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ABSTRACT

(a) We give some conditions under which a positive
. "linear map between two ordertd Bana%h_igaces is compact or
weakly compact. First we show that an order bounded linear

map from an order unit normed space into an ordered Banach

space with compact (w-compact]. order intervals is compact

(w-compact), and then we use it to derive other results.

—

Necessary conditions are also considered under which a

continuous or compact map is order bounded. Further we

look at maps majorized. by compact'maps, and we give some

-

conditions which make XK{X,Y) an order ideal in L(X,Y).-
Next we discuss a cohvergensg theorem.;;It is proved that
the pointwise iimit of an ingcreasing net of positive,
compact maps from an AM-spéce'into an AL;space is positive‘

*

and compact. ~
& 3

o

(b} Necessary andlsufficient conditions are given which
ensure that L(X,Y¥) and K(X,¥) have ::rtain order properties,
such as being regular, a-directed or a—aaditive. Generally
fhese are extensions of'Ng‘s Egsults for dual-spaces, and
supplement the earlier results of Ellis and Wickstead. We
~also discuss the existence of weak order ﬁnité and quasi

»

interior points in K(X,¥).

(ii)




-

(c). Finally we give a characterization of ordered Banach

spaces with éompact order intervals. We prove that in regular
ordered Banach spaces, order-intervals are compaét iff the

order convex cover of a compact set is compact. This general-

izes a previous result of Wickstead who considered ordered

Banach spaces with R'D.P. T

- - -

—_ -
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' &INITIONS AND NOTATIONS

(For elementary prgperties of the ordered véctor spaces,
“the regﬁer is’ referred to- [15] and [29])7 -
1. TA subset P of a real vectdrlspace'is called a Wedge if
P+PCPandaPCP ¢>0. PisacConeif?/l->»= (0}
A real vector séace X along with a wedge is called ah

ordered vector space, the wedge being denoted by X,. The

) * ' *
dual wedge in X is dehoted by X,. This wedge will be a

-

* .
cone in X if X, 'is generating (X = X, - X).

A set CC X is erder convex iff whenever x, v ¢ C and

. ' -
X € 2 < yv{w&€ have that z ¢ C. The simplest oxrder convex

set is the order interval [x, y] = {z € X: x < z < y}. The
-~ . . .

order convex cover of a set B is the set

{(B] = (B + X+)m (B - X,), and is the smallest order convex

set containing B. An order-convex subspace of X is called

. . 7> . s
an order-ideal. X is order complete if every majorized

subset of X has a least upper bound. X is directed .upwards
if for x, y &€ X, there is z > x, v.

2. A normed vector space X ordered by a cone X, which is

closed with respect to the strong topology, will be called an

(.
ordered normed vector space. If further X is norm complete

R ,
then it is an ordered Banach, space.




2 .

. Let o 3_ 1. We say that X_ ig\a:m.ormal if ‘[U] ‘g'a - U
‘ . ot A N .
. ‘ . o
where U is the closed unit ball df:X. _X, is a-generating .

-

+

- -

. -« . M .
iff for each x £ X, there are u, Vv ¢ x+ with x =1 - v aqg

el + lisll ca tille T N _

. We say that X is regular iff-it.éa;isfies:

(R,):. For each x, y £ X suc that - x < Yy <€ x, we have .
1 . -3 =

Tiell < xl]; ana.

(Ry): For each x'c X and e > 0, there is a ;y’E X, -such

- - v -

that v > x, -x and ‘| |v|]| < [[x]] + e.

X is said to be (o, n)-additive.if for any n‘positive
: NE

n.- T n
elements X., ..., x_ we have I [[x.|d < |l 2 x.]I].
. ]_ . n i=1 1 ‘.,__ ' i=1 1

X is (¢, n)-directed iff for any n vectors Xyr e-er X in ,

there is a v ¢ ¢ U such that y > X; (i=1, ..., n). Xis

s-additive (a-directed) iff it is (¢, .n)-additive (resp.
. ~ _
(a,n)-directed for every n € N. X is approximately (&, n)-

o=

directed iff it is (@ + &, n)-dirécted for all & > 0.

-

r'. . ‘ " [
. X is said to have a monotone noxm if x, v ¢ X with 0 < ¥y < x

implies that ||yvld < [|x]]. o

. Y AR .. .
X is called an orderunit normed space if there is
. Ry r 4 4 .-
e € X_ such that, for x £2X there exists a positive integer

n with -n e £x<n e, and Minkowski funqtionai of the order

1

interval [-e, el defines the norm on X. ‘X is said to be a

base normed space if there is a convex subset B of X, such

that, for x € X_, x # 0 there is a unique positive number

-
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3

£(x) with x/f(x) € B, and the Minkowski functional of ]
CO(B v - B) defines the norm on X.

An approximate order -unit in X is an upward directed

set {eA: A e A} in X such that for each x ¢ X, there exists
6 € Aand o >0 with —a e, < x <’c'ey. If the Minkowski .
) :

functional of {x: thére.exiéts A £ A with e, <X < el}

-

is a norm, then X with this norm is called approximate order

‘unit normed.

~

3. An ordered vettor space X has the Riesz deéompoéition
property (R.D.P.) iff for every x, y > 0 and every

z ¢ [o, x; + vl, there are.x;, y; > 0 such that Xy € [0, %1,

yy e [o, ¥] and 2z = X, + y,. Every vector lattice has the

Ed

R.D:P. but the converse is not true.

. "

X is said to be a simplex space iff X, is l-normal,

X has the R.D.P. and the open unit ball of X is directed
ﬁpwaras. .. -

If X is a vector lattice we denote the lattice operations
. ]

by v and A. For any x, |x| = x v -x, = = xv0, ¥ = -xV0.

If X is norm complete, it- is a Banach lattice iff [x]| < |y|
implies [[x|[| < |ly|l|l. A subset A of X.is said to be solid

if. aeA and |x| < |a] implies that x e A. The smallest solid

set containing a subset B of X' is called the solid hull of. B,
Important examples of Banach lattices -arise whén the

norm and order-have further connections.“A norm dn a vector .-

‘lattice ﬁ.is ar L-norm iff [ [x + y'|J = |[§l[ + ||lv}] for

X, ¥ in X,- An L-normed Banach lattice is ¢alled an AL-space.

") '
-t \‘ *

P



,,Dually a norm on a vector lattice is calle& an M-norm iff

I[x v }4| =max {[[x|]|, |tyl]} f%x,x, y in X . An AM-space

Ll

is a Banach lattlce with an M—norm. )
4. A compact convex set K~ ln_a‘locally convex space X is
"called a simplex iff the space of real continuocus affine

functions on K has the R D.P. The extreme boundarv of a

convex set K will be denoted by 3K. A simplex K is a Bauer

E if 3K is closed.
4

We say that x is an extremal point of X, if each point

of the order-interval [0, x] is a positive scalar multiple of -

X. When x is an extremal point, the set {ax: «a > 0} is

called an extreme rav.

When K is a simplex and X is a topological vector

F) - k]
space, the set valued map ¢: K =~ 2X‘is termed lower semi-

continuous (l.s.c.) if, whenever WC X is open, the set -
AMk-g K: sy N w # ¢} is open in K. ¢ is termed affine

if ¢(k) is a non-empty convex set and

- - S
A e (ky) + (1 -2) @ (k) SO (A kg + (1 - Q) ky) X
whenever kl' k2 € Kand 0 <.2 < 1.
5. A sequence {x_} in a normed veltor lattice X is order

conVergent to x ¢ X iff there is a downward directed sequence

{z} with iafimum zero such that [xm ~- x| <z, for all

m > n. X has order continuous norm if every order convergent

sequence in X converges in norm. If X'and Y are ordered

vector spaces, then a linear map T: X + Y is order bounded
@
if it maps order intervals into order intervals. T is

o

-
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. - T
-positive if Tx € T_ when x ¢ X_. ©bviously a positive map
is order bounded. A linear map between two normed vector’

lattices is order continuous if for each sequence {xn} in

the domain space with order limit x, {Txﬁ} order converges

to Tx.

6. ﬁet X and ¥ be two ordered topoiogical vector spaces.
L(X,¥)will denote the space of continuous linear méps from
k into ¥, and K(X.,Y) will'Pe the_subspace of compact maps.
If K" is a simplex then the space of continuous affine maps
from K” to X is denoted by A(K™,X). If i is a simplex with

{0} as an extreme point then AO(K,X) will denote the space

of continuous affine functions from X to X, that vanish on

{o}.



CHAPTER ONE

ORDER, COMPACTNESS AND CONTINUITY

1. Order and Continuity

Since the advent of the study of ordered topological
vector spaces, it has been a prime concern to relate o;der
theoretic properties with topological p;opertiés. In this
context efforts have been made to answer thé questibns:

(a) When is an order boﬁnded (or positive) linear map from
one ordered-topological vector épace into another necessarily
continuous?

(b) When is a continuous linear ﬁap from one ordered
topological vector space into another‘hecegsarily order
boﬁndeé?

The first question has been dealt with quite thoroughly,
but the second one poses more brobléms. First we consider
the linear functionals. It may be noted that an order bounded
functional on an ordered topclogical vector space is not
élways continuous. For example, if we consider the space

F of all those segquences {xn} which have finite number of non-
zero elements, then f({xn}) =1 x, defines a linear functional

on F.wkich is positive but is not continuous with respect to
the supremum norm on F. However the answer to the first
question is affirmative in several cases:

7
v 6



Proposition 1.1: {[15: 3.1.14]

- -

Let X be an ordered topological vector space and X,

have an interior point, then every order bounded lineax

X - (s e
functional on X is C@DB}?S.

Proposition 1.2: [15: 3.5:8] . , ~
“

Let X be a Fréchet space with a closed génerating

3

wedge. If f is an order bounded linear functional.on X,
then f is continuous, and is the differende bHetween two
continuous, positive, linear functionals.

Proposition 1.3: [29: 1II.2.171

If X is a bornological space ordered by.a sequentially
complete strict b-cone [29]<then a positive linear functional
on X is continuous; (For ordered normed vector spaces, a
strict b—éone is the same as a boundedly generating cone.)

Tye case of a normed vector lattice is even siﬁpler:

Proposition 1.4 [31: 1II 5.2, 5.37

Let X be a normed vector lattice. Tﬁen
(a) Everv positive linear functional on X is continuous.
(b} Every real valué&, order coﬁtinuous lattice homomorphism
on X is continuous.

The following proposition gives an answer to the second

question:

r

Proposition 1.5 [15: 3.5.10]

Let X be a Fréchet space with a closed wedge X,. Then
X, is normal if and only if every continuous linear functional

on X is rrxder bounded.

Similarly there are several results concerning the

1/ 8
"‘I

rﬁ'
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continuity of an order bounded linear map when the range
space is an ordered topological vegctor space.

Proposition 1.6: [15: 3.2.11]

TLet X,Y be ordered topological vector spaces such that

X, has an interigr point and Y+ ishggrmal. Then every

ordered bounded linear mapping from X into Y is continuous.

. roposition 1.7: [15: 3.2.12] [29: IT.2.16]

-If X and Y are ordered topological vector séaces, Y
is locally convex and Y_ is normal, then each of the
following conditions implies that every positive linear
mapping of X into Y.is continuous:

(2a) X is a Mackéy space on which every positive linéér
functional is coﬁtinuous.
(b) X is a bornological space with % sequentially complete
strict b-cone. \
(c) X if of second category, metrizable éﬁd h;s a complete
’generating cone.
For metrizable spaces we can go one step further:

Proposition 1.8:. [15: 3.5.5] .

Let X,Y be topological vector spaces, X being complete
and metrizable. If X is ordered by a closed, generating cone
and f is a linear mapping from X into Y that maps order
intervals into bounded sets, then £ is~eentinuous.

