
A Probabilistic Algorithm for

the Solution of Homogeneous Linear Inequalities

by

Mina Asgari Moslehabadi

A Thesis

Submitted to the Faculty of Graduate Studies

through the Department of Mathematics and Statistics

in Partial Fulfillment for the Requirements of

the Degree of Master of Science at the

University of Windsor

Windsor, Ontario, Canada

2010

c⃝ 2010 Mina Asgari Moslehabadi

A Probabilistic Algorithm for

the Solution of Homogeneous Linear Inequalities

by

Mina Asgari Moslehabadi

APPROVED BY:

—————————————————————–

Y. P. Aneja

Department of Odette School of Business

—————————————————————–

T. Traynor

Department of Mathematics and Statistics

—————————————————————–

R. J. Caron, Supervisor

Department of Mathematics and Statistics

—————————————————————–

A. Alfakih, Chair of Defense

Department of Mathematics and Statistics

May, 2010

Author’s Declaration of Originality

In hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my

thesis, published or otherwise, are fully acknowledged in accordance with the standard

referring practices.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis

has not been submitted for a higher degree to any other University or Institution.

iii

Abstract

This thesis presents a probabilistic algorithm for the solution of system of homo-

geneous linear inequality constraints. In fact, the proposed method simultaneously

provides information required for constraint analysis and, if the feasible region is not

empty, with probability one, will find a feasible solution. In [1] Caron and Traynor

explored the relationship between the constraint analysis problem and a certain set

covering problem proposed by Boneh [2]. They provided the framework that showed

the connection between minimal representations, irreducible infeasible systems, min-

imal infeasibility sets, as well as other attributes of preprocessing of mathematical

programs. In [3] 2010 Caron et. al. showed the application of the constraint analy-

sis methodology to linear matrix inequality constraints. This thesis builds on those

results to develop a method specific to a system of homogeneous linear inequalities.

Much of this thesis is devoted to the development of a hit and run sampling method-

ology.

iv

Dedication

To my parents

and my husband Kevin

whose love and support

have made everything I do possible.

v

Acknowledgements

I would like to thank my advisor Dr. Richard J. Caron who helped me in all

stages of this research. I also appreciate the contribution of Dr. Tim Traynor in this

Project. I offer my thanks to Dr. Yash P. Aneja as a member of my committee. I also

would express my gratitude to Mr. Alireza Nikookar for his guidance in my project.

Finally, I wish to express my utmost gratitude to my husband Dr. Kevin Abbasi for

his support.

vi

Contents

Author’s Declaration of Originality iii

Abstract iv

Dedication v

Acknowledgements vi

List of Figures ix

List of Tables x

Chapter 1. Introduction 1

1.1. Statement of Thesis and Outline 1

1.2. Farkas’ Theorem of the Alternative 2

1.2.1. Linear Programming 5

1.2.2. Redundancy and Degeneracy 8

1.2.3. Unboundedness of Quadratically Constrained Quadratic Programming

(QCQP) 8

1.2.4. Murty’s Proposed Interior Point Method for Quadratic Programming

(QP) 10

Chapter 2. Probabilistic Hit and Run Methods (HR) with Set Covering

Problem Approach 12

2.1. Introduction 12

vii

2.2. Literature Review 12

2.3. HD Method for Linear System 13

2.4. The Set Covering Approach 16

2.5. Collecting the Set Covering Matrix E 21

2.6. Concluding Remarks 24

Chapter 3. A Probabilistic Algorithm for the Solution of Homogeneous Linear

Inequalities 25

3.1. Introduction 25

3.2. The Proposed Probabilistic Method 25

3.2.1. Sampling Points 26

3.2.2. Set Covering 31

3.3. Convergence of the Algorithm 33

3.4. Determination of Implicit Equality 35

3.5. Examples and Numerical Results 35

Chapter 4. Conclusion 45

Bibliography 46

Vita Auctoris 48

viii

List of Figures

2.1 Example of CD hit-and-run iteration . 14

2.2 The example of redundant and non-redundant constraints 18

2.3 The example of implicit equalities. 23

3.1 Crossing point strategy. 30

3.2 The example of linear homogeneous inequalities. 36

ix

List of Tables

1 Description of the Examples and Numerical Results 44

x

CHAPTER 1

Introduction

1.1. Statement of Thesis and Outline

We are given an (m× n) real matrix A and n-vector c. Let 0 be the zero vector

of appropriate dimension. We are concerned with the two regions

R1(A) = {x ∈ Rn |Ax ≤ 0} and (1.1.1)

R2(A, c) = {x ∈ Rn | c⊤x < 0, Ax ≤ 0} (1.1.2)

each defined by homogeneous linear inequalities. If we take

A⊤ = [a1, a2, . . . , am]

we have

R1(A) = {x ∈ Rn | a⊤i x ≤ 0, i ∈ I} and (1.1.3)

R2(A, c) = {x ∈ Rn | c⊤x < 0, a⊤i x ≤ 0, i ∈ I} (1.1.4)

where I = {1, 2, . . . ,m}. For each region, we will present a probabilistic algorithm

to either determine that it is empty or provide a solution. Our thesis is that our

probabilistic method will be a tool for the solutions of these systems.

In the remainder of the first chapter, we will explain the importance of this prob-

lem in optimization, beginning with its obvious connection to Farkas’ theorem of the

alternative. Chapter 2 will begin with a description of the probabilistic hit-and-run

algorithm [4, 5, 6], followed by a description of the constraint analysis methodology

given by Caron and Traynor [1], based on the work of Boneh [2]. In chapter 3, we

1

present our specialization of the Caron-Traynor method to (1.1.3-1.1.4) and provide

numerical evidence of its effectiveness. Conclusions are in chapter 4.

1.2. Farkas’ Theorem of the Alternative

We will state Farkas’ theorem of the alternative [7] and show its connection to

our thesis, and then give a proof. First, we provide the definitions and results that

will be used in the proof.

definition 1.2.1. The cone spanned by the columns of A⊤ is the set of all non-

negative linear combination of the columns of A⊤ and is given by

K(A⊤) = {x ∈ Rn |x = A⊤α, α ≥ 0}.

definition 1.2.2. A set H ⊆ Rn is convex if and only if for every x1 and x2 in

H, and λ ∈ [0, 1], λx1 + (1− λ)x2 ∈ H.

definition 1.2.3. The point x is a convex combination of x1, . . . , xk if x =
k∑

i=1

λixi, λi ≥ 0 and
k∑

i=1

λi = 1.

definition 1.2.4. A set H ⊆ Rn is closed if for any arbitrary sequence {xj} in

H with {xj} → x̄, x̄ is in H.

definition 1.2.5. A set H ⊆ Rn defined by H = {x ∈ Rn |h⊤x = α}, where

h ∈ Rn with h ̸= 0 and α ∈ R, is a hyperplane.

definition 1.2.6. A point x1 of a set H is a boundary point of H if every neigh-

borhood of the point x1 contains points both in H and in its complement.

Theorem 1.2.7. Suppose that D ⊆ Rn is a nonempty closed, convex set. If x̂ /∈ D

then there is a separating hyperplane h⊤x = α such that h⊤y < α < h⊤x̂ for every

y ∈ D [8].

2

Proof. Let f(y) = ∥x̂− y∥. We choose a point y∗ such that

f(y∗) = min
y∈D

f(y).

To see that this minimizer exists, let y0 be any point of D, and let r = f(y0). Then

D
∩
B(x̂, r) is a closed bounded set. Since f is a continuous function, it has a minimum

value on D
∩

B(x̂, r) at some y∗. For y /∈ B(x̂, r) we have f(y) ≥ f(y0) ≥ f(y∗). So

y∗ is the required minimizer. We define h = x̂− y∗. Since h ̸= 0 then h⊤(x̂− y∗) > 0

then h⊤x̂ > h⊤y∗. For any point y ∈ D, let λ ∈ (0, 1), then by convexity of D we

have λy + (1− λ)y∗ ∈ D. Since y∗ is the minimum point of f(y) we have

(x̂− y∗)⊤(x̂− y∗) ≤ [(x̂− λy − (1− λ)y∗)]⊤[(x̂− λy − (1− λ)y∗)]

= [x̂− y∗ + λ(y∗ − y)]⊤[x̂− y∗ + λ(y∗ − y)]

= (x̂− y∗)⊤(x̂− y∗) + 2λ(x̂− y∗)⊤(y∗ − y) + (λ)2(y∗ − y)⊤(y∗ − y).

If we rearrange terms in above inequality, we will get the following inequality

0 ≤ 2λ(x̂− y∗)⊤(y∗ − y) + (λ)2(y∗ − y)⊤(y∗ − y)

by dividing both sides with 2λ and taking the limit as λ→ 0, we have (x̂− y∗)⊤(y∗−

y) ≥ 0, then h⊤y∗ ≥ h⊤y. If we choose any α between h⊤x̂ and h⊤y∗ we have

h⊤y < α < h⊤x̂ for every y ∈ D[9].

�

Theorem 1.2.8. (Caratheodory’s theorem for cones [10]). Any nonzero x ∈

K(A⊤) can be written as a nonnegative linear combination of linearly independent

columns of A⊤.

Proof. Suppose that x is a nonzero vector in K(A⊤) and also suppose that t is

the smallest cardinality of the subsets of columns of A⊤. Then x = Σi=t
i=1αiai where

αi ≥ 0. Then it remains to show that all of {a1, . . . , at} are linearly independent.

Suppose otherwise. Then there exists µi, not all of them zero, such that Σi=t
i=1µiai = 0.

