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ABSTRACT

A recent issue in statistical analysis is modelling data when the effect variable
changes at different locations. This can be difficult to accomplish when the dimensions
of the covariates are very high, and when the domain of the varying coefficient
functions of predictors are not necessarily regular. This research paper will investigate
a method to overcome these challenges by approximating the varying coefficient
functions using bivariate splines. We do this by splitting the domain of the varying
coefficient functions into a number of triangles, and build the bivariate spline functions
based on this triangulation. This major paper will outline detailed theoretical results
of this method, and provide simulation studies to demonstrate the efficiency of this
approach. Finally, to illustrate the application of this method, we analyze heart

disease dataset where the given covariates are in spatially varying form.
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Chapter 1

INTRODUCTION

In this major paper, we consider addressing the problem of modelling spatially
varying data. Spatially varying data are data that changes while moving from one
location to another, within a known space. In certain fields of study, including
medicine, it can be of great interest to analyze these types of data. With the
many advancements of modern technology, there has been increased focus on imaging
data, which come from magnetic resonance imaging (MRI) scans, positron emission
tomography (PET) scans, etc. When the covariates are images and the observed
response is a scalar, the relationship is generally modelled using image-on-scalar
regression. There can be scenarios where the functional data are located in a complex
domain, in which it can be computationally cumbersome to model the data. This can
be an issue because it may be difficult to smooth the functional data if its domain is
too complex. Another concern with this idea is the accuracy of the fitted model when
the dimension of the predictors is greater than the sample size. The main objective
of this research paper is to investigate an appropriate method that is able to regulate
these issues.

To analyze spatially varying data, a regression model with functional coefficients

and scalar coefficients should be implemented. This would allow one to differentiate



between predictor variables which have constant effects and predictor variables which
have varying effects. As presented in ( ), an efficient method that can be
used to work with these functional data is the Partially Linear Spatially Varying
Coefficient Model (PLSVCM). The PLSVCM models spatially varying predicted
values over a two-dimensional, complex domain. To apply the PLSVCM, we consider
a mixture of spatially varying coefficient functions to deal with predictors which have
varying effects and constant coefficients to deal with predictors which have constant
effects ( ( )). To estimate these coefficient functions, approximation
of the coefficient functions using bivariate splines should be considered. To work
with complex domains, the domain can be split up into a number of triangles. The
coefficient functions can then be approximated on this triangulation. To account
for the case where the dimension of the predictors exceeds the sample size, adaptive
LASSO penalty functions can be included in the model before estimating the scalar
coefficients and varying coefficient functions.

The remaining material in this major paper will be organized as follows. In
Chapter 2, we give a method to estimate the scalar coefficients and varying coefficient
functions of the PLSVCM. In Section 2.1, we provide a detailed method to triangulate
the domain of the varying coefficient functions, and approximate them using bivariate
splines. In Section 2.2, we give a description of the PLSVCM and state some necessary
assumptions given in ( ). In Section 2.3, we show how to obtain the
estimators from the PLSVCM by minimizing the likelihood function corresponding
to the PLSVCM. In Section 2.4, we determine some asymptotic properties of the
estimators. In particular, we give the consistency of the estimators of the parameters
in the PLSVCM and determine the asymptotic variance-covariance matrix of the
estimator of the constant coefficients. In Chapter 3, we consider the case where the
number of covariates exceeds the sample size. In this scenario, we model the data
using a penalized LASSO regression approach. In Section 3.1, we provide a detailed
description of the proposed LASSO model and state some necessary assumptions

given in ( ). In Section 3.2, we provide some asymptotic properties



of the estimators obtained from the LASSO model. In Chapter 4, we look at two
applications of the proposed model in this major paper by simulation and real data
analysis. In Section 4.1, we run a simulation study to show the efficiency of the
estimators obtained from the PLSVCM. In Section 4.2, we apply the PLSVCM to
analyze a real dataset, which aims to determine influential predictors that increase
the likelihood of having heart disease. In Chapter 5, we conclude by giving a brief
summary of the major paper, along with some possible ideas for further research
related to this topic. Finally, in the Appendix, we provide detailed proofs of the
results in Sections 2.4 and 3.2. We also state and prove some key results used in the

proofs of the results in Sections 2.4 and 3.2.



Chapter 2

ESTIMATION OF THE PLSVCM

In this Chapter, we define the PLSVCM and show how to approximate the varying
coefficient functions using bivariate splines over triangulations. We also establish some
asymptotic results of the estimators of the constant and spatially varying coefficients.
This is important because it addresses the potential problem in which the domain of

the functional data is not necessarily regular.

2.1 Approximation of the Varying Coefficient
Functions

One method to overcome the problem of smoothing over complex domains is
to approximate the varying coefficients by bivariate spline basis functions over a
triangulated domain, which was proposed in ( ).

To set up some notation, let 7 be a triangle such that its three points do not lie
along one straight line. Denote A = {7, 7o, ..., 7} as a triangulation of an arbitrary
domain, Q = UY,7;, under the condition that if 7, and 7; (i # j) intersect, they
much share a common vertex or share a common edge. For any triangle, 7, in a

triangulation, A, define |7| as the length of the longest edge of 7. Let R, be the

7]

radius of the largest circle that can be wholly contained inside of 7, and let S; = -



be the shape parameter of 7. Define the length of the longest edge in the triangulation
A as |A| = max{|7|,7 € A}.

The Bernstein basis polynomial can be used to create the bivariate spline functions,
which can approximate the varying coefficient functions ( ( )). Given
a triangle, 7 € A with non-zero area, define its vertices as < wvy,v9,v3 > in a
counter-clockwise way ( ( )). Then, any point v inside 7
can be expressed as v = byv, + byvy + bgvs, where by + by + b3 = 1. The scalars
(b1, ba, b3) are called the barycentric coordinates of v relative to the triangle 7, and
are used to form the Bernstein basis polynomials. To introduce the definition of
the Bernstein basis polynomials, let v be a point inside a triangle 7, whose area is
non-zero. Let (by, b, b3) be the barycentric coordinates of v relative to the triangle 7.
For nonnegative integers, i, j, k, the Bernstein basis polynomial of degree d relative

to 7 is defined as

d .
T,d L i . . . .
Bl (v) = Wblbgb’;, with i+j+k=4d
Let P4(7) denote the space of all polynomials with degree less than or equal to d,
defined on 7. Then, the set {B;Z(v) 4,5,k > 0,14+ j + k = d} forms a basis for
Pa(7). This means that any polynomial p(v) € Py(7) can be written as
P = i jhed fyiTjkBiT;Z(v). The coefficients {77 }i+jr=a are called the “B-coefficients

of p.”

2.2 Description of the Model

To define the data, let {2 be a two-dimensional domain with a complex structure.
Let s; = (s15,89)7,7 = 1,2,..., Ny, be a vector in €2, where Ny is the number of
elements in Q. Let n be the sample size, and define Y;(s;),i = 1,2, ..., n, as the actual
observed values at the point s;. Define X3y = (X1, Xio, ..., Xip)T,i=1,2,..,n, as the
vector of covariates for the i*" sample, where p is the number of covariates. Let A, be

the index set for constant coefficients and A, be the index set for varying coefficients.



For all k£ € A., denote the constant coefficient parameter as aqg,. For all k € A,
denote the actual varying coefficient function as [g,. Then, for ¢ = 1,2,...,n and

7 =12,.. N, the PLSVCM is

Yi(sj) = D Xuwaok + Y XawBou(s;) + mils;) + eilsy).
kEA. keA,

The within image dependences, 7;,7 = 1,2,...,n, are assumed to be independent
and identical copies of a stochastic process with mean zero and covariance function
G, (s,s’). The measurement errors, €;,i = 1,2,...,n, are assumed to be independent
and identical copies of a random process with mean zero, and covariance Cov(e;(s), €(s)).
It can be assumed that for all ¢ = 1,2,....,n and for all £k = 1,2,...,p, ¢ and n; are
independent, ¢; and X;; are independent, and 7; and X, are independent.

Before performing the estimation method for the parameter values, some assumptions
must be stated ( ( )). For any function f over the closure of the domain
Q, let ||f|loos = Supgeq|f(s)]. Let ijf(s) be the k' derivative of f at s in the

direction of s;, where j = 1,2. Denote |f|g00,0 = max;j—q|| D% DI, f(s)]|o0,0-

Assumption 1. For all k € A,, Box € WIHE(Q) = {f : | flgoon < 0,0 < g <
d+ 1}, where d is a nonnegative integer. Further, fQ Box(s)ds = 0, for all k € A,.

Assumption 2. For all k = 1,2, ...p, there exists a positive real number Cx, such

that E[| X% < Cx.

Assumption 3. For alli = 1,2,...,n and for all j = 1,2,..., N, the errors €; are
independent with mean 0 and variance o2. For alli=1,2,...n, j =1,2,.... N, and

foralls € Q, 0 < cq < G, (s,s) < Cq < 00, with ¢, Cq € R.

Assumption 4. The triangulation A is w-quasi uniform. That is, for all T € A,

there exists a positive real number w, such that S, < .

Assumption 5. As N, — 0o,n — o0, N,|A|? = oo and n|A|?@+D — 0.



