Improving the Approximation Ratio of the Maximum Agreement Forest (MAF) on k trees and Estimating the Approximation Ratio of the Acyclic-MAF on k trees

Puspal Bhabak
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation
Bhabak, Puspal, "Improving the Approximation Ratio of the Maximum Agreement Forest (MAF) on k trees and Estimating the Approximation Ratio of the Acyclic-MAF on k trees" (2011). Electronic Theses and Dissertations. 316.
https://scholar.uwindsor.ca/etd/316
IMPROVING THE APPROXIMATION RATIO OF THE MAXIMUM AGREEMENT FOREST (MAF) ON K TREES AND ESTIMATING THE APPROXIMATION RATIO OF THE ACYCLIC-MAF ON K TREES

by

Puspal Bhabak

A Thesis
Submitted to the Faculty of Graduate Studies through Computer Science in Partial Fulfillment of the Requirements for the Degree of Master of Science at the University of Windsor

Windsor, Ontario, Canada

2011

© 2011 Puspal Bhabak
Improving the Approximation Ratio of the Maximum Agreement Forest (MAF) on k trees and Estimating the Approximation Ratio of the Acyclic-MAF on k trees

by

Puspal Bhabak

APPROVED BY:

Dr. Xiaobu Yuan
School of Computer Science

Dr. Myron Hlynka
Department of Mathematics and Statistics

Dr. Asish Mukhopadhyay
Advisor
School of Computer Science

Dr. Dan Wu
Chair of Defence
School of Computer Science

20 May, 2011
Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis and that no part of this thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone’s copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or any other material from the work of other people included in my thesis, published or otherwise, are fully acknowledged in accordance with the standard referencing practices. Furthermore, to the extent that I have included copyrighted material that surpasses the bounds of fair dealing within the meaning of the Canada Copyright Act, I certify that I have obtained a written permission from the copyright owner(s) to include such material(s) in my thesis and have included copies of such copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved by my thesis committee and the Graduate Studies office, and that this thesis has not been submitted for a higher degree to any other University or Institution.
Abstract

Molecular phylogenetics has long been a well-established field of scientific research where the structure of the phylogenetic tree has been analysed to know about the evolutionary process of the organism. In biology, leaf-labelled trees are widely used to describe the evolutionary relationships. In this setting, the leaves of the tree correspond to extant species, and the internal vertices represent the ancestral species. However, for certain species, evolution is not completely tree-like. Reticulation events such as horizontal gene transfer (HGT), hybridization and recombination play a significant role in the evolution of the species. Suppose we have two phylogenetic trees each of which is for a gene of the same set of species. Due to reticulate evolution the two gene trees, though related, appear different. As a result, instead of the tree like structure, a phylogenetic network is widely viewed as a most suitable tool to represent reticulation. A phylogenetic network contains hybrid nodes for the species evolved from two parents. The distance between two phylogenetic trees can be computed with the help of a Maximum Agreement Forest (MAF) of those trees. The fewer components in MAF, the greater is the similarity between the two trees. This number of components in that agreement forest shows how many edges from each of the two trees need to be cut so that the resulting forest agree after all forced edge contractions. Recent research reveals that the MAF on k trees can be approximated within a ratio of 8. We have given a better approximation ratio for the MAF on k trees and also provide an approximation ratio for Maximum Acyclic Agreement Forest (MAAF) on k (≥ 2) trees.
Dedication

to my

mother and father

and my loving wife
Acknowledgements

I express my sincere gratitude to my advisor, Dr. Asish Mukhopadhyay for giving me the opportunity to work under his supervision as well as for his guidance and support in my research. I would like to thank Dr. Xiaobu Yuan for his valuable suggestions and comments. I would also like to convey my sincere thanks to Dr. Myron Hlynka for his advice and help.

I am thankful to my friends and colleagues in the University of Windsor for their help and frequent assistance throughout my work and stay. Last but not the least, I would like to thank my family for their love and confidence in my abilities that helped me to progress.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author’s Declaration of Originality</td>
<td>iii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iv</td>
</tr>
<tr>
<td>Dedication</td>
<td>v</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>vi</td>
</tr>
<tr>
<td>List of Figures</td>
<td>ix</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2 Basic Concepts</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Graph</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Binary Tree</td>
<td>7</td>
</tr>
<tr>
<td>2.3 Phylogenetic network</td>
<td>7</td>
</tr>
<tr>
<td>2.3.1 Properties of a hybrid network</td>
<td>8</td>
</tr>
<tr>
<td>2.4 Agreement Forest</td>
<td>9</td>
</tr>
<tr>
<td>2.5 Subtree Prune and Regraft(SPR)</td>
<td>13</td>
</tr>
<tr>
<td>2.6 Tree Bisection and Reconnection(TBR)</td>
<td>14</td>
</tr>
<tr>
<td>2.7 Nearest Neighbor Interchange(NNI)</td>
<td>15</td>
</tr>
<tr>
<td>3 Literature review</td>
<td>16</td>
</tr>
<tr>
<td>3.1 Hein et al.</td>
<td>16</td>
</tr>
<tr>
<td>3.2 Allen and Steel</td>
<td>18</td>
</tr>
<tr>
<td>3.3 Baroni et al.</td>
<td>21</td>
</tr>
<tr>
<td>3.4 Bordewich et al.</td>
<td>22</td>
</tr>
</tbody>
</table>
3.4.1 Fixed-Parameter Tractable .. 23
3.5 Rodrigues et al. ... 23
3.6 Other work in this area ... 24
3.7 Literature review with $k(\geq 2)$ phylogeny trees 25

4 Our Contribution ... 32
 4.1 Approximation Algorithms .. 32
 4.1.1 Terms and Definitions ... 32
 4.1.2 3-Approximation for MAF on k binary trees (rooted) 35
 4.1.3 2-approximation for MAAF on k rooted binary trees 41
 4.1.4 Heuristic ... 45
 4.2 Implementation .. 46

5 Conclusion ... 50

References ... 52

Vita Auctoris ... 60
List of Figures

1.1 Evolutionary Tree .. 2

2.1 (a) Directed Graph (b) Undirected Graph 6

2.2 Hybrid Network .. 8

2.3 Three rooted phylogeny trees ... 10

2.4 Agreement Forest of trees in Fig 2.3 11

2.5 A rooted tree T with leaf-set $\{a,b,c,d,e\}$, subtree $T(L)$ and restriction subtree $T|L$ where $L=\{a,c,e\}$... 12

2.6 rSPR Operation ... 13

2.7 TBR Operation .. 14

2.8 This operation exchanges between B and C. Another NNI operation is possible between B and D ... 15

3.1 Effect of a recombination. The genetic material (thick lines) that is now on one sequence was, just before the recombination, on two sequences, and the rest (thin lines) of the genetic material most likely does not have any descendent in the present sample. Recombination occurs at rp. [31] ... 17

3.2 Two rooted binary phylogenetic trees reduced under Rule 1 19

3.3 Two rooted binary phylogenetic trees reduced under Rule 2 20

3.4 T_1, T_2 are two phylogenetic trees and H is the hybrid network of T_1 and T_2 ... 20
3.5 Topology of a tree with 3 leaves ... 25
3.6 Conflicted Set of Triples. Any one leaf can be deleted from each tree
to remove the conflict ... 26
3.7 (i) A phylogeny tree T. The thick lines (r_U) show the edges being cut
to get the maximal size edge-disjoint set of triples and is stored in M1.
(ii) A set of maximal size edge-disjoint set of triples have been cut from
T according to Lemma 3.12 [18] ... 29
3.8 If the maximal size edge-disjoint triple $((i,j),m)$ obtained from Fig 3.7
is a conflicted triple, s_U is cut to remove the conflict and is added to
M1. The leaf-set (g,h,k,l) will form the combination of triples in M2 . 29
3.9 (i) $U_1 = ((g,h),k)$ and $U_2 = (h,(k,l))$ and w in this case is an edge.
(ii) $U_1 = ((g,h),x)$ and $U_2 = (x,(k,l))$ and w is a vertex. In either case
remove the thick edges in case of incompatible triples in U1 and U2 . 30
3.10 i) 2 phylogeny trees T_1 and T_2. ii) Components in a forest which are
topologically compatible in both T_1 and T_2. iii) For Separability check
the components are in conflict with T_1. So the graph has been formed
with conflicted edges. The vertex cover of this graph will give d. So
remove d from ii to get MAF. ... 31
4.1 Minimum incompatible triple is $ab|c$ as $ab|c < xy|c$ 33
4.2 Overlap Components [[15], p:6] ... 34
4.3 Central Lemma ... 34
4.4 Layout of a minimal incompatible triple[[15],p:5] 36
4.5 MAF of T_1 and T_2 ... 38
4.6 Directed Graph obtained from the MAF components in Figure 4.5.
There is a cycle between t_1 and t_2. ... 40
4.7 MAAF obtained from the Directed Graph in Figure 5.6 41
4.8 An incompatible triple $ab|c$... 45
Chapter 1

Introduction

Phylogenetic trees, or evolutionary trees are used in evolutionary biology to represent the evolutionary history of biological entities such as present-day species or genes. In a rooted phylogenetic tree, the leaves are uniquely labelled by the extant species, while the internal nodes represent the ancestors. These are generally not labelled. The universal common ancestor of all the species is represented as the root of the tree. The out-degree of an internal node is the number of its children. The distance between two nodes in an evolutionary tree represents evolutionary distance such as time or number of mutations. In figure 1.1 the evolutionary history of the Protozoan Ancestors have been shown with the present-day species as the leaves of the tree.

