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Abstract

This major paper offers an extensive review of literature concerning the limiting

distributions for the eigenvalue spectrum of sample correlation matrices from a p-

dimensional population, where both the dimension p and the sample size n grow to

infinity. The study systematically categorizes the reviewed literature based on un-

derlying assumptions regarding the data characteristics. Specifically, it examines sev-

eral distinct cases: the independent and identically distributed (i.i.d) case with finite

fourth moments, the i.i.d case with infinite fourth moments, the i.i.d case with infinite

second moments, and scenarios where rows and columns of the data are linearly de-

pendent. Additionally, the major paper provides brief insights into the methodologies

employed in the reviewed papers, offering a glimpse into the diverse analytical tech-

niques utilized to investigate the limiting distributions of eigenvalues in correlation

matrices.
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Chapter 1

Introduction

In the realm of statistical analysis, there has been a growing interest in studying

heavy-tailed populations due to their widespread occurrence in various domains in-

cluding finance, natural sciences, and telecommunications, as mentioned in Ahmad

et al. (2020), LePage (2011), and Resnick (1997). According to LePage (2011), a

distribution is classified as heavy-tailed when it exhibits a heavy-tailed pattern in at

least one direction. Classical distributions cannot effectively manage data sets char-

acterized by a heavy tail due to their basic lack of flexibility. For example, Pareto

distribution is commonly used to describe financial data sets, but it may not suit

all applications as stated in Guillen et al. (2011), while the Weibull model better

fits the small loss behavior shown by Bhati and Ravi (2018). Ahmad et al. (2020)

proposed that in such cases of describing financial data sets, employing heavy-tailed

distributions as the candidate model is reliable and accurate. LePage (2011) defines

a heavy right-tailed probability distribution function F on the real line as the ratio

1−F (x)
e−tx having an infinite limit as x goes to infinity for each t > 0. The right-tail prob-

abilities 1−F (x) for this type of F exhibit a slower rate of decay to zero compared to

exponential distributions. Furthermore, LePage (2011) observed that the probability

distribution presents a heavy left-tailed trend when the probability function F (−x)

is heavy right-tailed.

Li et al. (2023), Parvin (2004), and Yao et al. (2015b) described that the sample co-

variance and sample correlation matrix are crucial in multivariate statistical analysis,

while the population covariance matrix is utilized for hypothesis testing, canonical

correlation analysis (CCA), and principal component analysis (PCA) as shown in

1



1. INTRODUCTION

Yang et al. (2019), Bilodeau and Duchesne (2002), Johnstone (2001), and Anderson

(1963). In large sample theory, it is considered that the classical limiting theorems in

statistics are fully defined. This implies that the data dimension p remains constant

as the sample size n approaches infinity, as stated by Morales-Jimenez et al. (2021).

The claim being made aligns with the findings of Yao et al. (2015b), who asserts that

the majority of asymptotic outcomes for sample covariance and correlation matri-

ces are obtained based on this particular assumption. In a low-dimensional setting,

Waternaux (1976) observed that the limiting joint distributions of the eigenvalues of

the sample covariance matrix are multivariate normal when the population roots are

simple and the underlying distribution is nonnormal. As mentioned in Davis (1977),

the likelihood ratio test in limiting distribution for multivariate normal populations

is equivalent to a normal quadratic form when the underlying distribution is not mul-

tivariate normal and the roots have multiplicity. The sample correlation matrix is

effective with a small number of variables p and a large sample size n, and its statis-

tical characteristics were widely recognized by Konishi (1979), Kollo and Neudecker

(1993), and Boik (2003). Since the analysis of large-dimensional data presents a new

problem, it is evident that most practitioners have adhered to the above idea until

recently.

As indicated by Bai and Silverstein (2010), with the rapid growth and widespread

use of computer science, numerous well-known approaches in multivariate analysis

become inefficient or even deceptive when the data dimension p is not as small, say

several tens. Therefore, recent applications frequently demonstrate large dimension-

ality, where p and n are of comparable magnitude. For example, Heiny and Yao

(2022) considered the asymptotic regime (Cγ) defined as follows:

p = pn → ∞ and
p

n
→ γ ∈ (0,∞), as n → ∞. (Cγ)

Several recent studies in high-dimensional settings focus on examining the charac-

teristics of the leading eigenvalues and their corresponding eigenvectors of the sample

covariance and correlation matrices as described in Johnstone (2001), Jolliffe and

2



1. INTRODUCTION

Cadima (2016), Hoyle and Rattray (2004), Baik and Silverstein (2006), and Lind-

sey (2004). In this regard, random matrix theory (RMT) has developed useful tools,

where RMT traces back to the development of quantum mechanics (QM) in the 1940s

and early 1950s. In QM, the energy levels of a system are described by the eigenvalues

of a Hermitian operator A on a Hilbert space called the Hamiltonian, as mentioned

in Bai and Silverstein (2010), and Couillet and Debbah (2011). Since the late 1950s,

research on the limiting spectral analysis of large dimensional random matrices has at-

tracted considerable interest among mathematicians, probabilists, and statisticians,

as indicated in Bai and Silverstein (2010), and Yao et al. (2015b). According to

Wigner (1958), a large-dimensional Wigner matrix’s predicted spectral distribution

follows the semicircular law. Further research by Arnold (1967), and Arnold (1971)

studies the distribution of eigenvalues in large symmetric matrices with indepen-

dent and identically distributed random variables, generalizing the large-dimensional

Wigner matrix. Bai and Yin (1988a) demonstrated that the spectral distribution of

a sample covariance matrix, when sufficiently normalized, tends to follow the semi-

circular law when the dimension is relatively less than the sample size.

Marchenko and Pastur (1967), and Pastur (1972) studied the distribution of eigen-

values for random matrices, focusing on two sets of random Hermitian matrices and

one set of random unitary matrices. Numerous academics have established the asymp-

totic theory of spectrum analysis of large-dimensional sample covariance matrices. Bai

and Yin (1988a) proved that as n tends to infinity, the largest eigenvalue λmax(A)

(same as λ1(A)) of sample covariance matrices converges almost surely (a.s.) to a finite

constant a. For the derivation, they have taken into account A = (Xij; 1 < i, j < ∞)

as a symmetric infinite matrix. Subsequently, when n tends to infinity, Tikhomirov

(2015) proved that the smallest eigenvalue λm(A), where aij; (i ≤ 1, j < ∞) are i.i.d.

real-valued random variables with zero mean and unit variance, converges a.s. to the

edge of the M-P law. The study by Bai and Silverstein (2008) demonstrated that the

linear spectral statistics converge a.s. to a nonrandom quantity due to the limiting be-

havior of the empirical spectral distribution. Furthermore, Bai and Silverstein (2008)

shows that if the fourth moment is finite (E|X11|4 = 2), they tend to have Gaussian

3



1. INTRODUCTION

limits. Pillai and Yin (2014) derived the edge universality (towards the Tracy-Widom

law) of covariance matrices with independent real-valued entries, which satisfies the

conditions E[Xij] = 0 and E[X2
ij] =

1
M

< ∞. The use of Gaussian covariance/cor-

relation matrices in statistical problems is essential because it enables us to derive

exact asymptotic distributions of test statistics without the need for matrix entries

dependent on limiting distributional assumptions, as shown by Pillai and Yin (2012).

