two main 
problems involved in the research are tracking and stabilization. Taking a look at 
Kolmanovsky’s survey paper [ 42], one can see the intensive research efforts that 
are being made in this area. As many researchers have shown [ 43], stabilizing the 
equilibrium point of is a difficult problem due to structure of the governing differential 
equations. Since nonholonomic systems such as wheeled mobile robots, do not satisfy 
the Brockett condition, the linear control techniques do not provide an effective 
approach to address this class of systems. 

Furthermore, in [ 44] it is shown that using constant state feedback is not useful 
in stabilizing nonholomonic systems. As part of the efforts of stabilizing WMRs, 
several approaches, including discontinuous state feedback [ 6], time-varying state 
feedback [ 45], hybrid controllers [ 46], and optimal control approaches [ 47] have been 
proposed. In fact, majority of methods applied the class of nonholonomic systems 
successfully are using the concept of chained form to represent the model. There 
have been a number of control models and strategies developed in order to stabi-
lize uncertain chained systems. In [ 48], the stabilization problem for nonholonomic
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single-chained systems is addressed in the context of nonregular feedback lineariza-
tion. In [ 49], the nonholonomic systems with nonlinear drifts are globally stabilized. 
A robust algorithm for nonholonomic robot control is presented in [ 50]. However, 
the primary disadvantage of such works is that they do not consider the dynamics of 
the system. 

Since commercially available wheeled mobile robots do not have velocity sensors, 
using velocity state feedback is not practical and designing an output feedback con-
troller for nonholonomic wheele-based robots is of practical importance. To solve this 
critical problem, researchers proposed a global output feedback stabilizing controller 
for a unicycle-type mobile robot based on the backstepping technique. Although, the 
majority of the proposed studies suffer from complexity and do not consider uncertain 
dynamic systems. 

In the following subsection equations that represent the dynamic of wheeled 
mobile robots (WMRs) are formulated. The next sections are devoted to the design 
of an event-based robust controller in the presence of cyber challenges, such as signal 
quantization and cyber malicious attacks. 

1.3 Problem Statement 

Consider the nonholonomic wheeled mobile robot’s dynamic as follows, 

M(ϕ) ϕ̈ + B(ϕ) τd (t) + C(ϕ, ϕ̇)  ̇ϕ + B(ϕ) F( ̇ϕ) = B(ϕ) τ − A(ϕ)T λ, (1) 

and, 
A(ϕ) ϕ̇ = 0, (2) 

where ϕ = [ϕ1, . . . ϕn]T is a vector of generalized coordinates, actuators’ inputs 
are defined by τ ∈ R(n−m)×1 M(ϕ) ∈ Rn×n expresses an inertia matrix, the Cori-
olis matrix is denoted by C(ϕ, ϕ̇) ∈ Rn×n , friction vector is defined by F( ̇ϕ) ∈ 
R

(n−m)×1, and τd (t) ∈ R(n−m)×1 expresses external disturbances, B(ϕ) ∈ Rn×(n−m) 

defines the input transformation matrix. Note that A(ϕ) ∈ Rm×n is a full-rank matrix 
and Lagrange multiplier is expressed by λ ∈ Rm×1 that denotes constraint forces. 
Suppose S(ϕ) = [s1(ϕ), . . . ,  sn−m(ϕ)]T , where si (ϕ) ∈ Rn, i = 1, . . . ,  n − m, and 
A(ϕ)S(ϕ) = 0. The pseudo-velocities of the system can now be obtained by consid-
ering (2) as  v(t) = [v1(t), . . . , vn−m(t)] T such that 

ϕ̇ = s1(ϕ) v1 +  · · ·  +  sn−m(ϕ) vn−m . (3) 

Then, by considering (3), (1) can be rewritten as, 

M1v̇(t) + C1(ϕ, ϕ̇) v(t) + F1( ̇ϕ) + τd1(t) = B1(ϕ)τ, (4)
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where M1 = ST (ϕ)M(ϕ)S(ϕ), B1(ϕ) = ST (ϕ)B(ϕ), F1( ̇ϕ) = B1(ϕ)F( ̇ϕ), τd1(t) = 
B1(ϕ)τd (t), C1(ϕ, ϕ̇) = ST (ϕ)M(ϕ) ̇S(ϕ) + ST (ϕ)C(ϕ, ϕ̇)S(ϕ). 

In order to take actuators dynamic into account, firstly assume that the robot is 
being operated by n − m DC motors. It is possible to write the electrical equation of 
each motor armature in the following way, 

ua = La 
dia 
dt  

+ kb θ̇m + Raia, (5) 

where kb defines the back electromotive force (EMF) constant, La, Ra introduce the 
inductance and resistance of the motor armature, respectively, and the voltage input 
is defined by ua . Considering torque and armature current in the absence of armature 
inductance, i.e. τm = kτ ia , and pre- and post-gear torque-velocity relationships, i.e. 
τ = n τm and θ̇m = n θ̇ , the delivered torque to the system can be expressed as, 

τ = k1 ua − k2 θ̇ , (6) 

where k1 = (nkτ /Ra), and, k2 = n kbk1, n is gear ratio and kτ is torque constant of 
the motor. The Eq. (6) can be represented as follows, 

τ = k1 ua − k2 X1v, (7) 

where X1 ∈ R(n−m)×(n−m) creates pseudo-velocity vectors from wheels velocities. 
From (7) and (4), one can obtain, 

M1(ϕ)v̇(t) + (C1(ϕ, ϕ̇) + k2 B1(ϕ)X1(ϕ)) v(t) + F1( ̇ϕ) + τd1(t) = k1 B1(ϕ) ua . 
(8) 

Note that M1(q) satisfies inequality m1 ≤ ||M1(q)|| ≤ m2, where m1 and m2 are 
positive scalar constants. The dynamic equation (8) and kinematic model (3) can be 
defined as follows, 

ẋ =
|

ϕ̇ 
v̇

|
=

|
Sv 

−M−1 
1 ((C1 + k2 B1 X1) v(t) + F1 + τd1)

|
+

|
0 

k1 M
−1 
1 B1

|
ua, 

(9) 
where x ∈ R(2n−m) is the state vector. Note that at the rest of this study, the following 
formulation is dropped to investigate the controller design approach, 

ẋ(t) = f (x(t)) + Δ f (x(t)) + d(x, t) + bu(t), (10) 

where x(t) = [x1(t), . . . ,  xn(t)]T ∈ Rn is the system state, Δ f (x(t)) ∈ Rn repre-
sents unknown terms, d(x, t) ∈ Rn an external disturbance, u(t) defines input signal, 
and b is a constant parameter.
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1.4 Chapter Organisation 

After this introduction, the problem of event-based AOTSMC design in the presence 
DoS attacks for mobile robots is formulated and solved in Sect. 2. The quantization 
problem and a solution based on event-triggered terminal SMC design for uncertain 
input-delayed dynamics are formulated and the numerical results are provided in 
Sect. 3, and finally conclusions come in Sect. 4. 

2 Event-Based AOTSMC Design Under DoS Attacks 

An event-triggered adaptive optimal terminal sliding mode control (EAOTSMC) 
design approach under DoS attacks is presented in this section. Attackers are believed 
to ruin measurement signals randomly. Maintaining the closed-loop stability under 
malicious DoS attacks is the most important challenge. In order to achieve this goal, 
the EAOTSMC has been proposed in order to increase the robustness against attacks 
and reduce the computational load as a result, as shown in Fig. 2. Furthermore, the 
frequency and duration of DoS attacks are examined explicitly for their effect on 
the closed-loop stability, as well as on the schedules for controller updates. Thus, 
the cyber layer’s bandwidth is determined to maintain closed-loop stability. Then, in 
the presence of uncertainties and DoS attacks, designed parameters can be adjusted 
by the designer. Finally, an evaluation of the proposed methodology is provided by 
numerical simulations. 