This kind of representation is appropriate for many groups of species which include the mammals. But it has been observed that not all groups follow the same distribution of evolutionary patterns. Sometimes reticulation events come into play. This type of evolution does not follow the tree like evolutionary process, rather the species under reticulation events form a composite of genes derived from different ancestors. The processes include hybridization, horizontal gene transfer and recombination.

This thesis concentrates primarily on hybridization. It has been found through re-
search over the years that the evolutionary history of Eukaryotes contains hybridization events that include certain groups of plants, birds and fish. Spontaneous hybridization events have also been reported in the evolutionary history of some mammals and even primates. Study on hybridization shows that at least 25% of plant species and 10% of animal species, mostly the youngest species are involved in hybridization events [43].

Several techniques have been devised to reconstruct phylogenetic trees from a given set of species. Biologists are interested in determining the ‘distance’ between two such trees. Distance metrics such as NNI (Nearest Neighbor Interchange), SPR (Subtree Prune and Regraft) and TBR (tree bisection and reconnection) have been proposed in [53] for measuring the distance between the two phylogenetic trees. In an pioneering paper Allen and Steel [2] proposed algorithms for estimating these distances. The hybridization number and the rooted SPR (rSPR) distance have proven to be a very useful tool in estimating the reticulation events that have occurred. Baroni et al. [5] showed that rSPR distance provides a lower bound on the number of reticulation events.
Computing hybridisation number, rSPR and TBR distances have been shown to be NP-hard problems \[58\]. Hence the interest in approximation algorithm and fixed parameter tractable algorithm. Hein et al. \[32\] came up with the idea of Maximum Agreement Forest(MAF) as a new tool to determine the distance between two phylogenies. They showed that a 3-approximation ratio algorithm exists for computing the MAF for 2 trees is 3. They proposed a NP-hardness proof for computing SPR distances. Allen and Steel \[2\] extended the NP-hardness idea of Hein et al. \[32\] to prove that maximum agreement forest problem is NP-hard. In fact they rectified certain errors in the paper by Hein et al. \[32\] in their paper and showed that the TBR distance between two trees is equal to the number of components in MAF. Rodrigues et al. \[53\] with the help of certain instances showed that approximation ratio for the size of MAF cannot be less than 4 which disproves the 3-approximation claim of Hein. The approximation ratio later has been improved to 3 by Bordewich et al. \[15\] for the rSPR distance between two trees. Bordewich and Semple \[16\] showed that the SPR distance between two rooted trees is also equal to the number of components in MAF. Baroni et al. \[5\] introduced the concept of Maximum Acyclic Agreement Forest(MAAF) and showed that the hybridisation number of two trees is one less than the number of components in a MAAF. Chataigner \[18\] obtained an 8-approximation ratio for the maximum agreement forest on \(k(\geq 2)\) trees.

In another approach to these problems, attempts have been made to find the Fixed Parameter Tractable (FPT) algorithm when the distance between the two trees is small. Allen and Steel \[2\] introduced certain tree reduction rules to obtain an FPT algorithm for the TBR distance and the running time is \(O(k^{3k} + p(n))\) where \(k\) is the distance between two trees and \(p(n)\) is a polynomial function of input size \(n\). Bordewich et al. \[15\] proposed an FPT algorithm for computing the rSPR distance of the two trees whose complexity is in the order of \(O(4^k k^4 + n^3)\) when \(k\) is small.
Our contributions in this thesis are the following:

A) A better approximation ratio in deriving the Maximum Agreement Forest on \(k \) rooted phylogenetic trees

B) Estimate the approximation ratio of Maximum Acyclic Agreement Forest on \(k \) trees.

C) An approximation algorithm for finding the rSPR distance between 2 trees, whose approximation ratio we conjecture to be 2.

D) We have implemented the algorithm given in [15] on the 3-approximation ratio for the SPR distance on two rooted binary phylogenetic trees in Java.
Chapter 2

Basic Concepts

This chapter introduces the basic concepts which have been used in this thesis.

2.1 Graph

This section deals with the preliminaries of graph theory. There are two kinds of graph: directed and undirected.

A directed graph (or digraph) $G=(V,E)$ consists of a set of vertices V and a set of directed edges E such that for each edge $e \in E$ there is a pair of vertices $u,v \in V$ connected at the two end-points of e. Each e is an ordered pair (u,v) so that the roles of u and v are not interchangeable and we call u the tail of the edge and v the head.

In an undirected graph $G=(V,E)$, the set of edges E consists of unordered pair of vertices instead of having the ordered pairs. If an edge $e \in E$ can be represented by the pair of vertices (u,v) where $u,v \in V$, then (v,u) also represents the same edge e.

Many definitions for the directed and the undirected graphs are the same though there are certain terms which have different meanings in these two contexts. If (u,v) is an
edge in a graph \(G = (V,E) \) we say that vertex \(v \) is \textbf{adjacent} to vertex \(u \). When the graph is undirected, the adjacency relation is symmetric. When the graph is directed this symmetry is not always true. In figure 2.1(a) and (b) vertex 1 is adjacent to vertex 2 since edge \((2,1)\) belongs to both graphs. Vertex 2 is not adjacent to vertex 1 in figure 2.1(a) as the edge \((1,2)\) does not belong to the graph.

The \textbf{degree} of a vertex in an undirected graph is determined by the number of edges incident to it. In figure 2.1(b) the degree of the vertex 5 is 4. In a directed graph, the \textbf{out-degree} of a vertex is the number of edges leaving the node and the \textbf{in-degree} of the vertex is the number of edges entering it. So, in figure 2.1(a) the out-degree of vertex 5 is 3 and the in-degree is 1.

A sequence of vertices \(<v_0,v_1,v_2,\ldots,v_k>\) such that \(u=v_0 \) and \(v=v_k \) and \((v_{i-1},v_i) \in E\), for \(i = 1, 2, \ldots, k \) forms the \textbf{path} of length \(k \) from a vertex \(u \) to a vertex \(v \) in a graph \(G= (V,E) \). The length of the path determines the number of edges in the path. If \(v \) is reachable from \(u \) by a path \(p \) we write \(u \sim v \). In a directed graph a path \(<v_0,v_1,v_2,\ldots,v_k>\) forms a \textbf{cycle} if \(v_0 = v_k \) and there is at least one edge in the
path. In an undirected graph a path \(<v_0,v_1,v_2,...,v_k>\) forms a cycle if \(v_0 = v_k\) and \(v_0,v_1,v_2,...,v_k\) are distinct. A graph with no cycle is called an \textit{acyclic graph}. We say an undirected graph is \textit{connected} if every pair of vertices is connected by a path.

2.2 Binary Tree

A binary tree \(T\) is a data structure in which there are 3 disjoint set of nodes: a root node, the subtree immediately to the left of root called \textit{left subtree} and the subtree immediately to the right of the root known as the \textit{right subtree}. Every internal node in a binary tree other than the root is of degree 3. The nodes having degree 1 are called the leaves. The binary tree that contains no nodes is called a null tree. In a binary tree the edges are directed away from the root. This gives an idea about the parent-child relationship in a rooted binary tree [16]. Consider a node \(u\) in a rooted tree \(T\) with root \(X\). Suppose \(v\) be any node on the unique path from \(X\) to \(u\) in \(T\). Then \(v\) is known as the \textit{ancestor} of \(u\) and \(u\) is the \textit{descendant} of \(v\). The length of the path from the root \(X\) to a node \(u\) is the \textit{depth} of \(u\) in \(T\). The largest depth of any node in \(T\) is the \textit{height} of \(T\).

