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Abstract

In this paper, we firstly review the origin of Bernstein polynomial and the various

application of it. Then we review the importance of goodness-of-fit test, especially the

uniformity test, and we examine lots of different test statistics proposed by far. After

that we suggest two new statistics for testing the uniformity. These two statistics are

based on Komogorov-Smirnov test type and Cramér-Von Mises test type, respectively.

Also we embed Bernstein polynomial into those test type and take advantage of

great approximation performance of this polynomial. Finally, we run a Monte-Carlo

simulation to compare the performance of our statistics to those without embedding

the Bernstein polynomials. We compare their performance in term of powers and

inefficiencies. We found that by choosing suitable value for parameter, our statistics

can perform better than the original form in most of the cases. The suggestion of

choosing optimal value will be given.
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Chapter 1

Introduction

Goodness of fit test is a crucial tool in statistical analysis that has developed very

broadly by statisticians in the past several decades. The interests of it come from the

widely-used nature of this method. Statisticians develop theoretical results for more

effective testing, and scientists in other fields use this testing method to model real

problems. These fields include economics (see Chandra and Singpurwalla (1981) for

discussion of Lorentz Curve and Gini Index), finance (see Dang et al. (2018)), medical

research (see Boyle et al. (1997)) and biochemistry (see Kornegay et al. (1993) for

goodness-of-fit test of arcelin segregation curves), etc. In this paper, we will mainly

consider uniformity test. Indeed, the hypothesis testing of some samples follow other

distribution can be transferred to an uniformity test problem. For example, if we want

to test whether some samples X ′
is are taken from a cumulative distribution function

(c.d.f.) F , we can instead do a uniformity test for F (Xi)′s, as X ′
is have c.d.f. of F is

equivalent to F (Xi)′s are distributed uniformly.

In Chapter 2 entitled “Literature Review”, we will review the background and re-
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CHAPTER 1. INTRODUCTION 2

cent research results of Bernstein polynomial. Bernstein polynomial was firstly served

as a constructional proof of Stone–Weierstrass theorem. The quoted theorem states

that every continuous bounded real-valued function f on a closed interval [a, b] can be

uniformly approximated by a sequence of polynomials with real-valued coefficients.

For the construction of this polynomial and the proof of uniformly convergence, see the

original paper Bernshtein (1952). After that, Bernstein polynomial received spotlight

in the following years because of its excellent performance in approximate continuous

functions. Bernstein polynomial also plays an important role in statistics. As we all

know, probability density function (p.d.f.) and cumulative density function (c.d.f.)

are both bounded and continuous functions in most of cases. As a result, they can

be approximated by Bernstein polynomials. The behavior of such approximation was

studied deeply in the last several decades and the effectiveness of that approximation

was compared to other classical estimators, in terms of bias and mean squared error

(MSE), etc. Further, when Bernstein polynomial is applied in multivariate and con-

ditional density distribution case, it also works well. Recently, Bernstein polynomial

was applied in copula analysis to testing the independence of two random variables.

The proposed method is also based on this famous polynomial.

By far, lots of statistics for uniformity test are developed, as we will review some of

them in Section 2.3 entitled “An overview of uniformity tests”. However, no test

statistic is the uniformly most powerful. To evaluate the efficiency of test statistics,

we use the power function for a given significance level. Some of the statistics have

satisfactory power when dealing with some certain alternative distributions, but works

bad when dealing with other ones. We will also see some statistics which are good

when dealing with special cases. For example, one statistic was proposed to deal with
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data which have significant covariance between them. Some statistics have high power

almost universal for all variation of distributions, but they have complicated forms

and so require huge load of calculation. The most useful statistic is required to have

considerably high power against most of variation of distributions, and simultaneously

does not need too heavy computation load. In this paper, we consider to improve

two famous statistics, Cn and Sn (see Marhuenda et al. (2005)). We will show in the

simulation study that these two new statistics perform better than Cn and Sn when

dealing with two families of common-seen alternative distributions. Further, as these

two improved statistics basically keep the original expression, the calculation load

will not be increased too much.

In Chapter 3 entitled “Uniformity tests based on Bernstein polynomials”, we

give theoretical result of those two new statistics, including the explicit expression

and their asymptotic distributions. We use the generalized continuous mapping the-

orem (GCMT) to prove their asymptotic distributions. The empirical process can be

expressed as follows:

Fn(x) =
√

n(Fn(x) − F (x)), 0 ≤ x ≤ 1

where Fn stands for the empirical cumulative distribution function (e.c.d.f.) and F

is the c.d.f. Van der Vaart (2000) shows that this Fn converges in distribution to a

Gaussian process as n goes to infinity. We show that after embedding the Bernstein

polynomial, the resulting Bernstein empirical process also converges in distribution

to the same limit. Then, a simulation study follows to show their good performance

compared to the original form. For the convenience of readers, recall the definition
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of the Gaussian process:

Definition 1.1. (Gaussian process)

A continuous time stochastic process {Xt; t ∈ T} is Gaussian if and only if for

every finite set of indices t1, . . . , tk in the index set T , Xt1,...,tk
= (Xt1 , . . . , Xtk

) is a

multivariate Gaussian random vector. Or in other words, every linear combination

of (Xt1 , . . . , Xtk
) has a univariate normal (or Gaussian) distribution.

As the explicit expressions of the statistics are very complicated, we take advantage

of strong law of large number (SLLN) to compute the value of them. We use two

classical families of distributions to cover most type of alternative distributions, for a

thoroughly overview of how our statistics performs. Following that, we give sugges-

tions on the best situation of when to use each statistics and the optimal parameter

to choose. Finally, we suggest some future research directions.



Chapter 2

Literature Review

Bernstein polynomial is currently widely used in scientific research. In fields of Math-

ematics and Engineering, this famous polynomial is employed to smooth and approx-

imate functions. For example, in field of control engineering, Nataraj and Arounas-

salame (2007) use Bernistein polynomial approach to improve an algorithm for un-

constrained global optimization. In this chapter, we introduce Bernstein polynomial

from its origin. As we can see, it is closely related to a theorem in topology.

2.1 Weierstrass Theorem and Bernstein Polyno-

mials

Some basic concepts in topology are needed for this section, which can be found in

Appendix A. We first introduce the following theorem:

Theorem 2.1. (Stone–Weierstrass theorem) Let K be a compact Hausdorff space, let

A be a subalgebra of C(K,R) with the following properties:

5



CHAPTER 2. LITERATURE REVIEW 6

• 1 ∈ A

• ∃f ∈ A such that f(x) ̸= f(y) for ∀x ̸= y ∈ K

Then, we have: A is dense in C(K,R). Namely, every element in C(K,R) is either

in A or a limit point of A.

This theorem in topology was presented and a proof was given in Stone (1937),

and then Stone gave a simplified proof in Stone (1948). There are lots of generalized

and applied form of this theorem. Among those, one application of this theorem,

namely, the Weierstrass approximation theorem, is closely related to our topic, and

it is stated as follows:

Theorem 2.2. (Weierstrass approximation theorem) Let a < b ∈ R and f be a

continuous function mapping on the closed interval [a, b] to R. Then, there exists a

sequence of polynomials with coefficients in R that converges to f uniformly on [a, b].

There are only theoretical proof available for the above theorem until 1940s. Then,

Bernstein gave a constructional proof of the above theorem by proposing the following

Bernstein polynomials.

Definition 2.1. The Bernstein polynomial f̂m(x) of a continuous function f(x) map-

ping from a closed interval [a, b] to R is defined as follows:

f̂m(x) =
m∑

k=0
f

(
k

m

)
Pm,k(x), k = 0, ..., m

where Pm,k(x) =
(

m
k

)
xk(1 − x)m−k, k = 0, ..., m, stands for the binomial probability

mass function and m is a bandwidth parameter.
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It can be shown that f̂m(x) is a continuous function which converges to f(x) uniformly

on [a, b], as m tends to infinity. The proof follows from the following theorem which

is given in Feller et al. (1965).

Theorem 2.3. (Feller et al. (1965)) If f(x) is a continuous bounded function map-

ping from [0, 1] to R, then f̂m(x) = ∑m
k=0 f

(
k
m

)
Pm,k(x) converges uniformly to f(x)

on [0, 1], as m goes to infinity.

More properties of Bernstein polynomial are thoroughly discussed in Lorentz (1986).

An illustration on Bernstein approximation is given below:

Figure 2.1: Bernstein Approximation of a Function f(x) = x sin(10x)

Figure 2.1 gives graph of original function (f(x) = x sin(10x), in black line) and its

Bernstein polynomial approximation for k = 30, 40, 50, 60, 80 respectively. We can

see from Figure 2.1 that as the value of k increases, the Bernstein polynomial gets

closer to the approximated function.
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2.2 Applications of Bernstein Polynomials

2.2.1 Estimation of Unknown Density Function

Started from the 1970s, Bernstein polynomial was more deeply studied, and its usage

was no longer confined to be a proof of theorem. Vitale (1975) developed a Bernstein

polynomial density function estimator for estimating an unknown p.d.f. Let IA denote

the indicator function of the event A. Let X1, . . . , XN be i.i.d. random variables from

an unknown density function f , which has positive density only on interval [0, 1],

then a Bernstein polynomial density function estimator proposed by Vitale (1975) is

constructed as follows: for positive integer n, firstly define

mN
jn =

N∑
i=1

I
(

Xi ∈
[

j

n + 1 ,
j + 1
n + 1

])
, j = 0, 1, . . . , n. (2.1)

Then, the estimator introduced by Vitale (1975) is as follows:

f̂nN(x) = n + 1
N

N∑
j=0

mN
jn

(
n

j

)
xj(1 − x)n−j.