Fig. 2 The schematic 
representation of the 
proposed EAOTSMC 
approach
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2.1 Problem Formulation 

This section presents an adaptive optimal TSMC (AOTSMC) approach for an uncer-
tain nonlinear dynamic systems. AOTSMC benefits from the fact that there is no 
reaching phase involved, and it guarantees stability in a fast finite time while fulfill-
ing optimal criteria. Assume the sliding surface is designed as follows 

S(t) = ϑ2 Θ(x, t) + ϑ1 e(t), (11) 

where e(t) = x(t) − xd (t) expresses tracking error, and the known desired states is 
defined by xd (t). Θ(x, t) is an auxiliary state that is defined in the rest of this section, 
and ϑ1, ϑ2 are positive constants. 

Assumption 1 Time-dependent derivatives of xd (t) exist. 

Assumption 2 xd (t), ẋd (t), ẍd (t) ∈ L∞ holds for all t ∈ R≥0. 

Assumption 3 f (x(t)), ḟ (x(t)) satisfy Lipchitz criterion. Then one can obtain 

L0 ||x(t2) − x(t1)|| − |||| ḟ (x(t2)) − ḟ (x(t1))
|||| ≥ 0, (12) 

where L0 ∈ R>0. 

Assumption 4 Following inequality holds by f (x(t)) for all t ∈ R≥0, 

ᾱ − || f (x(t))||∞ ≥ 0, (13) 

where ᾱ ∈ R>0. 

Assumption 5 A bound is established on the deviation rate of uncertain dynamic 
and external disturbance inputs as follows, 

β̄ ||x(t)|| − ||||Δ̇ f (x(t)) + ḋ(x, t)
|||| ≥ 0, (14) 

where β̄ ∈ R>0. 

Let’s rewrite dynamic equation (10) as:

|
ẋ(t) 
ẋn+1(t)

|
=

|
f (x(t)) + Δ f (x(t)) + d(x, t) 
0

|
+

|
bu(t) 
Ψ (t)

|
, (15) 

where Ψ (t) = Θ̇(x, t) is an auxiliary input, xn+1(t) = Θ(x, t) is an auxiliary state, 
where Θ(x, 0) = −ϑ1e(0)/ϑ2. 

From (11) time derivatives of sliding surface is defined as: 

Ṡ (t) = ϑ1 ẋ(t) − ϑ1 ẋd (t) + ϑ2 Θ̇(x, t), (16)
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and, 
S̈(t) = ϑ1 ẍ(t) − ϑ1 ẍd (t) + ϑ2 Θ̈(x, t). (17) 

In this study, the terminal manifold is defined as, 

δ(t) = Γ Ṡ p×q−1 
(t) + S(t), (18) 

where Γ ∈ R>0, and p, q are odd constants that satisfy constraint 1 < p × q−1 < 2. 

Theorem 1 The control input (19) guarantees the finite-time global stability of 
dynamic system (10) while the optimal criteria (20) is satisfied. 

u(t) = 
−ϑ2 

ϑ1b 
× Ψ (t) + 

t{
0 

q 

ϑ1bp 
Ṡ1−p×q−1 

(t)(−Ṡ(t)) − b−1 × ( ̈xd (t) + ḟ (x(t))+ 

(
(

β(t) + β0)sgn(δ(t)) ||x(t)||)dt, 
(19) 

and, 

J =
{ ∞ 

0 
{RΨ 2 (τ ) + (X T (τ )Q(X (τ ))X (τ ))}dτ, (20) 

and, ˙̂
β(t) = {p × q−1}Γ Ṡ{p×q−1−1}(t)ϑ1 ||δ(t)|| ||x(t)|| , (21) 

where β̂(t) is an adaptation term, X (t) = [x(t), Θ(t)] is the auxiliary state vector, 
Γ , β0, R ∈ R>0, and Q(X (t)) is the positive diagonal matrix. Then, Ψ is expressed 
as follows, 

Ψ (t) = R−1 BT Υ X (t), (22) 

where Υ can be deduced from solving the Riccati equation as follows, 

AT (X (t))Υ + Υ A(X (t)) − Υ BR−1 (X (t))BT Υ = −Q(X (t)), (23) 

where B = [0n×1, 1]T ∈ R(n+1)×1, A(X (t)) = [Ξn×n+1(t), 01×n+1] ∈  R(n+1)×(n+1) . 
Note that Ξn×n(t) can be derived from following equation, 

Ẋ (t) = A(X (t))X (t) + BΨ (t). (24) 

Due to functionality of the presented approach to deal with the uncertain terms, and 
converging states in the closed region ||x(t)|| < r, r ∈ R>0, in formulation (24), the 
uncertain term is ignored. 

Now, we are in the position to present the event-based controller by providing 
Theorem 2.
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Theorem 2 Consider an uncertain nonlinear dynamic system (10). Then, control 
input (25) under event-triggering rule (27) guarantees ultimately global stability of 
the closed-loop response. Note that under the presented methodology the minimum 
inter-sampling time, i.e., Δ̄ satisfies inequality (26). 

u(t) = −  b−1ϑ1
−1ϑ2Ψ (tk ) −

{ t 

tk 
ϑ1

−1b−1Γ −1q p−1 Ṡ2−pq−1 
(tk ) + b−1( ḟ (x(tk )) − ẍd (t) 

+ (
(
β (tk ) + β0) ||x(tk )|| sgn(δ(tk )))dt, 

(25) 

and, 

Δ̄ ≤ 
1 

L0 
ln( 

1 
k2 
L0 

( 1 
λ̄ + 1) 

+ 1), (26) 

where k2 = max{||||ϑ1
−1ϑ2 R−1 BT Υ

||||∞ , 1} for all t ∈
|
tk, tk+1). The event-triggering 

rule is defined as,

||E(t)|| − λ̄ × {||X (t)|| + (k0 + k1)} ≤  0, (27) 

where λ̄ is a positive constant. Triggering-error is described by E(t) = x(tk) − x(t) 
for all t ∈ |

tk, tk+1), and k0 = ||ẋd (t)||∞ + ||Δ f (x) + d(x, t)||∞, k1 = max(|ϕ2 + ϕ1|) 
where ϕ1 =

{ t 
tk 
(Γ −1ϑ1

−1 q 
p Ṡ

2−p/q (tk)dt, ϕ2 =
{ t 
tk 
(β0+

(

β (tk)) ||x(tk)|| sgn(δ(tk)))dt . 

Corollary 1 Criterion (26) specifies the required minimum inter-sampling-time, and 
maximum band-width to achieve the closed-loop finite-time stability. 
Proof There are two steps that can be taken to prove the presented theorem. In the 
first step, it is demonstrated that if (27) holds, then the system dynamic (10) under 
control input (25) achieves finite-time stability. Then, it is shown that (26) holds 
under the presented control law and event-triggering rule. 