Heiny and Yao (2022) points out that the absence of the finite fourth moment, where

E[X4] = ∞, which is relevant in the case with light tails, the convergence theory

for the eigenvalues and eigenvectors of sample covariance matrices is substantially

different from the classical Marčenko and Pastur theory.

In the typical extreme value theory for i.i.d. random variables, as proven by

Auffinger et al. (2009), the behavior of the largest matrix entries determines the

asymptotic behavior of the top eigenvalues. This relies on regularly varying i.i.d

entries, aij; (1 ≤ i ≤ n, 1 ≤ j ≤ n) with α ∈ (0, 4) and a slowly varying function L

at infinity defined as in (1.1). Also, Auffinger et al. (2009) proved that the largest

eigenvalue converges to a Fréchet limit distribution.

P (|aij| > x) = L(x)x−α, x > 0, (1.1)

Similar methods for developing Wigner matrices with heavy-tailed entries may be

discovered in the literature by Auffinger et al. (2009), Basrak et al. (2021), and Davis

et al. (2016), which carefully examined the infinite fourth-moment case. A consider-

able amount of literature can be found in the case where the limiting distributions

of sample covariance matrices were analyzed with infinite variance E[X2] = ∞. As-

suming regular variation with index α ∈ (0, 2), it is demonstrated that the empirical

spectral distribution (ESD) of the suitably normalized sample covariance matrix con-

verges under the condition (Cγ). The paper by Belinschi et al. (2009), and Arous and

Guionnet (2008) showed that the ESD converges weakly to a probability measure

with infinite support. The specific form of this measure depends on the parameters

α and γ.
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1. INTRODUCTION

Theoretical conclusions for high-dimensional sample correlation matrices primarily

focus on the “null model” scenario, where data is independent. Jiang (2004) proved

that the correlation matrices from i.i.d data with zero mean and unit variance show

asymptotic similarities, indicating convergence of the empirical spectral distribution

(FA) to the Marčenko–Pastur distribution.

The study by Xiao and Zhou (2010), and Jiang (2004), assuming independent

and identically distributed Xij’s, found that the smallest and largest eigenvalues of

Rn converge almost surely to the edge of the Markov-Pastur distribution. Gao et al.

(2017) introduced a novel central limit theorem for the linear spectral statistic of high-

dimensional sample correlation matrices. The theorem focused on scenarios where the

dimensionality p and the sample size n are comparable. Similarly, an analogous result

is derived for the described scenario. Bao et al. (2012), and Pillai and Yin (2012)

showed that when independent, identically distributed entries exhibit subexponential

decay in tail behavior, the sample correlation matrix has edge universality toward the

Tracy-Widom law.

Despite considerable literature and applications, the theoretical characteristics of

sample correlation, in particular the eigenvalue spectrum in large dimensions, are not

well understood and are more complex. One primary explanation is that the entries

of the standardized matrix lose their independence within each row, contrasting with

the original data matrix. While the i.i.d of different rows remains unchanged, the

dependency structure within rows changes significantly as in Heiny and Yao (2022).

Due to several concerns, investigating limiting distributions for eigenvalues of sample

correlation matrices is a critical task in heavy-tailed data. This research review

explores the complex interactions between heavy-tailed populations and their sample

correlation matrices, focusing on limiting distributions for eigenvalues.

The subsequent chapters of this major paper are organized as follows, Chapter 2

discusses the methods and algorithms employed for the spectral analysis of heavy-

tailed data. Chapter 3 presents a comprehensive analysis of the literature findings,

based on assumptions. The major paper ends with a conclusion in Chapter 4.
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Chapter 2

Methodology

This chapter provides an overview of the various methods employed in the derivation

of limiting distributions for sample correlation matrices based on heavy-tailed distri-

butions. The organization of the methodology consists of a brief overview of random

matrix theory and its relevance to the analysis of correlation matrices. Furthermore,

it reviews the key concepts and results that are important in determining the limiting

distributions of eigenvalues and understanding their characteristics.

Pillai and Yin (2012) introduced the standardized matrix, normalized by the Eu-

clidean norm, and used Green functions to overcome dependence in correlation matrix

entries. The moments of standardized matrix entries with raw data matrix moments

were compared using the Stieltjes transform of the Empirical Spectral Distribution

(ESD). Morales-Jimenez et al. (2021) built on the set of random matrix tools for

studying spiked correlation models. Key techniques included the method of moments

and the concentration of measure inequalities. Johnstone and Yang (2018) further

established that these tools allowed for rigorous analysis of the asymptotic behavior

of the eigenvalues in the spiked correlation models. The study by El Karoui (2009)

utilizes various concentration measures in understanding the behavior of the limiting

spectral distributions of a number of random matrix models. The same phenomenon

was employed to deduce the spectral properties of sample correlation matrices from

the corresponding properties of sample covariance matrices. The employed method-

ology includes truncation, centralization, and Stieltjes transform. Jiang (2004) used

moment methods and random matrix tools to find limiting distributions of eigenval-

ues of Rn, while Heiny and Mikosch (2018), and Heiny and Yao (2022) used methods

6



2. METHODOLOGY

like moments, path-shortening algorithm, and graph counting combinatorics.

Non-parametric correlation matrices, such as Kendall’s τ and Spearman’s ρ, have

recently acquired significance for analyzing heavy-tailed data. Li et al. (2023) con-

ducted the study on the spectral properties of Kendall’s rank correlation matrix. The

Hoeffding decomposition approach was used to analyze the leading terms of the sign

vector Aij produced from the p-dimensional data sample x1, ...., xn ∈ Rp. Addition-

ally, the study utilizes the Stieltjes transform of the limiting spectral distribution of

Kendall’s rank correlation matrix. Further explanation of the methods described in

this chapter can be found in the following references, Jiang (2004), Heiny and Yao

(2022), Bai and Silverstein (2010), and Yao et al. (2015b).

The methodology is divided into the following sections. Section 2.1 describes the

properties of the sample correlation matrix derived from heavy-tailed data. Also, it

covers the methodology for computing the sample covariance and correlation matrices,

including the standardization process, convergence properties, and the application of

spectral analysis techniques to understand the behavior of eigenvalues. Section 2.2 in-

cludes the methodologies used to analyze the spectral properties of large-dimensional

random matrices derived from heavy-tailed populations. This discussion encompasses

techniques such as the moment method, stieltjes transform, and orthogonal polyno-

mial decomposition, each offering insights into the behavior of eigenvalues. Addi-

tionally, this section describes key concepts such as the Marčenko-Pastur law, the

path-shortening algorithm PS(I), and fundamental terminology from graph theory

and combinatorics. Finally, in Section 2.3, we discuss the importance of the uti-

lization of simulations to validate theoretical methods for estimating the limiting

distributions of eigenvalues of sample correlation matrices.