As beofre the results are quite satisfactory for normed
lattices. ,

] Y
Proposition 1.9: [31l: II.5.3]

Let X,Y be normed vector lattices and supposé X to be

norm complete.
p—

b



.l’r .' -
(a) Every positive linéar map from X into Y is continuous.

-,

(b) Every.absblutgly majo;ized linear map from X into Y is

. continuous—" T

© . :
(A 11n ar map S:° X + Y is called absolutely‘majprized

N \

_;g_;ge:e’€klst a p051t1ve linear map T: X + ¥ such that\
|sx| ¢ T, for ai?#x e X, .)

‘in which X+ is generatlng and Y is normal then a posiytive

linear map from X into Y is continuous.

2. Duality .
Duality has been from the beginning a useful- tool ih-

functiohal analysis. The sVstematlc studv of duality in the

theory of ordered Banach spaces is only quite recent beglnnlné,

with the work of Edwards and Ellis in 1964. Certain

" isolated results, such as those of Grosberg and Krein, and
s

Reisz were discovered soég thiﬁty years earlier, but a
comprehensive theory only developed.iﬂ the years 1964-~1970.
Somé of the wgil known results are presented below ﬁnd
most of these will be used later. i will denote an ordered
Banach space. .
Grosberg and Krein [14] proved the first part and
Ellis [12] proved tﬁe second part of the following theorem:

Theorem 2.1l:

& *
X, is a=-normal for some o > 0 if and only if X_'1s
) ’ -
a-generating. ,Jf'“
X, is (¢ + £)—generating for all ¢ > 0 if and only

* T .
if x+ is ac=-normal. . .



' ' 10
Concerning the order unit normed aﬁ@ base normed ,
spaces, we have: ¥

Theorem 2.2 [Edwards] -

- - } - - * -
X is order-unit normed if and only if X 1is base
. ' ' *
normed and the base is w -compact.

Theorem 2.3 [Ellis]

X is base normed if and only if X" is order unit normed.
Edward's result was improved Qy Ng [25] and he also
gave a chafacterizatiOn of aﬁproximate order unit normed
spaces: _ -

Theorem 2.4 [Ngl : -~

The following statements are equivalent:
*

(a) X 4is base normed.

(b) X is approximate order unit normed.

() X, is l-normal, and the open unit ball of X is directed

upwards.

Davies introduced the concept of regularity in discussing

preduals of Banach lattices [8]. The two conditions for
regularity. turn out to be dual notions [25]:

Theorem 2.3

. _ _ .
X satisfies (Rl) if and only if X satisfies (Rz), and
. _ N .
X satisfies (Rz) if and only if X satisfies (Rl). Hence X

*
is regular iff X is regqular.
Davies' main result is:

Theorem 2.6

&

* * .
X is a Banadh lattice iff X is regular and has the

R.D.P. -
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h *
Wickstead [34] has shown that X 4is a Banach lattice

‘when X has the R.D.P. and X+ is normal and generating.

&* : .
Moreover if X is a Banach lattice then it is also order-

complete:

The next two results are due t6& Ng [25].

‘Theorem 2.7
' P
Let X be an ordered Banach space. The following are
equivalent: ~——

(2a) The norm is additive on X, .-
. * i ’ .

{b) The open unit ball in X 1is directed upwards.

: *

(c) The closed unit ball in X is directed upwards.

Theorem 2.8

Let X be an ordered Banach space. The norm is

o

* . 3 - - -
additive on X iff the open unit ball in X is directed

-

upwards.

Asimow [3], Ng [25] and Wickstead [34] established the
following:

Theorem 2.9-

If X is an ordered Banach space then X" is (a,n)-
additive iff X is approximately (c,n)-directed. Conversely
X is (a,n)-additive ifflx* is (a,R)-directed.

Concerning'%he monotonicity of the norm Ng [25] pro?ed

thglfollowing two results:

I
)

Probosition 2.10
- Let X be an ordered Banach space. The norm on X is
monotone iff the following condition is satisfied:

For each f in X , there exists g in x" with |1al] < [1£]]

and o, f < q.
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Proposition 2.11

- : N
Let X be an ordered Banach space. The norm on X is

. . . RIS .
monotone iff the following condition is satysfied:

\gfor each x in X and each positiﬁe g, there exists y —

in X_ such that 11yl 3r¥$x]]-+ € and-o, X < ¥.

¢ .
3. The Space of .Continuous Linear Maps

The study of order properties of thg dual of an
orde:éd Banach space was %urther carried to the study of the
order properties of L(X,Y) the space of continuous linear
mappings from one ordered Banach space X into anofher Y by
Ellis [13] and Wickstead [34]. The work of Ellis [1l2] and
Ng [251 served as 'a basin for this purpose and most of the
results obtained so far are extensions of their results for
dual spaces. However the lattice structure of L(X,Y)}, when X
and ¥ are both topological vector létticeé,“was considered '
- earlier by Xantarowich, Peressini, Sherbert, XKrengel and
Schaefer— (c.f.f Note on page 182 in [29]).
’ The following two results were proved by Ellis [13].

X and ¥ will denote ordered Banach spaces.

Theorem 3.1

If X has a base norm and Y has an order unit norm, then
the operator norm in L(X,Y¥) is an order unit norm.

Theorem 3.2

-

(a} If the operator norm in L(X,Y¥) is an order unit
norm, then X has a base norm and Y has an crder unit norm.
(b) - If the operator norm is a base norm in L(X,Y)

then X has an order,ﬁE}T norm and Y has a base norm.



13

when X has an beer'unit norm aﬁd Y has a baselnorm then
-it is not easy to characterize the order structure of L(X,Y)
;ith regard. to the operator.norm.- Ellis [i3] has remarked
that in this case if L(X,Y) is positively generated, then
‘éhe operator norm is equivalent-to a base norm but is not
necessarily the same as that base norm.
| " Regarding the normality of L{X,Y)_, Wickstead [34]
proved: - ‘

A -
Proposition 3.3

L(X,Y) is normal if and only if X is positively
generating and Y_ is normal. |

But the positive ggneration of L(X,f) is rather
difficult to de;érmine. Necessary conditions are given in
[34]: ) | \

Proposition 3.4

. Tf L(X,Y) is positively generated then X is normal

and ¥ is positively generated.

Unfortunaﬁely these do not constitute sufficient
conditions. In fact there are only é few known cases when
L(X,Y) is positively generated. (We list some more in the
subsequent chapters.) ?heorem 3.1 is one of these. If X

‘is finite dimensional and Y is positively generated; or if Y

is finite dimensional and positively generated and X_ is

normal, then L(X,Y¥) is positively generated.
Wickstead [34] also showed that L(X,Y) is positively
generated when ¥ = c(f) with @ a stonian space and X satisfies

.

one of the following conditions:
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(a) X is ac-—additive.

(b) X has (31)-

(c) X has a-monotone nOrm.
Necessarf and sufficient conditions for the order
completeness of L(ifggf;ere obtained in [34]:

Proposition 3.5: . .

- Let X, ¥, be normal and generating: Then the

following are equivalent:
(a) L{X,Y¥) is order complete.
(b) X has the R.D.P. and ¥ is an order-complete vector
lattice.

Actﬁally fo? the implication (b):;>(a), Y need not be
assumed to be a lattice.

npo determine the conditions undex which L(X,Y) is a
lattice" is a well discussed problem [29], (31]. Some of ﬁhe
important regylts are given below. It may be pointed out
that if X and Y are both.latticés and Y is order complete,

then L(X,Y), - L({X,¥), is an order complete lattice.
+ +

-

Theorem 3.6 [29: IV.3.6]

Suppose X is a vector lattice and Y is order complete

*

légééce containing an order-unit, then L(X,Y) is an order

complete vector lattice.

Theorem 3.7 [29: IV.3.1l]

-

Let X be a nuclear space having a normal cone, and ¥

be an order complete Banach lattice, then L({X,¥) 1s an

order complete vector lattice.
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Theorem 3.8 [31: IV.4.4]

Let X be an AL-space and Y be an order complete AM-
‘space with an order unit, then L(X,Y¥) is an order complete

AM-space with an order unit.

Theorem 3.9 [35: Prop. 71

Let X have a normal, genérating cone which is also the
closed convex hull of its extreme rays, and let X have the

R.D.P. Suppose also that ¥ is an AM-space. Then L(X,Y)

is a lattice.

Some interesting‘cases regarding the lattice structure
of L{X,Y) are discussed . in [22].

-~ . . -
t

4, Compact Maps

A systematic sﬁpdy of the space of compact maps from X
into ¥ (K(X,Y)) was iﬂitiated by Wickstead in [34]. Ee
considered the range space-to be a simplex space and came up
with some significant results.I
If ¥ is a simplex space, then K = {f ¢ v . £ > o, [[£]] <1}

*
is a compact simplex when given the w -topology and ¥ is

isometrically isomorphic to AO(K), the space of continuous

affine functions on K which vanish at zero. Similarly the

following result enables us to relate the study of the order
properties of K(X,Y)-with the study of continuous éffine
functions,.vanishing at an extreme point, from simplex into
an ordered Banach space. -

Proposition 4.1 [34: ?fop. 4.1]

‘Tet T be a bounded linear map from X_ into A (K}. Then

. * -
there is ap .affine map T of XK into X , vanishing at zero, and
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dontinuous for tpe w?-topology"on X*, such'that.
@ MmOk = () (x e X, k€K,
() “|IT|| = sup {|[tk||: % e RI.

,‘éonveréely if such a mﬁb T is given, (a) defines a
" bounded linear map from X to AO(K) with norm defined by (b).
T}is compact iff t is éqnt%nuous for the norm topology of x*.

If k is ordered by a closed cone then T > 0 if and

only if T > 0.
| An analééous resul£>holds when ¥ = A(ﬁiLEE/a simplex.
Thus K(X,¥) can be iééntifigdj;igh'Ao(K,X*)‘when Y i)s a
simplex space, and with A(K,X*i when ¥ = A(K . This approach
ig then based on Lazar's selecﬁion technique:

Theoren 4.2 [20]

Let X be a Fréchet space and ¢: X + 2° be an affine
lower semi-continuous set valued mép such that ¢(k) is closed
for every k £ K. Then there exists an affine continuous
selection for ¢, fhat is, a continuous affine map w: X + X
such that Wkk) e ¢(k) for all k £ K.

Wickstead used Prop. 4.1 and Theorem 4.2 to prove the
following results. X will denote an ordered Banach space.

P,

Theorem 4.3 -

Let Y be a simplex space, and a¢ > 1. The following
are equivalent:
(a) x, y € X and 9 < y < x implies |]y|]-i e |[xif.
(b) T e K(X,¥Y) and ||T|| < 1 implies that there exists

S € K(X,¥) with § > T,0 and ||5]|| < e.

Theorem 4.4 r '
Let X be.EB;éilignd generating and y be a simplex
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space. Then X has the R.D.P. iff K(X,Y) has the R.D.P.
Further K(X,¥) is a lattice iff X has the R.D.P. and Y

is a lattice.

Thus we note that K(X,Y) may be positively generated
wlen L(X,¥) is not. - -
He also showed that if Y is a simplex space then K(X,Y)

is aﬁ?;oximate order unit normed iff X is base-normed. Later

he improved'it in 35].

.Proposition 4.5

The followiggtare equivalent;

(a)’ X is base normed and v isla.o.u. normed. _
(b) XK(X,Y¥) is a.o.u. normed. )
,_;‘E‘E*In (35] Wickstead considered those spaces as the range,

in which one of the following cdnditions hblds:..nA

(a) compact sets are ordq; bounded.

(b) Order-intervals are norm compact.

{(c) The noiions of norm compactness and order boundedness

are identical.