2.3 Estimation Method

To perform the estimation, triangulate the domain and let
SH(A) = {s € C"(Q) : s|, € Py(r),7 € A} be a spline space with degree d and
smoothness parameter r, over a triangulation A. C"(Q) is the the set of all rt
continuously differentiable functions over €, s|, is the polynomial part of the spline
s restricted on 7 € A, and Py is defined as the space of all polynomials with degree
less than or equal to d. Define I, as the index set for the k' spline basis function.
Then for all s € , and for all k = 1,2,...,p, approximate 8i(s) by >_,c; Bre(s)ce,
where ¢;, = (cge, £ € ;)T is the vector of spline coefficients and for all s € Q, By(s) =

(Bre(s), £ € I)" is the vector of bivariate basis functions. Applying the method in

( ) and ( ), let Hy, be the constraint matrix on the vectors
ci, such that Hycp = 0. For all s € 2, assume that B; = By = ... = B, and define
this to be B(s) = (By(s),¢ € I)". Also, assume that H; = Hy = ... = H, and
define this as H. Let Y;; = Y;(s;), then to obtain estimators & = (&4 G2 ... da,)”
and ¢ = (ef &5 ... ¢f, )T for a = (a1 as ... aja)” and ¢ = (cf ¢ ... ¢y )7,

respectively, the following likelihood function must be minimized:

n  Ng 2
Lo(o,e) =) > |V — Y Xpaw — Y XuB"(s))er|
i=1 j=1 keA. k€A,

under the constraint Hyc, = 0. By the QR-decomposition, write HY = QR, where

Q = (Q; Q) is an orthogonal matrix and R = " s an upper-triangular matrix.
R

Further, Q; is a matrix containing the first  columns of Q, where r is the rank of H,

and Rs is a zero matrix. Then under no constraints, the likelihood function above

becomes
n  Ng 2
L,(o,v) = ZZ Yij — Z Xik — Z X (B* () |
i=1 j=1 k€A, keA,



where B*(s) = Q2B(s), for all s € Q. Assume that B*(s) is the collection of all of
the normalized basis functions, and to simplify the notation, denote it as B(s). Now,
to obtain the estimators &Y, Vk € A, and 4}, Vk € A, for the true parameter values
aok, Vk € A, and o, VE € A, respectively, the following likelihood function must

be minimized:

n N 2
Lo(o,y) =Y ) Y= > Xuaw — > XuB"(s)) v
i=1 j—1 = keA,

As a result, for all s € €, and for all k € A,, the estimator of the true parameter

Bo(s) is Bg(s) = BT (s)4}.

2.4 Asymptotic Properties of the Estimators

It is of interest to determine the consistency of the estimators & and 47, under
mandatory conditions. Define X, = (X3, k € A.), where X, is the & column
vector of the matrix of predictors, X, and let Z; 4, = X4, ® 1y, where 1y, is a
column vector of ones with dimension N;. Similarly, define X4, = (X, k € A,),
and let Zo 4, = X4, ® B. Define Zy = (Z,,,m € A. U A,), where Z,, = Z; 4,
if m € A. and Z,, = Zy 4, if m € A,. Define the vector of the actual parameter
values as @4 = 0y 4 = (aa A '70T7 )T, Then, the minimizer for the likelihood function,
L, (c,7) defined above, is the ordinary least-squares estimator of 6y 4. This estimator
is 0 = (ZYZ,)'Z%Y, where 8° = ((&°)7,(3°)T)T. Further, define || - || as the
Euclidean Norm.

The following result from ( ) describes the consistency of the estimators

&0 and 3°(-).

Theorem 2.1. Under the assumptions in Section 2.2 and the assumption that ||C ||



1

1s bounded by a positive constant, m; -, where C4 = %stngb the following hold:

_ 1 1 2(d+1)
(a)z —ozgk _OP<E+W+|A|

keA.

- 1 1
0 2 _ 2(d+1
) Y13~ Gl = 0 (5 + i + 1P ).

keA@'
where HfH%2 = [.cq f3(8)ds is the Ly norm for a function f, over the domain Q.

A detailed proof of Theorem 2.1 is given in the Appendix.

Before giving the explicit form of the sample variance-covariance matrix of &,
some definitions must be introduced. Let Pz, , = Zy . (Z] 4 Z1,4,)"'Z] 4, be the
projection matrix on Zy 4, and let Py, , = Zy a,(Z] 4 72 a,)”'Z3 4, be the projection
matrix on Zs 4,. Let D. = (Inn, — Pz, , )Z1 4., where Ly, is the identity matrix

with dimension nNy x nN,. Next, define

Yie = {G (Sj,Sj/)}”, " + diag{o? (s;) é\/:sl’

Yee = 2N2 Dleag{Ele}l D,
1
Ye =
niN
The following theorem from ( ) gives the sample variance-covariance

matrix of &Y.

Theorem 2.2. Suppose the assumptions in Section 2.2 hold. Let V., = ¥ 1%, 21
Then,

Vcl/Q(a —aoA)—>N(0 I|A‘)

n,Ns—00

where 14, is the identity matriz with dimension |A.|.

A detailed proof of Theorem 2.2 is given in the Appendix.



Chapter 3

MODELLING
HIGH-DIMENSIONAL DATA

In this Chapter, we consider a modified PLSVCM to deal with the case where the
data is high-dimensional. To do this, we implement a penalized LASSO regression
model to accurately determine which covariates have nonzero constant and varying
effects. In Section 3.1, we give a detailed description of the penalized LASSO regression
model, along with some assumptions about the proposed estimators. In Section 3.2,
we state some asymptotic properties of the estimators obtained from the penalized
LASSO regression model.

First, define three index sets:

A, ={k=1,2,...,p:ap #0,5c(-) =0}
N={k=1,2..p:a,=0,0() =0}

Thus, the active index set for X is A = A. U A,. The main objective is to obtain

estimators for the active constant set and active varying set and consequently, the

10



active index set. Recall that for all £ € A,, and for all s € Q, Bk(s) = BT (s)4%.

Then, define the estimators for the three index sets above as

Ao = {k < ax] # 0.l = 0,1 < k < p}
Ay = {k = |1l # 0,1 < k < p}
N

= {k || = 0]l = 0,1 < k <p}

3.1 Description of the Model

For all £ =1,2,...,p, let a; and 4, be consistent initial estimators for a; and g,
respectively. Let wy, , = |ax|~" and w , = [|3%||". Let pp1 and po be regularization
parameters, with the assumption that p,; — oo and p,; — o0, as n — oo and

Ny — 0o. Then, for the LASSO regression model, define penalty functions

[oA
[Pl

Pous () = prrwf law] = par (25 and Py (Iell) = puzwy cllvell = puz

Under the assumption that [, Sx(s)ds = 0, then for all i = 1,2,....,n and for
all s € Q, the Spatially Varying Coefficient Model (SVCM) from ( ) is
defined as

Yi(s) = Z Xipay, + ZXikﬂk(S) + () + €(s).

To accurately perform the model selection for the SVCM above and correctly

identify the index sets, the penalized score function given in ( )
n  Ns P p 2
Lp(0,; pr1s pn2) = Z Z Yi(s;) — ZXikOék - Z X B (s5)
i=1 j=1 k=1 k=1

p p
3 pon ) + 3 poalivull),
k=1 k=1

11



must be minimized.

Some further assumptions taken from ( ) must be provided before
stating certain theoretical results which give some asymptotic properties of the estimators

from this model.

Assumption 6. The cardinalities |A.| and |A,| are fized. Also, there exists positive

real numbers, co,cg, such that mingea, |aor| > co and mingea, ||Bok|| L) = cs.

Assumption 7. For all k = 1,2, ..., p, there exists a positive real number Cx, such

that | Xy < Cx, with probability one.

Assumption 8. Let ryq, 7y be real numbers, such that ryq, rnpy — 00, as n — 00.

Then as rpq, Tny — 00,

Tno A |G| = Op(1)

o s ||| = Oy(1)

For real numbers c, and cg defined in Assumption 6, there exists positive real numbers

bo and by, such that
P (min || > caba) — 1
keA.
1 Y|l >
P (i 5l = 0, ) — 1

as n, Ny —» 0.

Assumption 9. Assume that

12



\/nN2 log(p \/nN2 log(pJ,,) N nN,| A4+

= o(1),

Pn1Tna pn271n'y Pr1Tna
\/nN2 log(p \/nN2 log(pJ,,) nNS\A]d“ )
= 0 s
Pr1Tna Pn2Tn~ Pn2Tn~
2 2
Pn1 + Pn2 n
niNZ JSY Jog(pd,)

3.2 Asymptotic Results

Theorem 3.1 from ( ) gives the asymptotic properties of the constant
and varying index sets. Theorem 3.2 from ( ) provides the convergence
rates of the estimators that are obtained by minimizing the likelihood function L,

above.

Theorem 3.1. Suppose that the assumptions in Sections 2.2 and 3.1 hold. Then, as
n — oo and Ny — oo, P(AC:AC) — 1 andP(AU:Av) —1

Theorem 3.2. Suppose that the assumptions in Sections 2.2 and 3.1 hold. Let & and
B() be estimators that are obtained by minimizing the likelthood function L, above.

Then

1 1 P2+ p?
A 2 2(d+1) nl n2
a E &L — O 4+ —— 4+ A 4 R T ne
(a) e (o o) p(n nNg|A|? A n?N? >

B) > 1Bk — Bokll 7o) = Op (E TN AP + AP+ 7112]\[2 2) :
kA, B s

13



The above results are critical because they provide consistent estimators to accurately
predict the image response in a high-dimensional setting. The proofs of these results
are outlined in ( ). For the convenience of the reader, we also provide a

proof with more details in the Appendix.

14



Chapter 4

SIMULATION RESULTS AND
DATA ANALYSIS

4.1 Simulation Study

To demonstrate how the estimation method works, a simulation similar to the
study in Section 4.2 in ( ) will be conducted. Actual parameter values
from the model given in Chapter 2 will be generated first. Two constant coefficients
will be estimated (ap; and ag2) and two varying coefficient functions will be estimated
(Bos(+) and Pos(+)). To differentiate between the SVCM and the PLSVCM, consider
the case where ag; and agy are both zero and the case where ap; and age are both
nonzero. In both of these cases, values from a square domain will be generated. The
domain will be triangulated and the mean squared errors of the estimators of the
parameters will be computed for different refinements of the triangulation.

First, let A. = {1,2} and A, = {3,4}. For all j = 1,2, ..., Ny, let s; = (s1;, 52;)7
be in the domain Q. Generate s;; and sy; independently from a Uniform(0,1). For

all i = 1,2,...,n, generate X;1, Xio, X;3, Xi4 independently from a Uniform(-1,1). To

15



simulate the actual varying coefficient functions, let

Bs(sj) =20 [(s1; — 0.5)* + (552 — 0.5)°]
54(Sj) = exp{—15 [(Slj — 05)2 + (Sjg — 05)2} },

fors; € 0,7 = 1,2,...,N5. To simulate the within-image dependence, for all i =

1,2,...,n and for all j =1,2,..., Ny, let
T]i<Sj) = (03>211(158881n(7'f81j)) + <0.075)Zi2(2.157COS(7T82]‘) — 0039),

where Z;; and Z;5 are generated independently from a N(0,1). To simulate the errors,
generate {e(s;) : s; € Q} from a Gaussian distribution with mean zero and variance

o2. The values of o2 are selected in such a way that the signal-noise-ratio, defined as

NIUSM Var [ ca Xiwoor + D e, XiwBor(s))]

SNR = Myt
Nt 30520 Var[mis;) + €ils))]

Y

is approximately equal to either 3 or 5.
The square domain, €2 can be partitioned into many triangles. This simulation
will focus on triangulating the domain into 8 triangles with 9 vertices, and then again

with 18 triangles with 16 vertices. Both images are depicted below.