2.3 Phylogenetic network

In a phylogenetic tree The ancient ancestor is at the root of the tree. The leaf set constitutes the recent species and the internal nodes represent their ancestors. Due to reticulation events, instead of the tree like structure, phylogenetic network is mostly viewed as a tool to represent the reticulation which contains the hybrid nodes for the species evolved from two parents [5]. Figure 2.2 shows the hybrid nodes \(c\) and \(f\) (highlighted) originating from two different ancestors.
2.3.1 Properties of a hybrid network

For a digraph D and a vertex v of D, we denote the in-degree and out-degree of v by $d^-(v)$ and $d^+(v)$, respectively. A hybrid phylogeny on the set of present-day species X represented by the network H consisting of:

- a rooted acyclic digraph D in which the root has out-degree at least two and, for all vertices v with $d^+(v) = 1$, we have $d^-(v) \geq 2$

- the set of vertices of D with out-degree zero forms X.

It can be understood that, if $|X| = 1$, then the digraph consists of an isolated vertex X. The set X corresponding to the set of present-day species is called the label set of H and is denoted by $L(H)$. Vertices of in-degree at least two are called hybridization vertices. These vertices represent an exchange of genetic information between hypothetical ancestors. For a hybrid H on X with root ρ the hybridization number of H, denoted by $h(H)$ is:

$$h(H) = \sum_{v \neq \rho} (d^-(v) - 1)$$
A rooted binary phylogenetic tree is a special type of hybrid phylogeny in which the root has degree two and all other interior vertices have at least degree three. For two rooted binary phylogenetic X-trees T and T' [5], we get

$$h(T,T') = \min [h(H) : H \text{ is a hybrid on } X \text{ that displays } T \text{ and } T']$$

2.4 Agreement Forest

Let T and T' be two rooted binary phylogenetic trees. We denote the set of leaf labels of T as $L(T)$, the set of branches as $E(T)$. An agreement forest F for T and T' is a collection of rooted binary phylogenetic trees t_1, t_2, \ldots, t_n such that:

- for any tree t_i, $L(t_i) \subseteq L(T)$ and the union of $L(t_i)$ is equal to $L(T)$
- for each t_i, the minimal subtree connecting the nodes in $L(t_i)$, denoted as $S(t_i)$, is identical to t_i when nodes with degree two of $S(t_i)$ are contracted
- for any two trees t_i and t_j, $S(t_i)$ and $S(t_j)$ are node disjoint

The size of a forest is the number of trees in the forest. An agreement forest is obtained by cutting the same number of branches from both T and T' and after cleanup gives rise to the same set of trees [60]. Agreement forests are an invaluable tool for analyzing and understanding tree rearrangement operation. It can be observed that the deleted edges are those which do not agree in T and T' which suggest that they represent the different paths of genetic inheritance i.e. hybridization events. An agreement forest for T and T' is a Maximum Agreement Forest (MAF) if, amongst all agreement forests for T and T', it has the smallest number of components.

The paper in [5] made an observation on the hybridization number problem which they termed as Maximum Acyclic Agreement Forest (MAAF). This observation excludes agreement forests in which any vertex in the associated hybrid phylogeny inherits
Figure 2.3: Three rooted phylogeny trees
genetic information from its own descendants.

Let \(F_A = [T_1, T_2, \ldots, T_k] \) be an agreement forest for \(T \) and \(T' \). Let \(G_F \) be the directed graph whose vertex set is \(F_A \) and there is an edge from \(T_i \) to \(T_j \) if \(i \neq j \) and either

- the root of \(T(L(T_i)) \) is an ancestor of the root of \(T(L(T_j)) \), or
- the root of \(T'(L(T_i)) \) is an ancestor of the root of \(T'(L(T_j)) \).

Since \(F_A \) is an agreement forest, the roots of \(T(L(T_i)) \) and \(T(L(T_j)) \), and the roots of \(T'(L(T_i)) \) and \(T'(L(T_j)) \) are not the same. We say that \(F_A \) is an acyclic-agreement forest if \(G_F \) is acyclic. If \(F_A \) contains the smallest number of components over all acyclic-agreement forests for \(T \) and \(T' \), we say that \(F_A \) is a Maximum Acyclic Agreement Forest (MAAF) for \(T \) and \(T' \). So, intuitively we can say a forest is a MAAF if the forest is a MAF and acyclic.
In [5], Baroni et al. established and proved a fundamental relation between hybridization number and MAAF by the following theorem.

The hybridization number of T and T' is equal to the size of the MAAF for T and T' minus one.

Hence, it is essential to estimate the MAAF of two phylogenetic trees in order to know their hybridization number.

Definition 1. For a tree T and a subset L of the leaf-set of T, the *subtree* induced by L, noted as $T(L)$ is the tree defined as the smallest connected subgraph of T containing L. The *restriction* of T to L denoted as $T|_L$ is obtained from $T(L)$ by suppressing any degree-two vertices other than the root. (See Figure 2.5)
2.5 Subtree Prune and Regraft (SPR)

Another very important tool used to understand reticulate evolution is the subtree prune and regraft (SPR) [15] approach which measures the distance between phylogenies. If there are two phylogenies having the similar set of species but reticulation has occurred, then this inconsistency in the parent-child relationship between the two trees can be explained by the subtree prune and regraft operation. Given a subtree T, an SPR operation on a particular edge $e = [u,v]$ in T divides the tree into two subtrees T_u and T_v having the vertices u and v respectively. In order to reattach one subtree say T_u to a different edge in T_v it bisects another edge $f = [u',v']$ of T_v at x and adds an edge between u and x. Finally the degree-two vertex v is contracted. This kind of operation can take place in both rooted and unrooted trees. $\text{SPR}(T,T')$ measures the minimum SPR operations required to transform T to T'. Figure 2.6 illustrates the SPR operation in a rooted tree.
2.6 Tree Bisection and Reconnection (TBR)

This method used to measure the distance between phylogenies works similar to SPR with a slight modification. Given a subtree T, a TBR operation on a particular edge $e = [u, v]$ in T divides the tree into two subtrees T_u and T_v having the vertices u and v respectively. In order to reattach one subtree say T_u to a different edge in T_v it bisects an edge in each of T_u and T_v at x and y respectively and adds an edge between x and y. Finally the degree-two vertices u and v are contracted [2]. This kind of operation can take place in both rooted and unrooted trees. TBR(T, T') measures the minimum TBR operations required to transform T to T'. Figure 2.7 illustrates the TBR operation in a rooted tree.

Figure 2.7: TBR Operation
2.7 Nearest Neighbor Interchange (NNI)

This metric for measuring the distance between phylogenies has been introduced in [44] and [52]. In a NNI operation two subtrees which are separated by an internal edge can be swapped. By an internal edge \((u,v)\) in a tree we mean neither \(u\) nor \(v\) is a leaf of the tree. The operation only operates on the internal edge. \(\text{NNI}(T,T')\) measures the minimum NNI operations required to transform \(T\) to \(T'\) [20]. Figure 2.8 explains an NNI operation.

Each of the metrics, TBR distance, rSPR distance and hybridization number, have been proved to be one less than the number of components in a Maximum Agreement Forest (MAF) [58].
Chapter 3

Literature review

In this chapter we deal with the work done about the computational aspect on phylogeny trees. To the best knowledge of our survey in this area, Hein (1993) [31] started this area with his heuristic method to reconstruct the history of sequences subject to recombination. Sections 3.1 to 3.6 contain the survey of the work done with 2 phylogeny trees. In Section 3.7 we have discussed about the work done on k trees.

3.1 Hein et al.

Hein (1993) [31] in his paper presented a heuristic method to reconstruct the history of sequences due to recombination. In his paper he has shown the pictorial representation of the recombination. It has been proposed in his paper that the evolution of a sequence with k recombinations could be described by k recombination points and $k + 1$ trees describing the evolution of the $k + 1$ intervals, where two neighboring trees were either identical or differed by the transfer of one subtree within the whole tree.

