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Intrusion detection systems are primarily designed to flag security breaches upon their occurrence. These 
systems operate under the assumption of single-label data, where each instance is assigned to a single category. 
However, when dealing with complex data, such as malware triage, the information provided by the IDS 
is limited. Consequently, additional analysis becomes necessary, leading to delays and incurring additional 
computational costs. Existing solutions to this problem typically merge these steps by considering a unified, 
but large, label set encompassing both intrusion and analytical labels, which adversely affects efficiency and 
performance. To address these challenges, this paper presents a novel framework for multi-label classification 
by employing an ensemble of sequential models that preserve the original label sets during training. Each model 
focuses on learning the distribution specifically related to its assigned set of labels, independent of the other 
label sets. To capture the relationship between different sets of labels, the parameters of each trained model 
initialize the subsequent model, ensuring that information from unrelated label sets does not interfere with 
the learning objective. Consequently, the proposed method enhances prediction performance without increasing 
computational complexity. To evaluate the effectiveness of our approach, we conduct experiments on a real-

world dataset related to intrusion detection. The results clearly demonstrate the effectiveness of our proposed 
method in handling multi-label classification tasks.

1. Introduction

Most recent advancements in intelligent intrusion detection using 
machine learning tackle single-label classification problems, where a 
dataset has only a single set of labels consisting of multiple classes 
(Ferrag et al., 2020; Yang et al., 2022). Nonetheless, in most cyber 
environments, a single record of data may indicate multiple states or 
categories (Liu et al., 2022). As an example, deep learning is used in 
Wang et al. (2020) to detect both false data injection attacks and the lo-

cation of the injected attack in smart grids simultaneously. As a result, 
a domain of machine learning, Multi-Label Classification (MLC) is ded-

icated to facilitating this task (Riera et al., 2022; Liu et al., 2022; Xie et 
al., 2022).

Research endeavors in MLC generally follow two approaches. The 
first group is in fact a framework that aims at translating the multi-label 
problem for single-label classifiers by reformulating the labeling scheme 
into that of the single-label classifiers. Label Powerset (LP) (Boutell et 
al., 2004) and Binary Relevance (BR) (Tsoumakas et al., 2010) are the 

* Corresponding author.

E-mail addresses: hallaji@uwindsor.ca (E. Hallaji), roozbeh.razavi-far@unb.ca (R. Razavi-Far), msaif@uwindsor.ca (M. Saif).

most fundamental algorithms in this category that inspired numerous 
works advancing and improving their original ideas (Tsoumakas et al., 
2011; Read et al., 2011). In short, the idea in LP is to create new classes 
based on available combinations of classes across different label sets so 
that they can be integrated into a single label set. BR, on the other hand, 
forms a set of binary problems that are independent in order to create 
a single-label multi-class problem.

The second category in the MLC domain includes algorithms specifi-

cally designed or adapted for multi-label problems. These designs are 
mostly inspired or adapted from existing single-label classifiers. For 
instance, Multi-label k Nearest Neighbor (MLkNN) (Zhang and Zhou, 
2005) and Multi-class Multi-label Perceptron (MMP) (Loza Mencia and 
Furnkranz, 2008) are MLC algorithms that are adapted from k Nearest 
Neighbors (kNN) and Multi-Layer Perceptron (MLP) algorithms, respec-

tively.

Despite the advantages of the approaches above, these methods are 
often followed by additional computational burden and sub-optimal 
prediction performance in Intrusion Detection Systems (IDS). To be-
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gin with, breaking the original data distribution into several binary 
combinations or creating a single label set from all combinations of 
classes in all label sets, exponentially increases the computational cost 
by requiring an excessive number of models and training scenarios. In 
addition, breaking the original distribution into several smaller subsets 
usually causes a class imbalance within data, or worsens it if already 
imbalanced. As a result, the former affects the efficiency, and the latter 
deteriorates the prediction accuracy. Furthermore, altering the multi-

label nature of the data may result in a distribution that does not exactly 
match that of the problem at hand. This can result in biased data which 
in turn affects the performance of intrusion identification (Arp et al., 
2022; Apruzzese et al., 2023).

To address these issues, this paper proposes a network-based IDS 
that primarily runs on the server side of the network. The designed IDS 
utilizes a novel approach for tackling MLC problems, without compro-

mising accuracy or efficiency. The proposed method uses an ensemble 
of deep learning models, where each model inside the ensemble is 
trained on only a single label set (i.e., each label set contains several 
classes). This provides three main advantages for the proposed MLC-

based IDS:

• The complexity of the ensemble IDS model is linear and relational 
to the number of label sets. Compared to the exponential com-

plexity caused by decomposition into all class combinations across 
different label sets, this is a huge improvement in terms of compu-

tational efficiency. In other words, the complexity of the proposed 
IDS approach is comparable to those that use single-label classi-

fiers.

