Cell formation in flexible manufacturing systems.

Gajanana Nadoli

University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

https://scholar.uwindsor.ca/etd/1378
NOTICE

The quality of this microfiche is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Previously copyrighted materials (journal articles, published tests, etc.) are not filmed.

Reproduction in full or in part of this film is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30.

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED
CELL FORMATION IN FLEXIBLE MANUFACTURING SYSTEMS

by

Gajanana Nadoli

A Thesis submitted to the Faculty of Graduate Studies and Research through the Department of Industrial Engineering in Partial Fulfillment of the requirements for the Degree of Master of Applied Science at the University of Windsor

Windsor, Ontario, Canada

© 1986
Permission has been granted to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film.

The author (copyright owner) has reserved other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without his/her written permission.

L'autorisation a été accordée à la Bibliothèque nationale du Canada de microfilmer cette thèse et de prêter ou de vendre des exemplaires du film.

L'auteur (titulaire du droit d'auteur) se réserve les autres droits de publication; ni la thèse ni de longs extraits de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation écrite.

ISBN 0-315-31996-8
I hereby declare that I am the sole author of this thesis. I authorize the University of Windsor to lend this thesis to other institutions or individuals for the purpose of scholarly research.

Gajanana Nadoli

I further authorize the University of Windsor to reproduce this thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

Gajanana Nadoli
The University of Windsor requires the signature of all persons using or photocopying this thesis. Please sign below, and give address and date.
ABSTRACT

In recent years the concept of flexible manufacturing systems (FMS) has emerged as a viable answer to the problems of low volume, medium variety production. The technological sophistication and correspondingly high investment in these systems necessitate sufficient planning effort both in the implementation and the operation stages. This research deals with the initial specification decisions in the pre-production planning stage. The cellular configuration of FMS is considered, in which a group of machines is dedicated to the manufacture of a particular family of parts. Two of the problems in cell formation viz., part family formation and machine group allocation are formulated. A fractional programming model defined on zero-one integer variables has been proposed for the part family formation. The parts are grouped based on their processing similarity. The machine group allocation problem is formulated as a zero-one integer program, to maximize the routing diversity available for the parts in different families. The availability of alternative routings has been considered in cell formation. The application of the formulations has been illustrated through a number of examples using realistic data.
ACKNOWLEDGEMENTS

I would like to take this opportunity to express my gratitude towards Dr. S.P. Dutta and Dr. R.S. Lashkari for their guidance and support during the course of this research. I would like to thank Dr. Y. Aneja for sparing his time to give useful suggestions. A special note of thanks to Jacque Mummery and Tom Williams for their help from time to time. I would also like to thank the consultants of the University Computer Centre for their help.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. TYPICAL ARRANGEMENT OF THE MACHINES IN MANUFACTURING SYSTEMS</td>
<td>6</td>
</tr>
<tr>
<td>2. SCHEMATIC DIAGRAM OF A CELLULAR FMS</td>
<td>11</td>
</tr>
<tr>
<td>3. MATRIX MANIPULATION METHODS</td>
<td>24</td>
</tr>
<tr>
<td>4. FLOW CHART OF THE ALGORITHM</td>
<td>54</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>ILLUSTRATION OF THE REGION (L,U) FOR P(R)</td>
<td>41</td>
</tr>
<tr>
<td>2.</td>
<td>PART PAIR (1,2)</td>
<td>44</td>
</tr>
<tr>
<td>3.</td>
<td>IP, THE MINIMUM NUMBER OF PART PAIRS</td>
<td>44</td>
</tr>
<tr>
<td>4.</td>
<td>PRODUCT TERMS INDICATING MULTIPLE ALLOCATIONS OF MACHINES</td>
<td>66</td>
</tr>
<tr>
<td>5.</td>
<td>PENALTY WEIGHTS TO MULTIPLE ALLOCATIONS OF THE MACHINES</td>
<td>68</td>
</tr>
<tr>
<td>6.</td>
<td>THE PROCESSING REQUIREMENTS FOR 15 PARTS</td>
<td>72</td>
</tr>
<tr>
<td>7.</td>
<td>BOUNDS ON THE OBJECTIVE FUNCTION FOR DIFFERENT VALUES OF R</td>
<td>76</td>
</tr>
<tr>
<td>8.</td>
<td>SUMMARY OF TRIALS WITH DIFFERENT STARTING CONFIGURATIONS FOR FIFTEEN PARTS</td>
<td>78</td>
</tr>
<tr>
<td>9.</td>
<td>ITERATION LOG FOR THE APPROXIMATION PROCEDURE</td>
<td>79</td>
</tr>
<tr>
<td>10.</td>
<td>TYPICAL SOLUTION TIMES FOR THE APPROXIMATION PROCEDURE ITERATIONS</td>
<td>85</td>
</tr>
<tr>
<td>11.</td>
<td>MACHINE ROUTING DATA</td>
<td>89</td>
</tr>
<tr>
<td>12.</td>
<td>LIST OF MULTIPLICATION TERMS INDICATING THE ROUTINGS FOR PARTS</td>
<td>90</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II SYSTEM DESCRIPTION AND OBJECTIVES</td>
<td>4</td>
</tr>
<tr>
<td>2.1 Flexible Manufacturing Systems</td>
<td>4</td>
</tr>
<tr>
<td>2.1.1 Definitions</td>
<td>4</td>
</tr>
<tr>
<td>2.1.2 Cellular Configuration Of FMS</td>
<td>5</td>
</tr>
<tr>
<td>2.1.3 Operation of the System</td>
<td>8</td>
</tr>
<tr>
<td>2.1.4 Advantages of Cellular Configuration</td>
<td>9</td>
</tr>
<tr>
<td>2.1.5 Design and Operation Problems in</td>
<td>10</td>
</tr>
<tr>
<td>Flexible Manufacturing Systems</td>
<td></td>
</tr>
<tr>
<td>2.2 Objectives of the Research</td>
<td>12</td>
</tr>
<tr>
<td>2.2.1 Statement of the Objectives</td>
<td>12</td>
</tr>
<tr>
<td>2.2.2 Typical Problem Situation</td>
<td>14</td>
</tr>
<tr>
<td>2.2.2.1 Part range manufactured in</td>
<td>15</td>
</tr>
<tr>
<td>in FMS</td>
<td></td>
</tr>
<tr>
<td>III LITERATURE SURVEY</td>
<td>18</td>
</tr>
<tr>
<td>IV PART FAMILY FORMATION</td>
<td>28</td>
</tr>
<tr>
<td>4.1 Formulation</td>
<td>28</td>
</tr>
<tr>
<td>4.1.1 Statement of the Problem</td>
<td>28</td>
</tr>
<tr>
<td>4.1.2 Criterion for Grouping</td>
<td>31</td>
</tr>
<tr>
<td>4.1.3 Definition of Dissimilarity</td>
<td>32</td>
</tr>
<tr>
<td>Coefficients</td>
<td></td>
</tr>
<tr>
<td>4.1.4 Formulation</td>
<td>33</td>
</tr>
<tr>
<td>4.2 Solution Procedure</td>
<td>35</td>
</tr>
<tr>
<td>4.2.1 Parametric Search Principle</td>
<td>35</td>
</tr>
<tr>
<td>4.2.2 Finding an Interval (L,U) such that</td>
<td>39</td>
</tr>
<tr>
<td>$L < R^* < U$</td>
<td></td>
</tr>
<tr>
<td>Chapter</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>4.2.3 Establishing Lower Bound (LB_R) and Upper Bound (UB_R) for Z(R,X)</td>
<td>40</td>
</tr>
<tr>
<td>4.2.3.1 Constraints on the Function Z(R,X)</td>
<td>40</td>
</tr>
<tr>
<td>4.2.3.2 Coefficients of the Function Z(R,X)</td>
<td>45</td>
</tr>
<tr>
<td>4.2.3.3 Algorithm for Finding LB_R and UB_R</td>
<td>46</td>
</tr>
<tr>
<td>4.2.4 Summary of the Steps for Solving the Formulation</td>
<td>47</td>
</tr>
<tr>
<td>4.3 Approximation Procedure</td>
<td>47</td>
</tr>
<tr>
<td>4.3.1 Need for Finding a 'Good' Initial Solution</td>
<td>47</td>
</tr>
<tr>
<td>4.3.2 Principle</td>
<td>49</td>
</tr>
<tr>
<td>4.2.3.1 Single Reallocation</td>
<td>49</td>
</tr>
<tr>
<td>4.2.3.2 Multiple Reallocation</td>
<td>50</td>
</tr>
<tr>
<td>4.3.3 Algorithm</td>
<td>52</td>
</tr>
</tbody>
</table>

V MACHINE GROUP ALLOCATION | 55

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Formulation</td>
<td>55</td>
</tr>
<tr>
<td>5.1.1 Statement of the Problem</td>
<td>55</td>
</tr>
<tr>
<td>5.1.2 Objective</td>
<td>56</td>
</tr>
<tr>
<td>5.1.3 Concept of alternative Routings</td>
<td>56</td>
</tr>
<tr>
<td>5.1.4 Formulation</td>
<td>59</td>
</tr>
<tr>
<td>5.2 Solution Procedure</td>
<td>62</td>
</tr>
<tr>
<td>5.2.1 Linearization of Product Terms</td>
<td>62</td>
</tr>
<tr>
<td>5.2.2 Some Reductions in the Number of Product Terms</td>
<td>63</td>
</tr>
<tr>
<td>5.3 Infeasibility in the Machine Group Allocation</td>
<td>64</td>
</tr>
<tr>
<td>5.3.1 Multiple Family allocation of Some Machine(s)</td>
<td>64</td>
</tr>
<tr>
<td>5.3.2 Mathematical Model to Identify the machines Causing Infeasibility</td>
<td>65</td>
</tr>
<tr>
<td>5.4 Summary of steps for Solving the Formulation</td>
<td>69</td>
</tr>
</tbody>
</table>

VI APPLICATION OF THE FORMULATIONS | 70

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Problem data</td>
<td>70</td>
</tr>
<tr>
<td>6.1.1 Parts and Machines</td>
<td>70</td>
</tr>
</tbody>
</table>
Chapter

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.1.1 Parts Spectrum</td>
<td>71</td>
</tr>
<tr>
<td>6.1.1.2 Machines</td>
<td>71</td>
</tr>
<tr>
<td>6.1.2 Generation of Problem Input for an IP Routine</td>
<td>73</td>
</tr>
<tr>
<td>6.2 Part Family Formation -An Example</td>
<td>73</td>
</tr>
<tr>
<td>6.2.1 Finding the Interval (L,U)</td>
<td>75</td>
</tr>
<tr>
<td>6.2.2 Initial Solution through Approximation Procedure</td>
<td>77</td>
</tr>
<tr>
<td>6.2.3 Search Log</td>
<td>82</td>
</tr>
<tr>
<td>6.2.4 Some Computational Considerations</td>
<td>84</td>
</tr>
<tr>
<td>6.3 Machine Group Allocation - An Example</td>
<td>88</td>
</tr>
<tr>
<td>6.3.1 Routing Information</td>
<td>88</td>
</tr>
<tr>
<td>6.3.2 Solution Procedure</td>
<td>88</td>
</tr>
<tr>
<td>6.4 Discussion of Results</td>
<td>91</td>
</tr>
</tbody>
</table>

VII SUMMARY

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
</tr>
</tbody>
</table>

REFERENCES

- APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. ALTERNATIVE DEFINITIONS FOR THE OVERALL DISSIMILARITY COEFFICIENT</td>
<td>101</td>
</tr>
<tr>
<td>B. PART SKETCHES AND PROCESS DETAILS</td>
<td>104</td>
</tr>
<tr>
<td>C. COMPUTER PROGRAM LISTINGS</td>
<td>135</td>
</tr>
<tr>
<td>D. ITERATION LOGS FOR DIFFERENT TRIALS OF APPROXIMATION PROCEDURE</td>
<td>178</td>
</tr>
<tr>
<td>VITA AUCTORIS</td>
<td>188</td>
</tr>
</tbody>
</table>
Chapter I

INTRODUCTION

In recent years the concept of Flexible Manufacturing systems (FMS) has emerged as a viable answer to the problems of low volume, medium variety production. These systems offer automated and flexible operation coupled with the optimum exploitation of resources. It is acknowledged that an integrated approach to parts manufacture from design conceptualization to operation stage is the pre-condition for the success of such systems.

The technological sophistication and the correspondingly high investment in these systems necessitate sufficient planning efforts both in the implementation and operation stages.

The efficient system design to facilitate the gradual implementation is very important. It can be achieved by conceiving the FMS to be made up of different groups of machines. In Group Technology terms these groups are known as cells. Chapter 2 briefly explains the flexible manufacturing systems, the types of arrangements of the manufacturing set ups, the advantages of cellular
arrangement and the system configuration under consideration.

The objective of this research is to model two of the problems related to the cell formation in FMS.

1) The part family formation

2) The machine group allocation.

A review of the previous research is given in Chapter 3.

The formulations of the above two problems are explained in Chapters 4 and 5 respectively. A fractional programming model for minimizing the processing dissimilarities between different part types has been proposed for the part family formation. A solution procedure is developed for this model taking into consideration the nature of the objective function. The procedure suitably adopts a general principle of search for finding the optimal solution. The infeasibility in allocation caused by restricting each of the machines to only one family (unique allocation) has been resolved. A simple mathematical model identifies the machines causing the infeasibility and the unique allocation constraint is relaxed for these machines.

Realistic data representing typical part and machine varieties have been considered in solving a number of problems to illustrate the formulations. The results are explained in Chapter 6. A summary of the research findings
has been presented in Chapter 7.
Chapter II

SYSTEM DESCRIPTION AND OBJECTIVES

2.1 Flexible manufacturing systems

2.1.1 Definitions

An FMS is an automated, batch manufacturing system consisting of a set of numerically controlled machine tools with automatic tool changing capabilities. A computer controlled material handling system transports the parts from machine to machine.

These systems have been given a variety of names - Computerized Manufacturing Systems (CMS) and Variable Manufacturing Systems (VMS), for example, and have in fact been designed in a variety of configurations.

The cellular configuration of FMS is considered in this research. The definitions of the terminology [22], with reference to this type of configuration are given below.

Flexible Manufacturing Module (FMM): An FMM is defined as a Numerically Controlled Machine augmented by a
part buffer, a tool changer, a pallet changer etc. An FMM will be referred to as a machine throughout this report.

Flexible Manufacturing Cell (FMC): An FMC consists of several machines, capable of producing a range of parts. Each of these FMCs are organized as independent facility set-ups. The term cell has been borrowed from cellular manufacturing in the conventional systems. The FMCs are referred to as cells in the discussions to follow. An FMS can be considered to be consisting of cells. Many a times individual cells themselves are considered as systems, indicating the independent nature of these cells.

2.1.2 **Cellular Configuration of FMS**

There are various approaches to the arrangement of machines in a manufacturing system. In all the cases, it is necessary to conceive the system as a whole from design to installation.

The typical arrangements of the machines in the manufacturing systems are (Fig. 1):

i) **Random:** A number of machines are arranged in a rectangular shop. The disadvantage of this lay-out is that with larger number of machines, transfer paths are complicated and are likely to be longer than necessary.

ii) **Functional:** The machines are arranged according to function, such as turning, milling, boring and grinding, so
Figure 1. TYPICAL ARRANGEMENTS OF MACHINES IN MANUFACTURING SYSTEMS

Random Layout

Functional Layout

Modular Layout

Cellular Layout
that the workpieces flow through the shop from one section to another. The workpieces have to be moved many times between the sections, and material handling paths in this type of arrangement may be excessively long.

iii) Modular: Here identical modules perform similar processes in parallel. This layout is likely to result in some redundant capacity, but can be an alternative to the functional layout, while redundancy may make it easy to cope with critical jobs or unexpected problems.

iv) Cellular: In this arrangement each cell is dedicated to a certain group of parts. It is an extension of the Group Technology (GT) concept. The cellular system is likely to give the best match of machining capability to the processing of various workpieces [18].

Group technology is a manufacturing philosophy that seeks to rationalize small and medium sized batch production by capitalizing on the similarity between the parts. GT is applied with respect to two aspects of part characteristics viz., geometric features and processing requirements.

The geometric feature based grouping has been mainly a part of design standardization effort for the various shapes of the parts. The concept has recently been considered in the computer aided process planning area, where an attempt to relate the processing steps to the geometric features is made to develop computerized systems.
for generating the process plans [9].

The grouping of parts with respect to the processing requirements forms the basis of cellular arrangement of the machines. A manufacturing cell is designed to produce the parts with similar machining requirements. Due to similarity of the parts, change over of processing from one part type to another on the machines causes minimal disruptions in terms of tooling requirements. Section 2.2.1 describes this issue. The cellular arrangement is an attempt to achieve the advantages of mass production in small batch production. Several conventional systems have been installed based on this principle [17].

2.1.3 Operation of the system

The FMSs can be viewed as highly automated job shops. A typical sequence of events involved in processing of a part in an FMS is as follows:

When a part is scheduled for an operation on one of the available alternative machines, the part is fixtured on a pallet and transported to the machine. The machine on which this part is to be processed receives the necessary part programs. If certain tools are not available on the machine, the handling system transports those tools also to the machine [18]. Once the machining for that operation is finished, the part is moved for its next operation.
Since different parts are in production simultaneously, conflicts in the requirements arise. Among other things, the automated control has to consider the important issues of scheduling of parts, queues for the machines and machine break downs.

The automated operation requires the proper operation logic to be programmed into the system prior to the start of production. The precise anticipation of all the operational exigencies is necessary in such an operation mode.

2.1.4 Advantages of Cellular Configuration

Dividing the system into smaller sub-systems (cells) is essential due to the complexity of operation as indicated in section 2.1.3. Such a division can be viewed as a method of aggregation leading towards a reduction in the size of the planning and scheduling problems [17]. It is a normal practice to install a small system first and then to build up the complete system in due course. Since apart from the machines, the peripheral equipment themselves constitute a large investment, a phased plan is necessary to implement these systems.

An arrangement of machines in the form of a single system has the disadvantages of increased control problems, difficulty in keeping track of parts, increased part
movement distances and complex scheduling requirements.

The cellular arrangement of the machines in FMS has the following advantages [17]:
i) Implied reduction in control.
ii) Reduced material handling.
iii) Quick change over of part types within a range of parts.
iv) Better tooling control.
v) Reduced in process inventory.
vi) Reduced expediting.

A schematic diagram of the cellular FMS is shown in Fig. 2.

2.1.5 **Design and operation problems in flexible manufacturing systems**

The design and operation of any FMS involves a variety of problems. Many of these problems are typical of any manufacturing system. The classification and description of these problems have been given in [29,35]:
i) Strategic Decision Problems
ii) Facility Planning Problems
iii) Intermediate decisions
iv) Dynamic Operations

The strategic decisions are concerned with such problems as the financial and policy decisions in
Figure 2. SCHEMATIC DIAGRAM OF CELLULAR FMS

M - MACHINES
L - LOADING STATIONS
S - STORAGES
P - MATERIAL HANDLING PATHS
implementing FMS.

The facility planning problems are concerned with decisions about initial specification and implementation of the production system. The initial specification decisions include the selection of the parts to be produced, machines & other peripherals and material handling system. The subsequent implementation decisions include layout of the machines, software development and the design of fixtures.

The intermediate range problems are the pre-production decisions on operation allocation, part mix ratio and allocation of other resources.

The dynamic operations refer to the control problems due to conflicts in the production requirements. These are the in-production decisions on part release rules into the system, scheduling, sequencing, etc.

2.2 Objectives of the Research

2.2.1 Statement of Objectives

The objective of this research is to solve two problems related to the cell formation in flexible manufacturing systems:

- Grouping of the parts into families.
- Allocation of machine groups to families.

These are the initial specification issues in the
pre-production planning stage of FMS.

It is important to consider the relevant criterion for grouping the parts into families. The criterion for organizing the cells for manufacturing the parts is based on the processing similarity of the parts. The lack of such similarity has an adverse effect on the operation of the cellular system.

The tools have to be changed intermittently in the tool magazines if parts with different processing requirements are manufactured in the cells. Each tool change puts a certain demand on the system resources for the following activities:

The measurement of cutter compensation and tool offsets (to be supplied to the machines) may have to be carried out when a tool is loaded on to or transferred between the machines. This puts a load on the metrology facilities in the system.

The tool loading is usually done manually in the present systems (although there is an attempt to make this automatic, the use of such automation is not yet widespread [18]) and the frequent tool changing interrupts the operation of the machines.

Frequent tool changing also results in a constant flow of tools within the shop competing with the parts for the resources (trolley, scheduling time on computer etc.). It has been found in some cases that the flow of tools
through the shop caused more problems than the flow of workpieces [18].

Hence the processing similarity is considered for grouping parts first to form the part families.

Once the parts constituting different families are determined, the machine group allocation problem will be solved. The objective of such allocation is to provide maximum number of alternative routings for the parts. The diversity in part routing is known to be a very helpful strategy in the operation of the system. It is possible to divert the parts to different machines when the designated machines break down or are busy serving some other parts.

The part family formation and machine group allocation problems are formulated in Chapters 4 and 5.

2.2.2 Typical Problem Situation

Most of the modern manufacturing plants have NC/CNC machines located randomly within the factory. Even though many such machines may be in operation, the net effect on production may not be as significant as can be expected with these versatile machines. The individual machines are really very efficient, but the way in which they are placed in the system may result in low utilization levels. They may be restricted by limitations such as production bottlenecks at other machines and material handling delays.
In this situation, since the NC/CNC machines, which are the major components of FMS are already available, there is an opportunity to reorganize the system into an independent cellular FMS. The machines in the cells can be linked together through a material handling system. Once such a strategic decision is taken, it becomes essential to analyse the part range under consideration to form families and then allot the available machines to each of the families. As mentioned earlier, the implementation can be done in phases, organizing one cell at a time.

2.2.2.1 Part range manufactured in FMS

When the FMS capacity augments the conventional capacity, the part variety chosen for manufacturing in FMS is restricted keeping in mind the need to utilize other high cost plant and auxiliary equipment. The parts chosen are high value, critical components required in the downstream production facilities. A fabrication shop supplying the finished parts to an assembly section is an example of such a situation, where certain parts in the final assembly are invariably in short supply due to the difficulties encountered in manufacturing them in the conventional shops.

This is clearly illustrated by the reports on the existing systems and the restricted component variety they
The literature on FMS [2,18] and experience in a light engineering industry indicates that the parts selected for manufacturing on CNC machines (and hence in FMS) have, in general, the following characteristics:

i) The parts require a large number of processing steps. If loaded in a conventional machine shop these parts have to visit several machines, in most cases one machine carrying out one processing step. This results in a tremendous amount of handling and subsequently a tardy output from the shop. These parts are the right candidates to be manufactured in an FMS, since the CNC machines allow for a number of processing steps to be completed in one visit to the machine.

ii) Heavy emphasis on the milling, drilling, boring and tapping. The existing systems indicate their strength in these processes basically due to the corresponding capabilities offered by the machining centres. "Difficult" processes such as grinding and honing, mass production oriented processes such as broaching and not-so-common production processes such as planing and shaping (shaper), if required on a part, are usually carried out on the facilities operating in tandem with, but outside, the FMS.
iii) Apart from the problem of excessive handling, the sheer difficulty involved in achieving the complicated process requirements of some parts (in conventional shops) makes them the automatic choice for manufacturing in FMS.

iv) The parts are mostly finished from raw casting state.
Chapter III

LITERATURE SURVEY

The problems of FMS design and operation have been considered using different Operations Research approaches. The major approaches used in the literature are Networks of Queues, Simulation, and Mathematical Programming.

The facilities design problem has two issues as mentioned earlier, the initial specification decisions and the subsequent implementation decisions. These decisions are generally one time decisions, especially the ones concerning the machines constituting the FMS cells. The implementation decisions about the number of pallets and the number of fixtures can be spread over the time of operation of the system.

The queueing network models provide some aggregate results and are perhaps helpful in the decision issues such as the number of pallets and the number of fixtures required in the system. The aggregation may not be acceptable for more specific decisions such as sequencing and scheduling of the parts and the number of buffer spaces required. Simulation is the approach for such problems.
The mathematical models are appropriate for the static decision issues of facility design, operation allocation in the planning stage and fixture & pallet allocation. In such pre-production planning decisions some criteria are used which have been proved to be effective either by experience or by theoretical research in the operation of the system. Providing alternative routings for parts, balancing workloads between machines, minimizing part handling distances, launching similar parts for production, etc., are some examples of such criteria. These would be basically indirect measures, which are recommended as static problem objectives.

Wilhelm and Sarin [35] provide a review about the issue of suitability and limitation of different modelling approaches.

In this research mathematical modelling has been adopted. The criteria adopted in this research are the processing similarity concept for part family formation and routing diversity concept for machine group allocation.

Buzacott and Shantikumar [5] have reported some simple models for the understanding of the FMS. Their approach is to consider the system as an automated job shop. The models are simple and aggregate in nature, but they demonstrate amongst other aspects the importance of diversity in job routing.

Chatterjee et. al [10] have developed a general
framework for manufacturing system specification. They present some scheme for manufacturing systems to identify critical distinctions between various types of manufacturing capabilities. They define manufacturing flexibility and identify the number of routings available for a part within a system as the routing flexibility.

Stecke [30] gives an analysis of FMS cell using the queueing network theory. It has been shown that the pooling of machines in FMS cells improves the output of the system. Under a separate study of a real system through simulation [31], the same result was obtained. The system showed maximum output through the pooling in combination with some scheduling rule. The pooling of machines with reference to an operation means that there is more than one machine available for that operation and the part routing can be through one of the available machines depending on the scheduling decisions in real time.

Thus, providing maximum number of alternative routings has been proved to be a good strategy in operating the system.

One of the principles in Group Technology is to restrict a machine to only one part family (unique allocation). Thus, a certain machine group is made available to the parts in a particular family. However, in practice, some exceptions do exist. The scarcity of certain machines may force the sharing of those machines by
more than one family of parts. Certain overlapping referred to as 'cascading' is allowed in these situations. This possibility has been incorporated in the formulation of machine group allocation.

The literature on the grouping procedures is mostly limited to the conventional systems.

There are two issues in the grouping: part representation and grouping procedure based on this representation of the part. However, as pointed out by King and Nakornchai [20], in the past decade the emphasis has slowly shifted from classification schemes per se to the problem of developing methods for grouping. This has happened mainly due to the realization that most of the classification schemes have to be industry-specific anyway.

A review of the various grouping procedures is given by King and Nakornchai [20]. Recent work in this area includes [6], [8], [21] and [33]. The classification of the available techniques is as follows:

1) Similarity Coefficient methods
2) Set theoretic methods
3) Evaluative methods
4) Other analytical methods.

Similarity coefficient is an approach drawn from numerical taxonomy, and first suggested by McAuley [24]. The basis of the method is to measure the similarity between each pair of machines and then to group the
machines based on their similarity measurement.

These methods are called "hierarchical clustering methods" and are based on some "threshold value" of coefficients. If a coefficient is less than a predetermined value, the coefficient will be ignored in the next stage of the algorithm. The selection of the threshold values is arbitrary. Rajagopalan and Batra [27] suggest a more systematic method of finding the threshold value; however, the arbitrary nature of the procedure still persists. The hierarchical grouping methods can be explained as follows:

First two parts are selected which have the greatest similarity to form the nucleus of the first group. A third part is added which has the most similarity with the first two. The fourth is added which has the most similarity with the first three and so on. At any stage, if there is no part which has a similarity above a particular level with the parts in the first cluster, a new cluster is formed with the remaining parts in the same manner.

Set theoretic method has been developed by Purcheck [25]. This method considers the lists of machines required for the parts as sets and does set union operations on them. This is a heuristic method for grouping the machines and parts.

Evaluative methods are based on the Production Flow Analysis [4], and basically use the judgement of the
analyst. The main feature of the evaluative approach is that it involves listing of components in different ways in the expectation that the groups can be found by careful inspection. This requires manual intervention to identify groups at each stage.

The other analytical methods are based on machine component matrix manipulation. King and Nakornchai [20] and Chan and Milner [7] reported algorithms using this approach. The procedure developed in [33] for finding the bottleneck machines also is based on the matrix representation. Some criticism about King and Nakornchai's algorithm is given in [33]. The principle used is to improve a criterion starting from initial grouping, through some manipulations in the grouping using graph theory. Figure 3 (a) illustrates the typical machine-component matrix used by these methods. In this example, the machines are labelled from A to E and the parts from 1 to 6. An entry of 1 in cell \((i,j)\) indicates that some operation of part \(j\) requires processing on machine \(i\), whereas a blank entry means that it does not. The cell entries of 1 are spread around the matrix in a random fashion, so that no particular pattern of machine component grouping is apparent.

Figure 3 (b) shows the same matrix, but after several exchanges of the relative positions of both rows and columns. It will be seen that the original cell entries of
MATRIX MANIPULATION METHODS

Figure 3(a)

PARTS

<table>
<thead>
<tr>
<th>MACHINES</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3(b)

PARTS

<table>
<thead>
<tr>
<th>MACHINES</th>
<th>6</th>
<th>5</th>
<th>3</th>
<th>2</th>
<th>4</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 3 (a) are preserved unchanged, but now, two machine component groupings (B, D, 6, 5, 3) and (E, A, C, 2, 4, 1) emerge naturally along the diagonal of the matrix as a result of a particular arrangement of the rows and columns of the original matrix. In some cases for geometric feature based grouping instead of having machine-component matrix, a code-component matrix is formed with the same basic idea of grouping the components and features together. The matrix manipulation methods are not mathematically rigorous [23].

Clustering is basically a yes/no type decision of allotting a part to a cluster. A 0-1 integer programming approach for the grouping of the parts has been reported by Kusiak [23], which employs a statistical clustering method [1]. This method considers the "distance" between the parts and then considers each part as the "median" of the cluster in the formulation. These concepts of "distance" and "median" are vaguely defined. The integer programming approach has also been used for grouping based on the geometric features.

The literature survey indicates that:

1) In the grouping methods reported it is assumed that the operations are restricted to one machine. Based on this single and fixed machine allocation information for the operations a one to one relationship between the parts and machines is defined in the form of a matrix. This leads to a
simultaneous grouping of parts and the machines.

ii) The (dis)similarity coefficients and measures of
(dis)similarity between two parts, have been adopted
with the arbitrary specification of some "cut off"
values as the basis for grouping.

In conventional systems assumption (i) can be
justified by noting that each operation on a part is
generally restricted to one machine. The machine
assignment for different operations of the parts acts as
the basis for simultaneous grouping of parts and machines.

This assumption is not applicable to flexible
manufacturing systems since each operation on a particular
part can be performed on alternative machines. In this
case, the processing similarity between the parts should be
determined by using the basic information about the
processing steps required to manufacture the parts.

The necessity of achieving homogeneity amongst the
parts to be produced in an FMS cell, as explained in
Chapter 2 is incorporated in the model by defining a
dissimilarity coefficient. This coefficient is defined
using 0-1 decision variables and is used as the objective
function in a fractional programming model.