Some of his major results are the following:

Theorem 4.6 '

The following are equivalent:
(a) . Every relétivély compact subset of X is order bounded.
(b) If Y is R-additive for some‘B, then K(Y,X) ié positively
generated.
(¢) If Y is base-normed then XK(Y,X) is'bositively generated.
(d) For some o, X is a-directed. ’ ' L

' Theorem 4.7'

Let X_ be a generating cone and X have the' R.D.P: then

o
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'the following are egquivalent: -~

. (@) Order intervals in X are norm compact.

. (b))} X is a lattice and the solid hull of each norm compact
subset of X is norm combact. '

(c) x; is normal and is the closed convex hull of its .extreme

rays. -

(d) X is a complete vecto? lattice; if |[x| A 2z - 0 whenever

z is extremal then x = 0; if s C X is bounded above then the
set of finite suprema from S converges in norm to Sup(S).

(e} If 2Z has a generating cone and has the R.D.P., then K(2Z,X)
is oréer complete. -

Theorem 4.8

Let X have the R.D.P. The following are équivalent:
(a) X is linearly order isomorphic and homeomorphic to a

space CO(T) of continuous functions vanishing at infinity on

a discrete space T.

(b} The notions of relative norm compactness and order

boundedness coincide, in X.

(c)- X is a lattice And the solid hull.of eve;y norm compact
Jnon-empty subset of X 'is norm relatively compact.

(@) If z, is normal and geherating then K(Z,X) is positively

generated. If further Zghas the R.D.P. then K(Z,X) is a

complete vector lattice.



CHAPTER TWO
COMPACTNESS OF POSITIVE MAPS

BETWEEN ORDERED BANACH SPACES

As can be seen from chapter one, a gréat deal of
work has been done to investigate the continuity of positive
linear maps between ordered Banach spaces X and Y, but vervy
little is known regarding the compactness of such maps.
Given an order bounded linear map T from X into ¥, what
{(order theoretic and/or topologicél) conditions on X and ¥
will ensure that T is compact of weakly compact? In this
chapter a start is made to answer this question. We also
consider those linear maps which are majorized by compact
maps. Section three contains some convergence theorems
concerning the pointwise limit of increasing nets of coméact.
maps. , .

In this, and the following chapters, X and Y will
denote ordered Banach spaces unless specified.

1. Compactness of Linear Maps

Theorem 4.7 of the first chapter establishes a character-
ization of those spaces which have compact order-intervals.
A similar result is given in [31) which states some conditions

under which order-intervals are w-compact:

19 ‘ s
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Theorem 1.1

I

r.For any Banach lat£ice X, the following conditions
are équivalent: -
(a) Order-intervals are weakly compact in X.
(b) X is order complete and every £ ¢ X* is order continuous.
(¢) Each directed majoiized family in X converges weakly.
{(d) Each directed famiiy in X with infinum.zero, norm
converges to zero. | |
(e} X is coﬁntably order complete and each dec}easing
sequence in X with infinum zero norm converges to zero.
Order-intexvals are also weakly compact in AL-spaces
and in normed vector lattices with order continuous norm.
Now the following proposition is an easy consequence

-

of the properties of\tgs spaces involved:

Proposition 1.2 /

Let X have an order-unit and T be an order-bounded
linear map from X into Y. If thé order-intervals are norm
compact (resp. Q. compact) in ¥, then T is compact (reSp. w.
compact) . |

Since the order-intervals are norm compact in the

sequence spaces £p, 1 < p < @ and c¢_[35], we have:

Proposition-1.3

et X be an AM-space.
(a) Every positive linear map from X into ;l is com?act. .
(b} If X has an order-unit, then everyrpositive linear map
frqm X into C, is compact.

(c) Every positive linear map from Cq into an AL-space is
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compact.

(4} if Y has-a base-norm then every gositive linear map
from X into Y is w-compact. “

Proof | :
(a) Tet T be a positive linear map fxom X into £,.

X** is an AM-space with an order—unitn_and T has a
norm preserving positive linear extension To from X** into ¥
[35. IT 8.9]. N

Then To is compact by Prop. 1.2, and hence its
restriction T: X —+ Kl is also compact.

(b} Obvious from 2.2, since order-intervals are compact
in Cqye

*
(c) ¢, = £l and the dual space of an AL-space 1s an AM-

space with an order-unit. If T is a positive linear map from
S into an AL-space, then the conjugate of T i.e. T* is positive
and compact by (a). Hence T is also compact.
() Y* has an order unit and x* is an AL-space.

Let T be a positive linear map from X into ¥. Since
order-intervals are w-compact in an AL-space [30], T* is

w-compact by Prop. 1.2. N

Corollary 1.4

A positive linear map from an AM-space into an AL-space
is w-compact.

Further it can be easily seen that if the order-
intervals are w-compact in ¥ and it has an order-unit, then
every continuous linear map from some ordered Banach space

into Y is w-compact. If X has an order-unit and Y is
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reflexive Qith mohotonic norm, then an order-bdunded.linear
map from X into Y is also w—coqpéct. Similarly using{
'I.Prop.ﬁ.l it can be provéa that a ﬁositive line;r map: from
a reflexive Banach space into a simplex space'is w-compact.
We also note that if X has an order-unit and Z'is_a Dual '
Banach space with a normal cone, then an order-bounded
‘linear map from X into Z is w*—compact. |

As a corollary to one of these reg;;@s, we have:

Proposition 1.5

Let X be reflexive, positively generated and Y be base-
normed. Then a positive linear map T from X into Y is
w-compact. B
Proof

* - * - . - -

Y has an order-unit and X is a reflexive space with
a normal cone.

* * * . . . .

Hence T : ¥ =+ X is w-compact, which further implies
that T is w-compact.

In Prop. 1.2 and the consequent propositions, the

# ' .
order-unit has played an important role. In such #%spaces
norm-bounded sets are order~bounded. It is natural to ask
if we can weaken this assumption. In particular, do similar
results hold if we only assume that we have an approximate
order-unit normed space? The following Proposition essentially

settles this question.

Proposition 1.6

Let Y be an approximate order-unit normed Banach space
which is B-directed. ‘Then

(a) norm bounded sets are order-bounded in Y.

h\

1)
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(b) Y is an order-unit normed sSpace.
Proof -

- .
(a) Let K = Y+f).U where U is the closed unit ball in

* ’ *
¥ . Since Y has an approximate order unit, ¥ has a base

nNoIrm.

Let H(K) be the space of real homogeneous functions on

»*
Y+,_which are continuous on X, with the pointwise ordering.
Y may be idehtified‘with 2 linear subspace of H(K), and the .
given order coincides with the relative order as a subspace

3 .
of H(K), since Y,  is closed. &Also E(K) is an AM-space with

the supremum norm on K and the ndrm on Y is greater than the
norm as a subspace of H(K)-[11].
Let A be 2 norm bounded set in Y. Then it is norm-

bounded in H(K) as well, i.e. there exists 1 > 0, such that

[[all <A for all a in &, where |[a|| = 39 Jaqw)].

. This implies that fof all a in A, and k ié R,
-A < a fk) < A. -

Let B be the base in ¥ . Then B = {k ¢ K: ||k|| = 1}.
Let us define £ ¢ H(K) such that fﬁr all b ¢ B, £(b) =

. %
and ‘it is extended to K by homogeneity. v ¢ Y, implies that

——

v =a b for some beB and o > 0, and ;A < a(b) < A. Thus
-\ £(b) < a(b) < £(b), i.e. =k & £(b) < - a(b) < A a £(b).
Hence -1 £(y) < a(y) < X £(y). .

In the pointwise ‘ordering of H(I) this implies that o
'a C (-2£, afl. | |

Since Y is cofinal in H(K) [35: Th. 1], there exists

1
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.

y € ¥ such that X £ <y, i.e. AC [-y, ¥l.

(b) . Let V be the closed unit ball in Y. (a) implies that V

is order bounded, i.e. there existé e € ¥ such that v C [-e,.e] .

Then {y e |lv]|l ill }1C{ye¥: -e<yc<el

Ciyev: |lyll < llelld

since Y is l-normal.
Thus the original norm in Y an%.the norm induced by e

are equivalent, and therefore Y has the order unit e.

Next we look at some necessary conditiong for a linear

map to be compact. In theorem I. 4.6 we saw
c~directed then relatively compact sets of X are G
This is also true when X 1is cofinal in H(X), K as in Prop
l1.6. [35]. =

Proposition 1.7

Let the norm be ‘monotonic in X, and the relatively
compact sets be order bounded in Y. Then a compact map T
from X into ¥ islorder—bounded.

Proof

Let [a, b] be an order-interval in X. Since the norm
is monotonic in X, [a,b] is norm-bounded; Therefore T([a,bl)
is a relatively compact subsets of ¥, and hence ié\gfger _
bounded in Y.

In particular this result is true when ¥ is an AM-space,

because then relatively compact sets have a supremum in Y.

‘Similarly we can show that if X_ is nommal and ¥YTia

order unit normed then a continuous linear map from X into

Y is ordef bounded.




2. Majorized Maps : -

In this section we shall consider positive linear

maps which are majorized by compact maps. If o £TX< To
with To compact, we like to know when T is also compact.

In this regard first we discuss a few cases where X(X,Y)
forms an order ideal in L(X,Y).

Proposition 2.1

Let X+ ke ggperating, and order copvex cover of a

¢
compact set be compact in Y. Then X(X,Y) is an order ideal

in L(X,¥). “ :
Proot

Let 0 £ T < S where T E.L(X,Y) and S £ K(X,Y). If
x ¢ X, and |[x]] < 1, then o < T(x) < S(x). Thus if U is

the closed unit ball in X, we have:
T(U,) Clvevy: 0 Ly <S{x): x ¢ vt}
Csw™).
. + / +
S being compact, S(U ) and hence [S(U )] the order convex
cover of S(U+f is compact. Therefore T(U+) is relatively
compact, which implies that T e K(X,Y).

Now let E < F < G; E, G ¢ K(X,Y), F ¢ L(X,¥). Then

o]

[ A

F=-E<G-E. Since K(X,Y) is a subspace of L({X,Y),
G - E is compact. From above F - E is compact. But
F=E+ (F —-Ef'éhd hence F € K(X,Y). The result follows
from the definit;on of an order ideal.

Proposition 2.2

x,//// . Let X be positively generated, and the notions of

-norm compactness and order-boundedness be identical in Y.
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fhen K(X,Y) is an order ideal in L(X,Y¥).
- )

.Prbof,

Let o < T < T, where T, is compact and T £ L(X,Y).

If U is the closed unit ball in X then TO(U+) is compact in

-~
Y. By hypothesis it is order bounded, and there is e e y

so that Tofu+)§; (o, el. 1et x e U, then T (x) ST (x) <e
i.e. T(U,) g;[o, el. But [6, el is compact which implies
that T(U,.) is relatively compact. X being positively

generated, T is'compact.
The rest of the proof is the same as in Prop. 2.1.
- In particular this result holds when Y satisfies the
equivalent assertions of Theorem I.4. |
Further we note from 1.2 and 1.3 that if one of the
following conditions is satisfied:
(ai X is order unit normed and order iqtervals are compact

in Y. J

4

(b) X is an AM-space and Y = ¢_,

1
(c) X is an AM-space with order unit and Y = Cqe
(d) X = Cq and ¥ is an AL-space.
Then K(X,Y) is an order ideal in L(X,Y). Y

The following lemma 1s used later to determine the
compactness of majorized maps. '
Lemma 2.3 '

Let'T be a positive linear map from X into Y which

maps X, onto Y. Then T(A) 1s order-convex in Y whenever

A is order-convex in X.