The heuristic algorithm in [31] generates trees that are one recombination away from a given tree. The algorithm recursively visits all possible subtrees by visiting all internal edges. For every edge visited there will be a left and a right subtree. The left subtree can be moved to all possible edges in the right subtree producing all trees
Figure 3.1: Effect of a recombination. The genetic material (thick lines) that is now on one sequence was, just before the recombination, on two sequences, and the rest (thin lines) of the genetic material most likely does not have any descendant in the present sample. Recombination occurs at rp. [31]

Hein et al. (1996) extended their work [32] to show that computing the subtree-transfer distance between two evolutionary trees is NP-hard and gave an approximation algorithm with performance ratio 3. The idea of Maximum Agreement Forest came from their work but it was not clearly defined. The basic idea behind this algorithm is to select a pair of sibling leaves \((a, b)\) in the first tree \(T_1\) at a time. If the pair \(a\) and \(b\) are siblings in the second tree \(T_2\), this pair is replaced with a new leaf labeled \((a, b)\) in both the trees. Otherwise, \(T_2\) is being cut until \(a\) and \(b\) become siblings or separated. This has been handled by considering 5 different cases. They have proved a very useful relation which is stated below:

Lemma 3.1 [32]: The size of a MAF of \(T_1\) and \(T_2\) is one more than their subtree-transfer distance
3.2 Allen and Steel

Allen and Steel (2000) in their paper discusses the problem of determining how far apart two reconstructed trees are from each other or from the true historical tree. The metrics they investigated are Nearest Neighbour Interchange (NNI), Subtree Prune and Regraft (SPR), and Tree Bisection and Reconnection (TBR).

The main contributions in their paper are:

Lemma 3.2 [2]:
1. \(\text{NNI} \subseteq \text{SPR} \subseteq \text{TBR} \)
2. If \(d_\theta(T_1, T_2) \) denotes the minimum number of \(\theta \) operations required to transform the unrooted binary trees \(T_1 \) to \(T_2 \) where \(\theta \in \{\text{NNI, SPR, TBR}\} \) then
 a. \(d_{\text{TBR}}(T_1, T_2) \leq d_{\text{SPR}}(T_1, T_2) \leq d_{\text{NNI}}(T_1, T_2) \)
 b. \(d_{\text{SPR}}(T_1, T_2) \leq 2 * d_{\text{TBR}}(T_1, T_2) \)

Allen and Steel [2] rectified certain errors in Lemma 3.1 [32] and showed that this Lemma does not hold true for unrooted trees and also for SPR transformations. But it is true if TBR operations are taken into consideration. This fact is established in the following lemma:

Lemma 3.3 [2]: Suppose we have two unrooted binary trees \(T, T' \) with \(L(T) = L(T') \). Then,
1. \(d_{\text{TBR}}(T, T') = m(T, T') \)
2. \(d_{\text{SPR}}(T, T') \geq m(T, T') \) where \(m(T, T') \) is the size of \(\text{MAF}(T, T') - 1 \).

They introduced the concept of Fixed Parameter Tractable (FPT) in measuring the distance between two trees and showed the running time for the TBR distance is \(O(k^{3k} + p(n)) \) where \(k \) is the distance between two trees and \(p(n) \) is a polynomial.
function of input size n. In order to establish the FPT, they have kernalised the problem, that is the size of the problem has been reduced in such a way so that the answer to the reduced problem is same as that of the original problem. In order to kernalize the size of the problem in measuring the SPR or TBR distance they proposed to apply the following 2 rules repeatedly:

Rule 1: Replace any pendant subtree that occurs identically in both trees by a single leaf with a new label.

Rule 2: Replace any chain of pendant subtrees that occurs identically in both trees by three new leaves with new labels correctly orientated to preserve the direction of the chain.
Figure 3.3: Two rooted binary phylogenetic trees reduced under Rule 2

Figure 3.4: T_1, T_2 are two phylogenetic trees and H is the hybrid network of T_1 and T_2
3.3 Baroni et al.

Baroni et al. (2004) in their paper [6] analyzed Acyclic directed graphs (ADGs) which have been viewed as more appropriate for representing certain evolutionary relationships, and have developed a framework for the analysis of these graphs which are termed as hybrid phylogenies. Their work determines a hybrid phylogeny from a given set of phylogenetic trees which shows the smallest number of hybridisation events. They derived a very important equation:

\[h(H) \geq |V| - 2|\chi| + 1 \]

where \(h(H) \) is the hybridisation number, \(V \) is the vertex set and \(\chi \) is the leaf-set.

Baroni et al. (2005) in their paper [5] gave a very clear definition about the concept of Maximum Agreement Forest and the conditions which need to be satisfied in order to get a MAF between two rooted binary phylogenetic trees. The paper also introduced for the first time the idea of Maximum Acyclic Agreement Forest (MAAF) and the way to determine the MAAF from MAF by removing the cycles. The most significant contribution of this paper has been the mathematical derivation of the following Theorem:

Theorem 3.4 [5]: Let \(T \) and \(T' \) be two rooted binary phylogenetic trees. Then

\[h(T, T') = m_g(T, T'), \]

where \(h(T, T') \) is the hybridisation number and \(m_g(T, T') \) is the number of components in \(MAAF(T, T') \) minus one.

The paper also established the upper and lower bounds for \(h(T, T') \).

Theorem 3.5 [5]: Let \(|\chi| = n \) and let \(T \) and \(T' \) be two rooted binary phylogenetic
χ-trees. Then for all \(n \geq 2 \),
\[
d_{\text{SPR}}(T, T') \leq h(T, T') \leq n - 2
\]

3.4 Bordewich et al.

Bordewich et al. (2004) [16] has showed that computing the rooted subtree prune and regraft distance between two rooted binary phylogenetic trees on the same label set is NP-hard. In this paper they have established the relation between rSPR distance and the MAF of two rooted binary phylogenetic trees.

Theorem 3.6 [16]: Let \(T \) and \(T' \) be two rooted binary phylogenetic trees. Then \(d_{\text{rSPR}}(T, T') = m(T, T') \), where \(m(T, T') \) is the size of \(\text{MAF}(T, T') \) - 1

Using the two reduction rules as mentioned in [2] they have shown that computing the rSPR distance between two rooted binary phylogenetic trees is fixed parameter tractable considering the rSPR distance itself to be the parameter.

Proposition 3.7 [16]: Let \(T_1 \) and \(T_2 \) be two rooted binary phylogenetic trees. Let \(T'_1 \) and \(T'_2 \) be two rooted binary phylogenetic trees obtained from \(T_1 \) and \(T_2 \) respectively by applying either Rule 1 or Rule 2. Then \(d_{\text{SPR}}(T_1, T_2) = d_{\text{SPR}}(T'_1, T'_2) \)

Lemma 3.8 [16]: Let \(T_1 \) and \(T_2 \) be two rooted binary phylogenetic \(\chi \)-trees. Let \(T'_1 \) and \(T'_2 \) be two rooted binary phylogenetic \(\chi' \)-trees obtained from \(T_1 \) and \(T_2 \) respectively by applying either Rule 1 or Rule 2 repeatedly until no further reduction is possible. Then \(|\chi'| \leq 28d_{\text{SPR}}(T_1, T_2) \)

Bordewich and Semple (2007) in their work [17] has shown that computing the hybridization number of two phylogenetic trees is Fixed-Parameter Tractable using the
two reduction rules.

Lemma 3.9 [17]: Let T and T' be two rooted binary phylogenetic χ-trees and let P be an empty collection of 2-element subsets of χ. Let S and S' be two weighted phylogenetic χ'-trees obtained from T and T', respectively, by repeatedly applying Rules 1 and 2 until no further reduction is possible. Then $|\chi'| < 14 h(T, T')$

Bordewich et al. (2007) derived a 3-approximation algorithm SPR-APPROX(T, T') for the subtree distance between phylogenies [15]

Theorem 3.10 [15]: Let T and T' be two rooted binary phylogenetic X-trees and let $|X| = n$. Let (F,k) be the output of SPR-APPROX(T, T'). Then F is an agreement forest for T and T' and k is a 3-approximation for $d_{rSPR}(T, T')$.

Theorem 3.10 is the main contribution of this paper.

3.4.1 Fixed-Parameter Tractable

The running time of the SPR-EXACT algorithm [15] to compute the fixed-parameter on the rSPR distance has been improved to $O(4^k k^4 + n^3)$ by using the kernelisation of Bordewich and Semple [17]. As a result upon the completion of the kernelisation the resulting two rooted binary phylogenetic trees T and T' have leaf sets of size at most $28d_{rSPR}(T, T')$.

3.5 Rodrigues et al.

Rodrigues et al. [53] with the help of certain instances showed that approximation ratio for the size of MAF cannot be less than 4 which disapproves the 3-approximation claim of Hein et al. [32]. They have claimed to present two new 3-approximation
algorithms for this problem.