Vitale (1975) argued that this density function estimator has comparable order of

convergence as its competitors, such as kernel estimators. However, this new es-

timator has significant lower load of computation which made it better than com-

petitors in practical usage. After that, Tenbusch (1994) extended this estimation

of unknown marginal p.d.f. to the case of joint p.d.f. To estimate the joint p.d.f.

f(x, y), he used a similar method of Bernstein polynomial as follows: Suppose that

(X1, Y1), . . . , (XN , YN) are i.i.d. vectors from an unknown joint p.d.f. f(x, y), which

has positive density in unit square region, and let n be a positive integer which de-
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pends on the sample size N . We firstly define

Ajin =
[
(x, y) : j

n + 1 < x ≤ j + 1
n + 1 ,

i

n + 1 < y ≤ i + 1
n + 1

]

and then,

m
(N)
jin =

N∑
i=1

I((Xi, Yi) ∈ Ajin).

Then, the Bernstein polynomial density estimator proposed by Tenbusch (1994) of

f(x, y) is given as follows:

f̂nN(x, y) = (n + 1)2

N

n∑
j=0

n∑
i=0

m
(N)
jin pjn(x)pin(y),

where pjn(x) =
(

n
j

)
xj(1 − x)n−j.

Tenbusch (1994) argued that this estimator has bias at non-boundary region compa-

rable in terms of order to classical kernel estimator, which is shown in Theorem B.1

given in Appendix B. Further, this estimator is unbiased at boundary, whereas kernel

estimator is biased at that points. Also, on the border, or in other words, when either

x or y is equal to 0 or 1, and the other takes value between them, the bias of this

new estimator will outperform classical one, as shown in Theorem B.2. Taking the

lower computation load and lower bias at boundary and border into consideration,

this new estimator outperforms classical kernel one in similar way as the univariate

case.
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2.2.2 Approximation of p.d.f. and c.d.f

Recently, Bernstein polynomial was used to approximate p.d.f. and c.d.f. using an

empirical distribution function approach. We point out that the empirical cumulative

density function (ecdf) is a step function. Nevertheless, as it was proposed in Babu

et al. (2002), the ecdf can be smoothed by using Bernstein polynomials. Specifically,

the resulting empirical Bernstein distribution estimator is given by:

F̂n,m(x) =
m∑

k=0
Fn

(
k

m

)
Pm,k(x), k = 0, ..., m, (2.2)

Also, some properties of the difference between ecdf and its Bernstein approximation

were studied in Babu et al. (2002). The result is stated in the following theorem.

Theorem 2.4. (Babu et al. (2002)) Let F be continuous and differentiable on the

interval [0, 1] with density f . If f is Lipschitz of order 1, then for n2/3 ≤ m ≤

(n/ log n)2, we have a.s. as n −→ ∞,

sup
0≤x≤1

|F̂m,n(x) − Fn(x)| = O((n−1 log n)1/2(m−1 log m)1/4).

Therefore, for m = n, we will have:

sup
0≤x≤1

|F̂n,n(x) − Fn(x)| = O(n−3/4(log n)3/4) a.s.

The Bernstein probability density function estimator f̂m,n(x) is the derivative of

F̂m,n(x) with respect to x, which is expressed as:



CHAPTER 2. LITERATURE REVIEW 11

f̂m,n(x) =
m−1∑
k=0

[
Fn

(
k + 1

m

)
− Fn

(
k

m

)]
βk+1,m−k(x)

where βa,b(x) stands for the beta density of parameters a and b :

βa,b(x) = γ(a + b)
γ(a)γ(b)xa−1(1 − x)b−1 for x ∈ [0, 1]

and βa,b(x) = 0 otherwise.

Theorem B.3 gives the rate at which the Bernstein estimator of p.d.f. (f̂m,n(x))

converges to f .

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

F
(x

)

Figure 2.2: Distribution function estimation based on Bernstein polynomials
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Figure 2.2 shows the Bernstein approximation of c.d.f. of a Beta(2, 5) distribution,

with sample size n = 100 and optimal m value which is 25.

Further, the asymptotic normality was studied in Babu et al. (2002). For this paper

to be self-contained, we recall this result in Theorem B.4 in Appendix.

Moreover, Leblanc (2010) studied the bias and mean squared error (MSE) of F̂m,n(x)

and f̂n,m(x). See Theorem B.5 by Leblanc (2010) for details. The significance of

this theorem is that the Bernstein estimator of p.d.f has uniform bias over the whole

interval [0, 1]. Therefore, by using this estimator, one can get rid of any boundary

bias. Following that, Leblanc (2012) derived a theorem which gives the bias for

Bernstein estimator of c.d.f. For this paper to be self-contained, we recall this result

in the Appendix (see Theorem B.6)

Also, the MSE of this Bernstein estimator of c.d.f. is given by Theorem B.7.

As a result, by the fact that

MSE[F̂n(x)] = n−1F (x)[1 − F (x)].

Leblanc (2012) argued that by artificially choosing good value of m, the estimator

F̂m,n(x) dominates F̂n(x) over the whole interval [0, 1] in terms of MSE.

Finally, in Leblanc (2012), the author establishes the asymptotic normality of F̂m,n(x).

For this paper to be self-contained, we recall this result in the Appendix B (see

Theorem B.8)

As we see from the above, the theoretical results are pretty firmly built for Bernstein

estimator. Further, lots of articles use simulation to approximate the real distribution

function using Bernstein polynomial. For example, in Babu et al. (2002), different
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combinations of m and n are selected to generate Bernstein approximation for c.d.f.

and p.d.f. of Beta, exponential and normal distributions. It is found in Babu et al.

(2002) that among all combinations, m = n/ log n works best for large n. Further, it

outperforms the kernel estimator by a huge amount. We can clearly see this trend in

the figures given in the Appendix.

After that, Leblanc (2012) gave more emphasis on the boundary bias of estimators

on his graphic illustrations. He uses two real datasets and applies several different

estimators to approximate the density function. As we can see from graphs in Leblanc

(2012), Bernstein estimator outperforms others at boundary. It coincides with the

real density very well near points of 0 and 1, whereas other estimators are kinds of

out of control at these points. Finally, the performance of Bernstein estimator in

terms of mean-integrated squared error (MISE) was also included in Leblanc (2012).

For the convenience of the reader, recall that MISE of an estimator F̂ of a c.d.f F is

defined as

MISE(F̂ ) = E
[∫ 1

0

(
F̂ (x) − F (x)

)2
dx
]

.

Leblanc (2012) compare MISE of Bernstein estimator, Empirical c.d.f. (Fn) and

Kernel estimator for a Beta(2, 1) distribution. He fixed the sample size n and plot

MISE for different values of m. In his graph, we can see clearly that if we choose

m deliberately according to the value of n, the MISE of Bernstein estimator can be

lower to about half of MISE of other two estimators.
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2.2.3 Estimation of Conditional Density Function

Bernstein polynomials are recently developed to have other applications. For exam-

ple, given i.i.d. (X1, Y1), . . . , (Xn, Yn) with joint continuous c.d.f., they are used for

estimating the conditional c.d.f., which is defined as:

Fy(x) = P[Y < y|X = x]. (2.3)

A classical approach is given by Nadaraya (1964), which is given as follows:

F̂x,h(y) =
∑n

i=1 Wh(x − Xi)I(Yi < y)∑n
j=1 Wh(x − Xj)

=
n∑

i=1
wi,h(x)I(Yi < y) (2.4)

where the weights

wi,h(x) = Wh(x − Xi)∑n
j=1 Wh(x − Xj)

where Wh is the kernel function and h is bandwidth parameter. However, a well-

known problem of this estimator is that it has a boundary bias which is larger than

the bias in other region by a full magnitude h. Belalia et al. (2017) suggested to use

Bernstein polynomial to smooth the conditional c.d.f. and the estimator is given by:

F̂
B(2)
x,mh(y) =

m∑
k=0

F̂
(2)
x,h(k/m)Pm,k(y) (2.5)

where Pm,k(y) is defined as previous and F̂
(2)
x,h is given by:

F̂
(2)
x,h(y) =

∑n
i=1 W ∗

i (x, h)I(Yi < y)∑n
j=1 W ∗

j (x, h) (2.6)
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where W ∗
i (x, h) satisfy:

W ∗
i (x, h) = max[0, [S2(x) − (x − Xi)S1(x)]W ((x − Xi)/h)]

and where Sl(x) = ∑n
i=1(x − Xi)lW ((x − Xi)/h) for l = 1, 2. Belalia et al. (2017)

argued that this Bernstein estimator has no variance and no bias at the end point,

namely, at y = 0, 1. Moreover, Belalia et al. (2017) proved that the estimator in (2.6)

maintains the bias in order h2 at boundary regions. This is a significant improvement

from the traditional estimator which has order h bias at boundary regions.

Further, the Bernstein estimator of the joint c.d.f F in order m, denoted as F̂m,n(x, y),

is defined as stated in Babu and Chaubey (2006):

F̂m,n(x, y) =
m∑

k=0

m∑
l=0

Fn

(
k

m
,

l

m

)
. (2.7)

Belalia et al. (2019) mentioned that we can have a smooth estimator for the joint

p.d.f. f̂m,n(x, y) by taking the second derivative of F̂m,n(x, y):

f̂m,n(x, y) = d2

dxdy
F̂m,n(x, y) = m2

m−1∑
k=0

m−1∑
l=0

Bk,l,mPk,m−1(x)Pl,m−1(y), (2.8)

where

Bk,l,m = Fn

(
k + 1

m
,
l + 1

m

)
− Fn

(
k + 1

m
,

l

m

)
− Fn

(
k

m
,
l + 1

m

)
+ Fn

(
k

m
,

l

m

)
,

where Fn denotes the bivariate empirical distribution. Belalia et al. (2019) proposed
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a new estimator for conditional p.d.f.f̂x,m,n(y), which is as follows:

f̂x,m,n(y) = f̂m,n(x, y)
ĝm,n(x) , (2.9)

where

ĝm,n(x) = m

n

m−1∑
k=0

Mk,mPk,m−1(x)

and Mk,m denotes the number of observations in the interval ( k
m

, k+1
m

].