2.1 Development of sample correlation matrix

The sample correlation matrix is derived by focusing the data from a heavy-tailed pop-

ulation. Consider a p-dimensional population X denoted as X = (X1, . . . , Xp) ∈ Rp

where the coordinates Xi are independent, non-degenerate random variables, which

7



2. METHODOLOGY

are identically distributed as a centered random variable ξ. The sample covariance

matrix S and correlation matrix R can be constructed using the p × n data matrix

X = Xn = (Xij)1≤i≤p;1≤j≤n given as;

S = Sn =
1

n
XX⊤, (2.1)

R = Rn = {diag(Sn)}−1/2 Sn {diag(Sn)}−1/2 = Y Y ⊤, (2.2)

where Y = Yn = (Yij)1≤i≤p;1≤j≤n corresponds to the standardized matrix for the

sample correlation matrix with the entries,

Yij = Y
(n)
ij =

Xij√
X2

i1 +X2
i2 + · · ·+X2

in

, (2.3)

which depend on n. Throughout the paper, we often suppress the dependence on n

in our notation. The corresponding eigenvalues of sample correlation matrix (R) and

sample covariance matrix (S) are λp(R) ≤ · · · ≤ λ2(R) ≤ λ1(R) and λp(S) ≤ · · · ≤

λ2(S) ≤ λ1(S), respectively.

Recent advancements in sample correlation matrix R often involve the conver-

gence of the normalizing denominator Sii of Yij, as defined in relation (2.3) as Sii =

{X2
i1 + X2

i2 + · · · + X2
in}/n. The law of large numbers states that under the finite

second-moment condition θ = E[ξ2] < ∞, Sii converges almost surely to θ as n

tends to ∞ (Heiny and Yao, 2022). The analysis reveals a consistent trend across

various studies in the field, highlighting the convergence phenomenon as a fundamen-

tal aspect. According to Lemma 2 in Bai and Yin (2008), uniform convergence of

max
1≤i≤p

|Sii − θ| a.s−−−→
n→∞

0 is equivalent to the finite fourth moment condition E[ξ4] < ∞.

The eigenvalue perturbation inequality proposed by Weyl is crucial in understand-

ing eigenvalue behavior in matrices undergoing perturbations. According to Weyl’s

inequality, the spectral properties of two Hermitian matrices, R and S, display asymp-

totic equivalence. That is, max
1≤i≤p

|λi(R) − θ−1λi(S)|
a.s−−−→

n→∞
0 (El Karoui, 2009). This

approach was mainly utilized in Johnstone (2001), Jiang (2004) and Bai and Silver-

8



2. METHODOLOGY

stein (2010) for deriving that

λ1(R)
a.s−−−→

n→∞
(1 +

√
γ)2, and λp(R)

a.s−−−→
n→∞

(1−√
γ)2,

and

θ−1λ1(S)
a.s−−−→

n→∞
(1 +

√
γ)2, and θ−1λp(S)

a.s−−−→
n→∞

(1−√
γ)2,

with the growth condition, limn→∞
pn
n
= γ ∈ (0, 1].

The concept of asymptotic equivalence of the spectral properties of R and S has

been expanded to include those with a uniformly bounded spectrum and E[ξ4(log ξ)2+ϵ] <

∞ as outlined in Theorem 1 of El Karoui (2009). The accuracy of estimating the

error associated with the approximation is a crucial aspect of studies concerning the

correlation matrix R. For example, Jiang (2004), El Karoui (2009), and Pillai and

Yin (2012) show that this approximation error is negligible and the outcomes align

for R and S. Heiny and Yao (2022) reference explores the infinite variance scenario

where θ = E[ξ2] = ∞. This approach reveals that the approximation argument loses

validity, and the convergence limits of R no longer correspond to those of S.

Extensive studies on the sample correlation matrix R have mostly focused on

the finite fourth moment assumption. In the case of infinite variance, the limiting

spectral distribution of the sample covariance matrix S has been thoroughly studied

by Belinschi et al. (2009), and Arous and Guionnet (2008). However, Heiny and

Yao (2022) mentions that the literature provides minimal insight into the sample

correlation matrix R in these settings.

Morales-Jimenez et al. (2021) examined a specific category of correlation matrix

models, spiked models within the spectrum of sample correlation matrices assume

that a few large or small eigenvalues of the population correlation matrix are dis-

tinctly separated from the remaining ones. Using random matrix theory, asymptotic

first-order and distributional results for the principal eigenvalues and eigenvectors of

sample correlation matrices were obtained by Johnstone (2001), and Morales-Jimenez

et al. (2021). Paul (2007) derived theories about sample covariance matrices in the

specific scenario of Gaussian data. Additionally, Morales-Jimenez et al. (2021) ex-

9



2. METHODOLOGY

panded upon these theories to include sample correlation matrices and extended them

to non-Gaussian data.

2.2 Spectral analysis of large dimensional random

matrices

According to Bai and Silverstein (2010), the limiting distributions for eigenvalues have

been analyzed using theoretical and empirical approaches. These theoretical analy-

ses involve deriving asymptotic results based on random matrix theory and related

mathematical frameworks like graph theory concepts and combinatorics, as studied

by Bai and Yin (1988a), Jiang (2004), and Heiny and Mikosch (2018). Empirical

analyses are involved in simulating the eigenvalue distributions using computational

methods such as Monte Carlo simulations, as stated by Adhikari and Friswell (2007).

Suppose that A is an m ×m matrix with eigenvalues λj, j = 1, 2, . . . ,m , where

λm(A) ≤ . . . ≤ λ2(A) ≤ λ1(A). If all these eigenvalues are real (e.g., if A is Hermi-

tian(see Appendix A 2)), we can define a one-dimensional distribution function called

the empirical spectral distribution (ESD) of the matrix A as follows,

FA =
1

m
#{j ≤ m : λj ≤ x}; x ∈ R, (2.4)

counting the number of eigenvalues in the subset x included in R, where # denotes

the cardinality of the set. This ESD is the normalized counting measure of the

eigenvalues. The study of convergence in the empirical spectral distributions (FAn)

for a given sequence of random matrices (An) is a significant challenge in RMT. Bai

and Silverstein (2010), and Yao et al. (2015b) stated that the importance of ESD is

that many important statistics in multivariate analysis can be expressed as functionals

of the ESD of some Random Matrices.

If FA converges to a deterministic distribution function F as n tends to infin-

ity, then F (x) is called the limiting spectral distribution (LSD) of A. Marchenko

and Pastur (1967) first derived the LSD of the sample covariance matrix and Bai

10
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and Silverstein (2004) studied the central limit theorem (CLT) for its linear spectral

statistics (LSSs) defined as,

1

n

n∑
i=1

f(λi) =

∫
f(x) dFA(x), (2.5)

where f(.) is a function on R+. Moreover, the LSD explains the first-order limits of

these LSSs, while the CLT characterizes the second-order asymptotic. In classical

probability theory, these two are analogous to the Law of large numbers and the

Central limit theorem, as described by Bai and Silverstein (2010), and Li et al. (2023).

