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Abstract

In this paper, we compare elevator strategies for a parking garage. It is assumed

that the parking garage has several �oors and there is an elevator which can stop

on each �oor. We begin by considering 4 strategies detailed in page 23. For each

strategy, we loop the program 100 times, and get 100 mean values for wait times.

Welch's test con�rms highly signi�cant di�erences among the 4 strategies.

Repeating the analysis multiple times we see that the best of the 4 strategies is

strategy 2, which places the elevator on �oor 2 (the median �oor) after use.
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CHAPTER 1

Elevator Strategies

In this chapter, we discuss elevator strategies in general and give a historical review.

There are many companies that manufacture elevators. Two of the best known are

Otis Elevators, and TK (ThyssenKrupp). The �rst passenger elevator was built in

1856 in New York.

Elevators for people are common in many settings: o�ce buildings, hotels, apart-

ment buildings, gymnasia, retail outlets, hospitals, schools, universities, govern-

ment buildings. Some places have a single elevator and others have a battery of

elevators. Some elevators are restricted to certain levels. Most elevators have but-

tons to select a �oor on the inside cabin. Others have the selection external to the

elevator.

There is a classic story about a slow elevator system in a building. There were

numerous complaints from users. Various solutions were proposed. Add another

elevator. Put most commonly used businesses on lower �oors. Move vacant ele-

vators to the main �oor. The eventual solution was to add mirrors in and near

to the elevator. This distracted users. They adjusted their clothing and tried to

improve their own appearance. They could look at their fellow users without being

conspicuous. Remarkably, most complaints stopped.

Often, elevators have some computer algorithms built in to help with decision

making. For example, if an elevator is on �oor 1 and two riders enter, one of

whom wants �oor 2 and the other wants �oor 5, the elevator algorithm knows to

stop on �oor 2 �rst and then proceeds to �oor 5 regardless of which request was

made �rst.
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For the pair of elevators in Lambton Tower, at the University of Windsor, the

elevator pair is programmed so that there is an attempt to keep at least one of the

two elevators at �oor 1. So if the current vacant pair is sitting at (1,5) (i.e. one of

the elevators is currently at �oor 1 and the other is currently at �oor 5) and if a

rider enters the elevator at �oor 1, and pushes the elevator button to go to �oor 7,

the other empty elevator (at �oor 5) automatically and simultaneously begins to

move to �oor 1, even though no such request was made by a rider. The idea is that

there should be an elevator kept on �oor 1 as it is the most commonly requested

�oor (for arrival or departure). This would allow for a simpli�ed Markov chain

transition matrix. Given that there are 11 �oors (Ground plus 10 others), that

would mean there are 112 � 121 states. If we consider state pa, bq to be equivalent

to pb, aq, then there would only be
�
11,2�11

�
di�erent states. If we restrict states

to have form p1, aq, then we would only have to consider 11 possible states. This

would be reasonable if the elevator was empty most of the time - say late at night.

There is the classic issue for whether one should use the elevator or use the stairs.

Elevator use may have lower expected time but stair use may have lower expected

variability of time. Which is more important? How many people have been stuck

in a broken elevator?

In tall buildings, elevators are sometimes given restricted �oors. For example, one

elevator services �oors 1, 2, ..., 10, and another services �oors 1, 11, 12, ..., 20.
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CHAPTER 2

Literature Review

There is very little literature on parking lot elevators. Almost all literature is for

standard buildings.

The evaluation of the elevator round-trip time has been, and still is, fundamental to

the design of elevator systems (Al-Sharif et al., 2014, [6]). Historically, round-trip

time has been evaluated using analytical methods based on equations. The equa-

tions are derived using the expected value of critical parameters that constitute the

round-trip time. Numerical and modern analytical methods have been introduced

for evaluating round-trip time, such as the Monte Carlo simulation method and

Markov Chains. Al-Sharif et al. (2014) list and discuss six analytical, numerical,

and simulation methods for evaluating round-trip time. They also compare the

six methods, highlighting the advantages and disadvantages of each method and

areas of application. Monte Carlo simulation is a practical way of evaluating the

round-trip time by randomly generating a large number of scenarios and taking

the average value of the round-trip time resulting from each scenario.

Crites and Barto (1994, [8]) describe a new reinforcement learning approach called

"RL," which uses reinforcement learning to solve a vast, unstated, and intractable

problem. In this paper, the authors present a reinforcement learning approach

to the elevator dispatcher problem. They use an RL framework to predict the

behaviour of an eight-story building with four elevator cars. The goal of the RL

system is to reduce the average waiting time by as much as possible while keeping

the overall cost of the operation low.
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In Pepyn and Cassandras (1998, [20]), an online adaptive dispatching control al-

gorithm was designed for elevator systems during peak passenger tra�c. The

concurrent estimation dispatching algorithm allows us to observe the elevator sys-

tem unobtrusively while it operates. This paper is a companion to their previous

paper, where they proved that the structure of the optimal dispatching policy for

elevator systems in peak tra�c is a threshold-based policy with threshold param-

eters that change as a function of the passenger arrival rate. Their objective is

to observe an actual elevator system while it is operating under some arbitrary

dispatching threshold. They use the TWA to construct hypothetical sample paths

and estimate the passenger waiting times that would have resulted if the eleva-

tor system had operated under various thresholds. These concurrently estimated

waiting times are used to adapt to the operating thresholds.