• Each model in the IDS ensemble can perform a single-label classi-

fication on the original label distribution. As a result, class popu-

lations are intact and the focus of the neural network is merely on 
learning the targeted label set, not all label distributions. Our ex-

periments verify that this structure enhances the prediction quality 
to a great extent.

• In order to take label sets correlation into account, we train these 
models sequentially, where each model is initialized by the param-

eters of the previously trained model. This way, information from 
each label set is conveyed to the next model without interfering 
with the learning objective.

The rest of the paper is organized as follows. Section 2 includes the 
preliminaries for this work. Section 3 presents the design of multi-label 
classifiers. Section 4 illustrates the experimental results and analysis. 
Finally, Section 5 concludes the paper.

2. Background

The problem this paper aims to address lies at the intersection of 
intrusion detection and multi-label classification. The connection be-

tween these domains may not be clear at first in the realm of security, 
as they are often studied independently. To clarify this relationship in 
this study, the problem of MLC and the targeted application are first 
explained in this section. The required background on important algo-

rithms of MLC is demonstrated afterward.

2.1. Problem statement

Despite the recent advancements in machine learning and the advent 
of sophisticated deep learning structures, the majority of these methods 
are designed to work with a single set of labels, where data samples can 
only fall under a certain category. In the application domain, however, 
data samples may belong to more than one class (Jethanandani et al., 
2020). For instance, in cyber-security, an anomaly in the data stream 
may indicate an intrusion or a network-related issue in the system (Fer-

nandes et al., 2019). In cyber-physical systems, a fault and a cyber 
intrusion can take place simultaneously (Hallaji et al., 2022). Moreover, 

most intrusion detection systems only detect if the traffic is benign or 
malicious (da Costa et al., 2019; Catillo et al., 2023). Thus, the decision 
maker in such systems needs to provide more insight into the given 
input rather than strictly assign it to a certain class. MLC algorithms 
enable analyzing data across a wider spectrum, which leads to the 
extraction of more knowledge from data. Despite the aforementioned 
points, multi-label learning is rarely employed for attack identification 
and intrusion detection in the literature.

In this paper, eleven attacks categories are considered to simulate 
an intrusion in computer networks:

1. Reconnaissance: Attack probing and gathering network informa-

tion to bypass security controls.

2. Backdoor: Creating a hidden entry point in a system or network 
that allows unauthorized access and control.

3. Denial of Service (DoS): Intrusion disrupting computer resources, 
overwhelming the system to prevent authorized access.

4. Distributed DoS (DDoS): A distributed DoS attack carried out by 
several bots in a distributed fashion.

5. Exploit: Utilizing software vulnerabilities to gain unauthorized ac-

cess, execute harmful code, or compromise a system.

6. Analysis: Intrusion targeting web applications through ports, 
emails, and web scripts.

7. Fuzzers: Automated tools that input random or invalid data into 
software to detect vulnerabilities, crashes, or unexpected behavior.

8. Worm: Malware that self-replicates and spreads through networks, 
exploiting vulnerabilities to infect and compromise multiple sys-

tems.

9. Shellcode: Inserting malicious code into a vulnerable program or 
system to acquire unauthorized control and execute specific com-

mands.

10. Generic: Technique targeting any block cipher with a hash function 
for collisions, regardless of its configuration.

11. Theft: Adversaries that exploit weak points in a system to penetrate 
and steal sensitive data.

2.2. Multi-label classification

The majority of MLC approaches are usually in the form of a frame-

work that translates a multi-label scenario into a single-label and multi-

class problem. From there, these techniques can be combined with any 
classifier to make predictions on data (Tsoumakas and Katakis, 2007). 
While these methods can be combined with any neural network struc-

ture, there are also algorithms strictly relying on the neural network 
structure to classify a multi-label dataset. We select popular algorithms 
from both groups and explain them in detail in the remainder of this 
section.

2.2.1. Label powerset

Perhaps, the most common solution for MLC is provided by the La-

bel Powerset (LP) algorithm (Boutell et al., 2004). LP reformulates the 
multi-label problem into a standard single-label problem by considering 
distinct combinations of labels among different label sets (i.e., each se-

ries of labels in a multi-label scenario) as separate classes. However, as 
the number of classes and label sets increases, the efficiency of LP dete-

riorates. Moreover, by regrouping samples into more categories based 
on every unique combination of labels, samples will be divided into 
more subsets that decrease the population for some classes and may 
lead to class imbalance (Tsoumakas et al., 2011).

