Characterization and classification of textures in digitized images.

Hukam C. Gupta

University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation
https://scholar.uwindsor.ca/etd/1394

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.
NOTICE

The quality of this microfiche is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Previously copyrighted materials (journal articles, published tests, etc.) are not filmed.

Reproduction in full or in part of this film is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30.

CANADIAN THESSES

THÈSES CANADIENNES

AVIS

La qualité de cette microfiche dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

Les documents qui font déjà l'objet d'un droit d'auteur (articles de revue, examens publiés, etc.) ne sont pas microfilmés.

La reproduction, même partielle, de ce microfilm est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c.

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED

LA THÈSE A ÉTÉ MICROFILMÉE TELLE QUE NOUS L'AVONS RÉCEUE
CHARACTERIZATION AND CLASSIFICATION OF TEXTURES IN DIGITIZED IMAGES

by

Humam C. Gupta

A thesis presented to the University of Windsor in partial fulfillment of the thesis requirement for the degree of Master of Applied Sciences in Electrical Engineering

Windsor, Ontario, 1986
Permission has been granted to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film.

The author (copyright owner) has reserved other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without his/her written permission.

L'autorisation a été accordée à la Bibliothèque nationale du Canada de microfilmer cette thèse et de prêter ou de vendre des exemplaires du film.

L'auteur (titulaire du droit d'auteur) se réserve les autres droits de publication; ni la thèse ni de longs extraits de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation écrite.

ABSTRACT

Texture analysis is an important aspect of many image analysis tasks. The texture of a surface is characterized by properties such as fine, coarse, smooth, granulated, rippled, irregular, random, etc.

This thesis deals with three main problems of texture analysis, namely, texture description (Given a textured region, how can it be described?), texture discrimination or classification (Given a textured region or sample, to which of a finite number of classes does the sample belong?), and texture-based segmentation (Given a scene, how can it be segmented into different texturally homogeneous regions?). A critical analysis of the texture discrimination technique proposed by Raafat, 1995 is performed and the results are compared with the spatial gray level dependence method given by Haralick et al., 1973. The results obtained indicate that the scheme proposed by Raafat, 1985 could be as accurate as the method proposed by Haralick et al., 1973. The final part of the thesis introduces a new segmentation algorithm based on a region growing technique. Various advantages and limitations of this method are also discussed.
ACKNOWLEDGEMENTS

I gratefully acknowledge Prof. M. Shridhar for his invaluable guidance and encouragement at every stage of this work. I would also like to acknowledge Prof. M. Ismail, my co-supervisor, for his generous help and assistance. I extend my sincerest thanks to the committee members, Prof. M. Ahmadi and Prof. F. Alexander for their kind suggestions and help.

I wish to express my deep appreciation to my wife, Aruna Gupta, for her help and understanding throughout the pursuit of this degree. Many thanks are also due to my family members and friends for their concerns and inspirations.
CONTENTS

Abstract ... ii
ACKNOWLEDGEMENTS iii

CHAPTER I: INTRODUCTION 1
 Texture Description: 6
 Texture Discrimination: 6
 Segmentation of a Given Textured Image: 7

CHAPTER II: A REVIEW OF TEXTURE ANALYSIS SCHEMES 11
 Statistical Techniques: 12
 The Spatial Gray Level Dependence Method: .. 12
 The Gray Level run Length Method: 13
 The Gray Level Difference Method: 13
 The Power Spectral Method: 14
 Modelling Techniques: 15
 Statistical Models: 16
 Structural Models: 16

CHAPTER III: TEXTURE DESCRIPTION 22
 Definitions: 24
 Observation Window: 24
 Neighbourhood: 25
 Feature Observation Scheme: 25
 Feature Extraction: 25
 Gray Level Feature Extraction: 25
 Gradient Feature Extraction: 26
 Spatial Relationship of Primitive Features: 31
 Gray Level Histogram: 31
 Gradient Histogram: 31
 Results: ... 32

CHAPTER IV: TEXTURE DISCRIMINATION 42
 Resolution Dependent Texture Classification: 42
 Problem Formulation: 44
 Experimental Results: 54
 The Spatial Gray Level Dependence Method: 57
CHAPTER I
INTRODUCTION

With the advent of digital computers, it has become possible to simulate some aspects of human perception by machines. For the last two decades a significant amount of work has been done in the area of image understanding and image analysis. The main interest in this area is to extract image information for human interpretation or for machine processing. In the latter case the extracted data must be in a form acceptable to digital computers.

The problem of texture characterization and texture based segmentation has become critically important to many researchers in various fields of image processing. Several approaches to this problem have been reported in the literature (e.g. Haralick, 1979; Weszka, 1976; Gupta, 1975). The areas of applications include scene analysis, remote sensing (e.g. multispectral image analysis, classification and monitoring of urban areas etc.), industrial automation (e.g. parts identification on assembly lines, defects and faults inspection), medical imaging (e.g. radiographs, photographs of the ocular fundus and blood samples etc.), and military applications.
It has long been recognized that texture plays an important role in establishing and classifying objects and regions in a given image (Ehrich et al., 1977; Wechsler et al., 1980). Texture is important because it covers the entire area of an object. For instance, consider the contour detection problem, where a distinct rectangular contour is given in an aerial photograph (Figure 1). The shape of this rectangular region does not give sufficient information about the object; it may be grassland, forest, and so on. In such cases, the properties like color and gray level are not sufficient to describe the object and we must consider more complicated properties. For example, in Figure 2, the areas shown are not homogeneous on the basis of pointwise gray level. It is clear that they exhibit homogeneous properties on a large basis. These complicated properties which are required in order to describe the interior of an object are referred to as textural properties (Niemann, 1981). Also according to Sklansky, "Local properties of a region may be constant, slowly varying, or approximately periodic, a discontinuity in the textural properties between different adjacent regions can be detected and hence be used to segment a given image." In spite of its importance in image analysis problems there is no rigid description of texture and there is no agreement on how to measure it. Texture has been defined in different forms by different authors. A few of these definitions are listed below.
"Texture is the term used to characterize the surface of a given material" (Wechsler and Citron, 1930). According to Sklarsky, 1978, "a region in an image has a constant texture if a set of local statistics of other local properties of the picture function are constant, slowly varying, or approximately periodic". In general, we can say that texture is a regional property of an image function which refers to the spatial distribution of intensity variations. And it is observed in the structural patterns of surfaces of objects such as wood, grain, grass, cloth, sand and so on. Figure 2 shows some examples of textures like beach pebbles, lizard skin, handwoven oriental rattan, and plastic pellets.

Visual texture is a difficult concept to define, but it is commonly considered as the repetitive occurrence of local patterns in the given region. Thus one can describe a texture by describing its local patterns and their placement rule. A texture element is a visual primitive with certain invariant properties which occur repeatedly in different positions, deformations, and orientations inside a given textured region. The elements which are smaller in size (having a diameter of a few pixels) form a micro-texture whereas elements which are bigger in size form a macro-texture.

In this topic, there are three main problems of interest, namely:

1. Texture Description
Fig. 1 An Aerial Photograph
Fig. 2 Textures (a) Beach Pebbles, (b) Lizard Skin,
(c) Handwoven Oriental Rattan;
(d) Plastic Pellets
2. Texture Discrimination
3. Segmentation of a Given Textured Image

1.1 **Texture Description:**

The problem of texture description can be defined as: Given a textured region, how can it be represented?

In this case one usually assumes the given sample to be texturally homogeneous (a single texture element). According to Shen and Wong, 1990, an ideal texture representation should enhance various aspects of image textures at different resolution levels and should allow for small or no variations across different samples taken from the same texture.

1.2 **Texture Discrimination:**

Here we define the problem as: Given a textured region, to which of a finite number of classes does the region belong?

The main objective is to develop an effective procedure so that classification of different classes of textures can be done by automation. The procedure should be as general as possible so that one does not have to develop a new procedure or rule each time a new texture class is defined.
1.3 Segmentation of a Given Textured Image:

The final problem can be defined as: Given a textured image or a scene, how can it be segmented into different texturally homogeneous regions?

This is the most difficult problem for a number of reasons. For example, textural properties may undergo slow spatial variations that are difficult to detect or quantify. Several techniques that use image texture information have been proposed. Frequently used texturally based approaches to image segmentation are:

1. Region Growing
2. Region Merging
3. Region Splitting

Region growing and region merging are processes in which adjacent regions having similar textures are combined or merged. Region splitting is a process where the detection of dissimilarity of texture among two or more neighbourhoods within a region results in splitting the region into regions of greater homogeneity.

A brief discussion on texture analysis algorithms is given in Chapter II. This chapter also covers a critical review of some of the existing segmentation techniques.

The problem of texture description is covered in Chapter III. Texture can be considered as a global pattern arising
from the repetition of one or more local subpatterns. So in order to characterize a given texture, it is important to consider both local and global aspects. The importance of multi-resolution levels for an ideal texture representation is reported in the first section of this chapter. Then the local features (the gray level feature and the gradient feature) are extracted at different resolution levels using a feature extraction scheme proposed by Baafat, 1985. The spatial organization of these features is given by the gray level histogram and the gradient histogram. So a texture block can be described by a set of histograms of various primitive features at different resolution levels. An experiment is demonstrated at the end of this chapter to show little or no variations in the shape of histograms if a sample is taken from a homogeneous textured image.

The problem of texture discrimination or classification (Given a texture sample, to which of a finite number of classes does the sample belong?) is addressed in Chapter IV. Texture within an image block is characterized by its gray level and its gradient histograms. Thus in order to compare two blocks, effective methods are needed to compare histograms for a specific feature at different resolution levels. A traditional approach of comparing two histograms is the symmetric difference method. But this method does not take into account the event distance (i.e. the distance
between the events of the two histograms), which is important in order to evaluate the exact similarity between two histograms (Shen and Wong, 1980). The texture distance between two image blocks is calculated by treating it as a transportation problem that can be solved by the simplex method. This method is then compared with the gray level dependence method (Haralick et al., 1973).

In Chapter V, a computationally simple and efficient technique for segmentation of a given textured image is proposed. This method uses texture as the basic information for segmentation. The image is first divided into cells or blocks of equal size. Each block is then represented by its gradient feature (i.e., gradient vector histogram). Next, the gradient vector histogram of the first image block is compared to its neighbouring blocks by applying an appropriate histogram comparison technique (Chapter IV). All neighbouring blocks that meet the similarity criteria become part of the region being grown. The neighbours of the newly accepted blocks are then examined for further growth. The process is repeated recursively 'till no more blocks can be added to the region under consideration. Then a new region is grown around a block which has not been previously selected. When all the blocks have been assigned appropriate labels, the process terminates.
Chapter VI, presents a brief summary of the work done and the future research possible.
CHAPTER II

A REVIEW OF TEXTURE ANALYSIS SCHEMES

Texture is a regional property of an image which refers to the spatial distribution of intensity variations. In many cases a picture can be considered as a composition of uniformly textured regions, or as containing objects on a background, where objects and background differ in texture. Thus texture features, measuring specific texture characteristics, are often of importance for picture description and analysis. It is generally agreed that texture plays a fundamental role in classifying objects and outlining regions. A critical review of the various approaches to texture analysis is given in Haralick, 1979. A brief description of the frequently used techniques is given in the next section.

Generally texture analysis techniques fall into the following two categories:

1. Statistical Techniques
2. Modelling Techniques
2.1 Statistical Techniques:

Some of the various statistical methods which are frequently used to analyse a given textured image are given below. For more detailed algorithms see Haralick, 1979, Wetzka et al., 1976; and Conners and Earlow, 1980.

1. The Spatial Gray Level Dependence Method
2. The Gray Level Run Length Method
3. The Gray Level Difference Method
4. The Power Spectral Method

2.1.1 The Spatial Gray Level Dependence Method:

The spatial gray level dependence approach computes an intermediate matrix of measures from the digitized image data, and then defines features as functions on this intermediate matrix. Given a picture function F with a set of discrete gray level values G, an intermediate matrix or gray level co-occurrence matrix is computed by estimating the probability $P(i,j)$ of a pair of gray levels (i,j) occurring at a separation d and an angle θ. A set of statistical features proposed by Haralick et al., 1973 (Appendix A) can be used to extract textural information from these matrices. Wetzka et al., 1976 used some of these features for terrain classifications.
2.1.2 The Gray Level Run Length Method:

A gray level run is a set of consecutive, collinear picture points having the same gray level value. This method is based on an estimation of the number of times an image contains a run of length \(j \) for gray level \(i \) in a given direction \(\theta \), where the length of the run is the number of picture elements within the run. From these matrices, statistical features like gray level distribution, run length distribution, short run emphasis etc. (Appendix A) are extracted which represent the underlying texture in the given image.

2.1.3 The Gray Level Difference Method:

The gray level difference method is based on computing the first order statistics of local property values. Consider a digital image \(F(i,j) \). For any given displacement \(d = (d_1,d_2) \), where \(d_1 \) and \(d_2 \) are integers, let \(G_d(i,j) \) be the difference of gray levels of two points separated by the distance \(d \), i.e.,

\[
G_d(i,j) = |F(i,j) - F(i+d_1,j+d_2)|
\]

Then the gray level difference density function \(D(k|d) \), associated with the possible values of \(G \) can be defined as:

\[
D(k|d) = P(G_d(i,j) = k)
\]

Commonly used values of \(d \) are \((0,s)\), \((-s,0)\), \((s,0)\), or \((-s,-s)\), where \('s'\) is the inter-sample spacing distance. From each of these density functions, a set of statistical
features such as contrast, angular second-moment, entropy, mean, and inverse difference moment (refer to Appendix A) are computed to characterize a given textured image.