Al-Sharif et al. (2013, [5]) present a step-by-step automated design methodology

that gives the optimum number of elevators in speci�c, constrained arrival situ-

ations. It uses the round-trip time calculated using other tools to arrive at an

optimal design for a building. The design of an elevator system heavily relies on

calculating the round-trip time under up-peak (incoming) tra�c conditions. The

round-trip time can either be calculated analytically or by the use of Monte Carlo

simulation. However, the round-trip time calculation is only part of the design

methodology. Evaluating the round-trip time is critical to the design of elevator

tra�c systems. This paper introduces the Markov Chain Monte Carlo method as

a numerical tool. The method is compelling in cases where analytical equations

do not exist for unique building conditions. This paper introduces a methodol-

ogy for evaluating the elevator round-trip time using the Markov Chain Monte

Carlo method. The method introduced in this paper is restricted to the case of a

single-entrance building. In order to calculate the �rst term of the round-trip, the

traveling time, it is necessary to �nd the kinematic matrix. This represents the
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time required for the elevator to travel between two �oors starting at rated speed,

acceleration, and jerk. Six passengers were included in the analysis.

A wide variety of problems in diverse areas, ranging from manufacturing to com-

puter communications, involve sequential decision-making under uncertainty. In

Das et al. (1999, [9]), they present a reinforcement learning algorithm for semi-

Markov decision problems with a high degree of con�dence. It is based on an

earlier version of the Markov reinforcement learning approach originally proposed

by Mahadevan. In this paper, the authors use a reinforcement learning framework

to develop an e�cient and cost-e�ective method for predicting future events. They

use a real-world inventory problem as an example. The results of the proposed

method are compared with those obtained from two heuristics. In recent times,

there has been more interest in a stochastic approximation method that is more

simulation-based, called reinforcement learning (RL), for computing near-optimal

policies for MDPs. RL has been successfully applied to a large number of problems,

such as elevator scheduling and dynamic channel allocation of cellular telephone

systems.

Additionally, the authors aim to extend reinforcement learning to a general class

of decision tasks that are referred to as semi-Markov decision problems (SMDPs).

Speci�cally, they focus on SMPDs under the average-reward criterion, present-

ing a new model-free RL algorithm called SMART (Semi-Markov Average Reward

Technique). Furthermore, they present a detailed study of SMART on a com-

binatorically large problem of determining the optimal preventive maintenance

schedule of a product inventory system.

SMART was implemented and tested on a commercial discrete-event simulator,

CSIM. The e�ectiveness of the SMART algorithm was demonstrated by �rst com-

paring its results with optimal results for a minor problem and then applying it to
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a large-scale problem and comparing its results with those obtained from two suit-

able heuristic methods. This was the �rst large-scale implementation of average-

reward reinforcement learning and was part of a major ongoing cross-disciplinary

study that involves industrial process optimization using reinforcement learning.

For more complex systems consisting of numerous interrelated subsystems of ma-

chines, it may be more appropriate to design a hierarchical control system where

each subsystem is controlled using separate agents instead of having a single agent

governing the whole system. The elevator problem is an example of a multi-agent

system, where the agents are homogeneous and control identical subsystems.

In another paper, Patino-Forero et al. (2012, [19]) proposed a novel architecture

for elevator systems based on a DeviceNet® industrial network for connecting

several industrial devices, such as a Programmable Logic Controller (PLC) which

implements the Local Control Systems (LCSs), Panel View for implementing Des-

tination Control System (DCS), frequency inverters and inductive sensors. The

OLE for Process Control (OPC) was developed in Java language sending data

between the PLC and an Elevator Group Control System (EGCS) based on fuzzy

logic (FEGCS) and division zoning techniques that runs on PC. The EGCS was de-

signed to increase the performance of the system of elevators and takes advantage

of the division zoning techniques and the tra�c pattern identi�cation performed

by FEGCS, as well as the previous information provided by DCS, avoiding un-

certainties of a conventional system. The LCS was designed to be implemented

in only one PLC, saving industrial instrumentation and decreasing energy con-

sumption and implementation cost. By accomplishing the proposed architecture,

they hope that the elevator system takes advantage of the security, versatility, and

robustness provided by industrial instrumentation. The DeviceNet® industrial

network allows connecting up to 64 nodes, increasing the system's scalability in

the number of elevators and �oors. The OPC protocol provides high versatility

6



and �exibility in transmitting information, allowing exploration of new approaches

for controlling automation integrated systems in modern buildings.