According to Bai and Silverstein (2010), beyond a dimension of 4, the eigenvalues

of a matrix do not possess a closed form. Therefore, understanding them necessitates

the use of unique procedures. Three key methods are used in this field, moment

method, Stieltjes transform, and orthogonal polynomial decomposition, with the third

method considering underlying distributions in the RM.

2.2.1 Moment method

The moment method in Random Matrix Theory (RMT) is a powerful technique

used to analyze the statistical properties of matrices with random entries. It is an

application of the Moment Convergence Theorem (MCT), which states conditions

under which the moments of a sequence of random variables converge to those of a

limiting distribution (Bai and Silverstein (2010), and Yao et al. (2015a)).

In the following, Fn will denote a sequence of distribution functions, and the k-th

moment of the distribution Fn is denoted by

mn,k = mk(Fn) :=

∫
xk dFn(x). (2.6)

If we consider the ESD FA of a matrix A (n× n Hermitian matrix). Then, the k-th

moment of FA is given by,

mn,k(A) =

∫
xk dFA(x) =

1

n
tr(Ak). (2.7)

11
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This relation (2.7) holds significant importance within RandomMatrix Theory (RMT).

As mentioned in Bai and Silverstein (2010), the problem of demonstrating the ESD

of a sequence of random matrices {An} converging to a limit (strongly, weakly, or in

another sense) reduces to demonstrating that the sequence 1
n
tr(Ak) tends to a limit

mk in the corresponding sense for each fixed k, and then verifying the Carleman con-

dition (2.8). Utilizing the Monotone Convergence Theorem enables the achievement

of this objective.

2.2.1.1 Carleman condition

In analysis, Carleman’s condition gives a sufficient condition for the determinacy of

the moment problem. That is, no other measure ν has the same moments as µ if a

measure µ meets Carleman’s condition.

Let {mk = mk(F )} be the sequence of moments of the distribution function F . If

the Carleman condition
∞∑
k=1

m2k
−1/2k = ∞, (2.8)

is satisfied, then F is uniquely determined by the moment sequence {mk, k = 0, 1, .}.

In the majority of instances, the limiting spectral distribution (LSD) exhibits finite

support. Many findings related to determining the LSD or establishing its existence

have been derived through the estimation of the mean, variance, or higher moments

of 1
n
tr(Ak) (Bai and Silverstein, 2010).

2.2.2 Stieltjes transform

Stieltjes transform is a mathematical tool used in the theory of functions of a complex

variable and in various areas of applied mathematics, including probability theory and

random matrix theory as presented in Bai and Silverstein (2010). Similar to how the

characteristic function of a probability distribution becomes a useful tool for Central

limit theorems, the Stieltjes transform is a practical and extremely effective technique

in the study of the convergence of spectral distribution of matrices (or operators).

12
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Definition 1. (Bai and Silverstein, 2010) Let R be the real numbers and let C be the

complex numbers. Let P(R) represent the set of probability measures on the real line,

and let F(C) denote the set of functions defined on the complex plane. The Stieltjes

transform, denoted by S is defined as a mapping from P(R) to F(C).

S : P(R) → F(C),

µ → m = S(µ),

where µ ∈ P(R) is a probability measure and m: C\supp(µ) → C,

m(z) =
1

x− z
µ(dx), z ∈ C+. (2.9)

Here C+ denotes the complex numbers with positive imaginary part. The function m

is called the Stieltjes function of µ.

Let A be an n × n Hermitian matrix and Fn be its ESD. Then, the Stieltjes

transform of Fn is given by,

sn(z) =

∫
1

x− z
dFn(x) =

1

n
tr (A− zI)−1 . (2.10)

2.2.3 Orthogonal polynomial decomposition

Deift (2000) defined orthogonal polynomial decomposition as a technique used in

Random Matrix Theory (RMT) to analyze the joint probability density function of

the eigenvalues of random matrices. In the context of RMT, random matrices often

represent complex systems with random interactions. Therefore, understanding the

statistical properties of these matrices is crucial for gaining insights into the behavior

of the systems they represent, as explained by Van Assche (2020).

Suppose that the matrix A follows a probability density pn = H(λ1, ....λn). It

is well established that the joint density function of its eigenvalues takes the form

pn(λ1, · · ·λn) = cJ(λ1, · · ·λn)H(λ1, · · ·λn). where J stems from the integration of the

Jacobian of the transform from the matrix space to its eigenvalue-eigenvector space.

13



2. METHODOLOGY

Typically, it is assumed that H adopts the structure H(λ1, · · ·λn) =
∏n

k=1 g(λk), and

J takes the form
∏

i<j(λi − λj)
β
∏n

k=1 hn(λk). For example, β = 1 and hn = 1 for a

real Gaussian matrix, β = 2, hn = 1 for a complex Gaussian matrix, and β = 1 and

hn(x) = xn−p for a real Wishart matrix with n ≥ p. In this regard, Deift (2000), and

Bai and Silverstein (2010) provide more detailed applications and examples.

2.2.4 Marčenko-Pastur law

The Marchenko-Pastur distribution (M-P), a cornerstone of random matrix theory,

describes the asymptotic behavior of singular values in large rectangular random

matrices. This well-known law was established in 1967 by mathematicians Volodymyr

Marchenko and Leonid Pastur and is documented in Marchenko and Pastur (1967).

The M-P law Fγ(x) has a density function

pγ(x) =


1

2πxγσ2

√
(bγ − x)(x− aγ), if aγ ≤ x ≤ bγ,

0, otherwise,

and has a point mass 1 − 1/γ at the origin if γ > 1, where aγ = σ2(1 − √
γ)2 and

bγ = σ2(1+
√
γ)2. Here, the constant γ is the dimension to the sample size ratio index,

and σ2 is the scale parameter. If σ2 = 1, the M-P law is said to be the standard M-P

law as described by Bai and Silverstein (2010).

The moments of M-P law are (see Appendix (A.1.1)),

mk(γ) =

∫ bγ

aγ

xkdσMP,γ(x) =
k−1∑
r=0

1

r + 1

(
k

r

)(
k − 1

r

)
γr; k ≥ 1. (2.11)

2.2.5 Path-Shortening algorithm PS(I)

Heiny and Mikosch (2018) defined the Path-shortening algorithm as a computational

technique utilized in conjunction with the method of moments to derive accurate

bounds for matrix norms, particularly in the context of sample correlation matrices.

This approach effectively takes advantage of the inherent structure of these matrices

14
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to accelerate the computation, yielding accurate estimations of matrix norms.

The result of applying the path-shortening function PS to a path I is represented

by (S(I), runs(I), simples(I)) as produced by the algorithm. Here, S(I) signifies

the resulting shortened path, runs(I) denotes the overall count of vertices removed

through Type-I reductions, and simples(I) indicates the total number of vertices

eliminated via Type-II reductions. Heiny and Mikosch (2018), and Heiny and Yao

(2022) described the following as the output PS(I) of the mentioned algorithm.

