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Complex microbial communities remain poorly characterized despite their ubiquity and importance to
human and animal health, agriculture, and industry. Attempts to describe microbial communities by either
traditional microbiological methods or molecular methods have been limited in both scale and precision. The
availability of genomics technologies offers an unprecedented opportunity to conduct more comprehensive
characterizations of microbial communities. Here we describe the application of an established molecular
diagnostic method based on the chaperonin-60 sequence, in combination with high-throughput sequencing, to
the profiling of a microbial community: the pig intestinal microbial community. Four libraries of cloned cpn60
sequences were generated by two genomic DNA extraction procedures in combination with two PCR protocols.
A total of 1,125 cloned cpn60 sequences from the four libraries were sequenced. Among the 1,125 cloned cpn60
sequences, we identified 398 different nucleotide sequences encoding 280 unique peptide sequences. Pairwise
comparisons of the 398 unique nucleotide sequences revealed a high degree of sequence diversity within the
library. Identification of the likely taxonomic origins of cloned sequences ranged from imprecise, with clones
assigned to a taxonomic subclass, to precise, for cloned sequences with 100% DNA sequence identity with a
species in our reference database. The compositions of the four libraries were compared and differences related
to library construction parameters were observed. Our results indicate that this method is an alternative to 16S
rRNA sequence-based studies which can be scaled up for the purpose of performing a potentially comprehen-
sive assessment of a given microbial community or for comparative studies.

The biosphere is dominated by microbial life, and microbes,
both in the environment and as commensals of other organ-
isms, exist in complex communities (20, 31). The earliest efforts
to examine microbial diversity were direct microscopic obser-
vations, such as Antonie van Leeuwenhoek’s observations of
“very many small Animals” in the human oral cavity (47).
Subsequently, microbiologists developed the culture-based
techniques which, combined with differentiation of isolates
based on numerous physiological and biochemical tests, be-
came the standard method for investigating microbial commu-
nity composition. A serious limitation of these methods is what
has been referred to as the great plate count anomaly (41).
That is, only a small fraction of microorganisms present in a
population can be cultured in the laboratory, as little as 0.001
to 15%, depending on the community (2).

The development of recombinant DNA methods has led to
a proliferation in small-scale studies of complex microbial
communities, such as those associated with termite guts (33),
rice paddy soil (3), 120-million-year-old amber (17), Antarctic
lake ice (16), and leaves of a seagrass in the northern Gulf of
Eilat (50). Molecular methods for microbial community anal-
ysis (reviewed in references 36, 45, and 48) include denaturing
gradient gel electrophoresis, temperature gradient gel electro-
phoresis, and restriction fragment length polymorphism anal-
ysis. While these methods provide rapid comparative analyses

of populations and generate population “fingerprints,” they do
not identify individual organisms within populations.

Methods that do identify individual members of microbial
communities are based on PCR and direct sequencing or clon-
ing and sequencing of specific targets within microbial ge-
nomes. By far the most frequently used target is the 16S rRNA
gene (30, 32). Our molecular phylogenetic view of the micro-
bial world is dominated by 16S rRNA sequence relationships,
and the wealth of sequence information accumulated for 16S
rRNA genes from thousands of organisms and stored in the
Ribosomal Database Project (25) has become a standard tool
for studying microbial communities. Libraries of total genomic
DNA extracted from a community of interest can be screened
for rRNA genes, or libraries of PCR amplified rRNA genes or
gene segments can be generated and sequenced.

Other gene targets used in microbial identification and for
elucidation of phylogenetic relationships include rpoB (7), gyrB
(22), pmoA (5), and cpn60, which encodes the 60-kDa chap-
eronin found in virtually all eubacteria and the mitochondria
and chloroplasts of eukaryotes (38). A robust molecular
method has been developed for the identification of microor-
ganisms based on amplification of a portion of the cpn60 gene
by universal, degenerate PCR primers (13). This method has
demonstrated advantages over 16S rRNA-based methods in
that for closely related organisms, there is more phylogenetic
information in the protein-encoding cpn60 sequence relative to
the structural RNA-encoding 16S rRNA gene (6).

The overriding limitation to sequence-based studies to date
has been scale. The most thorough, direct analysis of cloned
16S rRNA gene sequences from a complex microbial commu-
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nity to date involved the sequencing of 284 16S rRNA gene
fragments from a human fecal sample (42). A study of this
scale, which resulted in the identification of 82 different 16S
rRNA sequences, is not adequate to catalog the microbial
diversity in feces, thought to contain at least 500 different
bacterial species (28), or soil, which is estimated to contain ca.
13,000 different species (46).

The development of high-throughput technologies for geno-
mics applications presents an opportunity to conduct large-
scale, even comprehensive, studies of complex microbial com-
munities. Here we describe a modestly scaled feasibility study
of the application of genomics technology and the cpn60 mo-
lecular diagnostic method to cataloguing the diversity in a
microbial community. We chose pig feces as our target popula-
tion because it is a tractable microbial community, rich in mi-
crobial life (estimated to exceed 1011 organisms per g of feces
[11, 28]), for which there is a wealth of descriptive literature.
Results will be discussed in terms of the potential for this meth-
od in larger studies of microbial communities and the estab-
lishment of cpn60 as a universal target for studying the phyloge-
netic relationships of microorganisms in complex communities.

MATERIALS AND METHODS

Pigs and feces collection. Fecal samples were obtained from the recta of
6-week-old pigs (n � 5) housed in a commercial swine facility (Prairie Swine
Centre Inc., Saskatoon, Saskatchewan, Canada). A medicated (chlortetracycline
[308 mg/kg], sulfamethazine [308 mg/kg], and penicillin [154 mg/kg]) wheat and
soybean meal-based diet formulated to meet nutrient requirements was fed from
21 days of age (weaning). Fecal samples were pooled (a total of approximately
2 g, i.e., 0.4 g from each of the five animals) and stored at �20°C until genomic
DNA was extracted.