Marja-Liisa Siikonen (1993) reports that this paper describes a method for predict-

ing the performance of an elevator in a building. It uses a combination of Monte

Carlo and Bayesian methods to predict the e�ect of di�erent types of tra�c on

the performance, or "call allocation," of the elevator. This paper presents a new

approach to the problem of predicting elevator performance by assuming that only

one car in a group has passenger waiting times. It uses a novel approach to predict

the behavior of an elevator with respect to time intervals and load values.

In Brand and Nikovski (2004, [7]), the authors consider the problem of optimally

parking empty cars in an elevator group to anticipate and intercept the arrival of

new passengers and minimize their waiting times. Two solutions are proposed for

the down-peak and up-peak tra�c patterns. They demonstrate that matching the

distribution of free cars to the arrival distribution of passengers was su�cient to

produce savings of up to 80

Nikovski and Brand (2004, [18]) present an e�cient algorithm for exact calculation

and minimization of expected passenger waiting times using a bank of elevators.

The dynamics of the system are represented by a discrete-state Markov chain em-

bedded in the continuous phase space diagram of a moving elevator car. The

chain was evaluated e�ciently using dynamic programming to compute measures

of future system performance, such as expected waiting time, averaged over all

possible future scenarios. An elevator group controller based on this method sig-

ni�cantly outperforms benchmark algorithms and, although slower than them, was

entirely within the computational capabilities of currently existing elevator bank

controllers.
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Brand and Nikovski (2004, [7]) describe the exact calculation of expected waiting

times for Group elevator control. Group elevator scheduling is a complex opti-

mal control problem that has been researched extensively due to its high practical

signi�cance. The usual performance criterion to be optimized is the average wait-

ing time (AWT) of all passengers in the system. They demonstrate that such a

simpli�cation is optional and describe an algorithm that can compute the proper

expectation of AWT over all possible paths of an elevator car. New passengers

arrive at a bank of elevators at random times and �oors. The dynamics of the

system are represented by a discrete-state Markov chain.

In Sun, Zhao, and Luh (2010, [24]), a two-level formulation of the group elevator

scheduling problem with advanced tra�c information is developed. A new door

action control method and a hybrid nested partitions and genetic algorithm method

for the passenger-to-car assignment are proposed. A team from the University of

Connecticut led by Jin Sun (2010) reports that in this paper, they address the

problem of building elevators in a high-rise building and how to e�ectively use

advanced information to control the speed of the door. Sun and colleagues present

three examples of how well the methods work:

1) using near-Optimality of the solution,

2) using the value of forward tra�c information,

3) using genetic algorithm

4) using single-car dispatching.

This paper presents a two-level approach to predicting future tra�c behavior. The

proposed methods are based on a two-stage framework, which uses detailed car

dynamics to predict future behavior. Six passengers were included in the analysis.

Feng and Redner (2020, [10]) focus on the idealized case of a building with a single

unlimited-capacity elevator. With a single in�nite capacity elevator, a steady state

was eventually achieved where the average time for the elevator to complete a single
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cycle equals the average number of people who arrive in the lobby during a cycle.

A single cycle of an elevator involves the following steps: The elevator arrives on

the ground (lobby) �oor; it delivers each passenger to her/his destination �oor in

ascending order, and passengers with this destination �oor exit. When the elevator

empties, it returns to the ground �oor, and a cycle begins anew. The researchers

investigated the transport of people by elevators in a tall building during the start

of its daily operation within the framework of a minimal probabilistic model. There

were 21 elevators involved in the analysis. The authors' results strengthen earlier

work on this topic: �We know that the average clearing time is in�nite, and its

distribution asymptotically decays as n�3{2, where n is the number of cycles. This

condition corresponds to the lobby being cleared,� Feng argued.

Tanida (2022, [25]) considered a downward elevator system motion during peak

loads. The group examined the order parameter of the elevator motion and round-

trip time for various in�ow rates of passengers and the proportion of passengers

set to ride the �rst-arriving elevator. The e�ects of the two parameters on the

round-trip time are di�erent. Dynamics and order formation in nonequilibrium

systems have garnered widespread interest in physics. They investigated di�er-

ences between the dynamics of elevators when they were isolated or coupled. They

introduced a mathematical model to explain the behavior of R.

Zhang and Tsiligkaridis (2022, [27]) mention how Group Elevator Control (GEC)

is a demanding industrial control problem that needs to be solved repeatedly. The

group proposed a Predictive Group Elevator Scheduler that uses predictive infor-

mation about passengers' arrivals from a Transformer-based destination predictor.

Empirical experiments validated the e�ectiveness and e�ciency of the approach.