Step 1: We start with the Lyapunov function below 

V (t) = 0.5 × βΓ0 
−1 ( β̃2 (t) + δ2 (t)), (28) 

where for all t ∈ R>0, βΓ0 = max{( β̃2(t) + δ2(t))} that guarantees ||V (t)|| ≤  1, and 
β̃(t) = (

β (t) − β̄. Then, one can obtain: 

V̇ (t) = δ(t)( ̇S(t) + Γ p × q−1 S̈(t) ̇S{p×q−1}−1 (t) )  + ( β̃(t) ̇
(

β(t)), (29) 

where xd (t) is a known desired signal for all t ∈ R>0. Then, from (29) and (25) one 
can obtain, 

V̇ (t) ≤ βΓ0 
−1δ(t)(

||||||{p × q−1Γ }Ṡ{ p×q−1}−1(t)
|||||| (ϑ1( ̇d(t) + Δ̇ f (x(t)) + ḟ (x(t)) 

−( ḟ (x(tk )) + (
(
β (tk ) + β0) ||x(tk )|| sgn(δ(tk ))) 

+ϑ2( Θ̈(t) − Θ̈(tk )) + q{ pΓ ϑ1}−1( ̇S2−p×q−1 
(t) − Ṡ2−p×q−1 

(tk )))+βΓ0 
−1 × 

(̇
β (t) β̃(t). 

(30)
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By considering Assumption 11, one can obtain, 

V̇ (t) ≤ βΓ0 
−1δ(t)

||||||Γ pq−1 Ṡ{ p×q−1}−1(t)
|||||| ((ϑ1 L0 ||E(t)|| + ϑ1β̄ ||x(t)||

−ϑ1(β0+
(
β (tk )) ||x(tk )|| sgn(δ(tk )) + ϑ2 Θ̈(t) + q{ pΓ }−1||( ̇S2−p×q−1 

(t) − Ṡ2−p×q−1 
(tk ))||) 

+βΓ0 
−1 

(̇
β (t) β̃(t). 

(31) 
A new auxiliary variable βe is defined as follows, 

βe = ϑ1L0 ||E(t)|| , (32) 

where λ, ϑ1 are chosen small values such that (β̄ + β0) ||δ(t)|| ||x(tk)|| >> βe. Note  
that according to (21) one can obtain β̂(t) > β(tk), β̃(t) <  0 for all t ∈ [tk, tk+1), 
then, 

V̇ (t) ≤ −  βΓ0 
−1

||||||{p × q−1Γ }Ṡ{p×q−1}−1(t)
|||||| (−βe + (β0 + β̄) ||x(tk )||~ ~~ ~

Z0 

+
|||β̃(t)

||| ||x(t)|| − q × {  pΓ }−1||( ̇S2−{p×q−1}(t) − Ṡ2−{p×q−1}(tk ))||−||Θ̈(t)||ϑ2)~ ~~ ~
Z0

||δ(t)||

− βΓ0 
−1

||||||q−1 pΓ Ṡ{p×q−1}−1(t)
|||||| ||x(tk )|| ||δ(t)||~ ~~ ~

Z1

||||||β̃(t)
||||||), 

(33) 
then, 

˙V (t) ≤ −βΓ V 
0.5 (t), (34) 

where βΓ = min
{√

2Z0,
√
2Z1

}
. 

Step 2: The closed-loop dynamic system under the proposed triggering rule and 
control effort for all t ∈ [tk, tk+1) can be expressed as follows, 

ẋ(t) = Δ f (x) + d(x, t) + f (x(t)) + b(−ϑ2ϑ1
−1 b−1 Ψ (tk) 

+
{ t 

0 
[−Γ −1 ϑ1

−1 b−1 q 

p 
Ṡ2−p/q (tk) 

− b−1 ( ḟ (x(tk)) − ẍd (t)+(
(

β (tk) + β0) ||x(tk)|| sgn(δ(tk)))]dt, 

(35) 

where {x(tk)|k ∈ N0} represents the transmitted data at time-instances tk in which 
triggering-rule is satisfied.
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Fig. 3 Typical evolution of Lyapunov function under cyber attack, and event-triggering activation. 
In this example, n(1, 9) = 2, n(1, 3) = 1, n(2.5, 9) = 1 and D(8, 12) = 3, h = {2, 8}, D(1, 3) = 
1, and  H1 = [2, 4) 

ẋ(t) = Δ f (x) + d(x, t) + f (x(t)) + b(−ϑ2ϑ1
−1 b−1 Ψ (tk) 

+
{ t 

0 
−Γ −1 ϑ1

−1 b−1 q p−1 Ṡ2−{p×q−1}(tk) − b−1 ( ḟ (x(tk))) 

−ẍd (t) + (β0+
(

β) ||x(tk)|| sgn(δ(tk)))dt . 

(36) 

From (36) and (27), we have, 

Ė(t) = Δ f (x) + d(x, t) + f (x(t)) − f (x(tk )) + ẋd (t) − ϑ1−1ϑ2Ψ (tk ) 

−
{ t 

tk 
Γ −1ϑ1

−1 q 

p 
Ṡ2−p/q (tk )dt−

{ t 

tk 
(
(
β (tk ) + β0) ||x(tk )|| sgn(δ(tk )))dt, 

(37) 

Considering ϕ1 =
{ t 
tk 
(Γ −1ϑ1

−1 q 
p Ṡ

2−p/q (tk)dt, ϕ2 =
{ t 
tk 
(
(

β (tk) + β0) ||x(tk)||
sgn(δ(tk)))dt , and k1 = max(|ϕ2 + ϕ1|) yield, 

Ė(t) ≤ L0 ||E(t)|| − ϑ1
−1 ϑ2Ψ (tk) + k0 + k1, (38) 

then,

||E(t)|| ≤L0
−1 (

||||ϑ2ϑ1
−1 R−1 BT Υ

||||∞ ||X (tk)||∞ + k0 + k1) ×
{ t 

tk 

eL0(t−τ)  dτ. 

(39) 
Now, with considering y(t) = [E(t), 0], k2 = max{1, ||||ϑ1

−1ϑ2 R−1 BT Υ
||||∞}, 

and X (tk) = y(t) + X (t), Eq.  (39) can be represented as,
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||y(t)|| ≤ L0
−1 k2(||y(t)|| + ||X (t)|| + k0 + k1)(eL0Δ̄ − 1), (40) 

In regards to Δ̄, (40) is monotonically increasing. By taking the stability of X (t) into 
account, and considering ||E(t)|| = ||y(t)||, one can obtain, 

Δ̄ ≤ L0
−1 ln({ k2 

L0 
( 
1 

λ̄ 
+ 1)}−1 + 1). (41) 

This completes the proof. 

2.2 Denial-of-Service Attacks 

Section 2.1 presents the stability analysis of the proposed event-based terminal SMC 
approach. In this section, the effect of the DoS cyber attack on the closed-loop stability 
is expressed, and the explicit relation between the malicious attack properties, i.e., 
cyber-attacks duration and frequency, with the closed-loop stability is derived. 

To interpret cyber attacks’ frequency and duration, the following two assumptions 
regarding the parameters of the DoS attack are taken into consideration without 
compromising generality [ 51]. 

Assumption 6 The following conditions are true for every τ, t ∈ R>0: 

n(τ, t) ≤ n0 + 
t − τ 
τD 

, (42) 

where τD, n0 ∈ R>0. 

Assumption 7 The following conditions are true for every τ, t ∈ R>0: 

D(τ, t) ≤ d0 + 
t − τ 
T 

, (43) 

where T , d0 ∈ R>0. 