Genomic DNA extraction. Two methods of genomic extraction were used. In
a modification of the benzylchloride extraction method (52), approximately 0.8 g
of feces was thawed and dispersed in 5 ml of benzylchloride extraction buffer
(100 mM Tris-HCl [pH 9.0], 40 mM EDTA). To 500 �l of the suspension was
added 100 �l of 10% sodium dodecyl sulfate (SDS) and 300 �l of benzyl chloride.
The remaining 4.5 ml of fecal suspension was reserved at �20°C. The sample was
mixed by vortexing and incubated at 50°C for 30 min, with vortexing at 5-min
intervals. Then 300 �l of 3 M sodium acetate (pH 5) was added, and the sample
was mixed by inversion and incubated on ice for 15 min, followed by centrifu-
gation at maximum speed in a microcentrifuge at 4°C for 15 min to separate the
aqueous and organic phases. The supernatant was transferred to a clean tube and
nucleic acids were precipitated by the addition of 400 �l of isopropanol followed
by centrifugation at top speed in a microcentrifuge for 10 min at 4°C. The pellet
was washed in cold 70% ethanol, dried, and resuspended in 100 �l of TE (100
mM Tris-HCl, pH 8, 1 mM EDTA).

Approximately 0.8 g of feces was dispersed in 5 ml of 25% sucrose–40 mM
Tris, pH 8. To 500 �l of the suspension was added 100 �l of lysozyme (10 mg/ml
in 25 mM Tris, pH 8), and the sample was incubated at 4°C for 10 min, followed
by the addition of 100 �l EDTA (0.5 M, pH 8) and incubation at 4°C for 10 min.
Then 1 ml of lysis buffer (62.5 mM EDTA, 50 mM Tris [pH 8], 1% [vol/vol]
Triton X-100) was added, and the sample was incubated at 4°C for 15 min with
periodic mixing. The lysate was extracted twice with 25:24:1 (vol/vol/vol) phenol-
chloroform-isoamyl alcohol, and nucleic acids were precipitated by the addition
of 85 �l of 3 M sodium acetate and 850 �l of isopropanol, followed by centrif-
ugation at maximum speed in a microcentrifuge for 10 min at 4°C. Pellet was
washed once with 70% ethanol, air dried, and resuspended in 100 �l of TE.

PCR and cloning of PCR products. Genomic DNA extracted from feces (1 �l
of either benzylchloride or phenol-chloroform-extracted DNA) was used as the
template in PCRs. The PCR primers used were H279, 5�-GAI III GCI GGI
GA(C/T) GGI ACI ACI AC-3�, and H280, 5�-(C/T)(G/T)I (C/T)(G/T)I TCI
CC(A/G) AAI CCI GGI GC(C/T) TT-3�. Inosine (I) was used to reduce the
degeneracy of the sequences (29). Primers were designed to amplify the region
between codons 92 and 277 based on the Escherichia coli groEL sequence (ac-
cession number X07850). The PCRs contained 50 mM KCl, 10 mM Tris-HCl
(pH 8.3), 1.5 mM MgCl2, 250 �M each of the four deoxynucleoside triphos-
phates, 2 U of Taq DNA polymerase, and 0.5 �g (50 pmol) of each primer.

PCRs were performed on a Stratagene Robocycler thermocycler according to
the following parameters: 3 min at 95°C, 40 cycles of 1 min at 95°C, 1 min at 40°C,
1 min at 72°C, and 10 min at 72°C. PCRs included a negative control reaction
containing no template DNA to ensure that no contaminating template was
present in the reactions. An additional set of PCRs were done as described
except that the annealing temperature was 56°C. The resulting four PCR prod-
ucts were agarose gel purified and ligated into vector pCR2.1-TOPO with the
TOPO T-A cloning kit (Invitrogen), and transformed Escherichia coli was plated
on Luria-Bertani agar (LB) containing ampicillin and 5-bromo-4-chloro-3-in-
dolyl-�-D-galactopyranoside (X-Gal). The resulting libraries were named accord-
ing to the template extraction method and PCR annealing temperature used in
their production: B56 and B40 (benzylchloride template amplified with an an-
nealing temperature of 56°C or 40°C, respectively); P56 and P40 (phenol-chlo-
roform template amplified with an annealing temperature of 56°C or 40°C,
respectively). Colonies (576 white colonies from each library) were picked and
used to inoculate 96-well plates containing 100 �l of LB with ampicillin (50
�g/ml) per well. Culture plates were incubated overnight in humidified contain-
ers at 37°C with shaking. Glycerol (100 �l of 30% glycerol in LB) was added to
each well, and plates were sealed and stored at �80°C.

Plasmid DNA isolation and DNA sequencing. Plasmid DNA for sequencing
template was isolated either by the Qiagen R.E.A.L. Prep 96 plasmid kit accord-
ing to the manufacturer’s protocol or by a solid-phase reversible immobilization
method modified from an earlier published procedure (19) for use on an inte-
grated automation platform (ELVIS; see http://bioinfo.pbi.nrc.ca/robotics). For
the robotic plasmid preparation, recombinant clones were cultured in 1.2 ml of
Terrific Broth in deep-well (2 ml) 96-channel microtiter plates, pelleted by
centrifugation, and lysed by an alkaline-SDS procedure. Lysates were made up to
10% polyethylene glycol 8000 and 0.5 M NaCl prior to the addition of 200 �g of
COOH-derivatized paramagnetic beads (Seradyn). The bead slurry mixture was
incubated with shaking for 5 min, and the beads were subsequently fractionated
over permanent magnets, washed in 50% ethanol, dried, and resuspended in
double-distilled H2O. Plasmid concentration was estimated by resolving plasmid
preps on 1% agarose gels.