2.2.4 Estimation of Regression Function

Bernstein polynomial can also help to estimate regression function, which naturally

follows from the previous results. The regression function r(x) is defined as:

r(x) = E(Y |X = x) =
∫ 1

0
yfx(y)dy. (2.10)

Belalia et al. (2019) considered to estimate r(x) by:

r̂m,n(x) =
∫ 1

0
yf̂x,m,n(y)dy =

m−1∑
l=0

l + 1
m + 1Wx,l,m (2.11)

where

Wx,l,m =
∑m−1

k=0 Mk,l,mPk,m−1(x)∑m−1
k=0 Mk,mPk,m−1(x)

.

Lots of simulation studies and real-data applications can be found in Belalia et al.

(2019).
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2.2.5 Estimation of Copula and Testing of Independence

The hypothesis testing problem of two sets of samples (X1, Y1), . . . , (Xn, Yn) also plays

an important role in statistics. Belalia et al. (2017) took advantage of Bernstein

polynomial to approach this kind of testing by using empirical Bernstein copula.

Firstly, as proposed by Deheuvels (1979), the empirical copula Cn(u) can be defined

as:

Cn(u) = 1
n

n∑
i=1

d∏
j=1

I(Vi;j ≤ uj), u = (u1, . . . , ud) ∈ [0, 1]d (2.12)

where Vi;j = Fj,n(Xi,j) and Fj,nis the empirical cumulative distribution function of the

component Xi,j. From empirical cumulative distribution, Belalia et al. (2017) define

Bernstein copula estimator as:

Ck,n(u) =
k∑

v1=0
. . .

k∑
vd=0

Cn

(
v1

k
, . . . ,

vd

k

) d∏
j=1

Pvj ,k(uj) (2.13)

where Pvj ,k is the binomial probability function defined in Definition 2.1. Further,

Belalia et al. (2017) defined empirical Bernstein copula process as:

Bk,n(u) = n1/2(Ck,n(u) − Cπ(u)) (2.14)

where Cπ(u) = ∏d
j=1 uj, for u = (u1, . . . , ud) ∈ [0, 1]d. Finally, Belalia et al. (2017)

proposed a new statistics Tn to test the independence based on this empirical Bern-

stein process, which is:

Tn =
∫

[0,1]d
Bk,n(u)du. (2.15)

In Belalia et al. (2017), the explicit expression of Tn is shown and it is also shown

that under the null hypothesis, this statistics converges in distribution to integral of
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a Gaussian process:

Tn
d−→
∫

[0,1]d
C2

π(u)du. (2.16)

Belalia et al. (2017) also ran a Monte-Carlo simulation to calculate the critical value

of this statistic, and a comparison in terms of power with other statistics is also

available in Belalia et al. (2017).

2.3 An overview of uniformity tests

In this chapter, we review the methodology of uniformity test. In fact, the problem of

testing whether a sample follows any continuous distribution can be transformed to

a problem of uniformity test. Then, the widely-used nature will be briefly examined

and others result about the statistics of this test will be reviewed.

2.3.1 Uniformity Test and Existing Studies

Basically, a test of uniformity is performed as follows: Let X1, . . . , Xn be i.i.d. random

variables drawn from a cumulative distribution function F , and consider the problem

of testing the null hypothesis H0 : F = F0 against Ha : F ̸= F0. In this paper, we

typically consider the case where F0 is the cdf of uniform distribution on [0, 1]. This

particular case can be generalized to the problem of testing the simple null hypothesis

H0 that X1, . . . , Xn are i.i.d. from any fixed continuous c.d.f. F on the real line. In

fact, define Yi = F (Xi), i = 1, 2, ..., n. We can easily show that the Y ′
i s are i.i.d.

as a uniform random variable on [0, 1] under H0; then, testing the hypothesis that

Y1, . . . , Yn are i.i.d. as a uniform random variable on [0, 1] is equivalent to testing the

hypothesis that X1, . . . , Xn are from the c.d.f F .
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As the universal nature of uniformity test, it is useful in lots of fields. Basically, differ-

ent statistics are chosen for different purposes to test whether the samples are coming

from a certain distribution. For example, Dang et al. (2018) used this goodness-of-fit

test in the field of corporate finance to evaluate the nuance effects of different mea-

surements of the "firm size effect". Also, Boyle et al. (1997) used this test in medical

science to argue that the rare events in epidemiological area fit better in a Poisson

model instead of a more popular chi-square model.

Many test statistics have been proposed in literature. For instance, Marhuenda et al.

(2005) compared the most commonly used statistics for uniformity test. These statis-

tics can be divided to two major classes. One is the supremum test statistics, which

include the Kolmogorov-Smirnov test statistics and related versions. The other is the

Cramér-Von Mises type statistics, which take integral form. The above mentioned test

statistics are based on the empirical cumulative distribution function (ecdf). Namely,

given a sample (X1, X2, ..., Xn), Fn is defined by

Fn(x) = n−1
n∑

i=1
I{Xi ≤ x}. (2.17)

Some well-known and relatively powerful test statistics are as follows: Cramér-Von

Mises family type statistics given by

Q2
n = n

∫ 1

0
(Fn(x) − F0(x))2 ϕ(x)dF0(x). (2.18)
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Kolmogorov-Smirnov test statistics:

Dn = sup
0≤x≤1

∣∣∣F̂n(x) − F0(x)
∣∣∣ . (2.19)

Dn can be expressed as the maximum of two values, D+
n and D−

n , which are as follows:

D+
n = max

1≤i≤n

(
i

n
− U(i)

)
, (2.20)

and

D−
n = max

1≤i≤n

(
U(i) − i − 1

n

)
. (2.21)

where U(i) stands for the ith largest observations i.e. U(1) < U(2) < ... < U(n). Kuiper

(1960) suggested a closely related statistics Vn to be used when sample are distributed

among a circle, as this statistics does not depend on the origin choice. Vn is defined

as:

Vn = D+
n + D−

n . (2.22)

The closed form and the asymptotic distribution of those statistics are well-studied.

See Kolmonorgov (1933) for a detailed discussion of Dn. Also, the Cramér-Von Mises

type statistics have some variations. When ϕ(x) = 1, the Qn is the Cramér-Von Mises

statistics Wn and when ϕ(x) = F (x)
1−F (x) it is called Anderson-Darling’s An. Anderson

and Darling (1954) showed that the closed form of these statistics can be expressed

as:

W 2
n =

n∑
i=1

(
Ui − 2i − 1

2n

)2
+ 1

12n
. (2.23)
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and

A2
n = −n − 1

n

n∑
i=1

(2i − 1)[ln U(i) + ln(1 − U(n+1−i))]. (2.24)

Noticeably, as no simulation software was available that time, the critical value was

gained theoretically in Anderson and Darling (1954).

Also, some small modifications to those well-studied statistics exist. For example,

Watson’s U2
n is a modification of W 2

n and is defined as:

U2
n = W 2

n − n(Ū − 0.5)2 (2.25)

where Ū stands for the average of all observed sample.

Besides that, there exist other statistics, such as statistics based on spacing. We can

defined the spacing Ki between order statistics as:

Ki = U(i) − U(i−1) ∀i = 2, . . . , n and K1 = U(1), Kn+1 = 1 − U(n). (2.26)

Then, we have statistics based on Di. The simplest one is from Greenwood (1946)

and it is defined as:

Gn =
n+1∑
i=1

K2
i .

It can also be as complicated as the one introduced by Read and Cressie (2012), which

is defined as:

2nIλ(D, E(D)) = 2n

λ(λ + 1)

n+1∑
i=1

Di[((n + 1)Di)λ − 1].
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Further, some statistics are introduced for special use, for example, Quesenberry and

Jr. (1977) propose the statistic:

Q =
n+1∑
i=1

D2
i +

n∑
i=1

DiDi+1. (2.27)

As the notation suggests, this statistic will be sensitive when dealing with autocor-

relation between samples. In Quesenberry and Jr. (1977), the critical value of the

statistics Q was calculated by Monte Carlo simulation. More details of those statistics

are discussed in the above quoted papers.

An improvement of statistics based on spacing is that based on higher order spacings.

We follow the approach in Deken (1981) and define higher order spacings as:

G
(m)
i = U(i+m) − U(i) ∀i = 0, . . . , n + 1 − m and U0 = 0, Un+1 = 1. (2.28)

In Cressie (1978), the author found a statistic, based on this higher order spacing,

which is defined as:

L(m)
n =

n+1−m∑
i=0

ln G
(m)
i . (2.29)

Cressie (1978) showed that this statistic is asymptotically normal, and it is better

for some particular alternatives. After that, Cressie (1979) studied another statistics

which have a better asymptotic relative efficiency. This statistic is defined as:

S(m)
n =

n+1−m∑
i=0

nG
(m)
i

2
. (2.30)

To present some others statistics, we recall first the definition of Legendre polynomial.
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For more details about this polynomial, we refer to Weisstein (2015)

Definition 2.2.
1

(1 − 2xt + t2)1/2 =
∞∑

n=0
Pn(x)tn

The solution Pn(x) satisfy the above equation when t = 1 is the normalized Legendre

polynomial.

It have the following explicit expressions:

Pn(x) = 1
2nn!

dn

dxn
(x2 − 1)n. (2.31)

Or it can be expressed as a more convenient form for calculation:

Pn(x) =
n∑

k=0

(
n

k

)(
n + k

k

)(
x − 1

2

)k

. (2.32)

Further, Neyman (1937) used approach of Legendre polynomials to introduce a pow-

erful statistics for uniformity test, which is defined as:

Nh = 1
n

h∑
j=1

(
n∑

i=1
Pn(Ui))2, (2.33)

where Pn(x) stands for the normalized Legendre polynomials.