Kwon et al. described a sensor-aware GEC method that places reservation calls for

future passengers yet to arrive. They found savings of waiting time for a traditional

myopic GEC algorithm on the order of 5
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Al Sukkar et al. (2017, [2]) attempts to understand the reasons for the di�erence

in the round-trip time between calculation and simulation. It is deemed that the

main reason for the di�erence is the combination of two factors: the limited car

capacity and the randomness in the behavior of the elevator tra�c system, thus

leading to reduced e�ciency in car loading due to a smaller number of passengers

in the car. There are three sources of randomness in the behavior of the system -

the randomness of the passenger destinations (thus making the value of the round-

trip time a random variable), the randomness of the passenger arrival (driven by

a Poisson passenger arrival model), the e�ect of elevator bunching (thus making

the value of the interval a random variable). Using a MATLAB-based simulator,

the value of the round-trip time is plotted against the system loading level for

the case of a single entrance and incoming tra�c only. Di�erent conditions are

simulated, including constant and random passenger arrivals, queues-allowed and

queues-not-allowed conditions. Varying these conditions provides an insight into

the variation of the round-trip time and its reasons. The e�ect of the number of

passengers boarding the elevator on the value of the round-trip time (and thus on

the value of the system handling capacity) is investigated in more detail.

Hakonen and Siikonen, (2008, [11]) states in their paper that the passenger service

level in an elevator system depends on the group control and cannot be calculated

directly. With conventional control, waiting times and intervals correlate to up-

peak. With a destination control system (DC), interval and waiting times do

not correlate similarly to conventional collective control. Therefore, simulation

has become essential in determining passenger waiting times with DC. Passenger

arrivals follow a Poisson distribution, and simulation results vary depending on the

random seed number of the simulation. This article studies di�erent simulation

procedures and the consistency of the simulation results.
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Two performance measures commonly used in planning elevators are Up-peak Han-

dling and Waiting Time. The �rst measure was to compare the actual waiting

times and time to the destination. When comparing the actual average waiting

times, they see that the di�erences between average and standard deviations are

much more signi�cant than the typical deviations. This paper discusses two of the

most commonly used performance measures in elevator planning: up-peak han-

dling ability and up-peak interval. The �rst is to �nd out the highest acceptable

Waiting Time with an 80 percent car load. The second is to study how well the

group can handle peak tra�c. Passenger Waiting Times are shorter than Interfer-

ence when the arrival time is below the handling capacity. Simulations allow us to

determine how many passengers can �t in an average car based on the number of

people arriving. Handling Capacity is calculated from the arrival rate. A higher

loading factor will be more accurate since it considers the passenger arrival size.

Robert H. Crites, Andrew G. Barto (1994) describes a new reinforcement learning

approach, called "RL," which uses reinforcement learning to solve a very big,

unstated, and intractable problem. It uses a novel kind of top-down decomposition

to achieve extremely large performance. In this paper, the authors present a novel

reinforcement learning approach to the elevator dispatcher problem. They use a

RL framework to predict the behavior of an eight-story building with four elevator

cars. The goal of the RL system is to reduce the average waiting time by as much

as possible while keeping the overall cost of the operation low.

In Pepyn et al. an on-line adaptive dispatching control algorithm was designed for

use in elevator systems during uppeak passenger tra�c. The concurrent estimation

dispatching algorithm allows us to observe the elevator system, in an unobtrusive

way, while it operates. This paper is a companion to their previous paper, where

they proved that the structure of the optimal dispatching policy for elevator sys-

tems in uppeak tra�c is a threshold-based policy with threshold parameters that
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change as a function of the passenger arrival rate. Their objective is to observe

an actual elevator system while it is operating under some arbitrary dispatching

threshold. They use the TWA to construct the hypothetical sample paths and es-

timate the passenger waiting times that would have resulted if the elevator system

had been operating under the various thresholds. These concurrently estimated

waiting times are used to adapt to the operating thresholds.

Al-Sharif, L., Algzawi, Hammodeh, A. T. (2013) presents a step-by-step automated

design methodology which gives the optimum number of elevators in very speci�c,

constrained arrival situations. It uses the round-trip time calculated by the use of

other tools to arrive at an optimal design for a building.

The design of an elevator system heavily relies on the calculation of the round-trip

time under up-peak (incoming) tra�c conditions. The round-trip time can either

be calculated analytically or by the use of Monte Carlo simulation. However, the

calculation of the round-trip time is only part of the design methodology.

Evaluating the round-trip time is critical to the design of elevator tra�c systems.

This paper introduces the Markov Chain Monte Carlo method as an additional

numerical tool. The method is very powerful in cases where analytical equations do

not exist for the special building conditions. This paper introduces a methodology

for evaluating the elevator round trip time by using the Markov Chain Monte

Carlo method. The method introduced in this paper is restricted to the case of

a single entrance building. In order to calculate the �rst term of the round trip,

the travelling time, it is necessary to �nd the kinematic matrix. This represents

the time required for the elevator to travel between any two �oors starting at

rated speed, rated acceleration and rated jerk. 6 passengers were included in the

analysis.
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CHAPTER 3

Assumptions for our Elevator Model

We assume that the parking garage has n levels and that the elevator can stop at

each level. Assume that each level can hold k vehicles. The ground �oor is called

level 1. Assume that the interarrival time of vehicles is exponentially distributed

with rate λ. Assume that the time that a single vehicle stays in the parking garage

is exponential with rate µ.