High-throughput DNA sequencing reactions were conducted in 384-well mi-
crotiter plate format, by using 100 to 300 ng of template DNA in combination
with 5�-biotinylated T7 and M13RP sequencing primers, in a 1/3 volume Big Dye
sequence reaction (PE Biosystems). Reactions were assembled by the robotic
system described above and thermocycled according to the supplier’s recom-
mended protocol. Sequence extension reaction products were purified by addi-
tion of 10 �g of streptavidin-paramagnetic beads (M-280; Dynal Corporation),
followed by fractionation over permanent magnets. Fractionated beads were
resuspended in 12 �l of 50% deionized formamide and treated at 95°C for 5 min
prior to immobilization and transfer of up to 12 �l of the reaction product-
containing supernatant to a fresh 384-well microtiter plate. Completed reactions
were sealed and stored at �80°C prior to resolution on a PE-3700 capillary
sequencing device.

Sequence data assembly and analysis. All sequence data assembly, analysis,
and storage were done by software available from the Canadian Bioinformatics
Resource (http://www.cbr.nrc.ca). Raw sequencing data were assembled into
contigs for each template by Pregap4 (version 1.1) and Gap4 (version 4.6) in the
Staden software package (release 2000.0; J. Bonfield, K. Beal, M. Betts, M.
Jordan, and R. Staden, 2000). Contig nucleotide and peptide sequences were
compared to a database of approximately 1,000 cpn60 sequences by BlastP and
BlastN. Sequence data, template information, and Blast results were deposited in
a MySQL database for data storage and further analysis. Sequence manipula-
tions, such as format changes and amino acid translations, were done by GCG
(Wisconsin package, version 10.1 for Unix). Sequence alignments were done with
ClustalW and viewed with GeneDoc.

Phylogenetic analysis was done by programs in the PHYLIP software package.
Specifically, alignments were sampled for bootstrap analysis by Seqboot, dis-
tances were calculated with the PAM option of Protdist (for peptide sequences)
or the maximum-likelihood option of Dnadist. Dendrograms were constructed
from distance data by using neighbor-joining by neighbor. Consensus trees were
calculated by Consense, and branch lengths were superimposed on consensus
trees by Fitch. Completed trees were viewed by TreeView and manipulated for
presentation with Microsoft Powerpoint.

RESULTS

cpn60 gene sequences amplified from piglet feces total DNA.
To provide a mixed DNA template representing a complex
microbial community, total DNA was extracted from piglet
feces. From this template, a region of the cpn60 gene sequence
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was amplified by universal, degenerate primers. Four indepen-
dently amplified DNA products were produced by application
of two methods for DNA extraction combined with two an-
nealing temperatures for PCR, 40 and 56°C. The amplified
products were cloned independently to produce four libraries.
High-quality sequence data were obtained for 1,125 clones that
were randomly selected from the four libraries (278 from B40,
332 from B56, 293 from P40, and 222 from P56). Disregarding
the flanking degenerate primer sequences, the cloned cpn60
gene region was either 552, 555, or 558 nucleotides in length
(184, 185, or 186 codons, respectively).

Pairwise comparisons of the 1,125 sequences by ClustalW
revealed the presence of 398 unique nucleotide sequences (en-
coding 280 unique peptide sequences). These were deposited
in GenBank as a phylogenetic study and assigned accession
numbers AF436893 to AF437290. Figure 1A shows the number
of times each unique nucleotide sequence was recovered from
the total library. A few sequences were recovered frequently,
and one sequence was recovered 148 times whereas 307 se-
quences were recovered only once. Only 10 sequences were
recovered more than 20 times. Pairwise comparisons among
the 398 unique sequences gave from 47 to 99% nucleotide
sequence identity.

Phylogenetic analysis of cpn60 sequence data. Each DNA
and peptide sequence was compared to a database of cpn60
sequences by Blast (1). The database is a curated and growing
collection of approximately 1,100 eubacterial and eukaryotic
cpn60 sequences harvested from public databases or generated
in the laboratories of a network of collaborating researchers.
The nearest database neighbors of the most frequently recov-
ered library sequences are shown in Table 1. The estimated
taxonomic breakdown of the total library contents, based on
nearest-neighbor taxonomy, is illustrated in Fig. 1B and Table
2.

The largest taxonomic group, represented by 55% of the
total library clones and 54% of the unique nucleotide se-
quences, was the Cytophaga-Flexibacter-Bacteroides (CFB)
group. The Bacillus/Clostridium subgroup of gram-positive
bacteria represented 36% of the total library clones and 42%
of the unique nucleotide sequences, and gamma-class Pro-
teobacteria accounted for 8% of the total clones and 3% of the
unique nucleotide sequences. The group labeled “others” in
Fig. 1B consisted of clones whose nearest database neighbors
were in the spirochete, Chlamydiales, or beta Proteobacteria
families (see Table 2 for details). Sequence length was strictly
correlated with taxonomic assignment. That is, all clones with
nearest neighbors in the CFB group had lengths of 558 bp (186
codons), whereas all the clones with nearest neighbors in the
Proteobacteria gamma group and Bacillus/Clostridium group
were 555 bp (185 codons) and 552 bp (184 codons), respec-
tively. These are identical to the lengths observed for database
reference sequences from each of these groups.

The most abundant sequence in the library (recovered 148
times), represented by clone 002_a03, was 88% identical at the
amino acid level (78% nucleotide identity) to Prevotella inter-
media ATCC25611. Other sequences recovered at least four
times from the library are identified in Table 1 along with their
nearest database neighbors. In three cases, library clones
showed 100% DNA sequence identity with database reference
strains Lactobacillus amylovorus ATCC 33620, Lactobacillus
acidophilus T13, and Enterococcus asini ss-1501. Another clone
showed 100% amino acid sequence identity and 98% nucleo-
tide sequence identity with Pediococcus pentocaceus ATCC
43200. Overall, the level of sequence identity between each of
the 398 unique library sequences and its nearest database
neighbor ranged from 56 to 100% DNA identity (51 to 100%
peptide identity, 71 to 100% peptide similarity), with only two
clones having less than 60% peptide identity to their nearest
database neighbor. Table 2 shows the overall composition of
recovered sequences in terms of their nearest database neigh-
bors.