In order to clarify the DoS attacks time period, Hn is expressed as, 

Hn := [hn hn + τn[
||
n∈N0 

{hn}, (44) 

In the DoS attacks occurrence curve, as depicted in Fig. 3, hn , n ∈ N0 represents 
attack initiation instances, and τn represents DoS attacks duration, By considering 
(43), and (44) one can conclude, 

D(τ, t) =
||
n∈N0 

{[τ, t[
U

Hn}. (45)
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Having made that distinction, we also need to find two time-based clusters different 
viewpoints. The first cluster illustrates the time duration in which a DoS attack occurs, 
the second group illustrates the time duration in which (27) is violated. 

A[τ, t) = [τ, t)\D[τ, t), (46) 

Using A(τ, t) and D(τ, t), the time axis is divided into separate clusters, in which 
DoS attack occurs and in which it does not. In order to clarify the second group, 
it is necessary to define two sets Vin  and Vde. These sets are used to show the time 
instances at which (27) does not hold due to a DoS attack and the time stamps at 
which (27) remains valid. 

Vin  =
||
i∈N0 

[Ti , Ti + ρi ) , (47) 

and, 
Vde =

||
i∈N0

|
Ti + ρi , Ti+1) . (48) 

In order to determine whether (27) holds true or not in the domain [t1, t2), the  fol-
lowing sets are defined, respectively, 

Ā(t1, t2) = Vdec

U
[t1, t2), (49) 

and, 
D̄(t1, t2) = Vin

U
[t1, t2), (50) 

Assumption 8 It is assumed that no attack occurs at the beginning of communica-
tion, thus T0 = ρ0 = 0. 

Figure 3 describes the groups and sets that are proposed. It is now critical to 
deriving constraints on the parameters of the DoS attack with respect to their impact 
on Vin  and Vde, as will be discussed in the following subsection. 

2.3 Stability and Cyber Attacks 

As mentioned in the previous subsections, satisfying (26), and (27) guarantee the 
closed-loop stability. It is now possible to investigate the situation in which (26), 
(27) are not valid due to malicious attacks. The solution of (34) is expressed by 

V (t) ≤ V (0) e−βΓ t . (51)
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Now from (33) we have,  

V̇ (t) ≤ −  βΓ0 
−1

||||||pq−1 Γ Ṡ{p×q−1}−1 (t)
|||||| [((β̄ + β0) ||x(tk)|| − ϑ2||Θ̈(t)||)~ ~~ ~

χ3 

+
|||β̃(t)

||| ||x(t)|| − {pΓ }−1 × q||( ̇S2−p×q−1 
(t) − Ṡ2−p×q−1 

(tk))||~ ~~ ~
χ3 

] ||δ(t)||

− βΓ0 
−1

||||pΓ × q−1 Ṡ p/q−1
|||| ||δ(t)|| ||x(tk)||~ ~~ ~

χ4

||||||β̃(t)
||||||

+βΓ0 
−1ϑ1L0

||||||pΓ q−1 Ṡ{p×q−1}−1
|||||| ||E(t)|| ||δ(t)|| , 

(52) 

with defining βΓ2 = min
{√

2χ3,
√
2χ4

}
, βΓ 3 = max( ϑ1 L0 

βΓ0

||||||Γ p q Ṡ 
p/q−1

|||||| ||δ(t)||), 
and considering ||V (t)|| ≤ 1 one can obtain, 

V̇ (t) ≤ βΓ 3 ||E(t)|| − βΓ2 V (t). (53) 

The solution of (53) can be restated as, 

V (t) ≤ βΓ 3 × βΓ2 
−1 ||E(t)|| + exp{−βΓ2 t}V (0), (54) 

By having (27), (51) can be expressed for all t ∈ Vde as, 

V (t) ≤ V (Ti + ρi )exp{−βΓ (t − Ti − ρi )}, (55) 

while (27) does not hold, for all t ∈ Vin , (51) results 

V (t) ≤ exp{−βΓ2 (t − Ti )}V (Ti ) + βΓ 3βΓ2 
−1 ||E(t)|| , (56) 

By considering Assumptions 6, and 7 one can obtain, 

V (t) ≤ exp{−βΓ

|| Ā(0, t)
|| − βΓ2

||D̄(0, t)
||} 

+βΓ 3 × βΓ2 
−1 ||E(t)|| (1 + E

i ∈ N2t > Ti 
(exp{−βΓ

|| Ā(Ti , t)
|| − βΓ2

||D̄(Ti , t)
||})), 
(57) 

then,
||E(τ, t)||max < (α  + k0)(n0 + t−Ti 

τD 
)(d0 + t−Ti 

T ) 
+(1 + n)Δ̄ ≤ e(α +k0)(n0+ t−Ti 

τD 
)(d0+ t−Ti 

T )+(1+n)Δ̄ 
. 

(58) 

Considering (49), and (50) yield, 

−βΓ

|| Ā(Ti , t)
|| − βΓ2

||D̄(Ti , t)
||= (βΓ − βΓ2 )D̄(Ti , t) − βΓ (t − Ti ). (59)
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The upper bound of right-hand-side of (57) should be specified, then 

1 + E
i ∈ N2 
t > Ti 

exp{−βΓ

|| Ā(Ti , t)
|| − βΓ2

||D̄(Ti , t)
||} ≤1 + E

i ∈ N2 
t > Ti 

eM , 
(60) 

where,

M = (βΓ − βΓ2 )D̄(Ti , t) + (α + υ)(n)D̄(Ti , t)+((1 + n)(α + υ) − βΓ )Δ̄. 
(61) 

The stability is guaranteed if M <  0, then 

(βΓ − βΓ2 )D̄(Ti , t) + (α + υ)(n)D̄(Ti , t) < (βΓ − (α + υ)(1 + n))Δ̄, (62) 

finally, 

D̄(Ti , t) <  
(βΓ − (α + υ)(1 + n)) 

(βΓ − βΓ2 ) + (n)(α + υ) 
Δ̄. (63) 

2.4 Results and Discussion 

The presented resilient AOFTSMC is validated in this section. To achieve this goal, a 
numerical example is provided as follows. Consider an uncertain nonlinear dynamic 
system as, 

ẋ1(t) = x2(t) 
ẋ2(t) = −x2 1 (t) + x2(t) + Δ f (x(t)) + d(x, t) + u(t). (64) 

where x1(t), x2(t) are system states, u(t) expresses the control input, unknown sys-
tem dynamic is defined by Δ f (x(t)) = 0.1x1(t), and d(x, t) = sin(t) represents the 
disturbance applied to the system. From (33), and (52) one can obtain that βΓ ≈ βΓ2 

if β0, ϑ2 are chosen appropriate values. Then, inequality (63) can be simplified as, 

D̄(Ti , t) < λ4Δ̄, (65) 

where λ4 = (βΓ −(1+n)(α +υ)) 
(α +υ)(n)

. Consider ϑ1 = 1, β0 = 10, ϑ2 = 0.1, λ̄ = 0.0001, q = 
5, p = 3, α  = 2, k2 = 1 and L0 = 2. Then, minimum inter-sampling time Δ̄ = 
9.8 × 10−5 is derived through (41). Since (41) decreases as k2 increases, the worst-
case scenario for k2 is considered during simulation. As illustrated in Fig. 5, none of 
the inter-sampling duration is less than 0.0001, which verifies the proposed criterion 
(41). In order to calculate the maximum length of an endurable malicious attack, it 
would be reasonable to assume that t − τ = 1/s and n = 1. It is obvious that increas-
ing n results in decreasing the affordable duration of time that a given attack can 
last.
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Fig. 4 Left: A numerical analyses of λ4 and the effect of βΓ and ν̄ = α + υ variations on a 
tolerable DoS attack’s duration are presented. Right: Numerical variations of βΓ5 = Ṡ2−p×q−1 