The exponential distribution is used for the model because the exponential distri-

bution is memoryless. This means that we need to keep track of less information

in our notation and analysis.
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CHAPTER 4

R program

Before presenting our R program to simulate and analyse elevator strategies, we

state a well known result about exponential random variables.

Proposition 4.1. (Memoryless Property) Let X be an exponential random vari-

able with pdf fpxq � λe�λx, x ¥ 0. Then for �xed k ¡ 0, P pX ¡ x� k|X ¡ kq �

P pX ¡ xq.

Proof.

P pX ¡ xq � 1� F pxq � 1� p1� e�λxq � e�λx.

P pX ¡ x� k|X ¡ kq �
P pX ¡ x� k and X ¡ kq

P pX ¡ kq
�

P pX ¡ x� kq

P pX ¡ kq

�
e�λpx�kq

e�λk
� e�λx � P pX ¡ xq

□

The memoryless property means that if we are looking at processes that have

exponential interarrival and service times, then our simulation programs do not

need to keep track of the time since the last event, and we only need to keep track

of the current system state. This simpli�es our programming task.

We present an R program and analyze it in some detail. We will be assuming

exponentially distributed interarrival times and exponentially distributed parking

times. Because the exponential distribution is memoryless, we do not have to store

excessive information. We need to know the con�guration of the parking garage.

Let N � number of �oors. Let K � number of parking positions on each �oor.
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We assume that K is the same for each �oor though we could allow the number

to depend on which �oor is considered.

Events consist of arrivals or departures. We need to keep track of the number of

cars on each �oor, the position (�oor) of the elevator at the beginning of an event,

the distance that the elevator needs to move to adjust to the event. An elevator

strategy is a rule by which we choose to move the elevator after the occurrence of

an event, in order to prepare for the next event.

Possible elevator strategies could include

(a) leave elevator at position resulting from an event.

(b) always move elevator to the ground level (�oor 1)

(c) Always move elevator to the median �oor position

Our R program works as follows. at each time point, we have

(a) a vector giving the number of vehicles on each �oor

(b) the current time

(c) the current elevator �oor

plus other information. From this, generate

(i) generate an interevent time (which depends on (a) since a larger total number

of vehicles suggests a shorter interevent time)

(ii) compute an updated time from (b) and (i)

(iii) generate type of event -arrival or departure (which depends on (a)

(iv) an updated elevator end position (depending on strategy)

(v) calculate distance moved by elevator to respond to call.

In our R program, we begin with the special case of K � 5 spots per �oor, and

N � 4 �oors. Of course, K � 5 is extremely small but we wish to examine output

to see what happens as �oors �ll up. We create a matrix which will store all

the information that we are interested in. Each row will need the count for each

15



�oor. The �rst entry in each row will be the event time (of either an arrival or a

departure). The �rst row of A sets the start time to 0. The next N entries in each

row will be the updated number of vehicles on each �oor.

Before we explain our R program, let us show some output.

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 0.0000000 0 0 0 0 1 0.8118205 1 0 1

[2,] 0.8118205 1 0 0 0 1 1.8259720 1 0 1

[3,] 2.6377925 2 0 0 0 1 1.3522721 1 0 1

We show 3 lines of output. The �rst entry of each row gives the current time. The

next 4 entries (columns 2,3,4,5) of each row indicate the number of cars parked

on each of the �oors. In our case, we have 4 �oors. At time 0. we have 0 parked

cars on each �oor. The next entry (column 6) in each row shows the event type

ET (=1 if arrival and =2 if departure). The 7th column for each row gives the

interevent time (time until the next event). The 8th column entry gives EL, the

event location (�oor). The 9th entry gives EM, the distance that the elevator must

move to handle the event. Finally, the tenth column gives EE, the elevator end

position, after the event.

The entry EM is the entry of major interest, which gives an indication of the

amount of time needed for the elevator to arrive to service the customer need.

In the program, we de�ne indicator variables B1 (=1 if system is empty; otherwise

0), B2 (=1 if system is full), B3 (=1 if system is neither empty nor full). The

program follows.
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#N=number of floors K=number of cars per floor

#M= number of rows of matrix output

N=4;K=5;M=50

# matrix A will store all information at each time step

A=matrix(1:(M*(6+N)) ,M,(N+6))

# We fill A with numbers to initialize but they will change over time

# T= time

# C[1] C[2]... C[N] = configuration (number of cars on each floor)

# ET= event type (1 means arrival, 2 means departure)

# IT=interevent time

# EL=event location

# EM = elevator move distance

# EE=elevator end position

#initial configuration

# Note that rexp(1,.5) generates 1 exponential random value with

# rate .5

T=0; C=0*(1:N); ET=1; IT=rexp(1,.5); EL=1; EM=0; EE=1

A[1,]=c(T,C, ET,IT, EL, EM,EE)