16



(a) 9 vertices and 8 triangles. (b) 16 vertices and 18 triangles.

Figure 4.1: Triangulating a square domain.

In each case, the estimators &, da, 3(-), and B4(-) will be evaluated on both of

the domains in Figure 1.

Case 1 (ap; = agy = 0):

Let Partition 1 represent the triangulated domain split into 8 triangles with 9
vertices and let Partition 2 represent the triangulated domain split into 18 triangles
with 16 vertices. The tables below show the mean squared errors of the estimators
Bs(-), and B4(), over 50 simulations on both partitions for different sample sizes

(n = 50,100), and different number of points in the domain (N, = 1600, 2500).

17



Table 4.1: MSE of §5(-) (Case 1)

MSE of S5(+)
Ny n | SNR | Partition 1 | Partition 2
50 3 24005.60 24308.48
1600 5 23986.03 24301.29
100 3 24673.46 24507.35
5 24671.60 24519.88
50 3 37179.45 38060.01
92500 5 37139.00 38042.08
100 3 38498.97 38502.32
5 38491.34 38511.28

Table 4.2: MSE of 34(-) (Case 1)

MSE of 54(+)
N n | SNR | Partition 1 | Partition 2
50 3 266.89 237.84
1600 5 258.42 228.48
100 3 211.51 201.83
5 209.15 200.04
50 3 333.08 336.11
9500 5 328.38 327.98
100 3 291.37 302.79
5 287.38 299.93
Case 2 (ap; = 1 and age = —1):

Now, the case where the parameters g, and ay are both nonzero will be considered.
Similar to case one, the mean squared errors of the estimators will be given below for
different sample sizes, and different number of points in the domain. Note that since
o1 and gy are constant coefficients, the difference in mean squared errors between
the estimators from Partitions 1 and 2 should not differ drastically.

Tables 4.3 and 4.4 below give the point estimates and mean squared errors of &,

and &g for 50 simulations from both partitions.
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Table 4.3: MSE of &; (Case 2)

Partition 1 Partition 2
N, n | SNR Qq MSE Qq MSE
50 3 0.0064 | 0.9919 | 0.0139 | 0.9756
1600 5 0.0075 | 0.9898 | 0.0130 | 0.9774
100 3 0.0155 | 0.9708 | -0.0006 | 1.0019
5 0.0172 | 0.9675 | 0.0006 | 0.9995
50 3 -0.0002 | 1.0036 | 0.0159 | 0.9745
9500 5 0.0011 | 1.0008 | 0.0167 | 0.9728
100 3 0.0011 | 0.9996 | 0.0054 | 0.9904
5 0.0007 | 1.000 | 0.0052 | 0.9908
Table 4.4: MSE of a5 (Case 2)
Partition 1 Partition 2
N, n | SNR Qo MSE Qo MSE
50 3 -0.0206 | 0.9643 | -0.0227 | 0.9598
1600 5 -0.02178 | 0.9621 | -0.0242 | 0.9570
100 3 -0.0089 | 0.9839 | -0.0118 | 0.9785
5 -0.0095 | 0.9826 | -0.0101 | 0.9817
50 3 -0.0168 | 0.9699 | -0.0434 | 0.9225
9500 5 -0.0167 | 0.9702 | -0.0411 | 0.9267
100 3 -0.0062 | 0.9888 | -0.0046 | 0.9917
5 -0.0065 | 0.9883 | -0.0049 | 0.9910

Tables 4.5 and 4.6 below give the mean squared errors of 35(-) and f4(-) for 50

simulations from both partitions.
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Table 4.5: MSE of §3(-) (Case 2)

MSE of S5(+)
Ny n | SNR | Partition 1 | Partition 2
50 3 24621.58 24145.77
1600 5 24604.53 24148.40
100 3 24610.97 24389.44
5 24620.17 24396.94
50 3 38267.63 38190.77
92500 5 38272.71 38212.02
100 3 38091.68 38342.35
5 38093.11 38373.96

Table 4.6: MSE of 3,(-) (Case 2)

MSE of 54(+)
N n | SNR | Partition 1 | Partition 2
50 3 246.28 278.42
1600 5 238.19 267.35
100 3 211.25 225.95
5 207.15 221.71
50 3 355.61 344.46
9500 5 347.85 333.89
100 3 303.18 320.41
5 296.75 316.51

4.2 Real Data Analysis

Heart disease is one of the leading causes of mortality in the United States, and it is
estimated that the prevalence of cardiovascular disease will continue to increase in the
future ( ). There are many risk factors that are related to heart
disease, including age, blood pressure, cigarette smoking, serum cholesterol levels, etc.

( ). We analyze which variables are influential in increasing the risk
of heart disease by applying the spatially varying model discussed in the paper.

We consider a dataset consisting of 303 subjects, 138 of those who have an

increased risk of heart disease, and 165 of those who do not have an increased
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risk of heart disease. We consider the following 11 predictors: age, gender, chest
pain type, resting blood pressure, serum cholesterol level, fasting blood sugar (FBS),
resting electrocardiographic results, maximum heart rate, exercise-induced angina,
electrocardiographic peak and the number of damaged major vessels. We consider the
following variables in spatially varying form: age, resting blood pressure, cholesterol
level, maximum heart rate, and electrocardiographic peak. The other 6 variables are
categorical.

For gender, there are 96 males and 207 females. For chest pain type, we consider
four levels: 1 if the subject had typical angina, 2 if the subject had atypical angina, 3
if the subject had nonanginal chest pain, and 4 if the subject was asymptomatic. For
FBS, we consider two levels: 1 if the subject’s FBS was greater than 120 mg/dl, and 0
if the subject’s FBS was less than or equal to 120 mg/dl. For resting electrocardiographic
results, we consider three levels: 0 if the subject’s resting electrocardiographic results
were normal, 1 if the subject had ST-T wave abnormality, and 2 if the subject showed
probable of definite left ventricular hypertrophy. For exercise-induced angina, we
consider two levels: 1 if the subject had exercise-induced angina, and 0 if the subject
did not have exercise-induced angina. For the number of damaged major vessels, we
consider four levels: 0 if no major vessel is damaged, 1 if one major vessel is damaged,
2 if two major vessels are damaged, and 3 if three major vessels are damaged.

To set up the model, we generate the Bernstein basis polynomials over a triangulation
with 16 vertices and 18 triangles. After we notice that following variables are significant
in predicting the likelihood of heart disease: gender, chest pain type, maximum
heart rate, exercise-induced angina, electrocardiographic peak and the number of
damaged major vessels. When considering level 1 from gender, we obtain a p-value of
approximately 4.46 x 107% and an estimate of approximately -0.2180. This means that
females have about 21.8% less of a chance of suffering from heart disease than males,
holding other variables constant. The p-values for chest pain type are approximately
0.0011, 3.97 x 107%, and 0.0006 for levels 1,2 and 3, respectively. The estimates for
levels 1,2 and 3 are approximately 0.2179, 0.2610 and 0.2939, respectively. Thus,
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compared to those with no chest pain, those with typical angina have about 21.8%
more of a chance of suffering from heart disease, those with atypical angina have about
26.1% more of a chance of suffering from heart disease and those with nonanginal
pain have about 29.4% more of a chance of suffering from heart disease, holding other
variables constant. For maximum heart rate, we obtain a p-value of approximately
0.0068 and an estimate of approximately 0.0030. Thus, for every one unit increase
in maximum heart rate, the likelihood of having heart disease increases by about
0.3%, holding other variables constant. The estimate for exercise-induced angina was
approximately -0.1283 for level 1, with a p-value of approximately 0.0138. Thus,
holding other variables constant, those who had exercise-induced angina have about
12.8% less of a chance of suffering from heart disease than those who did not have
exercise-induced angina. The estimate of electrocardiographic peak was about -0.0732,
with a p-value of approximately 0.0004. This means that for every one unit increase
in electrocardiographic peak, the chance of having heart disease decreases by about
7.3%, holding other variables constant. Finally, for levels 1,2 and 3 of the number of
damaged major vessels, the estimates were approximately -0.2837 with p-value 4.24 x
1077, -0.3455 with p-value 1.30 x 1075 and -0.3124 with p-value 0.0006, respectively.
Thus, compared to those with three damaged major vessels, those with no damaged
major vessels have 28.4% less of a chance of having heart disease, those with one
damaged major vessel have 34.6% less of a chance of having heart disease, and those
with two damaged major vessels have 31.2% less of a chance of having heart disease,

holding other variables constant.
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Chapter 5

CONCLUSION

I this major paper we discussed the difficulties of modelling spatially varying
data over complex domains. In this major paper, the method of approximating
bivariate varying coefficient functions over a triangulated domain was investigated
in depth. Theoretically, we demonstrated how consistent estimators of the constant
and varying coeflicients are obtained from the PLSVCM when the active constant
and active varying index sets are known. Through simulation, numerical values for
the estimators from the PLSVCM were calculated. Simulation was used to determine
if the mean squared errors of the estimators changed when the refinement of the
triangulations varied. In the simulation study, the given domain was partitioned
into two different triangulations and the mean squared error of the estimators of the
varying coefficient functions were compared.

When the dimension of the covariates are very large, the active index sets need
to be estimated. In Chapter 3, the dimension of the covariates are greater than
the sample size. Thus, a penalized regression approach was considered to mitigate
error . Based on the Karush-Kuhn-Tucker conditions given in ( ),
new estimators for the constant coefficients and varying coefficient functions were
obtained and detailed theoretical results related to these estimators were shown.

