Edge effect reduction on DFT based interpolation.

Zhiwei (Jerry). Wang
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation
https://scholar.uwindsor.ca/etd/1813

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000 ext. 3208.
NOTICE

The quality of this microform is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and subsequent amendments.

AVIS

La qualité de cette microforme dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

La reproduction, même partielle, de cette microforme est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30, et ses amendements subséquents.
EDGE EFFECT REDUCTION ON
DFT BASED INTERPOLATION

By

Zhiwei (Jerry) Wang

A Thesis
Submitted to the
Faculty of Graduate Studies
through the Department of
Electrical Engineering in Partial Fulfilment
of the Requirements for the Degree
of Master of Applied Science at
the University of Windsor

Windsor, Ontario, Canada

May, 1994
The author has granted an irrevocable non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of his/her thesis by any means and in any form or format, making this thesis available to interested persons.

The author retains ownership of the copyright in his/her thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without his/her permission.

L'auteur a accordé une licence irrévocable et non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de sa thèse de quelque manière et sous quelque forme que ce soit pour mettre des exemplaires de cette thèse à la disposition des personnes intéressées.

L'auteur conserve la propriété du droit d'auteur qui protège sa thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

ISBN 0-315-93320-8
ABSTRACT

This thesis presents a theoretical and experimental study of discrete Fourier transform based interpolation and approximation problems. Upon the observation that the Gibbs phenomenon occurs at the vicinity of the discontinuity point of a function approximated by a Fourier series, a linear transform is introduced in this work that eliminates the discontinuity at the periodical boundary when a discrete signal with finite duration is expanded periodically due to the property of discrete Fourier transform. Hence the accuracy of the interpolation or approximation is greatly improved. This technique is also extended to two-dimensional image zooming in this thesis and much better visual results are observed. Also, a C-code program implementing the image zooming algorithm is provided in this thesis.
To my Parents
ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to Dr. J.J. Soltis for his tremendous support and guidance throughout the progress of this research. Also, my appreciation goes to Dr. W.C. Miller and Dr. G.A. Jullien for their financial support. I would like also thank my committee members, Dr. H.K. Kwan, Dr. K. Sridhar and Prof. P.H. Alexander, for their suggestions and comments. My very special thanks must be given to my wife, Winnie, for her patience and support. Special thanks also go to my brother, Mr. Biao Wang, for his moral support. Last but far from the last, I would like to thank my parents, Prof. Zhongde Wang and Prof. Manqin He. Without them, none of this work could be possible.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td></td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Basic Concept and Approach</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Historical Summary</td>
<td>3</td>
</tr>
<tr>
<td>1.3 The Use of Interpolation</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Organization of Thesis</td>
<td>5</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td></td>
</tr>
<tr>
<td>FOURIER ANALYSIS</td>
<td>7</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>7</td>
</tr>
<tr>
<td>2.2 Fourier Transform</td>
<td>8</td>
</tr>
<tr>
<td>2.3 Fourier Series</td>
<td>8</td>
</tr>
<tr>
<td>2.4 From Fourier Integral to Fourier Series</td>
<td>11</td>
</tr>
<tr>
<td>2.5 Discrete Fourier Transform</td>
<td>14</td>
</tr>
<tr>
<td>2.6 Fast Fourier Transform</td>
<td>19</td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td></td>
</tr>
<tr>
<td>DFT BASED INTERPOLATION</td>
<td>25</td>
</tr>
</tbody>
</table>
3.1 DFT and Interpolation ... 25
3.2 Fast DFT Interpolation Algorithm 27
3.3 Interpolation in Frequency Domain 30
3.4 Experimental Study .. 34

CHAPTER 4

EDGE EFFECT REDUCTION 42
4.1 Gibbs Phenomenon ... 43
4.2 Leakage Reduction .. 45
4.3 A Linear Sequence Transform 49
4.4 Experimental Study ... 51

CHAPTER 5

TWO-DIMENSIONAL INTERPOLATION APPLIED TO IMAGE ZOOMING 58
5.1 Two-Dimensional DFT Based Interpolation Algorithm 58
5.2 Two-Dimensional Linear Sequence Transform 62
5.3 Image Zooming by Two-Dimensional Interpolation 66

CHAPTER 6

CONCLUSIONS .. 75
6.1 Conclusions .. 75
6.2 Future Direction ... 76

REFERENCES .. 77
APPENDIX C Program for Image Zooming 81
VITA AUCTORIS ... 103
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Illustration of a function $f(t)$ and its Fourier transform</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>Illustration of rectangular window and its Fourier transform</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Illustration of windowed function and its Fourier transform</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>Illustration of Fourier series expression of truncated function</td>
<td>17</td>
</tr>
<tr>
<td>2.5</td>
<td>Illustration of discrete Fourier transform</td>
<td>18</td>
</tr>
<tr>
<td>2.6</td>
<td>Definition of butterfly</td>
<td>22</td>
</tr>
<tr>
<td>2.7</td>
<td>Diagram of FFT algorithm</td>
<td>23</td>
</tr>
<tr>
<td>3.1</td>
<td>AE curve at a certain frequency and phase shift</td>
<td>36</td>
</tr>
<tr>
<td>3.2</td>
<td>AE curves with different phase shifts</td>
<td>37</td>
</tr>
<tr>
<td>3.3</td>
<td>NMSE variation with signal frequency</td>
<td>38</td>
</tr>
<tr>
<td>3.4</td>
<td>AE curve using frame technique</td>
<td>39</td>
</tr>
<tr>
<td>3.5</td>
<td>NMSE curves with different frame sizes</td>
<td>40</td>
</tr>
<tr>
<td>4.1</td>
<td>Illustration of Gibbs phenomenon</td>
<td>44</td>
</tr>
<tr>
<td>4.2</td>
<td>Illustration of half cosine-bell window</td>
<td>46</td>
</tr>
<tr>
<td>4.3</td>
<td>Window modified function</td>
<td>47</td>
</tr>
<tr>
<td>4.4</td>
<td>AE curve of window modified function</td>
<td>48</td>
</tr>
<tr>
<td>4.5</td>
<td>Interpolated signal by window technique</td>
<td>49</td>
</tr>
<tr>
<td>4.6</td>
<td>Illustration of linear transform</td>
<td>50</td>
</tr>
<tr>
<td>4.7</td>
<td>The reconstruction AE curve of transformed function</td>
<td>51</td>
</tr>
<tr>
<td>4.8</td>
<td>NMSE curves for different window sizes</td>
<td>52</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>4.9</td>
<td>NMSE curves by different approaches (Measured over full sequence)</td>
<td>53</td>
</tr>
<tr>
<td>4.10</td>
<td>NMSE curves by different approaches (Measured over centre half of sequence)</td>
<td>54</td>
</tr>
<tr>
<td>4.11</td>
<td>AE curve under frame technique</td>
<td>55</td>
</tr>
<tr>
<td>4.12</td>
<td>NMSE curves with different frame sizes</td>
<td>56</td>
</tr>
<tr>
<td>5.1</td>
<td>Periodical expanding of two dimensional function</td>
<td>63</td>
</tr>
<tr>
<td>5.2</td>
<td>The original lena image</td>
<td>66</td>
</tr>
<tr>
<td>5.3</td>
<td>Zoomed image using pixel-duplication</td>
<td>67</td>
</tr>
<tr>
<td>5.4</td>
<td>Zoomed image by DFT interpolation</td>
<td>68</td>
</tr>
<tr>
<td>5.5</td>
<td>Zoomed image under windowing. Window size=64 (full window)</td>
<td>68</td>
</tr>
<tr>
<td>5.6</td>
<td>Zoomed image under windowing. Window size=4</td>
<td>69</td>
</tr>
<tr>
<td>5.7</td>
<td>Zoomed image by linear transform</td>
<td>70</td>
</tr>
<tr>
<td>5.8</td>
<td>Zoomed image by block technique. Block size=8*8</td>
<td>71</td>
</tr>
<tr>
<td>5.9</td>
<td>Zoomed image by blocks under linear transform. Block size=8*8</td>
<td>72</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 BASIC CONCEPT AND APPROACH

The theory of interpolation may, with certain reservations, be used to find or approximate a function $f(t)$, from its tabulated or sampled points. In other words, if certain points of the variable \(\{ t_l | l = 0, 1, \ldots, N \} \) and the corresponding function values \(\{ f(t_l) | l = 0, 1, \ldots, N \} \) are known, and nothing further is known about the function, the problem of interpolation is to find the function values at intermediate points which are not known before.