The procedure developed for cell formation groups the
parts first based on the similarity of the processes and
subsequently allots the machines to each of the part
groups(families).
In the problem of allocation of machines to the part families the concept of providing routing diversity for the parts has been used as the objective function.
Chapter IV

PART FAMILY FORMATION

The mathematical formulation of the part family formation problem is discussed in this Chapter. First, the criterion for grouping based on the manufacturing attributes is explained. The objective function of the formulation is fractional defined on zero-one integer variables. A solution procedure for this situation is outlined. Due to the computational difficulty in solving this model for larger problems, an approximation procedure that yields a good initial solution is developed.

4.1 Formulation

4.1.1 Statement of the Problem

The part family formation is considered with respect to manufacturing attributes for eventually forming the cells.

The objective is to group the parts into part families based on their processing similarities. The
similarity based grouping is done to achieve minimum disruptions in the production within the cells as the batches of different parts are launched into production.

Notations Used

N = Number of parts to be grouped
K = Number of families
ij = Index for the part pair (i,j) (i=1,2...N-1; j=i+1,i+2...N)
d_{ij} = Number of dissimilar processes between part i and part j
s_{ij} = Number of similar processes between part i and part j
DIS_{ij} = Dissimilarity coefficient between part i and part j
D_{Ck} = Dissimilarity coefficient for family k
D_{k} = Contribution of family k to the value of CDC
F = Family having highest value of D_{k}
CDC = Dissimilarity coefficient for a configuration of part families
A(X) = Linearized numerator of the coefficient CDC
B(X) = Linearized denominator of the coefficient CDC
P(.) = Minimization problem of CDC
R = Parameter in the search procedure for optimal solution to P(.)
\(f(R) \)
- Transformed minimization problem with parametric objective function

\(Z(R,X) \)
- Objective function of the problem \(P(R) \)

\(C \)
- Constraint set of the problems \(P(\cdot) \) and \(P(R) \)

\(C1 \)
- Reduced constraint set for problem \(P(R) \)

\(Z(R,X) \)
- Minimum of the objective function \(Z(R,X) \) subject to \(C \)

\(Z(R,X) \)
- Maximum of the objective function \(Z(R,X) \) subject to \(C \)

\(LB_R \)
- Bound on function \(Z(R,X) \) for minimization

\(UB_R \)
- Bound on function \(Z(R,X) \) for maximization

\((L,U) \)
- A range of values of \(R \) established such that \(L < R < U \)

\(C^{R}_{ij} \)
- Coefficients of \(\hat{M}_{ijk} \) variables in function \(Z(R,X) \). (For convenience the superscript is dropped and the coefficient is denoted by \(C_{ij} \)).

\(J \)
- Set of \(C_{ij} \) s for all \((i,j)\)

\(NP \)
- Number of positive \(C_{ij} \) s in the set \(J \)

\(NN \)
- Number of negative \(C_{ij} \) s in the set \(J \)

Decision variables:

\(X_{ik} \)
- \(1 \) if the part \(i \) is included in family \(k \)
- \(0 \) if the part \(i \) is not included in family \(k \)

These variables for all \((i,k)\) are denoted by \((X) \).

\(M_{ijk} \)
- Linearization variable introduced to replace the product term \(X_{ik} \cdot X_{jk} \)
4.1.2 **Criterion for grouping**

As stated earlier, the objective of the part family formation problem is to group the parts with similar processing requirements. For a part pair \((i,j)\) in a particular family, we would like to have a low ratio of \(d_{ij}/s_{ij}\), indicating that the parts \(i\) and \(j\) have more operations in common than dissimilar operations.

An Example:

Consider the part pair \((i,j)\) having the processing requirements as shown:

Processes \(\rightarrow 1\ 2\ 3\ 4\ 5\ 6\ 7\)

| part \(i\) | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
| part \(j\) | 1 | 1 | 0 | 1 | 1 | 0 | 1 |

For this part pair, \(s_{ij} = 3\) (processes 1, 4 and 7) and \(d_{ij} = 4\) (processes 2, 3, 5 and 6).

The dissimilarity between two parts is relevant only when they are grouped together into the same part family.

The dissimilarity of two parts in different families is of no concern, since these parts are manufactured in different cells. The grouping should be done such that within the families formed, parts have the minimum dissimilarities and the maximum similarities in terms of processing requirements.

Based on this concept, the coefficient of dissimilarity between part \(i\) and part \(j\) is defined as:
\[\text{DIS}_{ij} = \sum_{k=1}^{K} \left[\frac{d_{ij}}{s_{ij}} \right] \cdot X_{ik} \cdot X_{jk} \] (1)

This coefficient is used as the basis for defining the objective function for grouping the parts. The value of \(\text{DIS}_{ij} \) would be \(\frac{d_{ij}}{s_{ij}} \) or 0 respectively, depending on whether parts \(i \) and \(j \) are grouped in the same family \(k \) or not.

4.1.3 **Definition of Dissimilarity Coefficients**

The objective function for the part family formation would be the minimization of an overall measure of processing dissimilarity between the parts. The definition of such a measure considered in this research is explained next. It represents the overall average of the pairwise dissimilarity coefficients. This is similar to the coefficient considered in [12]. Alternative representations for the overall measure of processing dissimilarity are indicated in Appendix A.

The dissimilarity coefficients are defined for each of the families and for the overall partitioning of the parts into families.

1) **Dissimilarity coefficient for the family:**

The average of the pairwise dissimilarity coefficients of all the parts in family \(k \) is given in Eqn.
(2). A high value of this coefficient indicates that the family k contains parts which are highly dissimilar to each other.

\[
\frac{\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} d_{ij} \cdot X_{ik} \cdot X_{jk}}{N-1 \sum_{i=1}^{N} \sum_{j=i+1}^{N} s_{ij} \cdot X_{ik} \cdot X_{jk}}
\]

\(DC_k\)

11) **Dissimilarity coefficient for the configuration:**

The average of the dissimilarity coefficient of all the part pairs in the configuration can be expressed as:

\[
\frac{\sum_{k=1}^{K} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} d_{ij} \cdot X_{ik} \cdot X_{jk}}{K \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} s_{ij} \cdot X_{ik} \cdot X_{jk}}
\]

\(CDC\)

This coefficient is taken as a measure of the overall dissimilarity between the parts in different families in a particular grouping. A high value may indicate the possibility of decreasing the dissimilarity by reallocating some parts from the present configuration. This idea is used in the approximation procedure for allocating the parts between the families to get a good initial solution.

4.1.4 **Formulation**

The problem could be formulated as follows:
Minimize the overall dissimilarity coefficient:

\[\text{Minimize } Z_1 = \text{CDC} \] \hspace{1cm} (4)

Subject to the following constraints:

1) Each part is allocated to only one family:

\[\sum_{k=1}^{K} X_{ik} = 1 \text{ for } i=1,2,3,\ldots,N \] \hspace{1cm} (5)

2) Each part family should at least have some specified number of parts say, L. This constraint may or may not be specified.

\[\sum_{i=1}^{N} X_{ik} \geq L \text{ for } k=1,2,\ldots,K \] \hspace{1cm} (6)

3) \(X_{ik} \) = 0 or 1 for \(i=1,2,\ldots,N \) and \(k=1,2,\ldots,K \)

Let constraints (i), (ii) and (iii) be denoted by \(C_1 \).

The objective function in (4) is a ratio of two non-linear functions. As a first step in solving the problem, the numerator and denominator of the objective functions are linearized. The linearization scheme [14] is explained next.

Consider the term \(X_{ik} \cdot X_{jk} \); both \(X_{ik} \) and \(X_{jk} \) are 0-1 integer variables.

Each of the terms \(X_{ik} \cdot X_{jk} \) can be replaced by \(M_{ijk} \) with the addition of the following constraints:

3) \(X_{ik} + X_{jk} - M_{ijk} \leq 1 \) \hspace{1cm} (7)

4) \(M_{ijk} \leq X_{ik} \) \hspace{1cm} (8)
v) $M_{ijk} \leq X_{jk}$

The above constraints force the variable M_{ijk} to assume the values 0-1. Let the set of constraints (iii), (iv) and (v) for all i,j and k be denoted by C_2.

With the linearized numerator and denominator, the formulation can be written as follows:

\[\text{Minimize } Z_2 = \frac{\sum_{k=1}^{K} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} d_{ij} \cdot M_{ijk}}{\sum_{k=1}^{K} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} b_{ij} \cdot M_{ijk}} \]

Subject to:

C_1 and C_2

Let C denote the constraint sets C_1 and C_2.

4.2 Solution Procedure

The objective function in (10) is a ratio of two linear integer functions $A(X)$ and $B(X)$. This type of problem is referred to as fractional programming in the literature. Methods have been reported for solving the fractional programming models with continuous decision variables [11,32,34]. The objective function in (10) being defined on zero-one integer variables, does not lend itself to these methods. Hence, in this case, a general search principle [9] has been adopted which involves solving a series of linear/non-linear problems to arrive at the optimal solution.
to a fractional programming problem. A description of this principle is given in section 4.2.2.

Section 4.2.2 also describes a method developed for this model to restrict the search area and subsequently to reduce the search time. This method identifies a range of values in which the optimal value for the ratio $A(X)/B(X)$ exists.

4.2.1 Parametric Search Principle

The objective function (10) can be expressed as:

$$P(.): \min_{X \in C} \frac{A(X)}{B(X)} \quad (11)$$

Let (X^*) be the optimal solution to $P(.)$.

Then,

$$\min_{X \in C} \frac{A(X)}{B(X)} = \frac{A(X^*)}{B(X^*)} = \frac{R}{R^*}$$

and

$$A(X^*) - R^*B(X^*) = 0$$

Consider the following problem:

$$P(R): \min_{X \in C} Z(R) = \min_{X \in C} [A(X) - R \cdot B(X)] = \min_{X \in C} Z(R, X) \quad (12)$$

The function $Z(R, X)$ for a particular (X) decreases with increasing values of R, since both the functions $A(X)$ and $B(X)$ have only positive coefficients (d_{ij} and e_{ij} respectively) and are defined over the same set of
non-negative variables \((M_{ijk})\). It follows that the optimal value of \(Z(R,X)\) will also behave in a similar manner with respect to changes in \(R\). This characteristic of \(Z(R,X)\) helps in deciding the direction of search for the optimal ratio \(A(X)/B(X)\). The value of the parameter \(R\) which gives a value of \(Z(R) = 0\) is the optimal ratio \(A(X)/B(X)\). This will be clear from the following:

a) **Suppose \(R = R_0\) and Optimal \((X) = (X_0)\)**

Then, \(Z(R_0,X_0) = A(X_0) - R_0 \cdot B(X_0) = 0\) (say)

Since \(\min_{X \in C} A(X) - R \cdot B(X) = A(X_0) - R_0 \cdot B(X_0) = 0\)

\[\Rightarrow \frac{A(X_0)}{B(X_0)} = R_0\]

Now,
\[A(X) - R_0 \cdot B(X) \geq 0\] for all \(X \in C\)

\[\Rightarrow \frac{A(X)}{B(X)} \geq R_0\]

\[\Rightarrow R^* = R_0 = \frac{A(X^*)}{B(X^*)}\] (13)

b) **Suppose \(R = R_1\) and Optimal \((X) = (X_1)\)**

Then, \(Z(R_1,X_1) = A(X_1) - R_1 \cdot B(X_1) > 0\) (say)

Since \(\min_{X \in C} A(X) - R \cdot B(X) = A(X_1) - R_1 \cdot B(X_1) > 0\),

\[A(X) - R_1 \cdot B(X) > 0\] for all \(X \in C\)

\[\Rightarrow \frac{A(X)}{B(X)} > R_1\]

\[\Rightarrow R^* = \frac{A(X^*)}{B(X^*)} > R_1\] (14)

c) **Suppose \(R = R_2\) and Optimal \((X) = (X_2)\)**

Then, \(Z(R_2,X_2) = A(X_2) - R_1 \cdot B(X_2) < 0\) (say)

\[\Rightarrow \frac{A(X_2)}{B(X_2)} < R_2\]
Since \(A(x_2)/B(x_2) < R_2 \),
The optimal solution,
\[
\min_{x \in C} \frac{A(x)}{B(x)} = \frac{A(x^*)}{B(x^*)} = R^* < R_2
\]
i.e. \(\frac{A(x^*)}{B(x^*)} < A(x_2)/B(x_2) < R_2 \) \hspace{1cm} (15)
Hence from (b) and (c),
\[
R_1 < R^* < R_2
\]
Now, consider \(R_3 = (R_1 + R_2)/2 \)

\[
\begin{array}{c|c|c}
R_1 & R_3 & R_2 \\
\hline
\end{array}
\]
If \(Z(R_3) = \min_{x \in C} A(x) - R_3B(x) > 0 \)
then, \(R_3 < R^* < R_2 \) (from similar arguments in (b) and (c))
Now consider \(R_{1/4} = (R_2 + R_3)/2 \) and continue the search.
If \(Z(R_3) = \min_{x \in C} A(x) - R_3B(x) < 0 \)
then, \(R_1 < R^* < R_3 \) (from similar argument in (b) and (c))
Now consider \(R_{11/4} = (R_1 + R_3)/2 \) and continue the search.

The solution for problem \(P(\cdot) \) is obtained from a binary search for the parameter \(R \) which gives \(Z(R) = 0 \).

In other words, the search for \(R^* \) can be carried out by solving a series of problems \(P(R) \) with different values of \(R \), each time selecting the value of \(R \) depending on the optimal solution of the previous problem.
4.2.2 Finding an Interval \((L, U)\) Such that \(L < R^* < U\)

By initially choosing a value of \(R\) too far away from \(R^*\), a considerable amount of computation will be required to converge on \(R^*\). Hence it is necessary to identify a range of \(R\) in which \(R^*\) lies. This can be done by finding the upper bound and lower bound for the function \(Z(R, X)\) at different values of \(R\) with some constraints relaxed. If for a particular \(R\), both these bounds are positive, the problem \(P(R)\) need not be solved, since it is known beforehand that the optimal solution to \(P(R)\) cannot be zero. A similar argument holds for the case when both the upper bound and the lower bound are negative.

Consider \(P(R) : \min_{X \in C} Z(R, X) = Z(R)\)

and \(\max_{X \in C} Z(R, X) = \bar{Z}(R)\)

Let \(C_1\) be any subset of set \(C\) (Constraint set \(C\) has been defined earlier). Consider the minimization and the maximization of \(Z(R, X)\) under \(C_1\) (i.e., fewer number of constraints).

Let \(\min_{X \in C_1} Z(R, X) = LB_R\), the lower bound.

Max \(Z(R, X) = UB_R\), the upperbound.

Now, for all \(R\),

\[
LB_R \leq Z(R) \leq UB_R \quad (17)
\]

\[
LB_R \leq \bar{Z}(R) \leq UB_R \quad (18)
\]
It is evident that only those values of R which give a negative \(\text{LB}_R \) and a positive \(\text{UB}_R \) have to be considered in the search for \(R^* \). The changes in values of \(\text{LB}_R \) and \(\text{UB}_R \) with respect to the changes in R are indicated in Table 1. \(R^* \) lies in the region \((L,U)\). In this region the binary search principle outlined in Section 4.2.1 can be applied with R as the parameter.

Another point to be noted here is that, although a strict binary search plan requires the whole region \((L,U)\) to be searched, actually it is possible to restrict to the lower end of the region \((L,U)\). The basic strategy of the search is to solve the problems with different values of R, looking for a value of R that gives the value of \(Z(R) \) equal to zero. Since \(\text{LB}_R \) is a relaxed solution to the minimization of \(Z(R,X) \), it can be expected that this will occur (i.e., \(Z(R) = 0 \)) at those values of R giving \(\text{LB}_R \) value closer to zero on the negative side.

Establishing the interval \((L,U)\) will reduce guesswork and the computational requirements of the search.

4.2.3 Establishing Lower Bound (\(\text{LB}_R \)) and Upper Bound (\(\text{UB}_R \)) for \(Z(R,X) \)

4.2.3.1 Constraints on the function \(Z(R,X) \)

Consider \(P(R) : \min_{X \in C} A(X) - R B(X) \)
TABLE 1

Illustration of the Region \((L, U)\) for \(P(R)\)

<table>
<thead>
<tr>
<th>Value Of (R)</th>
<th>Sign of LBR</th>
<th>Sign of UBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>0+s</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>0+2s</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>0+k_1s</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>0+(k_1+1)s</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>0+k_2s</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>0+(k_2+1)s</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>0+k_3s</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

\(s\) is a small increment.
\[
\text{Min } Z(R,X) \\
X \in C
\]

\[
i.e., \ \Sigma_{k=1}^{N-1} \Sigma_{i=1}^{N} \Sigma_{j=i+1}^{N} d_{ij} M_{ijk} - R \cdot [\Sigma_{k=1}^{N-1} \Sigma_{i=1}^{i+1} s_{ij} M_{ijk}] \\
X \in C
\]

\[
i.e., \ \Sigma_{k=1}^{N-1} \Sigma_{i=1}^{N} (d_{ij} - R \cdot s_{ij}) M_{ijk} \\
X \in C
\] \quad (19)

Let \((d_{ij} - R \cdot s_{ij}) = CR_{ij}\). In the discussions to follow the superscript \(R\) has been dropped for convenience.

The following conditions are implied by the constraint set \(C\).

(i) \(M_{ijk}\)'s are zero-one variables (forced to assume values of 0/1).

(ii) Let \(S_{ij} = \{M_{i1}, M_{i2}, M_{i3}, \ldots M_{ijk}\}\).

Since each of the parts \(i\) and \(j\) can be allotted to only one family, at most one variable in the set \(S_{ij}\) can assume a value 1.

This can be illustrated by Table 2.

(iii) At least IP number of variables \(M_{ijk}\) should have a value 1 where IP is given by the following expression:

\[
\text{IP} = [N/K] \cdot ([N/K]-1)/2 \times K + (N - K \cdot [N/K]) \times [N/K]
\]

where, \([N/K]\) is the largest integer less than or equal to \(N/K\).
This expression represents the minimum number of part pairs (which in turn corresponds to the minimum number of M_{ijk} variables taking the value 1) that have to be formed while grouping N parts into K families. It is impossible to form K families out of N parts without forming at least IP part pairs. The expression for IP has been derived by trial and error.

This can be illustrated by the number of distinct possible groupings possible for different values of N given in Table 3:

For $N=2$ and $K=3$ \quad IP=0

$N=3$ and $K=3$ \quad IP=0

$N=4$ and $K=3$ \quad IP=1

Since this is true for all N, it follows that at least a minimum number of M_{ijk}'s must take the value of 1 in any feasible solution to $P(R)$.

(iv) Some combinations of M_{ijk}'s cannot take the value of 1 in the same solution.

For example, consider the part pair (1,2) has been in family 1.

Then $M_{121} = X_{11} \cdot X_{22} = 1 \cdot 1 = 1$

In this case, the variable $M_{132} = X_{32} \cdot X_{12} = 0$

Since, $X_{11} + X_{12} = 1$ \& $X_{11}=1$ \quad $X_{12}=0$

i.e., M_{121} and M_{132} cannot take a value 1 at the same time.
TABLE 2

Part pair (1,2)

K, the number of families = 2

<table>
<thead>
<tr>
<th>No.</th>
<th>Allocation</th>
<th>Value of</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F1</td>
<td>F2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1,2</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>1,2</td>
</tr>
</tbody>
</table>

Note: \[M_{121} = X_{11} \cdot X_{21} \] and \[M_{122} = X_{12} \cdot X_{22} \]

It is clear that at most one value in the set \(S_{12} \) takes a value of 1

TABLE 3

IP, The Minimum Number Of Part Pairs

K, the number of families = 3

<table>
<thead>
<tr>
<th>N</th>
<th>Distinct groupings</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>No of part pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,2</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>2,3</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1,2,3</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3,4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,2</td>
<td>3,4</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>2,3,4</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1,2,3,4</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>
If any one of these conditions are violated by a variable M_{ijk}, some of the constraints in the set C will be violated. The constraint set C minus the violated constraints is denoted as C^1.

The procedure explained in the next section neglects condition (iv) and finds the maximum (UB_R) and the minimum (LB_R) of the function $P(R)$ under a reduced set of constraints C^1. As shown in Section 4.2.2, UB_R and LB_R will be the bounds on the objective function $P(R)$ for maximization and minimization respectively subject to the constraint set C.

4.2.3.2 Coefficients of the function $Z(R,X)$

The M_{ijk}'s are 0-1 variables. Hence the objective function $Z(R,X)$, is the sum of all C_{ij}'s corresponding to the M_{ijk}'s taking a value of 1. From conditions (i), (ii), (iii) and (iv) it follows that:

1) If C_{ij}'s are positive for all (i,j), then both the upper bound and lower bound would be positive (Case I).

2) If C_{ij}'s are negative for all (i,j), then both the upper bound and lower bound would be negative (Case II).

3) If some C_{ij}'s are positive and some C_{ij}'s are negative, then the value of R may correspond to
Case III. It is necessary to find the LB_R and UB_R in this situation.

4.2.3.3 Algorithm for finding LB_R and UB_R

Although each C_{ij} is a coefficient for K linearization variables, from condition (ii) in Section 4.2.3.1 it can be counted in only once for any solution. The lower limit (upper limit) of $Z(R,X)$ can simply be found by counting in all the negative (positive) C_{ij}'s. However if the condition (iii) is not satisfied some positive (negative) terms should be counted in.

Algorithm

1. Sort the set J in ascending order.
2.0 $Sum_L = 0$

2.1 Add all the negative C_{ij}'s to Sum_L
2.2 If $NN > IP$ go to step 3.0
2.3 If $NN < IP$ then add to Sum_L the first $(IP-NN)$ positive terms in set J

3.0 $Sum_U = 0$

3.1 Add all the positive C_{ij}'s to Sum_U
3.2 If $NP > IP$ go to step 4.0
3.3 If $NN < IP$ then add to Sum_U the last $(IP-NN)$ negative terms in set J
4.0 \(L_B = \sum_L \) and \(U_B = \sum_U \)

As indicated earlier, this algorithm neglects condition (iv) implied by the constraint set \(C \).

4.2.4 Summary of the steps for solving the formulation

In brief, the steps in solving problem \(P(.) \) are:

1. Set up the objective function \(P(R) \).
2. For different values of \(R \) starting with 0 find \(L_B \) and \(U_B \).
3. Establish the interval \((L,U)\) by the method explained in Section 4.2.2.
4. Carry out the binary search for the value of \(R^* \) in this interval \((L,U)\).

Or

Choose a smaller interval \((R_1, R_2)\) in the lower end of the range \((L,U)\) and carry out the search for \(R^* \) (since \(R^* \) is expected to be at the lower end of the region \((L,U)\)).

5. Stop when a value of \(R \) yields \(Z(R,X) = 0 \)

4.3 Approximation Procedure

4.3.1 Need for Finding a "Good" Initial Solution

The grouping problem is combinatorial in nature.
Each of the \(N \) parts can be allocated to one of the \(K \) families independently. Hence the number of feasible solutions to the family formation problem is \(K^N \), which becomes too large with increasing values of \(N \). The solution time required for the problem \(P(R) \) will also increase rapidly.

It is clear that the time required for the search as outlined in section 4.2.1 is dependent on the number of problems \(P(R) \) solved in the process. The number of problems \(P(R) \) required to be solved depends on the interval \((R_1, R_2)\) chosen initially.

If the time required for each problem \(P(R) \) is high, it is desirable to limit the number of such problems solved to as few as possible. This means that a tight interval \((R_1, R_2)\) has to be selected.

The approach suggested in this case is to find a "good" solution and choose the corresponding CDC as the upper limit on the value of \(R \). Any procedure for finding such an initial solution should be expected to satisfy the following requirements:

a. The solution should be "good". An initial solution is considered to be better than others if the corresponding CDC is nearer to the value of \(L \) (\(L \) is the lower limit on the value of \(R \)). This results in a shorter search interval.

b. The time required to arrive at that solution
should be justifiable.

An approximation procedure has been developed for this purpose. Both the above requirements have been found to be satisfied by the procedure in the several problems solved.

4.3.2 Principle

The approximation procedure also uses the IP formulation described in section 4.1.4. In this case however, a number of smaller problems are solved instead of a single large problem. The procedure is based on a method of clustering first reported by Friedman and Rubin [13]. Whereas the principle in [13] is single reallocation based, the procedure developed in this section is multiple reallocation based.

A random partitioning of N parts into K families is considered initially to start off the approximation procedure. Let \(n_1, n_2, \ldots, n_K \) be the number of parts in families 1, 2, \ldots, K, respectively.

4.3.2.1 Single Reallocation

The principle as applied to part grouping problem is given below:

Start with a random partitioning of parts into K
families. The parts are considered in a particular order for moving into other families. The part selected is moved to some other family such that it brings about the maximum favourable change in the objective function. This reallocation generates a new configuration, and causes the coefficients to assume new values. The procedure restarts each time a reallocation move is made. If the reallocation fails to bring about a favourable change, the part is retained in its present family and the next part in the order is selected. This continues until no part can be moved from its present family to another.

This approach to part grouping has been applied by Dutta et al. [12], for the part family formation. Different trials were conducted with varying starting partitions. The final objective function values were very close to each other irrespective of the starting configurations.

4.3.2:2 Multiple Reallocation

It can be noted that in the single move algorithm, each time a part is considered for reallocation, a decision is taken with respect to each family about moving the part to that family. The value of the objective function is calculated for all the possible reallocations. This, in effect, means that a problem with $1 \times K$ integer variables (0-1) is solved each time by complete enumeration.
Extending the same principle, all the parts of a particular family "s" (to be chosen based on some criterion) can be considered for reallocation.

If there are \(n_s \) parts in family "s", the number of feasible reallocations is \(n_s \times K \), which is quite large even for small values of \(n_s \), if a complete enumeration has to be attempted. However, the reallocation of these \(n_s \) parts can be considered using the formulation in section 4.1.4. The allocation of all the other parts in other families is fixed and the reallocation of the \(n_s \) parts into \(K \) families is considered.

A series of smaller sub-problems are solved, until a stopping criterion is reached. The criterion for choosing the family to be considered for reallocation is the value of \(D_k \) for different part families \((k=1,2,...K) \). We define for a family \(k \),

\[
D_k = \frac{\sum_{i=1}^{N} \left(\sum_{j=i+1}^{N} d_{ij} x_{ik} - x_{jk} \right)}{B(X)}
\]

A high value of \(D_k \) indicates that the parts in family \(k \) are such that the contribution from the part family \(k \) to the value of CDC is very high, which suggests the presence of highly dissimilar parts in that family. This means that the parts from this family are the candidates for reallocation. The family with highest \(D_k \) (family, MF) is considered for reallocation of parts at an iteration of the algorithm.
As indicated, a sub-problem of the form $P(\cdot)$ with $NHF \times K$ integer variables is solved in an iteration. After each successful iteration (iteration causing an improvement in the objective function), the algorithm returns to a stage similar to the initial configuration with an improved bound on the value of the objective function. The algorithm terminates when the reallocation of parts from any family fails to bring about an improvement in the objective function.

4.3.3 Algorithm

The flowchart of the algorithm is shown in Fig. 6.1. A brief explanation of the flowchart blocks follows.

- Block (a) initialize the algorithm by computing the values of the objective function Z_1 and D_k for all the families.
- An iteration of the procedure involves reallocation consideration of all the parts in a family for improving the value of the objective function Z_1.
- Blocks (b), (c) and (d) represent the main steps in an iteration. The reallocation subproblem is solved as an IP of the same form as formulated in section 4.1.4
Decision block (e) indicates whether a reallocation of the parts has to be made or not.

The loop (e)–(f)–(g)–(h)–(a) represents the steps involved when a decision to reallocate the parts from family "MF" is made.

When it is impossible to reallocate the parts in family "MF" under consideration, the loop (e)–(i)–(j)–(b) represents the choice of another family for considering reallocation of parts.

Block (i) identifies the families from which the parts could not be reallocated within an iteration.

The procedure terminates when the decision block (j) returns a result YES.
Figure 4. Flowchart of the Algorithm

1. **Start**
 - Read initial configuration
 - Compute D_k for all k
 - Compute Z_k for the configuration

2. **(b)**
 - Among families under consideration, identify family 'MF' having the max D_k

3. **(c)**
 - Consider all the parts in the family 'MF' for reallocation, keeping the parts in other families in their present allocation
 - Formulate this as a sub-problem of allocating n_{MF} parts in the family 'MF'

4. **(d)**
 - Solve the problem and find $Z_k(NEW)$

5. **(e)**
 - If $Z_k(NEW) < Z_k$, then:
 - **(f)** Reallocate the parts from family 'MF' as per IP-subproblem solution
 - **(g)** The current configuration is considered as initial configuration
 - **(h)** Remove all flags from the families
 - **(i)** Flag family 'MF', i.e., remove family 'MF' from further consideration

6. **(j)**
 - Are all families considered?
 - **(j)** If yes, then the current family configuration is optimal
 - **(j)** If no, then repeat the process from step 2

Stop
Chapter V

MACHINE GROUP ALLOCATION

The assignment of machine groups for the production of the parts segregated into part families is discussed in this chapter. The availability of alternative machines for each of the operations on the parts is considered. Our objective is to maximize the number of available alternative routings for the parts within the cellular system. The formulation allows for the individual machines to be allocated to only one part family. When such allocation is infeasible, the machine(s) causing this infeasibility is(are) identified through a mathematical model. The condition of allocation to only one family is relaxed for these machines.

5.1 Formulation

5.1.1 Statement of the Problem

All the parts of a particular family have to be processed completely within the corresponding machine
group. These machine groups constitute the FMCs or cells. The aim of this problem is to allocate a group of machines to each of the part families.

5.1.2 Objective

The objective is to provide the maximum possible number of alternative routings for the parts within their respective machine groups. The availability of alternative routings is known as the routing flexibility. Routing flexibility is maximized taking into account the operation requirement of the parts in different families. The routing for a part is defined as a sequence of machine visits needed to complete the operations required.

Consider a part with three operations. A sequence of visits to the machines 3, 2 and 5 represents a routing for that part.

5.1.3 Concept of Alternative Routings

Notations

- \(N \) = Total number of parts
- \(K \) = Number of part families
- \(n_k \) = Number of machine groups to be formed
- \(\eta_k \) = Number of parts in family \(k \).

Therefore,

\[
\sum_{k=1}^{K} \eta_k = N
\]
jk = Index for part j in family k (j=1,2,3...n_k)
O(jk) = Number of operations on a part indexed by the part identity jk
M = Number of available machines
PR_jk = Maximum possible number of routings for part jk
FP_jk = Number of alternative machines available for operation p of part jk.
NR_jk = Number of alternative routings available for part jk
S_k = Product terms of the decision variables (to be defined later) to indicate the allocation of individual machines to k families (k=2,3...K). P_{i,k} indicates the product term i in set S_k.
W_k = Penalty weight to k family allocation of a machine in the model to identify the machines causing infeasibility in the machine group allocation formulation.