With today’s technological advancements, there has been emphasis on
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three-dimensional imaging scans. To treat these imaging scans as covariates in a
regression model, the domain of the varying coefficient functions must be increased
from a two-dimensional domain to a three-dimensional domain. This could beneficial
to future research, as it would allow one to consider the whole three-dimensional

image as a covariate.
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APPENDIX

The purpose of the Appendix is to state and prove some of the lemmas used in
Li et al. ( ), as well as provide detailed proofs of the Theorems in this
paper.

Denote H' = {f : |, f(s)dQ(s) = 0, [, f*(s)dQ(s) < oo} as the space for centred
functions, where Q(s) is a distribution with positive continuous density. Denote H? =

{f: [, f(8)dQ(s) =0, [, f*(s)dQ(s) = 1} as the space for normalized functions.

Lemma Al. Assume that d > 3r + 2 and for all k € A,, Bor € WL (Q) N HL.

Then for k = 1,2,...,p, there exists a vector ~yor, where ||yor|| # 0 if k € A,, and
|[vorl| = 0 if k & A,

Further, there exists a positive constant C' depending on d and 7, such that for all
k € A,, and for all normalized Bernstein basis polynomials By, = (B, ¢ € I,)" of
degree d > 0,

suPseal Bok(S) — Bg(s)%k\ < C|A’d+1’ﬁ0k|d+1,oo-

Proof. Note that from Lai et al. ( ), there exists a vector g, and

a positive constant ', such that for Bernstein basis polynomials B},

* * C
SuPgeq|Bor(s) — (Bi(s) ol < §’A|d+1|50k!d+1,oo
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Let
' = |[B; - / By 1o

and define yor = C'g,. Let By(s) = &(Bj(s) — [, Bj(s)dQ(s)). Then

| Bor(s) — B (s)vor| < |Bor(s) — (Bj(s) vor| + ‘/Q(BZ(S))T’Y&CZQ(S)

Adding and subtracting So(s) and taking the supremum over 2 gives

SUPscq }ng(s) - B;}F(S)%k‘ < SUPgeq ‘5%(5) - (BZ(S))T’Y&

/Q [(Bii(8)) g5 + Bow(s) — Box(s)] dQ(s)

+ Supgen

Then, by the Triangle Inequality,

SUPgen |ﬁ0k(s) - B;}F(S)%k} < SUPgeq |50k:(5) - (BZ(S))T’Y&

/Q [(BZ(S))T'YSk - /BOk(S)} dQ(s)

+ Supgen

+ SUPgen

L&MW@@

Note that supscq | [;, Bor(s)dQ(s)| = 0, since B, € WHL2(Q)NH!, for all k € A,

Therefore,
c C
supaca |Ans) ~ BE sl < (5 + 5 ) 141" il
= C|A|d+1|ﬁ0k|d+1,oo-
[
The following lemma from ( ) is used to state some properties of the

normalized Bernstein basis polynomials.

Lemma A2. For any normalized Bernstein basis polynomials By, By € H?, with

28



degree d > 0 and £,0' € J,, the following hold:

wax| [ BEG)Q(s)| = OA ) (A1)
tedn | Jq
max | [ BHE)BEE)IQE)AQ)] — O(A[ ) (A2)
Ledn 02
k _ -1/2 —k+1
ma | ZlBg )= [ B)Qs) = O AR, k=1 (a3
]]*
1 /! /! !/
mox | ,ZIG 5157 Balsy) Bo(sy) = [ Gos.5) (o) Bols)Q(5)Q(S)
J5J
— O(N; A, (A4)
1 &
- 20 Vr2(a.) — 2 2 _ —1/2| A -1
max NS;BE(SJ)U (s5) /QU (8)Bi(s)dQ(s)| = O(NgZ|A[). (A5)
The proof of the above lemma is outlined in ( ).
The following lemma is cited from ( ).

Lemma A3. Recall the definition of (;; (i =1,2,....,n,5 =1,2,..., Ny) from the proof
of Theorem 1 and that ¢; = (G1 G- - Gn,)T and ¢ = (¢ ¢T ... ¢)T. Then, under

1/2

the assumptions in Sections 2.2 and 3.1 and that Ns'°|A] — oo, as Ny — o0,

|5NC§| (‘AP d+1))

Proof. By definition,

Z,¢ = ZZ (e Xy, a, @ BY( Zsz’

i=1 j=1 k'eA,
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Taking the Euclidean norm and dividing by (nN)? gives

n N,
1Z<]| 1 -
D 3D Dl ) SRR RO A )

5 aa'=1j,j'=1 Lk€Ac k€A,

X Z Z Xik’Xi’k”(Sjk’éj’k”'

k'€Ay K'"EAy

Recall that for all j =1,2,..., Ny and for all k € A,, d;; is nonrandom. Thus for
all k € A,

n Ny
ﬁ Z Z E szXz’k Z Xik"Xi’k”éjk’(sj’k;"]

8 qi'=17j'=1 K k€A,

~ 2N2maX] k! |5]k’| max;r g |5 ’k”| Z Z Z Z |X2kX /lek/X ’k”” .

1,i'=1j4,7'=1k'€A, k'"€A,

Recall from Lemma A1l that sup,cq|Bok(s) — BL(s)vor| < C|A|14 | Bok|ar1,00- SO,
max; e |00 = max;w|Bow (s) — B (s;)vow| = O (|A|d+1) ,

and then max; y |0j0| = O (\A|d+1)~
Therefore,

man7k/ |5]kl| X maleﬁku |5j/k”| — O (|A|2(d+1)) .

Now, a bound for the expected value of the product of the predictor variables
must be found. To do this, the Cauchy-Schwarz inequality must be applied twice. So
for all 7,7’ = 1,2,...,n, for all k € A., and for all k', k" € A,,

E [| X Xk Xiw Xiwr|] = B [| Xie Xk | Xiw Xoir || < VE [ Xie Xiw |2 VE [| Xre X [2].

Then,

VE XX PIVE X X <\ VE X FIVE X Iy VE X VB [ XKoo ]
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Raising each term to the power of 3/2 and then to the power of 2/3 gives

2

(B [|Xik]4b3/2(E [‘Xik/|4])3/2(E [|Xi/k\4})3/2(E [’Xi’k’/|4])3/2)i><3 .

Now, let g(x) = /2, which is convex on the interval (0, +00). So for any random

variable X,
(B[IX)*? < E[IX[*?,
by Jensen’s inequality. Applying Jensen’s inequality, we get

(B [1Xa D) 2(B [ X ] 2(B [| X ] 2(B [| Xeno])P)°

< (Bl X B X | E[| Xk | *JE] Xorw°])
< (

o=

o=

C1CrC3Cy)°

where C1, Cy, C3, Cy are all positive real numbers given in Assumption 2.

Define C' = (C,C,C5C4)5. Then

n N
Z Z Z Z E [| X X Xow Xogr |) < nNZ|ALPC.

ii'=1j,j'=1 k€A, k€A,

Therefore, for all 7,7’ = 1,2,...,n and for all &k € A,

nQNQ Z Z E [ sz’k Z sz/X/kN k’(s /k//]

S ii'=134'=1 k' k"€A,
2(d+1)

Hence,

n N,
1 S
5 2 §jE[XikXi/k > XiwXowdwd | = O (JAPO).

S 44'=17,j'=1 K k€A,
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Similarly, for all 4,7 = 1,2,...,n and for all k € A,,

n2N2 Z Z E ZkX’kB SJ SJ Z Z sz/X’k"5gk'5 it

S qi'=1j,j'=1 kK'eAy, k'"eA,
n N JIn
= 2N2 E E E By(s;)Be(sj) E E [ Xt Xite Xy X Ojrr O
S 4,i'=17,j'=1 =1 k'eAy K'EA,

Jn N

< max; e |G| max; o |6 D <5 Y [Bils;) Be(sy)]

(=18 =1

X — Z Z |sz:X /szk/X 'k”H .

i,i'=1 k" k'"€A,

1

Arguing in the same way as earlier in the proof, for all 7,7 = 1,2,...,n and for all

ke A,,

E [‘X’ikXi’kXik’Xi/k// H
< (Bl Xl | X [*JEL X P[] X))
(Cl C/ C«l C/)

o=

[N

where C7, Ch, C%, C} are all positive real numbers defined in Assumption 2.

Denote C' = C1CLC5CY. Then

Z Z |XZkX ’lek/X’k”H < TLZ’A | Cl

1,i'=1k'",k" €Ay

By the definition of Bernstein basis polynomials,

Z Z|BgsJ BgS] |<Z<N2C*>—J0*

S]]/ 1

where C* is a positive real number. Further, it has already been showed that

man,k/ |6]k/| X maxj/k// ’6j’k”| — O (|A|2(d+1)) .
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Putting everything together gives

n2N2 Z Z E[ XXy B (s;)B(sy) Z Z sz/X/kff5]k/(5/k"]

S qi'=174'=1 kK'€Ay, k'"eAy

1
< < (AP 1,02 A, PO
mn

Hence,

n2N2 Z Z E [ X Xy B (s;)B(s)r) Z Z Xiw X000k | = O <|A|2(d+1)>_

S q,i'=17,7'=1 k'cA, K'eA,

Therefore,

HZ CH2 p (|A|2(d+1)) 7

(nNg)?
which proves the result.
[
The following lemma is cited from ( ).
Lemma A4. Recall that €; = (€;(s1) €(s2)...€i(sn,))? and € = (el € ... €l)T.