2.1.4 The Power Spectral Method:

The power spectral method is based on computing the two-dimensional Fourier transform of a given image. The power spectrum (magnitude squared of the Fourier transform) of the given image is then evaluated. Thus if a texture is at all periodic or directional, the power spectrum tends to have peaks for corresponding spatial frequencies. Then radial and angular features (Appendix A) are measured using the power spectrum.

Weszka et al., 1976 performed a comparative study to determine the relative abilities of the spatial gray level dependence method, the gray level run length method, the gray level difference method and the power spectral method. Conners et al., 1980 also developed a theoretical evaluation methodology to compare the relative loss of texture context information on going from digital images to intermediate matrices (e.g., gray level co-occurrence matrices, gray level run length matrices, gray level density functions and power spectrum). They concluded that the gray level dependence method is the most powerful method of the above four. However, the power of this method depends on how many and
which values are used for inter-sample spacing distance 'd'. Multiple values of 'd' and 'e' must be used to completely embody the whole information about the spatial distribution of intensity variations in some texture images. It was also found that the gray level difference method was more powerful than the power spectral method, and the gray level run length method was a poor method for texture analysis.

The above methods work well if an image of uniform texture is provided. However, if an image contains several regions of different textures, it would not be meaningful to compute these matrices for the entire image (Niemann, 1979). For such images, the first step will be to segment them into texturally homogeneous regions. Then these matrices can be computed for uniformly textured regions.

2.2 Modelling Techniques:

In this approach, we have to define models which discriminate or characterize a variety of textures. Most of the existing texture models use the statistical approach. There are two broad classes of texture models:

1. Statistical Models
2. Structural Models
2.2.1 Statistical Models:

Statistical models are based upon an underlying generative process. The set of parameters which characterize the models are used as features required for texture discrimination. By studying the statistical properties of the given textured image (e.g., auto-correlation function) McCormick et al., 1974 made a best fitting time series analysis model. These models are useful for texture synthesis purposes.

In a theoretical study done by Conners and Harlow, Markov random fields were used to compare different texture analysis approaches. Although statistical models have shown some success in discriminating sets of textures, they are less powerful than the structural models that use probabilistic subpattern selection and placement.

2.2.2 Structural Models:

Structural models are based on the notion that texture is composed of texture primitives and the spatial arrangement of these primitives. Serra et al., 1973 proposed a model that views a binary texture as produced by a set of translations of a structural element. Textural properties can be obtained by appropriately parameterizing the structural elements. Serra et al., 1973 also pointed out that generalized covariance functions can be used to obtain various texture features.
Zucker, 1976 proposed a model in which he viewed a real texture as being a distortion of an ideal texture. Certain transformations were applied to the primitives to distort them to provide a realistic texture. Carlucci, 1972 used primitives such as line segments and open or close polygons. Lu et al., 1978 developed a grammar syntactic approach to texture analysis. Actually there is no unique grammar for any given texture. In fact there are an infinite set of choices for rules and symbols. Few of the various grammars used for grammatical models are shape grammar, tree grammar and array grammar.

One of the main objectives of texture analysis problems is to segment a given image into texturally homogeneous regions (regions having a uniform texture). Image segmentation is the division of an image into different regions each having certain properties. A detailed survey of image segmentation is given in Fu and Mui, 1981. It was observed that almost all image segmentation techniques are application dependent. The reason for not having a general purpose image segmentation algorithm is that a two-dimensional image function can represent a potentially infinite number of possibilities. Segmentation techniques can fall into one of the two general categories:

1. Point Dependent Techniques
2. Region Dependent Techniques
A summary of some of the techniques is provided in the next section.

Image thresholding is one of the simplest and reasonably effective techniques. It thresholds the given image into different regions according to some appropriately chosen threshold values (e.g., if an image has a bimodal gray level histogram where one mode represents the object and the other mode represents the background, then the valley between these modes can be used as a threshold value). This method works reasonably well when an appropriate threshold selection is possible. But it is difficult to apply to the situations where an object consists of textures made up of pixels of various gray levels.

Muerle and Allen, 1968 proposed another technique which uses the statistical properties of an image block or image subregion. Here, the image is first divided into blocks of size 2x2 or 4x4 and so on. The first block is labelled as '1'. The statistical features of this block are then compared with the statistical features of the neighbouring blocks. If they are similar then the blocks are merged together and a new set of statistics are computed. If no more blocks can be merged then the next unlabelled block is given label '2' and the procedure is repeated until all the blocks are labelled. In this method, the image is segmented into regions of homogeneous gray level statistics.
In another approach given by Kiemann, 1979, one starts with the entire image and splits it into homogeneous regions, where a region is homogeneous if the mean gray level of any one of its subregions is equal to the mean gray level of the region.

Most of the region growing techniques are strictly based on image properties such as gray level, border strength, and region shape. So basically the merging criteria is influenced by the interpretation of the region.

Nuerle and Allen used a regional neighbour search method to merge regions of similar properties. Pavlidis, 1972 partitioned the image into a collection of one dimensional strips. These strips were approximated by a linear combination of some known simple functions. Then the approximated functions were merged together if the approximating coefficients were close enough.

Feldman et al., 1973 proposed another method based on semantic interpretation for region merging. They emphasized maximizing the probability that all regions and borders are correctly interpreted.

Gupta et al., 1974 used a minimum distance classifier in which the initial segmentation was done by using the scheme
proposed by Huerle and Allen. Then each initial region was interpreted as one of a small predetermined number of different classes such as water, lizard skin, wood, etc. Neighbouring regions were then merged on the basis of their class membership.

A clustering method can be used to group the points in the characteristic feature space into clusters. These clusters are then mapped back to the spatial domain to produce the segmentation of an image. The characteristic features that may be used are gray level, texture measures etc. It is desirable to use two or more features to perform image segmentation because there may be problems which cannot be resolved using one feature. Swain et al., 1968, Haralick et al., 1975, Schachter et al., 1979, and Ayyagaval et al., 1977 used clustering techniques for image segmentation.

The method proposed in this thesis uses texture as the basic information for segmentation. The image is first partitioned into blocks or subregions of equal size. Each block is represented by its local features and global features. The global features of each block are compared with the global features of its neighbouring blocks using a distance measure technique proposed by Baafat, 1985. The regions are then merged according to a thresholding
criteria. A detailed explanation of this method is given in chapter V.
CHAPTER III

TEXTURE DESCRIPTION

Texture can be described as being generated by one or more basic local patterns which are replicated over an image region. Texture has generally been represented through the qualitative texture descriptors such as coarseness and directionality. Coarseness is one of the important texture features which depicts the size of the texture elements. For example, if there are two textured images which differ only in scale, then the magnified one is coarser. Also, the larger the element size and/or the less its elements are repeated, the coarser it is. Directionality on the other hand involves the shape of the texture elements and their placement rule.

According to Haralick, 1979, texture can be viewed as a two layer process. The first layer is for describing the tonal primitives or local properties which form the image texture and the second layer is for describing the spatial relationship of these tonal primitives. Tonal primitives are regions with tonal properties and are described in terms of average gray level. Consequently, for texture characterization, the tonal primitives or the local
properties as well as the spatial relationship between these
tonal primitives must be taken into consideration.

A survey of most of the approaches for texture
classification is given in Haralick, 1979. Most of
these schemes tend to emphasize one or the other aspect, but
not both. The method used in this thesis is texture
description is the resolution dependent texture
representation technique proposed by Raafat, 1985, and it
considers both the local and the global aspects of texture.
The concept of resolution dependency for an ideal texture
representation was devised by Wong and Shen, 1990.
According to this scheme an ideal texture representation
should be schematically general. It should also allow small
variations across different samples taken from the same
texture and it should contain all essential texture
characteristics with little redundant information. The
details of this method are given in the next section.

According to Wong et al., 1980 and Rosenfeld, 1984, an
ideal texture representation should provide information at
multiple resolution levels. Resolution is related to the
ability to discriminate fine details in the field of view.
A multiple resolution scheme is important because a gray
level histogram may remain unchanged under the rearrangement
of pixels at resolution level one (original image). However
when higher resolution levels or low resolution images are used, these histograms will be different. The resolution levels are varied by using observation windows of different sizes. The resolution can be reduced within a given observation window by replacing the gray level of each pixel with the average gray level of that pixel and its neighbours.

The primitive texture features chosen are:

1. The Gray Level Feature
2. The Gradient Feature

Both features are used to represent a texture at different resolution levels. The choice of these features were made on the basis of a study done by Baafer, 1985. If resolution is taken into account, the most primitive features to be observed in a window are the gray level feature and the gradient feature, where gradient is a two-dimensional vector (gradient magnitude and direction). Some of the important definitions concerning the feature extraction scheme are given below.

3.1 Definitions:

3.1.1 Observation Window:

According to Wong and Vogel, 1977, an observation window \(W_m \) can be defined as a square, of dimension \(S(m) \times S(m) \) pixels, such that \(S(m) > S(m-1) \) where \(m \) represents a specific resolution level.
In order to enable the centre of the window to be placed on a pixel, the number of pixels in \(S(m) \) should be an odd number.

\[
S(m) = \beta^{m-1}
\]

where \(\beta (>1) \) is the basic window size parameter.

So if \(\beta = 3 \) and \(m = 1 \) then window size = \(1 \times 1 \);
if \(\beta = 3 \) and \(m = 2 \) then window size = \(3 \times 3 \);
and so on.

3.1.2 Neighbourhood:

Let \(Y_m(i,j) \) be the neighbourhood specified by \(W_m \) with centre positioned at \((i,j) \) for resolution level \('m' \).

3.1.3 Feature Observation Scheme:

Let \(E_t = \{ k \mid k=0, 1, 2, \ldots, k_t-1 \} \) be a set of discretized values, where \('t' \) represents a specific texture feature and \(k_t \) is the total number of events in the set. The feature extraction scheme is then defined as the mapping of the feature contents inside the neighbourhood onto the set \(E_t \).

3.2 Feature Extraction:

3.2.1 Gray Level Feature Extraction:

The images have been obtained by directly photographing them from the pictures in Erodatz, 1966. Lower resolution level images were obtained by replacing the gray level of each
pixel within an observation window with the average gray level of that pixel and its neighbors. Let \(F_g = \{ k | k = 0, 1, 2, \ldots, K_g-1 \} \) where \(K_g \) is the number of discretized gray levels.

The gray level feature extraction is thus defined as the mapping of the gray level values at different resolution levels onto the set \(F_g \).

3.2.2 Gradient Feature Extraction:

The gradient feature at resolution level \(m \) is calculated by applying a Sobel operator to a 3 x 3 image region. Consider a 3 x 3 image region as shown in Figure 3, where \(a, b, c, \ldots, i \) represent the gray level values. By applying the Sobel operator (Fig. 4) to this image region, the gradient in the x-direction can be defined as:

\[
G_x(i,j) = (c + 2f + i) - (a + 2d + g)
\]

and the gradient in the y-direction can be defined as:

\[
G_y(i,j) = (a + 2b + c) - (g + 2h + i)
\]

From this, the gradient magnitude \(G(i,j) \) at point \(e \) can be given as:

\[
G(i,j) = \sqrt{G_x^2(i,j) + G_y^2(i,j)}
\]
\[\theta(i, j) = \tan^{-1} \left(\frac{G_y}{G_x} \right) \]

For computer implementation of the gradient magnitude, the following first order approximation is computationally more efficient:

\[|G(i, j)| = |G_x(i, j)| + |G_y(i, j)| \]

A two-dimensional discretization scheme given in fig. 5, has been used to represent the two-dimensional gradient vector (gradient magnitude and gradient directionality). The gradient magnitude is discretized into five intervals, whereas the gradient directionality is discretized into eight directions. It is assumed that the central event bears no directionality. Thus if the gradient is less than '5', irrespective of the direction, it will be mapped onto event '0' (Figure 5). Thus there are forty-one events in total. The outer ring has the maximum gradient magnitude possible.

Let \(E_v = \{ k | k = 0, 1, 2, \ldots, K_v - 1 \} \)

where \(K_v \) is the number of gradient events (41).

Then gradient feature extraction can be defined as the mapping of the gradient magnitude and the directionality onto one of the events in set \(E_v \). For example,
If \(10 \leq G(i,j) < 15 \)

and \(\frac{\pi}{9} \leq \Theta(i,j) < \frac{3\pi}{9} \)

then the mapped event will be '10'.
Figure 3
A 3 x 3 Image Region

Figure 4
Sobel Operator
Fig. 5 A two-dimensional discretization scheme
3.3 Spatial Relationship of Primitive Features:

The histogram representation technique is used to describe the spatial relationship of the features used. A histogram is a set of values where each value represents the frequency of occurrence of a particular event. We define a gray level histogram for the gray level feature and a gradient vector histogram for the gradient feature.

3.3.1 Gray Level Histogram:

Consider an image block 'a' of size \(n \times n \). The gray level feature is extracted using the feature extraction scheme and is mapped to the set \(E_g \). The gray level histogram over this image block can then be defined as:

\[
H_g^a = \{ h(k) | k = 0, 1, 2, \ldots, Kg-1 \}
\]

where \(h(k) \) is the frequency of occurrence of event \(k \).