Input: Path I = (i1, . . . , ik). Set J = I and R = 0,runs = 0.

Step 0: Set l = length(I). Go to Step 1.

Step 1: Erase runs.

– If ij = ij+1 for some 1 ≤ j ≤ l, where we interpret il+1 as i1, erase element ij from

the path. Set I = (i1, . . . , ij−1, ij+1, . . . , il), runs = runs + 1 and return to Step 0.

– Otherwise, proceed with Step 2.

Step 2: Let R1 be the number of elements of the path I which appear exactly once.

Set simples := simples + s. Then define I to be the resulting (possibly shorter) path

obtained by deleting those s elements from the path I. Go to Step 3.

Step 3:

– If J = I, then return (I, runs, simples) as output.

– If J ̸= I, set J := I and return to Step 0.

For any path I, have the identity

|I| = |S(I)|+ runs(I) + simples(I). (2.12)

2.2.6 Some terminology from graph theory and combina-

torics

To evaluate the limits of moments of the ESD of a sample correlation matrix, literature

shows some useful information from combinatorics and graph theory. As given in

Bai and Silverstein (2010), this is because the mean and variance of each empirical

moment are expressed as the sum of the expectations of the products of matrix
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entries. To ensure accuracy, it is important to systematically account for the number

of significant terms within these expressions. Thus, in this section, we introduce

concepts from graph theory as explained by Bai and Silverstein (2010), and Heiny

and Yao (2022).

The set of the first m positive integers {1, 2, . . . ,m} is represented as [[1,m]]. A

tuple I = (i1, i2, . . . , ik) ∈ [[1, p]]k of positive integers is defined as a path with vertices

il ∈ {1, 2, . . . , p}. The length of the path is denoted by k = |I|. The set of distinct

elements in I is denoted by {I}. The cardinality of a set A is denoted by #A. If

r = |{I}|, then I is termed an r-path. For instance, if I = (1, 1, 2, 2), it has a length

of 4, and it is considered a 2-path since {I} = {1, 2}. A path is defined as canonical

if i1 = 1 and il ≤ max{i1, i2, . . . , il−1} + 1 for l ≥ 2. A canonical r-path I satisfies

{I} = [[1, r]] (Bai and Silverstein (2010), and Heiny and Yao (2022)).

To utilize the moment method for demonstrating the convergence of the ESD of

high-dimensional sample correlation matrices to the M-P law, it is essential to grasp

the characteristics of a specific category of ∆-graphs. Suppose that i1, . . . , ik are k

positive integers (not necessarily distinct) not greater than p, and j1, . . . , jk are k

positive integers (not necessarily distinct) not larger than n. A ∆− graph can be

defined as follows. Draw two parallel lines, referred to as the I line and the J line.

Plot i1, . . . , ik on the I line and j1, . . . , jk on the J line. Then, draw k (down) edges

from iu to ju for u = 1, . . . , k and k (up) edges from ju to iu+1 for u = 1, . . . , k (with

the convention that ik+1 = i1). The graph is denoted by G(i, j), where i = (i1, . . . , ik)

and j = (j1, . . . , jk). An example of such a graph in Heiny and Yao (2022) with

k = 3, is given in Figure 2.1. Two graphs are considered isomorphic when they can

be transformed into each other using appropriate permutations on the sets (1, 2, . . . , p)

and (1, 2, . . . , n), and each isomorphism class has a unique canonical graph as provided

in Bai and Silverstein (2010), Heiny and Mikosch (2018), and Heiny and Yao (2022).
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2. METHODOLOGY

Figure 2.1: ∆− Graph with I = (i1, i2, i3) and T = (j1, j2, j1)
.

2.3 Comparison and validation

The use of simulations to validate theoretical methods for estimating the limiting

distributions of eigenvalues of sample correlation matrices is an essential stage in the

process of comparison and confirmation. This ensures the precision and reliability of

the produced limiting distributions, providing insights into the behavior of the sample

correlation matrix’s eigenvalues and their asymptotic properties (Heiny and Mikosch

(2018), Heiny and Yao (2022), Jiang (2004), and El Karoui (2009)).
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Chapter 3

Results and Discussion

This chapter discusses the various conditions required to derive the limiting distri-

butions for the eigenvalue spectra of sample correlation matrices. The findings are

categorized into four primary scenarios based on input data characteristics while pro-

viding insights into method behavior and performance across different conditions.

The structure of this chapter is as follows, Section 3.1 focuses on the case of i.i.d

entries with finite fourth moment. Section 3.2 addresses the case of i.i.d entries with

infinite fourth moment and finite second moment. In Section 3.3, we discuss the case

of i.i.d entries with infinite second moment. Finally, Section 3.4 explores the case of

identically distributed, but dependent entries.

3.1 The case of i.i.d entries with finite fourth mo-

ment

The assumption of independent and identically distributed (i.i.d) entries with a finite

fourth moment serves as a foundational premise, facilitating the utilization of specific

statistical techniques designed for finite moments. The scenario implies that the

elements in our dataset are i.i.d, with a bounded fourth moment. Heiny and Mikosch

(2018) enhanced the findings of Jiang (2004) and proved that, application of Weyl’s

inequality by Bhatia (1997) for the sample correlation matrix R = F 1/2XX ′F 1/2 with
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3. RESULTS AND DISCUSSION

F = diag(1/D1, . . . , 1/Dp), where

Di = D(n)i =
n∑

j=1

X2
ij, i = 1, . . . , p; n ≥ 1.

yields,

max
i=1,...,p

∣∣λi(R)− n−1λi(S)
∣∣ ≤ ∣∣XX ′F − n−1XX ′∣∣

2
≤ n−1 |XX ′|2|nF − I|2 (3.1)

= n−1λ1(S) max
i=1,...,p

∣∣∣∣nDi

n
− 1

∣∣∣∣ .
For any matrix A, |A|2 denotes its spectral norm, i.e., its largest singular value (see

Appendix A3). Furthermore, leveraging the concept introduced in Lemma 2 of Bai

and Yin (2008), it is established that the condition E[ξ4] < ∞ is equivalent to

max
i=1,...,p

|nDi

n
− 1| a.s.−−−→

n→∞
0.

Hence, as n tends to infinity, maxi=1,...,p |λ(R)− n−1λ(S)| → 0 a.s.

Bao et al. (2012) assumed independently and identically distributed, symmetric

entries Xij and suggested the existence of positive constants C and C ′, where the

P (|X| ≥ tC) ≤ e−t, t ≥ C ′. Also, they showed that

n2/3

(√
γ
)1/3(

1 +
√
γ
)4/3

(
λ1(R)

n
−
(
1 +

√
p

n

)2
)

d−−−→
n→∞

ξ. (3.2)

where the random variable in the limit follows a Tracy–Widom distribution of the

first-order.
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3.2 The case of i.i.d entries with infinite fourth

moment and finite second moment

This section discusses the case where the entries are i.i.d but possess an infinite fourth

moment. This circumstance requires particular approaches to effectively handle the

heavy-tailed data.