1/2

Then, under the assumptions in Sections 2.2 and 3.1 and that Ns'°|A| — oo, as

Ny — 00,

1Z5eP (1
(nNy)? PAnNA2)

Proof. By definition of the Euclidean Norm,

X Eijei’j’

‘(‘:NGHQ n2N2 Z Z [Z szX e+ Z szX /kB SJ)B( )

S i4'=14,j'=1 LkeA keA,

Using the condition that every Xy, (i = 1,2,...,n, k = 1,2,...,p) and ¢; (i =

33



1,2,...n,j=1,2,..., N,) are independent, for all = 1,2,...,n and for all k € A,,

N,

N.
I 1
N2 Z E [Xjeijeir] = N2 Z E (X5 Elegei] -
j.j'=1

S jg'=1 s

Note that for all i = 1,2, ...,n and for all j = 1,2,..., N,, the ¢;’s are independent
with mean zero and variance o(s;) by Assumption 3. Thus for j # j/, E[e;j 6] =
E[e;] E 6] = 0. Therefore, write E [e;;6;] = 0*(s;)Z(j = j'), where Z(-) is the

indicator function. Thus, by Cauchy-Schwarz inequality,

N, N
1 o 1 - .
Nz 2 BIXE P 6)I0 =) < 55 D0 (B[XE)20%(s)T( = )
s '7 'l: § j?jl:]‘
By Jensen’s inequality and Assumption 2,
1 N, 1 N,
5 Y B[XGDPo* ()0 =5 < <5 Y (B[X5]) 20 (s)Z( = 5)
8 jg'=1 S 44'=1
1
<5 ) &SI =)
S j,j/:1
This gives
1 Ns 1 N,
w7 2 XD (5)I0 = ) < 5 D el (5)20 = ),
S Gg'=1 S j=

1/3 . " L
where ci/® is a positive real number. So, for some positive real number ¢/,

because o%(s;) is bounded, for all j = 1,2, ..., Ng. Thus, for all ¢ = 1,2,...,n and for
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all k € A,

1 & 1
e Z E [Xieyeir] =0 A

S j,j/:]-
Similar as before, for all = 1,2, ...,n and for all k£ € A,,
Ns

1
e > E[X5B"(s))B(sy)eijeiy]

s j,j':l

1
= N2 Xzzk ZBE s;)E [ei€i57]

7YY Bi(s))a’(s)),

1/3 . .
where kx/ := k is some positive real number.

Using Equation (A5), we get

Ns Jn JIn
k

I ADHELLDS

5 j=1 (=1 ¥ =1

Jn

_ ﬁ /Q B2(s)0?(s)dQ(s)
+%§L@U<Mm>( AT

1/2

The assumption that Ns/“|A| — oo, as Ny — oo implies that N;1/2]A|*1 — 0,

as Ny — oo. Therefore,

JZ/ s)dQ(s +—Z/Be dQ(s) - O (NJZ|A[T)

k

Fi U B} (s)o”(s)dQ(s )} ZKJHN—Z:O(m)'
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For all ¢ 7& i/, E [XikXi/kEijei’j’] =0 and E [sz:Xz’k:] = O, SO

n N,
1 1 ZS Z Z

i,/ =1 S 4.4'=1 \k€A. keA,
1 n 1 N .

= E N2 Z Z X’LkX'L’k =+ Z X?,kX’L/kB (Sj)B(Sj/) eijeij’

i=1 S j5.4'=1 \k€A. keA,

1 1

=—xnxX0|———=].
2" (Nsw)

This gives

n N,
1 1 Z Z Z
ﬁ E [N2 < X’Lk,‘X’L/k‘ + X’LkX’L/kBT<S])B(S]/)) €ij€ij/]

ii'=1 $ jj'=1 \keA. kEA,
1
=0 (wime)

Therefore,
4 ot
(nNy)? PAnNAR )

which proves the result. O
The following lemma is cited from ( ).

Lemma A5. Recall from definition that m; = (n;(s1) ni(s2) ... mi(sn.)) and n =
(i mi .. .n)T. Then, under the assumptions in Sections 2.2 and 3.1 and that

Nsl/2|A] — 00, as Ny — o0,

1Zanll* _ ) (L
(nNy)? P\m )
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Proof. By defiintion of the Euclidean norm,

\Z5ml?
(nNy)?

5 2 Z S XaXon+ Y XaXoiBT(s))B(sy) | x mils;)n(sy)

1,0/=17,7'=1 Lk€A, keAy,

Note that for all i # ', and k € A., E [X;xXyk] = 0. Thus, by the condition that
every X, (1 =1,2,...,n, k=1,2,...,p) and n;(s;) (1 =1,2,...,n, j =1,2,..., N;) are

independent,

nQNQ Z Z E [ X Xikni(s;)ni(sj)] = 2N2 Z ZE X7ni(si)ny (s )]

S 4i'=1i,i'=1 5 44'=1i=1

:nQNSQZE ka ZG S;,S;’)

J:3'=1

By the Cauchy-Schwarz inequality, for all £ € A,

1 n Ny 1 n s
n2 N2 STE[XE] ) Gylsjosy) < n2NZ (E[XADY2 D Gulsy.sp)
s =1 =1 s =1 =1

1 n Ng
S N (E[XGDYE D Gylsyisy).
S =1

J3'=1

By Jensen’s Inequality, for all £ € A,

1 n 1 n N
2N?2 Z(E [X7,4k V2 Z G (sj,85) < 2N? Z(E [Xzﬁk])l/g Z Gy(sy.s57)
§ =1 jj'=1 $ =1 3,j'=1

Recall from Assumption 2 that there exists a positive real number C'y, such that
E[|X%|®] < Cx. Recall from Assumption 3 that there exists a positive real number

Cg, such that G, (s,s) < Cg, for all s € Q. So for all k € A,

n n N
1 S
n2N2 Z<E (X&) Z Gy(sj,s5) < 22 Z(Cx)l/S Z Ca
S =1 §j'=1 s Pt
1
- n2N2 (nC’X)(NfCG)
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Thus,

Again since E [X;; Xy = 0, for all i # ¢/, and k € A,,

Z Z [Xin X B (3;)B(s57)ni(s)m (s57)]

s i,1'=14,7'=1
1 n JIn Ny
= s DB XA D D Bils))Bilsy)Gils; s1)
S =1 =1 j,j'=1
TL NS
S SNz 2N2 ZCXZ Z Bi(s;)Be(sy)Gy(sj,85),
=1 j,5'=1

where C% is a positive real number. For all 1 < ¢ < J,,, BZ(s)B2(s') # 0 only if s

w is the number of Bernstein

and s’ are in the same triangle 7r,/47, where d’ =
basis polynomials on each triangle.

Recall from Equation (A4) that

max N2 ZG 5.8 Bils) Br(sy) — [ G fs.8)Bils) Be()dQ()dQ(s)

= O(N, 1/2|A|)

This implies that

Z By(s;)By(sj)Gy(sj,85)

Ji'=1

= (L+OWN P1aD) [ G (o) Bils) Bi)iQ(s)Q(S)
< (L+ov;a)) | G55 Bu(5) Bu(s )dQ(3)dQ(S).

re/d’1 X 7re/d

Therefore,

12 ZS: By(s;j)By(sj)Gy(sj,85) = O (]AP) .

5 5g'=1
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So, for all k € A,,

Jn Ns

_ # SUE[XA]S] D Bils)Bils;)Gyls;.sy)

(=1 j,5'=1

1 2
nQ—NSQ(n)(C)(Jn)(Ns),

where C' is a positive real number. Thus,

Jn  Ns .
nstg ZE Xzzk Z Z Bz Sj Bg Sj (Sj,Sj/) =0 (5) ]

(=1 j,7/=1

Therefore,

o = (3).

which proves the result. O

Proof of Theorem 2.1. Define 6, = Bor(s;) — B (s;)~ox to be the best spline

approximation error of [y, at the point s;. Define ¢; = (¢ Gio .- Gn,)T, where
Gij = Yopea, Xikdjk, and denote ¢ = (¢ ¢3 ... ¢} )", which is a vector with length
nNy. Further, define n; = (n;(s1) mi(s2) ... mi(sn.))', m = (mf nd...nH)T and € =

(€i(s1) €i(s2) ... €i(sn.))", € = (el € ...€l)T. So, m and € are vectors with length

niN,. Thus, Y —Z 460 4 = n+ €+ ¢. Taking the difference between 6° and 0,4 gives

0° — 09 = (Z1Za) " ZLY — 65 4
ZTZA)_1Z£(17 + € + C + ZAO()’A) — 907,4
Z074) "2 (m+ €+ C) + 14004 — 0o

(
= (
= (
= (nN,Ca)'Z%(n + €+ Q).
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Then,

6" — 0p0 = ——C;'Z(n+e+Q),

1
niNg

and then, by the Cauchy-Schwarz Inequality,

16° — Go.4lI” < [ICHHII° 1Z54(n + e+ QI

1
(nNs)?

1
<m it —llZam+e+ QI

(nNg)?

By applying the Triangle Inequality twice,

1Z5m + Zike + ZiCI1* < ([|1Z3ml] + 1| Zel| + 1Z5< 1))
= |Z2ml* + [|Z%el * + 1 Z5<11° + 2| Z2mlll| Z4ell

+ 2/ |Ziml || Z4C || + 2| Z el || Z2<] .
Further,

1Z2nll* + || Z2el|* + 11Z4G|* + 21|Z4n || Zel| + 2/ Z4ml|||Z4d]]
+2||Zell]| Z5< ]
< |Z4n|* + [1Z4el” + [1Z3<I1° + (|Z4ml | + || Z%4el )
+([1Z5n1* + 1Z34¢11%) + (1 Z4el* + 11 Z3¢11%)

= 3([1Z4ml* + || Zaell” + 1 Z4C )

Thus, for some positive constant c,

: Zinlt  Zhel  |1Zh¢|?
167 = Bo.l —c( AT ACIIRTS A

1 1 2(d+1
Op (g) +0p (W) + 0y (JAP*HD)

1 1
= B A2d+1)
OP (n+nNs|A|2+’ ‘ )
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by Lemmas A3, A4, and Ab.

Define the block matrix [I| A Olaux|ayl Jn]’ where 14, is the |A.|-dimensional
identity matrix, and 0j4,|x|a,|s, 1S & matrix of zeros with dimension |A.| x |A,|J,.

Similarly, define the block matrix [0‘ Auldnx|Adl Tjay] Jn] . Write

& —aga, = [I|AC\ 0|A6|><|Av|Jn] (6” — 60.4).

This implies that

1 1
A0 2 _ O - A 2(d+1)
kEZA (ak O‘Ok) P n + nNS|A|2 + ‘ ’ )

which proves (a). Write

(’3’0 - ’YO,AU) = |:O|AU|JH><|AC| I|AU|JH] (90 - GO,A)-

Further, for all k € A,, 82(s) — Bor(s) = BT(s)(30 — 7o) This implies that

R 1 1
0 2 _ - 2(d+1)
E 1Bx — Bokll7,0) = Op (n + S ATNE + A ) :

k€A,
which proves (b). O

To consider bounds for the normalized Bernstein basis functions, the following

lemma from ( ) and ( ) is cited below.