3.3.2 Gradient Histogram:

For an image block 'a' of size \(n \times n \) the gradient magnitude and directionality can be mapped onto the set \(E_v \) using the two dimensional discretization scheme. The gradient vector histogram is then defined as:
\[H^a = \{ h(k) \mid k = 0, 1, 2, \ldots, K_v - 1 \} \]

where \(h(k) \) is the frequency of occurrence of event \(k \).

Thus given an image block 'a' of size \(n \times n \), texture representation can be defined as a set of histograms of various primitive texture features at different resolution levels. Also texture representation of a texturally homogeneous region is defined as a set of the mean of the histograms of various primitive features obtained from all image subregions covering that region at different resolution levels (Wong et al., 1980).

3.4 Results:

A set of digital image data is selected from Brodatz, 1966 to show how the histogram representation characterizes the underlying texture and also to show little or no variations across different samples taken from the same texture. The images selected for this experiment are lizard skin, and sand. Both images, of size \(128 \times 128 \), are digitized into 256 gray levels, ranging 0-255, '0' being the darkest. Lower resolution images or higher resolution levels can be obtained by replacing the gray level of each pixel within an observation window with the average gray level of that pixel and its neighbours.

\[\sum \]

\[\zeta \]
Figures 6(a)-6(b) show the images of the lizard skin and its sample (64x64). The corresponding gray level histograms at different resolution levels, with the gray levels mapped to 32 values, are shown in figs. 6(c)-6(d). Figures 6(e)-6(f) show the corresponding gradient vector histograms at different resolution levels, with the gradient mapped to forty one events. Similarly figs. 7(a)-7(f) show the images and their corresponding histograms for the sand.

The gray level histogram shown in fig. 6(c) represents the black spots on the white background. It is noticed that the two peaks are more distinct at resolution level two. As the resolution decreases, the curve becomes more smooth with extremal points moving inward. Figure 6(d) clearly shows that there are very little variations if samples are taken from the same texture. The wide range of gray level values and the high values of the gradient are also noticed. As expected, when the resolution decreases, the gradient tends to shift toward the centre, although the shift is slow due to the wide range of gray level values (fig. 6(e)-6(f)). The general behavior of the gradient vector histogram remained the same for its sample. The underlying characteristics of the textured image and slight variations if a sample is taken from a homogeneous texture, are also clear from figs. 7(a)-7(f).
Fig. 6 (a) Lizard Skin; (b) Sample of (a) (64 x 64)
Fig. 6 (c) Gray level relative frequency histogram of Fig. 6 (a)
(d) Gray level relative frequency histogram of Fig. 6 (b)
Fig. 6(c) Gradient vector histogram of Fig. 6(a)
Fig. 6(1) Gradient Vector histogram of Fig. 6(b)
Fig. 7 (a) Sand: (b) Sample of (a) (64 x 64)
Fig. 7 (c) Gray level relative frequency histogram of Fig. 7 (a)
(d) Gray level relative frequency histogram of Fig. 7 (b)
Fig. 7(c) Gradient vector histogram of Fig. 7(b)
CHAPTER IV

TEXTURE DISCRIMINATION

Texture discrimination or classification is an important aspect of many image analysis problems. In this type of problem, an image is known to contain data from one of a finite number of texture classes, and the aim is to find out the proper texture class to which that image belongs. In this chapter, a critical analysis of a texture classification technique proposed by Raafat, 1985 is presented. The first section discusses the resolution dependent texture classification technique (Raafat, 1985); the second section of this chapter describes the gray level dependence method (Haralick et al., 1973). And then the performance of both methods are compared.

4.1 Resolution Dependent Texture Classification

In Chapter III, it was shown that texture within an image block can be represented by its histograms (the gray level histogram and the gradient histogram). So in order to compute the similarity between two image blocks, we need to compare the two histograms for a specific feature.
The commonly used method for comparing histograms is to compute the area of symmetric difference between the two histograms and this is defined as the sum of the absolute values of the difference in the frequencies between corresponding events.

\[
\text{Area} = | H^a - H^b | \\
= \text{Difference between histograms } H^a \text{ and } H^b
\]

According to Wong et al., 1980, this method fails in certain cases because it does not take into consideration the distance effect between the events. For example, consider the following three gray level histograms:

\[
H^a = \{ 5, 0, 0, 0, 0, 0, 0 \} \\
H^b = \{ 0, 5, 0, 0, 0, 0, 0 \} \\
H^c = \{ 0, 0, 0, 0, 0, 0, 5 \}
\]

The gray level contrast between any two of the above histograms is the same according to the symmetric difference method, although it should not be. So it is important to consider the distance effect between events in order to compare two histograms. The method proposed by Raafat, 1995 provides an effective way for texture classification or discrimination and takes the event distances into consideration. A formal exposure to this technique is given below.
4.1.1 Problem Formulation:

If H^a_t and H^b_t are the two histograms representing the distribution of feature events within image blocks 'a' and 'b' respectively, then for a given feature 't' and a resolution level 'n', find a texture distance between them.

Definition 4.1: Let H^a_t and H^b_t be the two histograms representing the feature distribution within image blocks 'a' and 'b', for a specific feature 't', and are defined as:

$$H^a_t = \{ h^a_p \mid p = 0, 1, 2, 3, \ldots, K_t - 1 \}$$

and

$$H^b_t = \{ h^b_q \mid q = 0, 1, 2, 3, \ldots, K_t - 1 \}$$

where h^a_p is the frequency of occurrence of event p in image block 'a' and h^b_q is the frequency of occurrence of event q in image block 'b' for a specific feature 't'.

Definition 4.2: The event distance set C between any two events p and q for a specific feature 't' is defined as:

$$C_t = \{ C_t(p, q) \mid p = 0, 1, 2, \ldots, K_t - 1, q = 0, 1, 2, \ldots, K_t - 1 \}$$

where $C_t(p, q)$ is the distance function between p and q.

For the gray level feature the distance function between p and q can be given by computing the absolute difference of the two events.
For the gradient feature, the distance function can be computed by finding the radial distance and the angular distance. In Chapter III, it was assumed that the central event bears no direction. So if one or both of the events is 'C', that is, the central event, then only the radial components of the distance between two events will be taken into consideration.

The radial distance between two events p and q is given by their absolute difference.

The angular distance between events p and q is given by their smallest angular separation. Thus the event distance between two events p and q for the gradient vector feature is defined as:

If \(p \neq C \) and \(q = C \)
then \(C_v(p, q) = K \cdot \| p \| \)

If \(p = 0 \) and \(q \neq C \)
then \(C_v(p, q) = K \cdot \| q \| \)

If \(p = 0 \) and \(q = 0 \)
then \(C(p, q) = 0 \).

else \(C_v(p, q) = K \cdot \| p - q \| + \min(\| A_p - A_q \|, N \cdot \| p - q \|) \).

where \(K \) is the normalizing factor \((=0.5\) in this thesis)\);
\(d_t(a, b) \) is the discrete radial value for event \(p \);
\(R_q \) is the discrete radial value for event \(q \);
\(A_p \) is the discrete angular value for \(p \);
\(A_q \) is the discrete angular value for \(q \);
and \(N \) is the number of distinct directions.

The event distance set is illustrated in figure 8.

Definition 4.3: Let \(d_t(a, b) \) be the distance between two histograms \(H_t^a \) and \(H_t^b \) and be defined as:

\[
d_t(a, b) = \sum P \sum Q C_t(p, q) \cdot X(p, q)
\]

- \(C_t(p, q) \) is the event distance set and
- \(X(p, q) \) are the weights associated with the events \(p \) and \(q \).

Definition 4.4: The texture distance between the two histograms \(H_t^a \) and \(H_t^b \) at a resolution level \(m \) can then be defined as the cost of minimal matching between the two histograms. Mathematically,
Fig. 8 Event Distance Set
\[
\text{Minimize } \tilde{d}_t(a,b) = \sum_{p=0}^{K_t-1} \sum_{q=0}^{K_t-1} C_t(p,q) \cdot X_{t(p,q)}
\]

with respect to \(X_{p,q}\) and subject to constraints:

\[
\begin{align*}
(1) & \quad \sum_{q=0}^{K_t-1} X(p,q) = b_p & \quad p = 0, 1, 2, \ldots, K_t - 1 \\
(2) & \quad \sum_{p=0}^{K_t-1} X(p,q) = b_q & \quad q = 0, 1, 2, \ldots, K_t - 1 \\
(3) & \quad X(p,q) \geq 0 \quad \forall p, q
\end{align*}
\]

According to Hillier and Lieberman 1980, any linear programming problem that fits this special formulation is of the transportation problem type regardless of its physical context.

Let us assume in general that there are \(m\) sources \(S_1, S_2, S_3, \ldots, S_m\) with capacities \(a_1, a_2, a_3, \ldots, a_m\) and \(n\) destinations \(D_1, D_2, D_3, \ldots, D_n\) with requirements \(b_1, b_2, b_3, \ldots, b_n\) respectively. The shipping cost from the \(i\)th source to the \(j\)th destination is \(C_{ij}\), and the amount shipped is \(X_{ij}\). If the total capacity of all sources is equal to the total requirements of all destinations, then the aim is to find out the value of \(X_{ij}\) with \(i=1, 2, 3, \ldots, m\) and \(j=1, 2, \ldots, n\).
\(i, \ldots, n \) for the total shipping cost to be a minimum. So the
objective function can be defined as:

\[
f(X) = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} \cdot x_{ij}
\]

The conditions to be imposed on the above objective function
are stated as:

(a) The total capacity is equal to the total requirement
i.e.: \(\sum a_i = \sum b_i \).

(b) The individual capacity of each source must be utilized
and the individual requirement of each destination must
likewise be fully satisfied. From this condition it is clear
that we have \(m \) capacity constraints and \(n \) requirement
constraints. The capacity constraints impose on the
solution the condition that the total shipment to all
destinations from any source must be equal to the capacity
of that source i.e.

\[
x_{i1} + x_{i2} + \cdots + x_{in} = a_i \quad \forall i = 1, 2, 3, \ldots, m.
\]

The requirement constraints require that the demand of
every destination be fully satisfied by the total shipment
from all sources i.e.

\[
x_{1j} + x_{2j} + \cdots + x_{mj} = b_j \quad \forall j = 1, 2, 3, \ldots, n.
\]
(c) There is always another constraint called non-negativity constraint i.e., \(x_{ij} \geq 0 \quad \forall \; i, j \)

So finally the transportation problem can be summed up in the following formulation:

\[
\text{Minimize } f(X) = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} \cdot x_{ij}
\]

subject to:

\[
\begin{align*}
(1) \quad & \sum_{j=1}^{n} x_{ij} = a_i \quad \forall \; i = 1, 2, 3, \ldots, m \\
(2) \quad & \sum_{i=1}^{m} x_{ij} = b_j \quad \forall \; j = 1, 2, 3, \ldots, n \\
(3) \quad & \text{and } x_{ij} \geq 0 \quad \forall \; i, j
\end{align*}
\]

The above model implies that the original problem will have a feasible solution only if the sum of the frequencies of the two histograms is equal, i.e.,

\[
\sum_{p} n_{p}^a = \sum_{q} n_{q}^b
\]

That is either blocks of the same size should be used or scaling of histograms should be done so that the total sum of frequencies of the histograms to be compared is equal. A general form of cost and the requirement table is given in Fig. 9.
Figure 10 shows the texture distance problem as a transportation problem, where the demand is represented by the frequencies of histogram H_b^a of image block 'a', and supply is represented by the frequencies of histogram H_b^b of image image block 'b'. The cost of a shipment is replaced by the event distance set C_b.