This problem is obviously insoluble because any value could be inserted at an intermediate point without contradiction. It follows that some hypothesis about the general behaviour of the function must be made. First, little progress can be made unless the function is assumed to vary continuously with no sudden jump, or vary rapid variation between two given values. Secondly, it is conventional to assume that the function can be replaced, with sufficient accuracy, by a polynomial of a certain degree.

It is known that for a set of \(N+1 \) points \(t_0 < t_1 < \cdots < t_N \) with corresponding function samples \(f(t_0), f(t_1), \cdots, f(t_N) \), there always exists a unique polynomial of order \(N \) that
passes through the samples\footnote{21}. Therefore, the problem of interpolation becomes the solution of a set of linear equations as

$$f(t) = \sum_{k=0}^{N} a_k t^k \quad (1.1)$$

The set of N+1 points and their corresponding values are known and therefore the coefficients a_0, a_1, \ldots, a_N are chosen so that

$$\begin{bmatrix} f(t_0) \\ f(t_1) \\ \vdots \\ f(t_N) \end{bmatrix} = \begin{bmatrix} 1 & t_0 & \cdots & t_0^N \\ 1 & t_1 & \cdots & t_1^N \\ \vdots & \vdots & \ddots & \vdots \\ 1 & t_N & \cdots & t_N^N \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_N \end{bmatrix} \quad (1.2)$$

or

$$F = T_N A \quad (1.3)$$

The matrix T_N is a Vandermonde matrix\footnote{36} and it can be shown that

$$\det(T_N) = \prod_{i<j} (t_i - t_j) \quad (1.4)$$

Since the points $(t_i | i = 0, 1, \ldots, N)$ are all distinct, $\det(T_N)$ is nonzero. and T_N is nonsingular, the set of coefficients is therefore uniquely given by

$$A = T_N^{-1} F \quad (1.5)$$

Although there is one and only one Nth-order polynomial that fits N+1 points, there are a variety of mathematical formats in which this polynomial can be expressed.
Different solutions result in different polynomials or function such as Newton's divided-difference interpolating polynomials, Lagrange interpolating polynomials, Hermite interpolating polynomials, etc. But these polynomial interpolation methods can be computationally difficult and they usually become ill-conditioned when the number of data points is large.\footnote{31}

1.2 HISTORICAL SUMMARY

Historically, the mathematical process of interpolation had received widespread attention from mathematicians who were interested in the problem of tabulating (sampling) useful mathematical functions. But the question is how often a given function has to be tabulated (sampled) so that someone could use a simple interpolation rule to obtain accurate values of the function at any higher sampling rate.

In 1972, the discrete Fourier transform (DFT) was first used in interpolation\footnote{41} and thus a powerful signal analysis tool. Fourier analysis, was applied to the problem of interpolation. The computation for finding the interpolation coefficients is greatly reduced and in fact the interpolation accuracy is improved as well because of the existence of the fast algorithm for computing the Fourier transform introduced by Cooley and Tukey\footnote{8}, which is now well known as the fast Fourier transform (FFT). In 1973, a digital signal processing approach to interpolation was introduced by Schafer and Rabiner\footnote{6}. In their point of view, interpolation is formulated in terms of a linear filtering operation. Actually
it shares the same theoretical concept as the fast DFT interpolation algorithm given by Prasad and Satyanarayana\cite{Prasad}. However, their algorithm does not generate a real sequence after interpolation since the Fourier coefficients do not have complex conjugate symmetry. Fraser proposed a new algorithm by breaking the centre coefficient (F(N/2)) into half when the number of samples is even, which generates a real signal and also increases the accuracy of the interpolation\cite{Fraser}.

The one-dimensional interpolation was extended to two-dimensional interpolation by Satyanarayana \textit{et al.} in 1990\cite{Satyanarayana} where again the signal after interpolation is not real. At the same time, Smit \textit{et al.}\cite{Smit} also extended the interpolation to two dimensional X-ray zooming, where a technique is developed to avoid phase shift when Skinner's FFT pruning algorithm\cite{Skinner} is used and gain computational efficiency. Recently, Chan \textit{et al.}\cite{Chan} proposed a two-dimensional interpolation algorithm using subsequence FFT, in which he modified the intermediate DFT coefficient sequence to keep Hermitian symmetry so a real signal is generated.

1.3 THE USE OF INTERPOLATION

Interpolation is required whenever it is necessary to increase the sampling rate from one value to another in digital signal processing. Increasing the sampling rate of an already sampled band-limited signal has many advantages such as fewer demands on A/D conversion, data transmission and storage. For example, in a speech processing system,
estimates of speech parameters are usually computed at a low sampling rate for low bit-rate storage or transmission; however, for constructing a synthesized speech signal from the low bit-rate representation, the speech parameters are normally required at much higher sampling rates13,14. Another example, an efficient digital realization of a frequency-multiplexed signal sub-band system is obtained by performing complicated filtering functions at a low sampling rate and simpler functions at the high sampling rate for grouping several channels into a frequency-multiplied format15. In these two cases, the sampling rate must be increased by an interpolation process. Interpolation has also been applied in many other areas such as communication systems15,16, antenna systems17, radar systems18, etc.

1.4 ORGANIZATION OF THESIS

This thesis consists of six chapters. The first chapter briefly introduces the basic concept of interpolation and the traditional approaches and reviews the evaluation of DFT interpolation history. Meanwhile, it also lays out the value of this work and the structure of this thesis.

In chapter two, the fundamental theory of Fourier analysis is introduced. Unlike the traditional method, the discrete Fourier transform is evaluated from the Fourier series, which is convenient for understanding of DFT-based interpolation and Gibbs phenomena reduction.
Chapter three provides both a theoretical and experimental study of the DFT based interpolation problem where the criterion for interpolation accuracy is provided. Chapter four, the major contribution of this work, explains a convergence problem of the Fourier series, which is known as the Gibbs phenomenon, at the vicinity of the discontinuity in the function. Along with other existing approaches, a new method is provided in this chapter to increase the interpolation accuracy.

In chapter five, a two-dimensional DFT interpolation algorithm is provided and is applied to image zooming problem. The two-dimensional extension of the linear sequence transform is also provided in this chapter.

The final chapter concludes this work with a summary and shows the work cited from this work, which may provide directions to future researches.
CHAPTER 2

FOURIER ANALYSIS

2.1 INTRODUCTION

In its narrowest sense, Fourier analysis or harmonic analysis of a function is a decomposition of the function into a sum of sinusoidal components\(^{19}\). In most engineering literature, Fourier analysis usually refers to either Fourier series (FS) or the discrete Fourier transform (DFT) which is often called the FFT because of the well known fast algorithm. In the past decades, the FFT is developed as an independent theory and was applied to a variety of problems. Fourier series was also normally developed independently from the Fourier integral, which is also called the Fourier transform. However, in mathematical point of view, there is no such FFT theory. The FFT is merely a fast algorithm for the numerical evaluation of the Fourier integral on a sampled waveform and the Fourier series can be derived as a special case of the Fourier integral with the introduction of distribution theory\(^{20}\).

In this chapter, the underlying theory is discussed and the relationship between the Fourier integral, Fourier series, and discrete Fourier transform is addressed. It thereby
provides the framework for the development of the DFT based interpolation in chapter 3.