Lemma A6. Recall the spline space S5(A) NH? and let {B}ier be the normalized
Bernstein basis polynomials for S5(A) N H?, where I C {1,2,...,p} is any index
set. Then there exists positive real numbers ¢ and C', depending on the smoothness

parameter r and the shape parameter m of A, such that

CZ%? < HZ’Y@BKH%Q(Q) < CZ%?'

el el lel
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The proof of this lemma can be found in ( ).

Now, some new definitions and notations will be cited from ( ). For
allk =1,2,...,p, let 21(x,8) = x} be a functions which maps (x,s) to the £ element

of x. Define

Fy={F(x,s) Z Trgr(s) : /ng(s)dQ(S) =0}

and for all k € A, let
Fk(', ) = arg min E |:/ (sz — F(X(Z), S))QdQ(S>:|
F(-,)eF+ Q

= argmin |z, — F|?
F(~,-)€]-+

be the orthogonal projection of x; onto F, relative to the theoretical inner product

defined as
< g >=F [ | aX o)X 5da0s)|.
Q

Define the corresponding theoretical norm as || - ||. Let T's (X,s) = {I'x(X,s),k €
AT and define

For ={F(x,8) = kagk k(s) € SH(A) NH?}.

keA,

For all k € A,, define

n N,
1 S
k() = argmin (X — F( X ,s-))2
}7‘(.7.)6_7:”7+ nNS ; ]Zl ()5 53

as the orthogonal projection of z;, onto F, 4 relative to the empirical inner product

defined as

n

Zzgl (1):85) 92(X(0); 85)-

511;1

< 91,92 >n,N,=
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Define the corresponding empirical norm as || - ||, n,. Next, define two matrices

== E/[XAC —T A (X,8)][X4, — T (X,s)]"ds,
Q

= —F / X0 — Do (X, 8)|5.(s,8)[Xs — Tu (X, ) dsds,
Q®2

where X.(s,s’) = G,(s,8') + o(s)I(s = ¢).

The following Theorem from ( ) is cited below.

Theorem A1l. Suppose that the assumptions in Sections 2.2 and 3.1 hold. Then for
all k € A,

[T — FkH7217NS = 0,(1).

Proof. For any k € A., define

fn,k = argmin E [/ (XZ- — F(X(i),s))QdQ(s) = argmin ||z — F||2
F('v')e}—n,+ Q F("')Efn,+

as the orthogonal projection of z; onto F, ., relative to the theoretical norm, || - ||.
Then, fn’k. = II,z), where II,, is the projection operator onto F, 4, relative to the
theoretical norm. Define I, as the projection operator onto Fn 4, relative to the

empirical norm. Then, by the triangle inequality,

”fnk —Til|nn, < ank —Tllnn, + ank — fn,k”n,Ns-

By the definition of T, there exists {gg, : [, gw(s)dQ(s) = O}rea,, such that

e =2 pea, xk/g%k/. Since I',, x = I, 2k, we have

T — Twl? = |TL.Ts — T >
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So,

2
- > Xwgilw

Tk —TWl?=  inf |[F—TW)?= inf

F('7')6Fn + F('v')e]:’fl,+ k/EA
%frmz > Xwgiw — Y Xuglw

e e, KeA,

2
: § 0
= lnf Xk/ (gk’k/ - gk‘,k’)
Ik k/ESQﬂ'HQ
’ k'eA,

By the Cauchy-Schwarz inequality, Vk € A., we get

2

< ot SR Y Nl — shell

k'eAy k€A,

inf
gy k €ESGNH2

Z X (G — gg,k/)

k'eAy

and so,

I = TlP< D BIXEN Y if  lgew — giwl

1ESTNH?2
K EA, K EA, Thk SOd

By Jensen’s inequality, V&' € A,,
3
(E[X2])" <E[(X2)?],

which implies

E[X{] < (Cx)"?,

where C'yx is defined in Assumption 2. So, we have

EXZ/ i f /I 0 / 2
dEX] DY o o = gl

k'eAy k'eAy,

<JAC) Y inf gk — [

eA g k! ES;QHZ
v

and thus, by Lemma Al,

Tk — Tkl]? = O (JAPEHD)Y
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Since E [||fn,k — Tellnv, | = [T = Till, we get [[Tog = Tellan, = Op (JA[Y) =

op(1).
Recall that f‘nk = 1L,z and f‘nyk = II,,z1. Since (f‘nk — fnk) and (zy — fn,k) are

orthogonal in the space F,, + with respect to the theoretical norm, we have
1Tk = Tel* = [z = Top][* = [k — Toil[*
For the empirical norm, we have
lex = Dogllf v, < llex = Tokllf v, (AG)

It is shown in ( ) that for any vector of spline functions,

g(s) = (g1(8), g2(8), -, gp(s))" in S NH?,

2
8lln.N, _ _ _ _
% —1=0, (n7*(log(n)) %+ N, Y2 A|™Y) = 0,(1),

S0,

zp — Dogl?

H k A’anJ\]S _ 0p<1)+1

|[x — Dol [?

This gives
ok — Dol v, = lloe — Togl]? (0p(1) + 1)

Similarly,

|k — Dol n, = llae — Tl ? (0p(1) + 1) (A7)

From Equations (A6) and (A7), we get

ok — Dokl v, = ok — Dokl |? < ok — Dokl|2n, — llze = ol

= 0p (Ikee = Tuil?)
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Further,

i = Lokl 2., =l = Dopl2 = = Cuel 2 (0p(1) + 1) = s = Dol
= Ik = Tl + 0p (Ihk = Tl l?) = lloe = Do

= 1B = Dol + 0y (Ilow = Dol 2)
and thus,
1Bk = Dokl = 05 (llas = Pasl?) + 0p ([l = Tl )
Since ||z — Dp|> = O,(1), we have
ek = Dol < i = Tll + [P = Pl | = Opl) + 1 = Do
Then, we have
10 = Coel? = 0 (11Bs = Tasl?) + 0p(1).

Hence,

100 = Tull = 0,(1).

Therefore, for all k € A,
an,k - fn,kH?z,Ns = 0p(1),

which proves that
1T = el v, = 0p(1).

The following lemma from ( ) will be used to prove Theorem 2.2.

46



Lemma A7. Suppose that the assumptions in Chapter 2 hold and that for all k € A,
there exists a positive real number Cx such that | X;x| < Cx. Then for allb € R4l

with || bl = maxx=1||bx| = 1,

(Var(b?é&g)) Y2 (bTag) —2— N(0,1),

n,Ng—00
where

1
niN

af = UnZi 4 (L, = Pz,a,) (0 + €),

and

-1

Ui = (nN;) [Z) 4, (Tan, = Pzya,) 20,4, ]
Proof. Write b"af§ = (nN,)"'o"UnZ{ 4 (I.n, — Pz,,4,)(n + €). Then

e 1 _
(b"af)" = N [(n+ E)T(Z{,AC - Z{ACZ&AU(Z;ANZzAv) 1ZQT,AU)TUH})]

1
= (0 + € (Zy,a, — Zoa, (23 4,Z0.4,) 2} 4, Z1,4.) U1 b]

because b7 &§ is a scalar.

For all i = 1,2,...,n, take the i row vectors of Z; 4, and Zs 4,, and let

1
a; = —= [+ €)" (X(ya, ® Iv, = Xy, @ B (Z24,Z0.,) ' Z2.4,Z1,4.)Unib] .

s

Then, write

n
b'af = a;W;,
i=1
where conditional on {X;},, W, (i = 1,2,...,n) are independent with mean zero
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and variance one.

Note that a; is a scalar, so write

a? = al a;
1 _ T
= P Un (X, @ v, = X(ya, @ B (Zo,,Z2.0,) " B20,Z1.0.)

X e (Xfiya, ® Ln, = X0, ©B (Zy.4,224,)" 2y 0, Z1.4.) Uuib,

where X, = {¥.(s;, Sj’)}NS

Jy'=1

Let Xé),AC = X{i)’AC ® 1y, — X%;%Av ® B (Zg,AUZQ,Av)_IZ;AvZLAa Then for all

1=1,2,...,n,

a? = n2N2b Ui (X5 a.) Ze(X).4.)Unb

- n2N2b Un (Z z]k Svaj'>XiJ]T’k/) Uib,

Ji.g'=1 kk' €A,

where X7, is the (j, k)™ entry of X, ,

The eigenvalues of G, are strictly positive, so by Theorem Al,

P —
N2 g ( g kaE S;,Sjr )ng'k'> —>n7NSHOO =,
kk'€A

3’ =1

where Z, is positive definite.
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_ 1 _
Ulll = nN Z,{;AC (InNs - Z27Av (Zg:Av227A'U) 1Zg—:Av) Z]-yAc
1 _
=N Z1 4 (Zoa, — Zon, (23 0, Z2,) " 2] 4,20, 0,)
1 _
= (X4, @ 1n,)" (Xa, ® Iy, — Xu, ® B (2] 4 Zoa,) 25 4,Z1,4.) -
So,
Ul =
11 TLNS ),Ac>

By Theorem 3,

[1]

n
Ly (e -
/ ! %
TLNS z]k ij'k 1, Ns—00 )
kk'€cA

i=1 \j,j'=1

where 2 is positive definite.

By Assumption 2,

Za? > ¢n 'b’Upb (1 + O(N;1>)

i=1

> cn bl

for some positive real numbers ¢; and ¢. Again by Assumption 2,

max a? < (nN,)~2 b'Uy, (Z X Se(s), 850 )X;,k,) Uyb
kk'€eA

1<i<n
J'=1

< Cn?|b|?,
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where C' is a positive real number.

Thus,

2
maxj<i<n @; 1
st =0, (1) =
i=1 %

so bTag satisfies Lindeberg’s condition.