As Neyman (1937) mentioned, the problem of this statistics consists in the choice of

h. Although sometimes one can find a value of h which makes Nh performs very well,

it does not work for any alternative distributions. For certain alternatives, to find an

optimal h is very time-consuming because of the complexity of the expression of Nh.

As time goes, in the beginning of the 21st century, Zhang (2002) developed a novel
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approach based on the statistics

Za = −
n∑

i=1

 ln(U(i))
n − i + 0.5 +

ln
(
1 − U(i)

)
i − 0.5

 , (2.34)

and

Zc =
n∑

i=1

ln
 U−1

(i) − 1
(n − 0.5)/(i − 0.75) − 1

2

. (2.35)

It is shown that these statistics behave better in term of power than most of classical

ones.

The reason for developing so many statistics is that different kinds of statistics have

higher sensitivity on different alternative distributions Fa. For example, as mentioned

in Marhuenda et al. (2005), Za is more powerful when testing against alternative

distribution which has more density on both end (0 and 1) than uniform distribution.

Conversely, the Kolmogorov-type statistics Dn, which is mentioned in (2.19), performs

better when dealing with alternative distribution which has more density around 0.5.

For goodness-of-fit test problem, there is infinite variation of alternative distributions.

Because of that, the uniformly most powerful test (UMP test) seems impossible.

However, the pursuit of more generally suitable or more specific fitted test statistics

will never be ceased.



Chapter 3

Uniformity tests based on

Bernstein polynomials

In this chapter, we propose two test statistics based on the empirical Bernstein pro-

cess. The closed form and asymptotic distribution are theoretically proved. Further,

we present a simulation study showing the advantages of the proposed test statistics.

3.1 Introduction

Let X1, . . . , Xn be i.i.d. real valued observations drawn from a cumulative distribu-

tion function F , and consider the problem of testing the null hypothesis H0 : F = F0

against Ha : F ̸= F0. In this paper, we typically consider the case where F0 is the

cdf of uniform distribution on [0, 1]. This particular case can be generalized to the

problem of testing the simple null hypothesis H0 that X1, . . . , Xn are i.i.d. from any

fixed continuous c.d.f. F on the real line. In fact, define Yi = F (Xi), so that the Yi

are i.i.d. U(0, 1) under H0; then, test the hypothesis that Y1, . . . , Yn are i.i.d. uniform

25
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on [0, 1]. This test ignited interest for a long time. Dating back to 1950s, for example,

Anderson and Darling (1954) proposed a statistic An for goodness-of-fit test, which

was given in Equation 2.24, and the significance point are theoretically calculated.

Many test statistics have been proposed in literature, and efficiencies of them are often

compared in terms of power. For instance, Quesenberry and Jr. (1977) compared

most of available statistics for testing uniformity. He picked lots of widely used one,

like Kolmogorov’s Dn, Cramer-Von Mises Wn and Anderson-darling An. We reviewed

them in previous chapter. Also, see Liang et al. (2001) for a comparison of statistics for

testing multivariate uniformity. Later, Marhuenda et al. (2005) did a more complete

comparison between most commonly used statistics for the uniformity test. These

statistics can be divided into two classes, the supremum test statistics, which include

the Kolmogorov-Smirnov test statistics and related versions, and the Cramér-Von

Mises type statistics. The above mentioned test statistics are based on the empirical

cumulative distribution function (ecdf), namely, given a sample (X1, X2, ..., Xn), Fn

is defined by

Fn(x) = n−1
n∑

i=1
I{Xi ≤ x}. (3.1)

There are two statistics that we are going to improve, namely, Cn and Sn, and they

are defined as follows respectively:

• Komogorov-Smirnov test type

Sn = sup
0≤x≤1

∣∣∣√n
(
F̂n(x) − F (x)

)∣∣∣ . (3.2)
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• Cramér-Von Mises test type

Cn = n
∫ 1

0
(Fn(x) − F (x))2 dF (x). (3.3)

We point out that the ecdf is a step function. However, as proposed in Babu et al.

(2002), it can be smoothed by using Bernstein polynomials. Specifically, the empirical

Bernstein distribution estimator is given by

F̂n,m(x) =
m∑

k=0
Fn

(
k

m

)
Pm,k(x), k = 0, ..., m, (3.4)

where Pm,k(x) =
(

m
k

)
xk(1 − x)m−k, k = 0, ..., m, stands for the binomial probability

mass function and m is a bandwidth parameter which increases to infinity as n tends

to infinity. A multivariate extension of this estimator was proposed in Babu and

Chaubey (2006) and studied in Belalia (2016). The estimator (3.4) was deeply studied

by Leblanc (2009) and Leblanc (2012). It was shown in the quoted papers that

the empirical Bernstein estimator F̂m,n outperforms the ecdf one in the sense of the

integrated mean square error. This finding motivated us to propose an alternative

goodness-of-fit test based on the empirical Bernstein distribution estimator instead

of the ecdf one. Specifically, the proposed test statistics are as follow:

• Bernstein Komogorov-Smirnov test type

Sm,n = sup
0≤x≤1

∣∣∣√n
(
F̂m,n(x) − F (x)

)∣∣∣ . (3.5)
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• Bernstein Cramér-Von Mises test type

Cm,n = n
∫ 1

0
(Fn,m(x) − F (x))2 dF (x). (3.6)

The remainder of this chapter is organized as follow. In Section 3.2, an explicit

expression of Cm,n is provided and the asymptotic distributions of Cm,n and Sm,n

are established under the null hypothesis H0 and also alternative hypotheses. In

Section 3.3, a simulation study is carried out to show the powers and efficiencies of

the proposed test statistics compared to the ones based on the ecdf.

3.2 Asymptotic distribution of Sm,n and Cm,n

We start this section by providing a proposition which gives an explicit expression

of Cm,n under the null hypothesis H0.

Proposition 3.1. Under H0, we have

Cm,n = n
m∑

k,ℓ=0
Fn

(
k

m

)
Fn

(
ℓ

m

)(
m

k

)(
m

ℓ

)
β(k + ℓ + 1, 2m − k − ℓ + 1)

− 2n
m∑

k=0
Fn

(
k

m

)(
m

k

)
β(k + 2, m − k + 1) + n

3 ,

where β(a, b) stands for the beta function for two positive integers a and b, which is

defined as:

β(a, b) =
∫ 1

0
xa−1(1 − x)b−1dx.

Proof. Note that under the null hypothesis H0, F0(x) = x, then, Cm,n can be de-
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composed as follow:

Cm,n = n
∫ 1

0

(
F̂n,m(x) − x

)2
dx

= n
∫ 1

0

(
F̂n,m(x)

)2
dx − 2n

∫ 1

0
x
(
F̂n,m(x)

)
dx + n

∫ 1

0
x2dx.

Then,

Cm,n = n(A − 2B + C),

where

A =
∫ 1

0

(
F̂n,m(x)

)2
dx, B =

∫ 1

0
x
(
F̂n,m(x)

)
dx, and C =

∫ 1

0
x2dx

Furthermore, we have

A =
∫ 1

0

m∑
k,ℓ=0

Fn

(
k

m

)
Fn

(
ℓ

m

)
Pm,k(x)Pm,ℓ(x)

=
m∑

k,ℓ=0

(
m

k

)(
m

ℓ

)
Fn

(
k

m

)
Fn

(
ℓ

m

)∫ 1

0
xk+ℓ(1 − x)2m−k−ℓdx.

This gives

A =
m∑

k,ℓ=0
Fn

(
k

m

)
Fn

(
ℓ

m

)(
m

k

)(
m

ℓ

)
β(k + ℓ + 1, 2m − k − ℓ + 1).
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Similarly, one can show that

B =
m∑

k=0
Fn

(
k

m

)(
m

k

)
β(k + 2, m − k + 1).

Finally, it is trivial that C = 1
3 . Which concludes the proof.

3.2.1 Asymptotic properties of Cm,n and Sm,n

This subsection is devoted to the derivation of the distribution limit under the

null hypothesis H0 and all legitimate alternative distributions HA of the test statistics

Cm,n and Sm,n. The following lemma from Chapter 19 of Van der Vaart (2000) will

be needed in establishing these limiting distributions. Let Fn denote the empirical

process, which is expressed as:

Fn(x) =
√

n(Fn(x) − F (x)), 0 ≤ x ≤ 1. (3.7)

Let D[0, 1] denote the space of all functions which are right-continuous with left

limits on [0, 1]. We use the notation Bn ⇝ B to stand for the process Bn(.) converges

weakly to the process B(.), with respect to Skorokhod topology on D[0, 1].

Lemma 3.1. (convergence of Fn )

Let Fn(x) be as defined in equation 3.7, let X1, . . . , Xn be i.i.d. random samples

and let F (x) be the c.d.f. for X ′
is and F (x) is a continuous function in [0, 1].

Then, we have:

Fn ⇝ F as n −→ ∞,

where F is a Gaussian process which satisfies:
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i. E (F(t)) = 0 ∀0 ≤ t ≤ 1;

ii. Cov (F(s),F(t)) = F (s)(1 − F (t)) ∀0 ≤ s ≤ t ≤ 1.

The proof of this lemma can be found in chapter 19 of Wellner et al. (2013). Further,

for this paper to be self-contained, a similar proof is outlined in the Appendix B.

For deriving the asymptotic properties of Cm,n, we firstly define the Bernstein operator

Bm : (D[0, 1], || · ||∞) −→ (C[0, 1], || · ||∞)

as:

Bm(F )(u) =
m∑

k=0
F (k/m)Pm,k(u),

where C[0, 1] stands for the space of all continuous functions over [0, 1] and D[0, 1]

stands for the space of all functions over [0, 1] with left limit and right continuous.

Further, the norm || · ||∞ is defined as ||f ||∞ = sup |f(x)| where the supremum is

taken over domain of f (therefore [0, 1] in our space).