3

Now consider the following linear combination

Σi=t
i=1(αi − γµi)ai (1.2.1)

where

γ = min{αi/µi, µi > 0}.

Hence, αi − γµi ≥ 0. If k is the value of i such that γ = αi/µi, then αk − γµk = 0,

so that we can represent x as linear combination of fewer than t columns in K(A⊤),

a contradiction. �

Theorem 1.2.9. K(A⊤) is a closed, convex set.

Proof. This proof can be found in [11]. First we suppose that the columns of

A⊤ are linearly independent. Now let {xj} be any arbitrary sequence in K(A⊤) with

{xj} → x̄. We will show that x̄ ∈ K(A⊤). For each j we have xj = A⊤αj for some

αj ≥ 0, from which we obtain Axj = A(A⊤αj) = (AA⊤)αj. Since the columns of

A⊤ are linearly independent, then AA⊤ is invertible and αj = (AA⊤)
−1
Axj. Since

{xj} → x̄, αj → ᾱ = (AA⊤)−1Ax̄. Since αj ≥ 0 then we have ᾱ ≥ 0, so x̄ ∈ K(A⊤).

Now, we drop the assumption of linear independence columns of matrix A⊤. Let

P (I) be the power set of I. Let A⊤
J , J ∈ P (I) be the matrix whose columns are the

columns of A⊤ indexed by J . Let P̂ (I) ⊆ P (I) be such that A⊤
J has full rank if and

only if J ∈ P̂ (I). By Caratheodory’s theorem 1.2.8

K(A⊤) =
∪

J∈P̂ (I)

K(A⊤
J)

since each K(A⊤
J), J ∈ P̂ (I) is closed so K(A⊤) is closed.

For convexity, suppose that x1 ∈ K(A⊤), x2 ∈ K(A⊤), λ ∈ [0, 1], define α1 ≥ 0,

define α2 ≥ 0 such that x1 = A⊤α1 and x2 = A⊤α2 . Then we have λx1+(1−λ)x2 =

λA⊤α1 + (1− λ)A⊤α2 = A⊤(λα1 + (1− λ)α2) ∈ K(A⊤). �

And now, Farkas’ theorem.

4

Theorem 1.2.10. Either there is a solution to R2(A, c) or a solution to S2(A, c)

but never both, where

S2(A, c) = { y ∈ Rm |A⊤y = −c, y ≥ 0}.

Proof. We first show that we can not have a solution to both R2(A, c) and

S2(A, c). Suppose otherwise. Let x̂ ∈ R2(A, c) and ŷ ∈ S2(A, c). Post-multiplication

of (A⊤ŷ)⊤ = −c⊤ by (−x̂) gives (−ŷ⊤Ax̂) = c⊤x̂. Now, c⊤x̂ < 0; and, since ŷ ≥ 0

and Ax̂ ≤ 0 we have (−ŷ⊤Ax̂) ≥ 0. A contradiction.

Now suppose that S2(A, c) = ∅ so that−c /∈ K(A⊤). We will show thatR2(A, c) ̸=

∅. Since K(A⊤) is closed and convex, theorem 1.2.7 guarantees a separating hyper-

plane h⊤x = α with h⊤y < α < h⊤(−c) for every y ∈ K(A⊤). Since 0 ∈ K(A⊤)

we have 0 < α < −h⊤c so that c⊤h < 0. It remains to show that Ah ≤ 0, that

is, h⊤ai ≤ 0 for all 1 ≤ i ≤ m. Suppose a⊤k h > 0 for some index k. By definition,

λak ∈ K(A⊤) for all λ ≥ 0. Thus, for all λ ≥ 0, λh⊤ak < α. But, this only holds for

λ < α/(h⊤ak), a contradiction. Thus, Ah ≤ 0 and h ∈ R2(A, c). �

The connection of Farkas’ theorem to our thesis is clear in that it involvesR2(A, c),

a system for which we will propose a probabilistic algorithm. The importance of our

thesis is, therefore, connected to the importance of Farkas’ theorem. We provide four

specific examples.

1.2.1 Linear Programming.

Consider the linear programming problem (LP)

minimize c⊤x

subject to Ax ≤ b
(1.2.2)

where A and c are defined in 1.1.2 and b is m-vector. We denote the feasible region

of the LP by

R = {x ∈ Rn | Ax ≤ b}. (1.2.3)

We present some definitions and standard results.

5

definition 1.2.11. The point x̂ is an extreme point of R, if it is impossible to

represent x̂ as a proper convex combination of two other distinct points in R.

definition 1.2.12. The point x̂ is a degenerate extreme point of R, if it is an

extreme point and if the number of constraints such that a⊤i x̂ = bi, is strictly greater

than n.

In the next lemma we show that solutions to R2(A, c) are directions of unbound-

edness for the LP (1.2.2).

Lemma 1.2.13. If R ≠ ∅ and if ŝ ∈ R2(A, c) then the LP (1.2.2) is unbounded

from below in the direction ŝ.

Proof. Let x̂ ∈ R and ŝ ∈ R2(A, c). We have A(x̂ + σŝ) = Ax̂ + σAŝ ≤ b so

x̂ + σŝ ∈ R for all σ ≥ 0. We have c⊤(x̂ + σŝ) = c⊤x̂ + σc⊤ŝ → −∞ as σ → +∞

since c⊤ŝ < 0. Thus, the LP is unbounded from below in the direction ŝ. �

definition 1.2.14. The vector ŝ is a descent direction for the LP (1.2.2) at x̂ if

for σ > 0 we have c⊤(x̂+ σŝ) < c⊤x̂.

Lemma 1.2.15. Let x̂ ∈ R. We can partition A⊤ = [A⊤
1 , A

⊤
2] and b⊤ = [b⊤1 , b

⊤
2] so

that A1x̂ = b1 and A2x̂ < b2. If there is an ŝ ∈ R2(A1, c), then ŝ ̸= 0 is a direction

of descent for the LP (1.2.2). Otherwise x̂ is an optimal solution for the LP (1.2.2).

Proof. Suppose that ŝ ∈ R2(A1, c). Since c⊤ŝ < 0, then c⊤(x̂ + σŝ) < c⊤x̂ for

all σ > 0. And by definition 1.2.14 ŝ ̸= 0 is a descent direction for the LP (1.2.2).

For second part if R2(A1, c) = ∅ we will show that c⊤(x̂−x) ≤ 0 for all x ∈ R. Since

R2(A1, c) = ∅, then from Farkas’ theorem 1.2.10 there is a y ∈ S2(A1, c) and we have

c⊤(x̂− x) = −y⊤A1(x̂− x) (y ∈ S2(A1, c))

= −y⊤A1x̂+ y⊤A1x

= −y⊤b1 + y⊤A1x (A1x̂ = b1)

= y⊤(A1x− b1)

≤ 0. (x ∈ R and y ∈ S2(A1, c))

6

�

If, in lemma 1.2.15, x̂ is a degenerate extreme point, then an algorithm for the

determination of a solution to R2(A, c) provides an alternative to standard anti-

cycling rules [12]. In fact, if there is no descent direction at the extreme point x̂ then

x̂ will be an optimal solution for the LP (1.2.2).

Lemmas 1.2.13 and 1.2.15 lead to the following, well known, set of necessary and

sufficient conditions for linear programming.

Theorem 1.2.16. The point x̂ is an optimal solution for LP (1.2.2) if and only

if together with some ŷ it satisfies the Kurush Kuhn-Tucker conditions

(1) Primal Feasibility: Ax ≤ b

(2) Dual Feasibility: A⊤y = −c, y ≥ 0

(3) Complementary Slackness: y⊤(Ax− b) = 0

Proof. Suppose that x̂ and ŷ satisfy the Kurush Kuhn-Tucker conditions and

consider any x ∈ R. Since x̂ ∈ R from the primal feasibility condition, we need only

show that c⊤(x̂− x) ≤ 0 for all x ∈ R. We have

c⊤(x̂− x) = −ŷ⊤A(x̂− x) (from dual feasibility)

= −ŷ⊤Ax̂+ ŷ⊤Ax

= −ŷ⊤b+ ŷ⊤Ax (from complementary Slackness)

= ŷ⊤(Ax− b) (x ∈ R and dual feasibility)

≤ 0.

For the converse, assume that x̂ is optimal for LP (1.2.2). Thus, x̂ ∈ R and primal

feasibility is satisfied. Define A1, A2, b1 and b2 as in lemma 1.2.15, then by optimality

of x̂, R2(A1, c) = ∅. Thus, from Farkas’ theorem 1.2.10 there is a ŷ1 ∈ S2(A1, c). We

define ŷ2 = 0 and set ŷ⊤ = [ŷ⊤1 , ŷ
⊤
2] so that ŷ⊤1 (A1x̂ − b1) = 0 and ŷ⊤2 (A2x̂ − b2) = 0

(complementary slackness); and −c = A⊤
1 ŷ1 + A⊤

2 ŷ2 and ŷ ≥ 0 (dual feasibility).

Thus, x̂ and ŷ satisfy the necessary and sufficient conditions. �
7

1.2.2 Redundancy and Degeneracy.

The importance of the detection and removal of redundancy in linear program-

ming has been well established, for example, consider [13, 14]. We consider set of

constraints

C(I) = {a⊤i x ≤ bi | i ∈ I}

definition 1.2.17. The k-th constraint is redundant in C(I), if R = Rk, where

Rk = {x ∈ Rn | a⊤i x ≤ bi, i ∈ I \ {k}}. In other words, a redundant constraint is one

that can be removed without changing the feasible region, which might not be empty.

definition 1.2.18. The k-th constraint is necessary in C(I), if R ̸= Rk. In other

words, a necessary constraint is the one where its removal will change the feasible

region, possibly from empty to nonempty.