# updates

#time update

F1=function(T,IT){T+IT}

#F6 event type update

F6=function(C){S=sum(C);B1=(S==0); B2=(S==(N*K));

B3=1-B1-B2; R=runif(1);

ET=1*B1+2*B2+1*B3*(R<(1-S/(K*N*1.5)))+2*B3*(R>(1-S/(K*N*1.5)));

return(ET)}

#F8 event location

17



F8=function(C){ s=sum(C);D=(C<K); D=c(D,1);

mn=(s<(K*N))*min(which(D==1)); C=C+c(.00001,0*(2:N));

s1=sum(C);E=sample(1:N, 1,prob=C/s1);

EL=(ET==1)*mn+(ET==2)*E; return(EL)}

#F2 Configuration update (number of vehicles pere floor)

F2=function(C,ET,EL){C+1*((1:N)==EL)*(ET==1)-1*((1:N)==EL)*(ET==2) }

# F7 interevent time update

F7=function(C){sum=sum(C); B1=1*(sum==0);

B2=1*(sum==(N*K)); B3=1-B1-B2;

IT=B1*rexp(1,.5)+B2*rexp(1,(1/3))+B3*rexp(1,1/(2+3*sum/(N*K)));

return(IT)}

#F9 elevator move distance

F9=function(EE,EL){abs(EE-EL)}

#F10 Elevator end positions

F10=function(ET,EL){(ET==1)*1+(ET==2)*EL}

for (i in 2:M)

{T=F1(T,IT); ET=F6(C); EL=F8(C); C=F2(C,ET,EL) ;

IT=F7(C); EM=F9(EE,EL); EE=F10(ET,EL);

A[i,]=c(T,C, ET,IT,EL, EM,EE)}

A

We look at 50 lines of typical output.

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 0.000000 0 0 0 0 1 1.4728057 1 0 1

[2,] 1.472806 1 0 0 0 1 1.7692348 1 0 1

[3,] 3.242040 2 0 0 0 1 0.5145856 1 0 1

[4,] 3.756626 3 0 0 0 1 1.3588579 1 0 1

[5,] 5.115484 4 0 0 0 1 2.8878279 1 0 1
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[6,] 8.003312 5 0 0 0 1 3.5836669 1 0 1

[7,] 11.586979 5 1 0 0 1 4.1903493 2 1 1

[8,] 15.777328 5 2 0 0 1 1.6168756 2 1 1

[9,] 17.394204 5 3 0 0 1 5.1755735 2 1 1

[10,] 22.569777 5 2 0 0 2 6.9558115 2 1 2

[11,] 29.525589 5 3 0 0 1 6.2533741 2 0 1

[12,] 35.778963 5 4 0 0 1 0.2426509 2 1 1

[13,] 36.021614 5 5 0 0 1 1.8132013 2 1 1

[14,] 37.834815 5 5 1 0 1 4.4004731 3 2 1

[15,] 42.235288 4 5 1 0 2 2.1250158 1 0 1

[16,] 44.360304 5 5 1 0 1 3.8353506 1 0 1

[17,] 48.195655 5 4 1 0 2 1.9204525 2 1 2

[18,] 50.116107 5 3 1 0 2 0.4757502 2 0 2

[19,] 50.591857 5 4 1 0 1 1.6118420 2 0 1

[20,] 52.203699 5 5 1 0 1 8.4289138 2 1 1

[21,] 60.632613 5 5 2 0 1 2.4285073 3 2 1

[22,] 63.061120 5 5 3 0 1 5.8300665 3 2 1

[23,] 68.891187 5 5 2 0 2 8.6006187 3 2 3

[24,] 77.491805 5 5 3 0 1 11.2977932 3 0 1

[25,] 88.789599 5 5 4 0 1 1.7638560 3 2 1

[26,] 90.553455 5 5 5 0 1 2.8941195 3 2 1

[27,] 93.447574 5 5 5 1 1 12.4981289 4 3 1

[28,] 105.945703 5 4 5 1 2 1.1684248 2 1 2

[29,] 107.114128 5 5 5 1 1 19.5313561 2 0 1

[30,] 126.645484 5 5 5 0 2 2.8652371 4 3 4

[31,] 129.510721 4 5 5 0 2 0.4529262 1 3 1

[32,] 129.963647 4 5 4 0 2 0.3243088 3 2 3
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[33,] 130.287956 5 5 4 0 1 13.0648844 1 2 1