When E[ξ4] = ∞, the approach used in relation (3.1) to sample correlation ma-

trices becomes inadequate or inappropriate. Under the Theorem 2.3, Bai and Zhou

(2008) proved that if the random variable is within the domain of attraction of the

normal law, then as the p/n → c (approaches a constant value), FR converges al-

most surely to the Marčenko-Pastur distribution. The Stieltjes transform used for

the characterization is given by,

mR(z) = − (cz − c+ 1) +
(cz − c− 1)2 − 4c

2z
, z ∈ C+ (3.3)

where C+ denotes the complex numbers with positive imaginary part.

Heiny and Mikosch (2018) demonstrated that the limiting spectral distribution of

the sample correlation matrices converges to the Marčenko-Pastur law. Subsequently,

Theorem 3.3 of the study shows that the extreme eigenvalues converge almost surely

to the endpoints of the limiting support. The findings of Heiny and Mikosch (2018)

are a refinement of the results of Jiang (2004). Both the aforementioned studies used

the following basic assumptions,

E[Y11Y12] = o(n−2) and E[Y 4
11] = o(n−1), n → ∞, (3.4)

and

lim
n→∞

pn
n

= γ ∈ (0, 1]. (3.5)

Here Yij =
Xij√∑n
j=1 X

2
ij

, i = 1, . . . , p ; j = 1, . . . , n.

Theorem 3.1 in Heiny and Mikosch (2018) states that if the centered random

variable ξ satisfies the conditions in (3.4) and (3.5), then FR converges weakly to the
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Marchenko–Pastur law with index γ > 0. If ξ is symmetric and the condition from

(3.4) does not hold, i.e., lim infn→∞ nE[Y 4
11] > 0, then lim infn→∞ E

[∫
xkFR(dx)

]
>

mk(γ), k ≥ 1. Here mk(γ) is the k-th moment of the M-P law given in (2.11).

Hence, it is evident that the requirement

lim inf
n→∞

nE[Y 4
11] = 0, (3.6)

is a necessary and sufficient condition for the convergence of FR to the Marčenko-

Pasture Law. Furthermore, Theorem 3.3 in Heiny and Mikosch (2018) mentions that

under the above main assumption (3.5), (i) if E[ξ4] < ∞ and E[ξ] = 0, (ii) or ξ is

symmetric and satisfies the condition (A.2), then

λ1(R)
a.s−−−→

n→∞
(1 +

√
γ)2

λp(R)
a.s−−−→

n→∞
(1−√

γ)2.
(3.7)

3.3 The case of i.i.d entries with infinite second

moment

This section describes the case where the entries are i.i.d with the infinite second

moment. Giné et al. (1997) suggested that the condition in (3.6) is satisfied when

the distribution of ξ falls within the domain of attraction of normal law, which is

equivalent to the function E[ξ21{|ξ|≤x}] being slowly varying. Mason and Zinn (2005)

further proved that the centered random variable ξ is regularly varying with the index

α ∈ (0, 2) if and only if

lim inf
n→∞

nE[Y 4
11] = 1− α

2
. (3.8)

.

Heiny and Yao (2022) examine the breach of the condition (3.6), specifically indi-

cating that E[ξ2] = ∞. Considering a symmetric distribution with a regularly varying
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tail behavior characterized by an index α ∈ (0, 2), Heiny and Yao (2022) demonstrated

that the sequence of ESDs FR converges weakly to a novel distribution denoted as

Hα,γ termed the α-heavy Marčenko–Pastur law, with a parameter γ (Theorem 2.1).

The class of distributions Hα,γ can be smoothly extended at the limits α = 2 and

α = 0 resulting in the M-P law and a modified Poisson distribution (Theorem 2.2).

Ultimately, the condition in (3.6) is violated when ξ exhibits regular variation with

the index α ∈ (0, 2). The findings presented in the aforementioned reference, reveals

that under Theorem 2.1 each Hα,γ is uniquely characterized by the moment sequence

µk(α, γ) =
∫
xkdHα, γ(x), k ≤ 1. The sequence µk(α, γ) can be partitioned into two

distinct components: the Marčenko-Pastur(M-P) part and a component associated

with heavy tails, defined as follows,

µk(α, γ) =

mk(γ), if k = 1, 2, 3,

mk(γ) + dk(α, γ), if k ≥ 4,

(3.9)

with d4(α, γ) =
(
1− α

2

)2
γ and d5(α, γ) =

(
1− α

2

)2
(5γ + 5γ2) .

3.4 The case of identically distributed but depen-

dent entries

The presence of dependency introduces additional complexity to the spectral analysis.

Due to the complex structure of the sample correlation matrix, previous research has

mostly examined situations where the sample data consists of independent compo-

nents. This leads to a population covariance matrix that is diagonal and a correlation

matrix that is an identity matrix, as given in Li et al. (2023). However, it is note-

worthy that while these results provide valuable insights, their practical utility is

constrained due to the excessively strict assumption of independence. This limita-

tion significantly narrows down the applicability of such results in real-world settings.

Moreover, there is a scarcity of research on the sample correlation matrix obtained

from the dependent data (El Karoui (2009), Morales-Jimenez et al. (2021), and Li
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et al. (2023)). Aiming to address a gap in the literature, Li et al. (2023) researched

the limiting spectral distribution of a high-dimensional Kendall’s rank correlation

matrix. The findings of the above reference revealed that the outcome deviates from

the generalized Marčenko-Pastur law. Notably, the underlying population in their

study encompasses a broad dependence structure, featuring high-dimensional corre-

lated data. The data was treated as a sample x1, . . . , xn ∈ Rp with the sign vector

Aij = sign(xi − xj) = (sign(xi1 − xj1), . . . , sign(xip − xjp))
⊤,

where sign(·) represents the sign function. Then, the sample Kendall’s rank correla-

tion matrix Kn is computed as:

Kn =
2

n(n− 1)

∑
1≤i<j≤n

AijA
⊤
ij.

El Karoui (2009) suggests that the methods for sample covariance matrices can be

extended to sample correlation matrices if E[ξ4] < ∞. This is supported by arguments

that are comparable to relation (3.1). Furthermore, the findings in Theorem 1 of

El Karoui (2009) reveal that matrices R and S converge asymptotically when the

variable’s fourth moment is finite and the spectral norm of R is uniformly bounded

(i.e |R|2 < K;K is a constant).
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Chapter 4

Conclusion

This major paper provides a comprehensive overview of the limiting distributions for

eigenvalues in sample correlation matrices from heavy-tailed populations, outlining

key findings and their broader statistical implications.