(t) − 
Ṡ2−p×q−1 

(tk ), Π = Ṡ(t) − Ṡ(tk ) due to the DoS attacks is depicted 

Table 1 Variance and mean values of states under cyber-attack 

states DoS attack 
duration per 
second (%) 

Γ [Mean/Variance] 

[x1(t), x2(t)] 5 10 [0.014/0.11, −0.01/0.04] 
[x1(t), x2(t)] 10 100 [0.02/0.01, −0.01/0.05] 

Figure 5 shows that when states converge to zero, the sampling rate is decreased. 
Note that when states are stabilized, the inter-sampling time is increased since the 
event-triggering mechanism is not activated. Figure 6 shows the response of the 
auxiliary state x3(t) as well as the augmented input Ψ . Contrary to some studies such 
as [ 3, 40, 52] where the focus is on linear dynamic systems, the proposed formulation 
concerns with the standard nonlinear systems. Also, by specifying the least possible 
inter-sampling time, it provides the maximum required network bandwidth. 

The effect of βΓ and ν̄ = υ + α variations is shown in Fig. 4. Increasing the value 
of βΓ results in an increasing convergence rate that increases the endurable cyber-
attacks’ duration. Meanwhile, the tolerability under malicious DoS attacks during 
Vin  is improved while ν̄ decreases. 

Simulation results are presented in Table 1 under various DoS attack duration 
with different values of Γ and βΓ . As shown in this table, the stability is preserved 
under various conditions.
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Fig. 5 Simulation results of system in (64) using the control effort (25) and under the cyber attacks. 
Top: System responses in closed-loop with x(0) = [1 , 1]. Bottom: inter-sampling times that are 
produced using the proposed event-triggering method 

Fig. 6 Evolution of Ψ (t) and x3(t) using the control effort in (25) and under the malicious cyber-
attacks 

3 Quantized Event-Triggered Terminal SMC Design 
for Uncertain Input-Delayed Dynamic 

As outlined in Sects. 1 and 2, an overview of event-based approaches, their challenges, 
and their effects are described in detail. This section examines the effects of quantizers 
in closed-loop systems with event-based terminal SMC. There is a strong relationship 
between an event-triggering rule and quantized signal during the development of 
CPSs, from both a theoretical as well as a practical perspective. Keeping control 
precision and stability is one of the most significant objectives when a physical system 
is communicating digitally, with certain considerations and constraints. For instance, 
the maximum number of bits that can be transmitted through a data-packet over a
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network layer [ 22], quantization error [ 23], and sensitivity adjustment in dynamic 
quantizers are all critical considerations and limitations that must be considered. 

This paper presents a novel design approach for dynamic quantizers that considers 
event-tagging rules for uncertain input-delayed nonlinear dynamic systems. In con-
trast, most studies centered on the development of quantization methodologies for 
certain linear dynamics [ 24, 26] or they focused on determining the continuous-time 
evolving of quantizer parameters. 

3.1 Problem Formulation 

Consider an uncertain input-delayed nonlinear system as follows, 

ẋ(t) = f (x(t)) + Δ f (x(t)) + bu(t − D) + d(x, t), (66) 

where x(t) = [x1(t), . . . ,  xn(t)] ∈  Rn is the state vector with initial condition x(0) = 
x0, uncertain dynamics are defined by Δ f (x(t)) ∈ Rn , and d(x, t) ∈ R shows 
bounded external disturbance that satisfies ||d(x, t)|| ≤  ̄d, where d̄ ∈ R>0. A control 
input signal is shown by u(t) ∈ Rn , b ∈ R0 is a constant parameter, and D ∈ R0 is 
the known input delay. 

Assumption 9 The dynamic system (66) does not show any finite escape time 
behavior t ∈ [0, D) [ 53]. 

Assumption 10 xd (t), ẋd (t), ẍd (t) ∈ L∞ holds for all t ∈ R≥0. 

Assumption 11 f (x(t)), ḟ (x(t)) satisfy Lipchitz criterion as follows,
|||| ḟ (x(t2)) − ḟ (x(t1))

|||| ≤ L0 ||x(t2) − x(t1)|| , (67) 

where L0 ∈ R>0. 

Assumption 12 Following inequality holds by f (x(t)) for all t ∈ R≥0, 

ᾱ − || f (x(t))||∞ ≥ 0, (68) 

where ᾱ ∈ R>0. 

Assumption 13 A bound is established on the deviation rate of uncertain dynamic 
and external disturbance inputs as follows, Δ f (x(t)) and d(x, t) satisfy the following 
condition in t ∈ R≥0, 

β̄ ||x(t)|| − ||||Δ̇ f (x(t)) + ḋ(x, t)
|||| ≥ 0, (69) 

where β̄ ∈ R>0.
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Fig. 7 Block diagram representation of the proposed scheme 

It is essential for the design procedure methodology to be guided by the presented 
assumptions. Lipchitz’s criteria are generally satisfied by most physical systems. 
In the meantime, engineers possess the knowledge of the boundaries of uncer-
tainty terms and disturbances through their practical experience. Then, the proposed 
assumptions are not restrictive. 

It is the purpose of the present section to demonstrate robust scheme for uncertain 
systems, which use the network layer to convey measurement data despite input 
delays and quantizers. Accordingly, this study adopts a quantized event-trigger SMC. 
Figure 7 illustrates the block diagram of the proposed scheme. 

According to Fig. 7, the event-trigger mechanism updates the measured states in 
the time stamps according to the predefined rules that are outlined in the remainder 
of this section. After being quantized by a dynamic quantizer, measurement data are 
transmitted through the network layer as part of the digital communication layer. 
Quantization involves mapping time-varying continuous time signals into piece-
wise constant signals. The dynamic quantizer described in this study is as follows 
[ 24, 54], 

qτ (z(t)) = τq(z(t)τ −1 ), (70)
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where τ ∈ R>0 is adjusted in each quantization time stamp, z(t) is a continues- time 
signal, and q(.) is defined as follows,

||q(z(t)) − z(t)|| < μ  ,  i f ||z(t)|| < M, (71a)

||q(z(t))|| > M − μ, i f ||z(t)|| > M, (71b) 

where M ∈ R>0 is the quantizer saturation level, and μ ∈ R>0 is quantization error 
bound parameter. Vector quantization consists of dynamic quantization of each 
component of the vector, i.e. qτ (Z (t)) = [qτ (z1(t)), qτ (z2(t)), . . . ,  qτ (zn(t))] where 
Z(t) ∈ R1×n , and a piece-wise constant signal will be created for each compo-
nent with a value in the set as N = {−|M| τ(t), (−|M| + 1)τ (t), . . . , (|M| + 
1)τ (t), |M| τ(t)}. x(tk) is produced by the event-triggering rule, and passed through 
an encoder, then transmitted through the network layer. Then measurement data are 
decoded at time stamps t i , i ∈ N0. Finally, the designed FTSMC controller uses x(t i k) 
to produce a control effort signal. x(t i k) is defined as: 

x(t i k) = qμi (t)(x(t)), (72) 

where t ∈ {(tk, tk+1)
U

(t i , t i+1)} and tk , k ∈ N0 are triggering time instances. Then, 
tk+1 is expressed as follows. 

tk+1 = inf{t ∈ (tk, ∞), k ∈ N }. (73) 

Note that t i , i ∈ N0 start counting in the duration of [tk, tk+1), i.e. t0 < t0 < t1 < 
· · ·  < t1 < t0 < t1 < · · ·  < t2, . . .  According to (70) and (71), ei k(t) in the time 
domain t ∈ {(tk, tk+1)

U
(t i , t i+1)} is expressed as, 

ei k(t) = x(t i k) − x(tk) (74) 

From (71) and (74), one can obtain,

||||ei k(t)|||| ≤ μt i , i f ||x(tk)|| < M, (75a)||||ei k(t)|||| > M − μt i , i f ||x(tk)|| > M. (75b) 

The main conclusion that can be drawn from this subsection is that states are 
sampled at time instances tk , k ∈ N0, and when relaxation time arrives, i.e. [tk, tk+1), 
states’ quantization time instances are represented by stamp t i , i ∈ N0. The next 
subsection presents the controller design approach.
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3.2 Control Methodology 

The aim of this section is to develop an adaptive fast terminal SMC controller that 
guarantees finite-time convergence stability is proposed. 