2.2 FOURIER TRANSFORM

It is well known that the Fourier transform of a function \(f(t) \) is defined as:

\[
F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt
\]

(2.1)

The function \(f(t) \) can also be expressed in terms of \(F(\omega) \). The definition is called the inverse Fourier transform.

\[
f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega
\]

(2.2)

However, it is impossible to calculate the infinite integrals in Eq. (2.1) and (2.2) numerically and it is also impossible to know the value of signal \(f(t) \) with infinite length in signal processing. The above equations need to be modified for numerical evaluation.

2.3 FOURIER SERIES

A periodic function \(f_p(t) \) with period \(T \) can be expressed as a Fourier series
\[f_p(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t) \right] \]

(2.3)

where \(\omega_0 \) is the fundamental frequency equal to \(2\pi/T \). The coefficients are given by the integral

\[a_n = \frac{2}{T} \int_{-T/2}^{T/2} f_p(t) \cos(n\omega_0 t) \, dt \quad n=0,1,2,... \]

(2.4)

and

\[b_n = \frac{2}{T} \int_{-T/2}^{T/2} f_p(t) \sin(n\omega_0 t) \, dt \quad n=1,2,3,... \]

(2.5)

By applying the identities

\[\cos(n\omega_0 t) = \frac{1}{2} (e^{j\omega_0 t} + e^{-j\omega_0 t}) \]

(2.6)

\[\sin(n\omega_0 t) = \frac{1}{2j} (e^{j\omega_0 t} - e^{-j\omega_0 t}) \]

Eq. (2.3) can be written as

\[f_p(t) = \frac{a_0}{2} + \frac{1}{2} \sum_{n=1}^{\infty} (a_n - jb_n) e^{j\omega_0 t} + \frac{1}{2} \sum_{n=1}^{\infty} (a_n + jb_n) e^{-j\omega_0 t} \]

(2.7)

To simplify this expression, negative values of \(n \) are introduced in Eq. (2.4) and (2.5)
\[a_n = \frac{2}{T} \int_{-T/2}^{T/2} f_p(t) \cos(-n\omega_0 t) dt \]
\[= \frac{2}{T} \int_{-T/2}^{T/2} f_p(t) \cos(n\omega_0 t) dt \]
\[= a_n \quad n=1,2,3,... \quad (2.8) \]

and

\[b_n = \frac{2}{T} \int_{-T/2}^{T/2} f_p(t) \sin(-n\omega_0 t) dt \]
\[= -\frac{2}{T} \int_{-T/2}^{T/2} f_p(t) \sin(n\omega_0 t) dt \]
\[= -b_n \quad n=1,2,3,... \quad (2.9) \]

Hence

\[\sum_{n=1}^{\infty} a_n e^{-j \omega_0 t} = \sum_{n=1}^{\infty} a_n e^{j \omega_0 t} \quad (2.10) \]
\[\sum_{n=1}^{\infty} j b_n e^{-j \omega_0 t} = -\sum_{n=1}^{\infty} j b_n e^{j \omega_0 t} \]

Substitution of Eq. (2.10) into Eq. (2.7) yields

\[f_p(t) = a_0 + \frac{1}{2} \sum_{n=-\infty}^{\infty} (a_n - j b_n) e^{j \omega_0 t} \]
\[= \sum_{n=-\infty}^{\infty} c_n e^{j \omega_0 t} \quad (2.11) \]

Equation (2.11) is the Fourier series expressed in exponential form where the coefficients \(c_n \) are, in general, complex. Since
\[c_n = \frac{1}{2} (a_n - j b_n) \quad n = 0, \pm 1, \pm 2, \ldots \quad (2.12) \]

the combination of Eq. (2.4), (2.5), (2.8) and (2.9) yields

\[c_n = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f_p(t) e^{-j\omega_n t} dt \quad n = 0, \pm 1, \pm 2, \ldots \quad (2.13) \]

The expression for the Fourier series in exponential form as given in Eq. (2.11) with the complex coefficients given by Eq. (2.13) are normally the preferred approach in analysis.

2.4 FROM FOURIER INTEGRAL TO FOURIER SERIES

Any periodic signal \(f_p(t) \) can be expressed as

\[f_p(t) = \sum_{n=-\infty}^{\infty} f_0(t+nT) \quad (2.14) \]

\[= \delta_T(t) * f_0(t) \]

where \(* \) denotes convolution. \(f_0(t) \) is a function defined as

\[f_0(t) = \begin{cases} f_p(t) & 0 \leq t < T \\ 0 & \text{elsewhere} \end{cases} \quad (2.15) \]

\[\delta_T(t) = \sum_{n=-\infty}^{\infty} \delta(t+nT) \quad (2.16) \]

where \(\delta(t) \) is the generalized function given by the following definition:
\[\delta(t) = 0 \quad \text{for} \quad t \neq 0 \quad \text{and} \quad \int_{-\infty}^{\infty} f(t)\delta(t)dt = f(0) \quad (2.17) \]

Taking the transform of both sides of Eq. (2.14), we have

\[F_p(\omega) = \int_{-\infty}^{\infty} f_p(t)e^{-j\omega t}dt \]

\[= \int_{-\infty}^{\infty} \delta_p(t)\mathcal{F}_0(t)e^{-j\omega t}dt \quad (2.18) \]

From convolution theory121, it is known130 that

\[\int_{-\infty}^{\infty} \delta_p(t)e^{-j\omega t}dt = \omega_0 \delta_{\omega_0}(\omega) \quad (2.19) \]

where \(\omega_0 = 2\pi/T \) and

\[\delta_{\omega_0}(\omega) = \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_0) \quad (2.20) \]

By denoting \(F_0(\omega) \) as the Fourier transform of \(f_0(t) \), the Fourier transform of \(f_p(t) \) therefore becomes

\[F_p(\omega) = \omega_0 \delta_{\omega_0}(\omega)F_0(\omega) \]

\[= \omega_0 F_0(\omega) \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_0) \quad (2.21) \]
CHAPTER 2

From the property of the delta function we have

\[F_0(\omega)\delta(\omega-n\omega_0) = F_0(n\omega_0)\delta(\omega-n\omega_0) \]

(2.22)
	herefore the Fourier transform of \(f_p(t) \) is expressed as

\[F_p(\omega) = \omega_0 \sum_{n=-\infty}^{\infty} F_0(n\omega_0)\delta(\omega-n\omega_0) \]

(2.23)

From Eq. (2.22) we can, thus, see that the Fourier transform of a periodic function \(f_p(t) \) with period \(T \) consists of an infinite sequence of equidistant impulses at a distance \(\omega_0=2\pi/T \) apart with amplitudes of \(F_0(n\omega_0) \). Taking the inverse transform of the Eq. (2.22), we have

\[f_p(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F_p(\omega)e^{i\omega t}d\omega \]

\[= \frac{1}{2\pi} \int_{-\infty}^{\infty} \omega_0 \sum_{n=-\infty}^{\infty} F_0(n\omega_0)\delta(\omega-n\omega_0)e^{i\omega t}d\omega \]

(2.24)

\[= \frac{1}{T} \sum_{n=-\infty}^{\infty} F_0(n\omega_0) \int_{-\infty}^{\infty} \delta(\omega-n\omega_0)e^{i\omega t}d\omega \]

\[= \frac{1}{T} \sum_{n=-\infty}^{\infty} F_0(n\omega_0)e^{jna} \]

Recall that the Fourier series of a periodic function is a sum of infinite number of sinusoid in Eq. (2.11) with amplitudes given by \(c_n \) in Eq. (2.13). Compare Eq. (2.11)
with Eq. (2.23): we can see that \(F_n(n\omega_0) \) is the coefficients of the Fourier series of periodic function \(T f_p(t) \). The coefficients \(c_n \) can be rewritten in the form

\[
c_n = \frac{1}{T} F_0(n\omega_0)
\]

(2.25)

Thus the coefficients as derived by means of the Fourier integral and those of the conventional Fourier series are the same for a periodic function. Except for a factor \(1/T \), the coefficients \(c_n \) of the Fourier series expansion of \(f_p(t) \) equal the value of the Fourier transform of \(f_p(t) \) at \(n\omega_0 \).