2.2.2. Random k-label sets
Aiming to eliminate the aforementioned efficiency issues of LP, RAn-

dom 𝑘 label sets (RAkEL) break the data into smaller subsets (i.e., either 
joint or disjoint sets) and apply an LP on each of them (Tsoumakas et 
al., 2011). The final model consists of a set of trained LP models, similar 
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Fig. 1. Illustrative diagram of the proposed IDS method. Steps related to training and test phases are specified in solid and dotted arrows, as specified in the figure. 
The data generation process of the selected IoT case is also shown on the left.

to the ensemble approach. The results of these LP models will be aggre-

gated on test data to reach the final prediction. Compared to LP, this 
approach provides enhanced efficiency and classification performance 
on large-scale training sets with several label sets.

2.2.3. Multi-class multi-label perceptron

Following the idea introduced by BR, MMP trains a perceptron for 
each pair of labels in the dataset (Loza Mencia and Furnkranz, 2008). 
These binary models are stored in an ensemble in which the classes 
are ranked. A voting step is carried out at the end to reach the final 
prediction.

2.2.4. Attentive interpretable tabular learning

The introduction of Google’s Attentive Interpretable Tabular Learn-

ing (TabNET) (Arik and Pfister, 2021) model was a step forward to-

wards neural network-based tabular data classification since it outper-

formed dominant models such as XGBoost (Chen and Guestrin, 2016) on 
multiple datasets. TabNET was mainly designed for Natural Language 
Processing (NLP) applications; however, the proposed architecture can 
be used to complete MLC tasks regardless of the application. The pro-

posed model employs an attention mechanism to prioritize certain fea-

tures for each decision step (i.e., or in our case each label set).

The building block of the model is based on the same idea as the 
famous NLP’s Transformer (Vaswani et al., 2017) architecture that re-

sulted in models like BERT (Devlin et al., 2018). The main difference 
here is that the attention mechanism eliminates irrelevant features (in-

stead of picking the most probable ones) at each decision step. Further-

more, the sparse masking approach lets the model mimic a “Decision 
Tree”-like approach by removing unrelated features step by step. The 
Sparsemax (Martins and Astudillo, 2016) function results in a soft fea-

ture selection process and improvements and makes the model more 
explainable.

2.3. Intrusion detection in the context of multi-label learning

Currently, the number of research works on MLC-based IDS is very 
limited. In fact, the majority of titles including the multi-label classifica-

tion term refer to multi-class classification rather than multi-label learn-

ing. Nevertheless, there are a few papers that explore IDS in the context 
of MLC in the literature. To begin with, a multi-label version of the 𝑘
Nearest Neighbor (kNN) classifier is used in combination with maxi-

mum a posterior principle to detect intrusions in KDD CUP99 dataset 
under a semi-supervised setting (Qian and Li, 2014). In addition, super-

vised multi-label learning is used in Roopa and Raja (2018) to design a 
behavioral-based IDS to secure mobile adhoc networks. Their IDS com-

bines a rule-based approach with a multi-layer neural network that uses 
sigmoid activation.

3. Ensemble-based multi-label neural network

Fig. 1 presents the illustrative diagram of the proposed IDS method. 
Given a set of data matrix 𝑋 ⊆ℝ𝑚×𝑛, we assume each data vector 𝑥𝑖 ∈
𝑋 corresponds to a vector of labels defined as 𝑦𝑖 = ⟨𝑦1

𝑖
, 𝑦2

𝑖
, … , 𝑦𝛾

𝑖
⟩, where 

1 ≤ 𝑖 ≤ 𝑚 and 𝛾 is the number of labels in each label vector. Similar 
to sample vectors, we consider a set of labels 𝑌 ⊆ ℕ𝑚×𝛾 , where 𝑌 =
{𝑦1, 𝑦2, … , 𝑦𝑚}.

3.1. Design of the proposed algorithm

Using ensemble models, we propose modeling each label column in 
𝑌 under a separate model. We call this structure an Ensemble-based 
Multi-Label Neural Network (EMLNN). EMLNN enables separate esti-

mation of labels in each column, which facilitates capturing the label 
distribution due to the primary focus on a certain column of labels in 
each model. The results of these models will be aggregated once each 
model has made its prediction to reach the final prediction.

Algorithm 1 contains the pseudo-code of the EMLNN technique. The 
set of ensemble models is defined as 𝐸 = {𝑀1, 𝑀2, … , 𝑀𝛾}, in which 
each model 𝑀𝑗 is trained w.r.t. 𝑦𝑗

𝑖
for all 𝑦𝑖 ∈ 𝑌 , where 1 ≤ 𝑗 ≤ 𝛾 . Each 

𝑀𝑗 is a neural network model that predicts the class label correspond-

ing to column 𝑗 of 𝑌 . The utilized neural network is formulated as 
follows:

𝑀𝑗 (𝑥𝑖) = (𝑥𝑖, 𝑧1, 𝑧2, ..., 𝑧𝐿, 𝑦̂
𝑗

𝑖
), (1)
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Algorithm 1: EMLNN.