The feasible routing for the operations is represented in the form a matrix as explained below:
Consider a part jk with O(jk) = 3. Assume M = 9.
The matrix A_{jk}, with elements a_{(jk)pm} indicates the feasibility of operation p of part jk on different available machines.
<table>
<thead>
<tr>
<th>Op</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

4 feasible machines
3 feasible machines
4 feasible machines

For example, operation 1 can be done on machines 1, 3, 5, or 9.

This information is assumed to be available based on the technological capabilities of the available \(M \) machines, which can be expressed by a matrix for each part \(jk \).

Decision variables

\[\begin{align*}
I_{mk} &= 1 \quad \text{if machine } m \text{ is allocated to cell } k. \\
I_{mk} &= 0 \quad \text{otherwise.}
\end{align*} \]

Referring to the previous example, if all the machines 1, 2, ..., 9 are assigned to family \(k \), all the possible alternative routings, \(PR_{jk} \) will be available for the part \(jk \).

\[
PR_{jk} = \left[\sum_{m=1}^{M} a(jk)1m \right] \cdot \left[\sum_{m=1}^{M} a(jk)2m \right] \cdot \left[\sum_{m=1}^{M} a(jk)3m \right] (21)
\]

\[= 4 \cdot 3 \cdot 4 = 48 \]

This may be the most desirable situation as far as
the production of part jk is concerned. But, all the machines cannot be allocated to family k, since there will be a requirement of these machines for parts in other families. Due to these requirements, allocation of the machine groups has to be done for each of the families with the objective of maximizing the number of routings available.

5.1.4 Formulation

Consider the decision variable I_{mk} which represents the allocation of machine m to family k. Each machine can be allocated to only one family.

If a machine m is allocated to family k, it offers a routing possibility for all the operations in that family that can be done on machine m.

A formulation with the objective function to maximize the number of alternative routings available will try to allocate those machines to a particular family, which offer routing to a large number of operations.

For operation p on part jk the number of alternative machines available is given by:

$$FP_{jk} = \sum_{m=1}^{M} a(jk)pm \cdot I_{mk}$$ \hspace{1cm} (22)
The number of available routings for part \(jk \) is then given by:

\[
NR_{jk} = F^1_{jk} \cdot F^2_{jk} \cdot F^3_{jk} \cdot F^4_{jk} \cdots F^0_{jk}
\]

(23)

The total number of alternative routings over all the parts in all the families is given by:

\[
Z = \sum_{k=1}^{K} \sum_{j=1}^{n_k} \left[F^1_{jk} \cdot F^2_{jk} \cdot F^3_{jk} \cdot F^4_{jk} \cdots F^0_{jk} \right]
\]

(24)

The objective function can be stated as:

\[
P_1 \quad \text{Maximize} \quad Z
\]

(25)

Subject to the following constraints:

1. Each operation \(p \) on the part \(jk \) must have at least one feasible machine in the corresponding group. This ensures that for operation \(p \) at least one routing is provided in the corresponding group of machines,

\[
\sum_{m=1}^{M} a(jk)_{pm} \cdot I_{mk} \geq 1 \quad \text{for} \quad k=1,2,3,\ldots,K.
\]

\[
\begin{cases}
\sum_{j=1}^{n_k} \sum_{p=1}^{0_{jk}}
\end{cases}
\]

(26)

2. Each of the available machines can be allotted to one cell only.

\[
\sum_{k=1}^{K} I_{mk} = 1 \quad \text{for} \quad m=1,2,3,\ldots,M
\]

(27)
3. Integrality constraints:

\[l_{mk} = 0 \text{ or } 1 \quad (28) \]

\[\text{for } m = 1, 2, 3 \ldots M \]
\[k = 1, 2, 3 \ldots K \]

Example of the expression for \(NR_{jk} \)

The objective function of this formulation is the sum of alternative routings available for all the parts.

The expression for the number of alternative routings available for part \(jk \) is developed as follows:

\[F_{1jk} = \sum_{m=1}^{M} a(jk)_{pm} \cdot l_{mk} \]

\[= l_{1k} \cdot 0 + 1 \cdot 2k + 1 \cdot 3k + 0 \cdot 4k + 1 \cdot 5k + 0 \cdot 6k + 0 \cdot 7k + 0 \cdot 8k + 1 \cdot 9k \]

\[= l_{1k} + l_{3k} + l_{5k} + l_{9k} \]

Similarly,

\[F_{2jk} = 1 \cdot 2k + 1 \cdot 7k + 1 \cdot 9k \]

\[F_{3jk} = 1 \cdot 4k + 1 \cdot 5k + 1 \cdot 6k + 1 \cdot 8k \]

\(NR_{jk} \), the number of alternative routings available for the part \(jk \) is:

\[(l_{1k} + l_{3k} + l_{5k} + l_{9k}) \cdot (1 \cdot 2k + 1 \cdot 7k + 1 \cdot 9k) \cdot (1 \cdot 4k + 1 \cdot 5k + 1 \cdot 6k + 1 \cdot 8k) \]
5.2 Solution Procedure

The objective function Z is non-linear in integer variables. The non-linear terms, each of which represents the possibility of a routing are the product terms of the decision variables I_{mk}.

These terms are linearized by introducing additional variables using a scheme suggested in [12,13]. This is similar to the method adopted in the part family formation problem, where product terms of two integer variables were considered. In this case however, each term corresponding to a routing for a part jk will be a multiplication of $O(jk)$ integer variables.

5.2.1 Linearization of Product Terms

The scheme for linearizing the product terms of zero-one variables is [12,13]:

Let Q be the index set of the variables in a particular product term.

1. Replace each of the product terms of the type $(x_j)^k$ by x_j^k.
2. Replace each of the product terms of the type $\prod_{j \in Q} x_j$ by x_Q and add the constraints,

\[\prod_{j \in Q} x_j \leq 1 \]
\[\sum_{j \in Q} x_j - x_Q \leq q - 1 \]

and,

\[x_Q \leq x_j \]

where \(q \) is the number of elements in \(Q \).

The linearization strategy adopted for the problem of part family formation is a specific case of this with \(q = 2 \).

This formulation is straightforward once the product terms are linearized.

5.2.2 Some Reductions in the Number of Product Terms

The number of variables in the formulation is problem specific, depending on the number of operations for the parts, number of possible machines for each operation and the number of machines. It was mentioned that each routing possibility for a part is denoted by a product term of \(O(jk) \) decision variables. However a careful consideration while generating the problem can result in a reduction of the actual number of terms.

For example, a routing for a particular part in the family \(k \) may be through machines 1-2-3. This routing will be identified by the product term \(I_{1k} \cdot I_{2k} \cdot I_{3k} \). It can be noted that, this product term will also represent the routings 1-3-2 and 3-2-1 for any other operation for
the parts in that family. Taking care of these situations while generating the problem for input to an IP routine would be helpful.

5.3 **Infeasibility in Machine Group Allocation**

It is assumed in Section 5.2 that one or more allocations of the machine groups to the families exist, such that each machine is allocated to only one family.

The condition that one machine should be allocated to only one family may not be possible sometimes due to the problem data.

The reason for infeasibility is the absolute necessity of some machine(s) to be in more than one family. The infeasibility can be removed from the problem by relaxing the assignment constraint (27) on the machine(s). These machines are allowed to be allocated to more than one family.

5.3.1 **Multiple Family Allocation of Some Machine(s)**

As mentioned earlier, the requirement of some machines in more than one family causes the infeasibility in the machine group allocation problem, Pl. The possible cases are the requirement of some machine(s) in two, three, or K families.
The problem Pl can be made feasible by relaxing the allocation constraints on the machine(s) as follows:

Allow for some machine(s) to be allocated to two families and check for the feasibility of problem Pl. If the problem is not feasible, then allow for some machine(s) to be allocated to three families and check for the feasibility of problem Pl, and so on.

The rationale of the above strategy is to allow for sharing of some machine(s) by the least possible number of part families to make problem Pl feasible.

An objective function is defined in the next Section that implements this strategy and identifies the machine(s) for which the assignment constraints have to be relaxed.

Consider the constraints of problem Pl, with constraint (27) modified as follows:

\[\sum_{k=1}^{K} I_{mk} \leq K \] \quad (27-a)

Let \(S_1 \) denote the decision variables \(I_{mk} \) (Number of decision variables = M.K). The possible multiple allocation variables defined by the original decision variables are listed in Table 4.

5.3.2 Mathematical Model to Identify the Machines Causing Infeasibility

All the product terms in \(S_2, S_3, \ldots S_K \) take the
TABLE 4

Product Terms Indicating Multiple Allocation Of Machines

<table>
<thead>
<tr>
<th>Description of Allocation</th>
<th>Product Terms</th>
<th>Example of a product term</th>
<th>Number of product terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two families</td>
<td>(S_2)</td>
<td>(I_{mk} \cdot I_{ml})</td>
<td>(M \cdot \binom{K}{2})</td>
</tr>
<tr>
<td>Three families</td>
<td>(S_3)</td>
<td>(I_{mk} \cdot I_{ml} \cdot I_{mj})</td>
<td>(M \cdot \binom{K}{3})</td>
</tr>
<tr>
<td>K families</td>
<td>(S_K)</td>
<td>(I_{mk} \cdot I_{ml} \cdot I_{mK})</td>
<td>(M \cdot \binom{K}{K})</td>
</tr>
</tbody>
</table>
values 0-1 depending on the value of the decision variables in each of these product terms. Consider the minimization of an objective function \(Y \) involving the above product terms.

Based on the strategy explained earlier, the coefficients of the product terms in \(Y \) should be such that:

- No term in \(S_2 \) takes a value of 1, if the constraints can be satisfied by having the decision variables \(I_{mk} \) to assume the value of 1 without any multiple assignments.

- No term in \(S_3 \) takes a value of 1 if the constraints can be satisfied by having the terms in \(S_1 \) (without any multiple assignments) and \(S_2 \) to take a value of 1.

- No term in \(S_K \) takes a value of 1, if the constraints can be satisfied by having the terms in \(S_1 \) (without any multiple assignments), \(S_2, \ldots, S(K-1) \) to take a value of 1.

Consider a weightage of zero for the terms in \(S_1 \), indicating no penalty to the objective function value for any single family allocation of a machine.

The terms in \(S_1, S_2, \ldots, S_K \) are given increasing values of penalty weightages. An example is given in Table 5, which satisfies the conditions listed above. Any non-negative value for \(D \) will give the same solution to the
TABLE 5

Penalty Weights to Multiple Allocation of Machines

<table>
<thead>
<tr>
<th>Product Terms</th>
<th>Weightage Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>0</td>
</tr>
<tr>
<td>S2</td>
<td>W2 = 0 . M . K + D</td>
</tr>
<tr>
<td>S3</td>
<td>W3 = 0 . M . K + W2 . M . (K) + D</td>
</tr>
<tr>
<td>.</td>
<td></td>
</tr>
</tbody>
</table>
minimization of Y i.e., the formulation is independent of the value of D chosen.

The mathematical model to identify the machines causing the infeasibility can now be written as follows:

\[
\begin{align*}
\text{Minimize } Y &= \sum_{k=1}^{K} \sum_{p_i,k \in S_k} W_k \\
\text{Subject to constraints (26), (27-a) and (28).}
\end{align*}
\]

5.4 Summary of steps for solving the formulation

Allocation Problem

In brief the steps to be followed are:

i) Solve the problem \text{INF} to identify the machines which have to be allocated to more than one family.

ii) Relax the assignment constraints in the formulation P1 for the machine(s) identified in (i).

iii) Solve problem P1 for the allocation of machines to maximize the number of routings available for the parts.
Chapter VI

APPLICATION OF THE FORMULATIONS

The application of the formulations of part family formation and machine group allocation is illustrated in this chapter. Section 6.1 gives a description of the problem data. Details about the software written for generating the input problem matrix for a the integer programming routine of SAS/OR (Version 5) [29] are provided in section 6.1.2. Solution procedures for the two problems are discussed in detail in Sections 6.2 and 6.3. A discussion about the application of the formulations and the scope for future work has been included in Section 6.4.

6.1 The Problem Data

6.1.1 Parts and Machines

The problem data considered represent the typical part spectrum characteristics and the machine tool variety in the Flexible Manufacturing systems.
6.1.1.1 Parts Spectrum

A set of fifteen parts suitable for manufacturing on CNC machines and hence the natural choice for manufacturing in an FMS are considered. Sketches of these parts are given in Appendix B.

Process details required for the part family formation have been written for these parts and are also provided in Appendix B. A summary of the process requirements is given in Table 6.

When a part visits a machine, a number of processing steps can be carried out and this set of processing steps constitutes an operation. Referring to the process details for Part 1 (HOUSING), 'Rough Mill Surface (A)', is a processing step whereas (1) which is a combination of nine processing steps is an operation.

These parts have the characteristics explained in Section 2.2.2.1.

6.1.1.2 Machines

The machines assumed to be available for allocation to part families are basically the variety of machining centres found in FMSs. The two major types of machining centres are Horizontal Spindle and Vertical Spindle. Heavy boring operations are done on designated
TABLE 6

SUMMARY OF PROCESS REQUIREMENTS

<table>
<thead>
<tr>
<th>PART</th>
<th>NUMBER OF TOOLS AND THE TOOL REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(TOOl CODES ASSUMED)</td>
</tr>
<tr>
<td></td>
<td>M603 M106 M503 M504 D201 D142 D109 D202 D130 R142</td>
</tr>
<tr>
<td></td>
<td>R130 R148 B106 B109 B101 B115</td>
</tr>
<tr>
<td>2</td>
<td>M101 M103 M104 M105 M901 M602 M501 M506 M508 M402</td>
</tr>
<tr>
<td></td>
<td>D201 D123 R128 S104 B101 B109 B105 B104</td>
</tr>
<tr>
<td>3</td>
<td>M403 M404 M701 M401 M412 M405 M406 M702 M712 M101</td>
</tr>
<tr>
<td></td>
<td>M102 D202 D128 D203 R130 T130 B108 B109 B101 B102</td>
</tr>
<tr>
<td></td>
<td>B115 B106 B112</td>
</tr>
<tr>
<td>4</td>
<td>M501 M508 M701 M712 M211 M101 M102 M212 M503</td>
</tr>
<tr>
<td></td>
<td>M301 M302 M401 M405 D202 D150 D201 D120 D202 B106</td>
</tr>
<tr>
<td></td>
<td>B112 S109 T120</td>
</tr>
<tr>
<td>5</td>
<td>M102 M401 M103 M105 M602 M603 M501 M513 M502 M503</td>
</tr>
<tr>
<td></td>
<td>M101 M701 M702 M402 M508 M406 M610 M301 M503 D201</td>
</tr>
<tr>
<td>6</td>
<td>M501 M504 M502 M415 M412 M416 M901 M902 M401 M507</td>
</tr>
<tr>
<td></td>
<td>M509 D201 D118 D130 B108 B112 B109 S102</td>
</tr>
<tr>
<td>7</td>
<td>M102 M401 M103 M105 M404 M511 M402 M512 M407 M408</td>
</tr>
<tr>
<td></td>
<td>M502 M701 M704 M702 M413 M506 M508 M601 D201 D108</td>
</tr>
<tr>
<td></td>
<td>D120 D115 D202 D105 S102 S101 T108 R120</td>
</tr>
<tr>
<td>8</td>
<td>M101 M108 M501 M401 M102 M502 M702 M301 M703 D201</td>
</tr>
<tr>
<td></td>
<td>D125 D140 D203 B105 B108 B109 B112 B110 S102 T125</td>
</tr>
<tr>
<td>9</td>
<td>M102 M401 M103 M105 M402 M101 M106 M501 M506 M502</td>
</tr>
<tr>
<td></td>
<td>M508 M301 M603 M604 M404 M302 D203 D115 D130 S101</td>
</tr>
<tr>
<td></td>
<td>T115 B107 B109 B112</td>
</tr>
<tr>
<td>10</td>
<td>M101 M103 M104 M503 M105 M408 M106 M403 M415 M407</td>
</tr>
<tr>
<td></td>
<td>M501 M509 M703 M502 M401 M402 M901 M902 M701 D201</td>
</tr>
<tr>
<td></td>
<td>D115 D202 S101 T115</td>
</tr>
<tr>
<td>11</td>
<td>M112 M401 M104 M412 M403 M402 M410 D201 D130 D202</td>
</tr>
<tr>
<td></td>
<td>D116 B101 B109 B105 T116</td>
</tr>
<tr>
<td>12</td>
<td>M112 M401 M104 M105 M101 M106 M402 M505 M710 M107</td>
</tr>
<tr>
<td></td>
<td>M702 M704 M502 D201 D130 D202 D125 B106 B109 R130</td>
</tr>
<tr>
<td></td>
<td>S102</td>
</tr>
<tr>
<td>13</td>
<td>M701 M101 M702 M102 M401 M413 M406 M301 M302 M306</td>
</tr>
<tr>
<td></td>
<td>M315 M601 M802 M402 M405 M501 M502 M506 M508 D202</td>
</tr>
<tr>
<td></td>
<td>D140 D201 D120 D130 R140 R120 T140 T120 S102 B108</td>
</tr>
<tr>
<td>14</td>
<td>M102 M401 M103 M105 M508 M402 M509 M415 M412 M101</td>
</tr>
<tr>
<td></td>
<td>M701 M702 M403 M405 M406 M601 M602 M603 M604 D202</td>
</tr>
<tr>
<td></td>
<td>D125 D201 R125 B102 B103 S102 T125</td>
</tr>
<tr>
<td>15</td>
<td>M105 M708 M102 M702 M108 M302 M401 M412 M402 M408</td>
</tr>
<tr>
<td></td>
<td>M416 M417 M508 D201 D150 B108 B109 D202 D145 B112</td>
</tr>
<tr>
<td></td>
<td>B118</td>
</tr>
</tbody>
</table>
machines, with sturdier structure. The light operations of drilling and tapping are done on special CNC drilling machines when necessary. In total, twelve machines of these different types are assumed to be available for allocation to the part families.

The physical dimensions of the problem under consideration can be summarized as follows:

15 parts.
12 Machines
4 Horizontal Spindle Machining Centers
3 Vertical Spindle Machining Centers
3 Boring Centers (Heavy Machining)
2 NC Drilling and Tapping Machines

Three cells

6.1.2 Generation of Problem Input to An IP Routine

The problems are solved using the integer programming routine of the SAS/OR package (Version 5) on an IBM 4381 computer.

The input problem matrix has to be generated through a program for each of the problems, since the problem sizes are too large for manual input.

A series of program modules in Fortran have been written for the generation of the problem matrix in SAS/OR
format for different problems listed below.

a. P(R), the parametric objective function problem in the part part family formation.

b. Finding upperbound and the lowerbound for the problem P(R) for varying values of R (to find the interval (L,U)) by the algorithm in Section 4.2.3.3

c. Subproblems of type P(R) to be solved in the iterations of Approximation Procedure.

d. Finding the upperbound and lowerbound for the subproblems P(R) in the Approximation Procedure for varying values of R, to find the interval (L,U).

e. Problem Pl, the machine group allocation formulation.

f. Problem INF, for identifying the machines causing infeasibility in the machine group allocation problem.

The program listings are given in Appendix C.

6.2 Part Family Formation – An Example

The solution procedure for the fractional programming formulation of the problem involves a search procedure as indicated in section 4.2. The problem size for the data in Appendix B is as follows.
N=15 and K=3.

Problem size:

\[\begin{align*}
&\text{\# of integer } X_{ik} \text{ variables} \quad : \quad 30 \\
&\text{\# of continuous } X_{ik} \text{ variables} \quad : \quad 15 \\
&\text{\# of } M_{ijk} \text{ variables} \quad : \quad 315 \\
&\text{TOTAL \# OF VARIABLES} \quad : \quad 360 \\
&\text{\# of type (i) constraints} \quad : \quad 15 \\
&\text{\# of type (ii) constraints} \quad : \quad 15 \\
&\text{\# of type (iii) constraints} \quad : \quad 315 \\
&\text{\# of type (iv) and (v) constraints} \quad : \quad 630 \\
&\text{TOTAL \# OF CONSTRAINTS} \quad : \quad 960
\end{align*}\]

The computations involved in solving the problem are indicated Sections to follow.

6.2.1 **Finding the interval \((L,U)\)**

The values of \(LBR\) and \(UBR\) were calculated using the algorithm in section 4.2.3.3 for the values of \(R\) from 0.05 to 10.50 in steps of 0.05. The partial listing of the values is tabulated in Table 7.

From the table:

\begin{align*}
L &= 2.45 \quad ; \quad LB_{2.45} = 5.10 \quad ; \quad UB_{2.45} = 1041.59 \\
U &= 6.10 \quad ; \quad LB_{6.10} = 2272.2 \quad ; \quad UB_{6.10} = 0.20
\end{align*}

Based on the proof in section 4.2.2 we have,

\[2.45 \leq R^* \leq 6.10\]

The argument about restricting to the lower end of the
TABLE 7

BOUNDS ON THE OBJECTIVE FUNCTION FOR DIFFERENT VALUES OF R

TOTAL NUMBER OF C_{ij}'s = 315

<table>
<thead>
<tr>
<th>R</th>
<th># OF NEGATIVE C_{ij}'s</th>
<th>UPPER BOUND</th>
<th>LOWER BOUND</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0</td>
<td>734.45</td>
<td>3076.54</td>
</tr>
<tr>
<td>0.10</td>
<td>0</td>
<td>720.90</td>
<td>3033.09</td>
</tr>
<tr>
<td>0.15</td>
<td>0</td>
<td>707.35</td>
<td>2989.64</td>
</tr>
<tr>
<td>2.45</td>
<td>27</td>
<td>-5.10</td>
<td>1041.59</td>
</tr>
<tr>
<td>2.50</td>
<td>33</td>
<td>117.50</td>
<td>1005.00</td>
</tr>
<tr>
<td>6.10</td>
<td>282</td>
<td>-2272.29</td>
<td>0.20</td>
</tr>
<tr>
<td>6.15</td>
<td>282</td>
<td>-2313.44</td>
<td>-7.70</td>
</tr>
<tr>
<td>6.20</td>
<td>282</td>
<td>-2354.59</td>
<td>-26.80</td>
</tr>
<tr>
<td>9.95</td>
<td>309</td>
<td>-5536.75</td>
<td>-605.15</td>
</tr>
</tbody>
</table>
region \((L, U)\) in the search for \(R^*\) is evident from the values of \(LB_R\) and \(UB_R\) in Table 7.

6.2.2 Initial Solution through Approximation Procedure

The total solution time requirement for solving the part family formation problem is dictated by the number of problems \(P(R)\) solved during the search. Each of the problems \(P(R)\) to be solved in this case is of the size indicated earlier.

Considering the problem size and the solution time required, the importance of starting with an initial solution nearer to the optimal solution is evident.

The approximation procedure as outlined in the section is applied in this case to find an initial solution. The result from a single trial of the approximation procedure with some random starting configuration solution is sufficient to get an initial solution.

As indicated earlier, the requirements of such an approximation procedure are arriving at a 'good' solution (near to optimal) and doing so in a reasonable amount of time (time comparable to the solution time of one problem \(P(R)\)). With a view to test the procedure, trials are carried out with different starting configurations. Table 8 provides a summary of these trials. The typical
TABLE 8

Summary of Trials with Different Starting Configurations for Fifteen Parts Example.

<table>
<thead>
<tr>
<th>#</th>
<th>Starting Config.</th>
<th>Initial ODC</th>
<th># of Iter</th>
<th>Final Config.</th>
<th>Final ODC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>[1, 6, 7, 12, 13]</td>
<td>3.6653</td>
<td>7</td>
<td>[1, 3, 4, 8, 15, 13]</td>
<td>2.8158</td>
</tr>
<tr>
<td></td>
<td>[2, 5, 8, 11, 14]</td>
<td></td>
<td></td>
<td>[2, 6, 11, 12]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[3, 4, 9, 10, 15]</td>
<td></td>
<td></td>
<td>[5, 7, 9, 10, 14]</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>[1, 6, 7, 12, 13]</td>
<td>3.6971</td>
<td>8</td>
<td>[1, 3, 4, 8, 15, 13]</td>
<td>2.8158</td>
</tr>
<tr>
<td></td>
<td>[2, 5, 8, 11, 14]</td>
<td></td>
<td></td>
<td>[2, 6, 11, 12]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[3, 4, 9, 10, 15]</td>
<td></td>
<td></td>
<td>[5, 7, 9, 10, 14]</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>[1, 5, 7, 9, 13, 14]</td>
<td>3.1573</td>
<td>8</td>
<td>[1, 3, 4, 5, 8, 13]</td>
<td>2.79999</td>
</tr>
<tr>
<td></td>
<td>[3, 6, 11, 15]</td>
<td></td>
<td></td>
<td>[6, 11, 12, 15]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[2, 4, 8, 10, 12]</td>
<td></td>
<td></td>
<td>[2, 7, 9, 10, 14]</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>[1, 5, 8, 10, 15]</td>
<td>3.44</td>
<td>5</td>
<td>[1, 3, 4, 8, 15, 13]</td>
<td>2.8158</td>
</tr>
<tr>
<td></td>
<td>[3, 9, 7, 13, 14]</td>
<td></td>
<td></td>
<td>[2, 6, 11, 12]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[2, 4, 6, 11, 12]</td>
<td></td>
<td></td>
<td>[5, 7, 9, 10, 14]</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>[1, 3, 9, 12, 13]</td>
<td>3.66</td>
<td>7</td>
<td>[1, 3, 4, 5, 8, 13]</td>
<td>2.79999</td>
</tr>
<tr>
<td></td>
<td>[4, 5, 7, 10, 11]</td>
<td></td>
<td></td>
<td>[6, 11, 12, 15]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[2, 6, 8, 14, 15]</td>
<td></td>
<td></td>
<td>[2, 7, 9, 10, 14]</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 9

Iteration Log for the Approximation Procedure

Number of Parts = 15

Random Starting Partition = 1

<table>
<thead>
<tr>
<th>ITR</th>
<th>INITIAL No. ALLOCATION</th>
<th>INTERMEDIATE R AND FINAL FNR. NEW ALLOCATIONS</th>
<th>OBJ Z(R,X) CDC Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>[1,6,7,12,13]</td>
<td></td>
<td>* Based on range analysis choose R=3.55</td>
</tr>
<tr>
<td></td>
<td>[2,5,8,11,14]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[3,4,9,10,14]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MF=1</td>
<td>3.55 [2,5,8,11,14,12]</td>
<td>3.349 High, Choose 3.349</td>
</tr>
<tr>
<td></td>
<td>CDC=3.665</td>
<td>[3,4,9,10,15,7,13]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.349 Same as above 0</td>
</tr>
<tr>
<td>1</td>
<td>[6]</td>
<td>* Based on range analysis choose R=3.349</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[2,5,8,11,14,1,12]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[3,4,9,10,15,7,13]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MF=3</td>
<td>3.20 [6,3,15]</td>
<td>0.4 3.201 OK</td>
</tr>
<tr>
<td></td>
<td>CDC=3.349</td>
<td>[1,2,5,8,11,12,14]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[4,7,9,10,13]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>[3,6,15]</td>
<td>* Based on the range analysis choose R = 2.90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[1,2,5,8,11,12,14]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[4,7,9,10,13]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MF=2</td>
<td>2.90 [3,6,15,8]</td>
<td>-1.6 2.895 High Choose 2.895</td>
</tr>
<tr>
<td></td>
<td>CDC=3.201</td>
<td>[2,11,12]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[4,7,9,10,13,1,5,14]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.895 Same as above 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.895 OK</td>
<td></td>
</tr>
</tbody>
</table>

(Contd.)
<table>
<thead>
<tr>
<th>It#</th>
<th>INITIAL ALLOCATIONS</th>
<th>INTERMEDIATE OBJ AND FINAL FN. NEW ALLOCATIONS</th>
<th>Z(R,X)</th>
<th>CDC</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>[3,6,8,15] [2,11,12] [1,4,5,9,10,13,14]</td>
<td>Based on range analysis choose R=2.70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.70 [3,6,8,15] [.54.9 2.869 Low, 1,4]</td>
<td>Choose [2,11,12] 2.869</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.869 Same as above -0.01 2.869 OK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[3,6,8,15, 1,4] [2,11,12] [5,7,9,10,13,14]</td>
<td>* Based on range analysis choose R = 2.85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.85 Same as 6.45 2.869 Low, Initial</td>
<td>Choose 2.869</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.869 Same as -0.01 2.869 OK initial</td>
<td>Family configuration not changed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Choose the family with next highest Dk. i.e MF=1 R = 2.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.85 [1,3,4,8, 15] [2,6,11,12] [7,9,10,5,14] [13,1,5,14]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Contd.)
TABLE 9 (Continued)

<table>
<thead>
<tr>
<th>Itr INITIAL No. ALLOCATION</th>
<th>INTEDIATE OBJ AND FINAL FN. NEW ALLOCATIONS Z(R,X) CDC Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1, 3, 4, 8, 15] [2, 11, 12, 6] [5, 7, 9, 10, 14]</td>
<td>* Based on range analysis choose R = 2.845</td>
</tr>
<tr>
<td>MF = 3 CDC = 2.845</td>
<td>2.845 [1, 3, 4, 8, 13, 15] -9.3 2.815 Hogh, Choose [2, 11, 12, 6] 2.815 [5, 7, 9, 10, 14] 2.815 Same as above -0.01 2.815 OK above</td>
</tr>
</tbody>
</table>

[1, 3, 4, 8, 15, 13] [2, 11, 12, 6] [5, 7, 9, 10, 14]	* Based on range analysis choose R = 2.815
MF = 1 CDC = 2.815	2.815 Same as Initial 0 2.815 OK Family configuration has not changed Choose the family with next highest D_k, i.e., MF = 3 Based on the range analysis choose R = 2.815
	2.815 Same as Initial 0 2.815 OK Family configuration has not changed Choose the next family i.e., MF = 1 Based on the range analysis, choose R = 2.815
	2.815 Same as Initial 0 2.815 OK Family configuration is not changed

All the families are considered. STOP
iteration log maintained for the first trial is given in Table 9. The iteration logs for other trials are listed in Appendix D.

From Table 8, two points are evident:

i) The final CDC's obtained by the procedure are very close to each other (Similar result has been reported in [10]).

ii) The solution obtained is close to the optimal solution (R* should be in the range 2.45 - 2.7999, since L = 2.45).

The solution times required for different subproblems in each of the iterations are given in Table 10. The total times required are:

<table>
<thead>
<tr>
<th>Starting Config.</th>
<th>Approximate Total Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.48 Min</td>
</tr>
<tr>
<td>2</td>
<td>8.03 Min</td>
</tr>
<tr>
<td>3</td>
<td>2.31 Min</td>
</tr>
<tr>
<td>4</td>
<td>3.90 Min</td>
</tr>
<tr>
<td>5</td>
<td>1.53 Min</td>
</tr>
</tbody>
</table>

6.2.3 Search Log

The problem is then solved using R = 2.7999 (the value obtained through the approximate solution procedure) as the upper limit on the value of R*.

i.e., the search range chosen is [2.45, 2.799]

First the problem is solved at the midpoint of this
range, i.e., at 2.625.