3.6 Other work in this area

Hallett and McCartin(2006) in their paper [29] have given an efficient fixed-parameter tractable (FPT) algorithm for the MAF problem for 2 unrooted trees, and have claimed to make a significant improve on an FPT algorithm given in [2]. The running time has been improved from $O(k^3 + p(|L|))$ in [2] to $O(4^k.k^5 + p(|L|))$ where k bounds the size of the agreement forest and L is the leaf label set.

Hickey et al.(2008) in their paper [34] have shown that the unrooted SPR distance computation is NP-Hard and has verified which techniques from related work can and cannot be applied. They have also presented an efficient heuristic algorithm for this problem and experimented with it on a variety of synthetic datasets. They have claimed to provide an algorithm that computes the exact SPR distance between unrooted tree. With the help of the reduction rules to give a FPT approach to this problem the running time of their algorithm is $O(n^{k+2})$.

Bonet and St.John (2010) in [13] have shown that subtree prune and regraft (uSPR) distance on unrooted trees is fixed parameter tractable with respect to the distance. They have claimed to make progress on a conjecture of Steel [2] on the preservation of uSPR distance under chain reduction and have improved on lower bounds of Hickey et al. [34].

Wu and Wang (2010) in [60] have presented a new practical method to compute the exact hybridization number. Their approach is based on an integer linear programming formulation.
3.7 Literature review with $k(\geq 2)$ phylogeny trees

In this chapter we describe Chataigner’s approximation ratio for finding the MAF on k rooted binary trees. As per our knowledge this is the only work done in the field regarding the computational aspect on k trees [18].

Definition 1. Given 3 leaves a,b,c of the tree T, we call the subtree connecting the three leaves in T the triple in T. The topology of a tree T is the unique binary tree of which T is a subdivision. For example, if T is a tree with three leaves $[a, b, c]$, there are 3 possible topologies for T, which can be represented as $((a, b), c)$, $((b, c), a)$ and $((a, c), b)$ respectively. See figure 3.5.

Definition 2. For a tree T and a subset L of $L(T)$, the subtree induced by L, noted $T|_L$ is the tree defined as the smallest connected subgraph of T containing L. Given two trees A and B, a triple of leaves $U = [a, b, c]$ is a conflict if the induced subtrees $A|_U$ and $B|_U$ have different topologies. See Figure 3.6.

Lemma 3.11 [18] Two trees with the same set of leaves have the same topology
Figure 3.6: Conflicted Set of Triples. Any one leaf can be deleted from each tree to remove the conflict

iff they do not have any conflict.

A forest F can be obtained from a given set of trees T_i having similar species by the partition of the leaves (species being represented by leaves) L such that:

P_{topo}: for each $j \in \{1..m\}$, the subtrees $T_i|_{L_j}$ induced by L_j have the same topology, and the partition induces a subforest on T_1

P_{sep}: for each $i \in \{1..k\}$, the subtrees $T_i|_{L_j}$ are vertex-disjoint.

P_{topo} takes care of the first 2 rules for the formation of agreement forest described in section 2.4 and P_{sep} suffices the 3rd rule in the agreement forest formation.

P_{topo} Check

Lemma 3.12 [18] Let T be a rooted binary tree, and let \mathcal{R} be a set of triples in $L(T)$. A collection with maximal size of edge-disjoint subtrees $T|_U$, where $U \subseteq \mathcal{R}$, can
be found in polynomial time.

This collection of the maximal size of edge-disjoint subtrees can also be found through Integer Linear Programming (ILP) and this gives the lower bound in determining the approximation ratio of MAF on k trees in their paper.

We start with a set of triples \mathcal{R} in $L(T)$ and another set M which contains the minimal set of conflict edges. A decision variable d_e has been defined to take the value based on the edges present in M. The main object is to have minimum number of edges in M so as to maximise the agreement forest.

\[
\min \sum_{e \in E(T)} d_e, \ E(T) \text{ is the edge-set of } T
\]

\[
a \in U, \sum_{e : e \in T|a} d_e \geq 1, \ U \in \mathcal{R}
\]

\[
d_e \in \{0; 1\}, \ d_e = 1 \text{ if } e \in M
\]

Relaxing this ILP to a linear program and taking the dual the maximal flow in the tree has been determined.

\[
\max \sum_{a \in U} f_a
\]

\[
e \in E(T), \sum_{a : e \in T|a} f_a \leq 1
\]

\[
f_i \geq 0, \ f_i \text{ is the flow}
\]

This linear program can be strengthened to an integer program where $f_i \in [0; 1]$. So it can be written as:
\[\text{Max integral flow} \leq \text{max fractional flow} = \text{min fractional multi-cut} \leq \text{min multi-cut} \]

Max integral flow \(\mathcal{Y} \) becomes the lower bound of the solution where \(\mathcal{Y} \subset \mathbb{R} \)

Lemma 3.12 suggests it is possible to cut a collection of maximal size of edge-disjoint set of triples \(\mathcal{Y} \). For each triple \(U = [a, b, c] \), with topology \(((a, b), c)\) for \(T\mid_U \), let \(r_U \) denote the root of \(T\mid_U \), defined as \(\text{lca}(a, c) \) [lca means lowest common ancestor] in \(T \), and \(s_U \) denote the node \(\text{lca}(a, b) \). Let \(M_1 \) be the set of edges entering the nodes \(r_U \) and \(s_U \), for all triples \(U \in \mathcal{Y} \). Let us consider the set of triples \(\mathcal{R}_1 \in \mathcal{U} \) such that \(T\mid_U \) does not contain an edge in \(M_1 \). Let the set be \(M_2 \) which contains at least one edge from \(\mathcal{R}_1 \). It has been illustrated in figures 3.7 and 3.8.

Lemma 3.13 [18] A triple \(U \in \mathcal{R}_1 \) sharing nodes with a triple \(V \in \mathcal{Y} \) satisfies \(r(T\mid_U) \in T\mid_V \) where \(r(T\mid_U) \) is the root of \(T\mid_U \).

Lemma 3.14 [18] A triple \(U \in \mathcal{R}_1 \) shares nodes with at most one triple from \(\mathcal{Y} \).

For each triple \(V = [a, b, c] \in \mathcal{Y} \), let \(\mathcal{R}_V \) be the set of triples in \(U \in \mathcal{R}_1 \) such that \(T\mid_U \) shares nodes with \(T\mid_V = ((a, b), c) \). According to Lemma 3.13 [18] and Lemma 3.14 [18], \(\mathcal{R}_1 \) is a disjoint union of the \(U_V \).

Lemma 3.15 [18] If \(U_1, U_2 \in \mathcal{R}_V \) are such that \(T\mid_{U_1} \cap T\mid_{U_2} \neq \phi \), then there exists \(w \in T\mid_V \) such that \(w \in T\mid_{U_1} \cap T\mid_{U_2} \).

We now split \(\mathcal{R}_V \) in two parts. Let \(d \) be the parent of \(s_V \) and let \(W_1 \) be the set of triples with edges in common with \(T\mid_{a,b} \) and \(W_2 \) the set of triples with edges in
Figure 3.7: (i) A phylogeny tree T. The thick lines (r_U) show the edges being cut to get the maximal size edge-disjoint set of triples and is stored in M_1. (ii) A set of maximal size edge-disjoint set of triples have been cut from T according to Lemma 3.12 [18]

Figure 3.8: If the maximal size edge-disjoint triple (i,j,m) obtained from Fig 3.7 is a conflicted triple, s_U is cut to remove the conflict and is added to M_1. The leaf-set (g,h,k,l) will form the combination of triples in M_2
Figure 3.9: (i) \(U_1 = ((g,h),k)\) and \(U_2 = (h,(k,l))\) and \(w\) in this case is an edge. (ii) \(U_1 = ((g,h),x)\) and \(U_2 = (x,(k,l))\) and \(w\) is a vertex. In either case remove the thick edges in case of incompatible triples in \(U_1\) and \(U_2\)

common with \(T|_{d,c}\). By construction, \(\mathcal{R}_{V} = W_1 \cup W_2\)

Lemma 3.16 [18] Either \(W_1 = \phi\) or \(W_2 = \phi\)

From Lemma 3.15 [18] and Lemma 3.16 [18] we can say any 2 triples in either \(W_1\) or \(W_2\) have some elements \(w\) common with \(T|_V\). \(w\) can be either an edge in which \(M2\) contains that edge or it can be a node in which 2 edges need to be added to \(M2\). This is illustrated in Fig 3.9. So altogether the size is bounded by \(4|\Upsilon|\). Hence if the size of the MAF is \(m^*\), this step produces at most \(4m^*\) connected components. The cut is being made on a single tree say \(T_1\).