Input: Set of samples 𝑋 and set of labels 𝑌 .

Output: Predicted set of labels 𝑌 .

Definitions:

Card(⋅) returns the cardinality.

Unique(⋅) returns unique values.

𝑌 𝑗 denotes 𝑗-th column of 𝑌 .

Initialization:

Create an empty ensemble 𝐸 = {∅}
Initialize 𝑀1 model.

Training:

1 for ∀𝑌 𝑗 ∈ 𝑌 , 1 ≤ 𝑗 ≤ 𝛾 do

2 c = Card(Unique(𝑌 𝑗 )
)

3 for ∀𝑥𝑖 ∈𝑋 do

4 for ∀𝑧𝑙 , 1 ≤ 𝑙 ≤𝐿 do

5 𝑧𝑙 =max(0, 𝑊𝑙𝑧𝑙−1) ∣ 𝑧0 = 𝑥𝑖 .

6 end for

7 ℎ =𝑊𝐿+1𝑧𝐿 .

8 if 𝑐 > 2 then

9 Compute 𝑧𝐿+1 using Equation (4).

10 else

11 Calculate 𝑧𝐿+1 using Equation (8).

12 end if
13 Obtain 𝑦̂𝑖 through Equation (5).

14 Estimate 𝐿𝑗 using Equation (6).

15 Update {𝑊𝑙}𝐿𝑖=1 through gradient decent.

16 end for

17 𝐸 ←𝐸 ∪𝑀𝑗 .

18 Initialize the next model: 𝑀𝑗+1 ←𝑀𝑗 .

19 end for

where 𝑧𝑙 is the latent variable formed at hidden layer 𝑙, 𝐿 is the number 
of hidden layers in 𝑀𝑗 , and 𝑦̂𝑗

𝑖
is the prediction made by the network. 

To form each latent variable 𝑧𝑙 , first, the output of the previous layer, or 
the input vector for 𝑧1, is fed to a Relu activation (line 5 in Algorithm 1) 
as follows:

𝑧𝑙 =max(0,𝑊𝑙𝑧𝑙−1), (2)

where 𝑊𝑙 is the weight matrix between layer 𝑙 and its previous layer, 
and 𝑧0 = 𝑥𝑖. After activation, the obtained representation will undergo 
a dropout step. For the final layer, a Softmax activation is used to obtain 
𝑦̂𝑗 :

ℎ =𝑊𝐿+1𝑧𝐿 = ⟨ℎ1, ℎ2,… , ℎ𝑐⟩, (3)

𝑧𝐿+1 =
𝑒ℎ𝑗∑𝑐

𝑗=1 𝑒
ℎ𝑗
, (4)

where 𝑐 is the number of classes (line 2 in Algorithm 1), and ℎ is the 
vector containing the transformed values after applying the weight ma-

trix at the output layer before activation (line 7 in Algorithm 1). Given 
that 𝑧𝐿+1 is a vector in the form of ⟨𝑝1, 𝑝2, … 𝑝𝑐⟩, 𝑦̂𝑗𝑖 will be the label 
corresponding to the largest activation value, where 𝑐 is the number of 
unique classes in 𝑗-th column of 𝑌 :

𝑦̂
𝑗

𝑖
= arg max

𝑝𝑖∈𝑧𝐿+1
{𝑝𝑖 ∈ 𝑧𝐿+1 ∣ 1 ≤ 𝑖 ≤ 𝑐} (5)

The network is trained by means of a cross-entropy loss function 
(line 14 in Algorithm 1) defined as in the following:

𝐿𝑗 = −
𝑚∑
𝑖=1

𝑦
𝑗

𝑖
log 𝑦̂𝑗

𝑖
(6)

At the end of this iteration, weights of the network are updated based 
on the obtained 𝐿𝑗 through gradient descent (line 15 in Algorithm 1). 
When 𝑀𝑗 is trained, we initialize the parameters of 𝑀𝑗+1 with those of 
𝑀𝑗 . Once each model 𝑀𝑗 is trained on {𝑋 ∪ 𝑌 𝑗}, the predictions are 
aggregated (line 17 in Algorithm 1) as shown in the following:

𝐸(𝑥𝑖) =
𝑐⋃

𝑗=1
𝑀𝑗 (𝑥𝑖) = {𝑦̂1

𝑖
, 𝑦̂2

𝑖
,… , 𝑦̂

𝛾

𝑖
} (7)