The optimal solution to the problem $P(2.625) = 173.25$

$\Rightarrow R^* > 2.625$

Hence, the value 2.7999 is chosen as the R for next $P(R)$.

The problem $P(2.7999)$ gives the optimal value as 0.

$\Rightarrow R^* = 2.7999$

The solution times required for the above two problems $P(R)$ are:

$P(2.625) \quad \text{-----} \quad 21.28 \text{ Mins}$

$P(2.799) \quad \text{-----} \quad 22.29 \text{ Mins}$

It also turns out that the optimal solution is obtained in some of the trials of the approximation procedure, and close to optimal solution in other trials. Thus the solution obtained through the approximation procedure is "good" (in fact optimal in this case. It cannot be guaranteed to be optimal, however). Also, the solution time required for the problems $P(R)$ confirms the importance of starting the search at a "good" solution. If the problem were to be attempted with some other initial value as the upper limit, say with $R=3.00$, then the number of problems $P(R)$ solved would have been more (each of them taking a time of about 20 Minutes) resulting in a larger solution time.
6.2.4 Some computational considerations

The solution times (CPU) for the series of problems solved in the course of approximation procedure iterations are listed in Table 10 along with the number of integer variables in each of the problems.

Whilst these times should be strictly associated with a specific Package-Computer combination (SAS/OR and IBM 4381), they are indicative of the computational behaviour of these problems viz.,

i) The solution times increase even for a small increase in the number of integer variables.

ii) For the same number of integer variables, different problems require different solution times, sometimes varying widely from each other.

Several problems have been solved using variations of the original data. It is observed that in all the cases the solution procedure converges to the exact solution. And, it appears that for the values of R close to the value of R^*, the optimal allocations obtained by $P(R)$ would also be the optimal allocation corresponding to R^*.

The problems $P(R)$ are solved steps, halting the IP routine intermittently to check the sign of the objective function any intermediate solution that might have been found. If the sign turns out to be negative, problem $P(R)$
<table>
<thead>
<tr>
<th>Starting Config</th>
<th>Iteration</th>
<th>Problem No.</th>
<th># of Integer Variables</th>
<th>Solution time Min : Sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>10</td>
<td>0</td>
<td>3.38</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10</td>
<td>0</td>
<td>3.38</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>14</td>
<td>0</td>
<td>26.43</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>14</td>
<td>0</td>
<td>7.52</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>16</td>
<td>0</td>
<td>36.27</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>16</td>
<td>0</td>
<td>36.27</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>12</td>
<td>0</td>
<td>5.10</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>12</td>
<td>0</td>
<td>5.09</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>12</td>
<td>0</td>
<td>4.89</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>12</td>
<td>0</td>
<td>4.91</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>12</td>
<td>0</td>
<td>4.89</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>12</td>
<td>0</td>
<td>5.20</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>12</td>
<td>0</td>
<td>5.38</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>8</td>
<td>0</td>
<td>2.12</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>2.48 Min</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>12</td>
<td>0</td>
<td>4.89</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>12</td>
<td>0</td>
<td>4.79</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>16</td>
<td>0</td>
<td>36.27</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>16</td>
<td>0</td>
<td>36.27</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>20</td>
<td>1</td>
<td>32.22</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>20</td>
<td>1</td>
<td>35.41</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>20</td>
<td>1</td>
<td>37.85</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>16</td>
<td>0</td>
<td>21.77</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>16</td>
<td>0</td>
<td>18.80</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10</td>
<td>0</td>
<td>3.09</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>10</td>
<td>0</td>
<td>3.09</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>16</td>
<td>0</td>
<td>17.13</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>16</td>
<td>0</td>
<td>14.61</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>12</td>
<td>0</td>
<td>5.10</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>12</td>
<td>0</td>
<td>5.09</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>12</td>
<td>0</td>
<td>4.89</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>12</td>
<td>0</td>
<td>4.91</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>12</td>
<td>0</td>
<td>4.89</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>12</td>
<td>0</td>
<td>5.20</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>12</td>
<td>0</td>
<td>3.38</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>8</td>
<td>0</td>
<td>2.12</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>8.0295 Min</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>12</td>
<td>0</td>
<td>5.61</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>12</td>
<td>0</td>
<td>5.58</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>16</td>
<td>0</td>
<td>25.87</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>16</td>
<td>0</td>
<td>20.05</td>
</tr>
<tr>
<td>Starting Config</td>
<td>Iteration No.</td>
<td>Problem No.</td>
<td># of Integer Variables</td>
<td>Solution time Min : Sec</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>16</td>
<td>0 : 16.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>16</td>
<td>0 : 26.26</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>12</td>
<td>0 : 5.15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10</td>
<td>0 : 3.38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10</td>
<td>0 : 3.38</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>12</td>
<td>0 : 5.58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10</td>
<td>0 : 3.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10</td>
<td>0 : 3.50</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>14</td>
<td>0 : 7.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>14</td>
<td>0 : 7.75</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>12</td>
<td>0 : 5.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10</td>
<td>0 : 3.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>8</td>
<td>0 : 1.91</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>2.314 Min</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>10</td>
<td>0 : 2.98</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10</td>
<td>0 : 2.92</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>18</td>
<td>1 : 19.61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>18</td>
<td>1 : 57.18</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>12</td>
<td>0 : 5.04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10</td>
<td>0 : 3.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10</td>
<td>0 : 2.81</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>12</td>
<td>0 : 4.91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>12</td>
<td>0 : 4.89</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>12</td>
<td>0 : 5.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10</td>
<td>0 : 3.38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>8</td>
<td>0 : 2.12</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>3.900 Min</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>10</td>
<td>0 : 3.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10</td>
<td>0 : 3.38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10</td>
<td>0 : 3.29</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>14</td>
<td>0 : 8.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>14</td>
<td>0 : 8.21</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>12</td>
<td>0 : 6.72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10</td>
<td>0 : 2.88</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>14</td>
<td>0 : 8.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>14</td>
<td>0 : 8.69</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10</td>
<td>0 : 3.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>10</td>
<td>0 : 2.90</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>14</td>
<td>0 : 7.45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>14</td>
<td>0 : 7.19</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>12</td>
<td>0 : 5.28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10</td>
<td>0 : 2.85</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>12</td>
<td>0 : 3.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10</td>
<td>0 : 3.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>8</td>
<td>0 : 1.91</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>1.529 Min</td>
</tr>
</tbody>
</table>
is terminated since the optimal solution must be negative. This approach is helpful in cutting down the actual time required to solve the problem. For this reason, intuitively it is better to approach the value of \(R \) from the negative side.

The solutions obtained by solving the problems \(\hat{P}(R) \) can be used to get a short-cut in search procedure compared to binary principle. At each value of \(R \), at least one feasible solution is found before deciding on the next course of action. Each feasible solution gives a particular allocation of parts to the families. For this allocation, the value of \(A(X)/B(X) \) can be calculated. The value of \(R^* \) should be less than or equal to the calculated value for this feasible solution. The calculated value \(A(X)/B(X) \) thus is helpful in the search for \(R^* \).

6.3 Machine Group Allocation- An Example

The machine group allocation problem is illustrated by an example. The infeasibility occurring in the problem is resolved using the formulation in Section 5.3.2.

6.3.1 Routing Information

The routing information in the form of matrix \(A_{jk} \) as described in section 5.1.3 is given in Table 11.
this type of information about the feasibility of certain operations on the available machines is assumed to be available.

6.3.2 **Solution Procedure**

The machine group allocation problem has been solved for the part families formed with fifteen parts.

The family configuration obtained by the part grouping in Section 6.2 is given below:

Family 1 : parts 1, 3, 4, 5, 8, 13
Family 2 : parts 6, 11, 12, 15
Family 3 : parts 2, 7, 9, 10, 14

From the routing matrix for these parts (Table 11) a list of multiplication terms for each family is generated as explained in Section 5.1.4. For example, the operation 1 and 2 of the part 6 can be done on machines 1 and 4 respectively, and the product term \(I_{12}.I_{42} \) represents this routing. The sample of such a list is given in Table 12.

The size of the problem is:

\[M=12 \quad K=3 \]

- Number of integer Variables \(= 12 \times 2 = 24 \)
- Number of Free variables \(= 12 \)
- Number of product term variables representing the routings for the parts \(= 117 \)
<table>
<thead>
<tr>
<th>Part No.</th>
<th># of Opns</th>
<th>Opn 1</th>
<th>Opn 2</th>
<th>Opn 3</th>
<th>Opn 4</th>
<th>Opn 5</th>
<th>Opn 6</th>
<th>Opn 7</th>
<th>Opn 8</th>
<th>Opn 9</th>
<th>Opn 10</th>
<th>Opn 11</th>
<th>Opn 12</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

TABLE II

MACHINE ROUTING DATA
<table>
<thead>
<tr>
<th>No.</th>
<th>Product Term</th>
<th>6</th>
<th>11</th>
<th>12</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>112·I42</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>112·I52</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>112·I62</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>112·I92</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>112·I42</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>112·I52</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>112·I62</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>112·I92</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>112·I42·I92</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>132·I42·I12</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>132·I42·I92</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>132·I92·I12</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>132·I92</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>112·I122</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>112·I122·I92</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>142·I92</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>142·I122·I12</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>142·I122·I92</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>112·I22·I32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>112·I22·I112</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>112·I52·I32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>112·I52·I112</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>132·I22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>132·I22·I112</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>132·I52</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>132·I52·I112</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
The problem is infeasible with the constraint of allocating one machine to one family only. The mathematical model developed in Section 5.3.2 is applied to find out the machine causing infeasibility. The value of the optional weightage D is chosen to be 1. The optimal value of the objective function is 2. Two of the machines are identified to be the ones causing infeasibility.

Machine 2 is absolutely essential for families 2 and 3. Machine 6 is absolutely essential for families 1 and 3. The allocation constraint for these two machines was relaxed by giving a RHS value of 2 in the corresponding constraints of type (27). Problem P1 is then solved to find the optimal solution to the allocation problem. The optimal machine group allocation (after the relaxation for machines 2 and 3) to the families is given below.

Maximum number of routings achieved = 38

Machines allotted to family 1 : 3, 5, 6, 8, 9, 12
Machines allotted to family 2 : 2, 1, 4, 11
Machines allotted to family 3 : 2, 6, 7, 10,

6.4 Discussion of Results

The cell formation is an initial specification problem in the pre-production planning stage. This research presents new formulations for this problem.

The examples illustrating the formulations involve
grouping of fifteen parts into three families and then allocating twelve machines to these families. The problems are solved on an IBM 4381 computer using the integer programming (IP) routine of SAS/OR package.

The part family formation example for the above data has $15 \cdot 3 = 45$ decision variables. In the input to the IP routine $15 \cdot 2 = 30$ variables are explicitly stated to be of 0-1 integer type. The remaining 15 are forced to take 0-1 values due to constraints of type (i) in the formulation. The solution time for the problems solved during the search procedure (Problem P(R)) is about 20-25 Minutes.

The solution times for several problems of smaller size are listed in Table 10.

An example of twentyfive parts using variations in the data given in Appendix B has been attempted. The solution time for the problems solved during the search procedure has been found to be in excess of 150 Min. The experimentation with larger problems has been limited. However, based on the results it appears that with a comparable computer-package combination, problems with 40-50 variables could be solved in a 'reasonable' time. In physical terms the corresponding problem size is 20-25 parts to be grouped into 2-3 families.

Further computational experimentation is necessary for the larger problems considering the following issues.
1) **Branch and Bound Strategy:** Several search heuristic options are available for the rules of selecting branching nodes and branching variable at the nodes. The experience with the smaller problems can not be directly extrapolated to larger problems, since the strategy that works well for a particular problem size may not work well as the problem size increases [29].

2) **Linearization Strategy:** Some variations involving reductions in the number of extra constraints generated have been suggested by Glover and Woolsey [15]. A brief discussion of these is provided by Stecke [30]. The experimentation with these different strategies could be a possibility for the larger problems. (The program written to generate the input for the problem P(R) provides options for implementing different strategies as indicated in [30]).

The bounds established on the objective function could be used to determine the maximum possible variation of the objective function value for any feasible solution from the optimal value. This would be useful especially for large problems.

The approximate solution procedure developed is an extension of the 'single move' heuristic to a 'multiple
move case. The results from the procedure have been found to be near-optimal in the problems solved. Also, starting with different configurations the procedure converged to solutions with objective function values very close to each other. This result is comparable to the "single move" implementation of the heuristic in [12].

The solution obtained through the approximation procedure provides an upper limit on the objective function value.

The formulation of machine group allocation has 12 \cdot 3 = 36 decision variables. In the input to the LP routine 12 \cdot 2 = 24 variables are explicitly stated to be of 0-1 type. The remaining 12 are forced to take 0-1 values due to the assignment constraints. The solution time for the problem is about 2-3 Min. The formulation for identifying the machines causing infeasibility in the problem required less than 1 Min.

The implementation of the formulations gives the system specification in terms of the cell configuration and the parts manufactured in the cells. The contributions of this research are:

- Defining a dissimilarity coefficient as the objective function of the part grouping formulation.
- Developing an algorithm for finding the bounds on the above objective function.
Extension of a clustering method of "single move" type to a "multiple move" case.

Consideration of the availability of alternative machines and the routing diversity in machine grouping problem.

Developing a mathematical model to identify the machines causing infeasibility in the machine group allocation problem.

The computational aspects for larger problems have to be further tested for larger problems as explained earlier. Also a matter of consideration could be to impose other constraints on grouping. For example, one of the constraints could be to consider the quantities of the parts to be manufactured with a view to balance the work load in the cells.

Some of the direct consequences of grouping are reduction in the work in progress, reduced lead times and reduced scheduling complexity. A study by Purcheck [26] confirms that the cellular systems have better "operating characteristics" as measured by these factors. The reduced work in progress and reduced lead times result in financial gains. An approach for analysing such gains due to grouped system has been suggested by Boucher [3]. Such an analysis could be done after the cell formation problem has been solved using the formulations presented.
CHAPTER VII

SUMMARY

This research deals with the initial specification decisions in the pre-production planning stage for Flexible Manufacturing Systems. The problems of part family formation and machine group allocation have been formulated as 0-1 integer programming models.

The formulation of part family formation is a fractional program. The dissimilarity between the parts in terms of processing requirements has been represented by a coefficient and is defined as a function of 0-1 variables. By identifying the specific nature of the objective function a general search principle has been suitably adopted for solving the formulation.

As a method for providing a starting solution to the search procedure, an extension to a clustering principle reported in the literature has been developed. This extension is based on the fractional model.

The concept of routing flexibility, or the number of available routes for the parts within the cellular system has been adopted in the machine group allocation.
This aspect has not been considered by the Group Technology researchers in conventional systems.

The formulations have been applied to a set of realistic problem data. Several problems have been solved. The computational experience with these problems indicates that the formulations are applicable to FMS installations manufacturing low or medium variety of parts.

As indicated in Chapter III, many of the systems which operate in tandem with conventional facilities have been, in general, used for the manufacture of critical, high value parts. Many of the FMSs reported in the literature fall into this category. The proposed procedure is applicable for these systems.

The solution procedure developed for the fractional programming model is also applicable in other clustering applications where the pairwise ratio criteria could be used.

In summary, the main contributions of this thesis are the development of a new formulation for part family formation, extension of a heuristic procedure in clustering and adopting the availability of alternative routings for the parts as the criterion in machine grouping.
REFERENCES

APPENDIX A

ALTERNATIVE DEFINITIONS FOR THE OVERALL DISSIMILARITY COEFFICIENT
ALTERNATIVE DEFINITIONS FOR THE OVERALL DISSIMILARITY COEFFICIENT

The overall dissimilarity coefficient defined as the objective function in the part family formation problem is an average of all the pairwise dissimilarity coefficients. The overall measure also can also be defined as follows:

\[a) \quad CDC_1 = \frac{1}{N \cdot (N-1)} \sum_{k=1}^{K} \sum_{i=1, j=i+1}^{N-1} \sum_{j}^{N} \frac{d_{ij}/s_{ij} \cdot X_{ik} \cdot X_{jk}}{s_{ij} \cdot X_{ik} \cdot X_{jk}} \]

\[b) \quad CDC_2 = \frac{1}{K} \left[\sum_{k=1}^{K} \left[\frac{\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} d_{ij} \cdot X_{ik} \cdot X_{jk}}{\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} s_{ij} \cdot X_{ik} \cdot X_{jk}} \right] \right] \]

\[c) \quad CDC_3 = \frac{1}{K} \sum_{k=1}^{K} \left[\frac{\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} (d_{ij}/s_{ij}) \cdot X_{ik} \cdot X_{jk}}{n_k} \right] \]

where,

\[n_k = \sum_{i=1}^{N} X_{ik} \]

\[CDC_1, CDC_2 \text{ and } CDC_3 \text{ are the other possible definitions of the objective of the minimization of dissimilarities and maximization of similarities between the parts.} \]
A formulation with \(\text{CDC}_1 \) as the objective function would be similar to the problem \(P(R) \).

The formulations \(\text{CDC}_2 \) and \(\text{CDC}_3 \) as objective functions would be more complicated to solve. Both these functions can be simplified into a single ratio of non-linear integer functions. The difference would be that in these formulations, the functions would have polynomial terms of higher degree (unlike the formulation for CDC which has only the product terms of degree two). Hence, the method developed for establishing the region \((L, U)\) would not be applicable to these formulations. The general search principle however, still holds in these cases.

The reasons for adopting CDC as the objective function are:

- Using as objective function a similar expression as reported in [12].
- The expression CDC incorporates a weighted average of all \(d_{ij}/s_{ij} \) values.
APPENDIX B

PART SKETCHES AND PROCESS DETAILS
PART #1

HOUSING

Scale 1:6
<table>
<thead>
<tr>
<th>OPERATION NO.</th>
<th>DESCRIPTION OF THE OPERATION</th>
<th>TOOL(S) REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rough Mill Surface (A)</td>
<td>M501</td>
<td></td>
</tr>
<tr>
<td>Finish Mill Surface (A)</td>
<td>M502, M701</td>
<td></td>
</tr>
<tr>
<td>Center Hole (1)</td>
<td>D201</td>
<td></td>
</tr>
<tr>
<td>Drill 42 Dia Hole Thro' (1)</td>
<td>D142</td>
<td></td>
</tr>
<tr>
<td>Ream 42 Dia Hole Thro' (1)</td>
<td>R142</td>
<td></td>
</tr>
<tr>
<td>Chamfer</td>
<td>D109, M602</td>
<td></td>
</tr>
<tr>
<td>Rough Mill Edge (B)</td>
<td>M101, M401</td>
<td></td>
</tr>
<tr>
<td>Rough Mill Edge (C)</td>
<td>M101, M401</td>
<td></td>
</tr>
<tr>
<td>Rough Mill Edge (D)</td>
<td>M101, M401</td>
<td></td>
</tr>
<tr>
<td>Rough Mill Base Projections</td>
<td>M102</td>
<td></td>
</tr>
<tr>
<td>Finish Mill Base Projections</td>
<td>M103</td>
<td></td>
</tr>
<tr>
<td>Center Holes (4)</td>
<td>D202</td>
<td></td>
</tr>
<tr>
<td>Drill 30 Dia Holes Thro' (4)</td>
<td>D130</td>
<td></td>
</tr>
<tr>
<td>Ream 30 Dia Holes Thro' (4)</td>
<td>R130</td>
<td></td>
</tr>
<tr>
<td>Chamfer (4)</td>
<td>D109</td>
<td></td>
</tr>
<tr>
<td>Peripheral Mill Surface (J)</td>
<td>M301, M101</td>
<td></td>
</tr>
<tr>
<td>Finish Mill Surface (J)</td>
<td>M302, M102</td>
<td></td>
</tr>
<tr>
<td>Rough Mill Face (C)</td>
<td>M301, M102</td>
<td></td>
</tr>
<tr>
<td>Finish Mill Face (C)</td>
<td>M301, M102</td>
<td></td>
</tr>
<tr>
<td>Bore 42 Dia Hole Thro'</td>
<td>B108</td>
<td></td>
</tr>
<tr>
<td>Finish Bore 42 Dia Hole Thro'</td>
<td>B109</td>
<td></td>
</tr>
<tr>
<td>Counter Bore 72 Dia 36 Deep</td>
<td>B101</td>
<td></td>
</tr>
<tr>
<td>Chamfer</td>
<td>M702</td>
<td></td>
</tr>
<tr>
<td>Contour Mill (F)</td>
<td>M603, M108</td>
<td></td>
</tr>
<tr>
<td>Face Mill Surface (H)</td>
<td>M503</td>
<td></td>
</tr>
<tr>
<td>Finish Mill Surface (H)</td>
<td>M504</td>
<td></td>
</tr>
<tr>
<td>Rough Mill Surface (I)</td>
<td>M603, M108</td>
<td></td>
</tr>
<tr>
<td>Finish Mill Surface (I)</td>
<td>M503</td>
<td></td>
</tr>
<tr>
<td>Bore 48 Dia Holes Thro' (2)</td>
<td>B108</td>
<td></td>
</tr>
<tr>
<td>Finish Bore 48 Dia Holes Thro' (2)</td>
<td>B115</td>
<td></td>
</tr>
<tr>
<td>Ream 48 Dia Holes Thro' (2)</td>
<td>R148</td>
<td></td>
</tr>
<tr>
<td>Counter Bore 78 Dia Inside</td>
<td>B101</td>
<td></td>
</tr>
<tr>
<td>Counter Bore 78 Dia Outside</td>
<td>B106</td>
<td></td>
</tr>
</tbody>
</table>
PROCESS DETAILS

PART NO. : 2
PART NAME: BASE BLOCK

<table>
<thead>
<tr>
<th>OPERATION NO.</th>
<th>DESCRIPTION OF THE OPERATION</th>
<th>TOOL(S) REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Rough Mill Bottom Face (A)</td>
<td>M101</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Bottom Face (A)</td>
<td>M103</td>
</tr>
<tr>
<td></td>
<td>Rough Mill Sides</td>
<td>M104</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Sides</td>
<td>M105</td>
</tr>
<tr>
<td></td>
<td>Mill Contours (4)</td>
<td>M901, M602</td>
</tr>
<tr>
<td></td>
<td>Face Mill Surface (D)</td>
<td>M501</td>
</tr>
<tr>
<td></td>
<td>Finish Mill surface (D)</td>
<td>M501</td>
</tr>
<tr>
<td></td>
<td>Face Mill Surface (B)</td>
<td>M506, M508</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Surface (B)</td>
<td>M506, M508</td>
</tr>
<tr>
<td></td>
<td>Center Holes (4)</td>
<td>D201</td>
</tr>
<tr>
<td>(2)</td>
<td>Drill Dia 28 Holes Thru (4)</td>
<td>D125</td>
</tr>
<tr>
<td></td>
<td>Ream Dia 28 Holes Thru (4)</td>
<td>R128</td>
</tr>
<tr>
<td></td>
<td>Deburr</td>
<td>S104</td>
</tr>
<tr>
<td></td>
<td>Face Mill Boss</td>
<td>M101, M402</td>
</tr>
<tr>
<td></td>
<td>Rough Bore 34 Dia Hole Thru</td>
<td>B101</td>
</tr>
<tr>
<td></td>
<td>Finish Bore 34 Dia Hole Thru</td>
<td>B109</td>
</tr>
<tr>
<td></td>
<td>Step Bore Outside Step (Rough)</td>
<td>B105</td>
</tr>
<tr>
<td></td>
<td>Step Bore Inside Step (Rough)</td>
<td>B105</td>
</tr>
<tr>
<td></td>
<td>Finish Bore Outside Step</td>
<td>B104</td>
</tr>
<tr>
<td></td>
<td>Finish Bore Inside Step</td>
<td>B104</td>
</tr>
</tbody>
</table>
PART #3 PULLEY BLOCK

Scale 1:5
PROCESS DETAILS

PART NO. 3

PART NAME: PULLEY BLOCK

<table>
<thead>
<tr>
<th>OPERATION NO.</th>
<th>DESCRIPTION OF THE OPERATION</th>
<th>TOOL(S) REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Face Mill Periphery (B)</td>
<td>M403</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Periphery (B)</td>
<td>M404</td>
</tr>
<tr>
<td></td>
<td>Rough Mill Face (C)</td>
<td>M701</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Face (C)</td>
<td>M702</td>
</tr>
<tr>
<td></td>
<td>Rough Mill Groove (D)</td>
<td>M401</td>
</tr>
<tr>
<td></td>
<td>Mill Peripheral Edges</td>
<td>M412</td>
</tr>
<tr>
<td></td>
<td>Bore 50 Dia Hole Thro"</td>
<td>B108</td>
</tr>
<tr>
<td></td>
<td>Finish Bore 50 Dia Thro"</td>
<td>B109</td>
</tr>
<tr>
<td></td>
<td>Counter Bore 35 Dia 8 Deep</td>
<td>B101</td>
</tr>
<tr>
<td></td>
<td>Finish Counter Bore</td>
<td>B102</td>
</tr>
<tr>
<td></td>
<td>Enlarge Bore Dia Thro" from step</td>
<td>B115</td>
</tr>
<tr>
<td></td>
<td>Rough Mill Side A</td>
<td>M405</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Side A</td>
<td>M406</td>
</tr>
<tr>
<td></td>
<td>Center Holes (4)</td>
<td>D203</td>
</tr>
<tr>
<td>(2)</td>
<td>Drill Holes 30 Dia Thro"(4)</td>
<td>D128</td>
</tr>
<tr>
<td></td>
<td>Ream Holes 30 Dia Thro" (4)</td>
<td>R130</td>
</tr>
<tr>
<td></td>
<td>Tap Holes 30 Dia Thro"</td>
<td>T130</td>
</tr>
<tr>
<td></td>
<td>Finish Bore 80 Dia</td>
<td>B106</td>
</tr>
<tr>
<td></td>
<td>Counter Bore Dia 105</td>
<td>B112</td>
</tr>
<tr>
<td></td>
<td>Chamfer edge</td>
<td>M702, M712</td>
</tr>
<tr>
<td></td>
<td>Rough Mill Periphery</td>
<td>M101</td>
</tr>
<tr>
<td></td>
<td>Rough Mill Outside Periphery</td>
<td>M102</td>
</tr>
</tbody>
</table>
PROCESS DETAILS

PART NO.: 4
PART NAME: FLANGE

<table>
<thead>
<tr>
<th>OPERATION NO.</th>
<th>DESCRIPTION OF THE OPERATION</th>
<th>TOOL(S) REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rough Mill Bottom Face</td>
<td>M501, M518</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Bottom Face</td>
<td>M502</td>
</tr>
<tr>
<td></td>
<td>Center Hole (1)</td>
<td>D202</td>
</tr>
<tr>
<td></td>
<td>Drill 50 Dia Hole Thru</td>
<td>D150</td>
</tr>
<tr>
<td></td>
<td>Rough Bore 110 Dia Hole Thru</td>
<td>B108</td>
</tr>
<tr>
<td>(1)</td>
<td>Finish Bore 110 Dia Hole Thru</td>
<td>B112</td>
</tr>
<tr>
<td></td>
<td>Counter Bore 175 Dia Deep</td>
<td>B112</td>
</tr>
<tr>
<td></td>
<td>Finish 175 Dia Bore Deep</td>
<td>B112</td>
</tr>
<tr>
<td></td>
<td>Chamfer</td>
<td>M701, M712</td>
</tr>
<tr>
<td>2</td>
<td>Rough Mill Sides</td>
<td>M211, M101</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Sides</td>
<td>M212, M102</td>
</tr>
<tr>
<td></td>
<td>Face Mill Top Surface</td>
<td>M501, M502</td>
</tr>
<tr>
<td></td>
<td>Counter Bore 175 Dia Deep</td>
<td>B112</td>
</tr>
<tr>
<td>(2)</td>
<td>Finish Bore 175 Dia Deep</td>
<td>B112</td>
</tr>
<tr>
<td></td>
<td>Center Holes (4)</td>
<td>D202</td>
</tr>
<tr>
<td></td>
<td>Drill 20 Dia Holes Thru (4)</td>
<td>D120</td>
</tr>
<tr>
<td></td>
<td>Deburr</td>
<td>S109</td>
</tr>
<tr>
<td></td>
<td>Tap 20 Dia Holes Thru (4)</td>
<td>T120</td>
</tr>
<tr>
<td></td>
<td>Face Mill Bosses</td>
<td>M503</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Bosses</td>
<td>M503</td>
</tr>
<tr>
<td></td>
<td>Center Holes (2)</td>
<td>D201</td>
</tr>
<tr>
<td></td>
<td>Drill 20 Dia Holes Thru (2)</td>
<td>D120</td>
</tr>
<tr>
<td>(3)</td>
<td>Mill Periphery of Projections</td>
<td>M301</td>
</tr>
<tr>
<td></td>
<td>Finish Periphery of Projections</td>
<td>M302</td>
</tr>
<tr>
<td></td>
<td>Face Mill Top Surface(Rough)</td>
<td>M501</td>
</tr>
<tr>
<td></td>
<td>Mill Periphery Of Bosses</td>
<td>M401, M405</td>
</tr>
</tbody>
</table>
PROCESS DETAILS

PART NO: 5
PART NAME: BASE

<table>
<thead>
<tr>
<th>OPERATION NO.</th>
<th>DESCRIPTION OF THE OPERATION</th>
<th>TOOL(S) REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Face Mill Side (A) M102, M401</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Finish Mill Side (A) M103, M105</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Angle Mill Side (B) M602</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Finish Mill Side (B) M603</td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>Rough Mill Bottom Face (C) M501, M513</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Finish Mill Bottom Face(C) M503, M502</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Face Mill Top Edge M101, M701</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Finish Mill Top Edge M103, M702</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peripheral Mill Boss M401</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Face Mill Boss M401</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Center Holes (15) D201</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drill 8 Dia Holes (15) D108</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deburr S101</td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>Ream 8 Dia Holes (15) R108</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Center Hole (1) D201</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drill 50 Dia Hole Thru D150</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bore 56 Dia Hole B106</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Finish Bore 56 Dia Hole B109</td>
<td></td>
</tr>
<tr>
<td></td>
<td>End Mill Pocket (rough) M501, M402</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Finish Mill Pocket M508, M402</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peripheral Mill Sides M406</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contour Mill Projections M610, M602</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Center Hole (1) D203</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drill 50 Dia Hole (1) D150</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drill 70 Dia Hole D170</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bore 120 Dia Hole B108</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rough Mill Sides B,C and D M301, M305</td>
<td></td>
</tr>
</tbody>
</table>
PROCESS DETAILS