Then, the empirical Bernstein process is defined as

Bn(x) =
√

n
(
F̂m,n(x) − F (x)

)
.

Further, the following result will be of interest, also known as the generalized contin-

uous mapping theorem, which is given in (Whitt, 2002, Theorem 3.4.4).

Theorem 3.1 (Generalized Continuous Mapping Theorem). Let g and gn, n ≥ 1,

be measurable functions mapping (S, d) into (S ′, d′). Let the range (S ′, d′) be sepa-

rable. Let E be the set of x in S such that gn(xn) −→ g(x) fails for some sequence
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{xn, n ≥ 1, n ∈ N} with xn −→ x in S. If Xn
d−→ X, and P [X ∈ E] = 0, then

gn(Xn) d−→ g(X), in (S ′, d′).

The proof of this theorem is given in Whitt (2002). For the convenience of the reader,

a similar proof is outlined in the Appendix. By using Theorem 3.1, the core result of

this paper is established in the following theorem.

Theorem 3.2. Assume that the derivative of F exists and is continuous on [0, 1].

Further, if m satisfies n1/2m−1/2 −→ 0 and n −→ ∞, then

Bn(x) = n1/2 (Bm (Fn) (x) − F (x))⇝ F(x)

where F is given in Lemma 3.1.

Proof of Theorem 3.2. First, the empirical Bernstein process can be rewritten as:

n1/2 [Bm(Fn)(x) − F (x)] = n1/2 [Bm(Fn)(x) − Bm(F )(x) + Bm(F )(x) − F (x)]

= n1/2Bm(Fn − F )(x) + n1/2 (Bm(F )(x) − F (x))

= Tmn,1 + Tmn,2

Within the second term, (Bm(F )(x) − F (x)) converges uniformly to 0 by original

paper of Bernstein (1912).

This result is revised a little bit, and together with the assumption that n1/2m−1/2 −→

0, it will be proven that the term Tmn,2 converges to 0 uniformly under our condition
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on F . To this end, the second term can be expressed as

Tmn,2 =
√

n |Bm(F )(x) − F (x)| =
√

n

∣∣∣∣∣
m∑

k=0
F

(
k

m

)
pm,k(x) − F (x)

∣∣∣∣∣
≤

√
n

m∑
k=0

pm,k(x)
∣∣∣∣∣F
(

k

m

)
− F (x)

∣∣∣∣∣ .
Then, a Taylor expansion for F at point x leads to

Tmn,2 ≤
√

n
m∑

k=0
pm,k(x)

∣∣∣∣∣∣f(x)
(

k

m
− x

)
+ O

(
k

m
− x

)2
∣∣∣∣∣∣

≤
√

n
m∑

k=0
pm,k(x)f(x)

∣∣∣∣∣ k

m
− x

∣∣∣∣∣+ √
n

m∑
k=0

∣∣∣∣∣∣O
(

k

m
− x

)2
∣∣∣∣∣∣ pm,k(x)

≤
√

n
m∑

k=0
pm,k(x)f(x)

∣∣∣∣∣ k

m
− x

∣∣∣∣∣+ O

(∣∣∣∣∣√nm−2
m∑

k=0
(k − mx)2 pm,k(x)

∣∣∣∣∣
)

≤
√

n
m∑

k=0
pm,k(x)f(x)

∣∣∣∣∣ k

m
− x

∣∣∣∣∣+ O
(∣∣∣√nm−2mx(1 − x)

∣∣∣)

=
√

n
m∑

k=0
pm,k(x)f(x)

∣∣∣∣∣ k

m
− x

∣∣∣∣∣+ O(n1/2m−1).

Noticed that the previous inequality comes from the triangular inequality and also

from the fact that f(x) is non-negative. Also the summation inside big-O notation is

the variance of a random variable Y which follows binomial distribution of parameters

m and x. Then we use the fact that x(1 − x) is bounded by 1.

Then we apply Cauchy-Schwartz inequality to first term and use again the variance

of a binomial distribution to get
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√
n

m∑
k=0

pm,k(x)f(x)
∣∣∣∣∣ k

m
− x

∣∣∣∣∣ = n1/2m−1f(x)
m∑

k=0
|k − mx| pm,k(x)

≤ n1/2m−1f(x)
(

m∑
k=0

(k − mx)2pm,k(x)
)1/2

= n1/2m−1f(x) (mx(1 − x))1/2

≤ f(x)n1/2m−1/2 = O
(
n1/2m−1/2

)
.

We have the big O notation as f(x) is a continuous function on a compact support

[0, 1], so it achieve it’s maximum in the support. Therefore, we finally conclude

that supx∈[0,1]
√

n |Bm(F )(x) − F (x)| = O
(
n1/2m−1/2

)
. Hence Tmn,2 converges to 0

uniformly.

It remain to use Theorem 3.1 to prove that the first term Tmn,1 converges to F. to

achieve this goal a similar method followed by Neumann et al. (2019) will be employed.

Let (S, d) be (D[0, 1], || · ||∞) and (S ′, d′) be (C[0, 1], || · ||∞). Also, let gn be defined

as gn = Bm and g be the identity function on S ′ and take arbitrary value on S\S ′.

Then we check 3 conditions:

i. S ′ has a countable dense subset, namely, the set of all rational coefficient poly-

nomials. Therefore, S ′ is separable.

ii. Let E be the set of f ∈ S such that gn(fn) −→ g(f) fails for some sequence fn

with fn −→ f in S. Then if f ∈ E and f ∈ S, we will have f /∈ S ′. Since if

f ∈ S ′, we can choose fn = f for all n and get uniform convergence of gn(fn) to

g(f) by Bernstein’s Theorems. Therefore we claim that E ⊂ S\S ′ . Therefore

we will have P (F ∈ E) ≤ P (F ∈ (S\S ′)) = 0. As P (F ∈ E) ≥ 0, we have
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P (F ∈ E) = 0.

iii. Also, the convergence of Fn to F is showed in Van der Vaart (2000).

Then by Theorem 3.1, with all conditions meet, we have

Bm (Fn)⇝ F as n −→ ∞.

Theorem Therefore, 3.2 is proved.

For further discussion about the process Fn, see Chapter 2 of Van der Vaart

(2000). Based on Theorem 3.2 and the generalized continuous mapping theorem, we

establish the asymptotic distribution of Cm,n and Sm,n, as stated in the following

corollary. Noticing that this corollary holds for any F that satisfies the conditions of

Theorem 3.2. The established result serves as a linkage to get the limiting distribution

of Cm,n and Sm,n under H0 and HA.

Remark 3.1. It is pointed out that if the condition is strengthened to let F ad-

mits two continuous and bounded derivatives, Leblanc (2012) proved that the term

(Bm(F )(x) − F (x)) is dominated by m−1. The formula is as follows:

Bm(F )(x) = F (x) + m−1b(x) + o(m−1),

where b(x) = x(1 − x)f ′(x)/2.

Corollary 3.1. Under the same conditions as Theorem 3.2, we have

Cm,n
d−−−−→

n−→∞

∫ 1

0
F2(x)dF (x)
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and

Sm,n
d−−−−→

n−→∞
sup

0≤x≤1
|F(x)|,

where F is a Gaussian process with properties given in Lemma 3.1.

Proof. Corollary 3.1 follows directly from Theorem 3.2 and the continuous map-

ping theorem. Indeed, note that h(f) =
∫ 1

0
f 2(x)dF (x) and k(f) = sup

0≤x≤1
|f(x)| are

continuous functionals.

3.3 Simulation study

To assess and compare the efficiencies of those statistics, we firstly need to calculate

the critical value for each statistic. Let F0 be the c.d.f. of uniform distribution on

[0, 1], then for any given statistics T , the critical value cT is defined as follows:

P [T ≥ cT | F = F0] = α

where α = 0.05 is the significance level of the test, F is the c.d.f. from which the

sample was drawn, and T is a function of sample data only.

To calculate the statistics Cm,n, we take advantage of the strong law of large numbers,

which is given below.

Theorem 3.3. (Strong Law of Large Numbers) Let X1, . . . , Xn be i.i.d. as a r.v. X

with E(X) = µ and E(|X4| < ∞). Let X̄n = 1
n

∑n
i=1 Xi, then

X̄n
a.s.−→ µ.
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Noticed that the general version of SLLN only requires that the means of X ′
is exist.

However, as we shown below, we only apply theorem 3.3 to random variables which

are continuous on a compact base (which is [0, 1]) in R, therefore the fourth moments

always exist. Moreover, a proof of this theorem can be found in Etemadi (1981). For

this paper to be self-contained, a similar proof is outlined in the Appendix B.

We denote (Fn,m(x) − F0(x))2 as g(x). Therefore, we generate a sequence of 10000

copies of Uniform(0, 1) sample and calculate the value of g(x) for each of them and

then take the average. Finally, we multiply this value by n and we get the value

of Cm,n. To see why this algorithm works, notice that when x′
is are distributed as

Uniform(0, 1), we have Cm,n = n
∫ 1

0 g(x)dx = nE[g(x)]. The generated copies of g(x)′s

give a good approximation of E[g(x)] in respect of the strong law of large numbers.

Moreover, although the asymptotic distribution of those statistics can be obtained, it

is hard to use the limiting distribution to calculate the critical value directly. There-

fore, we use R software to obtain them by simulations. For a given statistics T0, we

first generate n copies of random variables from uniform [0, 1], and then the corre-

sponding test statistics T0 is calculated. In this paper, we use n = 100. Finally, we

repeat this process 10000 times, and get the 95% percentile, therefore we obtain the

critical value cT0 for T0.

Further, the power of those test statistics when testing against different alternative

distributions is calculated. For a given alternative distribution Fa, the power of a test

statistic T0 is denoted as β (T0, Fa), and is defined as:

β (T0, Fa) = P [T0 > cT0 | F = Fa] .
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To calculate this, we generate n = 100 copies of sample according to Fa, then calculate

T0. Then, we repeat this process 10000 times and record the proportion of T0’s which

are greater than the critical value.