27

Proof _
Let A be an order con&ex subset of X and u, w € T({A).
Let ﬁ < v < wwhere v ¢ y. Then there exist x, z ¢ A .
suéh that Tx =u, Tz = wW. —

Now 0 £ v - u < w - u and by hypothesis there exist

a, b e x+ such that Ta = v -uand Th = w = u.

i.e. o < Ta < T(b), and then u < Ta + u < Tb + u
Thus u < T{a + X) < w, and v = T(a + x).-
But x < a + x < z implies that a + x ¢ A, and therefore

v T(A)o ’ L .'

Proposition 2.4

-

Let X be approximate order unit normed and TO ke a

linear map from X into ¥ such that To is compact and maps

-

order convex sets into order convex sets. If o < T < To’

then T is a compact map.
Proof )

Since X is approximate order unit normed, X, is l-normal
. Y
and the open unit ball V in X is directed upwards. Thus

[viIC1 -« vC [V] so that V is order convex.
et vy € TIV], vy = T(x) (x € V. Then there is a

v € V_ such that v > x, -x and thus T(-v}) < T(x) :_T(v).
Also To(-v} < T(x} i.T(v) which by the order convexity of
T, (V) implies that T(x) & T [V] and so TIV] C T_(V].

The compactness of To now implies the ccmpactneés of T.

Obviously Prop. 2.4 is valid when X is an order unit
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normed space.

- Proposition 2.5

Let X be a base normed Banach space, and T, To be as

in Prop. 2.4. Then T is compact.
Proof

Let B denote the base'of X v then the closed unit

ball U in X, = co(Bu - B).

X, is 2-normal [25. lemma 1l]; implies [U] i; 2 \ou.

Then M = To([tﬂ) q; 2 . TO(U) is relatively compact and order-
‘-’n ’

convex, because of . the hypothesis.

Let b € B, then T(b) < T, (b) & T(-b) > T, (=b) P

i.e. T (-b) < T(+ b) < T (b) and T (+b) £ ‘M, since + B é?U

-

M is order-convex; implies T(+b) e M.
Now.let y ¢ T(U); ¥y = Tx, X € U and x = Ab - A"b";b,b7e B
© and o < A, A” < 1. Thus -b” < x'i b and T(-b”7) < Tx < T(b).
But T(b), T(—b’j g M, -implies y’= T™ € M, i.e. T(U) g M,
l

and is therefore relatively compact.
-,

Proposition 2.6 .-

Let X be a Banach lattice and T, Tj be as in Prop. 2.4.

-

Then T is compact. ) :
Proof
| Let U denote the closed unit ball in X.

Since X is a Banach lattice, X_ is 2—norﬁal and [U1C2 - U
[15. pg. liBf.

Let M = To([U]) c2 - T, * (U}, then M is relatively

. +
compact and order-convex. If z € U, then o < Tz < To z.
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-

implies T z ¢ M; and similarly T(-z) € M.

Now let v € Tu and y = Tx, x € U. Then x = x+,- x , and

=11, LT < e+ x0T = L= Hxl ] <1

i.e. xt, x ¢ ¥, and -x~ <x < x¥. Thus &(—x-) < T{x) < o(xT).
"But T(-x"), T(x) ¢ M implies that y = Tx € M since M.is‘
order-cqQnvex, and-heﬁc;e T(U) € M. Therefore T(U) is relatively
compact.

If T, T, are as in Prop. 2.5, we can show that T will
be compact if X is normal and either X is l-generating or

X has a directed open unit ball. The proofs are similar to

those of 2.4 and 2.6, and_will be omitted. C/ﬁ

-3. A Convergence Theorem

Here we discuss a convergence theorem for compact
maps which is an analogue of Dini's Theorem. First we have
a few definitions.

let X and Y be Banach lattices. Then T € L(X,¥) is

called regular ifT =17, - 'I‘2 for some T T

1 € L(X,Y)+.

1r "2
Further if ¥ is order-complete, then |T| € L(X,Y), and the
set of regular maps denoted by 1T (x,¥), is a ﬁanach lattice
itself with I]Tllr = |]lTll]. In this case L (%,¥) is also

the set of order-bounded linear mgps from X into Y. R

T ¢ L(X,Y) is called cone absolutely summing (c.a.s.)

if for every positive summable sequence {xn} in X, the
sequence {Txn} is Labsolutely summable in Y. The set of

c.a.s. maps is denoted by Lz(X,Y), which is a Banach space

-
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with [[T[[, = Sup {§ |fmx; [l {x;} finite C X, ﬁ I‘I'Ss'il-.l = 1}

T ¢ L(X,¥Y) is called Majorizing if for every null
v ' .

-

sequence {xn} in X, {|Txn[} is an upper bounded’gequence in

Y. The set of Majorizing maps is denoted by t™(x,Y); this
is§;'Banach space with -

[lT[lm = sup {]||Sup lTxilll: {x;} finite, llxill < 1}.

In general |[T|| < [IT|[,, |IT||£, |||, The details

can be found in [31l: 1IV].

Further if X is an AM-space and Y is an AL-space,
then it follows from [31: Ex. 3, page 352] that the sets
2x,y), T™(X,¥), LX(X,¥), Order bounded linear maps from
X into Y, are all the same. Then we have:

Theorem 3.1

Let X be an AM-space, Y be an AL-space, and T, Tn'

n=1, 2, ... be linear maps from X into ¥ which belong to

one of the following sets: N

{a) Lz(X,Y)
(b) T™X,Y)
() LT (X,¥)
(d) oOrder bounded linear maps.
IET; < Ty £ .- < T and Tn(x) + T(x) for all x in X;
then

@ T -z ll~0 , /

hence (2) T is compact when each T  is compact.
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Proof

(1) Let x € X_. Then Tl(x) < thx)i .. < T(x). Since
Tn(x) + T(x) and cone is closed in.Y,'we have \ -

T(x) = Sup T_(x)  [15¢7 3.1.T4].
n

We prove the theorem for case (a).
Since LL(X,Y) is &n AL-space [31l: 1IV.4.5], the norm
is monotonic in LE(X,Y), and hence the order-intervals are

norm-bounded in it. The sequence{Tn} is contained in the
order-interval‘[Tl, T], and is therefore norm bounded. Then
{Tn} has a supremum in Lﬂ(X,Y) [31: II.8.2].

Let § = Sup Tpe This implies S < T in Lz(x,Y). But
n

for x € X, S(x) > T_(x) and T(x) = Sup T (x). Thus T(x) < $(x)
n

i.e. T < S, which implies S =T in LL(X,Y) and T = Sup Tn in

n

¢

.

Then since Lz(i;Y) is an AL-space ||T - Tnllz - 0

f1s: 3.8.8].

But ||T - Tnll < |l - Tnlli' and therefore [[T - T || -+ 0.

(2) Since K(X,Y) is a closed subspace of L{X,¥), and each

T, is compact, T must be compact.

In the rest of this sectipn, as in Thm. 3.1, X will
‘always be an BM-space and Y will be an AL-space.

Corollary 3.2

Let T ¢ L(X,Y) Pe the point-wise 1limit of a2 non-

decreasing sequence of positive, compact maps {Tn} contained

st
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in L(X;¥Y). Then T is also positive and compact.
‘Proof

Let x € X,. Since T (x) ~ T(x), the cone is closed in
Y and Tﬁ(x) £ Y+, we have that Tx e“Y+.

_ Thus T is a positive map. -

’ Now evéry positive map is order-bounded and therefore
we apply 3.1(d).

-In fheérem 3.1 we would like to remove the condition

+that T is itself a c.a.s. map. We have the following result.

Theorem 3.3 . -

et T ¢ L(X,¥Y), and {Tr} be a norm—boundeé sequence in
LK(X,Y) such that Tl < 'I'2 < ... 2T and Tr(x) + T(x) for

x £ X. Then
(a) T ¢ L&{X,Y)

Hence (b) T is compact, when each 'I'r is compact. ~

Proof

(a) Let x & X_. As before Tx. = sup Tr(x).

Since {Tr} is a non-deckeasing *-bounded sequence

in'Lz(X,Y), which is an AL-space, there-exists S e Lz(X,Y)

such that § = Sup T_. Thus S < T in L(X,¥).
r

Again-for_x € ¥+, S (%) > Tr(x), n = 1,'2, e
Thus $(x) > T(x), i.e. S > T in L({X,Y). Therefore S = T,
and T € LL(X,Yf.

(b) 2pply 3.1.

%
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Corollary 3.4

1t T € L(X,Y) be the pointwise limit of a non-
decreasing sequence {ﬂ.‘r} C L(X,Y), of maps of finite rank.

Then T is compact. -
Proof

Every T_ is a c.a.s. map because it is of finite rank.

It is also compact. - Hence we can apply 3.3.

Idstead of a non-decreasing sequence of maps in 3.1 and
3.3, we can have an upward directed family of maps. In fact
we have the following:

Theorem 3.5

Let T ¢ LE(X,Y), and {Ta} be »~ mpward directed

el

family in Lz(x,Y) such that T, LT, ce I, and Ta(x) - T(x)

. for x g X.
Then:

(1) ll-r-'rall + 0, and
(2) T is compact, if each Ty is compact.

Corollarv 3.6

LT

‘Let T ¢ L(X,Y) be the point wise limit of a directed

net {Td}asl C L(X,Y), of positive compact maps. Then T is

also positive compact.
Although 1l.3(a) has been proved in the first section,
yet we prove it here again to exhibit an application of

Th. 3.1.

N
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Proposition 3.7

_Let X be an AM-space. Then any positive linear map

. . 1
T from X into £1 is compact.

Proof -

zl’is‘a base normed space with base

k]

B = {set of non-negative sequences {£_} such that ZIE_ = 1}.
n n

- 1 . o0 .
If v e £+ ’ thgg\f = i Ei ei;Ei 3.0,_all i and where

e; is the element ¢ 31, with 1 in the ith place and 0 elsewhere.

© Let x €e-X and v = Tx. Then we define the operators

T&: X - £l such that Tr(x) = Pr(Tx), and where Pr is the
projection of £, on the span of {el,...,er}.
Since ﬂl is an AL-space, and T is pcsitive&\therefore

T is continuous. This implies that for all r, T, is continuous

linear.
o 1 - ) _
Now let u € X, then v = Tu ¢ £+ . So if v = ?Ei e,
b 1
then g; 20, for all i and Pr(v) = isiei e L. -
L

Thus Trﬁu)\= Er(Tu) = Pr(v) £ £i , and 'I'r is positive.

© . n

Again from y = § c;e; € £, oy > 0: P _(y) = i a. e,
udmadme%iP < ... <TI.

i.e. T) £Tp 2 ... % T, and also by definition of Pr and Tr'

Tr(x) + T(x) for x e X.

Finally for all r, Tr has a finite rank and is therefore

compact. Now we apply cor. 3.2.



CHAPTER THREE

b ORDER PROPERTIES OF L(X,Y)

Let X and Y be ordered Banach spaces. A short survey
of the study of order structure of ‘L(X,Y) was given in seétion
3 of cﬂapter One. In this chapter somé conditions.
are given under which L(X,Y¥) will have certain useful order
properties. In particular, we consider conditions in X and Y
which ensure that L(X,Y) will be regular, have a monotone
norm or have a directed open unit hull. Study is also made
‘to determine when the norm on L(X,Y¥) is a-directed or .
c-additive. These are extensions of results in [25} and
supplement the earlier resuits ¢f Ellis [13] and Wickstead
£3471.

‘ First we sﬁate a lemma due to Bonsall (6].
lemma 1.1

Let X be a real vector space, with k+ a wedge in X.

Suppose P is a sublinear map from X into a complete vector

lattice Y, and Q a super-linear m%g from X, into Y such that-
Q(x) < P(x) for all x ¢ X, Then there is a linear map T

from X into ¥ such that

T(x) < P(x} {x € X)

Q(x) < T(x) (x e X.).

35 - 3
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(S

when we take Y = R.