PART NO.: 6
PART NAME: CAP

<table>
<thead>
<tr>
<th>OPERATION NO.</th>
<th>DESCRIPTION OF THE OPERATION</th>
<th>TOOL(S) REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Rough Mill Bottom Face (A)</td>
<td>M501, M504</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Bottom Face (A)</td>
<td>M502</td>
</tr>
<tr>
<td></td>
<td>End Mill Grove</td>
<td>M415, M412</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Grove</td>
<td>M416</td>
</tr>
<tr>
<td></td>
<td>Center Holes (4)</td>
<td>D201</td>
</tr>
<tr>
<td></td>
<td>Drill 18 Dia Holes Thro' (4)</td>
<td>D118</td>
</tr>
<tr>
<td></td>
<td>Deburr</td>
<td>S102</td>
</tr>
<tr>
<td>(2)</td>
<td>Rough Mill Top Face</td>
<td>M501</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Top Face</td>
<td>M504</td>
</tr>
<tr>
<td></td>
<td>Bore 96 Dia Hole</td>
<td>B108, B112</td>
</tr>
<tr>
<td></td>
<td>Finish Bore 96 Dia Hole</td>
<td>B109</td>
</tr>
<tr>
<td></td>
<td>End Mill Base Edges</td>
<td>M401, M412</td>
</tr>
<tr>
<td></td>
<td>Rough Mill Face C</td>
<td>M507</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Face c</td>
<td>M509</td>
</tr>
<tr>
<td></td>
<td>Center Hole</td>
<td>D201</td>
</tr>
<tr>
<td></td>
<td>Drill Dia 30 Hole Thro' Wall</td>
<td>D130</td>
</tr>
</tbody>
</table>
PROCESS DETAILS

PART NO. : 7
PART NAME: PANEL SIDE COVER

<table>
<thead>
<tr>
<th>OPERATION NO.</th>
<th>DESCRIPTION OF THE OPERATION</th>
<th>TOOL(S) REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Rough Mill Bottom Face (A)</td>
<td>M102,M401</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Bottom Face (A)</td>
<td>M103,M103</td>
</tr>
<tr>
<td></td>
<td>Rough Mill Top Edges (B)</td>
<td>M404,M511</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Top Edges (B)</td>
<td>M402,M512</td>
</tr>
<tr>
<td></td>
<td>Center Holes (5)</td>
<td>D201</td>
</tr>
<tr>
<td></td>
<td>Drill 8 Dia Holes 25 Deep (5)</td>
<td>D108</td>
</tr>
<tr>
<td></td>
<td>Deburr (5)</td>
<td>S102</td>
</tr>
<tr>
<td></td>
<td>Tap 8 Dia Holes 25 Deep (5)</td>
<td>T108</td>
</tr>
<tr>
<td></td>
<td>Box Mill Inside Edges (Rough) (C)</td>
<td>M401,M407</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Inside Edges (C)</td>
<td>M402,M408</td>
</tr>
<tr>
<td></td>
<td>Rough Mill Sides Of projection (D)</td>
<td>M404</td>
</tr>
<tr>
<td></td>
<td>Face Mill Boss (E)</td>
<td>M401,M408</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Boss (E)</td>
<td>M402</td>
</tr>
<tr>
<td></td>
<td>Center Hole (1)</td>
<td>D201</td>
</tr>
<tr>
<td></td>
<td>Drill 20 dia Hole Thro" (1)</td>
<td>D120</td>
</tr>
<tr>
<td></td>
<td>Ream 20 Dia Hole Thro" (1)</td>
<td>R120</td>
</tr>
<tr>
<td></td>
<td>Deburr (1)</td>
<td>S102</td>
</tr>
<tr>
<td></td>
<td>Side Mill ridge (Rough) (F)</td>
<td>M502</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Ridge (F)</td>
<td>M502,M701</td>
</tr>
<tr>
<td>(2)</td>
<td>Face Mill Surface (G)</td>
<td>M701,M704</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Surface (G)</td>
<td>M702</td>
</tr>
<tr>
<td></td>
<td>Center Holes (3)</td>
<td>D201</td>
</tr>
<tr>
<td></td>
<td>Drill 15 Dia Holes 10 Deep (3)</td>
<td>D115</td>
</tr>
<tr>
<td></td>
<td>Drill 15 Dia Hole 25 Deep</td>
<td>D115</td>
</tr>
<tr>
<td></td>
<td>(for notch H)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Finish Mill Notch (H)</td>
<td>M413</td>
</tr>
<tr>
<td></td>
<td>Rough Mill Pocket (I)</td>
<td>M506</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Pocket (I)</td>
<td>M508</td>
</tr>
<tr>
<td></td>
<td>Center Hole (1)</td>
<td>D201</td>
</tr>
<tr>
<td></td>
<td>Drill 8 Dia Hole 10 Deep (1)</td>
<td>D108</td>
</tr>
<tr>
<td></td>
<td>Tap 8 dia Holes 10 Deep</td>
<td>T108</td>
</tr>
<tr>
<td>(3)</td>
<td>Step Mill Edge (Rough) (J)</td>
<td>M506</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Edge (J)</td>
<td>M508</td>
</tr>
<tr>
<td></td>
<td>Contour Mill to Finish (J)</td>
<td>M601,M402</td>
</tr>
<tr>
<td></td>
<td>Center Holes (2)</td>
<td>D202</td>
</tr>
<tr>
<td></td>
<td>Drill 5 Dia Hole 5 deep</td>
<td>D105</td>
</tr>
<tr>
<td></td>
<td>Deburr</td>
<td>S101</td>
</tr>
</tbody>
</table>
PROCESS DETAILS

PART NO.: 8

PART NAME: BRACKET

<table>
<thead>
<tr>
<th>OPERATION NO.</th>
<th>DESCRIPTION OF THE OPERATION</th>
<th>TOOL(S) REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Rough Mill Bottom Face (A)</td>
<td>M101,M108, M501</td>
</tr>
<tr>
<td></td>
<td>Rough Mill sides (C)</td>
<td>M401</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Bottom Face (A)</td>
<td>M102,M502</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Sides (C)</td>
<td>M401</td>
</tr>
<tr>
<td>(2)</td>
<td>Rough Mill Top Face (B)</td>
<td>M101</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Top face (B)</td>
<td>M102</td>
</tr>
<tr>
<td></td>
<td>Center Holes (2)</td>
<td>D201</td>
</tr>
<tr>
<td></td>
<td>Drill 25 Dia Hole Thro"</td>
<td>D125</td>
</tr>
<tr>
<td></td>
<td>Drill 40 Dia Hole Thro"</td>
<td>D140</td>
</tr>
<tr>
<td></td>
<td>Counter Bore</td>
<td>B105</td>
</tr>
<tr>
<td></td>
<td>Deburr</td>
<td>S102</td>
</tr>
<tr>
<td></td>
<td>Rough Mill Face (D)</td>
<td>M702,M301</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Face (D)</td>
<td>M703</td>
</tr>
<tr>
<td></td>
<td>Centering Holes (3)</td>
<td>D203</td>
</tr>
<tr>
<td></td>
<td>Drill Dia 25 Hole (3)</td>
<td>D125</td>
</tr>
<tr>
<td>(3)</td>
<td>Tap Dia 25 Hole (3)</td>
<td>T125</td>
</tr>
<tr>
<td></td>
<td>Rough Bore Thro"</td>
<td>B108</td>
</tr>
<tr>
<td></td>
<td>Enlarge Bore (Rough)</td>
<td>B109</td>
</tr>
<tr>
<td></td>
<td>Chamfer</td>
<td>B110</td>
</tr>
<tr>
<td></td>
<td>Finish Bore Thro"</td>
<td>B112</td>
</tr>
<tr>
<td>OPERATION NO.</td>
<td>DESCRIPTION OF THE OPERATION</td>
<td>TOOL(S) REQUIRED</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>(1)</td>
<td>Rough Mill Side (A)</td>
<td>M102, M401</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Side (A)</td>
<td>M103, M105, M402</td>
</tr>
<tr>
<td></td>
<td>Rough Mill Top Face</td>
<td>M101</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Top Face</td>
<td>M101</td>
</tr>
<tr>
<td></td>
<td>Center Holes (9)</td>
<td>D203</td>
</tr>
<tr>
<td></td>
<td>Drill 15 Dia Holes (9)</td>
<td>D115</td>
</tr>
<tr>
<td></td>
<td>Center Holes (2)</td>
<td>D203</td>
</tr>
<tr>
<td></td>
<td>Drill Dia 30 Holes (2) Thru</td>
<td>D130</td>
</tr>
<tr>
<td></td>
<td>Deburr</td>
<td>S101</td>
</tr>
<tr>
<td></td>
<td>Tap 15 Dia Holes (9)</td>
<td>T115</td>
</tr>
<tr>
<td></td>
<td>Circular Milling (Rough)</td>
<td>M501, M506</td>
</tr>
<tr>
<td></td>
<td>Circular Milling (Finish)</td>
<td>M502</td>
</tr>
<tr>
<td></td>
<td>Thro' Bore 80 Dia (Rough)</td>
<td>B107</td>
</tr>
<tr>
<td></td>
<td>Thro' Bore 80 Dia (Finish)</td>
<td>B109</td>
</tr>
<tr>
<td></td>
<td>Counter Bore (Rough)</td>
<td>B112</td>
</tr>
<tr>
<td></td>
<td>Contour Mill (Finish)</td>
<td>M402</td>
</tr>
<tr>
<td></td>
<td>End Mill Pocket (Rough)</td>
<td>M501, M508</td>
</tr>
<tr>
<td></td>
<td>End Mill Pocket (Finish)</td>
<td>M502</td>
</tr>
<tr>
<td></td>
<td>Side Mill Pocket Edges</td>
<td>M301</td>
</tr>
<tr>
<td></td>
<td>Shape Milling (Rough)</td>
<td>M603</td>
</tr>
<tr>
<td></td>
<td>Shape Milling (Finish)</td>
<td>M604</td>
</tr>
<tr>
<td>(2)</td>
<td>Mill Pocket (Small)</td>
<td>M404, M402</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Pocket (Small)</td>
<td>M402</td>
</tr>
<tr>
<td></td>
<td>Finish Mill All Sides</td>
<td>M302</td>
</tr>
</tbody>
</table>

PART NO.: 9 **PART NAME**: COVER
PROCESS DETAILS

PART NO.: 10

PART NAME: BOX

<table>
<thead>
<tr>
<th>OPERATION NO.</th>
<th>DESCRIPTION OF THE OPERATION</th>
<th>TOOL(S) REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Rough Mill Bottom Face</td>
<td>M101</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Bottom Face</td>
<td>M103</td>
</tr>
<tr>
<td></td>
<td>Face Mill Side B (Rough)</td>
<td>M104,M503</td>
</tr>
<tr>
<td></td>
<td>Face Mill Side B (Finish)</td>
<td>M105</td>
</tr>
<tr>
<td></td>
<td>Face Mill Side C (Rough)</td>
<td>M104,M503</td>
</tr>
<tr>
<td></td>
<td>Face Mill Side C (Finish)</td>
<td>M105</td>
</tr>
<tr>
<td></td>
<td>Rough Mill Top Face (D)</td>
<td>M408,M106</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Top Face (D)</td>
<td>M403,M103</td>
</tr>
<tr>
<td></td>
<td>Mill Groove (End Mill)</td>
<td>M415,M407</td>
</tr>
<tr>
<td></td>
<td>Center Holes (4)</td>
<td>D201</td>
</tr>
<tr>
<td></td>
<td>Drill 15 Dia Holes (4)</td>
<td>D115</td>
</tr>
<tr>
<td></td>
<td>Face Mill E (Rough)</td>
<td>M501,M509</td>
</tr>
<tr>
<td></td>
<td>Face Mill E (Finish)</td>
<td>M502</td>
</tr>
<tr>
<td></td>
<td>End Mill Edges (Rough)</td>
<td>M401</td>
</tr>
<tr>
<td></td>
<td>End Mill Edges (Finish)</td>
<td>M402</td>
</tr>
<tr>
<td></td>
<td>Contour Mill (Rough)</td>
<td>M501</td>
</tr>
<tr>
<td></td>
<td>Contour Mill (Finish)</td>
<td>M902</td>
</tr>
<tr>
<td></td>
<td>Face Mill Boss</td>
<td>M701</td>
</tr>
<tr>
<td></td>
<td>Center Hole</td>
<td>D202</td>
</tr>
<tr>
<td></td>
<td>Drill 15 Dia Hole 24 Deep</td>
<td>D115</td>
</tr>
<tr>
<td></td>
<td>Deburr</td>
<td>S101</td>
</tr>
<tr>
<td></td>
<td>Tap 15 Dia Hole 24 Deep</td>
<td>T115</td>
</tr>
</tbody>
</table>
PART #11
GUIDE

Scale 1:8
PROCESS DETAILS

PART NO.: 11
PART NAME: GUIDE

<table>
<thead>
<tr>
<th>OPERATION NO.</th>
<th>DESCRIPTION OF THE OPERATION</th>
<th>TOOL(S) REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Rough Mill Face B</td>
<td>M112, M401</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Face B</td>
<td>M104, M412</td>
</tr>
<tr>
<td></td>
<td>Center Hole</td>
<td>D201</td>
</tr>
<tr>
<td></td>
<td>Drill 30 dia Hole</td>
<td>D130</td>
</tr>
<tr>
<td>(2)</td>
<td>Rough Mill Face A</td>
<td>M405</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Face A</td>
<td>M402, M410</td>
</tr>
<tr>
<td></td>
<td>Rough Mill Face C</td>
<td>M405</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Face C</td>
<td>M402, M410</td>
</tr>
<tr>
<td></td>
<td>Bore Dia Hole Thro</td>
<td>B101</td>
</tr>
<tr>
<td></td>
<td>Finish Bore Dia Hole Thro</td>
<td>B109</td>
</tr>
<tr>
<td></td>
<td>Enlarge Dia Bore Deep</td>
<td>B105</td>
</tr>
<tr>
<td></td>
<td>Center Holes (4)</td>
<td>D202</td>
</tr>
<tr>
<td>(3)</td>
<td>Drill 16 Dia Holes 40 Deep</td>
<td>D116</td>
</tr>
<tr>
<td></td>
<td>Tap 16 Dia Holes 40 Deep</td>
<td>T116</td>
</tr>
<tr>
<td></td>
<td>Enlarge 80 Dia Bore 100 Deep</td>
<td>B109</td>
</tr>
<tr>
<td></td>
<td>Center Hole (4) (Face C)</td>
<td>D202</td>
</tr>
<tr>
<td></td>
<td>Drill 16 Dia Holes 40 Deep</td>
<td>D116</td>
</tr>
<tr>
<td></td>
<td>Tap 16 Dia Holes 40 Deep</td>
<td>T116</td>
</tr>
<tr>
<td></td>
<td>Rough Mill Face D</td>
<td>M112, M401</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Face D</td>
<td>M104, M412</td>
</tr>
<tr>
<td></td>
<td>Enlarge 80 Dia Bore Thro to Centre</td>
<td>B109</td>
</tr>
</tbody>
</table>
PART #12

BRACKET-A

Scale 1:10
PROCESS DETAILS

PART NO.: 12

PART NAME: BRACKET-A

<table>
<thead>
<tr>
<th>OPERATION NO.</th>
<th>DESCRIPTION OF THE OPERATION</th>
<th>TOOL(S) REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Rough Mill Bottom Edges A & B</td>
<td>M112, M401</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Bottom Edges A & B</td>
<td>M104, M105</td>
</tr>
<tr>
<td></td>
<td>Rough Mill Cavity D</td>
<td>M101, M106</td>
</tr>
<tr>
<td></td>
<td>Semi-finish Cavity D</td>
<td>M104</td>
</tr>
<tr>
<td>(2)</td>
<td>Finish Cavity D</td>
<td>M104</td>
</tr>
<tr>
<td></td>
<td>Center Hole</td>
<td>D201</td>
</tr>
<tr>
<td></td>
<td>Drill 30 Dia Hole Thro"</td>
<td>D130</td>
</tr>
<tr>
<td></td>
<td>Ream 30 Dia Hole Thro"</td>
<td>R130</td>
</tr>
<tr>
<td></td>
<td>Mill faces 'E & F (Rough)</td>
<td>M401</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Faces E & F</td>
<td>M402</td>
</tr>
<tr>
<td></td>
<td>Center Holes (2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drill 25 Dia Hole Thro"(2)</td>
<td>D125</td>
</tr>
<tr>
<td>(3)</td>
<td>Deburr</td>
<td>S102</td>
</tr>
<tr>
<td></td>
<td>Bore 30 Dia Holes Thro" (2)</td>
<td>B108</td>
</tr>
<tr>
<td></td>
<td>Finish Bore 30 Dia Holes (2)</td>
<td>B109</td>
</tr>
<tr>
<td></td>
<td>Face Mill Surface H</td>
<td>M505, M710</td>
</tr>
<tr>
<td></td>
<td>Rough Mill Surface (H)</td>
<td>M107, M401</td>
</tr>
<tr>
<td></td>
<td>Rough Mill Surface (G)</td>
<td>M702</td>
</tr>
<tr>
<td></td>
<td>Rough Mill Surface (I)</td>
<td>M702, M704</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M502</td>
</tr>
</tbody>
</table>
PART #13

JUNCTION COVER

Scale 1:8
PROCESS DETAILS

PART NO.: 13

PART NAME: JUNCTION COVER

<table>
<thead>
<tr>
<th>OPERATION NO.</th>
<th>DESCRIPTION OF THE OPERATION</th>
<th>TOOL(S) REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Rough Mill Face A</td>
<td>M701, M101</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Face A</td>
<td>M702, M102</td>
</tr>
<tr>
<td></td>
<td>Rough Mill Around Periphery B</td>
<td>M401, M413</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Around Periphery B</td>
<td>M402, M406</td>
</tr>
<tr>
<td></td>
<td>Step Mill Around Periphery B</td>
<td>M301</td>
</tr>
<tr>
<td></td>
<td>Finish Step</td>
<td>M302</td>
</tr>
<tr>
<td></td>
<td>Rough Mill Surface C</td>
<td>M301, M306</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Surface C</td>
<td>M302, M315</td>
</tr>
<tr>
<td></td>
<td>Rough Mill Round Edges</td>
<td>M801</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Round Edges</td>
<td>M802</td>
</tr>
<tr>
<td></td>
<td>Rough Mill Bosses</td>
<td>M701</td>
</tr>
<tr>
<td></td>
<td>Finish Mill Bosses</td>
<td>M702</td>
</tr>
<tr>
<td></td>
<td>Center Holes (2)</td>
<td>D202</td>
</tr>
<tr>
<td></td>
<td>Drill 40 Dia Holes (2)</td>
<td>D140</td>
</tr>
<tr>
<td></td>
<td>Ream 40 Dia Holes (2)</td>
<td>R140</td>
</tr>
<tr>
<td></td>
<td>Tap 40 Dia Hole</td>
<td>T140</td>
</tr>
<tr>
<td></td>
<td>Center Holes (2)</td>
<td>D201</td>
</tr>
<tr>
<td></td>
<td>Drill 20 Dia Hole</td>
<td>D120</td>
</tr>
<tr>
<td></td>
<td>Ream 20 Dia Hole</td>
<td>R120</td>
</tr>
<tr>
<td></td>
<td>Tap 20 Dia Hole</td>
<td>T120</td>
</tr>
<tr>
<td></td>
<td>Rough Mill Face E</td>
<td>M401</td>
</tr>
<tr>
<td></td>
<td>Face Mill Face E</td>
<td>M402</td>
</tr>
<tr>
<td></td>
<td>Rough Mill Inside Bottom Surface</td>
<td>M405</td>
</tr>
<tr>
<td></td>
<td>Rough Mill Inside Edges</td>
<td>M301</td>
</tr>
<tr>
<td></td>
<td>Face Mill F</td>
<td>M501</td>
</tr>
<tr>
<td></td>
<td>Finish Mill F</td>
<td>M502</td>
</tr>
<tr>
<td></td>
<td>Center Hole (1)</td>
<td>D201</td>
</tr>
<tr>
<td></td>
<td>Drill 30 Dia Hole Thro' Wall</td>
<td>D130</td>
</tr>
<tr>
<td></td>
<td>Deburr</td>
<td>S102</td>
</tr>
<tr>
<td></td>
<td>Bore 56 Dia Hole Thro' Wall</td>
<td>B108</td>
</tr>
<tr>
<td></td>
<td>Face Mill G</td>
<td>M501</td>
</tr>
<tr>
<td></td>
<td>Finish Mill G</td>
<td>M502</td>
</tr>
<tr>
<td></td>
<td>Center Hole (1)</td>
<td>D201</td>
</tr>
<tr>
<td></td>
<td>Drill 30 Dia Hole Thro' Wall</td>
<td>D130</td>
</tr>
<tr>
<td></td>
<td>Deburr</td>
<td>S102</td>
</tr>
<tr>
<td></td>
<td>Bore 56 Dia Hole Thro' Wall</td>
<td>B108</td>
</tr>
<tr>
<td></td>
<td>Rough Mill Face H</td>
<td>M501, M506</td>
</tr>
</tbody>
</table>
| | Finish Mill Face H | M502, M508
<table>
<thead>
<tr>
<th>OPERATIONS</th>
<th>TOOL(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rough Mill Face A</td>
<td>M102, M401</td>
</tr>
<tr>
<td>Finish Mill Face A</td>
<td>M103, M105</td>
</tr>
<tr>
<td>Rough Mill Face B</td>
<td>M401, M508</td>
</tr>
<tr>
<td>Semi Finish Face B</td>
<td>M402, M509</td>
</tr>
<tr>
<td>Finish Face B</td>
<td>M402, M415</td>
</tr>
<tr>
<td>Center Holes (4)</td>
<td>D202</td>
</tr>
<tr>
<td>Drill 25 Dia Holes Thru' (4)</td>
<td>D125</td>
</tr>
<tr>
<td>Ream 25 Dia Holes Thru' (4)</td>
<td>R125</td>
</tr>
<tr>
<td>Bore 35 Dia Holes Thru' (4)</td>
<td>B102</td>
</tr>
<tr>
<td>Center Holes (2)</td>
<td>D201</td>
</tr>
<tr>
<td>Drill 25 Dia Holes Thru' (2)</td>
<td>D125</td>
</tr>
<tr>
<td>Deburr</td>
<td>S102</td>
</tr>
<tr>
<td>Ream 25 Dia Holes Thru' (2)</td>
<td>R125</td>
</tr>
<tr>
<td>Tap 25 Dia Hole</td>
<td>T125</td>
</tr>
<tr>
<td>Face Mill Surface (C)</td>
<td>M401</td>
</tr>
<tr>
<td>Finish Mill Surface (C)</td>
<td>M412</td>
</tr>
<tr>
<td>Face Mill Surface (D)</td>
<td>M101</td>
</tr>
<tr>
<td>Face Mill Surface (D)</td>
<td>M102</td>
</tr>
<tr>
<td>Rough Bore Dia Holes (2)</td>
<td>B102</td>
</tr>
<tr>
<td>Finish Bore Dia Holes (2)</td>
<td>B103</td>
</tr>
<tr>
<td>Rough Mill Face B1</td>
<td>M102, M401</td>
</tr>
<tr>
<td>Finish Mill Face B1</td>
<td>M103, M105</td>
</tr>
<tr>
<td>Face Mill C</td>
<td>M701</td>
</tr>
<tr>
<td>Finish Mill C</td>
<td>M702</td>
</tr>
<tr>
<td>Face Mill D</td>
<td>M701</td>
</tr>
<tr>
<td>Finish Mill D</td>
<td>M702</td>
</tr>
<tr>
<td>Mill Bottom Face of Recess E</td>
<td>M401, M415</td>
</tr>
<tr>
<td>Finish Mill Bottom of Recess E</td>
<td>M403, M705</td>
</tr>
<tr>
<td>Rough Mill Walls of Recess E</td>
<td>M103</td>
</tr>
<tr>
<td>Finish Mill Walls Of Recess E</td>
<td>M102</td>
</tr>
<tr>
<td>Rough Mill Recess Projection H</td>
<td>M405</td>
</tr>
<tr>
<td>Finish Mill Recess Projection H</td>
<td>M406</td>
</tr>
<tr>
<td>Rough Mill Contour F</td>
<td>M601</td>
</tr>
<tr>
<td>Finish Mill Contour F</td>
<td>M602</td>
</tr>
<tr>
<td>Rough Mill Contour G</td>
<td>M603</td>
</tr>
<tr>
<td>Finish Mill Contour G</td>
<td>M604</td>
</tr>
</tbody>
</table>
PART #14 END SUPPORT Scale 1:5
PROCESS DETAILS

PART NO. : 15
PART NAME: CASING

<table>
<thead>
<tr>
<th>OPERATION NO.</th>
<th>DESCRIPTION OF THE OPERATION</th>
<th>TOOL(S) REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Rough Mill Surface A</td>
<td>M105, M708</td>
<td></td>
</tr>
<tr>
<td>(1) Finish Mill Surface A</td>
<td>M102, M702</td>
<td></td>
</tr>
<tr>
<td>(1) Rough Mill Sides of Box</td>
<td>M108, M302</td>
<td></td>
</tr>
<tr>
<td>(1) End Mill Edges B</td>
<td>M401, M412</td>
<td></td>
</tr>
<tr>
<td>(1) Finish Mill Edges B</td>
<td>M402</td>
<td></td>
</tr>
<tr>
<td>(1) Rough Mill Boss C</td>
<td>M401</td>
<td></td>
</tr>
<tr>
<td>(1) Finish Mill Boss C</td>
<td>M408</td>
<td></td>
</tr>
<tr>
<td>(1) Center Hole</td>
<td>D201</td>
<td></td>
</tr>
<tr>
<td>(2) Drill 50 Dia Hole Thru</td>
<td>D150</td>
<td></td>
</tr>
<tr>
<td>(2) Bore 60 Dia Hole Thru</td>
<td>B108</td>
<td></td>
</tr>
<tr>
<td>(2) Finish Bore 60 Dia Hole Thru</td>
<td>B109</td>
<td></td>
</tr>
<tr>
<td>(2) Rough Mill Bottom D</td>
<td>M412</td>
<td></td>
</tr>
<tr>
<td>(2) End Mill Oblong Hole (Rough)</td>
<td>M416, M508</td>
<td></td>
</tr>
<tr>
<td>(2) Finish Mill Oblong Hole</td>
<td>M417</td>
<td></td>
</tr>
<tr>
<td>(3) Finish Face (E)</td>
<td>M402</td>
<td></td>
</tr>
<tr>
<td>(3) Center Hole (1)</td>
<td>D202</td>
<td></td>
</tr>
<tr>
<td>(3) Drill 45 Dia Hole Thru to Centre</td>
<td>D145</td>
<td></td>
</tr>
<tr>
<td>(3) Bore 50 Dia Hole Thru to Centre</td>
<td>B112</td>
<td></td>
</tr>
<tr>
<td>(3) Finish Bore Hole Thru to Centre</td>
<td>B118</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX C

COMPUTER PROGRAM LISTINGS
CELL FORMATION IN FMS - PART FAMILY FORMATION PROBLEM

AUTHOR - GAJANANA NADOLI

GRADUATE STUDENT, DEPT. OF INDUSTRIAL ENGINEERING
UNIVERSITY OF WINDSOR, WINDSOR, ONTARIO N9B 2Z2

THIS PROGRAM GENERATES THE INPUT FILE OF THE PROBLEM P(R)
FOR THE SAS/OR (VERSION 5) INTEGER PROGRAMMING ROUTINE

THE VARIABLE DECLARATION SECTION

INTEGER NUMHOP(40),SIM(40,40),DISIM(40,40)
INTEGER OP1,OPJ,a
INTEGER X(2500),XIND,XVARS,MVARS,XINDJ,XINDJ
INTEGER RHS,XX(2500),KM(2500)
INTEGER NK(40,3),NEM(40,3),NNN(3)
REAL LANDA,M(2500),COEFF(40,40)
CHARACTER CTPE*8,FLAG*8,OP*4(40,50)
COMMON OP,NUMOP,SIM,DISIM,OP1,OPJ,COEFF,I,J,IFAM,K,
L,NM,MP,NN,N,N1

THE DATA INPUT AND CALCULATION OF SIMILAR AND DISSIMILAR PROCESSES
BETWEEN THE PARTS

READ(5,10) N,K
READ,LANDA
FORMAT(I2,1X,I2)
DO 100 I=1,N
READ(5,20) NUM,(OP(I,J),J=1,NUM)
NUMOP(I)=NUM
FORMAT(I2,10(1X,A4),/,(3X,10(A4,1X))
100 CONTINUE
NM1=N-1
DO 200 I=1,NN1
D1=1+1
DO 300 J=1,F,N
SIM(I,J)=0
NTERM=NUMOP(I)
NTERMJ=NUMOP(J)
DO 400 OPJ=1,NTERM
DO 500 OPJ=1,NTERMJ
IF (OP(I,OPJ).EQ.OP(J,OPJ)) SIM(I,J)=SIM(I,J)+1
500 CONTINUE
400 CONTINUE
CONTINUE
DISIM(I,J)=NUMOP(I)+NUMOP(J)-2*SIM(I,J)
COEFF(I,J)=DISIM(I,J)-LANDA*SIN(I,J)
300 CONTINUE
200 CONTINUE

CREATING THE SAS FORMAT INPUT DATA FOR PART FAMILY FORMATION PROBLEM

METH=3
CALL TINIT
NBLCK=0
EXECUTE ALLCLR
EXECUTE TIMDEL
EXECUTE OBJROW
EXECUTE TIMEL
EXECUTE ALLOC
EXECUTE TIMEL
IF (METH.EQ.1) THEN
 EXECUTE CNSTR
 EXECUTE MLIN
 EXECUTE INTGER
 EXECUTE UPPER
ENDIF
IF (METH.EQ.2) THEN
 EXECUTE CNSTR2
 EXECUTE MLIN2
 EXECUTE INTGER
 EXECUTE UPPER
ENDIF
IF (METH.EQ.3) THEN
 EXECUTE CNSTR2
 EXECUTE TIMEL
 EXECUTE MLIN
 EXECUTE TIMEL
 EXECUTE INTGER
 EXECUTE TIMEL
 EXECUTE UPPER
 EXECUTE TIMEL
ENDIF
IF (METH.EQ.4) THEN
 EXECUTE CNSTR
 EXECUTE MLIN2
 EXECUTE INTGER
 EXECUTE UPPER
ENDIF
IF (INSOL.EQ.1) EXECUTE BASICS
GO TO 9999
REMOTE BLOCK TIMEL
CALL TUSED(MSEC).
NBLOCK=NBLOCK+1
PRINT, 'TIME USED FOR BLOCK',NBLOCK,' IS ',MSEC
CALL TINIT
ENDBLOCK
C REMOTE BLOCK ALLCLR
REMOTE BLOCK ALLCLR
 DU 3030 II=1,N
 DO 3030 IIFAM=1,K
 XIND= (II-1)*K + IIFAM
 X(XIND)=0
 3030 CONTINUE
 NMI=N-1
 DO 3040 II=1,NMI
 III=II+1
 DO 3050 JJ=III,N
 DO 3060 IIFAM=1,K
 LI=II
 LJ=JJ
 LIFAM=IIFAM
 EXECUTE MIJKA
 X(MIINDEX)=0
 3060 CONTINUE
 3050 CONTINUE
 3040 CONTINUE