Suppose that x̂ is a degenerate extreme point. Define the index set A(x̂) = { i ∈

I | a⊤i x̂ = bi } and let Â be the matrix whose rows are the a⊤i , i ∈ A(x̂).

Theorem 1.2.19. The k-th constraint, where k ∈ A(x̂), is redundant in C(A(x̂))

if and only if R2(Â,−ak) = ∅.

Proof. See theorem 4.1 in Caron et. al. [15] �

Thus, the algorithm to be proposed to solve homogeneous linear systems can be

applied to the problem of linear programming redundancy.

1.2.3 Unboundedness of Quadratically Constrained Quadratic Pro-

gramming (QCQP).

definition 1.2.20. The symmetric real matrix B of order (n × n) is positive

semidefinite if x⊤Bx ≥ 0 for all x ∈ Rn. The matrix B is positive definite if x⊤Bx > 0

for all nonzero x ∈ Rn.

8

Consider the quadratically constrained quadratic programming (QCQP)

minimize Q0(x) = a⊤0 x+ 1
2
x⊤B0x

subject to Qi(x) = a⊤i x+ 1
2
x⊤Bix ≤ bi, i ∈ I

(1.2.4)

where B0 and all Bi are positive semidefinite matrices of order (n×n). Also a0 and all

ai are n vectors, and all bi are scalars. We denote the feasible region of the (QCQP)

by

RQ = {x ∈ Rn |Qi(x) ≤ bi, i ∈ I}. (1.2.5)

definition 1.2.21. The QCQP (1.2.22) is unbounded from below if for any M ∈ R

there exists an x̂ ∈ RQ with Q0(x̂) < M .

Let’s define I0 = {0, 1, . . . ,m}. Consider the following theorem from [16] or [17].

Theorem 1.2.22. The function Q0(x) is unbounded from below along a half line

in RQ if and only if there exists a vector x satisfying the following conditions

(1) a⊤0 x < 0

(2) Bix = 0, ∀i ∈ I0

(3) Ax ≤ 0

Proof. For proof see [17]. �

definition 1.2.23. The null space of the matrix B is a subspace of Rn and is

given by N(B) = {x ∈ Rn |Bx = 0}.

definition 1.2.24. A real-valued function f defined on any convex subset of some

vector space is convex if and only if for any two points y, z in its domain and any λ

in [0, 1] we have:

f(λy + (1− λ)z) ≤ λf(y) + (1− λ)f(z).

Lemma 1.2.25. The quadratic function Q0(x) is convex if and only if B0 is positive

semidefinite.

9

Proof. For proof see lemma 1.2.5 in [18]. �

We let N =
∩

i∈I0 N(Bi). Its members are the points x satisfying condition (2)

of 1.2.22. If N = {0} then Q0(x) is bounded below. Otherwise, let V be a matrix

whose column space is N and observe that all three conditions are satisfied if there

exists y with AV y ≤ 0 and a⊤0 V y < 0, that is R(AV, a⊤0 V) ̸= ∅. Thus, if we stay in a

null space of matrices then the algorithm to be proposed can be applied to determine

whether or not a convex quadratic objective function is bounded from below over a

feasible region defined by convex quadratic constraints.

1.2.4 Murty’s Proposed Interior Point Method for Quadratic Pro-

gramming (QP).

Consider the following quadratic programming (QP)

minimize Q(x) = a⊤0 x+ 1
2
x⊤B0x

subject to Ax ≤ b
(1.2.6)

where B0 is positive definite of order n and vector a0 is defined in the QCQP (1.2.22).

Suppose that ∥ai∥ = 1. We define

δ(x) = min{bi − a⊤i x : i ∈ I}

so that δ(x) is the radius of the largest ball inside R centered at x. If B(x, δ) is the

ball centred at x with radius δ then

T (x) = {i | bi − a⊤i x = δ(x)}

is the index set of touching constraints for this ball. Murty in [19] presented an

interior point method for the quadratic programming (1.2.6). The stated advantage

of Murty’s algorithm is that it does not need the inversion of large matrices as do

other interior point methods. The algorithm is started with an initial interior feasible

point x0. Each iteration of the algorithm consists of two steps: a centering step and

a descent step. Since the application of our proposed algorithm is in a centering step,

we just show this part of Murty’s algorithm. Suppose that the point x0 is the current

10

interior feasible solution for the QP (1.2.6). The purpose of the centering step is to

find a new interior point x ∈ R to get the largest ball, B(x, δ), inside R where the

objective value Q(x) is less than or equal to Q(x0). For this reason, we need to solve

the following max-min problem

maximize δ

subject to δ ≤ bi − a⊤i x, ∀i ∈ I,

Q(x) ≤ Q(x0).

(1.2.7)

Let (xr, δr) be the current optimal solution to (1.2.7), where δr = δ(xr). We want to

find a search direction pr and a non-negative step size αr such that ∇Q(xr)
⊤pr < 0

and δ(xr + αrpr) ≥ δ(xr). Murty called such pr a profitable direction. Murty [19]

stated that a direction pr satisfies δ(xr + αpr) > δ(xr) for positive values of α if and

only if all entries in {a⊤i pr : i ∈ T (xr)} are of the same sign. This provides that to

solve the following system to find a profitable direction pr

∇Q(xr)
⊤pr < 0

a⊤i pr < 0, ∀i ∈ T (xr),
(1.2.8)

Murty suggested that we only consider solutions pr to 1.2.8 are in the set Γ =

{−ai, ai : i ∈ I}. But in [18] Vasilyeva showed that Murty’s suggestion to find a

profitable directions does not always work.

Our proposed algorithm can be applied to modify the Murty’s algorithm to find

a profitable direction, i.e. a solution to 1.2.8.

11

CHAPTER 2

Probabilistic Hit and Run Methods (HR) with Set Covering

Problem Approach

2.1. Introduction

We present the probabilistic hit-and-run HR methods with set covering problem

approach in this chapter. A literature review is presented in section 2.2. There are two

well-known probabilistic hit-and-run methods: a hypersphere direction HD method

and a coordinate direction CD method, those are described in detail in section 2.3.

We present a related set covering problem in section 2.4. Finally a method for the

construction of the set covering matrix is explained in section 2.5.

2.2. Literature Review

The hit-and-run algorithm is a Markov chain sampler for generating points from

general continuous distributions over a bounded open region. The basic hit-and-

run algorithm is the so-called hypersphere direction HD and it was introduced by

Boneh and Golan in 1979 [4] as way to remove redundant constraints in optimization

problems. The HD algorithm was soon followed by many variants. The first was the

coordinate direction CD method. This method was suggested by Telgen [20] as an

alternative to the HD method.

Independently, in 1980 Smith, [21] introduced HD, as a symmetric mixing algo-

rithm, for generating random points over the feasible region of a certain problem. In

1984, Smith [5] proved that if the feasible region is open and bounded then the se-

quence of iteration points of the HD algorithm converges to the uniform distribution

over the feasible region.

12

In 1993, Belisle et. al. [22] introduced a general class of hit-and-run algorithms

which included HD and CD, and showed that these algorithms, under rather weak

conditions generate points asymptotically uniformly in a bounded open set.

2.3. HD Method for Linear System

Suppose that R is full dimensional, so that, there exists an x0 with Ax0 < b. Also

suppose that R is bounded.

definition 2.3.1. The interior of R is denoted by int(R) where int(R) = {x ∈

R |Ax < b}. Any point x ∈ int(R) is called interior point.

definition 2.3.2. The region R is bounded if it is contained in a ball.

We start an iteration of HD algorithm with a feasible interior point xk. In the hit

step, we generate a direction sk uniformly over the surface of n-dimensional hyper

sphere

H = {x ∈ Rn | ∥x∥ = 1}.

In practice we generate n independent zi ∼ N(0, 1), and then we set sk = z/ ∥z∥,

where z = (z1, . . . , zn)
⊤. The line passing through point xk in the direction sk inter-

sects the boundaries of the feasible region R and defines a feasible line segment in

R. Those two constraints that determine the end points of the feasible line segment

are listed as a non-redundant constraints. In the run step, we generate a new interior

point xk+1 uniformly over the feasible line segment. The point xk+1 will be the inte-

rior point for the next iteration. These steps will be repeated until some termination

rule is satisfied, e.g. a Bayesian stopping criterion [12]. After termination, all con-

straints that have not been identified during the algorithm, are listed as redundant

constraints, possibly with error.

A CD method is exactly the same with HD method except in choosing the direc-

tion. In CD method we select a direction vector sk uniformly from the n standard

coordinate directions in Rn. To do this, we choose ν ∼ U(0, 1), let κ = ⌈nν⌉ then we

13

set sk = eκ the κ-th coordinate direction. The Figure 2.1 illustrates a single of CD

Figure 2.1. Example of CD hit-and-run iteration .

iteration. Figure 1.6 (a) shows the feasible region in R2. We choose x0 as an interior

feasible point in Figure 1.6 (b). We next generate a direction s0 as shown by arrow

at x0 in Figure 1.6 (c) and, the line passing through x0 in the direction s0 is drawn

as dashed line in Figure 1.6 (c). Finally, in Figure 1.6 (d) we see the feasible line

segment and new interior feasible point x1 and two non-redundant constraints. In

the Algorithm 1 we see all detail for the CD method.