For the alternative distributions, similar distributions as in Marhuenda et al. (2005)

and Stephens (1974) are used. Namely, the following families of distributions:

Ak : F1,k(x) = 1 − (1 − x)k, 0 ≤ x ≤ 1

Bk : F2,k(x) =


2k−1xk, 0 ≤ x ≤ 0.5

1 − 2k−1(1 − x)k, 0.5 ≤ x ≤ 1

where is a positive real number. It should be noticed that when k = 1, both Ak and

Bk reduced to the uniform distribution. When k < 1, as k decreasing to zero, Ak

gives more densities near 1, and Bk gives more densities near 0.5. Conversely, when

k > 1, as k increases, Ak gives more densities near 0 and Bk gives more densities near

0 and 1.

We compute the power and inefficiencies for k = 0.20, 0.40, 0.60, 0.80, 1.00, 1.25, 1.50, 1.75,

2.00, 2.25, 2.75, 3.00, in order to compare with the findings in Marhuenda et al. (2005).

We use the same definition of inefficiency as in Marhuenda et al. (2005), which is as

follows:

First, we calculate the maximum power of test statistics over each fixed family

with fixed k0:

βmax (f, k0) = max
T

(β(T, Fa))

where f denotes families of Ak or Bk, and Fa is that family with fixed k0.
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Then, the inefficiency of statistic T0 of the family f with parameter k0 is the

difference between power of T0 and the maximum power of this same alternative

distribution:

iT0(f, k0) = βmax(f, k0) − β(T0, Fa).

Finally, for the family f , the maximum inefficiency of the statistic T0 is the max-

imum inefficiency over all possible k:

imax T0(f) = max
k0

(iT0(f, k0)).

As we proposed, Sm,n and Cm,n are served as the improvements for Sn and Cn respec-

tively. As a result, we made an additional comparison between each pair of them.

Firstly, we use large scale m value, namely, we take m = 15, 30, 50 respectively, and

the critical value and power are summarized in Table 3.1. The results in Table 3.2

show that m = 30 works the best. Then, we take the values of m around 30 and

compare them. Here we compare the value of m from 25 to 35.



CHAPTER 3. BERNSTEIN UNIFORMITY TESTS 40

Table 3.1: Table of Critical Value
Statistics Critical Value

Cn 0.462437

Cm,n, m = 15 0.3623181

Cm,n, m = 30 0.3969091

Cm,n, m = 50 0.4029511

Sn 0.1295154

Sm,n, m = 25 0.09705955

Sm,n, m = 30 0.0990622

Sm,n, m = 35 0.09984095

Table 3.2: Powers of Cn and Cm,n for family Ak

k

Statistic 0.2 0.4 0.6 0.8 1 1.25 1.5 1.75 2 2.25

Cn 1 1 0.988 0.4684 0.05 0.4726 0.951 0.998 1 1

Cm,n, m = 15 1 1 0.9905 0.431 0.05 0.4345 0.9355 0.998 1 1

Cm,n, m = 30 1 1 0.994 0.4864 0.05 0.4815 0.9545 1 1 1

Cm,n, m = 50 1 1 0.9905 0.4835 0.05 0.471 0.9485 0.999 1 1
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Figure 3.1: Powers of Cn and Cm,n for family Ak

Table 3.2 and Figure 3.1 show the power of our statistics Cm,n with different value

of m compared to the power of Cn. All the data here use 10000 times repetitions.

From the table, we can see that for sample size n = 100, small numbers of m do not

give good results. Both m = 30 and m = 50 improve somewhat compared to the

original Cn, and m = 30 works better, as its power is always greater than that of Cn

for all value of k. Therefore, we carry out the simulations for small-scale variation

around m = 30 and see which value works best. Table 3.3 shows the critical value for
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m = 25, 35, 40. Further, in Table 3.4, we also report the power of the tests for these

values of m, and a graph for comparison is also provided.

Table 3.3: Critical Value of Cm,n

Critical Value

Cm,n, m = 25 0.4142262

Cm,n, m = 35 0.3894583

Cm,n, m = 40 0.4063481

Table 3.4: Powers of Cn and Cm,n for family Ak

k

Statistic 0.2 0.4 0.6 0.8 1 1.25 1.5 1.75 2 2.25

Cn 1 1 0.988 0.4684 0.05 0.4726 0.951 0.998 1 1

Cm,n, m = 25 1 1 0.9856 0.4514 0.05 0.4544 0.9402 0.999 1 1

Cm,n, m = 30 1 1 0.994 0.4864 0.05 0.4815 0.9545 1 1 1

Cm,n, m = 35 1 1 0.9908 0.5024 0.05 0.4936 0.9512 0.999 1 1

Cm,n, m = 40 1 1 0.9882 0.4832 0.05 0.483 0.9528 0.999 1 1
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Figure 3.2: Powers of Cm,n for family Ak

We keep the row of Cn and Cm,n for m = 30 for comparison. We can see from

Table 3.4 that when the alternative distribution is behaved far from uniform, both

statistics perform well. As a result, the competition happens when k takes the value

of 0.6, 0.8, 1.25 and 1.5. When m = 30, Cm,n has the maximum power dealing with

k = 0.6, 1.5 and 1.75. However, when k takes the value of 0.8 and 1.25, which means

the alternative distribution is close to uniform, taking m = 35 makes Cm,n performs

better. It outperforms m = 30 by approximately 0.015 and even more for Cn.
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Noticed that for k = 0.8 and 1.25, Cm,n with m = 35 has power around 0.5. It is

not really satisfactory. To see the reason, we refer to a graph which shows the pdf of

family Ak, k = 0.4, 0.8 and 1.25 together with the pdf of uniform distribution.
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Figure 3.3: Density functions for family Ak when k = 0.4, 0.8 and 1.25

Comparing to k = 0.4, the distributions of FA,k are close to uniform when they take

values of 0.8 and 1.25. As a result, it is much harder for a statistic to distinguish the

difference between these alternative distributions from uniform.
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Further, we also report in Table 3.5 and Table 3.6 the numerical results which show

the power of Cn and Cm,n against alternatives family Bk.

Table 3.5: Powers of Cn and Cm,n for family Bk

k

0.4 0.6 0.8 1

Cn 0.9994 0.7388 0.1371 0.05

Cm,n, m = 15 0.998 0.534 0.071 0.05

Cm,n, m = 25 1 0.6175 0.1075 0.05

Cm,n, m = 30 1 0.7 0.12 0.05

Cm,n, m = 35 1 0.716 0.1405 0.05

Cm,n, m = 40 1 0.701 0.132 0.05

Cm,n, m = 50 1 0.723 0.1425 0.05

Table 3.6: Powers of Cn and Cm,n for family Bk

k

1.25 1.5 1.75 2

Cn 0.0911 0.3925 0.8433 0.9884

Cm,n, m = 15 0.05615 0.23 0.657 0.945

Cm,n, m = 25 0.0732 0.25 0.69 0.963

Cm,n, m = 30 0.0708 0.2965 0.7585 0.972

Cm,n, m = 35 0.076 0.353 0.83 0.9835

Cm,n, m = 40 0.07905 0.3265 0.7915 0.979

Cm,n, m = 50 0.0815 0.3725 0.8295 0.9785

From Table 3.5 and Table 3.6, although bigger values of m make statistics Cm,n
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perform better, it is not satisfactory compared to Cn.

Then, we compare the power of Sn and Sm,n.

Table 3.7: Powers of Sn and Sm,n for family Ak

k

0.2 0.4 0.6 0.8 1 1.25 1.5 1.75 2 2.25

Sn 1 1 0.9533 0.4412 0.05 0.4315 0.9433 0.998 1 1

Sm,nm = 25 1 1 0.9842 0.4316 0.05 0.4252 0.9553 0.999 1 1

Sm,nm = 30 1 1 0.9861 0.4349 0.05 0.4274 0.9502 0.999 1 1

Sm,nm = 35 1 1 0.9885 0.4374 0.05 0.428 0.9578 0.999 1 1

Table 3.7 shows that, although the improvement of Sm,n is not satisfactory for dealing

with alternatives distribution close to uniform, the power is increased to a level com-

parable to that of Cm,n when k = 0.6 and 1.25. The calculation load of Sm,n is much

lower than Cm,n. Taking this into consideration, we point out that it is competitive

when the alternative distribution is different from uniform in a moderate extent. For

that purpose, we can see from Table 3.7 that m = 35 works the best.

For family Bk, the performances of Sm,n compared to that of Sn will be much better.

Table 3.8: Powers of Sn and Sm,n for family Bk

k

0.4 0.6 0.8 1 1.25 1.5 1.75 2 2.25

Sn 0.9984 0.6558 0.1434 0.05 0.1048 0.3498 0.7104 0.9374 0.9932

Sm,n, m = 25 0.999 0.7189 0.1641 0.05 0.1069 0.3551 0.7406 0.9559 0.9972

Sm,n, m = 30 1 0.7166 0.1672 0.05 0.1059 0.3554 0.7512 0.9572 0.9985

Sm,n, m = 35 1 0.7278 0.1656 0.05 0.1064 0.3712 0.756 0.9621 0.9968
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We can see from Table 3.13 that for all value of m in comparison, the power of

Sm,n dominates that of Sn almost for every k, and when m = 35 the statistics Sm,m

performs the best.