2.5 DISCRETE FOURIER TRANSFORM

It has been pointed out early in this chapter that the Fourier integral in Eq.(2.1) and the inversion integral in Eq.(2.2) needs to be modified so that it can be evaluated by digital computer. Consider a function \(f(t) \) with Fourier transform \(F(\omega) \) as illustrated in Fig.(2.1).

![Figure 2.1](image)

Illustration of a function \(f(t) \) and its Fourier transform
First, only a finite duration function can be considered for computer evaluation since one has finite memory. The finite duration function can be obtained by truncation of \(f(t) \) with a rectangular window \(w(t) \) defined as

\[
w(t) = \begin{cases}
1 & -T/2 \leq t < T/2 \\
0 & \text{otherwise}
\end{cases}
\]

(2.26)

where \(T \) is the duration of the window (or the duration of the function). The truncation window and its Fourier transform are illustrated in Fig.(2.2).

![Figure 2.2 Illustration of rectangular window and its Fourier transform](image)

The truncated function, named \(f_0(t) \), can be expressed as

\[
f_0(t) = f(t)w(t) = \begin{cases}
f(t) & -T/2 < t < T/2 \\
0 & \text{otherwise}
\end{cases}
\]

(2.27)

The Fourier transform of \(f_0(t) \) equals the convolution of \(F(\omega) \) and the Fourier transform of the window. The finite duration function \(f_0(t) \) and its Fourier transform are illustrated in Fig.(2.3).
As illustrated in Fig.(2.3), the truncation results in the ripple or leakage in $F(\omega)$. In other words, there always exists frequency leakage or ripple in the Fourier transform of any finite duration function. It can be noticed that Eq.(2.27) is the same as the $f_0(t)$ in Eq.(2.15). When the Fourier series is used to approximate a finite duration function, the function is assumed to be equivalent to one period of a periodic function because of the periodical property of the Fourier series. The periodically expanded function corresponding to the function $f_0(t)$ in Eq.(2.27) can be expressed as

$$f_p(t) = \delta_p(t) \otimes f_0(t)$$

(2.28)

where $\delta_p(t)$ is defined in Eq.(2.16).

It is known from Eq.(2.22) that the Fourier transform of a periodic function is an infinite sequence of equidistant impulses at a distance $\omega_0=2\pi/T$ apart with amplitudes of $F_0(n\omega_0)$. The assumed periodic function and its Fourier transform are illustrated in Fig.(2.4).
The periodic function can, from Eq. (2.23), be expressed as

$$f_p(t) = \frac{1}{T} \sum_{n=-\infty}^{\infty} F_0(n\omega_0)e^{j\omega_0 t} \quad (2.29)$$

Second, the continuous function must be represented by a finite number of discrete sample values. The discrete version of the function is obtained by multiplying $f_0(t)$ with a sampling function given by

$$\delta_{s_0}(t) = \sum_{m=-\infty}^{\infty} \delta(t-mT_0) \quad (2.30)$$

and T_0 is called the sampling interval. Suppose there are N samples (N is an arbitrary integer) allocated within the duration of the function T ($T/T_0 = N$). The sampled function can be expressed as

$$f_0(mT_0) = \frac{1}{T} \sum_{n=-\infty}^{\infty} F_0(n\omega_0)e^{j\omega_0 mT_0/N}$$

$$= \frac{1}{T} \sum_{n=-\infty}^{\infty} F_0(n\omega_0)e^{j2\pi nm/N} \quad m=0,1,\cdots,N-1 \quad (2.31)$$
By rewriting \(n \) in Eq. (2.31) as \(k \) and letting

\[
k = n + rN \quad n = 0, 1, \ldots, N-1 \quad \text{and} \quad r = \cdots, -1, 0, 1, \cdots \quad (2.32)
\]

Eq. (2.32) can be expressed as

\[
f(mT_0) = \frac{1}{T} \sum_{n=0}^{N-1} \sum_{r=-\infty}^{\infty} F_n(n\omega_0 + rN\omega) e^{j2\pi kmN} e^{j2\pi nr} \]

\[
= \frac{1}{T} \sum_{n=0}^{N-1} e^{j2\pi kmN} \sum_{r=-\infty}^{\infty} F_n(n\omega_0 + r\omega) \quad m = 0, 1, \cdots, N-1 \quad (2.33)
\]

where \(\omega = 2\pi/T_0 \). It can be seen from Eq. (2.33) above that the sampling of the function results in the periodic extension (frequency aliasing) of \(F_n(n\omega) \). The sampled function and its Fourier transform are illustrated in Fig.(2.5).

\[\text{Figure 2.5} \]
Illustration of discrete Fourier transform

Let

\[
F_d(n\omega_0) = \frac{1}{T} \sum_{r=-\infty}^{\infty} F_n(n\omega_0 + r\omega) \quad (2.34)
\]

the Eq.(2.34) becomes
\[
 f(mT_0) = \sum_{n=0}^{N-1} F_f(n\omega_0)e^{j2\pi mn/N}, \quad m=0,1,\cdots,N-1
 \tag{2.35}
\]

Therefore we obtain a system of \(N\) equations whose solution yields the frequency domain samples \(F_f(n\omega_0)\) in terms of the time domain samples \(f(mT_0)\). The solution of Eq.(2.36) is

\[
 F_f(n\omega_0) = \frac{1}{N} \sum_{m=0}^{N-1} f(mT_0)e^{-j2\pi mn/N}, \quad n=0,1,\cdots,N-1
 \tag{2.36}
\]

The Eq.(2.37) and Eq.(2.38) are the desired discrete Fourier transform pairs. In general, \(F_f(n\omega_0)\) cannot be determined in terms of \(F_f(n\omega_0)\) because of the frequency leakage caused by the truncation with the rectangular window. However, in digital processing, the function \(f(t)\) is usually assumed to be a band-limit function and the leakage is assumed to be small enough to be ignored. This means

\[
 F(\omega) = 0 \quad \text{for} \quad |\omega| > \Omega \quad \text{and} \quad \omega_i > 2\Omega
 \tag{2.37}
\]

then

\[
 F_f(n\omega_0) = F_f(n\omega_0) \quad \text{for} \quad |\omega| < \Omega
 \tag{2.38}
\]

Hence the solution of Eq. (2.36) yields \(F_f(n\omega_0)\). If the function \(f(t)\) is not band-limited, but \(\omega_i\) is sufficiently large (which means the sampling rate \(1/T_0\) is high enough) so that \(F(\omega)\) can be neglected for \(|\Omega| > \omega_i/2\), then \(F_f(n\omega_0)\) is approximately equal to \(F_f(n\omega_0)\) for \(|\omega| < \omega_i/2\omega_0 = N/2\); hence it can again be determined from Eq. (2.36).
2.6 FAST FOURIER TRANSFORM

As we have seen, within certain limits, the evaluation of the Fourier integral and Fourier series becomes the solution of a system of N equations described by Eq. (2.35). Now we consider the computational problem in the determination of the N numbers $F_n(\pi \omega_0)$ from Eq. (2.35). The same consideration holds for Eq. (2.36).

First, let us express the system in Eq. (2.35) as

$$F_n = \sum_{m=0}^{N-1} f_m W^{mn} \quad n=0, 1, \cdots, N-1 \tag{2.39}$$

where

$$W = e^{-j2\pi n} \tag{2.40}$$

Clearly, N-1 additions are needed for each F_n, hence there are totally $N(N-1)$ additions involved in Eq. (2.39). The total number of required multiplications is, also clearly, $(N-1)^2$. By employing the following technique, which is now well known as the FFT algorithm\(^{[122]}\), it will be shown that the number of the multiplications can be considerably reduced.