Definition 4.5: The total texture distance $D(a,b)$, between two image blocks 'a' and 'b' at a resolution level 'm' is given as:

$$D(a,b) = \frac{D_g(a,b) + w \cdot D_v(a,b)}{1 + w}$$

where

- g - represents the gray level feature;
- v - represents the gradient feature;
- w - is the weighting factor.
<table>
<thead>
<tr>
<th>Source</th>
<th>Shipping cost per unit distributed</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C(1,1) C(1,2) C(1,3) ... C(1,n)</td>
<td>A₁</td>
</tr>
<tr>
<td>2</td>
<td>C(2,1) C(2,2) C(2,3) ... C(2,n)</td>
<td>A₂</td>
</tr>
<tr>
<td>3</td>
<td>C(3,1) C(3,2) C(3,3) ... C(3,n)</td>
<td>A₃</td>
</tr>
<tr>
<td>m</td>
<td>C(m,1) C(m,2) C(m,3) ... C(m,n)</td>
<td>Aₘ</td>
</tr>
<tr>
<td>Demand</td>
<td>B₁ B₂ B₃ ... Bₙ</td>
<td></td>
</tr>
</tbody>
</table>

Figure 9: A General Form of Transportation Problem
<table>
<thead>
<tr>
<th>Source (event)</th>
<th>Shipping cost per unit distributed</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>C(0, 0) C(0, 1) ... C(0, K_t)</td>
<td>h_0^a</td>
</tr>
<tr>
<td>1</td>
<td>C(1, 0) C(1, 1) ... C(1, K_t)</td>
<td>h_1^a</td>
</tr>
<tr>
<td>2</td>
<td>... C(2, 0) C(2, 1) ... C(2, K_t)</td>
<td>h_2^a</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>K_t</td>
<td>C(K_t, 0) C(K_t, 1) ... C(K_t, K_t)</td>
<td>h_K_t</td>
</tr>
</tbody>
</table>

- h_i^a - Histogram representing feature distribution of feature events within image block a
- h_i^b - Histogram representing feature distribution of feature events within image block b
- $C(m, n)$ - Distance function between events m in h_i^a & n in h_i^b

Figure 10 Problem Formulation
4.1.2 Experimental Results:

A set of four texture classes, namely, beach pebbles, handwoven oriental rattan, lizard skin and sard is chosen from Prodatz, 1966. Each texture is divided into different samples of size 4x64 pixels. Figure 11 shows the sample set selected for the classification test. Figure 12 shows the texture distance matrix whose \((i,j)\)th entry gives the range of texture distances for the gradient vector feature between classes 'i' and 'j'. The gray level feature is not considered for this analysis because it does not contain sufficient information for discrimination. The low diagonal values in the matrix in Fig. 12 are due to the comparisons made between the samples from the same class. Also it is obvious from this figure that the gradient vector feature alone is sufficient for the discrimination purposes and it gives a classification rate of 100%. The classification rate is calculated as the average correct classification rate of all samples.
Fig.11 Textures (a) Beach Pebbles, (b) Lizard Skin
(c) Handwoven Oriental Rattan
(d) Sand
<table>
<thead>
<tr>
<th>Classes</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>0.236-</td>
<td>2.531-</td>
<td>3.328-</td>
<td>2.413-</td>
</tr>
<tr>
<td></td>
<td>0.683</td>
<td>2.994</td>
<td>2.834</td>
<td>2.974</td>
</tr>
<tr>
<td>T2</td>
<td>0.224-</td>
<td>2.613-</td>
<td>3.102-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.931</td>
<td>3.100</td>
<td>3.436</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>0.102-</td>
<td>0.102-</td>
<td>2.930-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.279</td>
<td>3.864</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>0.276-</td>
<td></td>
<td>0.276-</td>
<td>0.492</td>
</tr>
</tbody>
</table>

T1 - Beach Pebbles
T2 - Handoven Oriental Basket
T3 - Lizard Skin
T4 - Sand

Figure 12. Texture distance matrix (Range shown)
4.2 The Spatial Gray Level Dependence Method

The spatial gray level co-occurrence matrices are one of the most powerful sources of feature extraction [Haralick et al., 1973]. A gray level co-occurrence matrix is formed by specifying the probability \(P(i,j) \) of a pair of gray levels \((i,j)\) occurring at a separation \(d\) and angle \(\Theta\). Given an image \(P\), with a set of discrete gray levels \(G\), we define for each, a set of discrete values of \(d\) and \(\Theta\), the gray level co-occurrence matrix \(P(d,\Theta)\) as follows:

\[
P(d,\Theta) = [P(i,j|d,\Theta)]
\]

where \(P(i,j|d,\Theta)\), an element of the matrix, is defined as the probability of going from gray level \(i\) to gray level \(j\) for a given inter-sample spacing \(d\) and direction \(\Theta\).

To illustrate the gray level co-occurrence matrices, consider a \(4 \times 4\) image (Fig. 13(a)) with four gray level values, ranging 0-3. A general form of a spatial gray level dependence matrix is given in Figure 13(b). Fig. 14(a)-14(b) gives the four spatial gray level dependence matrices for \(d=1\) and \(\Theta = 0^\circ, 45^\circ, 90^\circ, 135^\circ\). To determine the elements of these matrices we count the number of times gray levels \(i\) and \(j\) have been neighbors. For example, the element in the \((0,2)\) position of the horizontal \(P(d,\Theta)\) matrix is the total number of times two gray levels of value \(0\) and \(2\) occurred horizontally adjacent to each other.
A set of measures has been proposed by Haralick et al., 1973, which can be used to extract textural information from co-occurrence matrices. The following are a few of the features used to characterize a given texture:

1. **Energy**

 \[E(d, \Theta) = \sum_{i=0}^{Ng-1} \sum_{j=0}^{Ng-1} [P(i,j|d, \Theta)]^2 \]

2. **Entropy**

 \[En(d, \Theta) = \sum_{i=0}^{Ng-1} \sum_{j=0}^{Ng-1} P(i,j|d, \Theta) \log P(i,j|d, \Theta) \]

3. **Local Homogeneity**

 \[Hm(d, \Theta) = \sum_{i=0}^{Ng-1} \sum_{j=0}^{Ng-1} \frac{1}{1 + (i-j)^2} P(i,j|d, \Theta) \]

4. **Inertia**

 \[In(d, \Theta) = \sum_{i=0}^{Ng-1} \sum_{j=0}^{Ng-1} (i-j)^2 \cdot P(i,j|d, \Theta) \]

These measures relate to specific texture characteristics of the image such as homogeneity, contrast, and nature of gray level transitions which occur in the image. Other textural features are defined in Appendix A.
Figure 13(a) [4 x 4 Image with four gray levels ranging 0-3]

<table>
<thead>
<tr>
<th>Gray Level</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gray Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>$\theta(0,0)$</td>
<td>$\theta(0,1)$</td>
<td>$\theta(0,2)$</td>
<td>$\theta(0,3)$</td>
</tr>
<tr>
<td>1</td>
<td>$\theta(1,0)$</td>
<td>$\theta(1,1)$</td>
<td>$\theta(1,2)$</td>
<td>$\theta(1,3)$</td>
</tr>
<tr>
<td>2</td>
<td>$\theta(2,0)$</td>
<td>$\theta(2,1)$</td>
<td>$\theta(2,2)$</td>
<td>$\theta(2,3)$</td>
</tr>
<tr>
<td>3</td>
<td>$\theta(3,0)$</td>
<td>$\theta(3,1)$</td>
<td>$\theta(3,2)$</td>
<td>$\theta(3,3)$</td>
</tr>
</tbody>
</table>

Figure 13(b) General form of any gray level co-occurrence matrix for image data given in 13(a). $\theta(i,j)$ denotes the number of times gray level i and j have been neighbours.
\[
P(d, \theta) = \frac{1}{R} \times \begin{bmatrix}
0 & 2 & 1 & 0 \\
1 & 0 & 2 & 2 \\
2 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
\end{bmatrix}
\]
(a)

For \(d = 1 \)
\(\theta = 0^\circ \)
\(R = 12 \)

\[
P(d, \theta) = \frac{1}{R} \times \begin{bmatrix}
1 & 0 & 1 & 0 \\
2 & 2 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 \\
\end{bmatrix}
\]
(b)

For \(d = 1 \)
\(\theta = 45^\circ \)
\(R = 9 \)

Figure 14(a) Gray level co-occurrence matrices for intersampling distance \(d = 1 \) and \(\theta = 0^\circ, 45^\circ \). \(R \) is the total number of entries in a matrix.
\[
P(d, \theta) = \frac{1}{R} \times \begin{bmatrix}
0 & 1 & 2 & 0 \\
1 & 0 & 2 & 1 \\
2 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{bmatrix}
\]
For \(d = 1\), \(\theta = 90^\circ\), \(R = 12\)

\[
P(d, \theta) = \frac{1}{R} \times \begin{bmatrix}
1 & 1 & 1 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0
\end{bmatrix}
\]
For \(d = 1\), \(\theta = 135^\circ\), \(R = 9\)

Figure 14(b) Gray level co-occurrence matrices for intersampling distance \(d = 1\) and \(\theta = 90^\circ, 135^\circ\). \(R\) is the total number of entries in a matrix.
4.2.1 Experimental Results:

Four classes, namely, sand, lizard skin, handwoven oriental rattan, and beach pebbles were selected for the classification test. Ten samples of size 64x64 were taken from each class. The gray levels of each sample were mapped to 16 values. The gray level co-occurrence matrices were then computed for each sample for an inter-sample spacing d=1 and directions θ = 0°, 45°, 90°, 135°. To implement this method, eight features (Appendix A) were extracted from each of these co-occurrence matrices.

If T1, T2, T3, and T4 represent the four texture classes, then let T1i and T1j be the samples of each class Ti (i=1, 2, 3, 4). Figure 15(a)-(d) show typical texture feature values for each T1i and T1j (i=1, 2, 3, 4) for θ=0°, 135°. Figure 15(e)-(h) show the normalized inter-sample textureal distances for d=1 and θ=0°, 90°, 45°, and 135° respectively. The results obtained indicated that the inter-class distances were much greater than the intera-class distances even though some problems did arise for samples T1,2 and T3,2 at θ=135°. It was also noted that the method was sensitive to change in direction.
4.3 **Conclusion:**

On the basis of the study done in this section, it seems that the gradient vector histogram method is more computationally efficient than the gray level dependence method and performs as accurately as the gray level dependence method.
FEATURES

<table>
<thead>
<tr>
<th>SAMPLES</th>
<th>Energy (10E-02)</th>
<th>Entropy</th>
<th>Local Homogeneity (10E-01)</th>
<th>Inertia</th>
</tr>
</thead>
<tbody>
<tr>
<td>T11</td>
<td>1.541</td>
<td>1.920</td>
<td>4.6015</td>
<td>4.551</td>
</tr>
<tr>
<td>T21</td>
<td>4.594</td>
<td>1.854</td>
<td>5.6623</td>
<td>6.794</td>
</tr>
<tr>
<td>T31</td>
<td>4.283</td>
<td>1.612</td>
<td>7.2647</td>
<td>1.683</td>
</tr>
<tr>
<td>T41</td>
<td>3.912</td>
<td>1.623</td>
<td>7.1234</td>
<td>1.347</td>
</tr>
</tbody>
</table>

FEATURES

<table>
<thead>
<tr>
<th>SAMPLES</th>
<th>Sum Average (10E+01)</th>
<th>Sum Entropy</th>
<th>Sum Variance (10E+02)</th>
<th>Difference Entropy (10E-01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T11</td>
<td>2.071</td>
<td>1.313</td>
<td>4.0625</td>
<td>7.103</td>
</tr>
<tr>
<td>T21</td>
<td>1.152</td>
<td>1.312</td>
<td>1.5380</td>
<td>7.845</td>
</tr>
<tr>
<td>T31</td>
<td>1.983</td>
<td>1.302</td>
<td>3.7760</td>
<td>4.895</td>
</tr>
<tr>
<td>T41</td>
<td>1.243</td>
<td>1.312</td>
<td>1.6637</td>
<td>4.812</td>
</tr>
</tbody>
</table>

Figure 15(a) Texture features computed for inter-sampling space $d=1$ and $\theta=0$: T1(Sand); T2(Lizard skin); T3(Handwoven oriental rattan); T4(Beach Pebbles).
Features

<table>
<thead>
<tr>
<th>Samples</th>
<th>Energy (10E-02)</th>
<th>Entropy</th>
<th>Local Homogeneity (10E-01)</th>
<th>Inertia</th>
</tr>
</thead>
<tbody>
<tr>
<td>T12</td>
<td>1.582</td>
<td>1.902</td>
<td>4.573</td>
<td>4.453</td>
</tr>
<tr>
<td>T22</td>
<td>4.662</td>
<td>1.843</td>
<td>4.662</td>
<td>6.764</td>
</tr>
<tr>
<td>T32</td>
<td>4.541</td>
<td>1.592</td>
<td>7.339</td>
<td>1.602</td>
</tr>
<tr>
<td>T42</td>
<td>3.687</td>
<td>1.631</td>
<td>7.094</td>
<td>1.340</td>
</tr>
</tbody>
</table>

Features

<table>
<thead>
<tr>
<th>Samples</th>
<th>Sum Average (10E+01)</th>
<th>Sum Entropy</th>
<th>Sum Variance (10E+02)</th>
<th>Difference Entropy (10E-01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T12</td>
<td>2.080</td>
<td>1.290</td>
<td>4.0801</td>
<td>7.053</td>
</tr>
<tr>
<td>T22</td>
<td>1.140</td>
<td>1.302</td>
<td>1.5185</td>
<td>7.832</td>
</tr>
<tr>
<td>T32</td>
<td>1.950</td>
<td>1.300</td>
<td>3.6702</td>
<td>4.770</td>
</tr>
<tr>
<td>T42</td>
<td>1.260</td>
<td>1.324</td>
<td>1.6980</td>
<td>4.831</td>
</tr>
</tbody>
</table>

Figure 15(b) Texture features computed for inter-sampling space "d"=1 and "θ"=0°; T1(Sand); T2(Lizard skin); T3(Handwoven oriental rattan); T4(Seach Pebbles).
Features

<table>
<thead>
<tr>
<th>Samples</th>
<th>Energy (10E-02)</th>
<th>Entropy</th>
<th>Local Homogeneity (10E-01)</th>
<th>Inertia</th>
</tr>
</thead>
<tbody>
<tr>
<td>T11</td>
<td>1.290</td>
<td>1.990</td>
<td>4.0403</td>
<td>7.002</td>
</tr>
<tr>
<td>T21</td>
<td>3.230</td>
<td>1.970</td>
<td>3.5510</td>
<td>1.701</td>
</tr>
<tr>
<td>T31</td>
<td>2.011</td>
<td>1.900</td>
<td>4.5310</td>
<td>6.100</td>
</tr>
<tr>
<td>T41</td>
<td>3.620</td>
<td>1.661</td>
<td>6.8700</td>
<td>1.781</td>
</tr>
</tbody>
</table>