\(P_{sep}\) Check

For every edge \(a\) of the forest \(F\) thus obtained from the above step, we consider the path \(P_{i}(a)\) in the original tree \(T_i\) corresponding to the ends of \(a\) in \(F\) for every
Figure 3.10: i) 2 phylogeny trees T1 and T2. ii) Components in a forest which are topologically compatible in both T1 and T2. iii) For Separability check the components are in conflict with T1. So the graph has been formed with conflicted edges. The vertex cover of this graph will give d. So remove d from ii to get MAF.

T_i under consideration. Chataigner’s algorithm proceeds as follows:

- build the graph G whose nodes represent the edges of F and an edge $(a, b) \in E(G)$ represent a collision, i.e., some i such that $P_i(a) \cap P_i(b) \neq \phi$.

- compute a vertex cover of G.

- for each node a of the vertex cover, remove one edge from $P_1(a)$.

This has been illustrated in figure 3.10.

If we consider the minimum number of components required to ensure P_{sep} is bounded by $m*$ then at most $2m*$ edges can be removed. Since the minimum vertex cover problem can be approximated within a ratio 2, the step needs at most $4m*$ edges to be removed. Hence, altogether $8m*$ edges are removed from T_1 which gives an approximation ratio 8.
Chapter 4

Our Contribution

4.1 Approximation Algorithms

The work in this chapter has been motivated by the work of Bordewich et al. [15]. To begin with, we introduce some terms and definitions that are relevant to our work.

4.1.1 Terms and Definitions

1. **Partial Order** [15]: In mathematics, Partial order means the concept of ordering the arrangement of certain pairs of elements in a set. In the forest F of a phylogenetic tree T, for two elements x and y (elements are the union of the vertex and edge sets of F) which are in the same component of F, we write $x < y$ if $x \neq y$ and y lies on the path from x to the root of this component.

2. **Incompatible triple** [15]: A triple is a rooted binary phylogenetic tree which has 3 leaves. A triple with leaf set $\{a, b, c\}$ can be denoted by $ab|c$ if c does not lie on the path from a to b in that triple.

If T and T' be two rooted binary phylogenetic trees and $\{a, b, c\}$ be the leaf set in both T and T', then we say the triple $ab|c$ is an incompatible triple of T with respect to T' if $ab|c$ is a triple in T only. The concept of partial order can also be implied in
the incompatible triple. Let $ab|c$ be an incompatible triple in T and let r_{abc} represent the most recent common ancestor of a and c in T and r_{ab} represent the most recent common ancestor of a and b in T. We say $ab|c < xy|c$ if either i) r_{xyz} lies on the path from r_{abc} to the root of T or ii) r_{xy} is on the path from r_{ab} to the root of T if r_{abc} and r_{xyz} are equal. We say an incompatible triple of T with respect to T' is minimal if it is minimal with respect to this partial order.

3. Inseparable Components [15]: Let F be the forest obtained from the two rooted binary phylogenetic trees T and T' after all the incompatible triples have been taken care of. Let T_s and T_t be the two components of F with leaf sets $L(T_s)$ and $L(T_t)$ respectively such that no two edges or vertices of T_s and T_t are common in T but they share at least a common element in T', then T_s and T_t are said to be inseparable components with respect to T'.

The following sections give details about our contribution in the thesis.
Figure 4.2: Overlap Components [15], p.6

Figure 4.3: Central Lemma
4.1.2 3-Approximation for MAF on k binary trees (rooted)

The following lemma is central to our result.

Lemma 4.1 [15]: Let T be an X-tree, F a forest of T, e and f edges in the same component of F, and E a subset of edges of F such that $f \in E$ and $e \notin E$. Let v_f be the end-vertex of f closest to e, and v_e an end-vertex of e.

(i) If $v_f \sim v_e$ in $F - E$ and

(ii) $\neg(x \sim v_f)$ in $F -(E + e)$ for all $x \in$ leaf-set in F,

then $F - E$ and $F -(E - f + e)$ yield the same forest.

Figure 4.3 illustrates the main idea of the lemma. In order for the lemma to hold good, the set of edges from e to f should be linear, that is, there should not be any branching of subtree like T_1 or T_2 between the path v'_e and v'_f. Then we can take any edge $e \notin E$ and exchanged it with $f \in E$ so as to have both $F - E$ and $F -(E - f + e)$ as isomorphic forests.

The algorithm we present here is a 3-approximation algorithm for calculating MAF on k rooted binary trees. The algorithm is inspired from the one described in [15] for estimating the approximation ratio for the rooted SPR distance that is for rooted MAF on 2 trees. We have extended the idea and have shown that for k trees it holds a 3-approximation ratio for calculating the MAF. The algorithm MAF-Approx takes k rooted binary phylogenetic trees $\{T_1,T_2,...,T_k\}$ as input. It initially singles out a tree, say T_1, and proceeds to make edge cuts from the forest F of T_1 until the agreement forest of k trees is obtained. The algorithm recursively computes the set of minimal incompatible triples $ab|c$ of F with respect to any one of the remaining $k-1$ trees T_i ($i \neq 1$) and deletes some associated edges from F. When all the incompatible triples have been taken care of in the forest, the algorithm searches for the inseparable components t_x and t_y of F which overlaps in any one of the T_i where $[i = 2, 3, ..., k]$ and
accordingly edges are cut from forest F. The edges being cut have been introduced in the paper [15]. In the next paragraph we give our readers a brief description of the edges.

For a minimum incompatible triple $ab|c$ in T_1 with respect to any T_i, we consider r_{abc} as the most recent common ancestor of a and c in T and r_{ab} represent the most recent common ancestor of a and b in T. The child edge of r_{ab} leading to a is denoted by e_a and the child edge of r_{ab} leading to b is denoted by e_b. We denote e_r as the child edge of r_{abc} leading to r_{ab}. Finally we represent e_r as the first edge on the path from r_{abc} to c such that for elements c' in the leaf-set of T-c below e_c, there exists triples of the form $cc'|a$ and $cc'|b$ in all the trees. For a pair of inseparable components t_x and t_y in any $T_i [i = 2, 3, ..., k]$ with respect to T_1, we define a minimal common vertex v_{xy} in $t_x \cup t_y$ with respect to the partial order on the vertices in T_1. e_x denotes the minimal edge in T_1 whose set of descendants in the leaf-set is also the descendants of v_{xy} in t_x. Similarly e_y denotes the minimal edge in T_1 whose set of descendants in
the leaf-set is also the descendants of \(v_{xy}\) in \(t_y\).

MAF-Approx\((T_1, T_2, \ldots, T_k)\)

1. \(F \leftarrow T_1\);
2. while there exists an incompatible triple in \(T_1\) with respect to any \(T_i\) \((i \neq 1)\) do
 2.1. Consider the minimal incompatible triple \(ab|c\) in \(T_1\) with respect to that particular \(T_i\)
 2.2. \(E \leftarrow \{e_a, e_c, e_r\}\) in \(ab|c\)
 2.3. \(F \leftarrow F - E\)
 end;
3. while there exists a pair of inseparable components in any \(T_i\) \((i \neq 1)\) with respect to \(T_1\) do
 3.1. consider the inseparable components \(t_x\) and \(t_y\) in that particular \(T_i\) with respect to \(T_1\)
 3.2. \(E \leftarrow \{e_x, e_y\}\) in \(t_x\) and \(t_y\)
 3.3. \(F \leftarrow F - E\)
 end;
4. return \(F\);

Lemma 3.1.2: Let there be \(k\) rooted binary phylogenetic trees and let \(F\) be a forest of \(T_1\).

i) If there exists a minimal incompatible triple \(ab|c\) of \(F\) with respect to any of the \((k-1)\) trees, then
\[
e(F - \{e_a, e_c, e_r\}, \{T_2, T_3, \ldots, T_k\}) \leq e(F, \{T_2, T_3, \ldots, T_k\}) - 1,
\]
where \(e(F, \{T_2, T_3, \ldots, T_k\})\) denotes the size of a minimum set \(E\) of edges of \(F\) such that \(F - E\) forms an agreement forest of \(k\) trees.
ii) If there is no incompatible triple of \(F \) with respect to any other tree, but there exist two components \(t_x \) and \(t_y \) of \(F \) that overlap in any one of the other \((k-1)\) trees, then for some \(j \in \{x, y\}\),

\[
e(F - e_j, \{T_2, T_3, \ldots, T_k\}) = e(F, \{T_2, T_3, \ldots, T_k\}) - 1.
\]

Proof: Though we have \(k \) trees, we have fixed one tree \(T_1 \) and cut the edges of the forest \(F \) of \(T_1 \). While checking the incompatible triples at a time we are considering two trees in our algorithm \(F \) and \(T_i \) where \(i \neq 1 \). For this, we use Lemma 4.1 [15] as a subroutine. Similarly for overlap components we consider two trees \(F \) and \(T_1 \) at a time.