If the given sequence f_m is expressed in terms of even and odd components as

$$a_k = f_{2k} \quad \text{and} \quad b_k = f_{2k+1} \quad k=0, 1, \cdots, [N/2] \tag{2.41}$$

then
\[F_n = \sum_{m=0}^{N-1} f_m W_N^{mn} \]

\[= \sum_{k=0}^{N/2-1} f_{2k} W_N^{2kn} + \sum_{k=0}^{N/2-1} f_{2k+1} W_N^{(2k+1)n} \] \hspace{1cm} (2.42)

but

\[W_N^{2kn} = W_{N/2}^{kn} \quad \text{and} \quad W_N^{(2k+1)n} = W_{N/2}^{kn} W_N^n \] \hspace{1cm} (2.43)

Hence

\[\sum_{k=0}^{N/2-1} f_{2k} W_N^{2kn} = \sum_{k=0}^{N/2-1} a_k W_{N/2}^{kn} = A_n \] \hspace{1cm} (2.44)

\[\sum_{k=0}^{N/2-1} f_{2k+1} W_N^{(2k+1)n} = W_N^n \sum_{k=0}^{N/2-1} b_k W_{N/2}^{kn} = W_N^n B_n \]

Therefore the system in Eq.(2.41) can be expressed as

\[F_n = A_n + W_N^n B_n \quad \text{for} \quad n=0,1,\cdots,N-1 \] \hspace{1cm} (2.45)

It can be noticed that the number of required multiplications to evaluate \(A_n \) or \(B_n \) equals \((N/2-1)^2\). Hence, to determine \(F_n \) from Eq.(2.42) totally \(2(N/2-1)^2+N-1 = N^2/2-N+1 \) multiplications are needed. Compared to the number of \((N-1)^2 = N^2-2N+1 \) multiplications for computing \(F_n \) directly from Eq.(2.41), the use of Eq.(2.47) results in a reduction of the required number of multiplications by a factor of about 2. An additional minor reduction results from using the fact that
\[A_{n+N/2} = A_n \quad B_{n+N/2} = B_n \quad \text{and} \quad W_{N}^{n+N/2} = -W_N^n \] (2.46)

Indeed, replacing \(n \) in Eq. (2.47) with \(n+N/2 \) and using the above equation result in

\[F_{n+N/2} = A_n - W_N^n B_n \quad n=0,1,\ldots,N/2-1 \] (2.47)

Therefore, the first half of \(F_n(n=0,1,\ldots,N/2-1) \) can be computed from Eq. (2.45) and the other half from Eq. (2.47).

If \(N/2 \) is also even, it can be noticed that the preceding results can be repeated; that is, \(A_n \) and \(B_n \) can be determined in terms of four DFT of order \(N/4 \). In the special case, if \(N=2^2 \), then the process can be repeated until the order of DFT reaches 2. By defining the signal flow diagram as shown in Fig.(2.6), the process can be represented by the flow diagram in Fig.(2.7) on the next page as a example of \(N=16 \).

It can be noticed that the starting values of \(f(n) \) in the diagram shown in Fig.(2.7) are not in the natural order. To obtain the natural order, it is necessary to employ a technique, called bit reversal. However, the FFT algorithm itself is not a major concern in this work, we only concentrate on the computing savings achieved by the FFT algorithm.
Figure 2.7
Diagram of FFT algorithm
CHAPTER 2

FOURIER ANALYSIS

It is easy to figure out that the required multiplications in the above system is $N/2 \log_2 N$. Compared to $(N-1)^3$ required multiplications in Eq.(2.41), it is obvious that the FFT algorithm achieves remarkable reduction on the number of required multiplications for determining F_n in Eq.(2.41). Since multiplications are usually much more time consuming than additions, the reduction on the number of multiplications indeed increases the computing efficiency.
CHAPTER 3

DFT BASED INTERPOLATION

3.1. DFT AND INTERPOLATION

It has been made clear in chapter 1 that the problem of interpolation of a finite duration function can be interpreted as an approximation of the function by an independent function set (normally an orthogonal set) under the constraint that only \(N \) samples of the function \(f(t) \) are known. If the Fourier series are chosen to approximate the function \(f(t) \), the function \(f(t) \) can be expressed as

\[
f(t) = \sum_{n=-\infty}^{\infty} c_n e^{j\omega_0 n t}
\]

(3.1)

where \(\omega_0 = 2\pi/T \) (\(T \) is the function duration). It can be observed from Eq.(3.1) that because of the periodic property of the Fourier series, the function is actually periodically expanded outside the interval. The function \(f(t) \) therefore can be understood as being represented by one period of a periodic function described in Eq.(2.28). The sample value of the function can therefore be expressed as
Chapter 3

DFT BASED INTERPOLATION

\[f(mT_0) = \sum_{n=-\infty}^{\infty} c_n e^{j2\pi mnT_0} \]

\[= \sum_{n=-\infty}^{\infty} c_n e^{j2\pi mnd/N} \quad m=0,1, \cdots, N-1 \quad (3.2) \]

To obtain the polynomial approximation, replace \(n \) by \(k \) and rewrite \(k \) as

\[k = n+rN \quad n=0,1, \cdots, N-1 \quad \text{and} \quad r=\cdots,-1,0,1,\cdots \quad (3.3) \]

The Eq. (3.3) can be written as

\[f(mT_0) = \sum_{n=0}^{N-1} \sum_{r=-\infty}^{\infty} c_{n+rN} e^{j2\pi (n+rN)m/T_0} \]

\[= \sum_{n=0}^{N-1} e^{j2\pi nN} \sum_{r=-\infty}^{\infty} c_{n+rN} \quad (3.4) \]

Let

\[c_n = \sum_{r=-\infty}^{\infty} c_{n+rN} \quad (3.5) \]

the Eq.(3.4) becomes

\[f(mT_0) = \sum_{n=0}^{N-1} c_n e^{j2\pi nmN} \quad m=0,1, \cdots, N-1 \quad (3.6) \]

The above equation is a polynomial of degree \(N-1 \) in which coefficients are \(c_n \) (\(n=0,1,\cdots,N-1 \)). Note that \(c_n \) is a combination of an infinite number of coefficients corresponding to different frequency components as shown in Eq.(3.5). This phenomenon is referred to as the aliasing of the coefficients.
Meanwhile, the Eq.(3.6) is identical in structure to Eq.(2.35). Thus the coefficients C_n can, referring to Eq.(2.36), be calculated as

$$C_n = \frac{1}{N} \sum_{m=0}^{N-1} f(mT_0) e^{-j2\pi mn/N}$$ (3.7) $$m=0,1,\cdots,N-1$$

Therefore, the fast Fourier transform algorithm can be used to increase the computation efficiency.

3.2. FAST DFT INTERPOLATION ALGORITHM

As we have seen, so far, the interpolation problem can be solved by a discrete Fourier transform pair and hence the FFT algorithm can be employed to achieve the computation efficiency. By exploring the inter-relationship of DFT coefficients and the signal samples, it has been shown that the value of interpolated samples can also be computed simply by padding zeroes to the DFT coefficients.

Let us consider a real finite duration signal sequence $f(n)\{n=0,1,\ldots,N-1\}$. (the sequence is expressed as $f(n)$ rather than $f(nT_0)$ to make the notation simple). To use the FFT algorithm, it is necessary to assume that $N=2^k$. What we want to obtain is a length PN sequence $f(n/P)\{n=0,1,\ldots,PN-1\}$. It is obvious that the sequence $f(n)$ provides samples for the desired sequence only at one out of each P adjacent samples under the new sampling rate. The remaining samples must be approximated by interpolation.
To interpolate those missing samples, first compute the DFT of \(f(n) \) to convert the signal to the frequency domain as

\[
F(m) = \frac{1}{N} \sum_{n=0}^{N-1} f(n) e^{-j\frac{2\pi mn}{N}} \quad m=0,1,\ldots,N/2-1 \tag{3.8}
\]

The overall scale factor \(1/N \) is included in the forward rather than in the inverse transform to ensure that the scale of \(F(m) \) is independent of \(N \). The second half of the DFT coefficients for \(m=N/2+1,\ldots,N-1 \), is redundant for real data because \(N/2 \) is the folding frequency or Nyquist limit.