In particular this lemma holds for functionals on X,

Proposition 1.2

let Y be order unit normed, order coﬁplete lattice, and
X satisfy (R;). Then L(X,Y) 5satisfies (R,).

Proof - o .

Let T e L(X,Y), and e be the order unit in Y. We define
peo = |lTl] - HIxll ~e , xex,
Q(x) = Sup {Tz: -x < z < x} , x € X, -
If -x < 2 £ X/ then
T(z) < ||T2[] - e
el - [lzll - e

Jlell o« [xll - es since X satisfies (R)

A

| A

= P(x} .

Hence Q(x)'is well defined and Q < P. Also Q is sﬁpe;—
linear and P 1is suﬁlinear. Therefore Bonsall's lerma 1.1
gives us a linear map S: X - Y such that

S(x)ri_P(x)‘, x € X; and Q(x) < sS(x), x € X+ .o

Thus S(x) < |[T]| - [Ix]] - e for x ¢ X and
Ss(0) = stx) < (=) = [Tl - Lixl] e
ice.  =llTll o« lxl] - e < s < LTl - Hixl] < e .

Since Y is l-normal, we have
seall < 11zl =« Hxll - Hell < fleil - Hxll s
i.e. I1s]] < llTll and S & L(X,Y).

Moreover from the definition of Q(x) we have

£ T = TR <) S, xeX 5 i.e. $T S, ) 4

Thus given T € L{X,Y) there exists S ¢ L(X,Y) such that

lslf < 7|} ama +T<s.
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.. and therefore L(X,Y) satisfies (Rz).

-

5 .
It is ‘easy to show that if X has (R,) and Y has (Ry),

then L(X,Y) has (Rl) {36] . Combining this with the above

result we have:

Proposition 1.3

Let X be regular and Y be an order unit normed, order

complete lattice. Then L(X,Y) is regular.

Proposition 1.4

Tet L(X,Y) satisfy (Rl); then X satisfies (Rz) and

Y satisfies (Rl}-

Proof

-f <

then

‘ -
*
Let y ¢ Y_ with llvl| = 1, and £, g, € X such that
g < £f.
We define ¥, G: X + Y by:

F((x)

f(x) - vy x e X
G(x}) = g(x) = ¥ x £ X
F, G e L(X,Y).

Now let x e'x+, then -f(x) < g(x) < £(x)

i.e. -f(x) v 2 g(x) ¥ 2 f(x) v, in Y.

Thus -F(x) < G(x) < F(x), x € X_
i.e. -=F < G < F.

But L(X,¥) satisfies (R,), and therefore ||c|| < ||F||.
We also have ||G|| = sup {||eix)}||: ||x}] < 1}

sup'{[gx)| « ||yll: [Ix]] <11

sup {lagx)|: |[x|] <1} = |lgl] ,

and similarly I[F[l.= [1£]].
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Hence ||gll.< ||£]] and therefore X satisfies (Ry),

which implies that X satisfies (R,). [25. Th. 71 /

Next we prove that Y satisfies (Rl).

Let x, € X, (xo # 0). Since the cone is closed in S,

*
there exists a positive £ € X such that
£(x ) =1 and HEN =1
Let -a < b < a; a, b € ¥, and define A, B: X - Y such

that

L

i

A(x) £(x) - a, x e X

B (x)

£(x) = b, x £ X.
Then A, B E‘L(X,Y) and since -f(x) + a < f(x) - b :_f(x)-a,
we have

- A <B <A

and therefore |[Bl] < ||all:

where ||A]] sup {||a(x)|{: |lx][] < 13

sup {|£(x)] - [lall: [$:||_i 1}
= [1£]] - [lall. i

similarly }|Bl] = ||£[] ~[Ibl].

Therefore ||£]] - [[bll < [I£]] - liall. .
But ||£]] # 0 and hence |[b|] < |lal], i.e. Y satisfies (R,).

Combining Prop. 4.4 with Wong's result gquoted in Prop.
1.3, we get:

Corolléry 1.5.

L(X,Y) satisfies (Rl) iff X satisfies (Rz) and Y

satisfies (Rl).

Proposition 1.6

If L(X,¥) satisfies (Rz), then X satisfies (Rl) and
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Y satisfies (Rz). -

.'gpoof ' e
(a) ©Lety, e Y, with |[y°[[ =1, and £ be a positive
continuous linear functional on Y with £(y,) =1 and [[£]] = 1.

*
Let ge X, and G: X + Y be defined as

&

G(x) = g(x) * v, .
Then G ¢ L(X,Y) and since L(X,Y¥) satisfies (R,), given e > 0,

there exists-H £ L(X,Y)+, with

Mall < [l6l] +¢  and +6 < &

since |[el] = Ilgll,  [l&[] < |lgl] +¢

Now we define a functional h on X, as

hix) = £(H(x)).

Then h is linear, positive, and t
Ina)| < [1£]] - sixbD = 1] - [ [x]] N

i.e. [In]] < TlE[l=< {lgll + €.

| &}

* . :
Thus X satisfies (Rz) and therefore X satisfies (Rl)

\

[25. Th. 6].

(b) Next we provg that Y satisfies (R,). let X, € X, with

[|%,11 =1, and £ ¢ X with |]£]| = 1 and £(x,) = 1.
let y € Y. We define T: X =+ Y such that ,
T(x) = £ (x} - v, x £ X.
Then T ¢ L(X,Y), énd thére exists S ¢ L (X,Y)+ such.that
[Is]]
' Let z = S(xo). Then z > +.y, and
Hzll = [Isx |l < [IslI] < [IT]] + «.

But ||T|| = ||y[|| and therefore ||z|[ < [|yl] + e.

| A

Pl +e, +T<s, e > Q.
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We can combine propositions 1.4 and 1.6 to obtain:

Proposition 1.7

et L(X,Y) be a regular space, then both X and Y are
-y .
regular. : _ -
Next we look at the conditions under which L(X,Y) has
a monotone noxrm. If X satisfies:

(R)): For x € X with ||x]| < 1, there is y > 0, x with ~

yll < 1 - 7 ' : |
then X is boundedly generated i.e. X_ is a-generating for
some ¢ > 0. If further Y+ is l-normal then L(X,Y) is
c-normal [34]. But actually we have a more pfecise resulti

Proposition 1.8

Let X satisfy (Ro) and ¥, be l-normal. Then the norm

is monotone on L(X,¥).

Let S, T € L(X,¥) with o0 < 8 < T. For x ¢ X with
||x|] < 1, there are y, z € X, such that Hyll, Ilz]] <z
and -z < X < VY.

Thus -S(z) < S(x) < S(y), and ||s(x) || < max {||s(2)]],
||é(y) ||}, since Y, _ is l-normal. Therefore

lisl] = ssplils@ 1]z v ex,., Iyl <1}

© <supl]lTyli: v e x,, [lyll <1¥
= [fz|l.
I+ is known that for a base-normed space the positive

cone is (1 + tc)-generating for all € > 0 {25]. We also know
. .
that X_ is l-normal iff X is (1 + ¢)-generating (I. 2.1).

Thus we have:
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Proposition 1.9

Let X_ be (1 + e€)-generating for all € > 0. If thé
norm is monotone on ¥, then so is the norm on L(X,Y).
| The proof is similar to that of Prop. 3.1 in [34] and
islomitted.

Proposition 1.10

Let the norm be monotone on L{X,¥). Then X satisfies
(Ro) and Y has a monotone nSrm.

By an argument similar to that of Prop. l.4 we can show
that the norms on x* and Y are monoﬁone. Then [25: Prop. 61
impiies that X satisfies (Ro).

The converse to 1.10 also holds:

Proposition 1.11

Suppose L(X,Y) has (Ro). Then the norm is monotone

on X, and ¥ has Ro.

Proof \

We can show, using a similar argument as that of Prop.
1.6, that X and Y have (Ro) and then norm is monotone on X
[25: Prop. 5].

Sufficient conditions for L(X,¥Y) to have (Ro) ar%\given

below:

Proposition 1.12

r

Let ¥ .be an order completeﬁ/order unit normed lattice.

If the norm is monotone on X, thén L(X,¥Y) has (Ré).

Proof

.Let e be the order unit in ¥, and T € L(X,Y).
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We define
Q(x) sup {Tz : 0 <72 < x}, x & X,

and P(x)

el o« Hxif - e, x e X
Then Q is super-linear. Now we can follow -the proof of Prop.

1.2 to show that L (X,Y) has (Ro).
o ’ .
Next we consider the a-directedness of L(X,¥Y). The

following result improves Theorem 3.4 of [34].

Proposition 1.13

let Y be an order unit normed space. L(X,Y) 1is
a-directed iff X is a-additive.

Proof

let T; € L(X,Y), llTill <1, i=1,2, ..., n. If e is

the order unit in Y and U # the unit ball in X, then

T (W) C [-e, el. i=1, 2, ..., B

For x £ X, Ti(x) < llTitx)|| e

| A

Pxll] e i=1, ..., D.
Thus we set
r,(x) = inf {d: T;(x) £ xel, 1=1,2, -..r B

and r{x) = max {ri(x): i=1, 2, ..., n}.

-~

Obviocusly r;({x) < 1%, i=1, ..., n; and therefore

r(x) < |lx|]. d
let
m m
g{x) = Sup {Z r(x;}): I x. =%, x>0, m= 1,2,...1 (x e X))
1 J 1 J J = ‘ +
and .
p(x) = allx[], x e X. .
If x € x+ d x= jil xj' xj >0, we have
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m m m .
I rix.) < I [lx:]l]le <a||lZx:]] <o |]|x]]
1 3T J = 13~

and therefore g is well-defined. Also g is superlinear, p

is sublinear and q(x) < p(x) x e X,.

Thus Bonsall's lemma 1.1 gives us a linear functional t on X,
with t(x) < p(x) x g X

g(x) < t(x) X e X ;

i.e. fttx)]| < o [I1x]| and this implies that t e X" with
Hell < e
Now we define T: X - Y by T(x? = t(x) - e.

Then T ¢ L(X,¥) and |[T|]| < @. Also for x £ X_,

\(x) <r(x) e<gix)ecx t(x) e < T(x).
Thus L(X,Y) is (a, n)—dlrected for all n. _
The proof of the converse is similar to [34- Th.3.4].
X is l-additive iff norm is additive on X ,and X is -
l-directed iff the closed unit ball in X is directed upwards.

Therefore we have:

Corollarv 1.14

If ¥ is order unit normed, then L({X,Y) hgs a directed
closed unit ball iff norm is additive on X_. 7

In fact Progositions 1.2, 1.12 and 1.13 give ué sufficient
conditions for L(X,¥) to be positively generated. érops. 1.2
and 1l.12 can be genefEIized. ﬁe consider the following
conditions: let a > 1; .
(a) x, y e Xand 0 < x < y implies ||x]] < e ||y]].
(b) x & X and ][xll < 1 implies there is y > 0, x with

Hyll < e

- -
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(a”) i; v € Xand -y < x < y implies {|x[] <a [|y]]
| (V') x ¢ X and i]x[l < 1 implies there is y € X_; X, -x < ¥
cand ||y[] < e. |
If ¥ is as in Prop.l.2 then L(X,¥) has (b) iff X has
(a), 3hd L(X,¥) has (b”) iff X has (a”). Further if L(X,Y)
has (b} or (b”) then so does Y. |
From the remarks after I.3.2 we note that so far
sufficient conditions are no£ known undér which the operator

norm on L(X,Y¥) will be a base norm. However we can give

sufficient conditions in order that the norm on L(X,Y)+

be additive. We also consider the a-additivity of norm on

L(X,Y)+.

Proposition 1.15

Let the closed unit ball be directed upwards in X, and

Y satisfy (Rl) and the norm be additive on ¥.. Then the norm
is additive on L(X,Y)},. . o .