Theorem 2.3.3. From [6], in the CD hit and run algorithm, if

u , argmin{σi |σi > 0, i ∈ I}
14

Algorithm 1 The CD hit-and-run algorithm

Given a constraint set C(I) with x0 ∈ int(R), R is bounded

Set k = 0, J = I

Generate ν ∼ U(0, 1), let κ = ⌈nν⌉ and, set sk = eκ

for i = 1, . . . ,m do

Determine σi =
bi−a⊤i xk

a⊤i sk
, with a⊤i s

k ̸= 0

end for

Determine σu = min{σi |σi > 0}

Determine σr = max{σi |σi < 0}

If σr and σu are unique, then list constraints r and u as nonredundant

Set J = J \ {r, u}

Let t ∼ U(σr, σu) and set xk+1 = xk + tsk

If termination rule holds, J is output of redundant constraints and I \ J is output

of non-redundant constraints

Otherwise, set k = k + 1

is unique, then constraint a⊤u x ≤ bu is non-redundant. And if

r , argmax{σi |σi < 0, i ∈ I}

is unique, then constraint a⊤r x ≤ br is non-redundant.

Proof. We just prove that a⊤u x ≤ bu is non-redundant. We need to show that

for i ̸= u. there exists a point x′′ such that

a⊤u x
′′ > bu (2.3.1)

a⊤i x
′′ ≤ bi (2.3.2)

suppose that xk be the interior point of feasible region R. When line L(xk, sk)

intersects the boundary of i-th constraint of C(I) then the value of σi at the in-

tersection point with the i-th constraint is equal to σi =
bi−a⊤i xk

a⊤i sk
. It is obvious

σi > 0 for all a⊤i s
k > 0. Thus, if x′ = xk + σus

k where σu = bu−a⊤u xk

a⊤u sk
then

15

a⊤i x
′ = a⊤i x

k + (bu−a⊤u xk

a⊤u sk
)a⊤i s

k < a⊤i x
k + (

bi−a⊤i xk

a⊤i sk
)a⊤i s

k = bi, then a⊤i x
′ < bi. Since

a⊤u x
′ = bu then there exists ϵ > 0 such that x′′ = x′ + ϵsk satisfies 2.3.1 and 2.3.2. So

far we have shown that at the same time x′′ /∈ R while x′′ ∈ Ru then from definition

1.2.18 Ru ̸= R and this implies that constraint u is non-redundant. Similarly we can

prove that a⊤r x ≤ br is non-redundant.

Suppose that constraint u is not unique. There are two cases. First one is that

duplicate constraints have been hit and second one is that an intersection of constraint

boundaries has been hit. The former possibility is assumed not to happen in this

thesis. The latter possibility can only happen with probability 0. �

2.4. The Set Covering Approach

For i ∈ I, we define Xi = {x ∈ Rn | a⊤i x ≤ 0}; that is, the i-th constraint is

satisfied at x if and only if x ∈ Xi. For (1.1.3) we set X0 = Rn \ {0} and for (1.1.4)

X0 = {x ∈ Rn| c⊤x < 0 }. Define the region

Z(I0) =
∩
i∈I0

Xi.

We refer to Xi as the i-th constraint.

definition 2.4.1. Constraint i in C(I) is duplicate if there exists an index j ∈ I

such that Xi = Xj.

The indexed family {Xi, X
c
i } partitions Rn, where Xc

i refer to the complement of

Xi. If Z(I0) is not empty then Z(I0) is feasible otherwise is infeasible. If there exists

a subset J of I0 such that Z(I0) = Z(J) where

Z(J) =
∩
i∈J

Xi,

then J is a reduction of I0 and the family {Xi}i∈J is a reduction of the family {Xi}i∈I0 .

Also we say that the family {Xi}i∈J is irreducible if there is no suitable subsets J ′ of

J such that Z(J) = Z(J ′).

16

In this thesis, we are interested in searching for such subsets J of I0. Because

if Z(I0) is feasible then searching for J is equivalent to the detection of redundant

constraints and find an irreducible feasible system. If Z(I0) is infeasible then searching

for J is equivalent to find an irreducible infeasible system (IIS).

Consider the set of four homogeneous linear inequality constraints given by

−x1 + x2 < 0 (0)

x1 + x2 ≤ 0 (1)

x2 ≤ 0 (2)

1/3x1 + x2 ≤ 0 (3)

that are graphed in the Figure 2.2, then I0 = {0, 1, 2, 3}. The hatched area shows the

feasible region Z(I0). We let J = {0, 1}, since J is a subset of I0 and Z(I0) = Z(J)

then J is a reduction of I0. Also J is an irreducible reduction and constraints 0 and

1 are identified as non-redundant and constraints 3 and 4 are detected as redundant.

Now suppose that Z(I0) is feasible then

Z(I0)
c =

∪
i∈I0

Xc
i .

Thus {Xc
i , i ∈ I0} is a cover of Z(I0)

c. Also any reduction J of I0 that defines

Z(I0) provides the reduction of the cover, that is {Xc
i , i ∈ J} should cover Z(I0)

c or

equivalently ∪
i∈J

Xc
i ⊇ Z(I0)

c, (2.4.1)

Theorem 2.4.2. From [23], suppose that the subset J of I0, then J is a reduction

of I0 if and only if inclusion 2.4.1 holds.

Proof. We always have Z(I0) ⊆ Z(J). Thus, J is a reduction of I0 if and only

if Z(J) ⊆ Z(I0). And Z(J) ⊆ Z(I0) if and only if for any x such that x /∈ Z(I0),

x /∈ Z(J). This means when x is infeasible then there exists i ∈ J such that a⊤i x > 0.

17

Figure 2.2. The example of redundant and non-redundant constraints

Let Xc
i = {x ∈ Rn | a⊤i x > 0, i ∈ J}. Then J is a reduction of I0 if and only if the

family {Xc
i }i∈J covers the set Z(I0)

c of infeasible points. �

In fact inclusion 2.4.1 shows that each infeasible point in some Xc
i , i ∈ J vio-

lates some constraints in the reduction J . If J is an irreducible reduction then all

constraints in J are necessary and all constraints in I0 \ J are redundant.

Theorem 2.4.3. From Boneh in [2], if x is an infeasible point then at least one

constraint violated by x is necessary in each reduction.

Proof. Suppose that all constraints are violated by x are redundant. Then

we can remove these redundant constraints without changing the feasible region.

Because the constraints that are violated by x are removed then x is satisfied by all

18

remaining constraints in feasible region. Hence, the point x becomes feasible which

is contradiction. �

Corollary 2.4.4. From Caron and Traynor in [1], if x is an infeasible point and

it violates only one constraint, that constraint is necessary in each reduction.

For x ∈ Rn we define the binary word observation δ(x) = (δ1(x), . . . , δm(x)) such

that

δi(x) =

 0 if x ∈ Xi

1 if x ∈ Xc
i

Now, we suppose that J is a reduction of I. Corresponding to this reduction we can

define the binary word y = (y1, . . . , ym)
⊤ such that

yi =

 1 if i ∈ J

0 if i /∈ J

From theorem 2.4.2, if x is an infeasible point and J is a reduction of I then we have

δ(x)y ≥ 1

Since δ(x) and y are binary words, we can view this as a constraint for the set

covering SC problem [24]. Let E be a set covering matrix whose rows are indexed by

all possible distinct observation δ(x) ̸= 0, then we have the following system

Ey ≥ 1

y ∈ {0, 1}I ,
(2.4.2)

where 1 is a vector of ones. There is a connection between all solutions in system

2.4.2 and all reductions from a theorem in [1].

Theorem 2.4.5. From [23] the set J is a reduction of I if and only if y is a

feasible solution to system 2.4.2.

Proof. We assume that Z(I) ̸= Rn then there is at least one infeasible point.

From theorem 2.4.2, J is a reduction of I if and only if for each x /∈ Z(I) there exists

19

k ∈ J with a⊤k x > 0. But that is same as saying that whenever δ(x) ̸= 0 there exists

k ∈ J with yk = 1 and δk(x) = 1, then δ(x)y ≥ 1. Thus, J is a reduction of I if and

only if for all δ(x) ̸= 0 we have δ(x)y ≥ 1; that is Ey ≥ 1. In other words, the set J

is a reduction of I if and only if y is a feasible solution to system 2.4.2. �

So far we have shown that any feasible solution to system 2.4.2 gives a reduction J

of I. When we reduce I to J , we are looking for smaller number of constraints. Con-

sequently, we can obtain the smallest number of constraints by solving the standard

set covering SC problem

minimize Σy = 1⊤ · y

subject to Ey ≥ 1, y is a binary word,
(2.4.3)

hence, any optimal solution to 2.4.3 corresponds to an irreducible feasible system or

(IIS).

For matrix E, we know that

(1) If columns i and j are identical, then constraints i and j are duplicate.

(2) If column i is a column of zeros, then constraint i is everywhere satisfied.

(3) If column i is a column of ones, then constraint i is everywhere violated.

definition 2.4.6. The matrix F is a reduction of a the set covering matrix E if

F is the subset of E such that for any binary words y, Fy ≥ 1 implies Ey ≥ 1.

Definition 2.4.6 implies that if we replace E in the original set covering problem

by F the new SC problem has the same feasible solutions.

Lemma 2.4.7. From [1], F is a reduction of E if and only if for any e ∈ E there

is f ∈ F such that f ≤ e

Proof. For proof see Lemma 5 in [1]. �

From lemma 2.4.7 we can say matrix E is irreducible if and only if no two elements

of E are comparable.

20

definition 2.4.8. Let e and e′ be two rows of the set covering matrix E. If

inequality e′⊤y ≥ 1 is satisfied by y∗ implies that inequality e⊤y ≥ 1 is also satisfied

by y∗ then we say e majorizes e′, that is, e is redundant and it should be removed

from the matrix E.

