Commentary on Gratton

Joseph A. Novak

Follow this and additional works at: https://scholar.uwindsor.ca/ossaarchive
Part of the Philosophy Commons

https://scholar.uwindsor.ca/ossaarchive/OSSA2/papersandcommentaries/49

This Commentary is brought to you for free and open access by the Department of Philosophy at Scholarship at UWindsor. It has been accepted for inclusion in OSSA Conference Archive by an authorized conference organizer of Scholarship at UWindsor. For more information, please contact scholarship@uwindsor.ca.
Professor Gratton's paper stimulates reflection on the role of the question (more precisely, the reiterated question) in regress arguments. This is important not simply because it raises the role of the question generally in reasoning and thereby echoes a theme present in erotetic logic (one can think here even of the more popular textbook by Hintikka and Bachman, *What if ...? Toward Excellence in Reasoning*1) but also because it provokes us to a closer analysis of the nature of questioning present in the regress argument. The aim of my comments is to further the attempts made in the paper toward a complete as possible arrangement or taxonomy of regress arguments both vis-a-vis one another and vis-a-vis other arguments with due attention to the points made by Claude Gratton. My own citation of examples from the history of philosophy is highly selective and, I hope, not too baffling. Through them I wish to offer some material which might enrich the author's attempt to grapple with the structure of regress arguments.

One of the first questions which may occur to the reader of Gratton's paper is: Do questions enter into the form of regress arguments? At first it seems as though there are many regress arguments that have no questions present in them. Gratton appears to acknowledge this in his opening sentence.2 Consider for instance an argument from antiquity that seems to invoke some sort of infinite regress (although it itself, as considered here, is not a regress argument): the paradox of Zeno regarding motion across a stadium.3 It is cryptically stated by Aristotle and has often been understood in two opposing ways. Someone desiring to cross a stadium would have to traverse the half as well as the half of each half. Since these halves are infinite, it would be impossible to traverse them. Hence, the stadium cannot be traversed.4 Now admittedly the immediate force of the argument is its paradoxical character—the conclusion of the logical (Zeno is considered the founder of "dialectic") reasoning process conflicts with the testimony of our senses. Thus the argument is designated a paradox,5 although the term paradox bears less on the internal structure of an argument than on its character: the puzzling relation of its seeming validity to the rightness of the experience or truth with which it seems to conflict. As Vlastos paraphrases and condenses the argument:

1. To reach G the runner must traverse the Z-sequence (the sequence of the halved intervals in the course (or make all the Z-runs).
2. It is impossible to traverse infinitely many intervals (or, make infinitely many Z-runs). Therefore,
3. The runner cannot reach G.6

What is important for our purposes, however, is that the argument seems to involve no questions. Now, it is easy to suppose that after each stage of an appropriately expanded argument, a premise such as "If one wishes to cover distance x, it is necessary to cover distance x/2" can provoke the question "But in order to cover x/2, is it necessary to cover x/4?". Moreover, one could argue that questioning is implicit in the positing of any premise in
any argument form whatsoever; indeed, there seems to be some evidence that premises are so construed by Aristotle in his *Topics*. Furthermore, one might claim that the Zenonian arguments are not really regress arguments anyway. Conceding all of this, one still might insist that the schema of the infinite regress seems not to contain questions. Consider the presentation of the schema given in a handy reference, Blackwell's *A Companion to Epistemology*:

\[(1) \forall x \exists y (A \supset (\exists y)(Ay \& xRy)).\]

\[(2) \exists x A x.\]

(3) R is irreflexive.

(4) R is transitive.

(5) There is no infinite sequence each of whose elements both has A and bears R to its predecessor.

(6) There is an infinite sequence each of whose elements both has A and bears R to its predecessor.

{Steps (1) and (2) seem to correspond to what Gratton calls "the regress formula" and the "triggering statement" respectively, cf. p. 5.}

Here again, there is formally no presence of questions in the argument form. Now, the above schema should not be taken as some sacrosanct representation of an infinite regress argument; there is no reason to suppose the Blackwell reference as an ultimate standard. However, it can perhaps be of use in arriving at a clearer formulation of what is/are infinite regress argument/s.