As mentioned in Bai and Silverstein (2010), in practical scenarios where asymp-

totic theorems are applied to analyze the spectra of large-dimensional random matri-

ces, two key issues arise following the identification of the LSD. The first issue revolves

around bounding extreme eigenvalues, while the second focuses on understanding how

quickly the Empirical Spectral Distribution (ESD) converges as the sample size in-

creases (Bai and Silverstein, 2010). In general, LSD outlines the first-order limits of

the LSSs while the CLT delineates their second-order asymptotic behaviors. Analo-

gous to the law of large numbers and the central limit theorem in classical probability

theory, the LSD and CLT play equivalent roles in characterizing the behavior of ran-

dom matrices as presented by Li et al. (2023). The exploration of the limits of extreme

eigenvalues holds significance not only for the applicability of the LSD in conjunction

with the Helly-Bray theorem in Bai and Silverstein (2010) but also for its direct rel-

evance in various practical domains. Bai and Silverstein (2010) points out that fields

such as signal processing, pattern recognition, and edge detection rely on understand-

ing the support of the LSD of population correlation matrices, which often comprise

multiple disconnected regions.

Tracy and Widom (1996) discovered the expression for the maximum eigenvalue of

a Gaussian matrix when appropriately normalized, and their work was the first to fo-

cus on the limiting distributions of extreme eigenvalues. Johnstone (2001) discovered
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the limiting distribution of the largest eigenvalue of a Wishart matrix, which plays a

crucial role in the PCA. Jiang (2004) initially derived the LSD of the Pearson-type

sample correlation matrix, while Heiny and Mikosch (2018) proposed a refinement of

the same in 2018. Gao et al. (2017) further advanced the CLT for its LSSs. Bao

et al. (2012) later established the Tracy-Widom law for its extreme eigenvalues, and

Pillai and Yin (2012) subsequently extended this result to more general cases. Bai

and Silverstein (2010) examined a particular instance of the CLT when the underly-

ing distribution is complex Gaussian. In the recent literature, Heiny and Yao (2022)

established that the sequence of ESDs FR converges weakly to a new distribution

Hα,γ, termed the α-heavy M-P law with parameter γ. The study identified that the

family of distributions Hα,γ has continuous extensions at the boundary, resulting in

the standard M-P law and a modified Poisson distribution. However, all of these

asymptotic results were derived under the assumption that the data samples were

made up of independent components.

Recent focus has shifted towards non-parametric correlation matrices such as

Kendall’s τ and Spearman’s ρ, particularly in handling heavy-tailed data samples

characterized by a general dependent structure. These alternatives are rank-based,

eliminating the necessity to impose any moment restrictions on the underlying distri-

bution. Moreover, classical non-parametric statistics theory indicates that utilizing

only the ranks of the data preserves robustness while sacrificing only partial infor-

mation. Li et al. (2023) introduced a brand new finding on the above concept using

Kendall’s τ correlation matrix. A concise overview of the advancements related to

the sample correlation matrix and Kendall’s τ are presented in Table A.1.
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Appendix A

Some Important Concepts and

Additional Details

A.1 Marčenko-Pastur law

The Three standard M-P density functions for γ ∈
{

1
8
, 1
4
, 1
2

}
are displayed on Figure

A.1. In particular, the density function behaves as
√
x− aγ and

√
bγ − x at the

boundaries aγ and bγ, respectively (see Bai and Silverstein (2010)).

Figure A.1: Density plots of the Marčenko-Pastur distributions with indexes γ = 1/8
(dashed line), 1/4 (dotted line) and 1/2 (solid line).

.
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A. SOME IMPORTANT CONCEPTS AND ADDITIONAL DETAILS

A.1.1 Moments of M-P law

Proof. By definition,

mk =
1

2πγ

∫ b

a

xk−1
√

(b− x)(x− a) dx, with a = (1−√
γ)2 and b = (1 +

√
γ)2.

Let x = 1 + γ + z. Then

(x− a) = (x− (1−√
γ)2) = (1 + γ + z − (1−√

γ)2) = (2
√
γ + z)

(b− x) = ((1 +
√
γ)2 − x) = ((1 +

√
γ)2 − 1− γ − z) = (2

√
γ − z).

Therefore, (b− x)(x− a) = (2
√
γ − z)(2

√
γ + z) = (4γ − z2).

The corresponding boundaries are,

when x = a → x− a = 2
√
γ + z → z = −2

√
γ and

when x = b → b− x = 2
√
γ − z → z = 2

√
γ.

Then, we get

mk =
1

2πγ

∫ 2
√
γ

−2
√
γ

(1 + γ + z)k−1
√

4γ − z2 dz

=
1

2πγ

k−1∑
ℓ=0

(
k − 1

ℓ

)
(1 + γ)k−1−ℓ

∫ 2
√
γ

−2
√
γ

zℓ
√

4γ − z2 dz.

Now, let z = 2
√
γu, then dz = 2

√
γdu.

The corresponding boundaries are, u = −1 and u = 1.

Therefore, we get

mk =
1

2πγ

k−1∑
ℓ=0

(
k − 1

ℓ

)
(1 + γ)k−1−ℓ

∫ 1

−1

(2uγ1/2)ℓ
√
4γ − 4γu2 × 2

√
γ du

=
k−1∑
ℓ=0

(
k − 1

ℓ

)
(1 + γ)k−1−ℓ2ℓγℓ/2 2

π

∫ 1

−1

uℓ
√
1− u2 du.

Now, let βk denote the k−th moment of the Wigner’s semicircular Law, because of the

symmetry, the moments of the semicircle law are given by

βk =


0, if k is odd,

Ck/2, if k is even,

where Ck is the k−th Catalan number,Ck =
1

k+1

(
1
2

)2k (2k
k

)
.

Therefore, we have
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mk =

⌊( k−1
2

)⌋∑
ℓ=0

(
k − 1

2ℓ

)
(1 + γ)k−1−2ℓ22ℓγℓ × 1

ℓ+ 1

(
1

2

)2ℓ(
2ℓ

ℓ

)

=

⌊( k−1
2

)⌋∑
ℓ=0

(k − 1)!

ℓ!(ℓ+ 1)!(k − 1− 2ℓ)!
γℓ(1 + γ)k−1−2ℓ

=

⌊( k−1
2

)⌋∑
ℓ=0

(k − 1)!

ℓ!(ℓ+ 1)!(k − 1− 2ℓ)!
γℓ

k−1−2ℓ∑
s=0

(
k − 1− 2ℓ

s

)
γs

=

⌊( k−1
2

)⌋∑
ℓ=0

k−1−2ℓ∑
s=0

(k − 1)!

ℓ!(ℓ+ 1)!s!(k − 1− 2ℓ− s)!
γℓ+s.

Let ℓ+ s = r. Then, we get

mk =

⌊( k−1
2

)⌋∑
ℓ=0

k−1−ℓ∑
r=ℓ

(k − 1)!

ℓ!(ℓ+ 1)!(r − ℓ)!(k − 1− r − ℓ)!
γr

=

⌊( k−1
2

)⌋∑
ℓ=0

k−1−ℓ∑
r=ℓ

k(k − 1)!(k − r)!r!

k(k − r)!(ℓ+ 1)!r!ℓ!(r − ℓ)!(k − 1− r − ℓ)!
γr

=
1

k

⌊( k−1
2

)⌋∑
ℓ=0

k−1−ℓ∑
r=ℓ

k!