The general framework for finding the irreducible feasible system and irreducible

infeasible system by Caron and Traynor [1] is based on the set covering matrix E.

Suppose that we have an optimal solution y with an irreducible reduction J to the

problem 2.4.3. Thus, if the family {Xi}i∈I is feasible, then J provides a irreducible

feasible system and, if the family is infeasible then J corresponds to an irreducible

infeasible system. In practice any non-zero component of y provides the elements of

J . But unfortunately, determining the matrix E for a certain set of constraints is not

easy.

2.5. Collecting the Set Covering Matrix E

Suppose that X is an open bounded subset of Rn. One way of collecting the

rows of the set covering matrix E is by sampling points x ∈ X and calculating the

corresponding observation δ(x). Here we provide some theorems to ensure that all

δ(x) can be sampled with non-zero probability.

definition 2.5.1. A probability distribution is supported on the set X if for every

b ∈ X, every neighborhood of b will intersect X in a set of positive probability.

definition 2.5.2. Let f : X ⊆ Rn −→ R, a point x̂ ∈ X is a local minimum of

f if there exists ϵ > 0 such that for any x ∈ B(x̂, ϵ) we have f(x̂) ≤ f(x).

Theorem 2.5.3. From [1], suppose J ⊆ I and let Ai = {x ∈ X | gi(x) ≤ 0} where

the gi are continuous functions. Then we put gJ(x) = maxj∈J gj(x), if zero is not a

local minimum of any gJ then each non-zero value of δ will be sampled with non-zero

value probability under any distribution supported on X.

21

Proof. For proof see theorem 6 in [1]. �

definition 2.5.4. Constraint i is an implicit equality in a set of linear homoge-

neous inequalities, if a⊤i x = 0 for all x ∈ Z(I).

Consider the set of three linear inequalities given by

−x1 + x2 ≤ 0 (1)

x1 + x2 ≤ 0 (2)

0.5x1 − x2 ≤ 0 (3)

that are graphed in the Figure 2.3. Here I = {1, 2, 3} and Z(I) = {0}. For all

x ∈ Z(I) we have a⊤i (0) = 0, then constraint (1), constraint (2) and constraint (3)

are implicit equalities.

definition 2.5.5. Let f : X ⊆ Rn −→ R, the point x̂ is a global minimum of

function f if f(x̂) ≤ f(x) for any x ∈ X.

Theorem 2.5.6. Any local minimum of a convex function on a convex set is

always a global minimum [25].

Proof. Let X ⊆ Rn be a convex set and f : X ⊆ Rn −→ R. Also suppose

that x̂ is a local minimum of f . We will show f(x̂) ≤ f(z) for any arbitrary z ∈ X

with z ̸= x̂. Since x̂ is a local minimum of f then by definition 2.5.2 there exists

ϵ > 0 such that for any x ∈ B(x̂, ϵ) we have f(x̂) ≤ f(x). Since X is a convex set

then by definition 1.2.2 we have λz + (1 − λ)x̂ ∈ X for all λ ∈ [0, 1]. As λ −→ 0+

then (λz + (1 − λ)x̂) −→ x̂. Hence, we can consider λ small enough such that

[λz + (1− λ)x̂] ∈ B(x̂, ϵ). Then we have

f(x̂) ≤ f(λz + (1− λ)x̂) (since x̂ is local minimum of f)

≤ λf(z) + (1− λ)f(x̂) (since f is convex function)

then by rearranging terms we have f(x̂) ≤ f(z). �
22

Figure 2.3. The example of implicit equalities.

Corollary 2.5.7. From Caron and Traynor [1], if there are no implicit equalities

in a set of linear inequality constraints then under any distribution supported on X,

all non-zero values of δ are chosen with positive probability.

Proof. Suppose that a⊤J (x) = maxj∈J a
⊤
j x for any subset J of I. Suppose that

0 is a local minimum of a⊤J (x). Since any linear function is a convex function then,

from theorem 2.5.6, 0 is a global minimum of a⊤J (x). Then a⊤J (x) = 0 for all x in

Z(J). By definition 2.5.4 we conclude that each a⊤j (x) is an implicit equality for all

x in Z(J). Thus, if there are no implicit equalities then 0 is not a local minimum of

any a⊤J (x), and by theorem 2.5.3 under any distribution supported on X, all non-zero

values of δ are chosen with positive probability. �
23

2.6. Concluding Remarks

This chapter was about constraints classification. We have shown that, with

probabilistic hit-and-run methods, we can detect necessary constraints in a particular

set of homogeneous linear inequality system. Also we have used Boneh’s set covering

approach to introduce the framework for finding the irreducible feasible system and

irreducible infeasible system [1]. Also we have explained the theoretical results for

sampling points with non-zero probability. In the next chapter, we will use the

connection between constraints analysis and the set covering problem by Boneh. We

will present the algorithm to find a solution for the system of homogeneous linear

inequality constraints.

24

CHAPTER 3

A Probabilistic Algorithm for the Solution of Homogeneous

Linear Inequalities

3.1. Introduction

We present our proposed algorithm for the homogeneous linear inequality con-

straints in this chapter. This algorithm has two main steps, a sampling point step

and a set covering SC problem step, these are described in detail in section 3.2.

Convergence of the algorithm is explained in section 3.3. Then, we present the de-

termination of the implicit equalities in section 3.4. Finally examples and numerical

results are provided in section 3.5.

3.2. The Proposed Probabilistic Method

Prior to explaining the proposed probabilistic method, we need to introduce the

new region B. Consider the following region

R(A, c) = {x ∈ B | c⊤x < 0, Ax ≤ 0} (3.2.1)

where

B = {x ∈ Rn | − 1 < x < 1}

and 1 is n-vector of ones. The set B is an open bounded, full dimensional box in Rn

with side length two and centred at the origin.

It is obvious that R(A, c) ⊆ R2(A, c). If there is a point in R2(A, c) then by

scaling, there is a one in R(A, c). Hence, we can restrict the feasible region of homo-

geneous linear inequality constraints in 1.1.4 within the box B. We want to introduce

a method to find a minimal representation for the linear homogenous problems. It

25

has been shown that probabilistic methods can be faster than deterministic methods

to detect necessary constraints [6]. Then we are interested to introduce our algorithm

based on probabilistic methods such as HR methods. We know that the feasible region

for the linear homogenous problems are unbounded, if we want to use HR methods

we need to reduce our feasible region to a bounded region like B. Sampling points

uniformly in the box B is easy since all that is needed is independently generate each

coordinate of the point uniformly from (−1, 1). A proposed probabilistic method is

presented that, with probability one, either finds a nonzero solution to (1.1.3 - 1.1.4)

or determines that no such solution exists. In addition, this method collects all the

information that can provide a minimal representation or an irreducible infeasible set

(IIS) in the case of infeasibility. This method is based on HR methods and on the

set covering paradigm. For simplicity of the proposed algorithm, we can define both

systems 1.1.3 and 1.1.4 into one system such that the feasible region of this system

denoted by Z and this region which may or may not be empty. Also we set c = a0.

Z := {x ∈ Rn | x ̸= 0, a⊤0 x < 0, a⊤i x ≤ 0}

If a0 = 0 then we are finding a nonzero solution to a⊤i x ≤ 0; otherwise we are finding

a solution to a⊤i x ≤ 0 with a⊤0 x < 0 making the condition x ̸= 0 redundant.

We assume without loss of generality, that there are no duplicate constraints or

implicit equalities. However if there are duplicate constraints, it can be removed by

our algorithm or by deterministic methods [26]. Implicit equalities will be found by

our algorithm and this is discussed in section 3.4. Also we assume that a0 ̸= 0 in this

thesis. We start the algorithm with any nonzero point x0 which is chosen uniformly

in B. That is we choose independently xk
i ∼ U(−1, 1) where i = 1, 2, . . . , n and xk

i

refer to the i-th component of xk.

3.2.1 Sampling Points.

There are three main parts: a hit part, a run part and cleaning the set covering

matrix part. In the hit part we need follow from step (0) to step (5), and for a run

26

part we need follow step (6). Finally for cleaning the set covering matrix we need

follow step (7).

Step (0): Initialization

In this step at first we set N as the iteration limit, we set the iteration counter

k = 0, and we let Mk = { i | a⊤i xk < 0, i ∈ I0 }. Since a0 ̸= 0 we have m + 1

inequalities. And we generate a random direction vector sk as we did in Algorithm 1.

Step (1): Determination of the first row of the set covering matrix

In this step we calculate the corresponding observation xk and we set δ = δ(xk).

If δ(xk) = 0 then we are done and xk is a feasible solution to our problem, though we

may choose to continue the algorithm in order to provide an analysis of the constraints

set. In this case we start with E = ∅, otherwise δ(xk) ̸= 0 and we set δ(xk) = E.

Step (2): Computation of the step sizes

In this step, we calculate step sizes. We know that together, xk and sk define the

line

L(xk, sk) = {x ∈ Rn | x = xk + σsk, σ ∈ R}

and the intersection of this line with B is the line segment

L̂(xk, sk) = {x ∈ Rn | x = xk + σsk, σ−1 ≤ σ ≤ σm+1}

where

σ−1 = −1− xk
κ and σm+1 = 1− xk

κ.

Then we calculate the intersection points of the line segment L̂(xk, sk) with all of

the inequality boundaries. Since sk = eκ, the intersection point with the boundary of

the i-th constraint, i ∈ I0 is determined as follows:

a⊤i (x
k + σis

k) = 0 ←→ σi = −(a⊤i xk/a⊤i eκ)

= −(a⊤i xk/aiκ) (where aiκ ̸= 0).