Proof

Let T ¢ L(X,Y)+ and U be the closed unit ball in X. We

claim that

{lTi] = sup {||Tx|]: = e U} where U_=1UN X+.“‘

If x € U, then -x ¢ U, and thgre exists A U+ with x, -X < -z
d.e. -z < x < zZ, .and ~Tz < Tx < Tz,

Since Y satisfies (Rl),]lTx[| < llTrz||, and our assertion is

-

‘proved. ) :

Néﬁt we pick x, y e U_and §, T ¢ L(X,¥). There.exists

.z € U, suc that x, v < z. Since the norm'is additive on
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Y, and Sx, Ty € ?+, we have ||sx[| + ||T¥l] ='|Ich+-Ty||.
But Sx < Sz and Ty < Tz implies 0 < Sx + Ty < Sz + Tz =
(s+ T) (z). -

Therefore, the norm being monotone in Y, we'get
|Isx]| + |fzebi < 1(s + D =[]

s + 2] |l=l]

< lis + |},

)

| A

Taking supremum respectively on X and v,

Lisil + [lzl] < s +7l]. i.e. [IS]] + 1]l = |Is + i

Corollarv 1.16

Let X be l-directed, Y satisfy (R;) and be c-additive.
ﬁ@en L{X,Y) is c-additivg.

Proof

L. . .
Let Ti > L(X,Y)+, x; € U+;-i =1, ..., r. There exists

zZ € U+.with zZ > Xy i =1, cce, &

Then IITl xl[l + . . . +|[Trxrll

r
<o 12 mxll

c .
gal|§'ri(z)ll‘ P
r ~ .

< IliTill NER

r
<oz 2l
Taking supremum respectively on X, ..., X,., We have

r % _r
i e izl

-
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- Now we look at the lattice properties of L(X,Y).

Proposition 1.17

Let X be base normed, have the R.D.P. and X, ‘be closed

convex hull of its extreme rays. If Y is a lattice then so
_ also;is L(X,Y).

Proof
Let F eL(X,¥). We shall show that F' exists in L(X,Y) .
We define G(p) = (F(p))+. P € 3B where é is‘the base
in X. .
G can be egtended to B by convexity and then'to X by
linearity. Obviocusly G is linearh Since the, lattice operations
are continuous.in ¥, G is continuocus on 9B and hence on X.

If b € B, then

n .
b= i ¢;P;r Py € 3B and a; > 0.

L n .
Thus G(b) Ia; Glp;y) a; Flp;)
. i

I
C My

~

n ’ .n .
> i as F(pi) = S(i a;p;) = F(b).
i.e. G > F, 0. Further if E > F,0 then we can show that

G < E. Hence G™= rt.
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CHAPTER FOUR
. - .\
- ORDER PROPERTIES OF K(X,Y¥)

A\l

The order properties of L(X,Y), where X and ¥ are
ordered Banach spaces, have been discussed in quité some
detail but the order structure of K(X,Y) neeés noxe
exploration. Seetion 4 in Chapter One contains a summary
of Wickstead's results in this direction. EHis work was

mostly concentrated on the positive generation and order

Y

completeness of X(X,Y¥). In this chaptér an effort is made

to give an extensive study of order properties of XK(X, Y).

Sufficient conditions are given in §éctlon l, and Sectlon 2

covers the necessary condié!ons. The third section deals

with the existence of weak order units and quasi interior
points in K(X,Y).

1. Sufficient Conditions

T+ was mentioned in section 4 of chapter one that if

Y is a simplex spégé then K(X,Y) can be identified with

L4 * * .
A_(C, X') where C = {fey: £2>0, [|£]] <1l

In particular if-y = A(C), C.a simplex then X(X,Y) -
’ ~ *
is identical with A(C, X ). Thus using duality we can derive
a number of results from [4], [34] and [36].

Proposition 1.1

Let C be a simplex and Y = A(C).

. : 47 -
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. : /T . :
(1) If X_1s normal then K{X,¥),k 1s generating.

(2) 1If X is regular then K(X,Y¥) is regular.

(3) If the norm is additive on X+, then thé closed unit |

ball is directed in R(X,Y).
() If X lS g-additive, then (X, Y) is a-dlrected.

(3) If£ X_ is normal, positively generating and X has the

R.D.P. then K(X,¥) has these propertieé.
If, further, E is a Bauer simplex then RK(X,Y) is a
Banach lattice; and if X is an AL-Space then K(X,¥) is an
AM-space with an orxder unit. :
Proof
We show that A(E, X*) has the required properties.
« (1) X* is positively generated ané +heorem 2.3 of [4]
implies that A{%, X*) is positively generated.
(2) X* is regular (I.2.5) and we can apply [36: ‘II.B.S].
(3) The closed unit ball of X* is directed (I.2.7) and then
so is that of A(C, X ) [36: TII.3.4].
(4) X* is a—dlrected (X.2. 9) and the result follows from
[3§: I1.3.5].
(5) x* is a Banach lattice [34% Th.2.8] and using [4: 2.5}
we see that A(E, X*) has the stated properties.
If E is a Bauer simplex, A(E, x*) is a Banach lattice
[36: II.3.13]. When X is an AL-space, X* is an AM-space )
‘with order unit. Now the result follows from (36.1I.3.13]

and [I.3.1]. \ -

when the range space is a simplex space, we have:
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Proposition 1.2

[ JURPURCI B Y VT S

Let ¥ be a simplex space.
(1) If X, is normal, generating and X has the R.D.P. then . ;

K(X,¥) is normal, generating and has the R.D.P.

(2)If Xis base normed and has the R.D.P.then K(X,¥) is a
simplex space. |

(3) If X is base normed with R.D.P.; and ¥ has a lattice
order, then K(X,¥) is an AM-gpace.

Proof |

*
As before we will show that AO(C, X ) has the required
' *
properties where C = {£ ey, 11€l] < 13
. . .
(1) X, is normal, generating and has R.D.P. Since {o} is

a closed face of C, we can modify proof of [4: Th.2.4] to

%
prove that Ao(c, X ) has these properties.

(2) From (f) K(X,¥) has the r.D.P. Theorem 4.8 of [34]
implies that R(X,¥Y) is approximate order unit normed. Eence
K(X,Y) is a simplex space.
(3) X* is an AM-space with order unit. Cor. 4.7 of [34]
implies that K(X,Y) is a lattice. Then ffbm [25. Cor.2.Th.7]
and (2) we see that it is in fact an AM-space.

Following the selection theorem technique we obtain,

Proposition 1.3

Let ¥ be a simplex space. Then K(X,Y) is a-directed
if and only if X is a-additive. ¢
Proof

*
(a) Let X be a-additive. Then X is a-directed and we show

*
that Ao(c, X )eis also a-directed. We shall be using
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Theorem I. 4.2. K

-
Let o; e A (C, X)), i =1, ..., nwvith ||o,]] < 1.
i o 1 -
: : L X* - - -
Define a map ¢:° K + 2 by . : ¢
3

¢(k) ={yeX: y20,(k), i=1, ...pns[]yl] <o+ Tk # 0

¢(0) =0

) *

¢ (k) is closed and non-empty since X is a-directed.
It is easy to show that it is convex and affine. To prove

that it is l.s.c.: we take an open set VC;:X*, k, € K such

that ¢(ko)(\ V#é. let P={keK: &(k)N ;?# ¢}. Then

k, € P. Ve want to find an open set WwC P, which contaiqs

ko. This would imply that P is open and hence ¢ is l.s.c.
There exists v, e ¢(k_) N\ V with vl < a + €.

let I]vo]] =(e+¢€)-§,8 >0 and éuppose

v |]v-- uoll < vy} _V for some y > 0.

Let W be the open set

tkexr [16;00 -8;0k) || < %min{‘r,ﬁ}/a, i=1, ..., n.

If %-min {v, 6}/a = B (say), then for kK ew,
[[(ci(k) - ci(ko))/él[ < 1, i=1, ..., n and because
X* is a-directed, there exists g > (oi(k) - ci(ko))/B

with |{q]] < a .
Let p = Boqlthen

-
Il

P _>_ Ui (k) - Ui(ko) l’ LRI n

and [[p|] < -8 g%-min{hs}-

}
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Ifweputv=v°+p then vlci(k) . i=1, ..., n; and

vl < Hv Il + el < @ +€) =8+ %ﬁ <a+e.

~

Thus v € ®(k). (k € W)

Also ||v - voll = |lpl} < %‘Y < y+, which-implies that v € V
i.e. v e $(k) Vv and theréfore k ¢ P. BHence ko £ W:r\P

and P is open.

, -~
Now we apply Th. I.4.2 to obtain a continuous affine

selection ¢ of ¢ such that —
7
¢ (k) € &(k) k ¢ K. ' k\\
¢ici i=l' seay, I S~ - .\

N

‘11#]1] <« and ¢ e A(C, x).

*
Therefore AO(C,X ), and hence K(X,Y) is a-directed.

(b) Conversely let XK(X,Y¥) be a-directed, & Yo € Y, with

IIYO4I = 1. There exists f ¢ Y: such that £(y ) =1 = %lyoll. &
. - . }/N-n
Let g; € X with |lgi|l <1, i=1, ..., D —
We define G;: X ~ b4 i=1, «car :
as Gi(x) = gi(x)- Yo x £ X '

Then G; ¢ K(X,¥) and IIGiII < 1.

Therefore there exists G > G; with l16]] < e, G e R(X,¥) .

et g(x) = £(G(x)) _ /
1f ||x|] < 1, then
gty | = leen | < [1gl] - llet 1l
< llell |

x
therefore |lgf] < |16l] <o + and g € X .
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If x ¢ x!( £(G(x)) > £(G; (x)) i=1, ..., n.
= ogyx) - £(y,)
= g, (x)
Thus g > 93 i=1, ..., n.

*
This implies that X is a-directed and then by [I.2.9] X
is a-additive.

CoroIlary 1.4

Let ¥ be a simplex space. The closed unit ball of
K(X,Y¥) is directed if and only if the norm is additive on
X+.

Several of the proofs in Chapter Three are also valid
for the space of compact maps. In particular Propositions
1.4, 1.6, 1.8, 1.9, 1.10, 1.13, 1.14, 1.15, 1.16 hold true
for K(X,Y}.

Next we introduce a concept which is useful for the
later work. 1let X be order complete, then X will be said to
have property (S) if it satisfies the foliowing condition:

"If PC X is bounded above then the set of finite
suprema from P converges in norm to Sup(P)."

Proposition 1.5

Suppose Y is order.complete, l1-directed, and has the
properties (Rl) and (S). IXIf X is ac-additive then K(X,Y)
is a-directed.

Proof

Let T; € K(X,Y} with [|7;{| <1, 1i=1, 2, ..., n;

: n
and U be the unit ball in X. Then P =|J(T,(U)) is relatively
' 1
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compact gnd hence ordex -bounded (Th. I;4.6).

: m

Let e = Sup(P) and {yj} be a finite subset of P.

i=1

]

Since [[yjb{_i 1 and Y is l-directed, there exists y € ¥

withllYlliland Y=y =1, «sss W

j'
Let u = Sup {yj}. then y; £ <v.

Similarly there is z e y,_ with |[z[] < 1 and -¥s <z, 3= 1,
Again there exists v > y, 2 and [Ivl{ £ 1. Then

-v < ¥-

3 <u <y <v which implies that | |ufl <1

since Y has (Rl).

Now let {ZG}GEI be the family of finite suprema from P.

e ey

By hypothesis {z;} converges in norm to e, i.e. |le —25|| - 0.

Then given ¢ > 0, there exists y such that |le - zYll < g
and therefore ||el| < ]IzY]{ +g<1+ce€.