Note that the designed model is formulated for multi-label and 
multi-class scenarios. In case of binary classes, we change Softmax acti-

vation into Sigmoid for the corresponding 𝑀 (line 11 in Algorithm 1). 
By doing so, Equation (4) changes into:

𝑧𝐿+1 =
1

1 + 𝑒−𝑊𝐿+1𝑧𝐿
(8)

Once the training is over, 𝐸 can be used as the multi-label mode, 
which takes an unlabeled sample vector, and each 𝑀𝑗 ∈ 𝐸 predicts a 
different label resulting in a set of 𝛾 predictions.

3.2. Complexity analysis

For the sake of simplicity, we assume that all hidden layers have 
𝑛 neurons. The complexity of the initialization part of the algorithm 
involves creating an empty ensemble with 𝑂(1) and initializing a neural 
network with 𝐿 layers, each with 𝑛 neurons, which yields a complexity 
of 𝑂(𝐿𝑛2).

The complexity of the training process of the neural network is 
mainly affected by the matrix operations between each layer, activa-

tion, and gradient descent. Matrix multiplication adds a 𝑂(𝐿𝑛3) com-

plexity whereas activation functions cause linear complexity at each 
layer, 𝑂(𝐿𝑛). The complexity of gradient descent, however, is different 
for hidden layers and the final layer. It is known that gradient estima-

tion for 𝑛 neurons has a 𝑂(𝑛2) complexity at the final layer (Hallaji et 
al., 2023). This is while this complexity increases to 𝑂(𝑛3) for the rest 
of the hidden layers. Given that there are 𝐿 − 1 layers before the final 
layer, the complexity order of this step would be 𝑂(𝑛2) +𝑂

(
(𝐿 −1)𝑛3

)
.

The process of training each neural network model 𝑀𝑗 is repeated 
for 𝛾 times, which equals the number of label sets. Moreover, the train-

ing process should be repeated for 𝑚 samples (i.e., we omit the batching 
process for the sake of simplicity). This will multiply the complexity of 
training one model by 𝑚𝛾 . Adding the complexities of these steps to-

gether results in:

𝑂(1) +𝑚𝛾

(
𝑂(𝐿𝑛2) +𝑂(𝐿𝑛3) +𝑂(𝐿𝑛) +𝑂(𝑛2) +𝑂

(
(𝐿− 1)𝑛3

))

Finally, taking the maximum complexity of each variable into ac-

count the above equation leads to 𝑂(𝑚𝛾𝐿𝑛3). Given that 𝐿 and 𝛾 are 
very small compared to data size, the complexity further simplifies into 
𝑂(𝑚𝑛3), which is equivalent to the complexity of a single-label neural 
network. Hence, the proposed EMLNN only increases the complexity by 
𝑂(𝛾), which can be disregarded due to its insignificance.

4. Experimental results

In this section, we initially explain the utilized setting for each of 
the compared methods. Then, the experimental results obtained from 
MLC classification are presented and analyzed in terms of Exact Match 
Ratio (EMR) and Hamming Loss (HL), as formulated in the following:

𝐸𝑀𝑅 = 1
𝑚

𝑚∑
𝑖=1

𝐼(𝑦𝑖 = 𝑦̂𝑖), (9)

𝐻𝐿 = 1
𝑚𝛾

𝑚∑
𝑖=1

𝛾∑
𝑗=1

𝐼(𝑦𝑗
𝑖
≠ 𝑦̂

𝑗

𝑖
), (10)

where 𝐼(⋅) is an indicator function that returns one if the input condi-

tion is satisfied, and zero otherwise. Moreover, we use the area under 
the Receiver Operating Characteristic (ROC) curve to evaluate the over-

all intrusion detection performance in addition to class-wise accuracy. 
Standard deviation is also analyzed to assess the stability of the selected 
algorithms.

4.1. Simulation data

The first experiment is performed on UNSW-NB15 dataset (Moustafa 
and Slay, 2015), which contains several types of data files such as pcap, 
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Table 1

Label sets considered in UNSW-NB15 and Bot-IoT datasets.