Therefore, by the Lindeberg-Feller Central Limit Theorem,

(Var(b”é&g)) (b7 ég) —2— N(0,1).

n,Ng—00

Proof of Theorem 2.2. Recall that

do — O A, = [IlAC\ 0|Ac|><|AU|Jn] (00 — BO,A)
- [I|Ac\ 0|Ac|x|Av|Jn] (nN)'CLZi(n+ ¢+ €)

= (nNS)_lUIIZ,{:AC (InNs - PZZ,AH)((T’ + 6) + C)

Then, let

— A0 L A0
a’ — g, = O+ O

where

&) = (nN,)'UnZ{ 4 (Lin, — Pzya,)(m +€),

al = (nN,)"UnZ] 4 Ly, — Pz,a,)C
Recall that
Ve = (nNo)2UNZ] 4 (Lux, = Pzya,)diag{Zi e} (Lan, — Pzy4,)Z1,4.Uni

is the variance-covariance matrix of &2, where 3. = Var(n; + €).
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Denote &2 = (a2 a2 ...aY )T andlet b = (b by ... bja,)” besuch that ||b]|, = 1.

e1 ez el

Then by Lemma A7,

1/2
|Ac] |Ac] |Ac]
~0 ~0 D
Var E bic,. E bia, | —— b;W;,
N N n,Ns—00
i=1 i=1 i=1

where Z‘iij‘ b;W; ~ N(0,1) for all i = 1,2, ...,n.

By Cramer-Wold device,

(Vo)™ 2a0 —2— N(0,T4,)).

e
n,Ng—00

Now,

2

||dc||2 B H [I|Ac| O|Ac|><|AU|Jn] (nN,)T'CL'ZEE|| < (nNy)*r Y| Z5¢)17

Then, by Lemma A3,
HdCHZ _ Op (’A‘Z(d+1)) )

Thus,
&l = O, (JAY).

n,Ns—00

Then, since ||V 0,

_ ~ D
Vc 1/2(a0 — aO,AC) m} N(O, I|AC‘)

Some definitions cited from ( ) are needed before providing detailed

proofs of the results in Chapter 3.
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Let

n N,

2
Ly(,7; 1, Pn2) ZZZ < ij ZszOék - ZszB ;)7 )

i=1 j=1

+ Pn1 Z || + Pro Z [yl
k=1 k=1

[

and define the group LASSO estimator 6 = (@ 4T)T as the minimizer of L,,.

Define the constant and varying index sets as

A ={k:ap #0,1 <k <p},

Az ={k: Jag| #0,1 <k < p},

Ay ={k: |3l #£0,1 < k <p},
A= AU A4,

The following theorem from ( ) will be used to determine some

properties of the group LASSO estimator 8 defined above.

Theorem A2. Suppose that the assumptions in Sections 2.2 and 3.1 hold. Then the

following statements hold.

1. With probability approaching one, |A%| < M|AZ| and |A,| < M|A,|, for some

1< M < 0.
2.

log(pJ, o2y + P2

S I — ot = 0 (FEEL ¢ ey o P L )

n?N

keAy s
log(pJ) pa + pr

S 1A — 0l = 0, ( FIAPTY 2N )

keAy
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3. If n~tlog(pJ,) — 0 and (nN,)2(p2, + p2s) — 0, as n — oo and N, — oo,
then with probability converging to one, all of the nonzero parameters oo, k €

A% and Box(+), k € A,, are selected.

Proof. To set up the proof of Part 1, pick index sets Z; C {1,2,...,p} and Z, C
{1,2,...,p}, such that |Z;| = ¢; and |Zy| = ¢o, where ¢; and ¢» are positive real
numbers. Define S; = (ﬁnlugl, ProV T (U ﬁng\/J_n(Ué)T)T, where u,, €
R’ and for all k = 1,2,...,q2, UL is in a unit ball with dimension .J,. Let Pz =

Z7(ZTZT)1ZT be the projection matrix of Zz, and define

Vi =7Z7(ZX20)7'S; — (1 — P1)Z6,.

Let & = n + € + ¢ and define

Y = max mnax IET—VI‘
q1,92 I=T1UZI> Uq1€{i1}ql||U£||2:171§k§q2 HVIH ’

Sz = {(Z,€) : Xg1.00 < (V' Ny + 0)C1v/q110g(p) V g2 log(pJy,),
VQ1 2 ‘Az‘,v% 2 |Av‘}7

where (' is a sufficiently large enough constant.
As shown in ( ), if (Z,€) € Zjas)|a,|, then |AX] < M|A?| and
|A,| < M|A,|, for some 1 < M < co. Write

€7V _ [+ Vz+ (Vg
IVl [Vl

Then, by the triangle inequality,

(3% < (m+e)"Vz|  [¢TV]
vzl =  [[Vzl Vz]]
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By applying the Cauchy-Schwarz inequality on the second term, we get

((n+ €)' Vsl  [C'Va] _|(n+e)' Vil [IC"I] II'Vzll

Ve IVzl = [z IVzl|
and thus,
|£TVI| < |(77+€)TVI| +||C||
IVl = V]
Next, define
X5 = max max —\(n—l—e)TVI]
WE L ISUL g e{zn)n||UEo=11<h<e V2l

ErAg\,|Av| ={(Z,n+e): Xovao < (VN + 0')02\/(]1 log(p) V g2 log(pJ,),
Vql 2 ’A:LVQZ Z |Av’}7

where C} is a sufficiently large enough constant.
As shown in ( ),

n,Ng—o00

PEa) — 1.

Further, for sufficiently large n,

€[] < (VNs + 0)Caov/[ A 1og(p ).

Therefore,

n,Ngs—00

P(Eazpa,) — 1,

and hence,

(Z,8) € Eaz)au-

Therefore, |A%| < M|A?| and |4,| < M|A,|, with probability approaching one,

for some 1 < M < oo. This proves Part 1.
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Now, define 7 = (67,67 703;9) = (G, A2, vy Gy A1, Y2, -+, Y2p), and denote

A= ATU AL,
Al =A,UA,,
A=A UA

Let d = |A'| = O(|A|), and denote Z6O = Z 40 and ZOy = Z 4,6, 4. Define
vV = ZA’(éA’ — 00,A’>‘

Then,

€ — UV = (Y — ZG(])ZA’(éA’ — 00714/) = (Y — Zeo) — ZA’éA’ —|— ZA/OO’A/)
=Y —Z,04.

Now,

E-v)(E-—v)=¢¢-€v—viErviy
= Y —Z404 | =€7¢ — 26T + 0w

e ||Y — ZA/ONAIH2 — ||Y — ZA/O(),A/“Q = I/TI/ — 2£TV

By the definitions of 8, A’ and A’

1Y = ZaOu |+ > Bl + > fual[ell

keAL keAl,

<Y = ZaBoull> + > foilaok] + D fnollvor],

keAL, keA!,

which means

I =26"v < po (o] = [ax]) + Y Ana(170rl| = [1Fx]])-

ke A, ke Al
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Note that |A.| < d" and |A)| < d', so

> i =IAR, <dp,

keA!,

Z ﬁig = |ACU|153L2 S d/ﬁig'
kA,

By the triangle inequality, we have

> A (aor] = 1ax]) + D Ay (1ol = 151

kEA!, keAL
< Z ﬁm‘O‘Ok - 6‘/6‘ + Z ﬁnzH'YOk - :YkHa
ke AL keAl

and then

Z P | Qo — | + Z P [ Yor — Y|

keAL keA,

Z (ﬁn1|a0kz - &k|](/{? S A,c) + 15712||'70k — ,-Nka](k, c A;))

ke ALUA!,

< Y max(fny, fna) (|G — aorlI(k € AY) + |k — youl| I (k € A7)

ke A’
< /P2 + 72, (ke — aol Ik € AL) + (1A — yorl [ (k € AY)).
ke A’

Further, by Cauchy-Schwarz inequality,

> /82 + 2, (dk — ookl I(k € AL) + |13k — Yol [T (k € AY))

ke A’

< DR 2 D (dn — anlI(k € AL + 1k — orllT (k € A7),

ke A’ ke A’
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and then,

D@+ 22, D (dk — okl I(k € AL) + |13 — yol | I(k € AL))

kecA’ keA’
<A@+ 2,), [ (lan — a2k € AL + |3k — Youl 21 (k € A))
ke A’
= A2, +2,) | D 16k — oo+ > 1Ak — Youl 2
keAL ke A,

— 2, + 2164 — Oo.u .

Denote ¢ as the lower bound of the eigenvalues of (nN,)™'Z%,Z 4/, and write

TR Vet )1
A+ s~ Ol = 2| TP L6, — 6,

and thus,

d(pp, + p2,)

1 ~
—(nN. r— .
TLNSC + 4(” SC)HOA 00714 H

d'(72, + 72,)]104 — 8ol <

Therefore, we have

d(pn, + Ph,) | 1 i
i =27 < TP P Ly 016, — 6 .

- niN,c
Recall that v = Z 4 (04 — 8y '), so,

[][* > (nNye) |14 — 6o,

Define &* = Za/(Z%,Z o)~ Z7, € as the projection of & onto the column space of Z 4.
Then,

&' =¢"Zu (25 Za) 2w = €T 2w (25 Z0) 27 [ Za (B4 — o 00)]

= fTZAr<0~A/ — 00,A’> = fTV.
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By the Cauchy-Schwarz inequality,

* * * 1
2¢"v| = 21(&7) v| < 20€7]| vl < 2[1€7]1° + Sl
Then, we have

d(pa, + pp,) . 1
———s €| P + <)

1 -
2 2
— ~(nN , 12 — il

VI = SNl = B[ = = :

1 1 ; o 0402
= SlIP — (N6 — Oo.| < 20|€7(P + =

niN,c
Since
1 ~ o _ 1 2
~(nNyc)||0a — B0 |]” < =||V| P,
2 2
we have
i1 . , < * _ M e/
(2 4) (Nl — Ol < 2€° |1 + =g
and hence,

BlIg°|?  4d'(pn, + Fi,)

O — 60 u|? <
104 on|[” < nNgc (nNsc)?

Let n* =Pz, n, € =Pgz e and () = Pz, (a be the projections of n, € and {a

onto the column space of Z 4/, respectively. Then. by the triangle inequality,

* * * * * * * 2
1€°112 = 1|(n* + €) + Call® < ([|(n" + €| + I ]])
= [|(n" + €[> + Il P+ 2[ln* + €] IS

<[l + €l + I I1* + (" + €1 + 1w 7).,

and hence,

111" <2 (" + €1 + IS ) -

Note that for some positive real number C,

ISP < CNAPIAPE,
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S0,

1€°]17 < 2[|n* + €7|* + 2C (nN,) ()| AP
Further, we have
"+ €1]* = [|1Za(ZR522) ' Zh (0 + )| = [(ZZa) "2 (n + €)%,
By the Cauchy-Schwarz inequality,
™+ €12 < [(Z5Za) 2| (125 (n + €| = [[(nN)2CL 2|1 (125 (n + €[>

Hence,

" + €[] < (nNoo) " |Z3 (n + €.