[34,] 143.352840 5 4 4 0 2 1.5182460 2 1 2

[35,] 144.871086 5 5 4 0 1 1.3547604 2 0 1

[36,] 146.225847 5 5 5 0 1 0.2293114 3 2 1

[37,] 146.455158 5 4 5 0 2 10.5926918 2 1 2

[38,] 157.047850 5 5 5 0 1 1.1498218 2 0 1

[39,] 158.197672 5 5 5 1 1 11.7491841 4 3 1

[40,] 169.946856 5 5 5 2 1 3.8285380 4 3 1

[41,] 173.775394 5 4 5 2 2 5.1141779 2 1 2

[42,] 178.889572 5 4 5 1 2 4.9293930 4 2 4

[43,] 183.818965 5 5 5 1 1 5.6661687 2 2 1

[44,] 189.485134 5 5 5 2 1 0.4470715 4 3 1

[45,] 189.932205 4 5 5 2 2 5.3980902 1 0 1

[46,] 195.330295 5 5 5 2 1 11.1463773 1 0 1

[47,] 206.476673 5 5 5 1 2 14.0239537 4 3 4

[48,] 220.500626 5 5 4 1 2 3.3946964 3 1 3

[49,] 223.895323 5 5 5 1 1 0.6588260 3 0 1

[50,] 224.554149 5 5 5 2 1 6.3572581 4 3 1

An examination of the output seems to indicate that the program is performing

as it should. At time 0, the number of customers on �oors (1,2,3,4) is (0,0,0,0).

The next event has to be an arrival and will take place 1.47 minutes later (col 7).

The elevator is left at �oor 1.

Row 2 (line 2) of the matrix shows the time of the �rst event (col 1). That event is

an arrival (col 6) on �oor 1 (col 8). Immediately after the event, the con�guration

is (1,0,0,0) for �oors 1,2,3,4 as indicated in columns 2,3,4,5. The elevator position

is �oor 1 (col 8) after the �rst event. The elevator movement to respond to the

20



�rst event is 0 (col 9). The elevator position after the �rst event is �oor 0 (col 10).

The time until the 2nd event is 1.769 minutes. (col 7).

Line 41 looks at the system 173.77 minutes after start time, when the 40th event

occurs. That event is a departure(col 6) from �oor 2 (col 8). Immediately after

the 40th event, there were (5,4,5,2) vehicles parked on �oors 1,2,3,4. It shows the

elevator position (�oor 2, col 8) after the 40th event. It indicates the elevator

movement distance (1 �oor, col 9) to respond to the 40th event. The 41st event

will take place 5.114 minutes (col 7) later.

A few additional comments about the program should be made. Consider the part

of the code

F6=function(C){S=sum(C);B1=(S==0); B2=(S==(N*K));

B3=1-B1-B2; R=runif(1);

ET=1*B1+2*B2+1*B3*(R<(1-S/(K*N*1.5)))+2*B3*(R>(1-S/(K*N*1.5)));

return(ET)}

If the system is full, then the next event must be a service completion (exiting

vehicle). If the system is empty then the next event must be an arrival to the

parking lot. If almost empty, the next event is an arrival with probability near

1. However, in other cases, if the system is almost full, then S is close to N �K

so S{pK � N � 1.5q is close to 2{3. So the probability of an arrival is close to 1{3

and the probability of a departure is close to 2/3. We have chosen these values

arbitrarily and we can adjust the system being modeled by choosing something

other than 1.5. Arrival and service rates can also be adjusted through changes to

the interevent time parameters.

We next loop the program 100 times, and get 100 mean values for column 9. These

values are placed in groups of 10 and averaged, giving 10 averages. The Central

Limit Theorem suggests that the 10 values (averages) should be approximately

normally distributed. The looping is done by placing the code
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s1=c(); for(i1=1:100){

at the beginning of the major program followed at the end by

s1=c(s1,mean(A[,9]))}

S1=matrix(s1,10,10); v1=apply(S1,1,mean)

v1
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CHAPTER 5

Comparing strategies

We assume that there are 4 �oors for parking cars. The �rst �oor is ground level.

Assume that if people park on �oor 2 or 3 or 4, they call for the elevator to take

them to ground level and they exit on foot. When they come to retrieve their car

parked on level 2 or 3 or 4, they arrive on ground level, call for the elevator, and

take it to appropriate level. We measure the distance for the elevator to move

from its current position to the �oor on which the elevator is called. The distance

travelled also indicates the time needed for the elevator to respond to the call.

We can look at a variety of strategies as to where to place the elevator immediately

(using 0 time) after its last use. We begin by considering 4 strategies.

Strategy 1: Elevator is moved to �oor 1 after use, to wait for next call.

Strategy 2: Elevator is moved to �oor 2 after use, to wait for next call.

Strategy 3: Elevator is moved to �oor 3 after use, to wait for next call.

Strategy 4: Elevator stays where it was left on its last use.

The necessary code follows

#F10 Elevator end positions

#Strategy 1 Elevator moves to floor 1 after use

# F10=function(ET,EL){1}

#Strategy 2 Elevator moves to floor 2 after use

# F10=function(ET,EL){2}

#Strategy 3 Elevator moves to floor 3 after use

# F10=function(ET,EL){3}
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# Strategy 4 Elevator stays in its last position after use

#F10=function(ET,EL){(ET==1)*1+(ET==2)*EL}

In order to compare our di�erent strategies, we assume a reasonable setting of

K � 25 cars per �oor. We also set M (the number of arrival/departure events

considered for the day) to 200 to re�ect the daily tra�c. After some point in the

day, arrivals will drop, and most events will be departures so the best elevator

position at that time would be on �oor 1.