Data Label set 1 Label set 2

Label Attack Label Service

U
N

S
W

-N
B

1
5

1 Normal 1 None

2 Reconnaissance 2 FTP

3 Backdoor 3 SMTP

4 DoS 4 SNMP

5 Exploits 5 HTTP

6 Analysis 6 FTP-Data

7 Fuzzers 7 DNS

8 Worms 8 SSH

9 Shellcode 9 Radius

10 Generic 10 POP3

- - 11 DHCP

- - 12 SSL

- - 13 IRC

B
o
t-

Io
T

1 DDoS 1 HTTP

2 DoS 2 Key logging

3 Normal 3 Normal

4 Reconnaissance 4 OS Fingerprint

5 Theft 5 Service Scan

- - 6 TCP

- - 7 UDP

Argus, Bro, and CSV files for evaluating network intrusion detection 
systems. The data is generated using three servers, two of which always 
generate benign data whereas the third one acts maliciously. Both be-

nign and malicious traffic are generated using IXIA PerfectStorm tool. 
Details of feature extraction from these files to make a dataset processi-

ble by machine learning algorithms can be found in Moustafa and Slay 
(2015). The collection data in UNSW-NB15 includes authentic modern 
normal and abnormal network traffic. The data has 2,540,044 samples 
and 49 features. Train and test subsets are sampled from the original 
dataset with 175,341 and 82,332 samples, respectively. We consider 
two sets of labels for attacks and services, as listed in Table 1.

The second experimental data is a combination of normal and bot-

net traffic collected into the Bot-IoT dataset (Koroniotis et al., 2019). 
Bot-IoT data comes in several formats such as PCAP, Argus, and CSV; 
however, only CSV files are considered in these experiments. The data 
contains two sets of labels, namely category and subcategory. The for-

mer specifies the type of attack whereas the latter indicates the utilized 
protocol. Specific details about the feature extraction process that led to 
the prepared CSV file can be found in Koroniotis et al. (2019). Detailed 
labeling of this dataset used in this work is shown in Table 1.

While the utilized datasets may not comprehensively represent the 
current threat landscape, the goal is to showcase the ability of the pro-

posed model in capturing attack patterns from the provided training 
dataset and identifying those patterns in each label set. Upon industrial 
use, it is recommended to fine-tune the model using a more compre-

hensive dataset that encompasses specific characteristics of the selected 
network or system.

4.2. Experimental setting

Table 2 lists the parameter setting of each MLC method used in our 
experiments. LP and RAkEL are combined with MLP to focus our study 
on neural networks. All methods are optimized using the Adam opti-

mizer (Kingma and Ba, 2015) with a batch size of 100 and through 
1000 epochs.

4.3. Results analysis

In order to ensure the statistical reliability of the results, all exper-

iments are repeated ten times. Fig. 2 shows the overall performance 
of MLC methods through all experiments. In this figure, solid circles 
show the performance distribution for each algorithm over several ex-

periments. Solid squares and plus signs are used to indicate the average 

Table 2

Parameter setting of MLC techniques.

Algorithms Parameter Setting

LP Classifier: MLP

MMP N/A

RAkEL 𝑘 = 2

TabNET Feature re-usage in mask= 1.3

Mask type: entmax

#. independent phases = 2

#. share phases = 2

Attention hidden size = 8

Shared layer hidden size = 32

Hidden layer size = 16

EMLNN Learning rate = 0.001

Layer size = [256,256,128,64]
Dropout ratio = {0.2, 0.4}

MLP #. hidden layers = 4

Learning rate = 0.001

Layer size = [512,256,128,64]

performance and outliers of the performance distribution. In addition, 
the height of each box implies the variance of the results.

Results are divided into four groups based on the recorded perfor-

mance measure and the selected dataset. Fig. 2(a, c) shows the exper-

imental results in terms of HL. HL indicates the relative correctness of 
results, that is it also takes partial correctness in label prediction into 
account. It can be seen in Fig. 2(a) that EMLNN outperforms all other 
methods in terms of HL (i.e., lower HL means better performance) in 
experiments with UNSW-NB15 dataset. This is while LP, the simplest of 
the selected algorithms, seems to yield a higher HL compared to the rest 
of the methods. TabNET, RAkEL, and MMP are ranked second to fourth. 
In terms of stability, EMLNN, MMP, and TabNET seem to exhibit a sim-

ilar amount of variance in the results, placing above RAkEL and LP in 
our comparison. These conclusions are also confirmed in Fig. 3, which 
illustrates the difference between the averaged performance of the se-

lected methods. Fig. 3(a) indicates that the lowest standard deviation 
is resulted by TabNET, with a slight difference from that of EMLNN. It 
can be also seen from this figure that LP and MMP perform similarly in 
terms of average HL. The same behavior is observed between TabNET 
and RAkEL.