Features

<table>
<thead>
<tr>
<th>Samples</th>
<th>Sum Average (10E+01)</th>
<th>Sum Entropy</th>
<th>Sum Variance (10E+02)</th>
<th>Difference Entropy (10E-01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T11</td>
<td>2.070</td>
<td>1.290</td>
<td>4.0421</td>
<td>7.900</td>
</tr>
<tr>
<td>T21</td>
<td>1.150</td>
<td>1.290</td>
<td>1.4400</td>
<td>9.542</td>
</tr>
<tr>
<td>T31</td>
<td>1.980</td>
<td>1.300</td>
<td>3.7310</td>
<td>7.512</td>
</tr>
<tr>
<td>T41</td>
<td>1.240</td>
<td>1.310</td>
<td>1.6608</td>
<td>5.201</td>
</tr>
</tbody>
</table>

Figure 15(c) Texture features computed for inter-sampling space °d°=1 and °θ°=135°; T1(Sand); T2(Lizard skin); T3(Handwoven oriental rattan); T4(Beach Pebbles).
Features

<table>
<thead>
<tr>
<th>Samples</th>
<th>Energy (10E-02)</th>
<th>Entropy</th>
<th>Local Homogeneity (10E-01)</th>
<th>Inertia</th>
</tr>
</thead>
<tbody>
<tr>
<td>T12</td>
<td>1.370</td>
<td>1.960</td>
<td>4.1453</td>
<td>6.510</td>
</tr>
<tr>
<td>T22</td>
<td>3.270</td>
<td>1.970</td>
<td>3.6120</td>
<td>1.685</td>
</tr>
<tr>
<td>T32</td>
<td>2.100</td>
<td>1.890</td>
<td>4.4600</td>
<td>6.362</td>
</tr>
<tr>
<td>T42</td>
<td>3.290</td>
<td>1.690</td>
<td>6.7356 *</td>
<td>2.020</td>
</tr>
</tbody>
</table>

Features

<table>
<thead>
<tr>
<th>Samples</th>
<th>Sum Average (10E+01)</th>
<th>Sum Entropy</th>
<th>Sum Variance (10E+02)</th>
<th>Difference Entropy (10E-01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T12</td>
<td>2.080</td>
<td>1.280</td>
<td>4.0700</td>
<td>7.780</td>
</tr>
<tr>
<td>T22</td>
<td>1.140</td>
<td>1.290</td>
<td>1.4220</td>
<td>9.500</td>
</tr>
<tr>
<td>T32</td>
<td>1.950</td>
<td>1.290</td>
<td>3.6400</td>
<td>7.580</td>
</tr>
<tr>
<td>T42</td>
<td>1.260</td>
<td>1.320</td>
<td>1.7043</td>
<td>5.380</td>
</tr>
</tbody>
</table>

Figure 15(d) Texture features computed for inter-sampling space $d=1$ and $\theta=135^\circ$; T1(Sand); T2(Lizard skin); T3(Handwoven oriental rattan); T4(Beach Pebbles).
<table>
<thead>
<tr>
<th></th>
<th>T11</th>
<th>T12</th>
<th>T21</th>
<th>T22</th>
<th>T31</th>
<th>T32</th>
<th>T41</th>
<th>T42</th>
</tr>
</thead>
<tbody>
<tr>
<td>T11</td>
<td>0</td>
<td>.022</td>
<td>25.0</td>
<td>25.3</td>
<td>30.6</td>
<td>28.2</td>
<td>37.6</td>
<td>36.1</td>
</tr>
<tr>
<td>T12</td>
<td>0</td>
<td>25.7</td>
<td>26.0</td>
<td>29.5</td>
<td>27.1</td>
<td>36.5</td>
<td>35.1</td>
<td></td>
</tr>
<tr>
<td>T21</td>
<td>0</td>
<td>0</td>
<td>.007</td>
<td>57.9</td>
<td>56.6</td>
<td>58.3</td>
<td>58.5</td>
<td></td>
</tr>
<tr>
<td>T22</td>
<td>0</td>
<td>0</td>
<td>57.5</td>
<td>56.3</td>
<td>57.9</td>
<td>58.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T31</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5.79</td>
<td>5.55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6.40</td>
<td>6.36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T41</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.052</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T42</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 15(e) Texture distances for \(d = 1 \) and \(\theta = 0 \):

- \(T11, T12 \in T1 \); \(T21, T22 \in T2 \);
- \(T31, T32 \in T3 \); \(T41, T42 \in T4 \).
<table>
<thead>
<tr>
<th></th>
<th>T11</th>
<th>T12</th>
<th>T21</th>
<th>T22</th>
<th>T31</th>
<th>T32</th>
<th>T41</th>
<th>T42</th>
</tr>
</thead>
<tbody>
<tr>
<td>T11</td>
<td>0</td>
<td>0.207</td>
<td>35.8</td>
<td>36.3</td>
<td>2.30</td>
<td>1.87</td>
<td>35.7</td>
<td>31.4</td>
</tr>
<tr>
<td>T12</td>
<td>0</td>
<td>39.6</td>
<td>40.0</td>
<td>3.41</td>
<td>3.00</td>
<td>31.8</td>
<td>27.9</td>
<td></td>
</tr>
<tr>
<td>T21</td>
<td>0</td>
<td>0.005</td>
<td>21.6</td>
<td>23.1</td>
<td>78.8</td>
<td>74.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T22</td>
<td>0</td>
<td>22.0</td>
<td>23.5</td>
<td>78.9</td>
<td>74.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T31</td>
<td>0</td>
<td>0.082</td>
<td>38.9</td>
<td>34.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T32</td>
<td>0</td>
<td>40.9</td>
<td>36.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T41</td>
<td>0</td>
<td>0.188</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T42</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 15(f) Texture distances for \(d = 1 \) and \(\theta = 90^\circ \);
\[T11, T12 \in T1; \ T21, T22 \in T2; \ T31, T32 \in T3; \ T41, T42 \in T4. \]
Figure 15(g) Texture distances for $d=1$ and $\theta=45^\circ$

<table>
<thead>
<tr>
<th></th>
<th>T11</th>
<th>T12</th>
<th>T21</th>
<th>T22</th>
<th>T31</th>
<th>T32</th>
<th>T41</th>
<th>T42</th>
</tr>
</thead>
<tbody>
<tr>
<td>T11</td>
<td>0</td>
<td>.152</td>
<td>18.4</td>
<td>18.7</td>
<td>2.74</td>
<td>1.67</td>
<td>51.9</td>
<td>49.0</td>
</tr>
<tr>
<td>T12</td>
<td>0</td>
<td>18.1</td>
<td>18.5</td>
<td>2.10</td>
<td>1.25</td>
<td>47.5</td>
<td>44.7</td>
<td></td>
</tr>
<tr>
<td>T21</td>
<td>0</td>
<td>.011</td>
<td>11.6</td>
<td>12.9</td>
<td>37.1</td>
<td>36.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T22</td>
<td>0</td>
<td>12.0</td>
<td>13.3</td>
<td>38.3</td>
<td>37.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T31</td>
<td>0</td>
<td>.162</td>
<td>33.3</td>
<td>31.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T32</td>
<td>0</td>
<td>38.0</td>
<td>35.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T41</td>
<td>0</td>
<td>.090</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T42</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T11</td>
<td>T12</td>
<td>T21</td>
<td>T22</td>
<td>T31</td>
<td>T32</td>
<td>T41</td>
<td>T42</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>T11</td>
<td>0</td>
<td>.406</td>
<td>100.5</td>
<td>98.9</td>
<td>1.63</td>
<td>1.40</td>
<td>65.0</td>
<td>58.1</td>
</tr>
<tr>
<td>T1A</td>
<td>0</td>
<td>101.5</td>
<td>99.6</td>
<td>.895</td>
<td>.561</td>
<td>56.5</td>
<td>50.0</td>
<td></td>
</tr>
<tr>
<td>T21</td>
<td>0</td>
<td>.023</td>
<td>95.8</td>
<td>97.8</td>
<td>148.6</td>
<td>142.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T22</td>
<td>0</td>
<td>93.9</td>
<td>95.9</td>
<td>145.2</td>
<td>139.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T31</td>
<td></td>
<td>0</td>
<td>.078</td>
<td>47.8</td>
<td>42.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T32</td>
<td></td>
<td></td>
<td>48.4</td>
<td>42.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T41</td>
<td></td>
<td></td>
<td>0</td>
<td>.253</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T42</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 15(h) Texture distances for \(d = 1\) and \(\theta = 135^\circ\);

\[T_{11}, T_{12} \in T_{1}; \ T_{21}, T_{22} \in T_{2}; \ T_{31}, T_{32} \in T_{3}; \ T_{41}, T_{42} \in T_{4}. \]
CHAPTER V
SEGMENTATION OF TEXTURED IMAGES

Image segmentation is defined as the partitioning of an image into different regions each having certain properties. In the previous chapters, methods for characterizing and classifying a texturally homogeneous region are given. In many applications, images are composed of several regions, each possessing different characteristics, and it is important to isolate them. The problem of locating the boundaries between regions of different textures is known as a texture segmentation problem.

Frequently used texturally based approaches to image segmentation are: region growing, region merging, and region splitting. Several fairly extensive surveys are given in [Zucker, 1976; Fu and Mui, 1981; and Bosenfeld and Kak, 1982].

The concept of region based segmentation, makes use of the regional properties. Region growing and region merging are processes in which adjacent regions having similar texture characteristics are combined or merged. Region splitting is a process where the detection of dissimilarity
of texture among two or more neighbourhoods within a region results in splitting the region into regions of greater homogeneity. The segmentation process is initiated by dividing the image into blocks of equal size. Each block is represented by its textural features. Then the textural features of the first image block is compared to its neighbouring blocks by applying an appropriate feature comparison technique. All neighbouring blocks that meet the similarity criteria become part of the region being grown. The neighbours of the newly accepted blocks are then examined for further growth. The process is repeated recursively until no more blocks can be added to the region under consideration. Then, a new region is grown around a block which has not been previously selected. When all the blocks have been assigned to regions, the algorithm terminates.

Muerery and Allen, 1968, used this approach by comparing the statistics of an image block with its neighbouring blocks. The regions found were homogeneous according to gray level statistics. This approach was subsequently refined by Erice and Pemmona, 1974 who used multi-regional heuristics.

This thesis employs a region growing technique to establish the boundaries between different textured regions. A detailed explanation of this method can be found in the next section.
5.1 The Segmentation Algorithm

Given a textured image, how can it be segmented into different texturally homogeneous regions?

The proposed algorithm is based on both local and global textural information. The process begins by dividing the image into blocks, of size NRxNC pixels, where NR and NC are the number of rows and columns respectively in the image block. The size of the image block for a homogeneous texture can be determined by finding the textural distance between two blocks of size 2x2, 4x4, 8x8, and so on. The size at which the textural distance starts to stabilize can be chosen as the size of the image block. Each block is then represented by its gradient vector histogram. The gradient is a two-dimensional vector representing gradient magnitude and directionality.

The region growing concept starts by setting up a labelled map of the same size as the divided image. For example, consider an image of size 128x128 pixels. If the block size is 32x32 pixels, then the labelled map will be a 4x4 array. Labelling is initiated by assigning the image block at (1,1) the label '1'. By the application of a suitable similarity criteria it is then determined if this label can be assigned to the unlabelled neighbours of the current image block. If any of the neighbours are assigned
the current label, then the addresses of these blocks are stored in a stack and all relevant arrays are updated. The addresses are then sequentially retrieved from the stack on a "first-in, first-out" basis and the neighbours of these blocks are then examined for label assignment. After the first set of entries in the stack have been examined, these are eliminated from the stack by a simple reassignment.

If, at any stage of the label propagation, no new entries are added to the stack, the propagation of that specific label is terminated since further region growth is not possible. At this stage, the stack is reset and the growth of another region is initiated by assigning a new label to the next unlabelled block. This process is repeated until all the blocks in the labelled map have been assigned appropriate labels.

At the end of this step, all the image blocks have been labelled and the segmentation is completed, although the boundaries between different textured regions are not well defined due to the large size of the image blocks. In order to achieve a reasonably high resolution, or equivalently, detect small regions of homogeneous textures, the image block should be smaller in size, especially when the block contains the boundary between different textured regions. In order to define the boundaries properly, the image blocks in
the vicinity of the boundary must be very small. On the other hand the image block must be large enough to be a valid texture sample. If a region of uniform texture is sub-divided such that the image blocks do not adequately reflect the texture characteristics, the uniform region will be labelled as being non-uniform. Thus, in order to avoid the loss of texture information, an overlapping scheme can be used where the comparisons are made on the basis of large blocks while the labelling is done for the smaller blocks.

A block diagram of the segmentation algorithm is given in Fig. 16. Figure 17 schematically depicts the labelling process for a non-overlapping case. In order to define the boundaries properly, an overlapping scheme must be used. Figure 18(a) shows a 4x4 labelled map for the non-overlapping case. The labelled map of 7x7, obtained after doing an overlapping of half the size of the image block in the horizontal and vertical directions, is given in Fig. 18(b). Figure 19 illustrates the process of labelling in an overlapping case. Here the labelling is done to smaller blocks while the comparisons are made on the basis of larger blocks. The essential steps in the segmentation process are given next.
GRAY LEVEL IMAGE

DIVIDE IMAGE (NR\times NC) IMAGE BLOCKS
NR - NUMBER OF BLOCK ROWS
NC - NUMBER OF BLOCK COLUMNS

FEATURE EXTRACTION SCHEME

CREATE LABELLED MAP OF IMAGE BY
LABEL PROPAGATION METHOD

BOUNDARY REFINEMENT

NEW LABELLED MAP

SEGMENTED IMAGE

Figure 16 Block Diagram of The Segmentation Algorithm
Fig. 17 Schematic Representation of the Segmentation Algorithm
Fig. 18 (a) Labelled Map for Non-overlapping Case
(b) Horizontal and Vertical Overlapping Case
Fig. 19 Labelling Process (Overlapping)
ALGORITHM

Input: (a) Gray level array for digitized image
 [Img(I,J), J=1, 2, ..., N; I=1, 2, ..., M]

(b) Threshold value (TH)

Output: (a) Textureally segmented image
 (b) Number of regions in the image.