Next construct a new sequence \(G(m) \) of complex coefficients of length \(PN \) by padding zeroes to \(F(m) \) as

\[
G(m) = \begin{cases}
F(m) & m=0,1,\ldots,N/2-1 \\
0.5F(m) & m=N/2 \\
0 & m=N/2+1,N/2+2,\ldots,PN/2
\end{cases} \tag{3.9}
\]

The original data are real, therefore the DFT coefficients exhibit conjugate symmetry, and the remainder of the full-length sequence can be obtained from eq. (3.8) according to

\[
G(M-m)=G(m)^* \quad m=1,2,\ldots,PN/2 \tag{3.10}
\]

where * denotes complex conjugation.
Note that all terms in Eq. (3.9) are carried over to the new sequence with equal weighting except the term at the original folding frequency $m=N/2$, which is given a relative weighting of one half. The reason is as follows. The new folding frequency of the DFT is $PN/2$, about which the conjugate symmetry of Eq. (3.10) pivots. So the term at frequency $N/2$ is mirrored by Eq. (3.10) to $PN-N/2$. Thus, whereas this term is summed only once in an inverse DFT of length N, it is summed twice in the inverse DFT of length PN (other terms are summed twice in both cases). Therefore, it is necessary to give a weight of one half to this coefficient.

The last step is to perform the inverse DFT of the sequence $G(m)$. Since $G(m)$ ($m=0,1,...,PN-1$) keeps the complex conjugate symmetry, the resulting sequence, say $g(n)$, is a real value sequence of length PN.

$$g(n) = \sum_{m=0}^{PN-1} G(m)e^{jmn \frac{2\pi}{PN}} \quad n=0,1,...,PN-1$$ \hspace{1cm} (3.11)

To prove the obtained sequence $g(n)$ is the interpolated sequence from $f(n)$, we must prove that $g(n)$ possesses the property of $g(Pn)=f(n)$ ($n=0,1,...,N-1$). The original sequence $f(n)$ can be obtained from the DFT coefficients $F(m)$ by

$$f(n) = \sum_{m=0}^{N/2-1} F(m)e^{j \frac{2\pi mn}{N}} + F(N/2)e^{j \frac{2\pi n}{N}} + \sum_{m=1}^{N/2-1} F^*(m)e^{-j \frac{2\pi mn}{N}}$$ \hspace{1cm} (3.12)

$$n=0,1,\cdot\cdot\cdot,N-1$$
Substituting Eq. (3.9) and Eq. (3.10) in Eq. (3.11) we have

\[
g(n) = \sum_{m=0}^{M/2} G(m)e^{j\frac{2\pi}{PN}mn} + \sum_{m=1}^{M/2-1} G^*(m)e^{-j\frac{2\pi}{PN}mn} \\
= \sum_{m=0}^{N/2-1} F(m)e^{j\frac{2\pi}{PN}mn} + \frac{1}{2} F\left(\frac{N}{2}\right)e^{j\frac{2\pi}{PN}\frac{N}{2}n} \\
+ \frac{1}{2} F^\ast\left(\frac{N}{2}\right)e^{-j\frac{2\pi}{PN}\frac{N}{2}n} + \sum_{m=1}^{N/2-1} F^\ast(m)e^{-j\frac{2\pi}{PN}mn}
\]

\[n=0,1,\cdots,PN-1\] \hspace{1cm} (3.13)

Substituting \(n\) as \(Pn\) in the above equation results in

\[
g(Pn) = \sum_{m=0}^{N/2-1} F(m)e^{j\frac{2\pi}{N}mn} + \frac{1}{2} F\left(\frac{N}{2}\right)e^{j\frac{2\pi}{N}\frac{N}{2}n} \\
+ \frac{1}{2} F^\ast\left(\frac{N}{2}\right)e^{-j\frac{2\pi}{N}\frac{N}{2}n} + \sum_{m=1}^{N/2-1} F^\ast(m)e^{-j\frac{2\pi}{N}mn}
\]

\[n=0,1,\cdots,N-1\] \hspace{1cm} (3.14)

since \(e^{j\pi} = -1\) and \(F(N/2) = F^\ast(N/2)\), we hence obtain \(g(Pn) = f(i)\) \((i=0,1,2,\ldots,N-1)\).

Therefore, the sequence \(g(n)\) is the desired interpolated sequence.

3.3 INTERPOLATION IN THE FREQUENCY DOMAIN

It has been shown, so far, that DFT based interpolation is a process of converting the signal into the frequency domain, padding zeroes to the high frequency part and reconstructing the new signal. In this section, we will explain how this works from the
digital signal processing point of view.

Consider a continuous-time signal \(f(t) \) with Fourier transform

\[
F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} \, dt
\]

(3.15)

The signal \(f(t) \) is sampled to produce the sequence \(f(n) = f(nT_0) \) where \(T_0 \) is the sampling period. The \(z \) transform of the sequence \(f(n) \) is defined as

\[
F(z) = \sum_{n=-\infty}^{\infty} f(n)z^{-n}
\]

(3.16)

The \(z \) transform evaluated on the unit circle \(F(e^{j\omega T}) \) is called the Fourier transform of the sequence \(f(n) \). It is well known that the Fourier transform of the sequence \(f(n) \) is related to the Fourier transform of \(f(t) \) by\(^{123}\)

\[
F(e^{j\omega T}) = \frac{1}{T_0} \sum_{k=-\infty}^{\infty} F(\omega + k\frac{2\pi}{T_0})
\]

(3.17)

If \(f(t) \) is band-limited, i.e., \(F(\omega) = 0 \) for \(|\omega| > \pi/T_0 \), then it can be seen from Eq. (3.17) that

\[
F(e^{j\omega T}) = \frac{1}{T_0} F(\omega)
\]

\[-\frac{\pi}{T_0} \leq \omega \leq \frac{\pi}{T_0}\]

(3.18)

If the sampling rate is increased by an integer factor \(P \), then the new sampling rate is \(T'_0 = T_0/P \). This simply implies that the new sequence is
\[g(n) = f(nT') = f(nT/P) = f(n/P) \] \hspace{1cm} (3.19)

This means that the sequence \(f(n) \) provides only one of every \(P \) samples of the desired sequence at the new sampling rate. The remaining samples must be filled in by interpolation.

Consider a new sequence

\[f'(n) = \begin{cases} f(n/P) & n=0, \pm P, \pm 2P, \ldots \ \ \ (3.20) \\ 0 & \text{otherwise} \end{cases} \]

The \(z \)-transform of this sequence is

\[F'(z) = \sum_{n=-\infty}^{\infty} f(n/P)z^{-n} = \sum_{n=-\infty}^{\infty} f(n)z^{-Pn} = F(z^P) \] \hspace{1cm} (3.21)

The Fourier transform of \(f'(n) \) therefore is

\[F'(e^{j\omega T'}) = F(e^{j\omega T/P}) = F(e^{j\omega T}) \] \hspace{1cm} (3.22)
Thus $F'(e^{j\omega T'})$ is periodic with $2\pi/T_0 = 2\pi/PT'$, rather than $2\pi/T_0$, as generally used for sequences associated with a sampling period T'_0.