Another indicator in evaluating the performance of MLC methods is 
EMR, which estimates the ratio of samples whose predicted labels are 
correct across all label sets. Fig. 2(b) illustrates the overall performance 
of all methods in terms of EMR. Similar to the previous analysis, EMLNN 
again outperforms all techniques. Moreover, MMP and LP are ranked 
fourth and fifth. However, in contrast to HL analysis, here RAkEL sur-

passes TabNET in terms of EMR. In other words, RAkEL results in more 
fully correct predictions whereas TabNET makes more partially cor-

rect predictions. Nevertheless, comparing the performance of both in 
Fig. 3(b), one can conclude that the difference is negligible and they are 
both on par. Fig. 3(b) also shows that EMLNN is followed by the lowest 
standard deviation. TabNET is almost as stable as EMLNN when looking 
at EMR. RAkEL and MMP, on the other hand, exhibit relatively higher 
standard deviations compared to their HL. LP, RAkEL, and MMP are 
ranked from third to fifth based on the standard deviation of recorded 
EMR.

Experiments with the Bot-IoT dataset result in similar conclusions, 
albeit with a slight difference. In terms of the overall HL and EMR, 
Fig. 2(c, d) shows that EMLNN outperforms all competitors in terms of 
both HL and EMR. In contrast to the previous experiment, Fig. 3(b, d) 
indicates that EMLNN also surpasses TabNET in terms of standard de-

viation for both performance measures. When the standard deviation is 
averaged for both datasets, they are on par with each other. Fig. 2 and 
Fig. 3 also show that all the selected algorithms generally perform bet-

ter on Bot-IoT compared to the UNSW-NB15 dataset. RAkEL, TabNET, 



Computers & Security 139 (2024) 103730

6

E. Hallaji, R. Razavi-Far and M. Saif

Fig. 2. Performance of MLC algorithms over 10 runs in terms of HL and EMR. Solid circles, squares, and plus signs denote recorded performance in each experiment, 
their average, and outliers, respectively.

Fig. 3. Averaged performance and standard deviation of MLC methods in terms of HL and EMR. Results are devised based on experiments and performance measures.
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Table 3

Ranking of MLC algorithms in terms of HL, EMR, and stan-

dard deviation. Lower numbers indicate better ranks.

Algorithms HL EMR HL Std. EMR Std. Overall

LP 5 5 5 3 5

RAkEL 2 3 4 5 3

MMP 4 4 3 4 4

TabNET 2 3 1 2 2

EMLNN 1 1 2 1 1

Table 4

AUROC values associated with ROC curve in Fig. 4.

Dataset EMLNN MMP TabNET RAkEL LP

UNSW-NB15 0.9161 0.8738 0.8976 0.9118 0.8483

Bot-IoT 0.9992 0.9473 0.9760 0.9862 0.9416

Rank 1 4 3 2 5

MMP, and LP can be ranked from second to fifth in terms of both HL 
and EMR for experiments with the Bot-IoT dataset. This is while Tab-

NET and RAkEL are very close in terms of EMR. Furthermore, MMP and 
LP result in a roughly similar HL.

A review of the performed analysis is included in Table 3. Consider-

ing both HL and EMR, and the stability of algorithms, we conclude that 
EMLNN, TabNET, RAkEL, MMP, and LP are ranked from first to last. 
This indicates the effectiveness of the proposed EMLNN algorithm.

4.4. Security analysis

Fig. 4 illustrates the ROC curve resulting from intrusion detection 
based on the attack label sets. The positive class indicates the occur-

rence of an intrusion (i.e., the union of all attack classes). The Area 
Under the ROC curve (AUROC) is an indicator of the intrusion detec-

tion success rate. It can be seen in Fig. 4(a) that EMLNN and RAkEL 
result in the largest area under the ROC curve in experiments with 
UNSW-NB15. Table 4, which lists the precise estimated values of AU-

ROC, confirms this statement. Moreover, comparing the AUROC values, 
one can conclude EMLNN, RAkEL, TabNET, MMP, and LP are ranked 
first to last in terms of the success rate of intrusion detection on UNSW-

NB15. In contrast to the previous analysis of the classification results, 
RAkEL outperforms TabNET for intrusion detection. This is probably 
due to the higher dependency of the intrusion detection process on the 
distribution of all attacks rather than separate distributions associated 
with each attack subcategory. Fig. 4 also illustrates the results of intru-

sion detection for Bot-IoT dataset. Comparing the curves in this figure, 
it can be concluded that EMLNN, RAkEL, TabNET, MMP, and LP can be 
ranked from first to last for this experiment as well. Moreover, it seems 
that the IDS can handle cyber threats more efficiently on this dataset. 
This could be due to the smaller number of attack types included in this 
data.

Fig. 5 shows the class-wise detection accuracy estimated for each 
group of cyber-attacks separately. The results are divided into two 
heatmaps for UNSW-NB15 and Bot-IoT datasets. In addition, a color in-

dex is shown beside each heatmap that defines a color spectrum across 
the range of recorded measurements. The warmer colors indicate higher 
performance whereas the cooler colors are associated with lower perfor-

mance. The color spectrum helps in observing the overall performance 
in identifying each attack and using each algorithm more conveniently.