We point out that all of test statistics tested behave bad when dealing with family

Bk, k = 0.8 and 1.25 in case of fixed sample size n = 100. The graph below shows how

these two alternatives are close to an Uniform (0, 1). We can see that the cumulative

distribution function of family Bk coincides with Uniform (0, 1) at point x = 0.5

which makes them behave more closely to Uniform (0, 1) than family Ak does.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

x

f(
x
)

 

k=0.4

k=0.8

k=1

k=1.25

Figure 3.4: Density functions for family Bk when k = 0.4, 0.8 and 1.25
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We give the table of inefficiencies of all test statistics. Noticed that this table sum-

marizes the statistics in the context where the sample size n = 100.

Table 3.9: Maximum Power and Inefficiencies of All Statistics for family Ak

k

0.4 0.6 0.8 1 1.25 1.5 1.75 2 ∑(iT )

βmax 1 0.994 0.5024 0.05 0.4936 0.9578 1 1 N/A

iCn(Ak) 0 0.006 0.034 0 0.021 0.0068 0.001 0 0.0688

iCm,n(Ak), m = 15 0 0.0035 0.0714 0 0.0591 0.0223 0.001 0 0.1573

iCm,n(Ak), m = 25 0 0.0084 0.0051 0 0.0392 0.0176 0.001 0 0.0713

iCm,n(Ak), m = 30 0 0 0.016 0 0.021 0.0033 0 0 0.0403

iCm,n(Ak), m = 35 0 0.0032 0 0 0 0.0066 0.001 0 0.0108

iCm,n(Ak), m = 40 0 0.0058 0.0092 0 0.0106 0.005 0.001 0 0.0316

iCm,n(Ak), m = 50 0 0.0035 0.0191 0 0.0226 0.0093 0.001 0 0.0555

iSn(Ak) 0 0.0407 0.0612 0 0.0621 0.0145 0.002 0 0.1805

iSm,n(Ak), m = 25 0 0.0092 0.0708 0 0.0684 0.0025 0.001 0 0.1519

iSm,n(Ak), m = 30 0 0.0073 0.0675 0 0.0662 0.0076 0.001 0 0.1496

iSm,n(Ak), m = 35 0 0.0055 0.065 0 0.0656 0 0.001 0 0.1371

We use the summation of all powers for a given statistics instead of maximum of

them, as this will give a holistic overview of how it perform. From Table 3.9, we

can see that inefficiencies of Sm,n is higher than that of Cm,n. However, embedding

Bernstein Polynomial into both of ecdf statistics (Cn and Sn) will improve their per-

formances. Further, Sm,n works more efficiently when dealing with special alternative

distributions, as we mentioned above.

At this point, one problem left is no matter whether our Bernstein ecdf statistics can
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improve the power or not, they behave bad overall in the case that the real sample

are coming from a distribution close to uniform (0, 1). One natural solution to deal

with this is to improve the sample size n. The following table shows the power of

Sm,n in testing against family Bk with k = 0.8, 0.9, 1.125 and 1.25, with a large

sample size n = 500. We will not include the power for family Ak as all statistics

have satisfactory power (> 0.98) and the differences are pretty small. Also, a graph

is provided to make visually comparison easily. Noticed that we change the scale of

value m because the optimal m should increase as n increases.

Table 3.10: Powers of Sn and Sm,n for family Bk, n = 500

Critical Value B0.8 B0.9 B1 B1.125 B1.25

Sn 0.05945 0.622 0.141 0.050 0.119 0.598

Sm,n, m = 30 0.47 0.677 0.156 0.051 0.132 0.632

Sm,n, m = 40 0.04498 0.712 0.172 0.049 0.167 0.692

Sm,n, m = 50 0.04652 0.682 0.172 0.051 0.161 0.640

Sm,n, m = 60 0.04672 0.687 0.175 0.050 0.174 0.661

Sm,n, m = 70 0.04773 0.682 0.171 0.053 0.156 0.6373
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Figure 3.5: Powers of Sn and Sm,n for family Bk, n = 500

Noticed that we include the power for even more tough case of k = 0.9 and 1.25 for

comparison. If we want to detect that nuance difference from null, we are inevitable

to increase the sample size even more. We see from the table and graph above

that almost all choices of m improve the power greatly compared to Sn. When the

underlying alternatives are B0.8 and B1.25, our statistics improve the power for about

0.05 to 0.08 and reach a somewhat satisfactory level. Further, noticed that m = 40

works the best, we then test m in smaller scale to find an optimal m value. We keep
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the rows for Sn and S40,n for comparison.

Table 3.11: Powers of Sn and Sm,n for family Bk, small scale

Critical Value B0.8 B0.9 B1 B1.125 B1.25

Sn 0.05945 0.622 0.141 0.050 0.119 0.598

Sm,n, m = 38 0.04516 0.690 0.171 0.049 0.163 0.650

Sm,n, m = 39 0.04504 0.709 0.181 0.052 0.177 0.688

Sm,n, m = 40 0.04498 0.712 0.172 0.049 0.167 0.692

Sm,n, m = 41 0.04560 0.696 0.165 0.051 0.167 0.648

Sm,n, m = 42 0.04553 0.691 0.166 0.049 0.163 0.651



CHAPTER 3. BERNSTEIN UNIFORMITY TESTS 52

0.2

0.4

0.6

B_0.8 B_0.9 B_1 B_1.125 B_1.25

k

p
o
w

e
r

 

m=38

m=39

m=40

m=41

m=42

sn

Figure 3.6: Powers of Sn and Sm,n for family Bk, n = 500

We found that both m = 39 and m = 40 are the most competitive. Additionally, the

following table shows the power of statistics Cm,n testing against those four alternative

distributions.
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Table 3.12: Powers of Cn and Cm,n for family Ak and Bk, n = 500

Critical Value B0.8 B0.9 B1 B1.125 B1.25

Cn 0.47633 0.690 0.133 0.053 0.123 0.687

Cm,n, m = 35 0.4035633 0.676 0.133 0.051 0.125 0.650

Cm,n, m = 45 0.4112255 0.690 0.131 0.047 0.123 0.666

Cm,n, m = 55 0.4168085 0.698 0.136 0.046 0.116 0.671

Cm,n, m = 65 0.4227846 0.703 0.140 0.051 0.143 0.681

Cm,n, m = 75 0.426895 0.718 0.147 0.051 0.141 0.691

Cm,n, m = 85 0.4208105 0.707 0.141 0.053 0.151 0.698
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Figure 3.7: Powers of Cn and Cm,n for family Bk, n = 500

We see from the table and graph that Cn itself has relatively high power for the large

sample size. However, its power against Bk is a little lower than that of Sm,n and

its power against Ak is outperformed by Cm,n. Further, we see that m = 75 and

m = 85 perform better than others in all of these four alternatives. However, their

performances differ with each other. So, we do a small scale test to find the optimum

value of m.
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Table 3.13: Powers of Cn and Cm,n for family Ak and Bk, n = 500

Critical Value B0.8 B0.9 B1 B1.125 B1.25

Cm,n, m = 71 0.421671 0.707 0.121 0.052 0.125 0.690

Cm,n, m = 73 0.456934 0.684 0.117 0.056 0.128 0.663

Cm,n, m = 75 0.42698 0.718 0.147 0.049 0.143 0.691

Cm,n, m = 77 0.424712 0.709 0.131 0.044 0.141 0.696

Cm,n, m = 79 0.43433 0.693 0.130 0.053 0.140 0.676

Cm,n, m = 81 0.426542 0.717 0.143 0.051 0.131 0.704

Cm,n, m = 83 0.43975 0.690 0.129 0.053 0.129 0.667
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Figure 3.8: Powers of Cm,n for family Bk, n = 500

From the table and graph, we see basically m = 75, 77, 81, 85 are competitive. Overall

m = 81 has the highest power against family Bk when k = 1.25, and it is the only

one who has the power larger than 0.7.

In conclusion, Bernstein ecdf statistics Cm,n and Sm,n have improved the performance

overall in terms of the power for a given significance level. When the suspected

underlying alternative distribution of sample are deviated from Uniform to a moderate

extent, take sample size n = 100 will lead to satisfactory result. We suggest to use
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Cm,n with m = 35 in this case. However, if the alternative distribution behaves close

to Uniform, like the families with k = 0.8 and 1.25 in previous examples, we suggest

to increase the sample size for better detecting the nuance. If the density of data

reaches maximum around tails, which is similar to the Ak family, we suggest to use

Cm,n with m = 75 to get the biggest power. Conversely, if the density reaches the

highest around 0.5, using Cm,n with m = 81 yield the best result. However, if the

shape of underlying distribution is hard to judge, but only the closeness to uniformity

is supposed, then one can try Sm,n with m = 39 to reach the overall higher efficiency.



Conclusion

In this major paper, we add two new members, Cm,n and Sm,n, to the huge family

of uniformity testing statistics. They perform better than Cn and Sn respectively,

especially in dealing with alternative distributions which have more density at end

points 0 and 1. We also have discussed the optimal choice of the parameter m when

n is fixed, and interestingly it does not coincide with optimal choice m = n
log n

in

function approximation. However, the purposed statistics can still be improved for

those alternative distributions which are very close to uniform distribution. We think

the future research works could be in the following two directions.

i. As mentioned in this work, the statistics Cm,n and Sm,n are asymptotically con-

verge to some linear functional imposed on a Gaussian process F(x). Although

it seems mathematically challenging, it maybe possible to derive the concrete

distribution of these two limit through some advanced mathematical techniques.

ii. A statistic Vn is closely related to the Kolmogorov-Smirnov test type, and it

is calculated in similar way as that of Dn. We talked about D+
n and D−

n by

Kuiper (1960) in this major paper, and Vn is the summation of D+
n and D−

n . It

is showed in Marhuenda et al. (2005) that it has much less inefficiencies than

Dn and Cramér-Von Mises type Cn. As a result, we suggest that embedding
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Bernstein polynomial into this statistic Vn might have even better results. We

may denote this new statistic as Vm,n. The expression of Vn is more complicated

than that of Dn. As a result, it will be more difficult to derive the properties of

Vm,n. However, Vm,n has the potential to approach the lowest inefficiency among

all e.c.d.f. estimators.