Inferred phylogenetic relationships among unique library
sequences are illustrated in Fig. 2. The 280 unique peptide
sequences translated from the 398 unique nucleotide se-
quences were subjected to a multiple sequence alignment with
ClustalW. Pairwise distances between the aligned sequences
were calculated by the Protdist program within PHYLIP
(PAM matrix), and the tree was generated by neighbor joining.
Branches were color-coded according to the taxonomic group
of the nearest database neighbor of each clone sequence.
Overall, the phylogenetic relationships outlined in the tree in
Fig. 2 reflect the initial taxonomic estimates made based on the
Blast results.

FIG. 1. (A) Frequency distribution of unique nucleotide sequences
recovered from the combined pig feces cpn60 libraries. (B) Taxonomic
breakdown of total library contents. Assignment to a taxonomic group
was based on comparisons of clone sequences to a database of cpn60
reference sequences.
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Following the gross phylogenetic analysis presented in Fig. 2,
groups of cloned sequences from each of the represented tax-
onomic categories were selected for detailed phylogenetic tree
construction, incorporating reference sequences from the
cpn60 database. By this technique, clone sequences were ten-
tatively identified to the level of taxonomic subclass, family, or
genus. An example of this analysis, including 10 clone se-
quences with nearest database neighbors in the CFB group and
reference sequences from the genera Chlorobium, Rhodother-
mus, Flavobacterium, Bergeyella, Chryseobacterium, Bacteroides,
and Weeksella, is shown in Fig. 3.

Genetic diversity of sampled microorganisms. The cumula-
tive frequency distribution was plotted for the DNA sequence
identity scores from all pairwise comparisons of library clone
sequences (Fig. 4). To produce plots for comparison to this
cumulative frequency distribution plot of our experimental
population, three other populations of cpn60 sequences were
synthesized by selecting sequences from our database of cpn60
reference sequences. The first of these populations consisted
of individual species from 172 different genera (including both
prokaryotes and eukaryotes) represented in the database. A

second population was constructed by pooling cpn60 universal
target sequences from 77 species (34 genera) of Proteobacteria
gamma. The third population consisted of 37 species from a
single genus, Lactobacillus. The experimental pig feces library
population, while less diverse than the population of 172 gen-
era, was more diverse than the genus Lactobacillus or the
Proteobacteria gamma taxon, with approximately half of the
pairwise comparisons within the library having DNA identities
of 60% or less.

Sequence accuracy and microheterogeneity. Clusters of
nearly identical clone sequences (98 to 99% nucleotide iden-
tity) ranging in size from 2 to 20 sequences (191 total se-
quences) were further analyzed to determine the nature of the
differences between the sequences. Multiple alignments of
these groups of sequences showed that a disproportionate (P �
0.001) number of the differences within the alignments were
synonymous changes, occurring in the third position of codons.
Examination of a total of 320 differences revealed that 61 were
in the first position of codons, 63 were in the second position,
and 196 were in the third position. Almost all third-position
differences (191 of 196) were synonymous changes in terms of

TABLE 1. Nearest cpn60 database neighbors of sequences recovered from a library at least four times among 1,125 clones

Clone Nearest cpn60 database neighbor GenBank
accession no. Taxonomic group % Peptide identity

(similarity)

%
DNA

identity
Frequencya

002_a03 Prevotella intermedia ATCC25611 AF440234 CFB group 88 (94) 78 148�

001_f12 Prevotella bivia ATCC29303 AF440233 CFB group 88 (92) 73 98�

002_a11 Anaerobiospirillum succiniciproducens ATCC700195 AF441383 Proteobacteria gamma 86 (94) 80 65�

001_c11 Prevotella bivia ATCC29303 AF440233 CFB group 88 (92) 72 38�

001_e03 Bacillus halodurans AP001508 Bacillus/Clostridium group 64 (83) 64 26�

001_a02 Clostridium thermocellum ncib10682 Z68137 Bacillus/Clostridium group 71 (85) 69 25�

001_g07 Clostridium thermocellum ncib10682 Z68137 Bacillus/Clostridium group 72 (86) 70 23�

005_a04 Prevotella bivia ATCC29303 AF440233 CFB group 88 (92) 73 22�

002_c12 Bacteroides ovatus ATCC8483 AF440236 CFB group 97 (97) 83 21�

002_b08 Clostridium difficile 79-685 AF080547 Bacillus/Clostridium group 73 (88) 63 19�

003_b04 Clostridium thermocellum ncib10682 Z68137 Bacillus/Clostridium group 72 (86) 70 17�

001_a05 Chryseobacterium gleum ATCC35910 AF440235 CFB group 68 (84) 67 15�

002_g03 Thermoanaerobacter brockii Rt8.G4 U56021 Bacillus/Clostridium group 75 (89) 68 15�

002_e03 Clostridium thermocellum ncib10682 Z68137 Bacillus/Clostridium group 71 (85) 70 14�

005_b04 Prevotella bivia ATCC29303 AF440233 CFB group 88 (92) 73 13�

002_e11 Bacteroides ovatus ATCC8483 AF440236 CFB group 96 (96) 80 11�

003_a04 Anaerobiospirillum succiniciproducens ATCC700195 AF441383 Proteobacteria gamma 83 (91) 79 11
005_c01 Clostridium thermocellum ncib10682 Z68137 Bacillus/Clostridium group 74 (88) 71 8�

005_e05 Clostridium thermocellum ncib10682 Z68137 Bacillus/Clostridium group 72 (88) 72 8�

001_h02 Clostridium perfringens X62914 Bacillus/Clostridium group 71 (88) 66 7�

003_f04 Prevotella bivia ATCC29303 AF440233 CFB group 88 (93) 74 7�

008_h10 Clostridium difficile 79-685 AF080547 Bacillus/Clostridium group 73 (89) 64 7�

002_c10 Prevotella bivia ATCC29303 AF080547 CFB group 87 (93) 77 6�

001_h09 Lactobacillus amylovorous ATCC33620 Bacillus/Clostridium group 100 (100) 100 5
001_h11 Bacillus halodurans AP001508 Bacillus/Clostridium group 64 (83) 64 5�

003_b12 Pediococcus pentosaceus ATCC43200 Bacillus/Clostridium group 95 (96) 84 5�

003_d12 Clostridium thermocellum ncib10682 Z68137 Bacillus/Clostridium group 72 (86) 70 5
005_e02 Prevotella intermedia ATCC25611 AF440234 CFB group 89 (93) 82 5
005_e06 Clostridium thermocellum ncib10682 Z68137 Bacillus/Clostridium group 72 (86) 70 5
006_b07 Clostridium perfringens X62914 Bacillus/Clostridium group 64 (84) 64 5�

006_f02 Clostridium thermocellum ncib10682 Z68137 Bacillus/Clostridium group 78 (89) 71 5�

001_e12 Clostridium thermocellum ncib10682 Z68137 Bacillus/Clostridium group 74 (88) 71 4�

002_d06 Prevotella intermedia ATCC25611 AF440234 CFB group 88 (94) 78 4
002_d12 Clostridium thermocellum ncib10682 Z68137 Bacillus/Clostridium group 71 (86) 68 4
002_g10 Prevotella intermedia ATCC25611 AF440234 CFB group 88 (94) 78 4�

011_c01 Lactobacillus acidophilus T-13 Bacillus/Clostridium group 100 (100) 100 4�

014_a12 Clostridium perfringens X62914 Bacillus/Clostridium group 72 (87) 70 4
018_b06 Lactococcus garvieae ATCC43921 AF245674 Bacillus/Clostridium group 66 (86) 63 4

a �, recovered from at least two libraries.
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their effects on the encoded peptide sequence. No in-frame
stop codons were observed in any of the 1,125 clone sequences
determined. Also, 29 of the 38 sequences in Table 1 (sequences
occurring at least four times) were recovered from at least two
of the four libraries.

DNA extraction methods and PCR conditions used affect
organisms sampled. To assess the effects of library construc-
tion parameters on library contents, sequence data were
grouped by library of origin, and clone frequencies and taxo-
nomic distributions were analyzed for each of the four data sets
(Fig. 5A). The B40, B56, P40, and P56 libraries contained 156,
125, 112, and 91 different sequences, respectively. The fre-
quency distributions of unique sequences varied markedly be-
tween libraries. While the most prevalent clone in the P56 and
P40 libraries was recovered approximately 70 times from each
library (accounting for 25 to 30% of clones sequenced) and the
most prevalent clone in the B56 library was recovered 49 times
(15% of clones), the most abundant clone in the B40 library
was recovered only 23 times (8% of clones). Figure 5B shows
the taxonomic composition of each of the four libraries. The
relative proportions of each taxon clearly varied between the
four libraries, with the largest proportion of Proteobacteria

gamma-like clones occurring in the B56 library, while this
taxon was completely absent from the P40 library.

Data were also grouped for analysis according to the PCR
annealing temperature or genomic DNA extraction method
used in library construction. Figure 6 shows the taxonomic
composition of clones produced with a PCR annealing tem-
perature of 40°C versus 56°C and DNA template prepared by
the benzylchloride versus phenol-chloroform extraction meth-
ods. While all four taxonomic subclasses (CFB group, Bacillus/
Clostridium group, Proteobacteria gamma, and others) were
detected in each group, the relative proportions of each taxon
present varied with library construction conditions. For exam-
ple, the highest proportion of Proteobacteria gamma class
clones were produced with a PCR annealing temperature of
56°C and a benzylchloride-extracted template (see also Fig.
5A).

DISCUSSION

The microbial community present in the gastrointestinal
tract is a complex and dynamic one, varying in composition
with age, diet, stress, medication, temperature, etc., as well as
varying along the length of the tract. Despite its importance,

TABLE 2. Summary of all library clones classified by nearest cpn60 database neighbors

Taxonomic group Nearest cpn60 database neighbor GenBank
accession no.

No. of unique
sequences

No. of
clones

% DNA
identity

% peptide identity
(similarity)

CFB group Bacteroides forsythus ATCC43037 AJ006516 21 25 69–75 76 (86)–88 (92)
Bacteroides ovatus ATCC8483 AF440236 29 68 66–83 69 (81)–97 (97)
Bacteroides vulgatus ATCC8482 AF440238 10 10 63–85 70 (82)–94 (95)
Chryseobacterium gleum ATCC35910 AF440235 3 17 67–68 68 (84)–73 (82)
Prevotella bivia ATCC29303 AF440233 87 274 72–79 84 (89)–89 (94)
Prevotella intermedia ATCC25611 AF440234 44 210 72–82 72 (84)–93 (96)
Prevotella nigrescens ATCC33563 AF441382 19 20 68–81 67 (83)–89 (93)

Bacillus/Clostridium group Bacillus coagulans CECT 12 AF441379 5 6 68–70 72 (87)–74 (86)
Bacillus firmus CECT 14 AF441380 1 2 66 65 (82)
Bacillus halodurans AP001508 11 42 63–67 64 (84)–71 (86)
Bacillus psychrophilus CECT 4073 AF441381 8 9 66–70 72 (86)–73 (88)
Bacillus sp. MS AB028452 3 3 68–69 72 (87)
Clostridium acetobutylicum M74572 2 3 66–68 65 (84)–73 (87)
Clostridium difficile 79-685 AF080547 14 42 61–65 64 (78)–74 (89)
Clostridium perfringens X62914 12 28 63–70 63 (83)–73 (88)
Clostridium thermocellum ncib10682 Z68137 88 210 65–75 67 (83)–82 (91)
Enterococcus asini ss-1501 AF245671 7 11 59–100 71 (85)–100 (100)
Globicatella sanguinis ATCC51173 AF441384 1 1 62 63 (83)
Lactobacillus acidophilus T-13 2 5 99–100 99 (99)–100 (100)
Lactobacillus amylovorous ATCC33620 3 9 95–100 97 (99)–100 (100)
Lactobacillus jensenii ATCC25258 1 1 64 66 (83)
Lactococcus garvieae ATCC43921 AF245674 1 4 63 66 (86)
Pediococcus pentosaceus ATCC43200 5 10 84–98 95 (96)–100 (100)
Thermoanaerobacter brockii Rt8.G4 U56021 2 16 68 75 (89)