Of course, we can set our parameters to any desired values and this cold have a

large e�ect on the �best� strategy.

For each strategy, we loop the program 100 times, and get 100 mean values for

column 9. These values are placed in groups of 10 and averaged, giving 10 averages.

The Central Limit Theorem suggests that the 10 averages should be approximately

normally distributed. The looping is done by placing the code

s1=c(); for(i1=1:100){

at the beginning of the major program followed at the end by

s1=c(s1,mean(A[,9]))}

S1=matrix(s1,10,10); v1=apply(S1,1,mean)

v1

Here are some values from the output of the R program in the previous chapter.

> x=c(x1,x2,x3,x4)

> y=c(rep(1,10),rep(2,10), rep(3,10), rep(4,10))

> boxplot(x~y)

> y=as.factor(y)

> df=data.frame(x,y)

> output=aov(x~y,df)

> summary(output)

Df Sum Sq Mean Sq F value Pr(>F)
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y 3 1.8057 0.6019 580.3 <2e-16 ***

Residuals 36 0.0373 0.0010

We note that the Analysis of Variance result shows high signi�cance (pvalue   

.01).

Recall that the assumptions for ANOVA are that

(a) each group has values which are normally distributed

(b) the variances of each group are equal

However the distance that the elevator travels for strategy 2 is either 0 or 1, while

the distance that the elevator travels for strategy 1 or strategy 3 is 0 or 1 or 2.

This suggests that the variances may not be equal.

We next look at the box plots to see the nature of the di�erences and to check the

variances.

1 2 3 4

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

strategy

x

Figure 5.1. #moves vs Strategy

25



We also applied Kruskal Wallis nonparametric test on the same simulated data,

with the same conclusion. The advantage of the Kruskal Wallis test is that we

do not need the normality assumption. However, we still need the equal variance

assumption.

Because the variances do not appear to be equal, we use Welch's one way ANOVA

instead.

Results (from R) are:

> oneway.test(x~y, data = df, var.equal = FALSE)

One-way analysis of means (not assuming equal variances)

data: x and y

F = 500.51, num df = 3.000, denom df =

19.027, p-value < 2.2e-16

Welch's test con�rms highly signi�cant di�erences among the 4 strategies. Re-

peated runs indicate that the best of the 4 strategies is strategy 2, which places

the elevator on �oor 2 after use.
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CHAPTER 6

Hybrid strategies

Results in the previous chapter indicate that the strategy which always moves

the elevator to �oor 2 after each use, gives the lowest average move required for

new uses. However, we should clearly be able to do better than that strategy, by

keeping the elevator on �oor 1 at the beginning stages, while the �rst �oor of the

parking garage is �lling up.

So we propose hybrid strategy, which put the elevator on �oor 1 for some initial

amount of time, and then switches to placing the elevator on �oor 2 after the initial

time, after each use.

This brings us to an optimization question as to how long to maintain the initial

�oor 1 portion of the strategy. We will use another simulation run in order to

compare the results, for our chosen parameters.

We propose 3 di�erent switching points of time and compare with the base case

of moving to �oor 2 strategy immediately.

Our 4 strategies switch from �oor 1 status to �oor 2 status at times 0, 30, 60, 90

time units.

#F10 Elevator end positions

F10A=function(ET,EL){2}

F10B=function(ET,EL){2*(T>30)+1*(T<30)}

F10C=function(ET,EL){2*(T>60)+1*(T<60)}

F10D=function(ET,EL){2*(T>90)+1*(T<90)}

This time we used the same generated data for each strategy. The boxplots appear

as follows.
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Figure 6.1. #moves vs Strategy

From this boxplot, we see that strategy 3 (switch after 60 time units) gives the

best (lowest) average number of steps. We repeated the same experiment 10 times

with newly generated data, and each time, strategy 3 was the best. We could get

more precise results by searching among switching times near 60 (for example 50,

55, 60, 65 70). However, we have indicated our method, which could be used for

a variety of parameters (number of �oors, number of cars per �oor, etc.).
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CHAPTER 7

Conclusion and Future Work

We have given a method that allows us to compare strategies for a vehicle parking

structure. Our focus was to minimize the time or distance that the elevator must

travel once a call is made for the elevator. We made assumptions about interarrival

times and about occupancy times, and assumed that an exponential distribution

was appropriate.

We could make our methodology more general by relaxing the exponential assump-

tions. But the cost would be great since we would have to keep track of the time

spent in each parking position at each time update.

A simpler modi�cation to our assumptions would be to keep the exponential as-

sumptions, but to allow the rates to change with time. For example, in the morning

the arrival rate could be large but might decline later in the day.
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