ENDBLOCK

C REMOTE BLOCK MIJKA

REMOTE BLOCK MIJKA

MINDA=0
L11=L1+1
ISIGN =LI-1
IF (ISIGN.EQ.0) GO TO 3064
DO 3065 IX = 1, ISIGN
 MINDA=MINDA + (N-IX) * K
3065 CONTINUE
3064 MINDEX=MINDA+ (LJ-L11)*K +LIFAM
ENDBLOCK

C REMOTE BLOCK OBJROW

REMOTE BLOCK OBJROW

NMI=N-1
DO 3100 I=1, NMI
 IL=I+1
 DO 3110 J=IL, N
 DO 3120 IFAM=1, K
 LI=I
 LJ=J
 LIFAM=IFAM
 EXECUTE MIJKA
 M(MINDEX) = COEFF(I,J)
3120 CONTINUE
3110 CONTINUE
3100 CONTINUE
CTYPE= "MIN"
FLAG= "OBJROW"
EXECUTE PUTROW
ENDBLOCK

C REMOTE BLOCK PUTROW

REMOTE BLOCK PUTROW

XVARS=N*K
NVARS=N*(N-1)/2*K
IF (FLAG.EQ."OBJROW") THEN
 WRITE(8,4000) (X(II), II=1, XVARS)
4000 FORMAT(15("",I4))
 WRITE(8,4002) (M(JJ), JJ=1, NVARS)
4002 FORMAT(8("",F9.2))
ELSE
 DO 7856 II=1, XVARS
 KK(II) = X(II)
7856 CONTINUE
 DO 7857 JJ=1, NVARS
 KM(JJ)=M(JJ)
7857 CONTINUE
 WRITE(8,4112) (KK(II), II=1, XVARS)
4112 FORMAT(15("",I4))
 WRITE(8,4113) (KM(JJ), JJ=1, NVARS)
4113 FORMAT(15("",I4))
ENDIF
IF (FLAG.EQ."OBJROW") THEN
 WRITE(8,4010) CTYPE
4010 FORMAT("",A8,"","")
ELSEIF (FLAG.EQ."ALLOC") THEN
 WRITE(8,4020) CTYPE, RHS
4020 FORMAT("",A8,IX,IS)
ELSEIF (FLAG.EQ."CNSTK") THEN
 WRITE(8,4020) CTYPE, RHS
ELSEIF (FLAG.EQ."MLIM") THEN
WRITE(8,4020) CTYP,RHS
ELSEIF (FLAG.EQ."INTGER") THEN
WRITE(8,4010) CTYPE
ELSEIF (FLAG.EQ."UPPER") THEN
WRITE(8,4010) CTYPE
ENDIF
EXECUTE ALLCLR
ENDBLOCK

C REMOTE BLOCK ALLOC
REMOTE BLOCK ALLOC
FLAG="ALLOC"
CTYPE="EQ"
RHS=1
DO 3200 I=1,N
 DO 3210 IFAM=1,K
 XIND= (I-1)*K+ IFAM
 X(XIND)=1
 END
3210 CONTINUE
EXECUTE PUTROW
3200 CONTINUE
ENDBLOCK

C REMOTE BLOCK CNSTR
REMOTE BLOCK CNSTR
FLAG="CNSTR"
CTYPE="LE"
RHS=1
NH1=N-1
DO 3230 I=1,NH1
 II=I+1
 DO 3240 J=II,N
 DO 3250 IFAM=1,K
 LJ=J
 LIFAM=IFAM
 EXECUTE HIJKA
 N(HINDEX) = -1
 XINDI= (I-1) * K + IFAM
 XINDJ=(J-1) * K + IFAM
 X(XINDI)=1
 X(XINDJ)=1
 EXECUTE PUTROW
3250 CONTINUE
3240 CONTINUE
3230 CONTINUE
ENDBLOCK

C REMOTE BLOCK CNSTR2
REMOTE BLOCK CNSTR2
FLAG="CNSTR"
CTYPE="LE"
NH1=N-1
DO 3400 I=1,NH1
 DO 3410 IFAM=1,K
 XIND=(I-1)*K+ IFAM
 RHS=N-1
 X(XIND) = N-1
 II=I+1
 END
3420 CONTINUE
3410 CONTINUE
3400 CONTINUE
ENDBLOCK

LI=I
LJ=J
LIFAM=IFAM
EXECUTE MIJKA
M(MINDEX)=1
XINDJ=(J-1)*K+IFAM
X(XINDJ)=1
3420 CONTINUE
EXECUTE PUTROW
3410 CONTINUE
3400 CONTINUE
ENDBLOCK
C REMOTE BLOCK MLIM
REMOTE BLOCK MLIM
FLAG="MLIM"
CTYPE="LE"
RHS=0
NMJ=N-1
DO 3260 I=1,NM1
 I=I+1
 DO 3270 J=I,NM1
 DO 3280 IFAM=1,K
 LI=I
 LJ=J
 LIFAM=IFAM
 EXECUTE MIJKA
 M(MINDEX)=1
 XINDI=(I-1)*K+IFAM
 X(XINDI)=1
 EXECUTE PUTROW
 LI=I
 LJ=J
 LIFAM=IFAM
 EXECUTE MIJKA
 XINDJ=(J-1)*K+IFAM
 M(MINDEX)=1
 X(XINDJ)=1
 EXECUTE PUTROW
3280 CONTINUE
3270 CONTINUE
3260 CONTINUE
ENDBLOCK
C REMOTE BLOCK MLIM2
REMOTE BLOCK MLIM2
FLAG="MLIM"
CTYPE="LE"
RHS=0
DO 3500 I=1,N
 DO 3510 IFAM=1,K
 XIND=(I-1)*K+IFAM
 X(XIND)=1-N
 DO 3520 J=1,N
 IF (J.EQ.1) GO TO 3520
 LI=I
 LJ=J
 LIFAM=IFAM
 EXECUTE MIJKA
 M(MINDEX)=1
3520 CONTINUE
EXECUTE PUTROW
3510 CONTINUE
3500 CONTINUE
ENDBLOCK
C REMOTE BLOCK INTEGER
REMOTE BLOCK INTEGER
FLAG="INTEGER"
CTYPE="INTEGER"
DO 3300 I=1,N
 K11=K-1
DO 3310 IFAM=1,K11
 XIND=(I-1)*K+IFAM
 X(XIND)=1
3310 CONTINUE
3300 CONTINUE
EXECUTE PUTROW
ENDBLOCK
C REMOTE BLOCK UPPER
REMOTE BLOCK UPPER
FLAG="UPPER"
CTYPE="UPPERBD"
DO 3700 I=1,N
 DO 3710 IFAM=1,K
 XIND=(I-1)*K+IFAM
 X(XIND)=1
3710 CONTINUE
3700 CONTINUE
NM1=N-1
DO 3730 I=1,NM1
 II=I+1
 DO 3740 J=II,N
 DO 3750 IFAM=1,K
 LI=I
 LJ=J
 IFAM=IFAM
 EXECUTE MIJKA
 M(MINDEX)=1
3750 CONTINUE
3740 CONTINUE
3730 CONTINUE
EXECUTE PUTROW
ENDBLOCK
9999 STOP
END

SENTRY
I5 03
1,45e24
26 M501 M502 H701 M602 N101 H401 M102 N103 M301 H702
 M603 M108 M503 M504 D201 D142 D109 D202 D130 R142
 R130 R148 B108 B109 B101 B115
18 M101 M103 M104 M105 N901 MA01 MA02 M501 M506 H508 H402
 D201 D125 R128 S104 B101 B109 B105 B104
23 H403 H404 M701 H401 H412 M405 M406 M702 M712 N101
 N102 D202 D128 D203 R130 T130 B108 B109 B101 B102
 B115 B106 B112
23 M501 M514 H502 H701 H712 N211 M101 M102 M212 H503
 M301 H302 H401 H405 D202 D130 D201 D120 D202 B108
 B112 S109 T120
29 N102 H401 N103 N105 N602 M603 M501 M513 M502 M503
 M101 H701 M702 M702 M508 M406 M610 M301 M305 D201
18 M501 M504 H415 H412 M416 M901 H902 H401 H507
 M509 D201 D118 D130 B108 B112 B109 S102
//PB JOB (R240,NU7,10,5),"GAJ",CLASS=A,REGION=2048K
// EXEC WATFIV,
//F08F001 DD DSN=WYL.R240NU7.FAMOUT,UNIT=DASD,VOL=SER=WORKPK,
// DISP=(NEW,KEEP),SPACE=(TRK,(40,10)),
// DCB=(LRECL=80,BLKSIZE=15440,RECFM=FB)
//GO.SYSIN DD *
$JOB WATFIV REF. SECTION 4.2.2
C --
C CELL FORMATION IN FMS - PART FAMILY FORMATION PROBLEM
C --
C AUTHOR - GAJANANA NADOLI
C GRADUATE STUDENT, DEPT. OF INDUSTRIAL ENGINEERING
C UNIVERSITY OF WINDSOR, WINDSOR, ONTARIO N9B 2ZZ
C --
C THIS PROGRAM IMPLEMENTS THE ALGORITHM FOR FINDING THE
C LOWER BOUND AND UPPERBOUND FOR FUNCTION P(R) WITH
C DIFFERENT VALUES OF R TO ESTABLISH THE REGION (L,U).
C --
C THE VARIABLE DECLARATION SECTION **********************
INTEGER NUMOP(40),SIM(40,40),DISIM(40,40)
INTEGER OPI,OPJ,A
INTEGER X(500),XIND,XVARS,NVARS,XINDI,XINDJ
INTEGER RHS
REAL LANDA,M(2500),COEFF(40,40),S(435),LBOUND
CHARACTER CTYPE*8,FLAG*8,OP*4(40,80)
COMMON OP,NUMOP,SIM,DISIM,OPI,OPJ,COEFF,OPA,K,LP,NP,MP,NN,NI,K1
C THE DATA INPUT AND CALCULATION OF SIMILAR AND DISSIMILAR PROCESSES
C BETWEEN THE PARTS ************************************
READ(5,10) N,K
10 FORMAT(I2,I6,I2)
DO 100 I=1,N
PRINT, 'PART NUMBER = ',I
READ(5,20) NUM,(OP(I,J),J=1,NUM)
NUMOP(I)=NUM
20 FORMAT(I2,10(I4,A4)/(3X,10(A4,1X)))
WRITE(9,20) NUMOP(I),(OP(I,J),J=1,NUM)
100 CONTINUE
NM1=N-1
DO 200 I=1,NM1,II=I+1
DO 300 J=II,N
SIM(I,J)=0
NTERM=NUNOP(I)
NTERMJ=NUNOP(J)
DO 400 OPI=1,NTERM
DO 500 OPJ=1,NTERMJ
IF (OP(I,OPI).EQ.OP(J,OPJ)) SIM(I,J)=SIM(I,J)+1
500 CONTINUE
400 CONTINUE
DISIM(I,J)=NUNOP(I)+NUNOP(J)-2*SIM(I,J)
300 CONTINUE
200 CONTINUE
WRITE(8,4018)
4018 FORMAT(' BOUNDS ON THE OBJECTIVE FUNCTION FOR DIFFERENT VALUES
OF R ')
WRITE(4,5053)
WRITE(4,4024)
4024 FORMAT("
")
WRITE(4,5024)
```fortran
WRITE(8,4026) N
FORMAT(" # OF PARTS=",I2)
WRITE(8,4027) K
FORMAT(" # OF FAMILIES=",I2)
WRITE(8,4024)
WRITE(8,4029) N*(N-1)/2*K
WRITE(8,4053)
WRITE(8,4024)
WRITE(8,4024)
WRITE(8,9000)
FORMAT(" # OF NEGATIVE OBJECTIVE FUNCTION ")
WRITE(8,9001)
FORMAT(" COEFFICIENTS LOWERBOUND UPPERBOUND")
WRITE(8,9002)
FORMAT(" ------ ------------ ------------ ------------")
EXECUTE ALLCLR
DO 18 LLANDA=5,1000,5
LANDA=LLANDA/100.00
NMI=N-1
DO 21 I=1,NMI
   I1=I+1
   DO 22 J=I1,N
      COEFF(I,J)=DISIM(I,J)-LANDA*SIM(I,J)
22 CONTINUE
21 CONTINUE
DO 89 JMJ=1,435
   SJM=0.0
89 CONTINUE
EXECUTE 0BJROW
CONTINUE
GO TO 9999
C REMOTE BLOCK ALLCLR
  REMOTE BLOCK ALLCLR
  REMOTE BLOCK ALLCLR
  DO 3030 II=1,N
  DO 3030 II1=1,N
     X(I1)=X(I1)+X(II1)
3030 CONTINUE
  DO 3050 JJ=I1,N
     DO 3050 JJ1=I1,N
        LI=II
        LJ=JJ
        LIFAM=II1
        EXECUTE MIJKA
        X(NINDEX)=2
3050 CONTINUE
3050 CONTINUE
END BLOCK
C REMOTE BLOCK MIJKA
  REMOTE BLOCK MIJKA
  MDNDA=0
  LI1=LI+1
  ISIGN=-LI-1
  IF (ISIGN.EQ.0) GO TO 3064
  DO 3063 IX = 1,ISIGN
```
HINDA = HINDA + (N-IX) * K
CONTINUE
HINDEX = HINDA + (LJ-LII)*K + LIFAM
END BLOCK.
C REMOTE BLOCK OBJROW
REMOTE BLOCK OBJROW
NM1 = N-1
NEG = 0
MS = 1
DO 3100 I = 1, NM1
 LI = I + 1
 DO 3110 J = I, N
 DO 3120 IFAM = 1, K
 LI = I
 LJ = J
 LIFAM = LIFAM
 EXECUTE MIJKA
 M(HINDEX) = COEFF(I, J)
 IF (COEFF(I, J) .LT. 0) NEG = NEG + 1
 IF (IFAM.EQ.1) THEN
 S(MS) = COEFF(I, J)
 MS = MS + 1
 ENDIF
 3120 CONTINUE
 3110 CONTINUE
 3100 CONTINUE
CTYPE = "MIN"
FLAG = "OBJROW"
IES = N/K
IPAIRS = IES*(IES-1)/2*K + (N-IES*K)*IES
MPAIRS = N*(N-1)/2
LB = 0.000
UB = 0.000
ICOUNT = 0
DO 889 KI = 1, 435
 INTS = S(KI)*10000.000
 IF (INTS .NE. 0) THEN
 I = I + 1
 ELSE
 GO TO 889
 ENDIF
 IF (S(KI) .LT. 0.00) THEN
 LB = LB + S(KI)
 ENDIF
 IF (S(KI) .GT. 0.00) THEN
 IF (ICOUNT .LE. IPAIRS) LB = LB + S(KI)
 ENDIF
889 CONTINUE
ICOUNT = 0
DO 899 KI = 1, 435
 INTS = S(435-KI+1)*10000.000
 IF (INTS .NE. 0) THEN
 I = I + 1
 ELSE
 GO TO 899
 ENDIF
 IF (S(435-KI+1) .GT. 0.00) THEN
 UB = UB + S(435-KI+1)
 ENDIF
 IF (S(435-KI+1) .LT. 0.00) THEN

IF (ICOUNT.LE.IPAIRS) UBOUND = UBOUND + S(435-KI+1)
ENDIF
899 CONTINUE
EXECUTE PUTROW
ENDBLOCK
C REMOTE BLOCK PUTROW
REMOTE BLOCK PUTROW
XVARS = N*K
HVAR = N*(N-1)/2*K
EXECUTE ALLCLR
ENDBLOCK
9999 STOP
END
$ENTRY
THE INPUT DATA IS THE SAME AS THE ONE LISTED FOR
THE PROGRAM 1.
$IBSYS
$STOP
//
//PC JOB (R240,NU7,1,5),"RAO",CLASS=Z,REGION=2048K
// EXEC WATIV
//FT080001 DD DSN=WLY.R240NU7.FAMOUT,UNIT=DASD,Vol=SER=WORKPK,
// DISP=(NEW,KEEP),SPACE=(TRK,(40,10)),
// DCS=(LRECL=80,BLKSIZE=15440,RECFM=FB)
//GO.SYSIN DD *
$JOB WATIV

REF. SECTION 4.3.2

C CELL FORMATION IN FMS - PART FAMILY FORMATION PROBLEM

C AUTHOR - GAJANANA NADOLI

C GRADUATE STUDENT, DEPT. OF INDUSTRIAL ENGINEERING
C UNIVERSITY OF WINDSOR, WINDSOR, ONTARIO N9B 222

C THIS PROGRAM GENERATES THE INPUT FILE OF THE SUBPROBLEMS
C OF THE TYPE PR TO BE SOLVED IN THE ITERATIONS OF THE
C APPROXIMATION PROCEDURE, FOR INPUT TO THE SAS/OCR(VERSION 5)
C INTEGER PROGRAMMING ROUTINE.

C THE VARIABLE DECLARATION SECTION *********************
INTEGER NUMOP(30),SIN(30,30),DISIM(30,30)
INTEGER OPI,OPJ,A
INTEGER XIND,XVARS,MVARS,XINDI,XINDJ
INTEGER RHS
INTEGER N(30,3),NEN(30,3),NNN(3),FAMN(3),FAMD(3)
INTEGER FSIM(30,3),DISIM(30,3),NSIM(30,3)
INTEGER NDISIM(30,30)
REAL LAMDA,OP*4(30,50),COEFF(30,30),FOEFF(30,3),M(500),X(500)
REAL FANC(3),HINC
CHARACTER CTYPE*8,FLAG*8
COMMON OP,NUMOP,SIM,DISIM,OPI,OPJ,COEFF,I,J,IFAN,P,K,
L,NP,NN,N,K

C THE DATA INPUT AND CALCULATION OF SIMILAR AND DISSIMILAR PROCESSES

C BETWEEN THE PARTS *********************
READ(5,10) N,K
10 FORMAT(I2,1X,I2)
DO 100 I=1,N
 READ(5,20) NUM,(OP(I,J),J=1,NUM)
 NUMOP(I)=NUM
20 FORMAT(I2,10(I1,A4),/,(3X,10(A4,1X)))
 WRITE(6,20) NUMOP(I),(OP(I,J),J=1,NUM)
100 CONTINUE
 NML=N-1
 DO 200 I=1,NML
 I=I+1
 DO 300 J=I,N
 SIM(I,J)=0
 NTERM=NUMOP(I)
 NTERMJ=NUMOP(J)
 DO 400 OPJ=1,NTERM
 DO 500 OPJ=1,NTERMJ
 IF (OPJ,OPJ).EQ.OP(J,OPJ)) SIM(I,J)=SIM(I,J)+1
 500 CONTINUE
 CONTINUE
 DISIM(I,J)=NUMOP(I)+NUMOP(J)-2*SIM(I,J)
300 CONTINUE
200 CONTINUE
C READING THE INITIAL CONFIGURATION
LAMDA=2.4562420
DO 2010 IFAM=1,K
 DO 2010 I=1,N
 MK(I,IFAM)=0
 MEM(I,IFAM)=0
 2010 CONTINUE
 DO 2020 IFAM=1,K
 READ(5,2030) NUMF,(MK(I,IFAM),I=1,NUMF)
 WRITE(6,2036) NUMF,(MK(I,IFAM),I=1,NUMF)
 2036 FORMAT("INITIAL CONFIGURATION",I2,10(1X,I2))
 NNN(IFAM)=NUMF
 2030 FORMAT(I2,20(1X,I2))
 2020 CONTINUE
 DO 2050 IFAM=1,K
 DO 2060 I=1,N
 LU=NNN(IFAM)
 2060 DO 2070 LL=1,LU
 IF (MK(LL,IFAM).EQ.1) MEM(I,IFAM)=1
 2070 CONTINUE
 2060 CONTINUE
 CONTINUE
 2050 CONTINUE
 TFAMD=0.0
 DO 2200 IFAM=1,K
 N1=N-1
 FANN(IFAM)=0
 FAMD(IFAM)=0
 DO 2240 I=1,N1
 IL=I+1
 2240 DO 2260 J=1,N
 FANN(IFAM)=FANN(IFAM) + MEM(I,IFAM)*MEM(J,IFAM)*DISIM(I,J)
 FAMD(IFAM)=FAMD(IFAM) + MEM(I,IFAM)*MEM(J,IFAM)*SIM(I,J)
 2260 CONTINUE
 TFAMD=TFAMD+FAMD(IFAM)
 2200 CONTINUE
 DO 188 IFAM=1,K
 FANC(IFAM)=FANN(IFAM)/TFAMD
 188 CONTINUE
 MNC=0
 DO 2260 IFAM=1,K
 IF (FANC(IFAM).LT.MNC) THEN
 NF=IFAM
 NINC=FANC(IFAM)
 ENDIF
 2260 CONTINUE
C IMPOSING THE NF ************
 NF=2
 NEWN=NNN(NF)
 NEWN1=NEWN-1
 DO 2300 NI=1,NEWN1
 NI1=NI+1
 2300 DO 2400 NJ=NI1,NEWN
 I=MK(NI,NF)
 J=MK(NJ,NF)
 IF (I.LT.J) THEN
 NSIM(NI,NJ)=SIM(I,J)
 NDISIM(NI,NJ)=DISIM(I,J)
 ENDIF
 IF (I.GT.J) THEN
 NSIM(NI,NJ)=SIM(J,I)
 NDISIM(NI,NJ)=DISIM(J,I)
 ENDIF
ENDIF
CONTINUE
2300
CONTINUE
DO 2401 I=1,N
 DO 2410 IFAM=1,K
 FSIM(I,IFAM)=0
 FDISIM(I,IFAM)=0
 CONTINUE
2401
CONTINUE
DO 2430 NI=1,NEWN
 NPART=MK(NI,MF)
 DO 2440 IFAM=1,K
 IF (IFAM.EQ.MF) GO TO 2440
 DO 2460 J=1,N
 IF (J.EQ.NPART) GO TO 2460
 IF (J.GT.NPART) THEN
 FSIM(NI,IFAM)=FSIM(NI,IFAM)+SIM(NPART,J)*MEM(J,IFAM)
 FDISIM(NI,IFAM)=FDISIM(NI,IFAM)+DISIM(NPART,J)*MEM(J,IFAM)
 ELSE
 FSIM(NI,IFAM)=FSIM(NI,IFAM)+SIM(J,NPART)*MEM(J,IFAM)
 FDISIM(NI,IFAM)=FDISIM(NI,IFAM)+DISIM(J,NPART)*MEM(J,IFAM)
 ENDIF
 CONTINUE
2440
CONTINUE
NI=NI-1
DO 2462 I=1,N
 I1=I+1
 DO 2470 J=I1,N
 SIM(I,J)=0
 DISIM(I,J)=0
 CONTINUE
2470
CONTINUE
NEWNL=NEWN-1
DO 2480 NI=1,NEWNL
 NI=NI+1
 DO 2490 NJ=NI,NEWN
 SIM(NI,NJ)=NSIM(NI,NJ)
 DISIM(NI,NJ)=NDISIM(NI,NJ)
 COEFF(NI,NJ)=DISIM(NI,NJ)-LAMDA*SIM(NI,NJ)
 CONTINUE
2490
CONTINUE
DO 2550 I=1,NEWN
 DO 2560 IFAM=1,K
 FCOEFF(I,IFAM)=FDISIM(I,IFAM)-LAMDA*FSIM(I,IFAM)
 CONTINUE
2550
CONTINUE
N=NEWN
C=0.0
DO 58 IFAM=1,K
 IF (IFAM.EQ.MF) GO TO 58
 C=C+FAHN(IFAM)-LAMDA*FAND(IFAM)
PRINT *,"CONSTANT",IFAM," IS ",FAHN(IFAM)-LAMDA*FAND(IFAM)
58
CONTINUE
PRINT *,"THE CONSTANT FACTOR = ",C
DO 45 I=1,N
 DO 46 IFAM=1,K
 IF (IFAM.EQ.MF) GO TO 46
 PRINT *,"FSIM(",I,",IFAM,") = ",FSIM(I,IFAM)
 PRINT *,"FDISIM(",I,",IFAM,") = ",FDISIM(I,IFAM)
CONTINUE
EXECUTE ALLCLR
EXECUTE OBJROW
EXECUTE ALLOC
IF (METH.EQ.1) THEN
 EXECUTE CNSTR
 EXECUTE MLIM
 EXECUTE INTEGER
 EXECUTE UPPER
ENDIF
IF (METH.EQ.2) THEN
 EXECUTE CNSTR2
 EXECUTE MLIM2
 EXECUTE INTEGER
 EXECUTE UPPER
ENDIF
IF (METH.EQ.3) THEN
 EXECUTE CNSTR2
 EXECUTE MLIM
 EXECUTE INTEGER
 EXECUTE UPPER
ENDIF
IF (METH.EQ.4) THEN
 EXECUTE CNSTR
 EXECUTE MLIM2
 EXECUTE INTEGER
 EXECUTE UPPER
ENDIF
GO TO 9999

C REMOTE BLOCK ALLCLR
REMOTE BLOCK ALLCLR
DO 3030 II=1,N
DO 3030 IIIFAM=1,K
 XIND = (II-1)*K + IIIFAM
 X(XIND) = 0
3030 CONTINUE
NM1 = N-1
DO 3040 II=1,NM1
III = II+1
DO 3050 JJ=III,N
 DO 3060 IIIFAM=1,K
 LI = II
 LJ = JJ
 LIIFAM = IIIFAM
 EXECUTE MIJKA
 H(MINDEX) = 0
3060 CONTINUE
3050 CONTINUE
3040 CONTINUE
END BLOCK

C REMOTE BLOCK MIJKA
REMOTE BLOCK MIJKA
MINDA = 0
LII = LI+1
ISIGN = LI-1
IF (ISIGN.EQ.0) GO TO 3064
DO 3065 IX = 1, ISIGM
 MINDA = MINDA + (N-IX) * K
3065 CONTINUE
3064 MINDEX = MINDA + (LJ-LI1)*K + LIFAM
END BLOCK
C REMOTE BLOCK OBJROW
REMOTE BLOCK OBJROW
NM1 = N-1
DO 3100 I=1,NM1
 II = I + 1
DO 3110 J=I1,N
 DO 3120 IFAM=1,K
 LI = I
 LJ = J
 LIFAM = IFAM
 EXECUTE MIKA
 M(MINDEX) = COEFF(I,J)
3120 CONTINUE
3110 CONTINUE
3100 CONTINUE
 DO 3121 I=1,N
 DO 3121 IFAM=1,K
 XIND = (I-1)*K + IFAM
 X(XIND) = FCoeff(I,IFAM)
 IF (I.EQ.1) X(XIND) = X(XIND) + C
3121 CONTINUE
C TYPE = "MIN"
C FLAG = "OBJROW"
EXECUTE PUTROW
END BLOCK
C REMOTE BLOCK PUTROW
REMOTE BLOCK PUTROW
XVARS = N*K
NVAR5 = N*(N-1)/2*K
WRITE(8,4000) (X(II),II=1,XVARS)
WRITE(8,4002) (M(JJ),JJ=1,NVAR5)
4002 FORMAT(9(\' ',F7.2))
4000 FORMAT(9(\' ',F7.2))
IF (FLAG.EQ."OBJROW") THEN
 WRITE(8,4010) CTYPE
 ENDIF
4010 FORMAT(\' ',A8,\'\')
ELSEIF (FLAG.EQ."ALLOC") THEN
 WRITE(8,4020) CTYPE,RHS
4020 FORMAT(\' ',A8,I2)
ELSEIF (FLAG.EQ."CNSTR") THEN
 WRITE(8,4020) CTYPE,RHS
ELSEIF (FLAG.EQ."NLIM") THEN
 WRITE(8,4020) CTYPE,RHS
ELSEIF (FLAG.EQ."INTGER") THEN
 WRITE(8,4010) CTYPE
ELSEIF (FLAG.EQ."UPPER") THEN
 WRITE(8,4010) CTYPE
ENDIF
EXECUTE ALLCLR
END BLOCK
C REMOTE BLOCK ALLOC
REMOTE BLOCK ALLOC
FLAG = "ALLOC"
CTYPE = "EQ"
RHS = 1
DO 3200 I=1,N
DO 3210 IFAM=1,K
XIND= (I-1)*K + IFAM
X(XIND)=1
3210 CONTINUE
EXECUTE PUTFROW
3200 CONTINUE
ENDBLOCK
C REMOTE BLOCK CNSTR
REMOTE BLOCK CNSTR
FLAG="CNSTR"
CTYPE="LE"
RHS=1
NM1=N-1
DO 3230 I=1,NM1
II=I+1
DO 3240 J=II,N
DO 3250 IFAM=1,K
LI=I
LJ=J
LIFAM=IFAM
EXECUTE MIJKA
M(MINDEX) = -1
XINDI= (I-1) * K + IFAM
XINDJ= (J-1) * K + IFAM
X(XINDI)=1
X(XINDJ)=1
EXECUTE PUTFROW
3250 CONTINUE
3240 CONTINUE
3230 CONTINUE
ENDBLOCK
C REMOTE BLOCK CNSTR2
REMOTE BLOCK CNSTR2
FLAG="CNSTR"
CTYPE="LE"
NM1=N-1
DO 3300 I=1,NM1
DO 3410, IFAM=1,K
XIND=(I-1)*K + IFAM
RHS=N-I
X(XIND)=N-I
II=I+1
DO 3420 J=II,N
LI=I
LJ=J
LIFAM=IFAM
EXECUTE MIJKA
M(MINDEX) = -1
XINDJ=(J-1)*K+IFAM
X(XINDJ)=1
3420 CONTINUE
EXECUTE PUTFROW
3410 CONTINUE
3300 CONTINUE
ENDBLOCK
C REMOTE BLOCK MLIM
REMOTE BLOCK MLIM
FLAG="MLIM"
CTYPE="LE"
RHS=0
NH1=N-1
DO 3260 I=1,NH1
 II=I+1
 DO 3270 J=II,N
 DO 3280 IFAM=1,K
 LI=I
 LJ=J
 LIFAM=IFAM
 EXECUTE MIJKA
 M(MINDEX)=1
 X(INDI)=(I-1)*K+IFAM
 X(XINDI)=1
 EXECUTE PUTROW
 LI=I
 LJ=J
 LIFAM=IFAM
 EXECUTE MIJKA
 XINDJ=(J-1)*K+IFAM
 M(MINDEX)=1
 X(XINDJ)=1
 EXECUTE PUTROW
 3280 CONTINUE
 3270 CONTINUE
 3260 CONTINUE
ENDBLOCK
C REMOTE BLOCK MLIM2
REMOTE BLOCK MLIM2
FLAG="MLIM"
CTYPE="LE"
RHS=0
DO 3500 I=1,N
 DO 3510 IFAM=1,K
 XIND=(I-1)*K+IFAM
 X(XIND)=1-N
 3520 CONTINUE
 EXECUTE PUTROW
 3510 CONTINUE
 3500 CONTINUE
ENDBLOCK
C REMOTE BLOCK INTEGER
REMOTE BLOCK INTEGER
FLAG="INTEGER"
CTYPE="INTEGER"
DO 3300 I=1,N
 K1=K-1
 DO 3310 IFAM=1,K1
 XIND=(I-1)*K+IFAM
 X(XIND)=1
 3310 CONTINUE
 3300 CONTINUE
EXECUTE PUTROW
ENDBLOCK
C REMOTE BLOCK UPPER
REMOTE BLOCK UPPER
FLAG="UPPER"
CTYPE="UPPERBD"
DO 3700 I=1,N
 DO 3710 IFAM=1.K
 XIND=(I-1)*K +IFAM
 X(XIND)=1
 3710 CONTINUE
3700 CONTINUE
NM1=N-1
 DO 3730 I=1,NM1
 IL=I+1
 DO 3740 J=IL,N
 DO 3750 IFAM=1,K
 LI=I
 LJ=J
 LIFAM=IFAM
 EXECUTE HIJKA
 M(MINDEX)=1
 3750 CONTINUE
3740 CONTINUE
3730 CONTINUE
EXECUTE PUTROW
END BLOCK
9999 STOP
END
$ENTRY
$IBSYS
$STOP
//
CELL FORMATION IN FMS - PART FAMILY FORMATION PROBLEM

AUTHOR - GAJANANA NADOLI
GRADUATE STUDENT, DEPT. OF INDUSTRIAL ENGINEERING
UNIVERSITY OF WINDSOR, WINDSOR, ONTARIO N9B 222

THIS PROGRAM IMPLEMENTS THE ALGORITHM FOR FINDING THE
UPPER AND LOWER BOUND FOR SUBPROBLEMS OF THE TYPE
SOLVED IN THE ITERATIONS OF THE APPROXIMATION PROCEDURE
CALCULATING THESE BOUNDS WITH DIFFERENT VALUES OF R
ESTABLISHES THE REGION (L, U) FOR THESE SUBPROBLEMS.