Proteobacteria gamma Anaerobiospirillum succiniciproducens
ATCC700195

AF441383 12 88 79–80 83 (91)–86 (94)

Proteobacteria beta Burkholderia vietnamiensis DSM 11319 AF104908 1 1 82 87 (93)

Chlamydiales Chlamydia muridarum NP_296764 1 2 55 50 (68)

Spirochetes Borrelia burgdorferi NC_001318 3 5 62–67 65 (82)–67 (83)
Treponema pallidum AE001188 1 1 64 71 (89)

Total 398 1,125

VOL. 68, 2002 HIGH-THROUGHPUT MICROBIAL COMMUNITY ANALYSIS 3059



the microbial flora of the animal gut remains poorly charac-
terized. In fact, microbial communities in general are poorly
understood. The technologies developed for genomics pro-
grams present us with an unprecedented opportunity to ad-
vance our understanding of these populations. The current
study, which combined high-throughput genomics technologies
with an existing cpn60-based molecular diagnostic to charac-
terize the pig feces microbial community, was undertaken as a
feasibility study for the general application of this approach to
other complex microbial communities.

Sequence data reveal biologically based microheterogeneity.
The degenerate PCR primers used in this study were previ-
ously demonstrated to amplify the universal target region of
the cpn60 gene from a wide variety of organisms, including
eubacteria, fungi, plants, and animals (6, 12–15; unpublished

observations). The region of template-specific cpn60 amplified
from pig feces total DNA varied in length, being either 552,
555, or 558 bp (184, 185, or 186 codons), and the complete
sequence of each cloned PCR product was determined with
two sequencing reactions initiated from sites within the cloning
vector. Only unambiguous full-length sequences were included
in our analysis.

To assess the potential impact of sequence artifacts that
might have been introduced by PCR or Taq polymerase infi-
delity, clusters of nearly identical nucleotide sequences were
examined. If the observed microheterogeneity in these se-
quence groups resulted from PCR-generated errors, then the
sequence differences should be distributed uniformly among
the first, second, and third positions within codons. We ob-
served, however, that a significantly disproportionate number

FIG. 2. Phylogenetic relationships of 280 unique Cpn60 peptide sequences translated from 398 unique nucleotide sequences. Distance
calculations were made by the Dayhoff PAM matrix, and the dendrogram was produced by neighbor joining. The scale bar represents 0.1
substitution per site. Branches are colored according to the assigned taxonomic group of the sequences (red, CFB group; green, Proteobacteria
gamma; blue, Bacillus/Clostridium group; orange, Proteobacteria beta; pink, spirochetes; black, other).
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of nucleotide differences occurred in the third codon position
and that virtually all of these were synonymous differences,
resulting in no change in the encoded peptide sequence. Also
significant was the fact that no in-frame stop codons were
observed in any of the clone sequences assembled.

The genetic code includes 18 codons that, with a single
nucleotide change, can be converted to a stop codon, and
analysis of the 1,125 clone sequences indicated that there were
58,881 codons that were vulnerable to single-nucleotide muta-

tion to a nonsense codon. Thus, we suggest that while PCR
artifacts cannot be ruled out entirely, much of the minor se-
quence variation observed within clusters of related clone se-
quences was a reflection of real biological diversity. The se-
quence differences observed in many of these clusters was
typical of the sorts of differences observed previously between
cpn60 universal target sequences from serotypes of a single
bacterial species, Streptococcus suis (6).

A major concern in 16S rRNA sequence-based studies of

FIG. 3. Phylogenetic relationships of 12 clone peptide sequences assigned to the CFB group, including the two most abundant cloned sequences
(represented by 001_f12 and 002_a03). The tree is a consensus of 100 neighbor-joined trees. Distance calculations were made by the Dayhoff PAM
matrix, and branch lengths were imposed on the consensus tree by Fitch. Nodes with bootstrap values of �50% are indicated with white dots.
Reference sequences used in the tree are Flavobacterium hydatis (GenBank accession no. AAK32145), Flavobacterium ferrugineum (AAK32146),
Bergeyella zoohelcum (ATCC 43767), Chryseobacterium meningosepticum (ATCC 13253), Chryseobacterium gleum (ATCC 35910), Bacteroides
forsythus (CAB43992), Bacteroides vulgatus (ATCC 8482), Bacteroides uniformis (ATCC 8492), Bacteroides ovatus (ATCC 8483), Prevotella bivia
(ATCC2 9303), Prevotella intermedia (ATCC 25611), Rhodothermus marinus (strain ITI 376, AAD37976), and Chlorobium tepidum (derived from
contig 3499, TIGR unfinished genome database).
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microbial communities is the occurrence of chimeric PCR
products (35, 40, 49). The generation of chimeric PCR prod-
ucts through template switching is facilitated by the presence
of a number of highly conserved stretches along the primary
structure of ribosomal DNAs (rDNAs) and can involve closely
related sequences, including multiple copies of 16S rRNA
genes within a single genome. Chimeric cpn60 PCR products
may be less likely than 16S rRNA chimeras, since cpn60 is
present in fewer copies per genome (a single copy in most
prokaryotic genomes), the amplified sequence is shorter (552
to 558 bp versus the approximately 1.6 kb amplified from
bacterial 16S rRNA genes), providing fewer opportunities for
template switching, and the cpn60 sequence lacks the intermit-
tent highly conserved sequence stretches present in 16S rRNA
genes. Obviously, chimera formation would be more likely, and
difficult to detect if it occurred in-frame, between closely re-
lated cpn60 sequences.