Before commenting further on the perhaps important role of questions in the procedure, I would like to mention some of the particular arguments in which infinite regress might occur. To see the argument form at work might enable us to comprehend better its ultimate form or forms. Forgive my bias if the ones I cite are mainly from ancient philosophy. One finds the argument form occurring in logic and metaphysics: one thinks of the famous one arising from problems in predication, i.e., the Third Man Argument, found in both Plato and Aristotle (note the problem of regress in relations as mentioned by Claude Gratton). There is Aristotle's argument against an infinity of middle terms in a demonstration *Post Anal*. 1, 22. One also finds the infinite regress argument used to establish the existence of the Unmoved Mover. Aristotle also seems to have something like it operative in the background of his putative argument for the existence of primary matter. It is noteworthy that in the Third Man the regress is used to disprove the existence of Platonic Universals just as is in Bradley the regress is used to disprove the reality of relations. On the other hand, in the case of the theological argument, the impossibility of regress is used to establish the reality of God's existence. In the area of epistemology, the infinite regress argument is invoked to show that there must be some foundational starting points in explanation. Aristotle is well-known for clearly expressing in his famous trichotomy of infinite regress, circular argument, and intuited foundational premises the only option for anyone critically expounding on the theory of explanation. Other aspects of its use in epistemology beyond ancient philosophy are well noted by the Blackwell source. In ethics one finds it invoked to argue for any ultimate good, as in Aristotle's *Ethics*: one cannot proceed endlessly in the subordination of goods. In Aristotle's *Physics* 25b10 there is the argument that motion and time had no beginning where one might detect an infinite regress format lurking in the background; that time had no beginning is also argued at Metaphysics 1071b6. The argument seems, in its surface structure to be a reductio: suppose time had a beginning; if it had a beginning there would a prior time at which it was not, but there is no prior time;
therefore, time has not a beginning. However, one could also envision the argument along regress lines: If time in our current universe had a start, there would have to be another time in terms of which this start could be measured; once again, in turn, if this time were to begin, there would need be a time in which it began, and so forth ad infinitum. In his De Anima 425b15 Aristotle appears to give a regress argument in favour of the immediacy of awareness in perception: if one were to suppose that the sensory power were not self-percipient, there would be need of another faculty which would be thus aware, and this would give rise to an infinite regress.

In all these cases, infinite regress is seen as something objectionable, something to be avoided. However, it is not the case that every regress is so; one of the very examples raised by Claude Gratton seems to illustrate this. In applying the recurring question, "What is the origin of this man?" within the regress formula "Every man originates from another man", a person does not arrive at a infinite regress that is unacceptable or even an effective infinite regress argument for the existence of a primal Adam. Sometime construals of the arguments for God's existence present the causality in those proofs as effectively no different from the causality at work in the repetitive generational processes in humankind. However, the medieval metaphysicians made clear that such an infinite series was constituted of causes that were not essentially subordinated. Thus, an infinite series of human progenitors was not logically or philosophically repugnant to them. One could not use the invocation of such an infinite series to argue for the existence of a first man. A further point of interest that arises out of the distinction of subordinated/ non-subordinated causes is that the question posed at each step in the enumeration of causes might be seen as different in type in the case of the subordinated causes from that in the series of non-subordinated causes. Rather than asking "what is the origin of man_n?" one is forced to pose questions constantly varying in type when dealing with essentially subordinated causes. Thus, to continue the example of human generation, one should find a schema of this sort:

What is the cause of this man?
*The activity* of a human.
What is the cause of the *activity* of the human?
The *movements* of the air and environment.
What is the cause of the *movements* of the air and environment?
*The rotation* of the heavens.
What is the cause of the *rotation* of the heavens?
The first mover.\(^{15}\)

Now, it is possible to take this rather crude formulation of mine and assimilate to the strict model of the reiterated question format by simply inserting the term *activity* in all the places where italics occur in the above argument. In such a case, the reiterated question type will be the same in both arguments. However, even if such is successful, there remains a difference in the format of two arguments: the human generation argument involving an infinite series of men is not really a regress argument although it involves a series; the argument for the First Mover explicitly invokes the impossibility of an infinite regress as the reason for postulating the existence of a first cause—and hence it is a regress argument.

In conclusion, my remarks, are intended for a further elaboration of some of the issues raised in the author's paper. A delineation of the structure or structures of regress arguments and their types of conclusion might make clear in which arguments the reiterated question plays a role and in which it does not. Claude Gratton's paper is a good contribution to the furtherance of such a project.

*Notes*

2. The infinite regress in some (italics his) infinite regress arguments is presented or described in terms of recurring questions and answers.

3. Although this sometimes is the designation of the so-called "moving rows" paradox.

4. See G. Vlastos, "Zeno's Race Course," in R. Allen, Studies in Presocratic Philosophy (Humanities Press, 1975), pp. 201-202. The varied interpretations arise from the ambiguity in the text: whether in trying to the distance from point S to point G, each of the halves (SG/2^n) should be traversed as though ordered in a progression (n = 1, 2, 3, ...) or as a regression (n = 3, 2, 1).


7. See 101b30.


9. "That is, for every x that has property A, there is a y such that y has A and x bears relation R to y." - p. 210.


11. See Posterior Analytics I, 3.


13. "Further, how can there be any 'before' or 'after' without the existence of time? Or how can there be any time without the exist of motion? If, then, time is the number of motion or itself a kind of motion, it follows that, if there is always time, motion must also be eternal."

14. "But it is impossible that movement should either have come into being or cease to be (for it must always have existed), or that time should. For there could not be a before and after if time did not exist."

15. Alternatively:

Why does x grow?

Because the rain falls on x.

Why does the rain fall on x?

Because cumulus clouds reach a critical size.
<table>
<thead>
<tr>
<th>View Paper by C. Gratton</th>
</tr>
</thead>
<tbody>
<tr>
<td>View Index of Papers and Commentaries</td>
</tr>
<tr>
<td>Return to Main Menu</td>
</tr>
</tbody>
</table>