Procedure:

1. Divide the image into N x M image blocks.
 N = Number of block rows
 M = Number of block columns

2. Set up a labelled array IL(...) of same size as the divided image
 i.e. array [IL(I,J), J=1, 2, ..., NM; I=1, 2, ..., NM]
 NM = Size of the image / Size of each block

3. Set up arrays [LX(:,), LY(:)] for storing the coordinates of the four neighbours of an image block
 and arrays [LX(:,), LY(:,)] for storing block coordinates.

4. Initialize:
 IL(...) <- 0; N1 <- 0; ILL <- 1

5. Start Labelling (I, J represent locations in the labelled array; I <= M, J <= N).
 5(a). If array [IL(...)] at location (I, J) has label 0, then assign it with label ILL otherwise increment J and go to step 5(b).
 5(b). Compute the gradient vector histogram (H) for image block at location (I,J).
 5(c). Compute four neighbouring blocks of image block (I,J)
 [LX(K), LY(K); K=1, 2, 3, 4].
 5(d). Compare each neighbour with block at (I,J)
(For $1 \leq K \leq 4$; K is the neighbour being compared).

5(c). If the neighbour at location ($LX(K), LY(K)$) is unlabelled then find its gradient vector histogram ($H2$) otherwise increment K and go to step 5(d).

5(f). Evaluate the texture distance between $H1$ and $H2$ and denote it by $D(H1, H2)$.

5(g). If $D(H1, H2)$ is less than the specified threshold (TH) then perform the following three steps:

- $IL(ILX(K), LLY(K)) \leftarrow ILL$
- $LXT(NL) \leftarrow LX(K)$; $LYT(NL) \leftarrow LY(K)$

5(h). Increment K and go to step 5(d).

5(i). If no more growth is possible ($NL = 0$) then go to step 5(s) otherwise perform the following:
- $NL1 \leftarrow 1$; $NL2 \leftarrow NL$

5(j). Grow regions around blocks whose addresses are stored on the stack [for $NL1 \leq I \leq NL2$; where I points to the element of the stack under examination].

5(k). Compute $H1$ for image block ($LXT(I1), LYT(I1)$)

5(l). Compute four neighbouring blocks of image block ($LXT(I1), LYT(I1)$)

$[LX(K), LY(K); K=1, 2, 3, 4]$

5(m). Compare each neighbour with block at ($LXT(I1), LYT(I1)$) [for $1 \leq K \leq 4$; K is the neighbour being compared].

5(n). If the neighbour at location ($LX(K), LY(K)$) is unlabelled then find its gradient vector histogram ($H2$) otherwise increment K and go to step 5(m).

5(c). Evaluate the texture distance between $H1$ and $H2$ and denote it by $D(H1, H2)$.

5(p). If $D(H1, H2)$ is less than the specified threshold (TH) then perform the following:

- $IL(ILX(K), LLY(K)) \leftarrow ILL$
- $NL \leftarrow NL+1$; $LXT(NL) \leftarrow LX(K)$; $LYT(NL) \leftarrow LY(K)$

5(q). Increment K and go to step 5(m).
5(r). If all the elements on the stack have been examined \(\{NL2 = NL\} \) then go to step 5(s)
otherwise perform the following:

\[
NL1 \leftarrow NL2 + 1; \quad NL2 \leftarrow NL \quad \text{go to step 5(j).}
\]

5(s). \(ILL \leftarrow ILL + 1 \)

5(t). Increment J and go to step 5.

5(u). Increment \(J \) and go to step 5.

6. Divide boundary blocks into four sub-blocks.

7. Connect each sub-block to the one with minimum texture distance from it.

8. Merge all the isolated regions which may not be more than one block size with the largest adjacent region.

9. Create a segmented image from the labelled map.

10. Stop; End.

1.1 A Threshold Selection Technique:

The success of the segmentation algorithm given in the previous section depends upon the threshold value used. The method proposed to evaluate the threshold value makes use of texture distance statistics. The following steps are required to calculate the threshold value:

The image is first divided into \(N \times NC \) blocks where \(N \) and \(NC \) are the number of block rows and columns respectively.
Each block is then represented by its gradient feature histogram. The process initiates by choosing block \((1, 1)\). The histogram of this block is compared with the histogram of its neighboring blocks and the results are stored in an array \(D(I)\). The process is repeated recursively until all the blocks have been considered. At the end of this step, we have an array containing all the possible texture distances. The mean and the standard deviation of these distances is then computed. These results are used to calculate the threshold value.

1. Mean:

\[
\mu = \frac{1}{N} \sum_{I=1}^{N} D(I)
\]

where

\(N\) - is the number of entries in \(D(I)\).

2. Standard Deviation:

\[
s = \sqrt{\frac{1}{N} \sum_{I=1}^{N} (D(I) - \mu)^2}
\]

The threshold value \((TH)\) is given as:

\[TH = \mu - \epsilon \cdot s\]

where \(\epsilon\) is a tolerance factor.
5.3 Discussions and Results:

This algorithm is computationally simple and easy to implement. It has been tested on a variety of textured images and has shown to work very efficiently if a proper block size is chosen. The size of the image block for a homogeneous texture can be determined by finding the textural distance between two blocks of size 2x2, 4x4, 8x8, and so on. The size at which the textural distance starts to stabilize can be chosen as the size of the image block.

The algorithm fails however, to provide an exact boundary location between different textured regions. In order to achieve a reasonably high resolution, the image block must be as small as possible, especially when the block contains the boundary between different regions. On the other hand the block size must be large enough to be considered as a valid texture sample. Thus in order to maintain the textural information, an overlapping scheme can be used, where the comparisons are made on the basis of the larger blocks and the labelling is done to the smaller blocks. A more detailed explanation of overlapping is illustrated in fig. 19.

The images are directly photographed from Breslau, 1966. In this experiment, three textures, namely, handwoven oriental rattan, lizard skin and water, and plastic pellets are chosen. Each image is digitized into 128x128 pixels
with 64 gray levels. Figure 20(a) shows the original image of the handwoven oriental rattan (128x128) after dividing it into blocks of size 32x32. The segmented image for the non-overlapping scheme is given in fig. 20(b). Fig. 21(a) shows the image of the lizard skin and water and fig. 21(b) is the segmented image. Fig. 22(a)-(b) shows the original image and the segmented image of the lizard skin and water, using an overlapping of half the size of the image block in the horizontal and vertical directions. The segmented and the original image of the plastic pellets using the non-overlapping and overlapping schemes are given in fig. 23(a)-(b) and fig. 24(a)-(b) respectively. From the results it is obvious that overlapping works better than the non-overlapping method for defining the boundaries between different textured regions. Also it can be observed that there are some extra regions in fig. 24(b) which are due to some small intensity variations. These can be avoided by normalizing the gradient vector histogram with respect to the gray level values.
Fig. 20 (a) Handwoven Oriental Rattan
(b) Segmented Image (Non-overlapping)
Fig. 21
(a) Lizard skin and water
(b) Segmented image (non-overlapping)
Fig. 22 (a) Lizard skin and water
(b) Segmented image (overlapping)
Fig. 23 (a) Plastic Pellets
 (b) Segmented image (non-overlapping)
Fig. 24 (a) Plastic Pellets
 (b) Segmented image (overlapping)
CHAPTER VI

SUMMARY AND CONCLUSIONS

Texture has become critically important to researchers in the various areas of image processing because almost all natural surfaces are characterized by local intensity variations. This thesis has dealt with three main problems of texture analysis, namely, texture description, texture discrimination or classification, and segmentation of textured images.

A critical analysis of the work done by Raafat, 1985, has been given in Chapter III and Chapter IV. The problem of texture representation is examined by extracting features through observation windows at different resolution levels. Texture is considered as a two layer process. The first layer is for describing the tonal primitives or local properties and the second is for describing the spatial organization of these tonal primitives. The primitive texture features used are the gray level feature and the gradient vector feature at different resolution levels. The spatial organization of these features are given by their histograms namely, the gray level histogram and the gradient
vector histogram. Thus texture description of a given image block is given by a set of histograms of various primitive texture features at different resolution levels.

The problem of texture classification involves the comparison of two texture samples. Here each sample is represented by its gradient and gray level histograms. The problem of histogram comparison is then formulated as a transportation problem. This provides a texture distance between two image blocks which is used for classification and segmentation purposes.

A new methodology for segmentation of a textured image onto texturally homogeneous regions is given in Chapter V. The algorithm is initiated by dividing the image into blocks of equal size. Each block is then represented by its textural features. Next, the textural features of the first image block are compared to its neighbouring blocks by applying an appropriate feature comparison technique (Chapter IV). All neighbouring blocks that meet the similarity criteria become part of the region being grown. The neighbours of the newly accepted blocks are then examined for further growth. The process is repeated recursively until no more blocks can be added to the region under consideration. Then a new region is grown around a block which has not been previously labelled. When all the blocks
have been assigned to regions, the algorithm terminates. The following conclusions are drawn on the basis of the study and the research done in this project.

It was found that the representation of a texture sample by its histograms shows little variations across different samples taken from the same texture. Also it contains essential texture characteristics which define the textural differences between two samples. For the classification purposes, it was found that the performance of the method proposed by Raafat, 1985 was computationally better than the spatial gray level dependence method (Haralick, 1973). It was also noticed that the gray level feature in the first scheme did not give sufficient information for discrimination purposes; however the gradient feature alone was quite adequate for discrimination and segmentation.

The algorithm proposed in Chapter V does not provide well defined boundaries between different textured regions due to the large size of the image blocks. This problem can be resolved by using image blocks that are smaller in size, especially for the blocks containing the boundaries. However the image block size must be large enough to be a valid texture sample. Thus in order to achieve a reasonably high resolution, an overlapping scheme should be used.
Future research is needed for an appropriate selection of the image block size for segmentation purposes. Also, other textural features can be introduced for a better texture description. Research is also needed for better location of boundaries between different textured regions.
Appendix A

TEXTURAL FEATURES

The following is a reference summary of the features used for the extraction of textural information from the gray level co-occurrence matrices, gray level run length matrices, gray level difference density functions, and power spectrum (Haralick et al., 1973; Conners et al., 1980).

The textural features which can be extracted from each of the gray level co-occurrence matrices are given below:
notations:

\[F(I, J) \] \text{ - (I, J)th entry in a gray level co-occurrence matrix}

\[F(I) \] \text{ - Ith entry in the marginal-probability matrix}

and is given as:

\[
\sum_{J=1}^{N_g} F(I, J) = \sum_{I=1}^{N_g} F(I, J) = 1, 2, 3, \ldots, N_g;
\]

\[N_g \] \text{ - Number of distinct gray levels}

1. Angular Second-Moment:

\[ASM = \sum_{I} \sum_{J} [P(I, J)]^2 \]

2. Contrast:

\[CCN = \sum_{N} N^2 \sum_{I=0}^{N_g-1} \sum_{J=0}^{N_g-1} P(I, J) \]

3. Correlation:

\[
COR = \frac{\sum_{I=0}^{N_g-1} \sum_{J=0}^{N_g-1} (I - \mu_x)(J - \mu_y) P(I, J)}{\sigma_x \sigma_y}
\]

where

\[
\mu_x = \sum_{I=0}^{N_g-1} \sum_{J=0}^{N_g-1} P(I, J)
\]
\[
\mu_y = \sum_{J=0}^{N_g-1} \sum_{I=0}^{N_g-1} P(I,J)
\]

\[
\sigma_x = \sum_{J=0}^{N_g-1} \sum_{I=0}^{N_g-1} (I - \mu_x)^2 P(I,J)
\]

\[
\sigma_y = \sum_{J=0}^{N_g-1} \sum_{I=0}^{N_g-1} (J - \mu_y)^2 P(I,J)
\]

3. Local Homogeneity:
\[
L_h = \sum_{I=0}^{N_g-1} \sum_{J=0}^{N_g-1} \frac{1}{1 + (I - J)^2} P(I,J)
\]

5. Entropy:
\[
E_p = -\sum_{I=0}^{N_g-1} \sum_{J=0}^{N_g-1} P(I,J) \log P(I,J)
\]

6. Sum Entropy:
\[
P_{s} = -\sum_{I=0}^{2N_g-2} P_s(I) \log(P_s(I))
\]

where
\[
P_{s}(k) = \sum_{I=0}^{N_g-1} \sum_{J=0}^{N_g-1} P(I,J) ; \quad k = 0, 1, 2, \ldots, 2N_g-2
\]
7. Sum Variance:
\[S_v = \sum_{i=0}^{2N_g-2} (I - \bar{S})^2 \bar{F}_S(I) \]