If aiκ = 0 then there is no intersection between line segment L̂(xk, sk) and the bound-

ary of the i-th constraint.

27

Step (3): Selection of the suitable step size

In this step we need to choose the suitable step size σk uniformly in the line

segment L̂(xk, sk) in order to find the point xk+1 for the next iteration. Since xk+1

must be in the box B and must satisfy the constraints in Mk, we can change the

interval [σ−1, σm+1] and we can choose xk+1 uniformly in the line segment:

L′(xk, sk) = {x ∈ Rn | x = xk + σsk, σr ≤ σ ≤ σu},

where

σr = max{σ−1,max{σi : σi < 0, i ∈Mk, aiκ < 0}}

and

σu = min{σm+1,min{σi : σi > 0, i ∈Mk, aiκ > 0}}.

We select σk ∼ U(σr, σu).

Prior to proceeding to step (4) we need to know some things about the crossing

points strategy.

(a) Crossing Points Strategy

The proposed algorithm is based on the solution of the set covering problem where

each row of the set covering matrix corresponds to a sample point, and is determined

by the constraint satisfaction at that sampled point, therefore the sampling method-

ology is very important to this algorithm. Hence, we want to generate as many

observations as we can for the matrix E. One way to do this is to sample along the

line segment L′(xk, sk). This is done by taking advantage of the constraint intersec-

tion points as suggested in Caron et. al. [3]. From the constraint intersection points,

we have the increasing ordered values

λℓ− < λℓ−+1 < . . . < λ−1 < 0 < λ1 < . . . < λℓ+−1 < λℓ+

where λℓ+ = σm+1 > 0 and λℓ− = σ−1 < 0 and every λι, ι = ℓ− + 1, . . . , ℓ+ − 1,

corresponds, and is equal to, one of σ values when the line segment L̂(xk, sk) crosses

a constraint boundary inside the box B.

28

At the crossing point λι we denote by iι the index of the constraint whose boundary

is crossed, i.e, a⊤iι (x
k + σιs

k) = 0. When the parameter σ increases beyond λι, the

iι-th bit of δ(xk + σsk), changes (flips) from 0 to 1 or from 1 to 0 . This help us

to construct the rows of E by generating an observation for each interval of the line

segment L̂(xk, sk) between the crossing points.

As we need to clean the matrix E in step (7) of the proposed algorithm. For

simplicity of the final step we can use the “cleaning as we cross” strategy in [3]. If

we want to follow this strategy, we will append the non-zero observation δ(xk) to E,

only if a bit of current observation changes from 1 to 0. We do not append the zero

observation to E, as the constraint 0⊤y ≥ 1 is infeasible.

We demonstrate this strategy with Figure 3.1. In Figure 3.1 we have four ho-

mogenous inequality constraints. The current iterate is x0, the direction is s0 and

the line segment is AB. The observation in the region containing x0 is denoted by

δ0 = (1, 1, 0, 0). When we start from x0 and move to the right, we cross the boundaries

of constraints (1) and (2). As we cross the boundary of constraint (1) the first bit of

the observation δ0 changes from 1 to 0 and we get δ1 = (0, 1, 0, 0). Since δ0 majorizes

δ1 we remove δ0. As we continue in the right direction we cross the boundary of

constraint (2) and we get σ2 = (0, 0, 0, 0) but we do not append this observation to

E. As we start from x0 and move to the left, we cross the boundaries of constraints

(3) and (4). We get δ3 = (1, 1, 1, 0) and δ4 = (1, 1, 1, 1). Since δ0 is majorized by δ3

and δ3 is majorized by δ4 we can remove both δ3 and δ4. Only the observation δ1 will

be appended to E.

Step (4): Ordering the value of step sizes

In this step we sort the value of those σi, i ∈ I0 which are in the interval [σr, σu],

in increasing order, as described in the description of the crossing point strategy.

Step (5): Collect the rows of the set covering matrix

In this step we follow the crossing point strategy to collect the rows of the set

covering matrix E. We start with δ = δ(xk) and we do the following loop.

29

Figure 3.1. Crossing point strategy.

For ι = 1, . . . , ℓ+ where λℓ+ = σu

Create δ̂ from δ by flipping the iι bit of δ

If δ̂iι = 0, δ̂ ̸= 0 and δ̂ is not a row of E append δ̂ to E

If δ̂iι = 0, δ̂ ̸= 0 and δ is a row of E, remove δ from E.

Flip δiι

Repeat the loop for ι = −1, . . . , ℓ− where λℓ− = σr starting again with δ = δ(xk)

Step (6): Update

In the run step we update xk+1 = xk +σksk, a⊤i x
k+1 = a⊤i x

k +σka⊤i s
k, and Mk+1.

Until k ≤ N , we repeat steps (1) to (6).

Step (7): Clean the set covering matrix

In this step we need to remove those rows of the matrix E that are redundant.

In this step, we use singleton rows of E, if any exist, to remove redundancies in E.

For example, if a row of E has a one only in column k, then all rows with a one in

column k are redundant and can be removed.

30

3.2.2 Set Covering.

In this step, we solve the set covering problem 2.4.3. Since any feasible solution

y gives a reduction then we do not need to find an optimal solution for 2.4.3 to get a

benefit. We use Chavatal’s greedy algorithm [24] to get our solution.

(a) Greedy Algorithm

If we let E = (eij) where E is the set covering matrix of order (r ×m) such that

eij =

 1 if i ∈ pj

0 otherwise

so m columns of E are the incidence vectors of p1, . . . , pm. In this algorithm we

consider the finite sets p1, . . . , pm and we denote
∪
(pj : 1 ≤ j ≤ m) by I such that

I = {1, 2, . . . , r}, J = {1, 2, . . . ,m} and we need to find a subset J∗ of J such that∪
(pj : j ∈ J∗) = I. Then J∗ in Chavatal’s greedy algorithm is called a cover for the

problem 2.4.3. In fact any elements of J∗ provides the non-zero component of y.

Algorithm 2 The Greedy Algorithm for the Set Covering Problem

Given finite sets p1, p2, . . . , pm

Set J∗ = ∅

If pj = ∅ for all j ∈ J then stop, and J∗ is a cover

Otherwise find the index k maximizing |pj|, j ∈ J , Where |pj| denotes the cardi-

nality of pj

Set J∗ = J∗∪{k}
set pj = pj \ pk, where the set pj \ pk is the set pj with the elements of the set pk

being removed.

31

Example 1. Find a feasible solution for the set covering problem 2.4.3 such that

matrix E is defined as following:

E =



0 1 1 0 0 0 0

0 1 0 0 0 0 1

0 0 0 1 0 0 1

1 0 0 0 0 0 1


.

We have p1 = {4}, p2 = {1, 2}, p3 = {1}, p4 = {3}, p5 = ∅, p6 = ∅ and p7 = {2, 3, 4}.

Since matrix E has four rows and seven columns then we set I = {1, 2, 3, 4} and

J = {1, 2, 3, 4, 5, 6, 7}, and we start the Algorithm 2.

Iteration (0)

We set J∗ = ∅, since all sets pj for all j ∈ J are not empty then we find the

maximum index k such that set pk has a maximum cardinality, that is

pk = max{|p1|, |p2|, |p3|, |p4|, |p7|} = max{1, 2, 1, 1, 3} = 3. Then k = 7 and we set

J∗ = {7} also, we calculate new p1, p2, p3, p4 and p7 such that

p1 = p1 \ p7 = ∅

p2 = p2 \ p7 = {1}

p3 = p3 \ p7 = {1}

p4 = p4 \ p7 = ∅

p7 = p7 \ p7 = ∅

Iteration (1)

We have J∗ = {7} since sets p2 and p3 are not empty then we set pk = max{|p2|, |p3|} =

max{1, 1} = 1 then we have either index k = 2 or index k = 3. If we take the index

k = 2 then we set J∗ = {7, 2} and new p2, p3 are calculated as follows:

p2 = p2 \ p2 = ∅

p3 = p3 \ p2 = ∅
32

Iteration (2)

We have J∗ = {7, 2} since all sets pj = ∅ for all j ∈ J we stop, then J∗ = {7, 2} is a

cover for I in the Example 1, it is obvious that p7
∪
p2 = I. Then y = (0, 1, 0, 0, 0, 0, 1)

is a feasible solution for the Example 1. Similarly if we take index k = 3 then

J∗ = {7, 3} is another cover for I and y = (0, 0, 1, 0, 0, 0, 1) is an other feasible

solution for the Example 1. �

3.3. Convergence of the Algorithm

In this part we show that our variation of hit and run method guaranties a

feasible solution if one exists. We define Mk as the set of all strict inequalities

satisfied at xk.

Mk = { i | a⊤i xk < 0, i ∈ I0 }.

We define Ck be the intersection of those inequality regions containing xk. From [3]

we have the following theorem.

Theorem 3.3.1. If Z ̸= ∅, the proposed algorithm will, with probability one, find

a point x ∈ Z .

Proof. Suppose that the feasible region Z ̸= ∅. The initial point x0 will be

chosen uniformly in the bounding boxB. Let C0 be the intersection of those inequality

regions containing x0, and let M0 be the set of all strict inequalities satisfied at x0.