Thus ||e|| < 1 and we can follow the proofs of Prop.
TII.1.2. and III.1.13 to obtain T e K(X,Y) such that

T>T,i=1, ..., n and lTll < e llell 2o -

Similarly one can show that if ¥ is oxder complete,

a-directed, has Property (S), ¥ is l-normal, and X is

1-additive then K(X,Y) is a-directed.

Corollary 1.6

Let Y be order complete with properties (Rl) and (S)

and suppose the closed unit ball in Y is directed. If the
norm is additive on X, the closed unit ball of K(X,Y) is

directed.
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Proposition 1.7

»

Let Y be an order complete lattice with compact order
intervals and directed closed unit ball.

(2a) If X satisfies (Rl) then K(X,Y) satisfies (Rz).

(b) If the norm is monotone on X, then XK(X,¥Y) satisfies (Ro).

Proof )
Let T ¢ K(X,Y), with ||{T{] < 1, and U be the closed
unit ball in X. Since Y satisfies the hypothesis of Prop. 1.5

[I.4.7] we can show as in 1.5, that there exists e-a Y with

. i S—
|lel] <1 and T(U) C [-e, e]. |
(a) Let P(x) = |[T]] - [[x]| - e , xeXx;
3 Q(x) = sup {Tz: -x E.? < x}, xce X, .

A proof similar to that of Prop. III.1l.2 gives us
S € L(X,¥) with § <P, S >+ T and ||s|| < [[T]].

Thus S(x) < [IT]] - {]x|] - e .

If ||x|| < 1, then S(x) < e; i.e. S{U) C [-e, el.
Since {[-e, e] is compact, S £ K(X,Y).
(b} This follows from part (a) and III.1.12.

Prop. 1.7 can be generalized as follows: If Y satisfies

the hypothesis of 1.7 and (a), (a”), (b}, (") are the four
properties given after Prop. III.1.14 then
( i) If X has (a), R(X,¥) has (b).
(ii) If X has (a”), K(X,Y¥) has (b7).
In the following propositions-we consider the lattice

structure of XK(X,Y).

Proposition 1.8

Let X be regular with the R.D.P. and Y satisfy the

equivalent assertions of Thm. 1.4.7. If further Y is 1-
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directed then K(X,Y) is an order complete lattice.

Proof

Since X has R.D.P. and X_ is generating K(X,Y) is -

order complete by Thm. l1.4.7.
| X has (Ri) and Y satisfies the hypothesis of Prop;
1.7(a); therefore K(X,Y¥Y) 1is positively generated.

Both implications together give the required result;

Proposition 1.9

*x k 4
Let ¥ be reflexive. If R(Y , X ) is a lattice, then
so also is RK(X,Y).
Proof
) * * * *
Let E, F € K(X,¥)." Then E , F ¢ RK(Y , X ) and

* * .
M=E V F exists,
*

Le{ G = M*[x. Then since E = E. Iy

we have G > E, F.

* * *
If further E > E, F, then E >E , F and therefore
B
M<E.
Thus G < Eand G = E V F.

Corollary 1.10

, L]
Let X be Sése—normed, have the R.D.P., and Y be -a
reflexive lattice. Then K(X,Y} is a lattice.
Proof
* * . * .
Y , X are Banach lattices and X has an order unit.
* * ' .
{E;EQI. 4.4] RK(Y , X ) is a lattice.
(Note: Props. 1.9,1.10 are valid for L(X,Y) as well. One
can use [I. 3.61).

Similarly one can show that if Y is reflexive and

* * . - . —
K{(Y , X ) is order complete, then so also is K(X,Y)%
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2. Necessary Conditions

In this section we look at necessary conditions in
order that X(X,Y¥Y) have certain order-properties,

Proposition 2.1:

Let K(X,Y) be c-directed. Then X is a-~additive and
Y is a-directed.
Va

Proof

(2} First we prove that Y is a-directed. Let'xo € X, with

IIxOII = 1. There exists f ¢ X: such that £(x_) = 1 = ||£]],
Let Y; £ ¥, HYlH <1 i=1, ..., n.
We set Ti(x) = f(x)-yi X e X.

Then T; e K(X,¥) and [IT;[| < [1£]] - |]y,l] < 1.

Therefore there exists S ¢ K(X,¥) with [Is]] < «

and S > 'I'i . 1i=1, ..., n.

et z = Sxo € Y. Then zz?i(xo) = f(xo) y; = 'S
and [lz|] < Ifs|]-]I5,]] < o
(b) To show that X is c-additive, the proof is the same

as in Prop. 1.3.

Corollarv 2.2 . \

If the closed unit ball is directed in K(X,Y)‘then
the norm is additive on X, and the closed unit ball in Y is
directed.

In Prop. III.1.7 we showed that if L(X,Y)} is regqular
then both X and Y are regular. The same proof holds for

K(X,Y) as well. Thus we have:
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Proposition 2.3 . _
Let K(X,¥) be regular. Then both X and Y are regular.

. Similarly from Prop. I.3.3 and Prop. I.3.4 we get:

“Proposition 2.4
(a) If R(X,Y) is positively generated then x+'is normal and

Y is positivelf generated.

(b) 1If K(X,Y)+ is normal,\tfﬁn X is positively generated

and Y_ is normal.
Propositions III.1.10 and III.l.1ll give us:

Proposition 2.5

If the norm is monotone on X(X,Y) then the norm on

Y is also monotone and X satisfies (Ré).
Furtﬁer if R(X,Y) has (Ro), then the norm is monotone.
on X and Y hgs (Ro).

Proposition 2.6

Let R{X,Y) be a-additive. Then X is approximétely
a-directed and Y is a-additive.

Proof

(a) We choose x_, ¥;, Ty» i=% ..., n, and £ as in 2.1.

7,11 = swptllze -y Il Ilxl] < 1}
= Lyl - HEl] = Lyl
mhus 3 1yl =2 7 ll <o l1Z 701 = o [T vl ;
1 R S 1 1 |

because (L T;}(x) = L T;{x) = £(x)Z Y

n n
implies []i Ti]] = [[i yill. Therefére Y is a-additive.
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-

(b) Let y, € Y _ with [[yoll = 1, and

x* .
fi€x+ Witl-l Ilfi" il! . i:'"-‘l’ saayp n.

. * N N -
There exists g € ¥ such that g(y ) =1 = llgl]-

We set F;(x) = fikx) * ¥ so'tﬁét l]Fi[l¥% ||fill and fi e RK(X,¥).
n n R . n . . i
(i F;) (x) =y, -. :zL £, (x) .u.nplles that Hi F, |l = H:zL: £.11.
n n. o n ) n
£ z £. =z F.| IF. = I E£. v
geretore T |15;]1 = T IIs;ll s 12541 = o 12 ]

* .
and X is (o, n)-additive. By Thm. I.2.9. X is approximately

a-directed.

Corollary 2.7

If the norm is additive on K(X,Y)_ then the open unit

-

ball is directed in X and the norm is additive on Y+.

Combining Prop. 2.6 with 2.4 'we have:

Proposition 2.8

. . a .
If XK(X,Y) is base normed then X is approximate order

unit normed and ¥ is base normed.
Proof |

From Prop. 2.6 we note‘that Y and X* are l-additive ,
since K(X,Y) is so. Also the positive generation of K(X,Y)
implies the positive generation of Y and X*'(Prop. 2.4).
Thus_xgsnd X* aré both base normed.:‘By I1.2.4 X is approximate
ord%r unit normed. \\&f

\

Proposition 2.9 ’ ]

- r L. .
Let X_ be normal and positively generating.

(a) If K(X,Y) is.a lattice, then X has the’R.D.P: and ¥ /

‘h. )
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is a lattice. .
(b) If K(X,¥) has the R.D.P. then so do X and Y.
(e} 1If Y is éositively generated and K(X,¥) is order complete, -
then X has the R.D:?.'ané Y is a.complete vector lattice.

Proof

{a) Lety, ze Y and x, € X with [[x 1] = 1. There is

®
feX, with'f(xo) = 1, We define F(x) = £(x) - y and
E(x) = £(x) -z, . x¢gX. _

Since E, ¥ ¢ K(X,Y), there is G = E V F € K(X,¥). Let

,ﬁ = G(xo). Then v = F(xo)\g_G(xb) = v and similarly z < v.
)

Ift>y, z, we define T(x) = f(x)-t, x £ X. Thus

t = T(x ) and T > E, F. i.e. T > G and t > v. Hence

v = Sup (v, z) and this implies that ¥ is a lattice.

The proof that X has the R.D.P. is similar to
' = .

[34: Prop. 3.16].
(b) This can be proved in a similar way to part (a).
(c) The érqof is the same as in [34: Prop. 3.16].

borollary 2.10

Let x+bé normal and poéitively generating.
él) Ifjk(X,Y) is a simplex space, then X is base-normed
&iﬁh_tﬁe R.D.P.; and Y is a simplex épéce.
(2} If K(X,Y)-is an AM-space, then X is base-normed with
R.b.P. and ¥ is an AM-space. -
Proot |
(1) R(X,Y) is approximate order unit normed and has R.D.P.

Therefore X is' base normed and Yhas approxim'ate order unit
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'{I.4.5], and further X,Y has R.D.P. by 2.9(b). Thus ¥ is

-a simplex space.

'(2), K(x;Y) is now a ‘simplex space.with a lattice oxder.

$herefore~by 2.9(a) Y is a lattice and hence by (1) is an

A}

Comblnlng 2.9(a) w;th 2.8 we note that if R(X,Y) is

an iL-space then X is" a simplex space and ¥ is an AL-space.

-

3. Weak Order Units and Quasi Interiox Points

An eiement X, of X, is said to be a weak order unit

of X if, for each non zer%:x £ X+ there is a z ¢ X+-such

that z # 0 and z < X, Z < X. An element x_ of X, is a

]

quesi interior point of X if the linear hull of the oxder

interval (o, xo) is dense-in X. When X is a iattice then Xq

is a weak order unit in X, if x € X and x| A x,=0.

implies that x = 0. . - -
In the folIow;ng we discuss conditions on X and ¥

under Whlch R(X, Y) has a weak order unit or a quasi lnterlor

po%nt. Flrst we con51der some necessary conditions. '

Proposition 3.1

let X be.base normed.

-~
#

(a) If K(X,¥Y) has a:weak order unit, then, so does Y.
(b) If Y is positively generated, and K (X,Y) has a quasi
interior point, then so does Y.

Proof. o

(2)  Let E be a weak order unit in K(X,¥), v € ¥ and y # 0.-

-~

pe

~—



[ P TP

R I

Bk B A

e

S

Wé“define F: X, -+ Y such that P(x) = ||x]]l.y, x ¢ X_.

Since X is base normed, F is additive and positive homogeneous
on X, . We can extend it to X by linearity. Then clearly
F e K(X,Y)+. F # 0 because y # 0.

From hypothesis,.there is a non-zero G ¢ K(X,Y¥)_ such

that G < E, -F. Since G is non-zero there exists x” e X,

such that x” # 0 with G(x”) # 0. E > G implies that E(x”) # 0.

Let x_ = x“/||x"|[. Then {1x,1] = 1 and therefore

‘F(xo),= Y. We set-E(xo) = yb ., andéd G(xo) = z. Then

r
+

. Hence

Yo # 0, z O_and é.i F(xo)f E(xo), i.e. zZ <Y Yo

Yo.1s a weak order unit in. Y.

~ -

{b) Let E be a quasi interior point in X(X,¥).
I - . . .

Then ‘Jl [o, n E] is dense in K(X,Y),. Let %{e Y, and E
n= ) . .

be defined as in part (a). Then given ¢ > 0, there exist non

zeré G in the .order interval [0, E] and m ¢ N with  °

HE - m G[|_<-s. " We take.xo as in (a), Yo = E(xo) # 0,

Fﬂxoi =y ané ? = G(xoi # 0. | .