8. Sum Average:
\[S_a = \sum_{i=0}^{2N_g-2} I \bar{F}_S(I) \]

9. Difference Entropy:
\[D_e = -\sum_{i=0}^{N_g-1} p_d(i) \log(p_d(i)) \]
where
\[p_d(k) = \sum_{i=0}^{N_g-1} \sum_{j=0}^{N_g-1} p(i, j) : k=0, 1, \ldots, N_g-1 \]

The textural features extracted from the gray level run length matrices are:

Notations:

\[B(I, J) \] - (I, J)th entry of gray level run length matrices

\[T_r = \sum_{I=0}^{N_g-1} \sum_{J=0}^{N_r} B(I, J) \]

\[T_p = \text{Number of points in the picture} \]
NR : Number of run lengths in the matrix

1. Short Run Emphasis:

 \[SRE = \frac{1}{T_0} \sum_{I=0}^{N_I-1} \sum_{J=1}^{N_J} \frac{R(I,J)}{J^2} \]

2. Long Run Emphasis:

 \[LRE = \frac{1}{T_0} \sum_{I=0}^{N_I-1} \sum_{J=1}^{N_J} \frac{R(I,J)}{J^2} \]

3. Gray Level Distribution:

 \[GLD = \frac{1}{T_0} \sum_{I=0}^{N_I-1} \sum_{J=1}^{N_J} R(I,J)^2 \]

4. Run Length Distribution:

 \[RLD = \frac{1}{T_0} \sum_{I=0}^{N_I-1} \sum_{J=1}^{N_J} R(I,J)^2 \]

5. Run Percentages:

 \[RP = \frac{1}{T_0} \sum_{I=0}^{N_I-1} \sum_{J=1}^{N_J} R(I,J) \]

The statistical features used to extract textural information from the gray level difference density functions are:

Notations:

- \(F(T|d) \) : Estimated probability associated with 'I'
- \(Ng \) : Number of gray levels
d - any displacement = (d1, d2) where d1 and d2 are integers

1. Contrast:

\[\text{CCN} = \sum_{I=0}^{N_{g}-1} I^2 F(I|d) \]

2. Angular Second Moment:

\[\text{ASM} = \sum_{I=0}^{N_{g}-1} F(I|d)^2 \]

3. Entropy:

\[\text{ENT} = \sum_{I=0}^{N_{g}-1} F(I|d) \log(F(I|d)) \]

4. Scan:

\[\text{MUE} = \sum_{I=0}^{N_{g}-1} I F(I|d) \]

5. Inverse Difference Moment:

\[\text{IDM} = \sum_{I=0}^{N_{g}-1} \frac{F(I|d)}{I^2 + 1} \]

The features commonly used with the power spectrum method are given below:

Notations:

\[\Phi'(u,v) \] - is the sampling power spectrum
Ma – Number of annular rings
Mw – Number of wedges
MS – Number of slits

1. Annular-ring Sampling Geometry:

\[A_{SG} = \int_{\rho_{\min}}^{\rho_{\max}} \int_{0}^{\pi} \phi'(a,\theta) a \, da \, d\theta; \ j = 1, 2, \ldots, Ma \]

where

\[a = \sqrt{(u^2 + v^2)} \]

\[\theta = \tan^{-1}(u/v) \]

2. Wedge Sampling Geometry:

\[W_{SG} = \int_{\rho_{\min}}^{\rho_{\max}} \int_{\theta_{j}}^{\theta_{j+\Delta\theta}} \phi'(a,\theta) a \, da \, d\theta; \ j = 1, 2, \ldots, Mw \]

3. Slit Sampling Geometry:

\[S_{SG} = \int_{-v_{\max}}^{v_{\max}} \int_{u_{j}}^{u_{j+\Delta u}} \phi'(u,v) \, du \, dv; \ j = 1, 2, \ldots, MS \]
Appendix B

PROGRAM LISTING
SEGMENTATION ALGORITHM

Purpose:

This algorithm establishes boundaries between different textured regions.

Array Description:

Fr [.,.] — Digitized Image
Il [.,.] — Labelled Array
Cv [.,.] — Event Distance Set
Ar1 [.,.], Ar2 [.,.] — Texture Distance Arrays

Program Labower ;

Label
Five ;

Type

Image = Packed Array [1..128, 1..128] of Byte ;
Store1 = Packed Array [0..40, 0..40] of Integer ;
Store2 = Packed Array [1..8, 1..8] of Real ;
Store3 = Packed Array [1..8, 1..8] of Real ;
Store6 = Packed Array [1..4] of Integer ;
Store = Packed Array [0..40] of Integer ;

{** Declaration of Global Variables **}

Var

Infile : File ;
Ian : File of Byte ;
Fr : Image ;
Il : Packed Array [1..8,1..8] of Integer ;
Cv : Store1 ;
Ar1 : Store2 ;
Ar2 : Store3 ;
Count : Integer ;
Rows, Cols : Integer ;
Nr, Nc : Integer ;
Nml, I, J : Integer ;
Decision : Integer ;
Limit : Integer ;
Ans : Char ;
Threshold : Real ;

{*** This procedure reads in the input image file ****}
Procedure Readfile;

Label
ReadAgain;

Var
I, J : Integer;
Okay : Char;

Begin
ReadAgain : ClrScr;

Gotoxy (15, 10);
TextColor (12);
Write (' :5, Enter name of image file '); Readln (Inname);

Gotoxy (10, 13);
Write (' Enter Number of rows '); Readln (Rows);

Gotoxy (10, 15);
Write (' Enter Number of Columns '); Readln (Cols);

Gotoxy (10, 17);
Write (' Enter Number of block rows '); Readln (Nr);

Gotoxy (10, 19);
Write (' Enter Number of block cols '); Readln (Nc);

Wm := Round (Rows / Nr);

Gotoxy (10, 21);
Write (' Overlapping Yes(1), No(0) '); Readln (Decision);
Writeln;
ClrScr;
TextColor (14);

Gotoxy (15, 10);
Write (' Name of image file is ', Inname : 10);
Gotoxy (15, 12);
Write (' Number of Rows is ', Rows :3);
Gotoxy (15, 13);
Write (' Number of Cols is ', Cols :3);
Gotoxy (15, 15);
Write (' Would you like to Change any Parameters '); Readln (Okay);

If (Okay = 'y') or (Okay = 'Y')
Then goto ReadAgain:

ClrScr;
Gotoxy (20,14);
Textcolor (10);
Writeln (" READING OF IMAGE FILE IN PROGRESS... ");
If (Cols * Rows = 16384) Then
Begin
 Assign (InFile, InName);
 Reset (InFile);
 BlockRead (InFile, Fr, 128);
 Close (InFile);
 For i:=1 to Rows do
 For j:=1 to cols do
 Fr[i,j]:=round(Fr[i,j]/4.0+0.5);
End
Else
Begin
 TextMode;
 Assign (Ian, Inname);
 Reset (Ian);
 For I := 1 to Rows do
 For J := 1 to Cols do
 Read(Ian, Fr[I,J]);
 Close (Ian);
End;

[**** This procedure writes the segmented image ****]

Procedure Writefile:

Begin
 ClrScr;
 Gotoxy (20,14);
 Write (" Enter the name of the output file ");
 Readln (InName);
 Assign (InFile, Inname);
 Rewrite (InFile);
 BlockWrite (InFile, Fr, 128);
 Close (InFile);
End;

[**** This procedure finds the neighbouring blocks ****]
[**** of the image block under growth ****]

Procedure Nb4 (I, J : Integer ; Var Lx, Ly : Store6);

Begin
 Lx[1] := I;
 Ly[1] := J - 1;
 Lx[2] := I - 1;
 Ly[2] := J;

End ;

[**** This procedure calculates the threshold value ****]
[**** for labelling purposes ****]

Procedure Thresh ;

Var
 Sd, Mean, Th : Real ;
 Sum, Count : Real ;
 I, J : Integer ;

Begin
 Sum := 0 ;
 For I := 1 to Limit do
 For J := 1 to (Limit - 1) do
 Sum := Sum + Arl[I,J] ;
 For I := 1 to (Limit - 1) do
 For J := 1 to Limit do
 Sum := Sum + Ar2[I,J] ;
 Mean := Sum / (2.0 * Limit * (Limit - 1)) ;
 Sum := 0 ;
 For I := 1 to Limit do
 For J := 1 to (Limit - 1) do
 Sum := Sum + Sqr (Arl[I,J] - Mean) ;
 For I := 1 to (Limit - 1) do
 For J := 1 to Limit do
 Sum := Sum + Sqr (Ar2[I,J] - Mean) ;

 Sd := Sqrt (Sum / (2.0 * Limit * (Limit - 1))) ;

 ClrScr ;
 Gotoxy (20,14) ;
 TextColor (12) ;
 Write (' Enter the fractional value ') ;
 Readin (Th) ;

 Threshold := Mean - Th * Sd ;
 Writeln (' ',3, 'Threshold is = ', Threshold) ;
End ;

[**** This procedure creates a labelled matrix for ****]
[**** the segmented image ****]

Procedure Labelling (var Fr : image) ;
Var
Lxt, Lyt : Packed Array [1..1024] of Integer ;
Mll, N1 : Integer ;
I, I1 : Integer ;
J, K : Integer ;
Nll, N12 : Integer ;
Limit1 : Integer ;
Dl : Real ;
Lx, Ly : Store6 ;
Rep : Boolean ;

Begin
ClrScr ;
Gotoxy (20,14) ;
Writeln ('SEGMENATION IN, PROGRESS... *') ;

I1l := 1 ; {** Starting Label **}
If (Decision = 1) Then
 'Limit1 := Limit - 1
Else Limit1 := Limit ;

{** Initialization of labelled matrix **}

For I := 1 to Limit1 do
 For J := 1 to Limit1 do
 I1[I,J] := 0 ;