As shown in Fig. 5(a), EMLNN has the highest ratio of correct pre-

dictions for each attack type for both datasets. For all methods, it seems 
Analysis attacks are easily distinguished from other attack types. In 
contrast, Reconnaissance and Backdoor attacks are more challenging to 
deal with. The normal class which is associated to benign traffic is also 
not detected desirably by TabNET and RAkEL, which means they result 
in a higher false alarm rate. In addition, Exploit attacks are not recog-

Fig. 4. ROC curve obtained based on the intrusion detection results (i.e., attack 
versus benign) using the attack label sets.

nized with a high success rate for most algorithms. Regardless, EMLNN 
exhibits the best performance in identifying Backdoor and Reconnais-

sance attacks. DoS attacks are robustly identified by EMLNN, TabNET, 
and RAkEL. However, LP and MMP do not show optimal performance 
on DoS attacks. Moreover, Worms are identified roughly similarly by all 
algorithms. Fuzzers are also best distinguished using EMLNN, TabNET, 
and RAkEL. Although the performance of MMP and LP is somewhat 
acceptable on Fuzzers, the aforementioned methods lead to a better 
success rate in Fuzzer identification. Shellcode attacks challenge all 
MLC algorithms except for EMLNN and TabNET. Finally, the only tech-

nique that can robustly identify generic attacks in these experiments is 
EMLNN. Fig. 5(b) lists class-wise performance for attacks considered in 
Bot-IoT dataset. While the majority of attacks are detected with satisfy-

ing performance for most algorithms, it appears that detecting data theft 
attacks is more challenging for all detectors. In contrast to the results of 
Fig. 5(a), the normal class is identified with the highest accuracy by all 
algorithms. EMLNN, RAkEL, and TabNET identify reconnaissance, DoS, 
and DDoS attacks with satisfying performance; however, LP and MMP 
fall behind others in detecting these classes.

4.5. Computational resources

Experiments were simulated in Python using TensorFlow in a Conda 
virtual environment created on Windows Subsystem for Linux (WSL) 
on Ubuntu kernel. Experiments were executed on a computer equipped 
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Fig. 5. Class-wise detection accuracy for each of the cyber-attacks using MLC algorithms. Results for UNSW-NB15 and Bot-IoT datasets are shown in separate heat 
maps. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Table 5

Averaged resource usage of EMLNN algorithm in all 
experiments.

Metrics UNSW-NB15 Bot-IoT

Memory usage 4.9 GB 4.8 GB

GPU usage 9 GB 9 GB

CPU usage 13% 13%

Train run time 11,080 s 66,395 s

Test run time 6.8 s 57 s

Train speed 15.82 sample/s 15.79 sample/s

Test speed 12,108 sample/s 12,872 sample/s

with RTX 3080 GPU with 12Gb of memory, Intel Core i7-12700 proces-

sor, and 32 Gb of RAM.

Table 5 shows the averaged resource usage of EMLNN through the 
aforementioned experiments. Using the hardware mentioned above, we 
achieved an inference rate above 12,000 samples per second. The afore-

mentioned setting sufficed for our research purpose and highlighted the 
effectiveness of EMLNN in performing multi-label analysis while iden-

tifying intrusions. In an industrial setting, equipping the server with 
high-end GPUs, running the algorithm natively on a Linux kernel, and 
using faster languages such as C++ will significantly boost the process-

ing speed.

5. Conclusion

A novel MLC algorithm, EMLNN, was proposed to tackle efficiency 
and prediction performance issues existing in MLC problems. The pro-

posed method works based on ensemble models and deep learning. 
This approach trains a set of sequential neural network models sepa-

rately, where each model only targets a specific label set. Moreover, 
once each model is trained, the network parameters are used to initial-

ize the next model. This ensures transferring knowledge of each label 
set to the next model. This training scheme allows each model to con-

centrate on learning the targeted label set without compromising the 
prediction performance by involving other label sets in the learning ob-

jective. Another advantage of this structure is that, in contrast to the 
majority of MLC solutions in the literature, EMLNN does not tamper 
with the label and data distribution (e.g., binarizing the problem or 
merging label sets into one). This prevents further complications such 
as causing class imbalance or insufficient labeled data for certain com-

binations. The proposed method is also evaluated in a real-world case of 
intrusion detection. Experimental results and analysis indicate the su-

periority of the proposed algorithm over comparable methods in terms 
of HL, EMR, and standard deviation.
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