Appendix A

Some Topological Background

Definition A.1. (Topological Space)

Let X (̸= ∅) be a set and let P(X) stands for the power set of X. A topology on

X is a collection τ ⊂ P(X) satisfying:

i. ∅, X ∈ τ .

ii. If Ui ∈ τ for i ∈ I, then ⋃
i∈I

Ui ∈ τ .

iii. If U1, U2 ∈ τ , then U1 ∩ U2 ∈ τ .

A set X together with a topology τ is called a topological space.

We also need the definitions of compact space and Hausdorff space:

Definition A.2. (Compactness)

Let (X, τ) be a topological space. X is said to be compact if every open cover of

X (X ⊂ ⋃
α∈A

Gα with Gα ∈ τ) has a finite subcover, namely, there exist α1, . . . , αn

such that X ⊂
n⋃

i=1
Gαi

.
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Definition A.3. (Hausdorff Space)

Let (X, τ) be a topological space. X is said to be Hausdorff if:

∀x ̸= y(∈ X), ∃x ∈ U, y ∈ V such that U, V ∈ τ and U ∩ V = ∅.

The uniform convergence is a type of convergences of a series of functions to a

limit function. It is defined as follows:

Definition A.4. (Uniform Convergence)

Suppose E is a set, and (fn)n∈N be a sequence of real-valued functions on E. We

say that the sequence (fn)n∈N uniformly converge to f : E −→ R on E if for arbitrary

ϵ > 0, there exist a N ∈ N such that for all n > N and x ∈ E, we will have:

|fn(x) − f(x)| < ϵ.

With the same definition of E and (fn)n∈N, it is equivalent to write the definition

of (fn)n∈N uniformly converge to f as:

lim
n−→∞

sup
x∈E

|fn(x) − f(x)| = 0.



Appendix B

Theorems in Literature

Theorem B.1. (Tenbusch (1994)) Assume that f(x, y) is bounded on the square and

all partial derivatives of order two exist and continuous in a neighborhood of (x, y).

Further, assume that f(x, y) ̸= 0. Let n tend to infinity such that KnN−1/3 converges

to 1 for some constant K. Then

E[(f̂nN(x, y) − f(x, y))2] = K2α2(x, y) + K−1B(x, y)
N2/3 if 0 < x, y < 1

where

α(x, y) = 1
2(∂f(x, y)

∂x
(1−2x)+ ∂f(x, y)

∂y
(1−2y)+ ∂2f(x, y)

∂x2 x(1−x)+ ∂2f(x, y)
∂y2 y(1−y))

and

B(x, y) = f(x, y)
4π(x(1 − x)y(1 − y))1/2 .

Theorem B.2. (Tenbusch (1994)) Assume that f(x, y) is bounded on the square and

all partial derivatives of order two exist and continuous in a neighborhood of (x, y).
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Further, assume that f(x, y) ̸= 0. Let n tend to infinity such that KnN−1/3 converges

to 1 for some constant K. Then

E[(f̂nN(x, y) − f(x, y))2] = O(N−4/7)

If x = 0 or x = 1 and 0 < y < 1 or if y = 0 or y = 1 and 0 < x < 1.

Theorem B.3. (Babu et al. (2002)) For 2 ≤ m ≤ (n/ log n), we have a.s. as

n −→ ∞,

sup
0≤x≤1

|f̂m,n(x) − f(x)| = O((m1/2(n−1 log n)1/2)) + O( sup
0≤x≤1

|F ′
m(x) − f(x)|)

where F ′
m denotes the derivative of F ∗

m, and

F ′
m(x) =

m∑
k=0

F

(
k

m

)
Pm,k(x)

.

Theorem B.4. (Babu et al. (2002)) If f(x) > 0, then

n1/2m1/4
(
f̂m,n(x) − f(x)

)
d−→ N

(
0, f(x)(4πx(1 − x))−1/2

)

as m, n −→ ∞ such that 2 ≤ m ≤ (n/ log n) and n2/3/m −→ 0.

Theorem B.5. (Leblanc (2010))

If f is continuous (and bounded) and admits two continuous and bounded deriva-

tives on [0, 1], then:
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Bias[f̂m,n(x)] = E[fm,n(x)]−f(x) = 1
2m

(1−2x)f ′(x)+x(1−x)f ′′(x)]+o(m−1) ∀x ∈

[0, 1]

Theorem B.6. (Leblanc (2012))

Under same conditions as assumed in Theorem B.5, we have:

Bias[F̂m,n(x)] = E[Fm,n(x)] − F (x) = m−1b(x) + o(m−1) ∀x ∈ [0, 1] where

b(x) = x(1 − x)f ′(x)/2

Theorem B.7. (Leblanc (2012))

Under same conditions as assumed in Theorem B.5, we have:

MSE[F̂m,n(x)] = n−1F (x)[1 − F (x)] − m−1/2n−1f(x)[2x(1 − x)/π]1/2 + m−2b2(x) +

o(m−2) + o(m−1/2n−1)

Theorem B.8. (Leblanc (2012))

Assuming F (x) is continuous and holds two continuous and bounded derivatives

on [0, 1], we have:

n1/2(F̂m,n(x) − F̂m(x)) d−→ N (0, F (x)[1 − F (x)]).

Proof of Theorem 3.1. To show gn(Xn) ⇒ g(X), it’s suffice to show

P (g(X) ∈ G) ≤ lim inf
n−→∞

P (gn(Xn) ∈ G)

For any open G in (S ′, d′). Suppose that g(x) ∈ G for some open set G ∈ S ′, as g

is continuous, there exist k and δ such that gi(y) ∈ G for i ≥ k if m(x, y) < δ. Then

x ∈ Tk where Tk =
⋂
i≥k

g−1
i (G), as x ∈ g−1

i (G) for every i ≥ k.
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Then, as Tk ⊂ Tk+1 ⊂ Tk+2 ⊂ . . . , so we have g−1(G) ⊂ E
⋃

(
∞⋃

k=1
Tk) Then, as

Tk ⊂ Tk+1 and P (x ∈ E) = 0, for ∀ϵ > 0, there exist a k such that

P (X ∈ g−1(G)) ≤ P (X ∈
⋃
k

Tk) ≤ P (X ∈ Tk) + ϵ.

The second inequality hold as the set Tk is increasing, and limk−→∞Tk =
⋃
k

Tk.

As a result, we can always find a large enough k for any small ϵ to let the inequality

holds.

Additionally, since Xn ⇒ X and Tk ⊂ g−1
n (G) for n ≥ k, we have

P (X ∈ Tk) ≤ lim sup
n−→∞

P (Xn ∈ Tk) ≤ lim
n−→∞

P (Xn ∈ g−1
n G).

Finally, as ϵ is arbitrary, we combine these two inequalities to get the desired

result.

Proof of Theorem 3.3. We assume that E (|X4
i |) < ∞ for all i’s, as stated in

chapter 3.3. Then we denote V ar(Xi) = σ2 for all i’s. Further, without the loss of

generality, we assume Xi’s are i.i.d. with zero mean and going to prove the sample

mean X̄n converge to 0 almost surely. Indeed, if we have E(Xi) = µ, we can let

Yi = Xi − µ and prove Ȳn converge to 0 almost surely. Let Sn = ∑n
i=1 Xi. Then, we

apply Chebyshev’s Inequality to Sn at the power of 4. For any ϵ > 0, We have

P (|Sn| > nϵ) ≤ 1
(nϵ)4E

(
|Sn|4

)
.

For |Sn|4, we have
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E

( n∑
i=1

Xi

)4
 = nE(X4

1 ) + 3n(n − 1)E(X2
1 )E(X2

2 )

Then,

E
(
|Sn|4

)
= nE(X4

1 ) + 3n(n − 1)σ4.

As all other term written as E(XiXjXhXk) and E(XiX
3
j ) will be 0 under our

assumption of zero mean and independence. Then, as σ2 < ∞ and E (|X4
i |) < ∞ by

our assumption, this term is bounded by n2 times some constant, which written as

E
(
|Sn|4

)
≤ n2C.

Then, we have

P (Sn > nϵ) ≤ P (|Sn| > nϵ) ≤ 1
(nϵ)4E

(
|Sn|4

)
≤ n2C

n4ϵ4 = C

n2ϵ4 .

Therefore, we conclude ∑∞
n=1 P (Sn > nϵ) < ∞. By Borel-Cantelli Lemma, we

have the probability of event (Sn > nϵ) happen infinitely often (i.o.) is 0. So that

P
{
limn→∞ X̄n = 0

}
= 1. Therefore, we have the almost surely convergence for X̄n

to the population mean.

Proof of Lemma 3.1. We take partition t1, t2, . . . , tk over [0, 1] as 0 ≤ t1 < t2 <

· · · < tk ≤ 1. Noticing that

E(Fn(x)) = E( 1
n

n∑
i=1

I(Xi < t)) = 1
n

n∑
i=1

P(Xi < t) = F (x),

we apply Central Limit theorem for the multidimensional case and get
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√
n (Fn(t1) − F (t1), . . . , Fn(tk) − F (tk)) d−→ N (0, Σ),

where the covariance matrix Σ is given by

Cov(Fn(ti) − F (ti), Fn(tj) − F (tj)) = F (max(ti, tj)) − F (ti)F (tj).

Further, in our cases, the expectation matrix of the limiting distribution is all

zero, and the covariance matrix Σ is bounded because F (max(ti, tj)) and F (ti)F (tj)

are both bounded by 1. Also the empirical process is asymptotically continuous

when n goes to infinity. As this limiting random variable is bounded in a compact

space (namely continuous bounded function space CB(0, 1)), it is a tight measure and

therefore the process is Gaussian. We can denote it as F.

Then the Lemma follows by taking ti = s and tj = t with 0 ≤ s ≤ t ≤ 1.
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