If we wish to obtain the sequence $g(n)$ from $f(n)$, which is supposed to be obtained from sampling function $f(t)$ at new sampling rate T'_0, then it is must be ensured that

$$G(e^{j\omega T'}) = \frac{1}{T'} F(\omega) \quad -\frac{\pi}{T'} \leq \omega \leq \frac{\pi}{T'}$$ \hspace{1cm} (3.23)

Comparing $G(e^{j\omega T'})$ with $F(e^{j\omega T})$ in Eq.(3.17), it is clear that the images of $(1/T)F(\omega)$ in $F'(e^{j\omega T'})$ which are centred from $\omega = 2\pi/T$ to $2(P-1)\pi/T$ must be removed by a digital low-pass filter that rejects all frequencies in the range $\pi/T < |\omega| < \pi/T'$. Furthermore, to ensure that the amplitude is correct for sampling interval T', the gain of the filter must be P. That is

$$G(e^{j\omega T'}) = H(e^{j\omega T'})F'(e^{j\omega T'})$$

$$= H(e^{j\omega T'})F(e^{j\omega T})$$

$$= \frac{1}{T} H(e^{j\omega T'})F(\omega)$$ \hspace{1cm} (3.24)

where $H(e^{j\omega T'})$ is periodic with $2\pi/T'$ and

$$H(e^{j\omega T'}) = \begin{cases} P & |\omega| \leq \pi/T \\ 0 & \pi/T < |\omega| < \pi/T' \end{cases}$$ \hspace{1cm} (3.25)

From the above discussion, it can be seen that the interpolation scheme requires
two steps: first zero packing the sequence \(f(n) \) by inserting \(P-1 \) zero-valued samples between each value of the original sequence, and secondly, perform a low-pass filtering that removes the redundant frequency from \(F(e^{j\omega T}) \). Therefore, the zero-padding in the frequency domain, which is the discrete Fourier transform based interpolation scheme, is equivalent to zero-packing the original sequence and performing an ideal low-pass filtering at the same time\(^{24}\).

3.4 EXPERIMENTAL STUDY

In the numerical experiments, a test signal \(f(t) \) with a finite duration \(T \) is sampled at sampling rate \(f_s \) to obtain \(f(nT) \) \(\{n=0,1,...,N\} \). Then the signal is interpolated or reconstructed at a higher sampling rate \(f'_s \). The \(f'_s=P\cdot f_s \) where \(P \) must be an integer of power of two as mentioned before. The reconstructed discrete signal \(g(nT') \) is compared with the original function at the sampling rate of \(f'_s \) covering same period, i.e., \(f(nT/P) \).

In digital signal processing application, signals are, in general, band limited or viewed as band limited. Such signals can be understood as the superposition of sinusoids within a frequency band. For this reason, a cosine function is used as the test signal in our experiments. The test signal is given as

\[
f(t) = \cos(2\pi ft + \phi) \quad 0 \leq t < T
\]

(3.26)

In our experiments, the sampling rate \(f_s = 5512.5(\text{Hz}) \) and \(P=8 \). Therefore \(f'_s \) is 44.1k(\text{Hz}). The reason is that the sampling rate of 44.1k(\text{Hz}) is the typical sampling rate
for obtaining a high quality speech signal. (The band of a telephone quality speech signal is 300-3000 Hz). To limit the computation time for long signals and because of the length limitation for a digital computer, the number of samples \(N_s \) under sampling rate \(f_s \) is chosen to be 128, which means the time duration of signal \(f(t) \) is \(T=N_s/f_s=0.02 \text{s} \). For longer signals, we will divide the signal into several frames and interpolate from one frame to another. This technique will also be discussed later in experiments.

To examine the reconstruction accuracy, several criteria are selected. They are absolute error (\(AE_n \)) and normalized mean square error (NMSE). These criteria are suitable for examining the reconstruction accuracy but from different points of view. The NMSE emphasizes the overall accuracy and the \(AE_n \) is the individual error for each point. They are defined as below:

\[
AE_n = |g(nT') - f(nT')| \quad n=0,1,...,PN_s-1 \tag{3.27}
\]

\[
NMSE = 10 \log_{10} \frac{\sum_{n=0}^{PN_s-1} [g^2(nT') - f^2(nT')]}{\sum_{n=0}^{PN_s-1} f^2(nT')} \tag{3.28}
\]

Figure 3.1 shows the AE curve for \(f_s=1500 \text{ (Hz)} \), \(\phi=0 \). The curve shows that the error occurs between every two "perfect" interpolated samples and it has the trend that the AE error reached it’s minimum at the centre and increases very slowly through the
centre half part of the sequence and climbs up steeply to the maximum at each side of the sequence. As we mentioned in chapter 2, this is also the reason that the interpolation by the DFT is only an approximation no matter how small the error is and how it can be further reduced.

In order to simplify the statistics and to make the comparison easy, the AE curve is smoothed by taking the average value over a rectangular window and passing the window over the sequence. The width of the window is equal to the distance between samples of perfect interpolation. This choice gives good smoothing results while preserving the important local trends as shown as the solid curve in Figure 3.1.
Figure 3.2 shows a family of smoothed AE curves for cosine waves for different phase shifts. For the convenience of comparison, the curves are displayed showing about 85% near the centre of the sequence. All curves have the same characteristic feature, having the minimum at the centre of the sequence and increasing along each side. We notice that certain phase shift results in lower error, which is called the fortuitous end-around effect by Fraser\[8\]. The reason behind will becomes clear in next chapter where the Gibbs phenomenon is discussed.

To simplify the computation, the phase of the testing signal is set to zero henceforth unless otherwise declared. Fig. (3.3) shows the NMSE curve as a function of
frequency (f ranges from 300-3000 Hz). It is observed again that "perfect" interpolation occurs at some frequencies. "Failed interpolation" (0dB) or above occurs for f>f_n+f_s/2=3056 (Hz), which is the Nyquist limit. This chart graphically illustrates the sampling theorem in practice. The Nyquist limit is an absolute barrier to successful interpolation or reconstruction.

![Figure 3.3](image)

Just as for Figure 3.1, the NMSE curve is smoothed using the window technique, i.e., taking the average within the window and passing the window through all frequencies. The width of the window here is also the distance between the "perfect" interpolation frequencies. The smoothed curve is shown as the solid line in the plot. It can
be noticed that the NMSE is inversely proportional to the signal frequency. But for
\(f < 2700 \text{ (Hz)} \), the change is very small and the region could be considered as a plateau or
stable region. As the signal approaches the Nyquist limit, the NMSE increases rapidly and
reaches the "failed" interpolation error -- 0dB at the Nyquist limit.

![AE Curve with Frame](image)

Figure 3.4

As mentioned at the beginning of this section, a long duration signal could be
divided into several short period frames and dealt with one frame at a time. To illustrate
this, the same signal with a longer time duration is chosen as the test signal. In the
experiments, the total number of points is chosen as \(N_s = 1024 \), which means the time
duration \(T = N_s / f_r = 0.16 \text{ s} \). The frame size is chosen as \(N = 128 \) same as the signal length in
previous experiments. Figure 3.4 shows the AE curve throughout the whole signal period. The peaks occur at the edge of frames due to the interpolation error. The peak value is about 80% of the signal maximum amplitude which is rather high. For comparison, the solid-line curve shows the AE curve for taking the whole signal period in one frame. The major difference, as we can see, is those peaks occurred at the edges of the frame in the centre of the sequence.