The best evidence that a sequence is not a PCR artifact is
that it is recovered from more than one library, since the
libraries were generated from independent PCRs. In this study,
29 of the 38 most frequently recovered sequences were recov-
ered from at least two libraries. Also, several examples of pairs
of very similar sequences independently recovered from at
least two libraries were found. For example, the sequences of
clones 001_a02 and 001_g07 were 98% identical and were each
independently recovered from three of the four libraries. The
same is true of 002_a03 and 002_g10 (99% identical, each
recovered from four and two libraries, respectively) and
001_f12, 005_a04, 005_b04, and 001_c11, which have pairwise
identities of 98% and were each recovered from B40 and P40
libraries. These examples provide evidence of real microhet-
erogeneity in the population. The best way to systematically
detect PCR chimeras in cpn60 libraries will be to apply com-
putational tools such as Check_Chimera (25), developed for
use in 16S rRNA-based studies. Options are currently being
investigated in our laboratory so that a reliable chimera-check-
ing tool is available for use with the cpn60 sequence database.

The identification of microheterogeneity within bacterial

populations is not practical by traditional culture-based meth-
ods. The ability to track sequence microheterogeneity in com-
plex microbial communities may have implications for our abil-
ity to understand the dynamics of these populations, particularly
with respect to microbial evolution and concepts such as lateral
gene transfer (9). Subtle sequence variation, typical of collec-
tions of sequences from closely related organisms, is over-
looked in population profiling methods such as denaturing
gradient gel electrophoresis, which rely on gross sequence at-
tributes, or cloning and sequencing methods where sequences
are grouped into general operational taxonomic units based on
restriction fragment length polymorphisms before individuals
representative of each unit are sequenced (8).

A numbers game. Authors of previous studies of porcine
fecal microflora have reported that the most predominant bac-
terial species outnumbers the next most abundant species by at
least an order of magnitude and that culturable organisms
were retrieved at frequencies that varied over many orders of
magnitude. For example, while Bacteroidaceae have been
found at 1010 cells per g of feces and Bifidobacterium spp. have
been found at 109 per g of feces (4), less abundant organisms
such as E. coli have been reported at only 105 per g of adult pig
feces (21). Based on these observations, it might be predicted
that a study involving PCR amplification, cloning, and se-
quencing of target genes from DNA extracted from such a
population would yield very little sequence diversity and that
only the most abundant organisms would be represented. In-
stead we observed a great deal of sequence diversity.

Among 1,125 clones, 398 distinct nucleotide sequences were
observed, varying in frequency from 148 to 1, only two orders
of magnitude. A likely explanation for the discrepancy between
what was predicted and what was observed is the C0t effect
(26). In a PCR involving mixed template molecules, the am-
plification of the most abundant templates declines more rap-
idly during amplification cycles than that of less abundant
templates due to the tendency for abundant templates and
amplified products to reanneal rather than undergo primer-
mediated amplification. Thus, over the course of the PCR,

FIG. 4. Cumulative frequency distribution plots for the pig feces library (solid line), a population of individual species from 172 different
eubacterial and eukaryotic genera, a single taxonomic subclass (77 species from 34 genera of Proteobacteria gamma), and a single genus,
Lactobacillus. Plots were generated from DNA identity matrices derived from ClustalW multiple sequence alignments by GeneDoc.
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there is normalization, so that abundant templates become
underrepresented and rare templates become overrepre-
sented. While this phenomenon presents a serious challenge to
experimental design strategies aimed at quantitating templates

in the original sample, it works in favor of sampling maximum
diversity.

The extent of sequence diversity found in the clone library is
illustrated in Fig. 4 in a cumulative frequency distribution plot

FIG. 5. (A) Frequency distributions of unique nucleotide sequences recovered from clone libraries P56, P40, B40, and B56. (B) Taxonomic
composition of libraries B40, B56, P40, and P56.
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of the 79,003 pairwise DNA sequence comparisons derived
from the 398 unique clone nucleotide sequences. When com-
pared to populations constructed from a single genus, a taxo-
nomic subclass and single representatives of 172 eukaryotic
and eubacterial genera, the pig feces library falls between the
taxonomic subclass distribution and the 172-genera popula-
tion. The figure also shows that the pig feces library population
plot is not a smooth curve like the 172-genera plot, indicating
the presence of clusters of various sizes of closely related
sequences in the population as opposed to the uniform heter-
ogeneity of the artificially constructed 172-genera population.

Comparison of experimental population to known fecal or-
ganisms. Although some limited descriptive analysis of micro-
bial populations resident in various gut compartments of pigs
has been conducted (34, 39), the majority of studies of gut
microflora have used feces as starting material. It is well es-
tablished that the composition of fecal microbial populations
varies widely from birth to adulthood (21, 23, 27, 44) as well as
with diet changes (4) and various disease states (24, 43). Al-
though there is tremendous variation in the proportions of
gross taxonomic groups of organisms reported due to the dif-
ferent methods of isolation and characterization, there is some
agreement on the types of organisms that constitute the nor-
mal porcine fecal flora.

As the fecal flora changes in composition from birth to
maturity, there is an increase in the proportion of anaerobes
and facultative anaerobes. Culture-based studies suggest that
with maturity, CFB group organisms become dominant, par-
ticularly Bacteroides, with much smaller proportions of coli-
forms and Lactobacillus species and highly variable popula-
tions of Clostridium species being present (44). Greater
phylogenetic and taxonomic detail is available for human fecal
populations, which have been the focus of more molecular
characterization and are thought to be somewhat similar to
microbial populations in pig feces (44). In their analysis of
PCR-amplified and cloned 16S rRNA sequences from human
feces, Suau et al. (42) found that 95% of the 284 cloned

sequences were related to CFB group organisms (particularly
Bacteroides species) and Clostridium species. The taxonomic
subclasses identified in this study, CFB group, Bacillus/Clos-
tridium group, and gamma class Proteobacteria, are consistent
with these previous studies, as are the proportions identified
(55% CFB group, 36% Bacillus/Clostridium group, and 8%
gamma class Proteobacteria).