Claim: \(\alpha \leq e(T_1, T_2, T_3, \ldots, T_k) \leq 3\alpha \), \(\alpha = \alpha_1 + \alpha_2 \)

Proof: Let us suppose there are \(\alpha_1 \) iterations of the algorithm in the 1st while
loop and α_2 iterations of the algorithm in the 2nd while loop over all k trees.

We are going to show that $\alpha \leq e(T_1,T_2,T_3,...,T_k) \leq 3\alpha$ where $\alpha = \alpha_1 + \alpha_2$.

Let us assume that after i iterations, the minimum set of edge-cuts is represented by $e(F_i, T_2,T_3,...,T_k)$.

- For $i \leq \alpha_1$, (1st while loop)

According to Lemma 3.1.2. (i)

\[e(F_i, T_2,T_3,...,T_k) \leq e(F_{i-1}, T_2,T_3,...,T_k) - 1 \]

Hence, $e(F_i, T_2,T_3,...,T_k) + i \leq e(F_0, T_2,T_3,...,T_k)$

\[\Rightarrow e(F_i, T_2,T_3,...,T_k) + i \leq e(T_1, T_2,T_3,...,T_k) \quad [F_0 = T_1] \]

Moreover, since F_i has 3 fewer edges than F_{i-1} we can say

\[e(F_{i-1}, T_2,T_3,...,T_k) \leq e(F_i, T_2,T_3,...,T_k) + 3 \]

\[\Rightarrow e(F_0, T_2,T_3,...,T_k) \leq e(F_i, T_2,T_3,...,T_k) + 3i \]

\[\Rightarrow e(T_1, T_2,T_3,...,T_k) \leq e(F_i, T_2,T_3,...,T_k) + 3i \]

- For $i > \alpha_1$, (2nd while loop)

According to Lemma 3.1.2. (ii)

\[e(F_i, T_2,T_3,...,T_k) \leq e(F_{i-1}, T_2,T_3,...,T_k) - 1 \]

Hence, $e(F_i, T_2,T_3,...,T_k) + i \leq e(F_0, T_2,T_3,...,T_k)$

\[\Rightarrow e(F_i, T_2,T_3,...,T_k) + i \leq e(T_1, T_2,T_3,...,T_k) \]

Moreover, since F_i has 2 fewer edges than F_{i-1} we can say

\[e(F_{i-1}, T_2,T_3,...,T_k) \leq e(F_i, T_2,T_3,...,T_k) + 2 \]

Thus, $e(T_1, T_2,T_3,...,T_k) \leq e(F_i, T_2,T_3,...,T_k) + 3\alpha_1 + 2(i - \alpha_1)$

At the end of all the while loops,

\[e(F, T_2,T_3,...,T_k) + \alpha_1 + \alpha_2 \leq e(T_1, T_2,T_3,...,T_k) \leq e(F, T_2,T_3,...,T_k) + 3\alpha_1 + 2\alpha_2 \]

Now, when the MAF is generated, no further edge-cut is necessary. So, $e(F, T_2,T_3,...,T_k) = 0$.

39
Figure 4.6: Directed Graph obtained from the MAF components in Figure 4.5. There is a cycle between t_1 and t_2.

\[\alpha_1 + \alpha_2 \leq e(T_1, T_2, T_3, \ldots, T_k) \leq 3\alpha_1 + 2\alpha_2 \]

\[\Rightarrow \alpha \leq e(T_1, T_2, T_3, \ldots, T_k) \leq 3\alpha_1 + 3\alpha_2 \]

\[\Rightarrow \alpha \leq e(T_1, T_2, T_3, \ldots, T_k) \leq 3\alpha \]

Hence, the claim of 3-approximation ratio.

The best known approximation algorithm for computing MAF on k trees is the 8-approximation ratio [18]. Our MAF-Approx algorithm gives a better approximation ratio.
4.1.3 2-approximation for MAAF on k rooted binary trees

For the definition of MAAF please refer to Section 2.4 of Chapter 2.

Whidden and Zeh(2009) in [58] derived a 3-approximation ratio algorithm for computing the MAAF on 2 phylogenetic trees. To the best of our knowledge, an approximation algorithm for computing the MAAF on k trees had not been obtained before.

Lemma 3.2.1. Let F' be a rooted tree in the Maximum Agreement Forest of k trees (F_A). Let e and f edges in the same component of F', and E a subset of edges of F_A such that $f \in E$ and $e \notin E$. Let v_f be the end-vertex of f closest to e, and v_e an end-vertex of e. If (i) $v_f \sim v_e$ in F_A-E and (ii) $(x \sim v_f)$ in F_A-$(E + e)$ for all $x \in$ leaf-set in F', then F_A-E and F_A-$(E$-f+$e)$ yield the same forest.

41
Proof: This proof is similar to the proof given in Lemma 5.1 of the paper of Bordewich et al [15]. We need to show that if \(x, y \in \chi \) (\(\chi \) is the leaf-set in \(F' \)), then \(x \sim y \) in \(F_A - E \) if and only if \(x \sim y \) in \(F_A - (E-f+e) \). We will prove it by the method of contradiction. We assume that \(x \sim y \) in \(F_A - E \) but no path between \(x \) and \(y \) in \(F_A - (E-f+e) \). The path from \(x \) to \(y \) in \(F_A - E \) contains \(e \) but not \(f \). From (i) we can conclude that either \(x \sim v_f \) or \(y \sim v_f \) in \(F - (E+e) \) which is a contradiction to the statement in (ii). So \(x \sim y \) in \(F_A - (E-f+e) \).

Now, we assume that \(x \sim y \) in \(F_A - (E-f+e) \) but \(\neg (x \sim y) \) in \(F_A - E \). The path from \(x \) to \(y \) in \(F_A - (E-f+e) \) contains \(e \) but not \(f \). From (i) we can conclude that either \(x \sim v_f \) or \(y \sim v_f \) in \(F - (E+e) \) which is a contradiction to the statement in (ii). So \(x \sim y \) in \(F_A - E \). This completes the proof.

In the previous section we have described an algorithm to obtain an approximation on the MAF for \(k \) rooted binary trees. In section 2.4 of Chapter 2 we define a directed graph \(G_F \) with the trees derived from MAF, \(F_M = \{t_1, t_2, \ldots, t_n\} \). Let us consider 2 trees \(t_a \) and \(t_b \) in \(F_M \) which form a cycle in \(G_F \). Such a tree-pair in \(G_F \) is said to be infeasible. In order to obtain the Maximum Acyclic Agreement Forest \(F_A \) from \(F_M \), at least one of the trees of this infeasible tree-pair cannot be realized and the leaves of this tree form isolated vertices in \(F_A \).

The algorithm MAAF-Approx initially colors all the root vertices of the trees in \(F_M \) white (not processed). It selects one white tree and changes the color to gray (in process). It is checked against all other white trees to see whether there is any cycle. Once processed, the color is changed to black (complete).

MAAF-Approx\((T_1, T_2, \ldots, T_k)\)
1. \(F_A \leftarrow \{t_1, t_2, \ldots, t_n\} \), the MAF obtained from \(k \) trees
2. color all the root nodes of the trees in \(F_A \) as white
3. while there exists a white root
do

3.1. pick one white root \((r_p)\) and change the color to gray

3.2. check whether \(r_p\) forms a cycle with any other white root in any one of the trees \(T_i\).

3.3. if there is no cycle change the color of \(r_p\) to black.