Theorem 3 Consider a dynamic system (66) while D = 0. A control signal (76) 
grantees the finite-time asymptotically stability. 

u(t) = −  
t{

0 

[q p−1 α1 
−1 
b−1 Ṡ2−p/q (t) + b−1 (−ẍd (t) + ḟ (x(t)) + (

(

β (t)+ 

+ β0) ||x(t)|| sgn(δ(t)))]dt, 
(76) 

where S(t) is the sliding surface and is considered as, 

S(t) = α1e(t), (77) 

where α1 ∈ R>0. δ(t) is the terminal manifold and is represented as, 

δ(t) = k2S(t) + k1 Ṡ p×q−1 
(t), (78) 

where k1 ∈ R>0. Tracking error is expressed by e(t) = x(t) − xd (t), and p, q are two 
odd numbers that satisfy 1 < p q < 2. Finally, adaptation law is defined as follows, 

(̇

β(t) = k1 pq−1 Ṡ{p×q−1}−1 (t) ||x(t)|| ||δ(t)||α1, (79) 

where
(

β (0) = β0 is the initial condition and satisfies β0 ≥ β̄/2. 

Proof of Theorem 3. A Lyapunov function candidate is chosen as: 

V (t) = 0.5{ δ(t)T δ(t) + β̃T β̃(t)}, (80) 

where adaptation error is considered as β̃(t) =(

β (t) − β̄. From (80), (78) one can 
obtain, 

V̇ (t) = δ(t)T
|
Ṡ(t) + k1α1 pq

−1 Ṡ{p×q−1−1}(t)×
{
ḟ (x(t)) + Δ ḟ (x(t)) + ḋ(x, t) + bu̇(t) − ẍd

}| + β̃(t)T 
(̇

β(t). 
(81) 

Substitution u(t) from (76) yields,
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V̇ (t) = δ(t)
|
k1α1 p × q−1 Ṡ{p×q−1−1}(t)×

{
Δ ḟ (x(t)) + ḋ(x, t) − (

(

β (t) + β0) ||x(t)|| sgn(δ(t))

}|
+ β̃(t) ̇

(

β(t). 
(82) 

From Assumption 13 and (79) one can obtain, 

V̇ (t) ≤ k1α1 
p 

q 
Ṡ p/q−1 (t) ||δ(t)|| {β̄ ||x(t)|| − (

(

β (t) + β0) ||x(t)|| + 

(
(

β (t) − β̄) ||x(t)|| +
||||||β̃(t)

|||||| ||x(t)|| −
||||||β̃(t)

|||||| ||x(t)||}. 
(83) 

Then, 

V̇ (t) ≤ −
{
k1α1 pq

−1 Ṡ p×q−1−1 (t)(β0 −
||||||β̃(t)

||||||) ||x(t)||
}

~ ~~ ~
ξ1

||δ(t)||

− {
k1α1 p × q−1 Ṡ p/q−1 (t) ||x(t)||}~ ~~ ~

ξ2

||||||β̃(t)
|||||| , 

(84) 

then, 

V̇ (t) ≤ −min{ √2ξ1,
√
2ξ2} 1 √

2

|||||||β̃

|||||| + ||δ(t)||
|

≤ −min{ √2ξ1,
√
2ξ2}V (t)1/2 . 

(85) 

3.3 Quantized Event-Triggered Control Design 

Compared to the time-triggered mechanism, the event-based approach reduces com-
putation load and provide resilient behavior while data-packets are lost through the 
network layer. As stated in the introduction section, measurement data are updated 
when triggering criteria is satisfied at time stamps tk . Consider event-triggering error 
as follows, 

E(t) − x(t) + x(tk) = 0, (86) 

where E(tk) = 0 for all k ∈ N0. The quantized event-based fast terminal SMC is 
designed for an uncertain input-delayed nonlinear dynamic (66) in this subsection. 
Consider the sliding surface in the following manner, 

S(t) = α1e(t) + α2Θ(t), (87)
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where α2 = bα1, α1 ∈ R>0, where Θ(t) = 
t{

t−D 
u(τ ) dτ . Note that initial condition 

of Θ(t) is zero, and the terminal sliding manifold is defined according to (78). 

Lemma 1 The areao in which sgn(S(x(t i k ))) /= sgn(S(x(tk))) is the infinitesimally 
closed region. 

Proof Consider the quantizer that is defined by (70) and (71), where one can obtain 
sgn(x(t i k)) = sgn(x(tk)). Consider (86), (90), and suppose that the last successful 
transmitted measurement data is x(tk). Now, suppose that x(t), t ∈

|
tk, tk+1) tends 

toward zero, then, consider t∗ represents time instance in which x(t∗) = 0, then, 

lim 
x(t)→0

||E(t)|| = 0. (88)

||x(t)|| > 0 for t∗ < t and according to (90), triggering rule is then activated, 
and sgn(x(tk) = sgn(x(t)). As a result, considering (87) yields sgn(S(x(t i k))) = 
sgn(S(x(t))) in t ∈ |

tk, tk+1). 
This completes the proof. 

Theorem 4 Consider the dynamic system (66) under triggering-rule (90), and 
dynamic quantizer (72). Then, the control effort (89) guarantees globally uniformly 
ultimately bounded (GUUB) stability. 

u(t) = −  
t{

t i 

k1
−1 α1

−1 b−1 k2 
q 

p 
Ṡ2−p/q (t k i ) + b−1 ( ḟ (x(t i k)) 

− ẍd (t) + (β̄ + β0)
||||x(t i k)|||| sgn(δ(t i k)))dt. 

(89) 

Note that u(t) = 0 for t ∈ [0, D). Triggering- rule is defined as,

||E(t)|| − λ ||x(t)|| ≤ 0, (90) 

for t ∈ {(tk, tk+1)
U

(t i , t i+1)|i, k ∈ N0}, δ(t i k) = qμi (t)(δ(x(tk))), Ṡ(t i k) = qμi (t) 
( ̇S(x(tk))), β ∈ R>0. 