The primary goal of the current study was not to quantitate
the constituent members of the population but rather to iden-
tify and characterize taxonomically diverse organisms within
the population. However, despite the potential normalizing
effects of the PCR conditions, including the C0t effect, the
frequencies of sequences recovered in the library were most
likely influenced by the frequencies of the source organisms in
the population.

In addition to the three major taxonomic subclasses de-
tected, our sequencing efforts also revealed relatively rare
clone sequences assigned to the spirochete group and the beta
class Proteobacteria. Our observation of clone sequences with
similarity to the spirochete family is not unexpected because
nonpathogenic spiral rods have been reported in microscopic
observations of feces from healthy pigs (37) and have been
cultured from similar sources (4). The observation of a cloned
sequence with 82% nucleotide identity and 87% peptide iden-
tity (93% similarity) to Burkholderia vietnamiensis, a member
of the beta class of Proteobacteria, is interesting because mem-
bers of this bacterial family have not been reported in studies
of fecal flora from animals. However, members of the genus
Burkholderia are known to include soil and rhizosphere bacte-
ria as well as plant and human pathogens (10), so perhaps it is
not surprising that genomic DNA from this group of organisms
would be present in pig feces.

Interestingly, we recovered no sequences with similarity to
bifidobacteria. Bifidobacterium spp. are reportedly a major
constituent of the fecal flora of monogastrics such as pigs (4)
and humans (18), where they have been detected in culture-
based studies at frequencies of 109 CFU per g of feces. It seems

FIG. 6. Taxonomic composition of groups of library clones pooled by PCR annealing temperature used in library construction (left panel) and
genomic DNA template extraction method (right panel).
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unlikely that the absence of bifidobacterial PCR products was
due to failure of the PCR primers to anneal to these templates,
since previous work done in our laboratory and available se-
quence data from a number of bifidobacterial cpn60 genes
demonstrate that primer-binding sites are preserved in these
organisms. It seems more likely that the genomic DNA prep-
aration methods used failed to capture bifidobacterial DNA
due to a lack of mechanical force sufficient to break open these
bacteria or that the relatively high G�C content of bifidobac-
terial sequences prevented efficient PCR amplification of these
targets.

Failures to amplify and clone 16S rRNA sequences from
Bifidobacterium spp. have also been reported in studies of
human fecal flora (42, 51). Recently, we addressed this issue by
isolating total genomic DNA from a similar pig fecal sample by
a bead-beating method and conducting PCR with Bifidobacte-
rium-specific primers, designed to amplify a 180-bp region
within the cpn60 target. The resulting PCR products were
cloned, and when a small number of them were sequenced,
they were found to be 99% identical at the DNA level to
Bifidobacterium animalis. This result suggests that bifidobacte-
ria are indeed present in pig feces and either that their absence
in the library sample is the result of a failure to isolate the
genomic DNA template by chemical methods or that the bi-
fidobacterial template DNA is so rare in the template pool that
it was not represented in the sample of 1,125 clones.

Library construction methods affected library contents. To
assess the effects of library construction parameters on our
results, we created four libraries by genomic DNA templates
prepared by one of two methods and conducted the PCRs at
either of two annealing temperatures. Figures 5 and 6 clearly
illustrate that these parameters did indeed have a pronounced
effect on the contents of the resulting library. The Proteobac-
teria gamma group of templates seem particularly affected by
template preparation method and PCR annealing tempera-
ture, indicated by a higher proportion of these sequences in
libraries constructed from benzylchloride-extracted template
DNA and higher annealing temperature. Thus, while account-
ing for approximately 20% of clones in the B56 library, Pro-
teobacteria gamma species were completely absent from the
P40 library.

Potential challenges for approaches such as ours include the
possibility for systematic biases in the representativeness of
templates within total DNA extracts compared to that of the
original microbial population and biases introduced by the
degenerate primers and PCR conditions with respect to am-
plification from specific DNA templates. The small size of our
initial fecal sample (approximately 2 g of feces from five pigs)
may also be a factor in the representativeness of the genomic
DNA extracts, since feces are likely not homogeneous and
areas of concentration of some bacterial species may exist. The
methods described here offer a way of addressing these issues
systematically. Currently, we have a powerful comparative
method that could be used to compare microbial populations
from similar sources.

cpn60 sequence database. The clone with weak sequence
similarity to Chlamydia muridarum (clone 007_D05) is indica-
tive of the current limitations to sequence identification (Table
2). The ability to assign cloned sequences to a taxonomic sub-
class or beyond that to the level of genus or species is neces-

sarily limited by the availability of relevant reference sequence
data. The tree shown in Fig. 3 is a good illustration of both the
strengths and weaknesses in our ability to identify clone se-
quences. While in some cases identification to the level of
genus or even species is possible, there are other cases where
limited reference data make it possible to identify sequences
only to the level of taxonomic subclass. Currently, our database
contains approximately 1,100 reference sequences. We intend
to continue to expand the database and release it to the public
domain, where we hope it will become a valuable resource
complementary to the existing 16S rRNA resource, the Ribo-
somal Database Project, for microbial population studies as
well as for identification of organisms and for phylogenetics.

The results presented here confirm the feasibility of con-
ducting a similar study on a large scale, and the large number
of distinct sequences, 307, that were recovered only once in
1,125 sequenced clones indicates that a larger study will iden-
tify many more sequences from phylogenetically diverse organ-
isms. Genomics-inspired technologies such as robotic colony
picking, template preparation, and sequencing and automated
data assembly and analysis can be employed to produce po-
tentially comprehensive profiles of important microbial com-
munities. The libraries of sequence data produced will be tools
for developing methods to quantitate organisms within a pop-
ulation, for the detection of pathogens or specific organisms of
interest, to monitor changes in populations over time or treat-
ment, and for creating specific probes for techniques, such as
fluorescence in situ hybridization.
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