For any index set Z C {1,2, ..., p}, we have

I:Iﬁ?g)iy” z(n+e€)l| I%?z(d/mez(u ol + 1Z€l)?)

< (o) ((RY)* + (RD)?) V (nNod) ((B3)” + (R3)°)

where N
n -1/2 . (a.
Ri = max |(nN;) E;sz;m(sj) :
i= j=
n Ns
e __ —1/2 ) -
R = g (N2 D XD e
i= j=
and
n Ns
n _ —-1/2 . ey .
Ry = mas ) lelk;nl<s]>B<s]>\ ,
i= Jj= &
n Ns
- “12N" y,
R (SRS ST
i= Jj=

29



Let C be a positive real number. It is shown in ( ) that

R} < Cy/N,log(p), Ry < C+/Nlog(pJ,),

and
R < Co/log(p), Rs < Coy/log(pJy).
So, we get
1ZZ(n + )lI* < (nNd) ((Cv/NTog(pJu))? + (Corv/log(pJ))?)
= (nNd'C*)1og(pJ,) (N, + o?),
and then,

1Z2(n + €)|* = Op (nNod'(N; + 0*) log(p ) -

Putting everything together, we have
7"+ €|* = O, (d' (N + %) log(p ) ,

1€°]1* = Oy (d'(Ny + 0%)e og(pn)) + Op (nNo(d')?| AP

and therefore,

~ d' (N, + 02)log(pJ,,) nN,(d')?|AJ2E+D)
. 12 — s n
R e L C

d'(p2, + pp,)
“)( L )

Since ¢ is bounded by a positive constant and d' = O(|A|), we get
104 = B0 w[[* = Oy (™ log(pJn)) + Oy (JAPY) + O (nN.) (7, + 7na))

which completes the proof of Part 2.
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Recall from Assumption 6 that there exists c,, cg > 0 such that

min |age| 2 ca, min ||Bollz) 2 co.

So for all k € A, if |agx| # 0 but |ax| = 0, then |aogr — @x| > ¢, By Lemma A6,

for all k € A,, if ||yok|| # 0, but ||Fx|| = 0, then ||vyor — Fx|| > c1cs. However, this

contradicts Part 2 when

~2 ~2
—1 n—00 (ﬂm + pn2> n,Ng—00
n~log(pJ,) —— 0, and (nV.)?

-1
Since Ny /2 < |A| < n=@0 | |A|XHD) — 0, as n, N, — c.
Therefore, with probability converging to one, all of the nonzero parameters gy,

k € AX and Bog(+), k € A,, are selected. This completes the proof of part 3. n

As defined in ( ), let
Af = {k:|ax #0,1 <k < p}.

Then, A. = A%\ A, and A, = AZ\AU

The following lemma from ( ) is used to help prove Theorem 3.1.

Lemma AS8. Suppose that the assumptions in Sections 2.2 and 3.1 hold. Then, as

n — oo and Ny — 00,
P(AZ:AZ>H1, P(AU:AU)—H.

Proof. By the Karush-Kuhn-Tucker (KKT) conditions in ( ), the
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unique minimizer, @ = (a&’,47)T of

n  Nsg P p
L, (o, v; pn1, Pn2) = Z Z Yi(sj) — ZXik;ak — ZXikBT(Sj)’Yk

i=1 j 1
—l—pnlzw (lakl) +Pn2zw ([

satisfies the following conditions:

(1.1) (X @ 1n,)"[Y = (Xi @ 1y, )& — (X @ B)A] = pnlwnk| | ,Vk € AL,
(1.2) (X, @ B)'[Y — (X4 ® 1y, )& — (X, @ B)Y] = ppow v || || Vk e A,

(2) |(Xx @ 1n,)"TY = (Xx ® 1n,)& — (Xi @ B)A]| < pawy, y, VE & A,

(3) Xk ® B)'[Y — (X; @ 1y, )& — (X;, ® B)4]

< Pnowy, , Vk & A,

Define 0y = (Z47Z.4)"*ZLY, which is a vector with length |A*| + |A,|J,. Define
two vectors vy and va, both with length |A|, such that

————I(m e A))+0,,I(m¢gAL),Yme A,

w’U * O_m
VDI (1 | AY]) € A,) Vim € A.

Define
éO,A = (ZzzA)_l (ZZ;Y — Pn V1 — pnzVQ) s

and decompose it into two vectors defined as
. . T . . T
Oo.: = (007m,m c A;) ,and G, = (007m,m c Av) .
Let A= {1 <m<2p:||@pm| >0} C A and define
- T
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The objective is to show that 0, satisfies the KKT conditions and hence, is the
unique minimizer of L,,.

Note that Z6 and {Z,,,m € A} are linearly independent, so conditions (1.1) and
(1.2) will hold for 8, if A = A°. Let condition

(1) AcC A

and if we show this holds, along with conditions (2) and (3) for 6y, then 6, is the

unique minimizer of L,,. This is equivalent to showing
P (A=) 25251, P (4, = 4,) 25251

To prove condition (1’), we must have

[18om|| = [18om|| < 180m — Bom|[ < [|6oml|,
for all m € A, as n — oo and Ny — oo. It is shown in ( ) that
P (1180, — 8ol > 00l 3m € A) 255 0,

which implies that ||y, || > 0, for all m € A. Thus, every m € A is also in A°, which

proves (17).
Further, it is shown in ( ) that
T A c £\ MINs—o0
P (14 @ 1n,)" (Y = Z6)| > purw Ik & A7) 0,
T 2 v n,Ns—00
P (115 @ B)' (Y — Z8)|| > prawi 3k & A, 0,

which prove conditions (2) and (3).
Therefore, conditions (1’), (2), and (3) hold, which implies

C (&

P (A* - A*) mNae g p (Av - Av> mNe=o0
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Proof of Theorem 3.1. Recall that A. = A*\ A, and A, = flz\flv From Lemma AS,
we had
n Ng—>oo ~ n,Ng—00
P (A* A*) 1, P <Av - Av) N0

Since we have P ( ) (A*\A - A*\Av), and P (A —A ) mNezoo,
p (A;\Av - Aj\Av) —p (A: - A:) oo

Therefore, as n, Ny — o0,

which completes the proof. n

Proof of Theorem 3.2. Denote m; as the minimum eigenvalue of C4. We have
04 =004 = (Z52.4) 7 (ZXY — ppyvi — pryva)
where v; and v, are vectors defined in the proof of Lemma A8. Then,

90A = (Z4Za)™ (ZAY PniV1 — Pn2V2)
= (Z4ZA) " (Zh (N + €+ C) + Za60,4) — pny V1 — Py V2)
= (Z1Z4) " (Z3Z460,4 + Zi(n+ €+ &) — pny Vi — pryV2)
(

=004+ (Z1Z4)7" (Zz(’n +€+C) = P Vi — PnyVa)
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and so,

é07A - 90714 = (ZZ;ZA)_l (ZZ(I’] + e+ C) — Pn V1 — pn2V2)

= (nNS)_ICZI (Zi(n +€+¢) = pny V1 — pnzv2) .

Define &, n., and €, as the projections of &, 7, and €, onto the column space of

Z 4, respectively. So,
17 + €] |* = 1ZaA(ZAZ4) " Z(n + ©)I]° = [(Z4Za) " Zi(n + €)||*.

Then,
. + e.? = [|(nNo)"V2C, 2L (n + )|

By the Cauchy-Schwarz inequality,

[(nN) P CL P Zh (m + )P < (nN,) ICL P2 + )l

< (nNym) 7| Z4(n + €)|.
By the triangle inequality;,
2
1Z%4(n + €| < (I1Zinl| + [|Z%ell)” < 2/|Z0nl]* + 2/|Z e

Multiplying and dividing by n?NZ2, we get

ZT 2 ZT 2

(nNg)?2 ~ (nNg)?

By Lemmas A4 and A5,

Zinll* | |Zhell? 1 1
2(nN;)? 2 4 < 2(nN,)? (=
(06 ((nNs)2 T aNz) S (i) n  aNJAR)

and thus,
1Z24(n + €)|] = O, (nN? + nN,|A[7?).
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We also have

ICI[* = O (nN,|APD).

Now, by the triangle inequality,
16117 = [(m + €) + ¢ < (Ime + e[+ [[CID* < 2lIm. + e[+ 2[[¢IP,
and therefore, since ;' is bounded by a positive real number,

1€.|° = Op ((”N5W1)_1(HN3 + nNS]A\_Q)) + O, (TLNS‘AF(dH))

= O, (Ny + |A] 72 + nN AP

In a similar way as in Part 2 of the proof of Theorem A2,

5 8I1€.[1* 47, [Acl + o7, [Au])
0 _0 2< ni n2
104 = Bo.all" < nNmy + n2N2r? ’
and so,
? N, + |A]? nN,| A2+
04— 6004>’=0, =——— Op | ————
161~ 0l =0, (VL) o, (M
O p727,1’AC|+p$L2‘A'U‘
i n?N2 '
Thus,
. 1 1 P2+ p?
0.,—6 2_0o. | 24— L |APPER) 4 B - Pee )
162604l =0, (5 + s Ape 4 P
Since
(&AC - OCO,AC) = [IIACI O‘AC|X|AU|JTL:| (éA - OO,A)a
we get

1 1 P2+ p?
~ 2 2(d+1 n n
E O — & =0 —+——|—A(+)—|——1 2
keA( g Ok) P <n nNS|A|2 | | nQNS2 ’
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which completes the proof of (a). Since

('AYAU - ’YO,AU) = [O\Avunxmc\ I\AU\JJ (OA - 00,A)>

and for all s € ),

~

Ba(5) = Boa,(8) = Tia @ B (s)| (4, = Yon,);

we get

R 1 1 P+ p?
Z B 2 _ i T 2(d+1) 4 Fna © Pna
= Hﬁk 5OI€HL2(Q) - OP (n + HNS|A‘2 + |A| + ngNSQ )

which completes the proof of (b).
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