SinCé.I[F -mG|| = sup {]|(F -n é){x) [1: 1lx]] <1} < e.
we have that IIF(xo)— m Gfxo)|| <e; ‘i.e. ||ly = m z|] < €.

-]
This implies that z ¢ ([0, v, }: and hence U [0, n yol_is
: _ ] : 1 ‘

dense in Y+.
¥ being positively generated the linear hull of

[o, ] is dense in ¥, and therefore is a asi interior
o . ! ) qu
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point of Y.

R — bd

. (The proof is valid for L(X,Y)).
Next we ‘look at some sufficient conditions.

Proposition 3.2

-

let E be a Bauer simplex, y = A(C) and X be a countably
order complete Banach lattice. If the norm is order4continuous-
on X and‘it has a quasi interior point, then RK(X,¥) has a
weak order unit.
| Proof
x* i; a Banach lattice, and it has a weak order unit
say e [31l: Thm. II.6.6]. Prop. 1.1(5) implies that
. A(E, xf) is a Banach latticgb"We will show that A(E; x*)
has a weak order unit.
We define oO: E - x?_by_gg(kl = e,. k e E .
Since ¢ is a constant maé, it is affine aﬁd continuous;

~ *
i.e. g ¢ A(C, X ).
»

If m e A(E, X*)+ with ¢ A 7 = 0, them %or k ¢ BE
we have: \J_\\\?
0= (c A M(k) =0 & - - mF (K
=6 (k) - (o (k) ~m (K7 : (36: TII.3.13]
=0 (k) - [0 (k) = (6 (k) A7 (k))]
-0 ) AT (K) -

=eA T (K.
. * -
But e being a weak order unit in X , 7™ (k} = 0. Then
since C is a simplex, 7@ (h) = 0 for all h in C. i.e. ¢ is

-
a weak ‘order unit in A(C, X ).

If Y is an AM-space with a weak order unit, we have:

Xtqa
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Proposition 3.3

tet X be base normed with the R.D.P. and X+ be the

closed convex hull of its extreme rays. If ¥ is an AM—

space with a weak order unit, then K(X,Y) has a weak order

unit.

P £ . ‘ -
Proposition 1.2 part. (3) implies that K(X,¥) is a

latt; . Let B denote the base of x+, and e be the weak order

unit in\Y¥. We set E = ||x|le » x € X, P

and we extwpd i % X by linearity since X is positively

generated. Then E € K(X,Y)+.

Let F EK(X,Y)_*_/w)thE AF =0. Forped Band
G € K(X,Y) we have
(@ Vv 0) (p) = Sup {G(@): o <u <pl

‘sup {|lull-G(p): © L1 <P since p lies

* on an extreme ray.

éup {l]ull'G(p)+= o<uzsvpl

A

+
Sup G(p)

1A

cip)”
on the other hand
cpt = G(p) v O < Sup {Gw: o <ucpl= (VO (p) -

Thus for p € 3 By ¢ (p) = e, and therefore

0= (EMNF)(p) = E{p) A F(p) = e A F(p).

This implies F(p) =0, and since B is the closed .
convex hall of its extreme boundafy, F(b) = 0 for all b £ B.

Hence F = 0.

~—
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" In Prop. III.1.17 we.saw that if X is base normed,

-

has the R.D.P.; X, is/closed convex hull of its extreme rays

=

‘and Y is a lattice ‘then L(X,Y¥) is a lattice. - If further
y; Y has a weak order unit then the above proof holds in this

gw case as'well; and therefore L(X,Y¥Y) has a weak order unit.

: Proposition 3.4
\\zkb Let ¥ be reflexive. .

* *
(a) If R(Y , X ) has a weak order unit then so does

R(X,Y).

(b) If X is a-additive, Y is B-directed, and K(Y", X')
has a quasi interior point, then so does K(X,Y).
‘Proof

. * * *
(a) Let T be a weak order unit in X{Y , X ) and E = T,

x*
) . * * *
Ifr e K(X,Y)+, F#0 then F e RK(Y , X )+ and by a Hahn-

_ o x
Banach argument we can show that F # 0. -Therefore there

* * *
exists S efgty r X )+ such that S < T, F and S ¥ 0.
\ .

/ x*
Let G =S5 [y, then G # 0 and G < E, F. Thus E is weak

order unit in K(X,Y).

(b) Let A be a guasi interior point in K(Y*, X*). Y* is
B-additive and X* is a—directed. Therefore K(Y*, X*) is
positively generated by Thm. I.4.6.

*
Let F be a non zero element in K(X,Y¥) and E = A [X'
* * * * g * .
Then F # 0 and F ¢ K(Y , X ). Since U [o;nA]l is dense
: n=1

* x .
in K(y , X )+, we have that given € > 0 there is B e [o, A1,

B # 0 and there is m € N with I[P* - m B|| < g,
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Let G = B*lx. Then G.# 0 and ||F - m G|| < €. Since

B<A, G<E i.e. G ¢ [o, E].

@ .
Thus U . [o, n E] is dense in K(X,Y)+ and then the positive
. 1.

generation’bf K(X,Y)+ implies that the linear span of the
order interwval [o, E] is dense in K(X,Y).
For an application of 3.4 first we note the following.
A positive regular Borel measure U on a compact
Hansdorff space & is said to be normal if u(B) = 0 for each

Borel set B of first category in &. Let N(E)+ denote

the set of all positive normal regular Borel measures on .

We set N(B) = N(E - N(8}_. If further glis extremely

Y+

disconnected and the union of the supports of the positive

normal measures is dense in B, then & is called hyperstonian
[281.

Let E be a Baur simplex then A(E) = c(aa). If BE is
hyperstonian then c(BE) = N(BE)*. Thus we can obtain the
following result from 3.4 and 3.2:

Proposition 3.5

Let E‘be a Baur simple;, BE be hyperstonian and
X = N(aé). Suppose Y is an order complete reflexive Banach
lattice having a weak order unit. Then K(X,Y¥) has a weak
6rder unit.

Proof

g . *

x .
X = A(C) from above remarks and ¥ is an order complete
reflexive Banach lattice having a quasi interior point

[35: II.6.5 and II.6.6]. Since the norm is order continuous

-
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in a reflexive Banach lattice, Prop. 3.2 iﬁplies that

* R
R(Y , X ) has a weak order unit. Then K{X,Y) has a weak

order unit by Prop. 3.4(a).
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CHAPTER FIVE

COMPACTNESS IN REGULAR ORDERED BANACH SPACFES

In this chapter we discuss a relation between order
and compactness in ordered Banach spaces. Wickstead ﬁas
shown that if X has the R.D.P. with a generating cone and
the order intervals are norm compact in it, then it is a
complete vector lattice and the solid hull of 2 norm compact
set in X is norm compact [35]. It is natural to ask if a
similar result holds for those ordered spaces which do not
necessarily have thre R.D.P. We prove below that this is in
fact true for regular ordered spaces. In such spaces the
order intervals are norm compact if and only if the order
convex cover of a compact set is compact. First we have a
few definitions.

A secuence {xn} in an ordered Banach space X will be

called relatively uniformly convergent to X, € X, 1f there

exists an element u ¢ X, and a sequence {2 } of positive
real numbers decreasing to zero such that

X_ - X

- or Xo — X, 2 An uw, n=1, 2, ... .

A sequence {x_} in X will be called ;llatively uniformly

s

¥-convergent to x, € X if every subsequence of {xn} contains

a subsequence that is relatively uniformly convergent to Xy e

It is known that in a Banach lattice the notions of

- 67
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norm convergence and relative uniform *-convergence are
identical [29: 1IV.2.4]. We show now that this is also true
for another class of ordered Banach spaces which may not have
the lattice order.

-Proposition 5.1

Let X be a regular ordered Banach space. A seguence

{x,} in X norm converges to x

- € X if and only if {xn} i

s
/
relatively uniformly *-convergent to x_. '

Proof

Let {xn} be relatively uniformly convergent to X, .
There exists u € X_ and a sequence {ln} of real numbers

which decrease to zero and

X -X iknu n=1, 2, ... .

x -
n *or %o n

i.e. =-A_ u<x —-%X_<Xi_u .
n - "n -

o) n
Since X satisfies (Rl), we have
lx, = x 1 < [a)-Ifol] .
Thus {x_ } converges tﬁpxo in norm.
fince a segquence {yn} in X cbnverges in norm to Xq
if and only if every subsequence of {yn} has a subsequence

. i . N
that converges in norm to xo}\ﬁe see that relative uniform

*~convergence implies norm-convergence.

Conversely let {xn} converge to zero in norm, and

{ym} be a subsequence of {xn}. Since X satisfies (R,),
— ) +
there are z ¢ X _ such that -y, y_ < z. and I[zm|| < ]]ymll + €
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for a given ¢ > 0. Thus z~ 0.

Let B, = {x ¢ X: lxl] < E;&, then there exists a
2

subsequence {zmk} of {zm} such that k - zmk e B, for all k.

Now for given p, @ > 0,

pta ptq
©okz Il< Ll Kz |l
k=p+l Ty p+l T

<l- + ... +

2P+l

(S I o

P
which implies that {Z &k z, } is a Cauchy sequence in X
k=1 - k

and hence converges to an element z ¢ X_.

Thus z, < % 2z for all k; which means that {z_ 1}

X Ny

»
v

converges relatively uniformly to zero. This further implies

that {xn} is relatively uniformly *-converéent to zero.

/
Next we use this result to derive a characterizatiopn
of ordered spaces which have norm-compact order-intervals.

Proposition 5.2
o«

Let X be regular. The following are equivalent:
(a) Order-intervals are norm-compact in X.
(b} The order convex cover of a compact subset of X, is
itself compact.
Proof

(a) => (b). Let A be a compact subset of X, B = [Al,
and {xn} be a sequencé in B. There exist sequences {zn}

¢

-
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and {yn} in A such that Z, <X, < ¥, 1 =‘1, 2, vee .

Since A is sequentially compact {z } and {yn} have

convergent subsequences, say w +u, and v, + Vv .

Prop. 5.1 implies that there exist subsequences

{pi} of {uk} , and {éi} of {vk} which are relatively uniformly

-convergent to u and v respectively; i.e. there exist

s, t e X, and seguences {li} and'{di} of positive real

numbers, both decreasing to zero such that

P; — W, U - Py < 9; s , and

q; - VeV - gy < Ai t .
Thus q; = v + (g; - V) < Vv + gt S vt
and u - g; s < u-= cihs‘i u+ (py ~w =p; .

Let {wi} be the subsequence of {xn}, corresponding

to {p;} and {q;1 , i.e. P; Wy 24 -

Therefore u - cl-s < W, v+ Ayt

1
Since order interval [u - 08 , VvV + ll-t] is

compact, there exists a convergent subsequence of {wi} and N
hence of {xn}, which implies that B is sequentiallv compact.

(b) => (a):

Every order intervaf [x, y] is the order convex’éover
of the compact set {x, v}.

Similariy we.can show that if the notions of order
convergence and norm cohvergence are identical in X

{e.g. R™) then the following are equivalent:
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(1) Order intervals are norm compact in X.

{(2) The order convex cover of a norm compact subset of X

is ‘norm compact. ‘
Y,

(3) If Y has R.D.P. with aigenerating cone and X is. order
conpletégwlth a normal coneﬁ then K(Y¥,X) is orxder complete.
(1) implies (2) is gimllar to Prop. 5.2. (2} lmplles
(3) is similar to [35: Prop. 6] and (3) implies (1) is the
same as [35: Prop. 6].
From 5.2 and II.2.1 we get another case where K(X,Y)

is an brder'ideal in L(X,Y¥).

Proposition 5.3

Let X have a generating cone, and ¥ be a regular space

in which the.order intervals are norm compact. Then K(X,¥)

forms an order ideal in L(X,Y).

=
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