Proof of Theorem 4. Lyapunov function candidate is expressed as, 

V (t) = 0.5δ(t)T δ(t). (91) 

The first time derivation of sliding surface yields, 

Ṡ(t) = α1 ẋ(t) − α1 ẋd (t) + α2 Θ̇(x, t), (92) 

then, 

S̈(t) =α1( ḟ (x(t)) + Δ ḟ (x(t)) + ḋ(x, t) + bu̇(t − D)) − α1 ẍd (t) + α2( ̇u(t) − u̇(t − D)). (93)
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From (91), and (78) we have,  

V̇ (t) = δ(t)T (k2 Ṡ(t) + k1 
p 

q 
S̈(t) ̇S p/q−1 (t) ). (94) 

Taking (93), and (94) into consideration yields, 

V̇ (t) = δ(t)T {p × q−1}k1 Ṡ{p×q−1}−1 (t) 

×
{
q × {pk1}−1 k2 Ṡ

2−p×q−1 
(t) + bα1 u̇(t) + α1Γ

}
, 

(95) 

where Γ = |
ḟ (x(t)) + Δ̇ f (x(t)) + ḋ(t) − ẍd (t)

|
. From (89) and (95) one can con-

clude, 

V̇ (t) ≤ δ(t)T α1k1 pq
−1 Ṡ{p×q−1−1}(t){ ḟ (x(t)) + ḋ(t) + Δ̇ f (x(t)) − ( ḟ (x(t i k)) 

+ (β0 + β̄)
||||x(t i k)|||| sgn(δ(t i k))) 

+ qk2{k1α1 p}−1
||||||( ̇S2−pq−1 

(t) − Ṡ2−pq−1 
(t i k))

||||||}. 
(96) 

Then, according to Assumptions 11 and 13 we have, 

V̇ (t) ≤ δ(t)T α1k1 pq
−1 Ṡ p×q−1−1 (t){L0

||||x(t) − x(t i k)
|||| + β̄ ||x(t)||

− (β0 + β̄)
||||x(t k i )|||| sgn(δ(t i k)) 

+ qk2{k1α1 p}−1
||||||( ̇S2−p×q−1 

(t) − Ṡ2−p×q−1 
(t i k))

||||||}, 
(97) 

from Eqs. (74), (86), and Lemma 1 one can obtain, 

V̇ (t) ≤ δT (t)α1k1 pq
−1 Ṡ p×q−1−1 (t){L0(

||||ei k(t) − E(t)
||||) + β̄ ||x(t)||

− (β0 + β̄)
||||x(t i k)|||| sgn(δ(tk)) + qk2{k1α1 p}−1

||||||( ̇S2−pq−1 
(t) − Ṡ2−pq−1 

(t i k))
||||||}. 
(98) 

Consider
||||e(t i k)|||| ≤ k̄μ ||E(t) || , λ ||x(t)|| − ||E(t)|| ≥ 0 for all t ∈ [tk, tk+1) then 

V̇ (t) ≤ k1 pq−1||Ṡ p×q−1−1 (t)||α1{(L0(k̄μ + 1)λ + β̄) ||x(t)|| ||δ(t)||
− (β̄ + β0)

||||x(t i k)|||| δ(t)sign(δ(tk)) + 
qk2 

k1α1 p

||||( ̇S2−p/q (t) − Ṡ2−p/q (t i k))
||||}. 
(99) 

Now, we need to find (k̄μ + 1)λ in some way that L0(k̄μ + 1)λ + β̄) ||x(t)|| − (β̄ + 
β0)

||||x(t i k)|||| < 0 holds. Recalling
||||x(t k i ) − x(t)

|||| − (k̄μ + 1)λ ||x(t)|| ≤ 0 yields, 

((L0(k̄μ + 1)λ + β̄) + (β̄ + β0)(k̄μ + 1)λ − (β̄ + β0)) ||x(t)|| ≤ 0, (100) 

then,
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Fig. 8 Evolution of event-triggered and quantization errors in terms of their conceptual behavior. 
tk , tk+1 and tk+2 are time instances in which triggering-rule is satisfied. Based on the ADC convert 
resolution, e∗ describes the minimum possible quantization error 

(kμ + 1)λ < 
β0 

L0 + (β̄ + β0) 
. (101) 

Finally, 

V̇ (t) ≤ 
(−Υ + Λ) √

2 
V (t)0.5 , (102) 

where Λ = k2||Ṡ p/q−1(t)||||||( ̇S2−p/q (t) − Ṡ2−p/q (t i k))
||||, and Υ = k1 p q ||Ṡ p/q−1(t)||α1×|||(k̄μ + 1)λ − β0 

L0+(β̄+β0)

|||. Λ is bounded according to Proposition 1. Note that k2 is 
chosen to satisfy Λ << Υ . Figure 8 illustrates a concept of how even-triggering and 
quantization errors evolve over time. 

Proposition 1 ||Λ|| < k2(ᾱ + ||Δ f (x) + d(x, t)|| + ||xd (t)||) holds for all t ∈ R>0, 
and ᾱ is described through Assumption 12. 
Proof See the proof in the Appendix. 

Considering (78), δ(t) = 0 yields Ṡ(t) = 0, and S(t) = 0 for t ≥ t∗, where t∗ 

defines time instance that holds S(t∗) = 0. Considering (87), and (66) for all t ≥ t∗ 

control signal can be derived as follows after some simplification steps, 

u(t) = b−1 ( ̇xd (t) − f (x(t)) − Δ f (x(t)) − d(x, t)). (103) 

According to (103) and Assumption 12 one can obtain,

||u(t)|| ≤ b−1 (||ẋd (t)|| + ᾱ + β̄1), (104) 

where β̄1 = ||Δ f (x) + d(x, t)||∞. Considering definition of Θ(t) yields,
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||Θ(t)|| ≤ Db−1 (||ẋd (t)|| + α + β̄1), (105) 

Finally, considering (87), and S(t) = 0, following inequality can be concluded:

||e(t)|| ≤ D(||ẋd (t)|| + α + β̄1). (106) 

3.4 Inter-sampling Time Calculation 

The computation of minimum inter-sampling and cycle time for a dynamic quantizer 
are presented in this section. 

Assumption 14 For all t ∈ {[t i , t i+1)| i ∈ N & t i+1 ≤ tk+1}, e(t i k) is considered 
slow varying. 

By considering Θ(t), Eq.  (66) can be expressed as, 

ẋ(t) = f (x(t)) + d(x, t) + Δ f (x(t)) − b Θ̇(t) + bu(t). (107) 

Equation (107) can be rewritten in accordance with (87) as follows,  

ẋ(t) = α2 

α2 + α1 
[ f (x(t)) + d(x, t) + Δ f (x(t)) − bα2−1 Ṡ(t) − α1α2−1 ẋd (t) + bu(t)], 

(108) 
Under the presented controller, event-triggered error dynamics can be derived by 
considering Assumption 14 as follows. 

Ė(t) = 
α2 

α2 + α1

{
f (x(t)) − f (x(t i k )) + d(x, t) + Δ f (x(t)) + (1 − α1α2

−1) ̇xd (t) − bα2
−1 Ṡ(t) 

−
{ t 

tk 
k1

−1α1
−1b−1 q 

p 
Ṡ2−p/q (tk )dt  −

{ t 

tk 
(β̄ + β0)

||||||x(t i k )
|||||| sgn(δ(t i k )))dt

}
. 