3.4. if it forms a cycle with \(r_q\) (white root)
 3.4.1. \(C_A \leftarrow \{r_p, r_q\}\)

3.5. while there is a cycle in \(C_A\) with respect to \(r_q\)
 do
 3.5.1. \(r_p' \leftarrow \{\text{the subtree forming cycle with } r_q\}\)
 3.5.2. \(E \leftarrow \{\text{the two incident edges to the root of } r_p'\}\)
 3.5.3. \(C_A \leftarrow C_A - E\)
 3.5.4. color the isolated vertices black
 3.5.5. \(F_A \leftarrow C_A \{\text{the set of isolated black vertices and } r_q(\text{white})\}\)
 end;
end;

4. return \(F_A\);

Lemma 3.2.2: Let \(F'\) be a rooted tree of an infeasible tree-pair in \(G_F\) obtained from a Maximum Agreement Forest of \(k\) trees \(F_M\). Then there exists an edge \(f \in E\) in \(F'\) such that if \(e_{l}\) and \(e_{r}\) are the set of two incident edges to the root of \(F'\) then

i) the forest \(F_A - (E - f + e_{i})\) is isomorphic to \(F_A - E\) for some \(i \in \{l, r\}\), where \(E\) is the minimum set of edge-cuts required to produce a MAAF from a MAF of \(k\) rooted binary trees.

ii) \(e(F_A - e_{i}) \leq e(F_A) - 1\), where \(e(F_A)\) is the minimum set of edge-cuts required to produce MAAF from the MAF of \(k\) rooted binary trees and \(e_{i}\) is an edge in \(F'\).

Proof: i) Let \(r_{F'}\) be the root and let \(L\) and \(R\) be the left and right subtree of the
root of F'. Assume that for all nodes $l' \in L$, we have $\neg (l' \sim r_F)$ in $F_A - E$. Let f be the first edge in E on the path from r_F to l' in F'. According to Lemma 4.1 [15], $F_A - E$ is isomorphic to $F_A - (E - f + e_1)$.

Similarly if for all nodes $r' \in R$, we have $\neg (r' \sim r_F)$ in $F_A - E$, then taking f to be the first edge in E on the path from r_F to r' in F', we have $F_A - E$ is isomorphic to $F_A - (E - f + e_i)$. This completes the proof of part (i).

ii) We have assumed that F' is a tree in the MAF which forms an infeasible tree-pair with another tree in the directed graph and F' is not realised in MAAF. From Lemma 3.2.2.(i) we can say there exists an $f \in E$ and $i \in \{a, b\}$ in F' such that $F_A - E$ is isomorphic to $F_A - (E - f + e_i)$. Note that $E = e(F_A)$. Hence $F_A - (E - f + e_i)$ yields MAAF of $F_A - e_i$. Thus $e(F_A - e_i) \leq |E - f| = e(F_A) - 1$. This completes the proof.

Claim: Assume there are β iterations of the algorithm, β' of which form the cycle in C_A where $\beta \geq \beta'$. We claim that

$$\beta' \leq e(F_A) \leq 2\beta'$$

Proof: Let $e(F)_\theta$ be the forest generated after θ iterations

According to Lemma 3.2.2.(ii) $e(F)_\theta \leq e(F)_{\theta-1} - 1$

Hence after β' iterations, $e(F)_{\beta'} + \beta' \leq e(F_A)$ [as $e(F)_0 = e(F_A)$

So, $e(F_A) \geq \beta'$

Conversely, the algorithm MAAF-Approx(T_1, T_2, \ldots, T_k) accounts for at most 2 edge-cuts for every iteration.

Hence, $e(F)_{\theta-1} \leq e(F)_\theta + 2$.

$$\Rightarrow e(F_A) \leq e(F)_{\beta'} + 2\beta'$$

Now, after β' iterations the Acyclic-MAF is generated and we do not require any further edge-cut. So, we can say $e(F)_{\beta'} = 0$
This proves that $\beta' \leq e(F_A) \leq 2\beta'$ and hence our claim of 2-approximation ratio.

4.1.4 Heuristic

This section gives an approximation algorithm for finding the rSPR distance between 2 trees, whose approximation ratio we conjecture to be 2.

The work has been motivated from Lemma 5.4. [15] which states that in order to remove the incompatibility of a triple, $ab|c$ the edges e_a, e_c, e_r are removed. See Figure 5.8. But here we have proposed a Lemma where we have proved that we will have the same result by removing the edges e_c and e_r.

Lemma 3.2.3: Let $ab|c$ be an incompatible triple of F with respect to T'. Then there exists an edge $f \in E$ such that $F-(E-f+\{e_c, e_r\})$ is isomorphic to a subforest of $F-E$.

Proof: The proof is in accordance with Figure:4.4.

Let us consider for all $c' \in C$, we have $\neg(c' \sim r_c)$ in $F-E$. Further let f to be the first edge in E on the path from r_c to c in F. According to Lemma 5.1 [15] $F-E$ is
isomorphic to $F - (E-f+e_c)$.

Let us assume that for some $y \in B + D_1$ the relation $y \sim r_{ab} \sim a'$ in $F-E$ holds ($a' \in A$). According to Lemma 5.4 [15] under this assumption $F-E$ is isomorphic to $F - (E-f+e_r)$.

Now, let us suppose that there is no $y \in B + D_1$ such that $y \sim r_{ab}$ in $F-E$. Then in particular, $\neg(b' \sim r_{ab})$ for all $b' \in B$. Assume f to be the first edge in E on the path from r_{ab} to b in F. In order to show that $F-(E-f+\{e_c, e_r\})$ is isomorphic to a subforest of $F-E$ it is enough to show that for all $x, y \in \chi$ such that $x \sim y$ in $F-(E-f+\{e_c, e_r\})$ we have $x \sim y$ in $F-E$. In order to prove this by the method of contradiction, consider $i, j \in \chi$ such that $i \sim j$ in $F-(E-f+\{e_c, e_r\})$ but i, j have no path between them in $F-E$. Under this assumption, the path from i to j in $F-(E-f+\{e_c, e_r\})$ contains f but none of the elements in $\{e_c, e_r\}$. It now follows that if we consider $i \in B$ then it is true that $j \in A$. Moreover, by Lemma 5.1, $F-E$ is isomorphic to $F-(E-f+e_b)$ which concludes that $j \notin B$. Again, since e_r is not in the path from i to j in $F-(E-f+\{e_c, e_r\})$, we can say $j \in D_1$ implying that $y \sim r_{ab}$ which is a contradiction. This completes the proof of the Lemma.

4.2 Implementation

We have implemented the algorithm on 3-approximation ratio in [15] in Java and tested with a few pair of phylogenetic trees to justify the validity.

In Figure 4.9, we have tested on two rooted binary phylogenetic trees having the structures $((A,B),C)$ in one tree and $((A,C),B)$ in the other tree. It can be observed that these two trees are incompatible. So the MAF is $[(A,C) \text{ and } B]$.

Figure 4.10 shows two rooted binary phylogenetic trees having the structures $(((A,B),3),4),(D,C))$ in one tree and $(((A,C),3),4),(D,B))$ in the second tree. The MAF of these trees is
Figure 4.9: Trees with leaf-set \([A,B,C]\) and the MAF
Figure 4.10: Trees with leaf-set [A,B,3,4,D,C] and the MAF
Figure 4.11: Trees with leaf-set \([A, B, 3, 4, D, E, C]\) and the MAF
\([A, (D, (E, C))), B, 3, 4]\).

Figure 4.11 consists of two rooted binary phylogenetic trees having the structures
\(((((A, B), 3), 4), (D, (E, C))))\) in one tree and
\(((((A, (D, (E, C))), 3), 4), B)\) in the second tree. The MAF of these trees is
\([(A, (D, (E, C))), B, 3, 4]\).
Chapter 5

Conclusion

In this thesis we have provided an approximation ratio for finding the Maximum Agreement Forest and the Maximum Acyclic Agreement Forest on k rooted phylogenetic trees. We have implemented the algorithm for $k = 2$ and tested with some random pair of trees. As future work, we should look into larger random tests and other biological datasets and make a thorough and rigorous test on these datasets. Besides one can look into the aspect of extending the idea of finding the approximation ratio of MAF and MAAF on k unrooted trees. Whatever results we have are based on the binary trees. It will be interesting to know the results if we have k trees of degree d ($d \geq 2$). So this can be another future course of research. In this thesis we have proposed an approximation algorithm for finding the rSPR distance between 2 phylogenetic trees. We conjecture that the approximation ratio of this algorithm is 2. Efforts can be given to see whether this heuristic can be established with a definite proof. Finally, it can be explored if the Fixed-Parameter Tractability approach can be applied to the problems of calculating the MAF and MAAF on k rooted binary phylogenetic trees.
References

Vita Auctoris

NAME : Puspal Bhabak
BIRTH YEAR : 1983
BIRTH PLACE : INDIA
EDUCATION
2009–2011 : Master of Science
 Computer Science
 University of Windsor, Windsor, Ontario, Canada
2001–2005 : Bachelors of Technology
 Computer Science and Engineering
 West Bengal University of Technology, West Bengal, India