When we start the algorithm then point x1 will be found in C1 with corresponding

M1. The choice of σ0 ensure that M0 ⊆ M1. Suppose we continue the algorithm

until we find a point xk in a region Ck with set Mk, such that Mk−1 ⊆Mk. Since our

proposed algorithm is uniform in Ck, if the region Ck is not feasible then point xk+1

will be found in Ck+1 with corresponding Mk+1, Mk ⊆ Mk+1. Finally all of m + 1

constraints will be used in the algorithm, then the feasible point will be found. �
33

Algorithm 3 Algorithm for the solution of homogeneous linear inequalities

Given a matrix A such that A⊤ = [a0, . . . , am], and a point x0 ∈ B. Set k = 0

while k ≤ N do

Select an integer κ uniformly from {1, . . . , n} and set sk to be the κ-th coordinate

vector.

Set Mk = { i | a⊤i xk < 0, i ∈ I0 }

Determine intersection points σ−1, σm+1 and all σi, i ∈ I0

Determine σr and σu

Select σk ∼ U(σr, σu)

From the intersection points list and order all σi which are in the interval [σr, σu]

Let δ = δ(xk) and

for ι = 1, . . . , ℓ+ do

Create δ̂ from δ by flipping the iι bit of δ

If δ̂iι = 0, δ̂ ̸= 0 and δ̂ is not a row of E append δ̂ to E

If δ̂iι = 0, δ̂ ̸= 0 and δ is a row of E, remove δ from E.

Flip δiι

end for

Repeat the loop for ι = −1, . . . , ℓ− starting again with δ = δ(xk)

Replace xk with xk + σksk

Set k to k + 1

end while

Clean the matrix E

Solve the set covering problem to find y. For any nonzero component yj of y, list

the j-th constraint as necessary. Otherwise list the j-th constraint as redundant.

In the proposed algorithm, after feasibility is found we continue the algorithm,

which would be equivalent to Telgen’s CD algorithm, until N iterations are complete.

We then solve the SC problem.

34

3.4. Determination of Implicit Equality

The proposed algorithm is designed for homogeneous linear inequality system

without implicit equalities. In this section we explain how this algorithm can identify

the implicit equalities in our problem. In step (2), suppose that σk
i = σk

j . Then

either constraints i and j have the same boundaries or the line segment L̂(xk, sk)

hits the intersection point of these two boundaries, which has probability zero. Thus,

constraints i and j might, together, be implicit equalities. This can be checked

algebraically.

3.5. Examples and Numerical Results

We implemented the algorithm using MATLAB 7.2 educational software. We

discuss an implementation of the algorithm and analyze the performance of this im-

plementation in this section. All examples were run on a computer with Pentium 4

processor (2.2 GHz, 3GB RAM). At first we solve very simple examples graphically,

then we test them using our software in order to verify the results.

Consider a set of four homogeneous linear inequality constraints given by

x1 + x2 ≤ 0 (1)

x1 − x2 ≤ 0 (2)

x1 ≤ 0 (3)

x2 < 0. (4)

The constraints graphed in Figure 3.2. The shaded area of Figure 3.2 is the set of

solutions for this problem. From Figure 3.2 it is obvious that constraints (2) and (4)

are necessary and constraints (1) and (3) are redundant.

Now we use the algorithm to solve the problem and we expect to get the same

results, we start the algorithm with x0 = [0.9562, 0.2810]⊤ which is chosen randomly

in B.

Iteration (0)

Step (0): N = 4, s0 = [1, 0]⊤, M0 = {}.
35

Figure 3.2. The example of linear homogeneous inequalities.

Step (1): δ(x0) = (1, 1, 1, 1), and

E =
(

1 1 1 1

)
.

Step (2): σ−1 = −1.9562, σ1 = −1.2372, σ2 = −0.6752, σ3 = −0.9562, σ4 =

0.0438,

and σr = −1.9562, σu = 0.0438.

Step (3): σ0 = −0.5935.

Step (4): −1.9562 < −1.2372 < −0.9562 < −0.6752 < 0 < 0.0438.

Step (5): For ι = 2 we have δ̂ = (1, 0, 1, 1) and after clean as cross we have

E =
(

1 0 1 1

)
.

36

For ι = 3 we have δ̂ = (1, 0, 0, 1) and after clean as cross we have

E =
(

1 0 0 1

)
.

For ι = 1 we have δ̂ = (0, 0, 0, 1) and after clean as cross we have

E =
(

0 0 0 1

)
.

Step (6): x1 = [0.9562, 0.2810]⊤ + (−0.5935)[1, 0]⊤ = [0.3627, 0.2810]⊤.

Iteration (1)

Step (0): s1 = [0, 1]⊤, M1 = {}.

Step (1): δ(x1) = (1, 1, 1, 1), and

E =

 0 0 0 1

1 1 1 1

 .

Step (2): σ−1 = −1.2810, σ0 = −0.2810, σ1 = −0.6437, σ2 = 0.0817, σ4 = 0.7190,

and σr = −1.2810, σu = 0.7190.

Step (3): σ1 = −1.0116.

Step (4): −1.2810 < −0.6437 < −0.2810 < 0 < 0.0817 < 0.7190.

Step (5): For ι = 2 we have δ̂ = (1, 0, 1, 1) and

E =


0 0 0 1

1 1 1 1

1 0 1 1

 ,

and after clean as we cross, we have

E =

 0 0 0 1

1 0 1 1

 .

For ι = 0 we have δ̂ = (1, 1, 1, 0) and

E =


0 0 0 1

1 0 1 1

1 1 1 0

 .

37

For ι = 1 we have δ̂ = (0, 1, 1, 0) and

E =



0 0 0 1

1 0 1 1

1 1 1 0

0 1 1 0


,

and after clean as we cross, we have

E =


0 0 0 1

1 0 1 1

0 1 1 0

 .

Step (6): x2 = [0.3627, 0.2810]⊤ + (−1.0116)[0, 1]⊤ = [0.3627,−0.7306]⊤.

Iteration (2)

Step (0): s2 = [1, 0]⊤, M2 = {1, 4}.

Step (1): δ(x2) = (0, 1, 1, 0), and

E =



0 0 0 1

1 0 1 1

0 1 1 0

0 1 1 0


.

Step (2): σ−1 = −1.3627, σ1 = 0.3679, σ2 = −1.0932, σ3 = −0.3627, σ4 = 0.6373,

and σr = −1.3627, σu = 0.3679.

Step (3): σ2 = −0.9089.

Step (4): −1.3627 < −1.0932 < −0.3627 < 0 < 0.3679.

Step (5): For ι = 3 we have δ̂ = (0, 1, 0, 0) and

E =



0 0 0 1

1 0 1 1

0 1 1 0

0 1 1 0

0 1 0 0


,

38

and after clean as we cross, we have

E =



0 0 0 1

1 0 1 1

0 1 1 0

0 1 0 0


.

For ι = 2 we have δ̂ = (0, 0, 0, 0).

Step (6): x3 = [0.3627,−0.7306]⊤ + (−0.9089)[1, 0]⊤ = [−0.5462,−0.7306]⊤.

Iteration (3)

Step (0): s3 = [1, 0]⊤, M3 = {1, 4, 3}.

Step (1): δ(x3) = (0, 1, 0, 0), and

E =



0 0 0 1

1 0 1 1

0 1 1 0

0 1 0 0

0 1 0 0


.

Step (2): σ−1 = −0.4538, σ1 = 1.2768, σ2 = −0.1843, σ3 = 0.5462, σ4 = 1.5462,

and σr = −0.4538, σu = 0.5462.

Step (3): σ3 = −0.3844.

Step (4): −0.4538 < −0.1843 < 0 < 0.5462.

Step (5): For ι = 2 we have δ̂ = (0, 0, 0, 0).

Step (6): x4 = [−0.5462,−0.7306]⊤ + (−0.3844)[1, 0]⊤ = [−0.9307,−0.7306]⊤.

Iteration (4)

Step (0): s4 = [1, 0]⊤, M4 = {1, 4, 3, 2}.

Step (1): δ(x4) = (0, 0, 0, 0) then point x4 is a feasible solution. Also we see that

M0 ⊆ M1 ⊆ M2 ⊆ M3 ⊆ M4 and M4 = I. As we get the correct results then there

is no need to complete this iteration.

39

step (7): We clean the matrix E to get

E =

 0 0 0 1

0 1 0 0

 .

To complete the algorithm, it remains to solve the set covering problem.

For this step we use the Greedy algorithm to get y = (0, 1, 0, 1), indicating that

constraints 2 and 4 are necessary.

For constraint analysis the numerical results from the algorithm are corrected.

However the correct result can not always be expected from the algorithm since this

method is probabilistic. If we start the algorithm for the first example with a different

initial point, say x0 = [0.3951,−0.3077]⊤ then we would have the following steps.

Iteration (0)

Step (0): N = 4, s0 = [1, 0]⊤, M0 = {4}.

Step (1): δ(x0) = (1, 1, 1, 0), and

E =
(

1 1 1 0

)
.

Step (2): σ−1 = −1.3950, σ1 = −0.0873, σ2 = −0.7027, σ3 = −0.3950, σ4 = 0.6050,

and σr = −1.3950, σu = 0.6050.

Step (3): σ0 = 0.4727.

Step (4): −1.3950 < −0.7027 < −0.3950 < −0.0873 < 0 < 0.6050.

Step (5): For ι = 1 we have δ̂ = (0, 1, 1, 0) and

E =

 1 1 1 0

0 1 1 0

 ,

and after clean as we cross, we have

E =
(

0 1 1 0

)
.

For ι = 3 we have δ̂ = (0, 1, 0, 0) and

E =

 0 1 1 0

0 1 0 0

 ,

40

and after clean as we cross, we have

E =
(

0 1 0 0

)
.