(k − r)!r!
× (k − r)!

(ℓ+ 1)!(k − 1− r − ℓ)!
× r!

(r − ℓ)!ℓ!
γr

=
1

k

⌊( k−1
2

)⌋∑
ℓ=0

k−1−ℓ∑
r=ℓ

(
k

r

)(
k − r

k − 1− r − ℓ

)(
r

ℓ

)
γr.

We can find the upper bound of ℓ as follows,

ℓ ≤ r ≤ k − 1− ℓ → ℓ ≤ k − 1− r and ℓ ≤ r.

Therefore, we have ℓ ≤ min(r, k − 1− r). Then, we get

mk =
1

k

k−1∑
r=0

(
k

r

)
γr

min(r,k−1−r)∑
ℓ=0

(
k − r

k − 1− r − ℓ

)(
r

ℓ

)
.

When min(r, k − 1− r) = k − 1− r, using Vandermonde’s identity, we get
k−1−r∑
ℓ=0

(
k − r

k − 1− r − ℓ

)(
r

ℓ

)
=

(
k

k − 1− r

)
=

(
k

r + 1

)
.

When min(r, k − 1− r) = r, using Vandermonde’s identity, we get
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r∑
ℓ=0

(
k − r

k − 1− r − ℓ

)(
r

ℓ

)
=

r∑
ℓ=0

(
k − r

ℓ+ 1

)(
r

r − ℓ

)
=

r∑
ℓ=0

k − r

ℓ+ 1

(
k − r − 1

ℓ

)(
r

r − ℓ

)
= (k − r)

r∑
ℓ=0

1

ℓ+ 1

(
r

r − ℓ

)(
k − r − 1

ℓ

)
= (k − r)

r∑
ℓ=0

1

r + 1

(
r + 1

r − ℓ

)(
k − r − 1

ℓ

)
=

k − r

r + 1
×
(
k

r

)
=

(
k

r + 1

)
.

Therefore, we have

mk =
1

k

k−1∑
r=0

(
k

r

)(
k

r + 1

)
γr =

k−1∑
r=0

1

r + 1

(
k

r

)(
k − 1

r

)
γr

as required.
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A.2 Condition (Gq)

This condition is crucial for the proofs in Heiny and Mikosch (2018).

There exists a sequence q = qn → ∞ such that for some integer sequence k = kn with

k/ log n → ∞ we have (k3q) /n → 0, and the moment inequality

E
[
Y 2m1
1 · · ·Y 2mr

r

]
≤ qn

n
E
[
Y 2m1
1 · · ·Y 2m(r−1)

r−1 Y (2mr−2)
r

]
holds for 1 ≤ r ≤ ℓ−1 and any positive integers m1, . . . ,mr satisfying m1+· · ·+mr =

ℓ, where ℓ ≤ k.

A.3 Some concepts about matrices

A.3.1 Hermitian matrix

Definition 2. (Arfken (1985)) A square matrix is called Hermitian if it is self-adjoint.

Therefore, a Hermitian matrix A = (aij) is defined as one for which

A = A†,

where A† denotes the conjugate transpose. This is equivalent to the condition

aij = aji,

where z = (a− bi) denotes the complex conjugate of z = (a+ bi). As a result of this

definition, the diagonal elements aii of a Hermitian matrix are real numbers (since

aii = aii), while other elements may be complex. Therefore, Hermitian matrices can

be understood as the complex extension of real symmetric matrices.

A.3.2 Singular values of a matrix

Definition 3. (Brox (2023)) Let A be an m×n matrix and consider the matrix ATA.

This is a symmetric n × n matrix, so its eigenvalues are real. Then the numbers
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σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0 defined below are called the singular values of A.

Lemma A.3.1. (Brox (2023)) If λ is an eigenvalue of ATA, then λ ≥ 0.

Proof. Let x be an eigenvector of ATA with eigenvalue λ. We compute that

∥Ax∥2 = (Ax) · (Ax) = (Ax)TAx = xTATAx = xT (λx) = λxTx = λ∥x∥2.

Since ∥Ax∥2 ≥ 0, it follows from the above equation that λ∥x∥2 ≥ 0. Since

∥x∥2 > 0 (since the convention is that eigenvectors are nonzero), we deduce that

λ ≥ 0.

Let λ1, . . . , λn denote the eigenvalues of ATA, with repetitions. Order these so

that λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. Let σi =
√
λi, so that σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

Proposition A.3.2. (Brox (2023)) Let A be an m× n matrix. Then the maximum

value of ∥Ax∥, where x ranges over unit vectors in Rn, is the largest singular value

σ1, and this is achieved when x is an eigenvector of ATA with eigenvalue σ2
1.

Proof. Let v1, . . . , vn be an orthonormal basis for Rn consisting of eigenvectors of ATA

with eigenvalues σ2
i . If x ∈ Rn, then we can expand x in this basis as

x = c1v1 + · · ·+ cnvn (A.1)

for scalars c1, . . . , cn. Since x is a unit vector, ∥x∥2 = 1, which (since the vectors

v1, . . . , vn are orthonormal) means that

c21 + · · ·+ c2n = 1.

On the other hand,

∥Ax∥2 = (Ax) · (Ax) = (Ax)T (Ax) = xTATAx = x ·
(
ATAx

)
.

By (A.1), since vi is an orthonormal basis consisting eigen vectors of ATA with
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eigenvalue σ2
i , we have

ATAx = c1σ
2
1v1 + · · ·+ cnσ

2
nvn.

Taking the dot prodoct with (A.1), and using the fact that the vectors v1, . . . , vn

are orthonormal, we get

∥Ax∥2 = x ·
(
ATAx

)
= σ2

1c
2
1 + · · ·+ σ2

nc
2
n.

Since σ1 is the largest singular value, we get

∥Ax∥2 ≤ σ2
1

(
c21 + · · ·+ c2n

)
.

Equality holds when c1 = 1 and c2 = · · · = cn = 0. Thus, the maximum value of

∥Ax∥2 for a unit vector x is σ2
1, which is achieved when x = v1.

A.4 Development of sample correlation matrices

in the RMT.

Table A.1: Developments of sample correlation matrices in the random matrix theory

Sample correlation Kendall’s τ correlation

Independent case (Σ = I)

LSD Jiang (2004); Heiny and Yao (2022); Heiny and Mikosch (2018); Morales-Jimenez et al. (2021) Bandeira et al. (2017)

CLT for LSSs Gao et al. (2017); Baik and Silverstein (2006) Gao et al. (2017)

Tracy-Widom Bao et al. (2012) Bai and Silverstein (2008)

Dependent case (general Σ)

LSD El Karoui (2009) Li et al. (2023)

CLT for LSSs Heiny and Yao (2022)

Tracy-Widom
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