THE VARIABLE DECLARATION SECTION

INTEGER NUMOP(30), SIM(30,30), DISIM(30,30)
INTEGER OPI, OPJ, A
INTEGER XIND, XVARS, NVARS, XIND1, XINDJ
INTEGER RHS
INTEGER MK(30,3), MEM(30,3), NNN(3), FACC(3), FAMD(3)
INTEGER FSIM(30,3), FDISIM(30,3), NSIM(30,30)
INTEGER NDISIM(30,30)
REAL LAMDA, OP*4(30,50), COEFF(30,30), FCoeff(30,3), M(500), X(500)
REAL S(315), LBOUND, FANG(3), XINC
CHARACTER CTYPE*8, FLAG*8
COMMON OP, NUMOP, SIM, DISIM, OPI, OPJ, COEFF, I, J, IFAM, K,
* L, NN, MP, MN, N, K1

THE DATA INPUT AND CALCULATION OF SIMILAR AND DISSIMILAR PROCESSES
BETWEEN THE PARTS

READ(5,10) N,K
10 FORMAT(12,1X,12)
DO 100 I=1,N
 READ(5,20) NUM,(OP(I,J), I=1,NUM)
 NUMOP(I)=NUM
20 FORMAT(12,10(X,A4),/(3X,10(A4,1X)))
WRITE(6,20) NUMOP(I),(OP(I,J), J=1,NUM)
100 CONTINUE
N1 = N-1
DO 200 I=1,N1
 J=I+1
 DO 100 J=I,N
 SIM(I,J)=0
 TERN1=NUMOP(I)
 TERN1J=NUMOP(J)
 500 CONTINUE
 DO 300 OP=1,N1
 J=OP+1
 IF (OP=I,OP)=1, TERN1J
 400 CONTINUE
 IF (OP=I,OP) = 1, TERN1J
 SIM(I,J)=SIM(I,J)+1
 500 CONTINUE
 400 CONTINUE
 IF (OP= I,OP) = 1, TERN1J
 SIM(I,J)=SIM(I,J)=SIM(I,J)+1
500 CONTINUE
 PRINT "SIMILARITY BETWEEN", I, "AND", J, "IS", SIM(I,J)
 DISIM(I,J)=NUMOP(I)+NUMOP(J)-2*SIM(I,J)
 PRINT "DISSIMILARITY BETWEEN", I, "AND", J, "IS", DISIM(I,J)
100 CONTINUE
 PRINT "SIMILARITY BETWEEN", I, "AND", J, "IS", SIM(I,J)
 DISIM(I,J)=NUMOP(I)+NUMOP(J)-2*SIM(I,J)
 PRINT "DISSIMILARITY BETWEEN", I, "AND", J, "IS", DISIM(I,J)
300 CONTINUE
200 CONTINUE
C READING THE INITIAL CONFIGURATION
LAMDA=1.00
DO 2010 IFAM =1,K
 DO 2010 I=1,N
 MK(I,IFAM)=0
 MEM(I,IFAM)=0
 CONTINUE
 DO 2020 IFAM=1,K
 READ(5,2030) NUMF,(MK(I,IFAM),I=1,NUMF)
 WRITE(6,2036) NUMF,(MK(I,IFAM),I=1,NUMF)
 2036 FORMAT('INITIAL CONFIGURATION',12,10(1X,I2))
 NNN(IFAM)=NUMF
 2030 FORMAT(12,20(1X,I2))
 CONTINUE
 DO 2050 IFAM=1,K
 DO 2060 I=1,N
 LU=NNN(IFAM)
 CONTINUE
 DO 2070 LL=1,LU
 IF (MK(LL,IFAM).EQ.1) MEM(I,IFAM) =1
 CONTINUE
 CONTINUE
 2070 CONTINUE
 2060 CONTINUE
 TFAND=0.0
 DO 2200 IFAM=1,K
 NI=N-1
 FANN(IFAM)=0
 FAMD(IFAM)=0
 CONTINUE
 DO 2240 I=1,NI
 II=I+1
 DO 2240 J=II,N
 FANN(IFAM)=FANN(IFAM) +MEM(I,IFAM)*MEM(J,IFAM)*DISIM(I,J)
 FAMD(IFAM)=FAMD(IFAM) +MEM(I,IFAM)*MEM(J,IFAM)*SIN(I,J)
 CONTINUE
 TFAND=TFAND+FAMD(IFAM)
 CONTINUE
 DO 188 IFAM=1,K
 FAMC(IFAM)=FANN(IFAM)/TFAND
 CONTINUE
 188 CONTINUE
 MINC=0
 M=1
 DO 2260 IFAM=1,K
 IF (FAMC(IFAM).GT.MINC) THEN
 M=IFAM
 MINC=FAMC(IFAM)
 ENDIF
 CONTINUE
 2260 CONTINUE
 NF=1
 NEWN=NNN(NF)
 NEWN1=NEWN-1
 DO 2300 NI=1,NEWN1
 SII=NI+1
 DO 2400 NJ=SII,NEWN
 I=MK(NI,NF)
 J=MK(NJ,NF)
 IF (I.LT.J) THEN
 NSIM(I,NJ)=SIN(I,J)
 NDISIM(NI,NJ)=DISIM(I,J)
 ENDIF
 IF (I.GT.J) THEN
 NSIM(NI,NJ)=SIN(J,I)
 ENDIF
 CONTINUE
NDISIM(NI,NJ)=DISIM(J,I)
ENDIF
CONTINUE
2400 CONTINUE
DO 2401 I=1,N
DO 2410 IFAM=1,K
FSIM(I,IFAM)=0
FDISIM(I,IFAM)=0
CONTINUE
2410 CONTINUE
DO 2430 NI=1,NEWN
NPART=MK(NI,NF)
DO 2440 IFAM=1,K
IF (IFAM.EQ.NF) GO TO 2440
DO 2460 J=1,N
IF (J.GT.NPART) THEN
FSIM(NI,IFAM)=FSIM(NI,IFAM) + SIM(NPART,J)*MEM(J,IFAM)
FDISIM(NI,IFAM)=FDISIM(NI,IFAM) + DISIM(NPART,J)*MEM(J,IFAM)
ELSE
FSIM(NI,IFAM)=FSIM(NI,IFAM) + SIM(J,NPART)*MEM(J,IFAM)
FDISIM(NI,IFAM)=FDISIM(NI,IFAM) + DISIM(J,NPART)*MEM(J,IFAM)
ENDIF
2440 CONTINUE
2430 CONTINUE
N=N-1
DO 2462 I=1,N
II=I+1
DO 2470 J=1,II,N
SIM(I,J)=0
DISIM(I,J)=0
2470 CONTINUE
2462 CONTINUE
NEWN
WRITE(8,4018)
4018 FORMAT('BOUNDS ON THE OBJECTIVE FUNCTION FOR DIFFERENT VALUES OF \kappa')
WRITE(8,4053)
WRITE(8,4024)
4024 FORMAT(' ')
WRITE(8,4024)
WRITE(8,4026) N
4026 FORMAT(' # OF PARTS= ',12)
WRITE(8,4027) K
4027 FORMAT(' # OF FAMILIES= ',12)
WRITE(8,4024)
WRITE(8,4029) N*(N-1)/2*K+N*K
4029 FORMAT(' # OF NON-ZERO COEFFICIENTS = ',14)
WRITE(8,4053)
WRITE(8,4024)
WRITE(8,4024)
WRITE(8,9000)
9000 FORMAT('R # OF NEGATIVE OBJECTIVE FUNCTION BOUNDS')
9001 FORMAT('COEFFICIENTS LOWERBOUND UPPERBOUND')
9002 FORMAT('----- ')
EXECUTE ALLCLR
DO 13 LLAMDA=200,500,10
LAMDA = LLAMDA / 100.00
EXECUTE FAMIL
NM1 = N - 1
DO 21 I = 1, NM1
 II = I + 1
 DO 22 J = I, N
 COEFF(I, J) = DISIM(I, J) - LAMDA * SIM(I, J)
 CONTINUE
22 CONTINUE
DO 89 JM = 1, 315
 S(JM) = 0.0
89 CONTINUE
EXECUTE OBJROW
18 CONTINUE
GO TO 9999
C REMOTE BLOCK FAMIL
REMOTE BLOCK FAMIL
NEWN1 = NEWN - 1
 DO 2480 NI = 1, NEWN1
 NI1 = NI + 1
 DO 2490 NJ = NI1, NEWN
 SIM(NI, NJ) = NSIM(NI, NJ)
 DISIM(NI, NJ) = NDISIM(NI, NJ)
 COEFF(NI, NJ) = SIM(NI, NJ) - LAMDA * SIM(NI, NJ)
 CONTINUE
2490 CONTINUE
2480 CONTINUE
 DO 2550 I = 1, NEWN
 DO 2560 IFAM = 1, K
 FCoeff(I, IFAM) = FDISIM(I, IFAM) - LAMDA * FSIM(I, IFAM)
 CONTINUE
2560 CONTINUE
2550 CONTINUE
C = 0.0
 DO 58 IFAM = 1, K
 IF (IFAM .EQ. MF) GO TO 58
 C = C + FAMN(IFAM) - LAMDA * FAMD(IFAM)
 CONTINUE
58 CONTINUE
 IF (LAMDA .GT. 0.15) GO TO 76
 PRINT, 'THE CONSTANT FACTOR = ', C
 DO 45 I = 1, N
 IFAM = 1, K
 IF (IFAM .EQ. MF) GO TO 46
 PRINT, 'FSIM(C', I, ', IFAN, ') = ', FSIM(I, IFAM)
 CONTINUE
45 CONTINUE
46 CONTINUE
46 CONTINUE
76 DUMMY = 0.00
END BLOCK
C REMOTE BLOCK ALLCLR
REMOTE BLOCK ALLCLR
DO 3030 II = 1, N
 DO 3030 IIIFAM = 1, K
 XIND = (II - 1) * K + IIIFAM
 XIND = 0
 CONTINUE
3030 CONTINUE
NM1 = N - 1
 DO 3040 II = 1, NM1
 II1 = II + 1
 DO 3050 JJ = II1, N
 DO 3040 II = II1, NM1
DO 3060 IIFAM=I,K
 LI=II
 LJ=JJ
 LIFAM=IIFAM
 EXECUTE MIJKA
 M(MINDEX)=0
3060 CONTINUE
3050 CONTINUE
3040 CONTINUE
ENDBLOCK
C REMOTE BLOCK MIJKA
 REMOTE BLOCK MIJKA
 MINDA=0
 LII=LI+1
 ISIGH=LI-1
 IF (ISIGH.EQ.0) GO TO 3064
 DO 3065 IX=1,ISIGH
 MINDA=MINDA+(N-IX)*K
 3065 CONTINUE
3064 MINDEX=MINDA+(LJ-LI1)*K+LIFAM
ENDBLOCK
C REMOTE BLOCK OBJROW
 REMOTE BLOCK OBJROW
 NHI=N-1
 NEG=0
 MS=1
 DO 3100 I=1,NHI
 I=I+1
 3100 DO 3110 J=II,N
 DO 3120 IFAM=1,K
 DO 312 LI=I
 LI=I
 LJ=J
 LIFAM=IFAM
 EXECUTE MIJKA
 M(MINDEX)=COEFF(I,J)
 IF(COEFF(I,J).LT.0) NEG=NEG+1
 IF(IFAM.EQ.1) THEN
 S(MS)=COEFF(I,J)
 MS=MS+1
 ENDIF
3120 CONTINUE
3110 CONTINUE
3100 CONTINUE
DO 312 I=1,N
 DO 312 IFAM=1,K
 XIND=(I-1)*K+IFAM
 X(XIND)=FCOEFF(1,IFAM)
 312 CONTINUE
C TYPE="MIN"
FLAG="OBJROW"
LPOS*N*(N-1)/2*K-NEG
CALL SORT(315,S)
IES=N/K
IPAIRS=IES*(IES-1)/2*K+(N-IES*K)*IES
MPAIRS=N*(N-1)/2
LBOUND=0.000
UBOUND=0.000
ICOUNT=0
DO 889 KI=1,315
INTS = S(KI) * 10000.000
IF (INTS .NE. 0.000) THEN
 ICOUNT = ICOUNT + 1
ELSE
 GO TO 889
ENDIF
IF (S(KI) .LT. 0.000) THEN
 LBOUND = LBOUND + S(KI)
ENDIF
IF (S(KI) .GT. 0.000) THEN
 IF (ICOUNT .LE. IPAIRS) LBOUND = LBOUND + S(KI)
ENDIF
889 CONTINUE
ICOUNT = 0
DO 899 KI = 1, 315
 INTS = S(315 - KI + 1) * 10000.000
 IF (INTS .NE. 0.000) THEN
 ICOUNT = ICOUNT + 1
 ELSE
 GO TO 899
 ENDIF
 IF (S(315 - KI + 1) .GT. 0.000) THEN
 UBOUND = UBOUND + S(315 - KI + 1)
 ENDIF
 IF (S(315 - KI + 1) .LT. 0.000) THEN
 IF (ICOUNT .LE. IPAIRS) UBOUND = UBOUND + S(315 - KI + 1)
 ENDIF
899 CONTINUE
DO 892 I = 1, N
 TM = -1000000000.000
 TL = +1000000000.000
 DO 892 IFAM = 1, K
 XIND = (I-1) * K + IFAM
 IF (X(XIND) .GT. TH) TM = X(XIND)
 IF (X(XIND) .LT. TL) TL = X(XIND)
892 CONTINUE
C REMOTE BLOCK PUTROW
REMOTE BLOCK PUTROW
EXECUTE ALLCLR
ENDBLOCK
9999 STOP
END
ENTRY
SIBSYS
STOP
//
// JOB (R240,NU7,5,5), "GAJ", CLASS=A, REGION=2048K
// EXEC WATFIV
// FTO8F001 DD DSN=WYL.R240NU7.FAHOUT,UNIT=DSAD, VOL=SER=WORKPK,
// DISP=(NEW,KEEP), SPACE=(TRK,(40,10)),
// DCB=(LRECL=80, BLKSIZE=15440, RECFM=FB)
// GO.SYSIN DD *
$JOB WATFIV REF. SECTION 5.2
C --
C CELL FORMATION IN FMS - MACHINE GROUP ALLOCATION
C --
C AUTHOR - GAJANANA NADOLI
C GRADUATE STUDENT, DEPT. OF INDUSTRIAL ENGINEERING
C UNIVERSITY OF WINDSOR, WINDSOR, ONTARIO N9B 2Z2
C --
C THIS PROGRAM GENERATES THE INPUT FILE OF THE PROBLEM
C "P1" FOR THE SAS/OR INTEGER PROGRAMMING ROUTINE.
C ALLOCATION OF MACHINE GROUPS TO THE PART FAMILIES FORMED.
C --
C VARIABLE DECLARATION SECTION

INTEGER N(30), P, OPN, A(30,30,30), NUMOP(30,30), ROUTES(30,3)
INTEGER X(500), XIND, N(5000), IRR(30)
INTEGER TABL(3,1300,50), IENTRY(3), JCOUNT(30), KCOUNT(30)
INTEGER RTF(3,1300), LID(99), RHS, NLID(15), CARQ, OPN1
INTEGER ONEOBJ(15,3), ONEAVL(15,3,30)
CHARACTER CTYPE=8, FLAG=8
C READING THE OPERATION DATA FOR THE PARTS

MAXOP=15
MAXMLT=1300
MAXWID=MAXOP+2+20
MQ=MAXOP+1
MSLN=MAXOP+2
READ(5,10) NMACH, K, (N(IFAM), IFAM=1, K)
FORMAT(12,2X,12,10(2X,12))
WRITE(6,10) NMACH, K, (N(IFAM), IFAM=1, K)
DO 100 IFAM=1, K
NUM=N(IFAM)
DO 110 J=1, NUM
READ(5,20) OPN
WRITE(6,20) OPN
FORMAT(12)
NUMOP(IFAM, J)=OPN
DO 120 P=1, OPN
READ(5,30) (A(J,IFAM,P,IM), IM=1, NMACH)
WRITE(6,30) (A(J,IFAM,P,IM), IM=1, NMACH)
FORMAT(15(1I1,1X))
120 CONTINUE
110 CONTINUE
100 CONTINUE
DO 200 IFAM=1, K
DO 210 ISL=1, MAXMLT
RTF(IFAM, ISL)=0
DO 220 IWID=1, MAXWID
TABL(IFAM, ISL, IWID)=0
220 CONTINUE
210 CONTINUE
ENTRY(IFAM)=0
200 CONTINUE
DO 4100 IFAM=1, K
DO 4110 MMM=1, NMACH
ONEOBJ(NMM, IFAM)=0
4110 CONTINUE
4100 CONTINUE
NPARTS=N(IFAM)
DO 4120 JJJ=1,NPARTS
ONEAVL(MHH,IFAM,JJJ)=0
4120 CONTINUE
4110 CONTINUE
4100 CONTINUE
C MAIN SEGMENT OF THE PROGRAM
EXECUTE MTERMS
EXECUTE CLRALL
EXECUTE OBJROW
EXECUTE AVAIL
EXECUTE ALLOC
EXECUTE TYP101
EXECUTE TYP201
EXECUTE INTGER
EXECUTE UPPER
EXECUTE OUT
GO TO 9999
C REMOTE BLOCK OBJROW
REMOTE BLOCK OBJROW
EXECUTE MCOBJ
EXECUTE MLTOBJ
FLAG="SPL"
CTYPE="MAX"
EXECUTE PUTROW
ENDBLOCK
C REMOTE BLOCK MCOBJ
REMOTE BLOCK MCOBJ
DO 1000 MH=1,NMACH
 DO 1010 IIFAM=1,K
 XIND=(MH-1)*K +IIFAM
 X(XIND)=ONEOBJ(MH,IIFAM)
1010 CONTINUE
1000 CONTINUE
ENDBLOCK
C REMOTE BLOCK UPPER
REMOTE BLOCK UPPER
DO 700 MM=1,NMACH
 DO 710 IIFAM=1,K
 XIND=(MM-1)*K +IIFAM
 X(XIND)=1
710 CONTINUE
700 CONTINUE
MIND=0
DO 711 IFAM=1,K
 NENTRY=ENTRY(IFAM)
 DO 712 IE=1,NENTRY
 MIND=MIND+1
 M(MIND)=1
712 CONTINUE
711 CONTINUE
FLAG="SPL"
CTYPE="UPPERBD"
EXECUTE PUTROW
ENDBLOCK
C REMOTE BLOCK MTERMS
REMOTE BLOCK MTERMS
DO 2000 IFAM=1,K
 NUH=N(IFAM)
 DO 2010 J=1,NUH
OPN=NUMOP(IFAM,J)
EXECUTE GEN

2010 CONTINUE
2000 CONTINUE
END BLOCK
C REMOTE BLOCK GEN
REMOTE BLOCK GEN
ROUTES(J,IFAM)=0
IA=1
P=1
ID1=0
ID2=0
ID3=0
ID4=0
ID5=0
ID6=0
ID7=0
ID8=0
ID9=0
ID10=0
ID11=0
ID12=0
ID13=0
ID14=0
ID15=0
DO 3010 ID1=1,NMACH
 IA=1
 IA=IA*(A(J,IFAM,1,ID1))
 IF (IA.EQ.0) THEN
 GO TO 3010
 ENDIF
 IF (OPN.EQ.1) THEN
 ROUTES(J,IFAM)=ROUTES(J,IFAM)+1
 EXECUTE RTFILE
 GO TO 3010
 ENDIF
DO 3020 ID2=1,NMACH
 IA=1
 IA=IA*(A(J,IFAM,2,ID2))
 IF (IA.EQ.0) THEN
 GO TO 3020
 ENDIF
 IF (OPN.EQ.2) THEN
 ROUTES(J,IFAM)=ROUTES(J,IFAM)+1
 EXECUTE RTFILE
 GO TO 3020
 ENDIF
DO 3030 ID3=1,NMACH
 IA=1
 IA=IA*(A(J,IFAM,3,ID3))
 IF (IA.EQ.0) THEN
 GO TO 3030
 ENDIF
 IF (OPN.EQ.3) THEN
 ROUTES(J,IFAM)=ROUTES(J,IFAM)+1
 EXECUTE RTFILE
 GO TO 3030
 ENDIF
DO 3040 ID4=1,NMACH
 IA=1
IA=IA*(A(J,IFAM,4,ID4))
IF (IA.EQ.0) THEN
 GO TO 3040
ENDIF
IF (OPN.EQ.4) THEN
 ROUTES(J,IFAM)=ROUTES(J,IFAM)+1
 EXECUTE RTFILE
 GO TO 3040
ENDIF
DO 3050 ID5=1,NMACH
 IA=1
 IA=IA*(A(J,IFAM,5,ID5))
 IF (IA.EQ.0) THEN
 GO TO 3050
 ENDF
 IF (OPN.EQ.5) THEN
 ROUTES(J,IFAM)=ROUTES(J,IFAM)+1
 EXECUTE RTFILE
 GO TO 3050
 ENDIF
DO 3060 ID6=1,NMACH
 IA=1
 IA=IA*(A(J,IFAM,6,ID6))
 IF (IA.EQ.0) THEN
 GO TO 3060
 ENDF
 IF (OPN.EQ.6) THEN
 ROUTES(J,IFAM)=ROUTES(J,IFAM)+1
 EXECUTE RTFILE
 GO TO 3060
 ENDIF
DO 3070 ID7=1,NMACH
 IA=1
 IA=IA*(A(J,IFAM,7,ID7))
 IF (IA.EQ.0) THEN
 GO TO 3070
 ENDF
 IF (OPN.EQ.7) THEN
 ROUTES(J,IFAM)=ROUTES(J,IFAM)+1
 EXECUTE RTFILE
 GO TO 3070
 ENDIF
DO 3080 ID8=1,NMACH
 IA=1
 IA=IA*(A(J,IFAM,8,ID8))
 IF (IA.EQ.0) THEN
 GO TO 3080
 ENDF
 IF (OPN.EQ.8) THEN
 ROUTES(J,IFAM)=ROUTES(-J,IFAM)+1
 EXECUTE RTFILE
 GO TO 3080
 ENDIF
DO 3090 ID9=1,NMACH
 IA=1
 IA=IA*(A(J,IFAM,9,ID9))
 IF (IA.EQ.0) THEN
 GO TO 3090
 ENDF
 IF (OPN.EQ.9) THEN
ROUTES(J,IFAM)=ROUTES(J,IFAM)+1
EXECUTE RTFILE
GO TO 3090
ENDIF
DO 3100 ID10=1,NMACH
IA=1
IA=IA*(A(J,IFAM,10,ID10))
IF (IA.EQ.0) THEN
GO TO 3100
ENDIF
IF (OPN.EQ.10) THEN
ROUTES(J,IFAM)=ROUTES(J,IFAM)+1
EXECUTE RTFILE
GO TO 3100
ENDIF
DO 3110 ID11=1,NMACH
IA=1
IA=IA*(A(J,IFAM,11,ID11))
IF (IA.EQ.0) THEN
GO TO 3110
ENDIF
IF (OPN.EQ.11) THEN
ROUTES(J,IFAM)=ROUTES(J,IFAM)+1
EXECUTE RTFILE
GO TO 3110
ENDIF
DO 3120 ID12=1,NMACH
IA=1
IA=IA*(A(J,IFAM,12,ID12))
IF (IA.EQ.0) THEN
GO TO 3120
ENDIF
IF (OPN.EQ.12) THEN
ROUTES(J,IFAM)=ROUTES(J,IFAM)+1
EXECUTE RTFILE
GO TO 3120
ENDIF
DO 3130 ID13=1,NMACH
IA=1
IA=IA*(A(J,IFAM,13,ID13))
IF (IA.EQ.0) THEN
GO TO 3130
ENDIF
IF (OPN.EQ.13) THEN
ROUTES(J,IFAM)=ROUTES(J,IFAM)+1
EXECUTE RTFILE
GO TO 3130
ENDIF
DO 3140 ID14=1,NMACH
IA=1
IA=IA*(A(J,IFAM,14,ID14))
IF (IA.EQ.0) THEN
GO TO 3140
ENDIF
IF (OPN.EQ.14) THEN
ROUTES(J,IFAM)=ROUTES(J,IFAM)+1
EXECUTE RTFILE
GO TO 3140
ENDIF
DO 3150 ID15=1,NMACH
IA=IA*(A(J,IFAM,15,ID15))
IF (IA.EQ.0) THEN
 GO TO 3150
ENDIF
IF (OPEN.EQ.15) THEN
 ROUTES(J,IFAM)=ROUTES(J,IFAM)+1
 EXECUTE RTFILE
 GO TO 3150
ENDIF
3150 CONTINUE
3140 CONTINUE
3130 CONTINUE
3120 CONTINUE
3110 CONTINUE
3100 CONTINUE
3090 CONTINUE
3080 CONTINUE
3070 CONTINUE
3060 CONTINUE
3050 CONTINUE
3040 CONTINUE
3030 CONTINUE
3020 CONTINUE
3010 CONTINUE
ENDBLOCK
C REMOTE BLOCK RTFILE
.REMOTE BLOCK RTFILE
IDUP=0
LID(1)=ID1
LID(2)=ID2
LID(3)=ID3
LID(4)=ID4
LID(5)=ID5
LID(6)=ID6
LID(7)=ID7
LID(8)=ID8
LID(9)=ID9
LID(10)=ID10
LID(11)=ID11
LID(12)=ID12
LID(13)=ID13
LID(14)=ID14
LID(15)=ID15
DO 1 IXX=1,15
 NLIID(IXX)=0
 CONTINUE
1 CARQ=OPEN
 OPNI=OPN-1
 DO 2 IX=1,OPEN
 IF (LID(IX).EQ.999) GO TO 2
 IX1=IX+1
 DO 3 IY=IX1,OPEN
 IF (LID(IY).EQ.LID(IX)) THEN
 LID(IY)=999
 CARQ=CARQ-1
 ENDIF
 CONTINUE
3 CONTINUE
 CONTINUE
1 NC=0
ENDBLOCK
C REMOTE BLOCK M T O B J
REMOTE BLOCK M T O B J
MIND=0
DO 2100 IFAM=1,K
 NENTRY=IENTRY(IFAM)
 DO 2110 IE=1,NENTRY
 MIND=MIND+1
 M(MIND)=RPTF(IFAM,IE)+1
2110 CONTINUE
2100 CONTINUE
ENDBLOCK
C REMOTE BLOCK AVAIL
REMOTE BLOCK AVAIL
MINDF=0
DO 2140 IFAM=1,K
 IF (IFAM.NE.1) MINDF=MINDF+IENTRY(IFAM-1)
 MIND=MINDF
 NENTRY=IENTRY(IFAM)
 NPARTS=N(IFAM)
 DO 2150 JJ=1,NPARTS
 DO 2160 IE=1,NENTRY
 MIND=MIND+1
 IREP=MSLN+RPTF(IFAM,IE)+1
 C IF (IFAM.EQ.1) THEN
 C IF (IE.EQ.3) PRINT,"RPTF+1",RPTF(IFAM,IE)+1
 C IF
 M=MSLN+1
 MCOEF=0
 C DO 2170 IX=IB,IREP
 C IF (TABL(IFAM,IE,IX).EQ.JJ) MCOEF=MCOEF+1
2170 CONTINUE
 JPOS=MSLN+JJ
 M(MIND)=MCOEF
2160 CONTINUE
 DO 4600 MHH=1,NMACH
 XIND=(MHH-1)*K+IFAM
 X(XIND)=ONEAVL(MHH,IFAM,JJ)
4600 CONTINUE
CTYPE="CE"
RHS=1
EXECUTE PUTROW
MIND=MINDF
2150 CONTINUE
2140 CONTINUE
ENDBLOCK
C REMOTE BLOCK T Y P 101
REMOTE BLOCK T Y P 101
MIND=0
DO 2300 IFAM=1,K
 NENTRY=IENTRY(IFAM)
 DO 2310 IE=1,NENTRY
 MIND=MIND+1
 M(MIND)=1
 OPN=TABLE(IFAM,IE,HQ)
 DO 2320 JJ=1,OPN
 IX=TABLE(IFAM,IE,IJ)
 XIND=(IX-1)*K+IFAM
 X(XIND)=X(XIND)+1
DO 4 IX=1,OPN
 IF (LID(IX).NE.999) THEN
 NC=NC+1
 NLID(NC)=LID(IX)
 ENDF
4
 CONTINUE
 IF (NC.NE.CARQ) PRINT, '**********ERROR**********'
C
 PRINT, 'J,IFAM,NC",J,IFAM,NC'
 IF (CARQ.EQ.1) THEN
 DO 4500 IXY=1,OPN
 IF (LID(IXY).NE.999) THEN
 MMM=LID(IXY)
 ONEOBJ(MMM,IFAM)=ONEOBJ(MMM,IFAM)+1
 ONEAVL(MMM,IFAM,J)=ONEAVL(MMM,IFAM,J)+1
 ENDF
4500
 CONTINUE
 GO TO 8
 ENDF
 IF (IENTRY(IFAM).EQ.0) THEN
 GO TO 6500
 ELSE
 LIENT=IENTRY(IFAM)
 DO 6000 ICHK=1,LIENT
 IF (IDUP.EQ.1) GO TO 6500
 IF (TABL(IFAM,ICHK,MQ).NE.CARQ) GO TO 6000
 DO 6100 JH=1,NMACH
 JCOUNT(JH)=0
 DO 6200 IX=1,CARQ
 IF (NLID(IX).EQ.JH) JCOUNT(JH)=JCOUNT(JH)+1
 CONTINUE
 KCOUNT(JH)=0
 DO 6300 IY=1,CARQ
 IF (TABL(IFAM,ICHK,IY).EQ.JH) KCOUNT(JH)=KCOUNT(JH)+1
 CONTINUE
 6300
 CONTINUE
 IF (JCOUNT(JH).NE.KCOUNT(JH)) GO TO 6000
 6010
 CONTINUE
 IDUP=1
 IDUPSL=ICHK
5000
 CONTINUE
 ENDF
 IF (IDUP.EQ.1) THEN
 RPTF(IFAM,IDUPSL)=RPTF(IFAM,IDUPSL)+1
 JPOS=MSLN+1=RPTF(IFAM,IDUPSL)
 JPOS=JPOS+JPOS
 TABL(IFAM,IDUPSL,JPOS)=J
 TABL(IFAM,IDUPSL,JPOS)=TABL(IFAM,IDUPSL,JPOS)+1
 ELSE
 IENTRY(IFAM)=IENTRY(IFAM)+1
 NENTRY=IENTRY(IFAM)
 DO 6550 IX=1,CARQ
 TABL(IFAM,NENTRY,IX)=NLID(IX)
 CONTINUE
 TABL(IFAM,NENTRY,HQ)=CARQ
 TABL(IFAM,NENTRY,MSLN)=NENTRY
 JFIRST=MSLN+1
 TABL(IFAM,NENTRY,JFIRST)=J
 JPOS=JPOS+JPOS
 TABL(IFAM,NENTRY,JPOS)=TABL(IFAM,NENTRY,JPOS)+1
 ENDF
 DUZN=0.00
CONTINUE
RHS=OPN−1
CTYPE="LE"
EXECUTE PUTROW
CONTINUE
CONTINUE
ENDBLOCK
C REMOTE BLOCK TYP201
REMOTE BLOCK TYP201
MIND=0
DO 2400 IPAM=1,K
NENTRY=ENTRY(IFAM)
DO 2410 IE=1,NENTRY
MIND=MIND+1
OPN=TABLE(IFAM,IE,MQ)
DO 954 MREP=1,NMACH
IRR(MREP)=0
954 CONTINUE
DO 2420 IJ=1,OPN
X(MIND)=1
IX=TABLE(IFAM,IE,IJ)
IF (IRR(IX).EQ.0) THEN
XIND=(IX-1)*K+IFAM
X(XIND)=1
CTYPE="LE"
RHS=0
EXECUTE PUTROW
ENDIF
IRR(IX)=1
2420 CONTINUE
2410 CONTINUE
2400 CONTINUE
ENDBLOCK
C REMOTE BLOCK INTEGER
REMOTE BLOCK INTEGER
DO 2600 INTM=1,NMACH
INTK=K-1
DO 2610 INTFAM=1,INTK
IXIND=(INTM-1)*K+INTFAM
X(IXIND)=1
2610 CONTINUE
2600 CONTINUE
CTYPE="INTEGER"
FLAG="SPL"
EXECUTE PUTROW
ENDBLOCK
C REMOTE BLOCK PUTROW
REMOTE BLOCK PUTROW
IXTRMS = NMACH*K
INTRMS=0
DO 2500 IFAM=1,K
INTRMS=INTRMS+ENTRY(IFAM)
2500 CONTINUE
WRITE(8,7000) (X(IPR),IPR=1,IXTRMS),(M(IPR),IPR=1,INTRMS)
7000 FORMAT(20(IX,13))
IF (FLAG.EQ."SPL") THEN
WRITE(8,7010) CTYPE
7010 FORMAT(IX,A8,":")
ELSE
WRITE(8,7020) CTYPE,RHS
7020 FORMAT(1X,A8,1X,I2)
ENDIF
FLAG="REG"
EXECUTE CLRALL
ENDBLOCK
C REMOTE BLOCK CLRALL
REMOTE BLOCK CLRALL
DO 2700 HCLR=1,NMACH
 DO 2710 ICLR=1,K
 XIND=(MCLR-1)*K + ICLR
 X(XIND)=0
 2710 CONTINUE
2700 CONTINUE / IMTRMS=0
 DO 2730 ICLR=1,K
 IMTRMS=IMTRMS+ENTRY(ICLRF)
 2730 CONTINUE
 DO 2750 LMIND=1,IMTRMS
 X(LMIND)=0
 2750 CONTINUE
 FLAG="REG"
ENDBLOCK
REMOTE BLOCK ALLOC
DO 5000 IIM=1,NMACH
 DO 5010 IFAM=1,K
 XIND =(IIM-1)*K + IFAM
 X(XIND) = 1
5010 CONTINUE
RHS=1
CTYPE="EQ"
IF (.NOT.(IIM.EQ.2)) THEN
 RHS = 2
ENDIF
IF (IIM.EQ.6) RHS=2
EXECUTE PUTROW
5000 CONTINUE
ENDBLOCK
9999 STOP
END
ENTRY
12 03 06 04 05
03 PART 1
 0 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0
 1 0 0 0 0 0 0 0 1 0 0 0
 0 0 1 0 0 0 0 0 0 0 1 0
02 PART 3
 0 0 0 0 1 0 0 1 0 1 0 0 0
 0 0 0 0 1 0 0 0 1 0 1 0
03 PART 4
 0 0 0 0 0 0 0 1 0 0 1 0 0 0
 0 1 0 0 1 0 0 0 0 0 0 1
 0 0 0 1 0 1 0 0 0 0 0 0
03 PART 5
 0 0 0 0 1 0 0 0 0 0 0 0
 0 0 0 1 0 1 0 0 0 0 0 0
 0 0 0 0 0 0 1 0 0 0 0 0
03 PART 8
 1 0 1 0 0 0 0 0 0 0 0 0
 1 0 0 0 0 0 1 0 0 0 0 0
 0 1 0 0 0 0 0 0 1 0 0 0
03 PART 13
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
02 PART 6
1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 1 1 0 0 1 0 0 0 0
03 PART 11
1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
03 PART 12
1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
03 PART 15
1 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0
02 PART 2
1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
04 PART 7
0 1 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
03 PART 9
0 1 0 0 0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
02 PART 10
0 1 0 0 0 1 0 0 0 1 0 1
0 0 0 1 0 0 1 0 0 0 0 0
04 PART 14
0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 1 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0
SIBSYS
$STOP
//
EXEC WATFIV