For ι = 2 we have δ̂ = (0, 0, 0, 0).

Step (6): x1 = [0.3951,−0.3077]⊤ + (0.4727)[1, 0]⊤ = [0.8678,−0.3077]⊤.

Iteration (1)

Step (0): s1 = [0, 1]⊤, M1 = {4}.

Step (1): δ(x1) = (1, 1, 1, 0), and

E =

 0 1 0 0

1 1 1 0

 .

Step (2): σ−1 = −0.6923, σ0 = 0.3077, σ1 = −0.5601, σ2 = 1.1755, σ4 = 1.3077,

and σr = −0.6923, σu = 0.3077.

Step (3): σ1 = −0.1589.

Step (4): −0.6923 < −0.5601 < 0 < 0.3077.

Step (5): For ι = 1 we have δ̂ = (0, 1, 1, 0) and

E =


0 1 0 0

1 1 1 0

0 1 1 0

 ,

and after clean as we cross, we have

E =

 0 1 0 0

0 1 1 0

 .

Step (6): x2 = [0.8678,−0.3077]⊤ + (−0.1589)[0, 1]⊤ = [0.8678,−0.4666]⊤.

Iteration (2)

Step (0): s2 = [1, 0]⊤, M2 = {4}.
41

Step (1): δ(x0) = (1, 1, 1, 0), and

E =


0 1 0 0

0 1 1 0

1 1 1 0

 .

Step (2): σ−1 = −1.8678, σ1 = −0.4012, σ2 = −1.3343, σ3 = −0.8678, σ4 =

0.1322,

and σr = −1.8678, σu = 0.1322.

Step (3): σ2 = −1.6202.

Step (4): −1.8678 < −1.3343 < −0.8678 < −0.4012 < 0 < 0.1322.

Step (5): For ι = 1 we have δ̂ = (0, 1, 1, 0) and

E =



0 1 0 0

0 1 1 0

1 1 1 0

0 1 1 0


,

and after clean as we cross, we have

E =


0 1 0 0

0 1 1 0

0 1 1 0

 .

For ι = 3 we have δ̂ = (0, 1, 0, 0) and

E =



0 1 0 0

0 1 1 0

0 1 1 0

0 1 0 0


,

42

and after clean as we cross, we have

E =


0 1 0 0

0 1 1 0

0 1 0 0

 .

For ι = 2 we have δ̂ = (0, 0, 0, 0).

Step (6): x3 = [0.8678,−0.4666]⊤ + (−1.6202)[1, 0]⊤ = [−0.7524,−0.4666]⊤.

Iteration (4)

Step (0): s4 = [1, 0]⊤, M4 = {4, 1, 2, 3}.

Step (1): δ(x1) = (0, 0, 0, 0), and x4 is a feasible solution, for constraint analysis

we continue Telgen’s CD algorithm. Then we have σr = −0.2476, σu = 0.2858. Since

u = 2 then constraint (2) is necessary.

Step (7):

E =
(

0 1 0 0

)
.

In set covering step we get y = (0, 1, 0, 0), giving that constraint (2) is necessary. We

have now shown one example with two different results. In this example the four

constraints partition B into 8 full dimensional regions. If the algorithm had recorded

all of the possible observations from these regions then the set covering matrix E

would have been complete and the algorithm would identify all necessary constraints.

Otherwise the set covering matrix E will have missing rows and the algorithm may

not identify all necessary constraints.

We tested the algorithm on 12 feasible examples that were randomly generated.

The examples and results are described in table 1. The number of constraints is m

which consists of m − 1 inequalities and one strict inequality. The columns give the

example number, the number of variables n, the number of constraints m, the number

of identified necessary constraints m̂, the number of iterations to get feasibility F and

the number of iterations limit N .

43

Table 1. Description of the Examples and Numerical Results

EX. n m m̂ F N

Ex.1 5 5 5 22 1000

Ex.2 5 10 8 3 1000

Ex.3 5 50 16 31 1000

Ex.4 10 10 10 18 2000

Ex.5 10 20 19 118 2000

Ex.6 10 100 27 639 2000

Ex.7 50 50 32 1340 8000

Ex.8 50 100 63 2857 8000

Ex.9 50 500 114 29541 50000

Ex.10 100 100 88 10000 20000

Ex.11 100 200 122 20221 30000

Ex.12 100 1000 890 44552 60000

44

CHAPTER 4

Conclusion

In this chapter, conclusions are presented based on the proposed algorithm and

numerical investigations in chapter 3. The following items shows the major contribu-

tions of this thesis work:

• We developed a method for implementing Boneh’s set covering problem to find

a feasible solution to the homogeneous linear inequality systems. The applications of

this work is described in detail in chapter 1.

• We analyzed the set of homogeneous linear inequality constraints as redundant

and necessary by our method. This work is applicable for linear programs. The

removal of redundant constraints can improve the performance of interior point algo-

rithms. This can be increased the size of the problems which has to solve.

• The advantage of the proposed algorithm is that we do not need the interior

feasible point by comparison to other basic hit and run methods.

• The numerical results show that the proposed algorithm can solve the problems

with varying sizes and dimensions.

45

Bibliography

[1] R. J. Caron, T. Traynor, A general framework for the analysis of sets of constraints, in: S. Neogy,

R. Bapat, A. Das, T. Parthasarathy (Eds.), Mathematical Programming and Game theory for

Decision Making, World Scientific, 2007, pp. 33–45.

[2] A. Boneh, Identification of redundancy by a set-covering equivalence, in: J. Brans (Ed.), Oper-

ational Research ’84, Elsevier Science Publishers B.V.(North Holland), Amsterdam, 1984, pp.

407–422.

[3] R. J. Caron, S. Jibrin, T. Traynor, Contraint analysis of linear matrix inequalities, INFORMS

Journal of Computing 22 (2010) 144–15 3.

[4] A. Boneh, A. Golan, Constraints redundancy and feasible region boundedness by a random

feasible point generator (RFPG), Paper presented at EURO III, Amsterdam.

[5] R. L. Smith, Efficient monte carlo procedures for generating points uniformly distributed over

bounded regions, Operations Research 32 (1984) 1296–1308.

[6] H. Berbee, C. Boender, A. H. Rinnooy Kan, H. Romeijn, C. Scheffer, R. L. Smith, J. Telgen,

Hit-and-run algorithms for the identification of nonredundant linear equalities, Mathematical

Programming 37 (1987) 184–207.

[7] J. Farkas, Über die theorie der einfachen ungleichungen, Journal für die Reine und Angewandte

Mathematik 124 (1902) 1 – 24.

[8] M. Weitzman, An economics proof of the supporting hyperplane theorem, Economics Letters

68 (2000) 1–6.

[9] W. Diewert, Chapter 3: Convex sets and concave functions (2008).

URL http://faculty.arts.ubc.ca/ediewert/581ch3.pdf

[10] D. Bertsekas, A. Nedic, A.Ozdaglar, Convex Analysis and Optimzation, Athena Scientific, 2003.

[11] D. Bertsekas, Convex optimization theory, chapter 2 exercises and solutions: Extended version,

massachusetts institute of technology.

URL http://www.athenasc.com/convexdualitysol2.pdf

[12] R. Bland, New finite pivoting rules for the simplex method, Mathematics of Operations Research

2 (1977) 103–107.

46

[13] E. Andersen, K. Andersen, Presolving in linear programming, Mathematical Programming 71

(1995) 221–245.

[14] J. T. Mark H. Karwan, Vahid Lotfi, S. Zionts (Eds.), Redundancy in mathematical program-

ming, Springer-Verlag, Berlin, 1983.

[15] R. J. Caron, J. F. McDonald, C. M. Ponic, A degenerate extreme point strategy for the clas-

sification of linear inequalities as redundant or necessary, Journal of Optimization Theory and

Applications 62 (1989) 225–237.

[16] R. Caron, W. Obuchowska, An algorithm to determine boundedness of quadratically constrained

convex quadratic programmes, European Journal of Operational Research 80 (1995) 431–438.

[17] R. Caron, W. Obuchowska, Unboundedness of a convex quadratic function subject to concave

and convex quadratic constraints, European Journal of Operational Research 63 (1992) 114–123.

[18] V. Vasilyeva, An analysis of murty’s proposeded interior point method for quadratic program-

ming, Master’s thesis, University of Windsor (2008).

[19] K. Murty, A new practically efficient interior point method for quadratic programming.

[20] J. Telgen, The CD algorithm, private communication (1979).

[21] Monte Carlo procedures for generating random feasible solutions to mathematical programs.

[22] C. Bélisle, H. Romeijn, R. Smith, Hit-and-run algorithms for generating multivariate distribu-

tions, Mathematics of Operations Research 18 (1993) 255–266.

[23] J. Feng, Redundancy in nonlinear systems: a set covering approach, Master’s thesis, University

of Windsor (1999).

[24] V. Chvatal, A greedy heuristic for the set-covering problem, Mathematics of Operations Re-

search 4 (1979) 233–235.

[25] S. Cheng, local minimum of convex function is necessarily global (2006).

URL http://planetmath.org/encyclopedia/ExtremalValueOfConvexconcaveFunctions.html

[26] J. A. Tomlin, J. F. Welch, Finding duplicate rows in a linear programming model, Operations

Research Letters 5 (1986) 7–11.

47

Vita Auctoris

Mrs. Mina Asgari Moslehabadi was born in Tehran, Iran. She got her B.Sc.

degree in Pure Mathematics at the Teaching and Training University of Tehran. She

expects to graduate with a Master of Science degree in Mathematics at the University

of Windsor in spring 2010.

48