(109) 
Then, from (109) and recalling Assumptions 9, 10, 11, one can obtain

||||Ė(t)
|||| ≤ α2 

α2 + α1

{
L0(kμ + 1) ||E(t)|| + β̄1 +

||||||||(1 − 
α1 

α2 
) ̇xd (t)

|||||||| + b 
1 

α2

||||Ṡ(t)
|||| + Γ

}
, 

(110) 

where Γ = sup
{{ t 

tk 
(β̄ + β0)

||||x(t i k)|||| dt, t ∈ [ti , ti+1)
}
, and β̄1 =

||Δ f (x(t)) + d(x, t)||∞. Then,

||E(t)|| ≤
{
β̄1 +

||||(1 − α1α2
−1 ) ̇xd (t)

|||| + b 
1 

α2

||||Ṡ(t)
|||| + Γ

}
× 

(eγΔ  − 1) 
γ 

, 

(111) 
where γ = L0α2 

α2+α1 
(kμ + 1) and Δ̄ = sup {tk+1 − tk |k ∈ N0}. Note that (111) is mono-

tonically increasing regard to Δ̄. Considering Proposition 1, and (111) can be restate 
as,
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||E(t)|| ≤ 1 

L0(kμ + 1)

{
β̄1 +

||||||||(1 − 
α1 

α2 
) ̇xd (t)

|||||||| + Π + Γ
}

× (eγ Δ̄ − 1), 

(112) 
where Π = b 1 

α2

||||Ṡ(t)
||||. Then, 

λ ||x(t)|| ≤
{
β̄1 +

||||||||(1 − 
α1 

α2 
) ̇xd (t)

|||||||| + Π + Γ
}

× 
(eγ Δ̄ − 1) 
L0(kμ + 1) 

. (113) 

Ultimately, Δ̄ is expressed as, 

λ
(||x(0)|| + ||xd (t)|| + {

ᾱ + β̄ + β̄1
}
D

) ≤ 
(eγ Δ̄ − 1) 
L0(kμ + 1)

{
β̄1 +

||||||||(1 − 
α1 

α2 
) ̇xd (t)

|||||||| + Π + Γ
}

. 

(114) 
Finally, 

Δ̄ ≥ 
1 

γ 
× ln 

⎛ 

⎝ L0λ(kμ + 1)(||x(0)|| + ||xd (t)|| + {
ᾱ + β̄1

}
D) 

(β̄1 +
||||||(1 − α1 

α2 
) ̇xd (t)

|||||| + Π + Γ )  
+ 1 

⎞ 

⎠ . (115) 

It is now possible to specify the sensitivity of the dynamic quantizer that has been 
designed. To this end, tq is defined so that to insure e(t i k) satisfies the predefined con-
straint in the duration of Δ̄ = min {tk+1 − tk |k ∈ N0}. From the predefined criterion 
e(t i k) ≤ k̄μ ||E(t) || for all t ∈ [tk, tk+1) one can obtain, 

μ(t i+1 ) = min

{
k̄μ ||E(t)|| − μ(t0) 

Δ̄ 
t, k̄μ ||E(t)||

}
, (116) 

where the lowest encoder/decoder resolution is expressed by μ(t0) = μ, and 

t i+1 − t i ≤ 
Δ̄ 
2 

, (117) 

for all t ∈ [0, tk+1 − tk). To prevent the dynamic quantizer from saturation, M is 
selected to satisfy Mμ(t i ) ≥ ||x(0)|| + ||xd (t)|| + (ᾱ + β̄1)D for i ∈ N0. 

3.5 Numerical Simulations 

The numerical simulations demonstrating the effectiveness of an event-trigger 
FTSMC that is coupled with a dynamic quantizer. Moreover, the theorems and 
assumptions proposed are discussed in more detail. In the following example, we 
consider an open-loop unstable dynamic system,
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Fig. 9 Under the control effort (66), and in the presence of a dynamic quantizer, simulation results 
are depicted. a shows the closed-loop state responses. b the inter-sampling time evolution 

ẋ1(t) = x2(t) 
ẋ2(t) = −x2 1 (t) + x2(t) + Δ f (x(t)) + d(x, t) + u(t − D), 

(118) 

where u(t) represents the control input, and x1(t), x2(t) are system states with ini-
tial condition X (0) = [0, 2], Δ f (x(t)) = sin(x1(t)) and d(x, t) = sin(t) represent 
the dynamic uncertainty and external time-varying disturbance. respectively. Also, 
a delay of D = 0.2 s  is considered for the nonlinear system. The Sliding surface 
dynamic is considered as S(t) = x1(t) + x2(t) + Θ(t). Designed parameters are 
p = 7, q = 5, k2 = k1 = 1, λ = 0.001, k̄μ = 0.1. To assess the efficacy of the pro-
posed method the simulation results are plotted in Fig. 9. In accordance with the 
figure below, when the states of the system are approaching zero, we can observe 
that the intervals of updating are growing. Zeno-free behavior is verified according 
to Fig. 9b, where Δ̄ ≈ 2.8 × 10−4. 

Figure 10 shows the evolution of the quantizer’s sensitivity. Compared with prior 
studies such as [ 3, 12], the maximum accuracy is guaranteed under the proposed 
scheme whenever tracking error converges to zero. 

As can be seen in some studies such as [ 24] the dynamic quantizer sensitivity 
evolves over time, which can lead to decreased effectiveness of the methodology 
after some time has passed. According to this study, the dynamic treatment of the 
quantizer is determined by the event-triggering error that preserves performance. 
Evolution of control effort is shown in Fig. 11. 

The proposed methodology is verified in Fig. 12, where the evolution of sliding 
surface is depicted. Figure 13 demonstrates the dynamic behavior of event-triggering 
error that is formulated by (90).
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Fig. 10 Quantizer’s sensitivity evolution with μ = 10−4 
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Fig. 11 Control effort U (t) = u(t − 0.2) 
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Fig. 12 Sliding surface dynamic, i.e., S(t)
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Fig. 13 Event-triggering error dynamic, i.e., E(t) 

4 Conclusions 

It is the purpose of this article to examine the problem of cyber-based control of 
mobile robots, and what problems it poses. During the first step, a review of wheeled 
mobile robot dynamic equations, as well as definitions and challenges of cyber-
physical systems is discussed. Then, to address the two main challenges of CPSs, 
i.e., the limitation of communication resources and cyber security, an event-triggered 
resilient robust control method for a class of uncertain nonlinear dynamic systems 
is developed, and explicit relationships between malicious attack properties, such as 
duration and frequency, and controller design parameters are presented. After that, 
to cope with two other CPSs’ challenges, i.e., communication delay and quantization 
error, an even-based robust control scheme by having a dynamic quantizer for a class 
of uncertain input-delayed nonlinear dynamic systems is proposed, and novel criteria 
to design the dynamic quantizer parameters is presented. 

Appendix 

Proof of Proposition 1. The assumptions made in (9), (11) indicate that system 
states obey Lipchitz continuity and do not exhibit any finite-escape time behavior. 
Meanwhile, due to the slow-varying dynamic of x(t i k) in the t ∈ [tk, tk+1), and having 
stabilizable dynamic outside the region ||E(t)|| ≤ λ ||x(t)||, then one can obtain 

k2
||||Ṡ(t)

|||| − k2||Ṡ pq−1−1 (t)||
||||||( ̇S2−pq−1 

(t) − Ṡ2−pq−1 
(t i k))

|||||| ≥ 0. (119) 

Now, suppose that x(t) diverges the maximum rate of within the minimum inter-
sampling time period.
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Now, it is supposed that x(t) diverges with its maximum rate, that would occur 
during a period when no control inputs are being applied to the system, i.e., t ∈ [0, D). 
Then, from (66), (92), and Assumption 13 one can obtain 

Λ <  k2α1 {ᾱ + ||Δ f (x) + d(x, t)|| + ||xd (t)|| + ||ẋd (t)||} . (120) 
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