//P108F001 DD DSN=WIL.R240NU7.FAMOUT,UNIT=DSAD, VOL=SER=WORKPK,
// DISP=NEW,KEEP, SPACE=(TRK,(40,10)),
// DGB=(1RECL=80, BLKSIZE=15440, RECNO=FB)

$JOB WATFIV

REF. SECTION 5.3.2

C CELL FORMATION IN FMS - MACHINE GROUP ALLOCATION
C
C AUTHOR - GAJANANA NADOLI
C
GRADUATE STUDENT, DEPT. OF INDUSTRIAL ENGINEERING
UNIVERSITY OF WINDSOR, WINDSOR, ONTARIO N9B 222

C THIS PROGRAM GENERATES THE INPUT FILE OF THE PROBLEM
C "INF" FOR THE SAS/OR INTEGER PROGRAMMING ROUTINE.
C IDENTIFICATION OF THE MACHINES CAUSING INFEASIBILITY IN
C MACHINE GROUP ALLOCATION.
C
C VARIABLE DECLARATION SECTION

INTEGER N(50), P, OPN, A(30, 3, 30, 30), NUMOP(3, 30), ROUTES(30, 3)
INTEGER X(500), XIND, M(5000), IRR(30), XINDJ, XINDK
INTEGER TABL(3, 1300, 50), IENTRY(3), JCOUNT(30), KCOUNT(30)
INTEGER RPTF(3, 1300), LID(99), RHS, NLID(15), CARQ, OPNL
INTEGER ONEOBJ(15, 3), ONEAVL(15, 3, 30)
CHARACTER CTYPE*8, FLAG*8

C READING THE OPERATION DATA FOR THE PARTS

IMPOS=2
MAXOP=15
MAXNL=1300

MAXOP=MAXOP+2+20
NUM=MAXOP+1

READ(5, 10) NMACH, K, (N(IFAN), IFAM=1, K)
FORMAT(12, 2X, 12, 10(2X, I2))
WRITE(6, 10) NMACH, K, (N(IFAM), IFAM=1, K)
DO 100 IFAM=1, K
NUN=N(IFAN)
DO 110 J=1, NUM
READ(5, 20) OPN
WRITE(6, 20) OPN
FORMAT(12)
NUMOP(IFAN, J)=OPN
DO 120 P=1, OPN
READ(5, 30) (A(J, IFAN, P, IN), IM=1, NMACH)
WRITE(6, 30) (A(J, IFAN, P, IN), IM=1, NMACH)
FORMAT(15(I1, 1X))
120 CONTINUE
110 CONTINUE
100 CONTINUE
DO 200 IFAM=1, K
DO 210 ISL=1, MAXNL
RPTF(IFAN, ISL)=0
DO 220 IWD=1, MAXWID
TABL(IFAN, ISL, IWD)=0
220 CONTINUE
210 CONTINUE
IENTRY(IFAN)=0
CONTINUE
200 CONTINUE
DO 400 IFAM=1, K

400 END
220 CONTINUE
210 CONTINUE
IENTRY(IFAH)=0
200 CONTINUE
DO 4100 IFAM=1,K
 DO 4110 MHH=1,NMACH
 ONEOBJ(MHH,IFAH)=0
 NPARTS=N(IFAH)
 DO 4120 JJJ=1,NPARTS
 ONEAVL(MHH,IFAH,JJJ)=0
 4110 CONTINUE
 CONTINUE
 CONTINUE
MTRMS=NMACH*K*(K-1)/2 +NMACH
C MAIN SEGMENT OF THE PROGRAM
 EXECUTE CLRALL
 EXECUTE NEWOBJ
 EXECUTE MIN1
 EXECUTE ALLOC
 EXECUTE LIN1
 EXECUTE INTGER
 EXECUTE UPER
 GO TO 9999
C REMOTE BLOCK NEWOBJ
 REMOTE BLOCK NEWOBJ
 DO 1001 MH=1,NMACH
 DO 1011 IIFAM=1,K
 XIND=(MH-1)*K+IIFAM
 X(XIND)=1
 1011 CONTINUE
1001 CONTINUE
 MIND=1
 DO 8000 MMS=1,NMACH
 K1=K-1
 DO 8010 JFAM=1,K1
 K2=JFAM+1
 DO 8020 KFAM=K2,K
 M(MIND)=37
 MIND=MIND+1
 8020 CONTINUE
8010 CONTINUE
8000 CONTINUE
 DO 8030 MMS=1,NMACH
 M(MIND)=1369
 MIND=MIND+1
8030 CONTINUE
8500 DUMMM=0.00
 FLAG="SPL"
 CTYPE="MIN"
 EXECUTE PUTROW
 ENDBLOCK
C REMOTE BLOCK MIN1
 REMOTE BLOCK MIN1
 DO 9000 IFAM=1,K
 NUM=N(IFAH)
DO 9010 J=1,NUM
 OPN=NUMOP(IFAH,J)
 DO 9020 P=1,OPN
 DO 9030 MHS=1,NMACH
 XIND=(MHS-1)*K+IFAM
 X(XIND)=A(J,IFAH,P,MHS)
 CONTINUE
 CTYP="GE"
 RHS=1
 EXECUTE PUTROW
 CONTINUE
9020 CONTINUE
9010 CONTINUE
9000 CONTINUE
ENDBLOCK
C REMOTE BLOCK UPPER
REMOTE BLOCK UPPER
DO 700 MM=1,NMACH
 DO 710 IIFAM=1,K
 XIND=(MM-1)*K+IIFAM
 X(XIND)=1
 CONTINUE
710 CONTINUE
700 CONTINUE
MIND=1
DO 8005 MHS=1,NMACH
 K1=K-1
 DO 8015 JFAM=1,K1
 K2=JFAM+1
 DO 8025 KFAH=K2,K
 M(MIND)=1
 MIND=MIND+1
 CONTINUE
8025 CONTINUE
8015 CONTINUE
8005 CONTINUE
DO 8035 MHS=1,NMACH
 M(MIND)=1
 MIND=MIND+1
8035 CONTINUE
8505 DUMM=0.00
C MIND=0
C DO 711 IFAM=1,K
C NENTRY=ENTRY(IFAM)
C DO 712 IE=1,NENTRY
C MIND=MIND+1
C M(MIND)=1
C712 CONTINUE
C711 CONTINUE
FLAG="SPL"
CTYP="UPPERBD"
EXECUTE PUTROW
ENDBLOCK
REMOTE BLOCK LIN1
KIND=1
DO 8002 LHMS=1,NMACH
 K1=K-1
 DO 8012 LJFAM=1,K1
K2=LJFAM+1
DO 8022 LKFAM=K2,K
 XINDJ=(LHMS-1)*K + LJFAM
 XINDK=(LHMS-1)*K + LKFAM
 X(XINDJ)=1
 X(XINDK)=1
 M(KMIND)=-1
 CTYPE="LE"
 RHS= 1
 EXECUTE PUTROW
 X(XINDJ)=-1-
 M(KMIND)=1
 CTYPE="LE"
 RHS=0
 EXECUTE PUTROW
 KMIND=KMIND+1
8022 CONTINUE

8012 CONTINUE
8002 CONTINUE
DO 8815 KMH=1,NMACH
 M(KMIND)=-1
DO 8018 IFN=1,K
 IXIND=(KMH-1)*K + IFN
 X(IXIND)=1
8018 CONTINUE
 RHS=2
 CTYPE="LE"
 EXECUTE PUTROW
DO 8609 IFN=1,K
 M(KMIND)=1
 IXIND=(KMH-1)*K + IFN
 X(IXIND)=-1
 RHS=0
 CTYPE="LE"
 EXECUTE PUTROW
8609 CONTINUE
 KMIND=KMIND+1
8815 CONTINUE
ENDBLOCK
C REMOTE BLOCK INTEGER
REMOTE BLOCK INTEGER
DO 2600 INTH=1,NMACH
 INTH=K-1
DO 2610 INFAM=1,INTH
 IXIND=(INTH-1)*K + INFAM
 X(IXIND)=1
2610 CONTINUE
2600 CONTINUE
 CTYPES=INTEGER
 FLAG=SPL
 EXECUTE PUTROW
ENDBLOCK
EXECUTE PUTROW
ENDBLOCK
C REMOTE BLOCK PUTROW
REMOTE BLOCK PUTROW
IXTRMS = NMACH*K
C IMTRMS=0
C DO 2500 IIFAH=1,K
C IMTRMS=IMTRMS+IENTRY(IIFAH)
C2500 CONTINUE
WRITE(8,7000) (X(IPR),IPR=1,IXTRMS), (H(JPR),JPR=1,IMTRMS)
7000 FORMAT(15(1X,I4))
IF (FLAG.EQ."SPL") THEN
WRITE(8,7010) CTYPE
7010 FORMAT(1X,A8,".")
ELSE
WRITE(8,7020) CTYPE,RHS
7020 FORMAT(1X,A8,1X,I2)
ENDIF
FLAG="REG"
EXECUTE CLRALL
ENDBLOCK
C REMOTE BLOCK CLRALL
REMOTE BLOCK CLRALL
DO 2700 MCLR=1,NMACH
DO 2710 ICLR=1,K
XIND=(MCLR-1)*K +ICLR
X(XIND)=0
2710 CONTINUE
2700 CONTINUE
MIND=1
DO 8001 MHS=1,NMACH
K1=K-1
DO 8011 JFAM=1,K1
K2=JFAM+1
DO 8021 KFAM=K2,K
M(MIND)=0
MIND=MIND+1
8021 CONTINUE
8011 CONTINUE
8001 CONTINUE
DO 8031 MHS=1,NMACH
M(MIND)=0
MIND=MIND+1
8031 CONTINUE
8501 DUMM=0.00
REMOTE BLOCK ALLOC
DO 5000 IIM=1,NMACH
DO 5010 IFAM=1,K
XIND = (IIM-1)*K + IFAM
X(XIND) = 1
5010 CONTINUE
RHS=3
CTYPE="LE"
EXECUTE PUTROW
5000 CONTINUE
APPENDIX D

ITERATION LOGS FOR DIFFERENT TRIALS OF APPROXIMATION PROCEDURE
TABLE 9.b

Iteration Log for the Approximation Procedure

Number of Parts = 15
Random Starting Partition = 2

<table>
<thead>
<tr>
<th>ITR</th>
<th>INITIAL</th>
<th>INTERMEDIATE R AND FINAL FN. NEW ALLOCATIONS</th>
<th>OBJ Z(R,X) CDC Comments</th>
</tr>
</thead>
</table>
| 0 | [1,2,11,12,13,
| | | [3,4,9,10,15] | 3.55 | [2,11] -77.5 3.283 High,
| | | [5,6,7,8] | | [3,4,9,10,15] Choose
| | MF=1 | CDC=3.697 | |
| | | 3.283 Same as above 0.01 3.283 OK |
| 1 | [2,11] | [3,4,9,10,15] | 3.05 | [2,11] 1.8 3.053 Low,
| | [5,6,7,8,1,12,
| | | 13,14] | | [3,4,9,10,15] Choose
| | | 1,5,7,13,14] | | 3.053
| | NF=3 | CDC=3.283 | | [6,8,12] |
| | | 3.053 Same as above 0.01 3.053 OK |
| 2 | [2,11] | [3,4,9,10,15] | 2.70 | [2,11,15] 73.7 2.931 R low
| | [1,5,7,13,14,
| | | [6,8,12] | | 13] Choose 2.93
| | | [6,8,12,1,3,4] | |
| | MF=2 | CDC=3.053 | | 2.93 |
| | | 2.93 [2,11] -0.10 2.93 OK
| | | [1,4,5,7,9,
| | | 10,13,14]
<p>| | | [6,8,12,3,15] |
| | | (Contd.) | | |</p>
<table>
<thead>
<tr>
<th>Iteration</th>
<th>Initial Allocation</th>
<th>Intermediate Allocation</th>
<th>Final Allocation</th>
<th>Z(R,X)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>[2,11], [1,4,5,7,9,10, 13, 14], [3,6,8,12,15]</td>
<td>2.775 [2,11] [5,7,9,10,13, 14] [3,6,8,12,15, 14]</td>
<td>2.928</td>
<td>Same as above</td>
<td>0.928 OK</td>
</tr>
</tbody>
</table>

* Based on range analysis choose R = 2.775

4

<table>
<thead>
<tr>
<th>Initial Allocation</th>
<th>Intermediate Allocation</th>
<th>Final Allocation</th>
<th>Z(R,X)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>[2,11], [5,7,9,10,13, 14], [3,6,8,12,15, 14]</td>
<td>2.93 [2,11,12] [1,4,5,7,9, 14] [3,6,8,15]</td>
<td>2.895</td>
<td>Same as above</td>
<td>-0.02 2.895 OK</td>
</tr>
</tbody>
</table>

* Based on range analysis choose R = 2.93

5

<table>
<thead>
<tr>
<th>Initial Allocation</th>
<th>Intermediate Allocation</th>
<th>Final Allocation</th>
<th>Z(R,X)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>[2,11,12], [1,4,5,7,9, 10,13,14], [3,6,8,15]</td>
<td>2.80 [2,11,12] [5,7,9,10,13, 14] [3,6,8,15,1,4]</td>
<td>2.869</td>
<td>Same as above</td>
<td>-0.01 2.869 OK</td>
</tr>
</tbody>
</table>

* Based on range analysis choose R = 2.80

Refer iteration 4, step 2 onwards in RSP #1
TABLE 9 c

Iteration Log for the Approximation Procedure

Number of Parts = 15
Random Starting Partition = 3

<table>
<thead>
<tr>
<th>ITR</th>
<th>INITIAL ALLOCATION</th>
<th>INTERMEDIATE AND FINAL ALLOCATIONS</th>
<th>OBJ</th>
<th>NEW OBJ</th>
<th>Z(R,X)</th>
<th>CDC</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>[1,5,7,9,13,14]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[3,6,11,15]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[2,4,8,10,12]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MF=1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CDC=3,157</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Based on range analysis choose R=3.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.10</td>
<td>[7,13,14]</td>
<td>7.90</td>
<td>3.124</td>
<td>Low</td>
<td></td>
<td>Choose</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[3,6,11,15]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[2,4,8,10,12,1,5,9]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.124 Same as above 0 3.124 OK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>[7,13,14]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[3,6,11,15]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[2,4,8,10,12,1,5,9]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MF=3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CDC=3.124</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Based on range analysis choose R=2.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.90</td>
<td>[7,13,14]</td>
<td>22.4</td>
<td>2.961</td>
<td>Low</td>
<td></td>
<td>Choose</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[3,6,11,15]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[2,4,8,10,12,1,5,9]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.961 Same as above 0 2.961 OK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>[1,4,5,7,8,9,13,14]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[3,6,11,15]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[2,10,12]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MF=1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CDC=2.961</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Based on the range analysis choose R = 2.825</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.825</td>
<td>[1,4,5,8,9,13]</td>
<td>15.56</td>
<td>2.876</td>
<td>Low</td>
<td></td>
<td>Choose</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[3,6,11,15]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[2,10,12,7,14]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.876 Same as above 0.01 2.876 OK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Contd.)
TABLE 9c (continued)

<table>
<thead>
<tr>
<th>Iter No.</th>
<th>INITIAL ALLOCATION</th>
<th>INTERMEDIATE OBJ R AND FINAL PN. NEW ALLOCATIONS</th>
<th>Z(R,X) CDC Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>[1,4,5,8,9,13]</td>
<td>* Based on range analysis choose R=2.876</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[3,6,11,15]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[2,7,10,12,14]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MF=1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CDC=2.876</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.876 Same as 0.02 2.876 OK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Initial</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Family configuration not changed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Choose the family with next highest D_k</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i.e., MF=3. Based on the range analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R=2.80</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.80 [1,4,5,8,9, 22.90 2.875 Low</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[3,6,11,12,15]</td>
<td>Choose 2.875</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[2,7,10,14]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.875 Same as above -0.01 2.875 OK</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>[1,4,5,8,9,13]</td>
<td>* Based on range analysis choose R=2.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[3,6,11,12,15]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[2,7,10,14]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MF=2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CDC=2.875</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.75 [1,4,8,5,9, 22.2 2.819 Low,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[13,3]</td>
<td>Choose 2.818</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[6,11,12,15]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[2,7,10,14]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.818 [1,3,4,5,8, 0 2.818 OK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[9,13]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[6,11,12,15]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[2,7,10,14]</td>
<td></td>
</tr>
</tbody>
</table>

(Contd.)
<table>
<thead>
<tr>
<th>Itr No.</th>
<th>INITIAL ALLOCATION</th>
<th>INTERMEDIATE OBJ R AND FINAL FN. NEW ALLOCATIONS</th>
<th>Z(R,X) CDC Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>[1,3,4,5,8,9,13]</td>
<td>* Based on range analysis choose R=2.725</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[6,11,12,15]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[2,7,10,14]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MF=1</td>
<td>2.725 [1,3,4,5,8,13] 23 2.799 Low,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CDC=2.818</td>
<td></td>
<td>Choose [6,11,12,15]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[2,7,9,14] 2.799</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.799 Same as above 0 2.799 OK</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>[1,3,4,5,8,13]</td>
<td>* Based on range analysis choose R=2.799</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[6,11,12,15]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[2,7,9,10,14]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MF=1</td>
<td>2.799 Same as initial 0 2.799 OK Family</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>configuration not changed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CDC=2.799</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Choose the family with next highest D_k i.e.,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MF=3. Based on range analysis choose R=2.799</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.799 Same as initial 0 2.799 OK Family</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>configuration not changed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>All families considered for reallocation STOP</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 9 d

Iteration Log for the Approximation Procedure

Number of Parts = 15
Random Starting Partition = 4

<table>
<thead>
<tr>
<th>itr INITIAL</th>
<th>ALLOCATION</th>
<th>INTERMEDIATE OBJ AND FINAL FN. NEW ALLOCATIONS Z(R,X) CDC Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[1,5,8,10,15], [3,9,7,13,14], [2,4,6,11,12]</td>
<td>* Based on range analysis choose R=3.30</td>
</tr>
<tr>
<td>0</td>
<td>MF=2</td>
<td>CDC=3.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.30 [1,5,8,10,15], -40.5 3.20 R high 7,9,13,14] Choose [3] 3.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[2,4,6,11,12]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.20 Same as above 0 3.20 OK</td>
</tr>
<tr>
<td></td>
<td>[1,5,7,8,9,10,13,14,15], [3] [2,4,6,11,12]</td>
<td>* Based on range analysis choose R = 3.05</td>
</tr>
<tr>
<td>1</td>
<td>MF=1</td>
<td>CDC=3.204</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.05 [5,7,9,10,13, 15.7 3.105 Low, 14] Choose [1,3,8,15] 3.105</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[2,4,6,11,12]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.105 Same as above 0.02 3.105 OK</td>
</tr>
<tr>
<td></td>
<td>[5,7,9,10,13,14] [1,3,8,15] [2,4,6,11,12]</td>
<td>* Based on range analysis choose 3.105</td>
</tr>
<tr>
<td>2</td>
<td>MF=1</td>
<td>CDC=3.104</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.104 Same as initial 0.02 3.105 OK Family configuration not changed.</td>
</tr>
</tbody>
</table>

(Cont'd.)
<table>
<thead>
<tr>
<th>Itr No.</th>
<th>INITIAL ALLOCATION</th>
<th>INTERMEDIATE R</th>
<th>OBJ AND FINAL FN. ALLOCATIONS</th>
<th>NEW ALLOCATIONS</th>
<th>Z(R,X)</th>
<th>CDC Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.95</td>
<td>[5, 7, 9, 10, 13, 14]</td>
<td>[1, 3, 8, 15, 4]</td>
<td>2.846 High, Choose 2.846</td>
<td>[2, 6, 11, 12]</td>
<td>2.846</td>
<td>OK</td>
</tr>
<tr>
<td>2.846</td>
<td>Same as above</td>
<td>-0.01</td>
<td>2.846 OK</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Refer to Iteration 5 onwards in RSP #1
TABLE 9 e

Iteration Log for the Approximation Procedure

Number of Parts = 15

Random Starting Partition = 5

<table>
<thead>
<tr>
<th>ITR</th>
<th>INITIAL ALLOCATION</th>
<th>INTERMEDIATE OBJ R AND FINAL FN. NEW ALLOCATIONS</th>
<th>Z(R,X) CDC Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>[1, 3, 9, 12, 13]</td>
<td>3.35 [1, 3, 9, 12, 13, -60 3.209 High, 4, 5, 7, 10]</td>
<td>Choose 3.209</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[4, 10, 11, 5, 7]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[2, 6, 8, 14, 15]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MF=2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CDC=3.665</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>* Based on range analysis choose R=3.35</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>[1, 3, 4, 5, 9, 12, 13]</td>
<td>3.10 [1, 3, 4, 5, 9, 13, 6.6 3.123 Low, 7, 10, 11, 12]</td>
<td>Choose 3.123</td>
</tr>
<tr>
<td></td>
<td>[7, 10, 11]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[2, 6, 8, 14, 15]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MF=1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CDC=3.197</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>* Based on range analysis choose R=3.10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>[1, 3, 4, 5, 9, 13]</td>
<td>2.95 [1, 3, 4, 5, 9, 13, 0.4 2.95 OK, 8]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[7, 10, 11, 12]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[2, 6, 8, 14, 15]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MF=3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CDC=3.665</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>* Based on range analysis choose R=2.95</td>
<td></td>
</tr>
</tbody>
</table>

(Contd.)
<table>
<thead>
<tr>
<th>ITR INITIAL ALLOCATION</th>
<th>INTERMEDIATE OBJ AND FINAL FN. NEW ALLOCATIONS</th>
<th>Z(R,X) CDC Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1, 3, 4, 5, 8, 9, 13]</td>
<td>* Based on range analysis choose R = 85 2.85 Same as initial 33 2.95 Low, Choose 2.95</td>
<td></td>
</tr>
<tr>
<td>[7, 10, 11, 12, 14]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[2, 6, 15]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MF = 1</td>
<td>2.95 Same as above 0.03 2.95 OK Family configuration not changed. Choose family with the next highest D_k, i.e., MF = 2. Based on range analysis Take R = 2.85</td>
<td></td>
</tr>
<tr>
<td>CDC = 2.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1, 3, 4, 5, 8, 9, 13]</td>
<td>2.85 [1, 3, 4, 5, 8, 9, 13] 52 2.86 Low, Choose 2.86</td>
<td></td>
</tr>
<tr>
<td>[7, 10, 14]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[11, 12, 2, 6, 15]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1, 3, 4, 5, 8, 9, 13]</td>
<td>2.86 Same as above 0.28 2.86 OK</td>
<td></td>
</tr>
<tr>
<td>[7, 10, 14]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[11, 12, 2, 6, 15]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MF = 1</td>
<td>2.80 [1, 3, 4, 8, 13] 10.4 2.835 Low, Choose 2.835</td>
<td></td>
</tr>
<tr>
<td>CDC = 2.861</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1, 3, 4, 5, 8, 13]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[7, 10, 14, 9]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[11, 12, 2, 6, 15]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1, 3, 4, 5, 8, 13]</td>
<td>2.835 [1, 3, 4, 5, 8, 13] -0.35 2.835 OK</td>
<td></td>
</tr>
<tr>
<td>[7, 10, 14, 9]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[11, 12, 2, 6, 15]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MF = 3</td>
<td>2.775 [1, 3, 4, 5, 8, 13] 7.6 2.799</td>
<td></td>
</tr>
<tr>
<td>CDC = 2.835</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[7, 9, 10, 14, 2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[6, 11, 12, 15]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refer to iteration 6 of RSP #3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
VITA AUCTORIS

1958 Born in Hosmat, India, on 14th of December.

1974 Completed higher secondary education from Government High School, Kadaba, India.

1976 Completed Pre-University Course from Sri. Bhuvanendra College, Karkala, India.

1981 Graduated from The National Institute of Engineering, Mysore, affiliated to the University Of Mysore, India with a Bachelor's degree in Mechanical Engineering.

1981-84 Worked as an Industrial Engineer in the departments of Management Services and Industrial Engineering at Bharat Electronics Ltd., Bangalore, India.

1986 Currently a candidate for M.A.Sc. degree in Industrial Engineering at the University of Windsor, Windsor, Ontario, Canada.