For I := 1 to Limit1 do
 For J := 1 to Limit1 do
 Begin
 N1 := 0 ; {** Initialization of Stack Pointer **}
 If (I1[I,J] = 0) Then
 Begin
 I1[I,J] := I1l ;
 Nh4 (I, J, Lx, Ly) ;
 For K := 1 to 4 do
 Begin
 {** Check for previously labelled block or block
 outside of labelling array **}
 If ((Lx[K] > 0) And
 (Ly[K] > 0) And (Lx[K] <= Limit1)
 And (Ly[K] <= Limit1) And
 (I1[Lx[K],Ly[K]] = 0)) Then
 Begin
 {** Fetch distance between current block and
 its neighbours **}

```
If (K = 1) Then
   Di := Ar1[I, J-1]
Else If (K = 2) Then
   Di := Ar2[I-1, J]
Else If (K = 3) Then
   Di := Ar1[I, J]
 Else Di := Ar2[I, J] ;
If (Di < Threshold) Then
   Begin
      Il[Ix[K], Ly[K]] := El ;
      N1 := N1 + 1 ;
      Lxt[N1] := Lx[K] ;
   End ;
End ;
If (N1 <> 0) Then  /* Grow regions around new ***/
   Begin
      Rep := True ;
      N11 := 1 ;
      N12 := N1 ;
   End ;
While (Rep = True) do
   Begin
      For Il := N11 to N12 do
         Begin
            /* Fetch neighbours ***/
            Nb4 (Lxt[Il], Lyt[Il], Lx, Ly) ;
            For K := 1 to 4 do
               Begin
                  If ((Lx[K] > 0) And
                       (Ly[K] > 0) And
                       (Lx[K] <= Limit1) And
                       (Ly[K] <= Limit1) And
                       (Il[Lx[K], Ly[K]] = 0)) Then
                     Begin
                        If (K = 1) Then
                           Di := Ar1[Lxt[Il], Lyt[Il] - 1]
                        Else If (K = 2) Then
                           Di := Ar2[Lxt[Il] - 1, Lyt[Il]]
                        Else If (K = 3) Then
                           Di := Ar1[Lxt[Il], Lyt[Il]]
                     End ;
               End ;
         End ;
   End ;
Else \( \text{D}1 := \text{Ar2}[\text{Lxt}[\text{I}1], \text{Lyt}[\text{I}1]] \);

If (\( \text{D}1 < \text{Threshold} \)) Then
Begin
\( \text{I}1[\text{Lx}[\text{K}], \text{Ly}[\text{K}]] := \text{I}11 \);
\( \text{N}1 := \text{N}1 + 1 \);
\( \text{Lxt}[\text{N}1] := \text{Lx}[\text{K}] \);
\( \text{Lyt}[\text{N}1] := \text{Ly}[\text{K}] \);
End;
End;
End;
End;

If (\( \text{N}12 \neq \text{N}1 \)) Then
Begin
\( \text{N}11 := \text{N}12 + 1 \);
\( \text{N}12 := \text{N}1 \);
End;
Else
Begin
\( \text{I}11 := \text{I}11 + 1 \);
\( \text{Rep} := \text{False} \);
End;
End;
Else \( \text{I}11 := \text{I}11 + 1 \); \( \text{** Increment label **} \)
End;
End;

\( \text{ClrScr ; \{** Display labelled array **\}} \)
For \( \text{I} := 1 \) to \( \text{Limit}1 \) do
Begin
For \( \text{J} := 1 \) to \( \text{Limit}1 \) do
Write (\( \text{I}1[\text{I}, \text{J}], \) " ");
Writeln;
End;

\( \text{** Create segmented image from labelled array **} \)
For \( \text{I} := 1 \) to \( \text{Rows} \) do
Begin
\( \text{Fr}[\text{I}, 1] := 0 \);
\( \text{Fr}[\text{I}, \text{L}] := 0 \);
\( \text{Fr}[\text{I}, \text{Rows}] := 0 \);
\( \text{Fr}[\text{Rows}, \text{I}] := 0 \);
End;

If (\( \text{Decision} = 0 \)) Then
Begin
For \( \text{I} := 1 \) to (\( \text{Limit} - 1 \)) do
Begin
  If (II[I, I] <> II[I, I + 1]) Then
    For J := 1 to Nc do
      Fr[J, I * Nr] := 0 ;
  End ;

  If (II[I, Limit] <> II[I + 1, Limit]) Then
    For J := ((Rows + 1) - Nr) to Rows do
      Fr[I * Nr, J] := 0 ;
  End ;

  For I := 2 to Limit do
    For J := 1 to (Limit - 1) do
      If (II[I, J] <> II[I - 1, J]) Then
        For K := (J - 1) * Nr to (J - 1) * Nr + Nr do
          Fr[(I - 1) * Nr, K] := 0 ;
        End ;

        If (II[I, J] <> II[I, J + 1]) Then
          For K := (I - 1) * Nc to (I - 1) * Nc + Nc do
            Fr[K, J * Nc] := 0 ;
          End ;
      End ;
  End ;

Else
  Begin
    For I := 17 to 112 do
      Begin
        Fr[17, I] := 0 ;
        Fr[112, I] := 0 ;
        Fr[I, 17] := 0 ;
        Fr[I, 112] := 0 ;
      End ;

    Nc := Nr Div 2 ;
    Nr := Nc ;

    For I := 1 to (Limit1 - 1) do
      Begin
        If (II[I, I] <> II[I, I + 1]) Then
          For J := 1 to Nc do
            Fr[J + 16, I * Nr + 16] := 0 ;
          End ;

          If (II[I, Limit1] <> II[I + 1, Limit1]) Then
            For J := ((Rows + 1) - Nr) to Rows do
              Fr[I * Nr + 1 + 16, J - 16] := 0 ;
            End ;
        End ;

        For I := 2 to Limit1 do
          For J := 1 to (Limit1 - 1) do
            If (II[I, J] <> II[I - 1, J]) Then
              For K := ((J - 1) * Nr + 16) to ((J - 1) * Nr + Nr + 16) do
                Fr[K, J * Nc] := 0 ;
              End ;
          End ;
      End ;
  End ;
Fr[(I-1) * Nr + 16, K] := 0 ;

If (II[I,J] <> II[I,J+1]) Then
  For K := ((I-1)*Nc+16) to ((I-1)*Nc+Nc+16) do
    Fr[K,J * Nc + 16] := 0 ;
  End ;
End ;
End ;

[**** This procedure computes the gradient vector ****]
[**** histogram of a given image block ****]

Procedure Histblk (A, B : Integer ; Var Cc : Store) :

Var
  Ir : Packed Array [1..32,1..32] of Byte ;
  G : Packed Array [1..32,1..32] of Integer ;
  Theta : Packed Array [1..32,1..32] of Real ;
  Ml, component, Is : Integer ;
  Xy, K, L, I, J : Integer ;
  M, N, Count0 : Integer ;
  Count : Integer ;
  Part1, Part2 : Integer ;
  Gy, Gx, Xx : Real ;
  Pi, R, S : Real ;

Begin
  M := A to (A + Nr - 1) do
    For N := B to (B + Nr - 1) do

  Pi := 3.1415927 ;

  [** Initialize gradient and directionality arrays **]
  For I := 1 to Nr do
    For J := 1 to Nc do
      Begin
        Theta[I,J] := 0;0 ;
        G[I,J] := 0 ;
      End ;

  [** Compute gradient and directionality **]
  For I := 2 to (Nr - 1) do
    For J := 2 to (Nc-1) do
      Begin
        Part1 := Ir[I+1,J-1] + 2 *Ir[I+1,J] + Ir[I+1,J+1] ;
        Gy := Part2 - Part1 ;
        Part1 := Ir[I-1,J+1] + 2 *Ir[I,J+1] + Ir[I+1,J+1] ;
        Part2 := Ir[I-1,J-1] + 2 *Ir[I,J-1] + Ir[I+1,J-1] ;
      End ;
  End ;
End ;
Gx := Part1 - Part2;
Xx := Abs (Gy) + Abs (Gx);
G[I,J] := Round ((Xx / 6.0) + 0.5);  /* Normalize ***/
                        /* gradient ***/
If (Gx = 0) Then
    Theta[I,J] := Pi / 2.0
Else
    Begin
        Theta[I,J] := Arctan (Gy / Gx);
        If ((Gx < 0.0) And (Gy > 0.0)) Then
            Theta[I,J] := Theta[I,J] + Pi;
        If ((Gy < 0.0) And (Gx < 0.0)) Then
            Theta[I,J] := Theta[I,J] - Pi;
    End;
End;

/** Evaluate gradient vector histogram using 2-D discretization scheme ***/

Count1 := 0;
For I := 1 to Nr do
    For J := 1 to Nc do
        If (G[I,J] < 5) Then
            Count1 := Count1 + 1;
Cc[0] := Count1;
Mr := 1;
Is := 8;
M := 5;
N := 10;
Xy := 4;
For K := 1 to 5 do
    Begin
        R := -Pi / 8.0;
        S := Pi / 8.0;
        For L := Mr to Is do
            Begin
                Count := 0;
                For I := 2 to (Nr-1) do
                    For J := 2 to (Nc-1) do
                        Begin
                            If ((G[I,J] > M) And (G[I,J] < n)) Then
                                Begin
                                    If (L < (Xy + 1)) Then
                                        Begin
                                            If ((Theta[I,J] > R) And (Theta[I,J] < S)) Then
                                                Count := Count + 1;
                                        End
                                    End
                                End;
                        End;
                    End;
            End;
    End;

Else
Begin
If ((Theta[I,J] > R)Or(Theta[I,J] < S)) Then
  Count := Count + 1;
End;
End;
End;
Cc[I] := Count;
If (L = xy) Then
Begin
  R := S;
  S := -S;
End
Else
Begin
  R := S;
  S := S + P1 / 4.0;
End;
End;
Mr := Mr + 8;
Is := Is + 8;
M := M + 5;
N := N + 5;
Xy := Xy + 8;

If (K = 4)
  Then N := 255;
End;

{*** This procedure evaluates the event distances ***}

Procedure Cost;

Var
  Dist, Angle : Store;
  First, Last : Integer;
  Icount, k : Integer;
  I, J, F, Ia : Integer;
  Ib, Ic : Integer;

Begin
  ClrScr;
  TextMode;
  TextColor(10);
  Gotoxy(20,14);
  WriteIn("EVENT DISTANCE CALCULATIONS IN PROGRESS...");
  Icount := 0;

First := 1;
Last := 8;

For K := 1 to 5 do
Begin
  For I := First to Last do
    Begin
      J := I - Icount;
      Dist[I] := K + 3;
      Angle[I] := J;
    End;

  First := First + 8;
  Last := Last + 8;
  Icount := Icount + 8;
End;

Dist[0] := 0;
Angle[0] := 0;
F := 2;

For I := 0 to 40 do
  For J := 0 to 40 do
    Begin
      If ((I = 0) And (J = 0))
        Then Cv[I, J] := 0
      Else If ((I = 0) And (J > 0))
        Then Cv[I, J] := F * Dist[J]
      Else If ((I > 0) And (J = 0))
        Then Cv[I, J] := F * Dist[I]
      Else
        Begin
          Ia := Abs(Angle[I] - Angle[J]);
          Ib := 8 - Ia;
          If (Ia < Ib)
            Then Ic := Ia
          Else Ic := Ib;
          Cv[I, J] := F * Abs(Dist[I] - Dist[J]) + Ic;
        End;
    End;
End;

{**** This procedure computes the texture distance ****}
{**** between two image blocks using the trans- ****}
{**** portation algorithm ****}

Procedure Dist (Yy, Yyl: Store; L, M: Integer; Arrays: Char);
Cpr, X : Storel;
Nr, Ne, N : Integer;
Nm, Zr, Zc : Integer;
Icnt, Imax : Integer;
I, J, Minr : Integer;
Minc, Cmin : Integer;
Costl : Real;

Begin
Nr := 40;
Ne := 40;
If (Nr < Ne) Then
Begin
  N := Nr;
  Nm := Nr;
End
Else
Begin
  N := Ne;
  Nm := Nr;
End;

Zr := 0;
Zc := 0;

For I := 0 to Nr do
  For J := 0 to Ne do
    Begin
      Cpr[I, J] := Cv[I, J];
      X[I, J] := 0;
    End;

Icnt := 0;
Imax := Nr + Ne + 1;

While (Icnt < Imax) do
Begin
  Minr := 0;
  Minc := 0;
  Cmin := Cpr[0, 0];

  For I := 0 to Nr do
    For J := 0 to Ne do
      Begin
        If (Cmin > Cpr[I, J]) Then
          Begin
            Cmin := Cpr[I, J];
            Minr := I;
            Minc := J;
          End;
      End;
  End;
icnt := icnt + 1;
If (y[y][minr] < y[y][minc]) Then
    X[minr,minc] := y[y][minr]
Else X[minr,minc] := y[y][minc] ;
If (y[y][minr] < y[y][minc]) Then
    Begin
        zr := zr + 1;
        y[y][minc] := y[y][minc] - y[y][minr] ;
        y[y][minr] := 0 ;
        For j := 0 to nc
            Do cpr[minr,j] := maxint ;
    End
Else If (y[y][minr] > y[y][minc]) Then
    Begin
        zc := zc + 1 ;
        y[y][minr] := y[y][minr] - y[y][minc] ;
        y[y][minc] := 0 ;
        For i := 0 to nr do
            cpr[i,minc] := maxint ;
    End
Else
    Begin
        y[y][minr] := 0 ;
        y[y][minc] := 0 ;
        If (((nr - zr) >= (nc - zc)) Then
            Begin
                For j := 0 to nc do
                    cpr[minr,j] := maxint ;
                    zr := zr + 1 ;
            End
        Else
            Begin
                For i := 0 to nr do
                    cpr[i,minc] := maxint ;
                    zc := zc + 1 ;
            End ;
    End ;
    End ;
Cost1 := 0 ;
For i := 0 to nr do
    For j := 0 to nc do
        Cost1 := Cost1 + (c[i,j] * x[i,j] / 4.0) ;
If (arrays = "y") Then
    Arl[1,m] := Cost1 / Sqr(Nr)
Else $\text{Ar2}[1:M] := \text{Cost1} / \sqrt{\text{Nr}}$;
End;

Procedure Hist;

Var
$\text{Yy, Yyl : Store};$
$A, B, C, D : \text{Integer};$
$I, J, K, M : \text{Integer};$
$\text{Sh} : \text{Packed Array [1..8,1..8,0..40] of Integer};$

Begin
Clrscr;
TextColor(10);
Gotoxy(20,14);
Writeln("HISTOGRAM EVALUATION IN PROGRESS...");

For $I := 1$ to Limit do
  For $J := 1$ to Limit do
    Begin
      If (Decision = 1) Then
        Begin
          $C := \text{Round} (\text{Nr} / 2 * (I - 1) + 1);$
          $D := \text{Round} (\text{Nc} / 2 * (J - 1) + 1);$
        End;
      Else
        Begin
          $C := \text{Nr} * (I - 1) + 1 ;$
          $D := \text{Nc} * (J - 1) + 1 ;$
        End;
      Histblk(C, D, Yy);
      For $K := 0$ to 40 do
        Sh[I, J, K] := Yy[K];
    End;

ClrScr;
Gotoxy(20,14);
Writeln("TEXTURE DISTANCE CALCULATIONS IN PROGRESS...");
For $I := 1$ to Limit do
  For $J := 1$ to Limit do
    Begin
      If ($J$<> Limit) Then
        Begin
          For $K := 0$ to 40 do
            Begin
              $Yy[K] := \text{Sh}[I, J, K];$
              $Yyl[K] := \text{Sh}[I, J + 1, K];$
            End;
          Dist(Yy, Yyl, I, J, "y");
        End;
If (I <> Limit) Then
Begin
For K := 0 to 40 do
Begin
Yy[K] := Sh[I,J,K];
Yyl[K] := Sh[I + 1,J,K];
End;
Dist (Yy, Yyl, I, J, "n");
End;
End;

Begin {** Main Program **}
ReadFile;
If (Decision = 1) Then
Limit := (2 * Nml) - 1
Else Limit := Nml;
Cost;
Hist;
Thresh;
Labelling(Fr);
Five: Writeln;
Writeln;
Writeln;
Write ("Do you wish to change threshold ");
Readln (Ans);
If ((Ans = "y") Or (Ans = "Y")) Then
Begin
Thresh;
Labelling(Fr);
Goto Five;
End;
WriteFile;
End.
BIBLIOGRAPHY


- 121 -


190-202.
VITA AUSTRIS

1961
Born August 26, Moga, Panjab, India.

1977
Higher Secondary Part-II
S.D. Higher Secondary School, Moga, Panjab, India.

1982
B.Sc. Engineering
(Electronics and Communication)
Kurukshetra University, Kurukshetra, Haryana, India.

1982
Design Engineer
Hindustan Aeronautics Limited, Hyderabad, India.

1983
Teaching Assistant
Panjab Engineering College, Chandigarh, Panjab, India.

1986
Master of Applied Science
(Electrical Engineering)
University of Windsor, Windsor, Ontario, Canada.