![NMSE Curves with Different Frame Size](image)

Figure 3.5

Figure 3.5 shows a family of smoothed NMSE curves with different frame lengths. The curves have a characteristic shape same as in Fig.(3.3). The NMSE is approximately unchanged for f<2700(Hz) and it is inversely proportional to the length of the frame. The
reason is obvious that more peaks occur for shorter frames. It will be shown in the next chapter that the frame edge peak can be reduced by proper techniques.
CHAPTER 4

EDGE EFFECT REDUCTION

4.1 GIBBS PHENOMENON

The Gibbs phenomenon is named because of a letter Gibbs wrote to Nature in 1899[25] in which he discussed the poor convergence of Fourier series in the vicinity of the jump of the sawtooth function.1 However, his statement was not accompanied by any proof and this remarkable observation passed practically unnoticed for several years. In 1906, Bocher returned to the subject in a memoir[28] on Fourier series and greatly extended Gibbs's result. He showed, among other things, that the phenomenon which Gibbs has observed in the case of a particular Fourier series (i.e., Fourier series for sawtooth function) holds in general at ordinary points of discontinuity. To quote his own words:

If $f(x)$ has the period 2π and in any finite interval has no discontinuities other than a finite number of finite jumps, and if it has a derivative which in any finite interval has no discontinuities other than a finite number of finite discontinuities, then as N becomes

1 Actually Gibbs phenomenon was first described by the British mathematician Wilbraham in 1848[26]; see Carslaw[27] for the history.
infinite the approximation curve produced by Fourier series approaches uniformly the continuous curve made up of

(a) the discontinuous curve \(f(x) \).

(b) an infinite number of straight lines of finite lengths parallel to the \(y \)-axis and passing through the points \(a_1, a_2, \ldots \) on the \(x \)-axis where the discontinuities of \(f(x) \) occur. If \(a \) is any one of these points, the line in question extends between the two points whose ordinates are

\[
f(a-0) + \frac{DP_1}{\pi}, \quad f(a+0) - \frac{DP_1}{\pi}
\]

where \(D \) is the magnitude of the jump in \(f(x) \) at \(a \), i.e., \(D = f(a+0) - f(a-0) \), and

\[
P_1 = \int_{-\infty}^{\infty} \frac{\sin x}{x} dx = -0.2811
\]

As mentioned in chapter 2, when the discrete Fourier transform is performed on a finite duration signal, it is assumed that the signal is described within one period of a periodic signal as

\[
f_p(t) = f(t) \otimes \delta_x(t)
\]

\[
= \sum_{n=-\infty}^{\infty} f(t+nT)
\]

If \(f(-T/2) \neq f(T/2) \), then the periodical function \(f_p(t) \) has a discontinuities at the periodic boundaries. Therefore the Gibbs phenomenon occurs in the vicinity of the periodic
boundary when the function is reconstructed from its discrete Fourier coefficients\(^1\).

However, the proof of the Gibbs phenomenon is beyond the scope of this thesis. Interested readers can refer to Carslaw\(^{29}\) and Dym\(^{30}\).

![Illustration of Gibbs Phenomena](image)

Figure 4.1

Fig.(4.1) shows a square root function curve with a finite duration and its reconstructed or interpolated function curve generated from its Fourier coefficients given by Eq.(3.7)-(3.10). The figure illustrates the Gibbs phenomenon clearly in the vicinity of the periodic boundary at the ends of the signal. This is why the interpolation error tilts

\(^1\) As shown in chapter 2, the DFT coefficients is the aliased coefficients of Fourier series.
up at the sequence ends and the reason why the peaks occur at the edge of each frame in the absolute error curve.

4.2. LEAKAGE REDUCTION

Recall that frequency leakage is inherent in the discrete Fourier transform because of the time domain truncation by the rectangular window mentioned in chapter 2. In general, the truncation results in a sharp discontinuity in the periodic function which is expanded from the truncated function as shown in Eq.(4.3). The discontinuity, in other words, results in side-lobes in the frequency domain, which are termed frequency leakage or ripples and which is the major reason for the interpolation error as illustrated in Fig. (4.1).

To eliminate the discontinuity, Fraser[8] proposed a window technique that makes the function continuous at the periodic boundary. Consider a function $f(t)$ with finite duration of $0 \leq t < T$. Rather than being directly approximated by the coefficients of its discrete Fourier transform, the function $f(t)$ is first modified by multiplying it by a so-called half cosine-bell window with the same duration to generate a new function, $f_w(t)$, and approximating the result by the coefficients of the discrete Fourier transform on the modified function. The modified function, named $f_w(t)$, is given by

$$f_w(t) = f(t)w(t) \quad 0 \leq t < T$$

(4.4)

and the half cosine-bell window $w(t)$ is given by
\[
w(t) = \begin{cases}
0.5[1 - \cos(2\pi t/T_w)] & 0 \leq t < T_w/2 \\
0.5[1 - \cos(2\pi (T-t)/T_w)] & T - T_w/2 < t < T \\
1 & \text{otherwise}
\end{cases}
\] (4.5)

where \(T_w < T \) is the combined length of windowed region. Fig. (4.2) illustrates the waveform of such a window with \(T_w = T/2 \). If \(T_w = T \), a cosine bell extends over the full signal period, corresponding to a Hanning window.

![Illustration of Half Cosine-Bell Window](image)

Figure 4.2

As can be seen from Eq.(4.5), the window function possesses the property that \(w(0) = w(T) = 0 \) which means the modified function also has \(f_w(0) = f_w(T) = 0 \). Therefore there
is no discontinuity on the periodic function expanded from the modified function and hence the Gibbs phenomenon, or the oscillations in the vicinity of discontinuity will be reduced since the amplitude of the maximum ripple corresponds to the height of the jump of the discontinuity as shown in Eq.(4.1). To illustrate this, Fig.(4.3) shows the modified function from the square root function shown in Fig.(4.1).

![Window Modified Function](image)

Figure 4.3

The waveform reconstructed from the coefficients of its discrete Fourier transform is also illustrated in Fig.(4.3) as the dotted curve but is undistinguishable because these two curves almost perfectly overlap under such scaling. To examine the difference in
detail, an absolute error (AE) curve is shown in Fig.(4.4). It is clear that the reduction of Gibbs phenomenon is remarkable.

![AE Curve of Window Modified Function](image)

Figure 4.4

To recover the original function, a reverse procedure to windowing is needed, which means

\[
f(t) = f_w(t)/w(t) \quad 0 \leq t < T \quad (4.6)
\]

However, it is impossible to recover \(f(0) \) of the original function from the windowed signal when \(f(0) \) was not zero before windowing. In addition, as shown in Fig.(4.5), the reverse windowing to obtain the original function \(f(t) \) from \(f_w(t) \) introduces recovering errors at the vicinity of two ends of the function.
4.3 A LINEAR SEQUENCE TRANSFORM

It is already noticed that the jump between \(f(0) \) and \(f(T) \) is the major reason responsible for the interpolation error. Rather than multiplying a window function on the finite duration function as discussed in the last section, let us consider a linear transform as

\[
f'(t) = f(t) + \frac{f(0) - f(T)}{T} t \quad 0 \leq t < T
\]

(4.7)

It can be noticed that such a transform also makes the transformed function \(f'(t) \) possess
the property of \(f'(0) = f'(T) \) and hence also eliminates the discontinuity at the periodical boundary if the discrete Fourier transform is applied to \(f'(t) \). Fig.(4.6) illustrates the original function and the transformed function.

![Illustration of the Linear Transform](image)

Figure 4.6

Fig.(4.7) shows the AE curve of the reconstruction error for the transformed function obtained from its discrete Fourier transform coefficients. Note that the error is also greatly reduced as compared to the large ripples in Fig.(4.1). In addition, since the transform is linear, the function can be recovered without any error as

\[
f(t) = f'(t) - \frac{f'(0) - f'(T)}{T} t, \quad 0 \leq t < T
\]

(4.8)
where $f'(T)$ is set to $f(T)$ which is not changed in Eq.(4.7). The recovered function overlaps on the original function under same scaling as Fig.(4.5). In the next section, more details will be discussed in terms of experimental study.

![The Reconstruction AE Curve of Transformed Function](image)

Figure 4.7

4.4 EXPERIMENTAL STUDY

In these experiments, the same cosine test signal is chosen as defined in Eq.(3.23). The same experimental environment is also chosen, which means the sampling rate is $f_s=5512.5$ (Hz), sampling rate increasing factor is $P=8$, and the number of samples is $N_s=128$ under sampling rate f_s. The signal frequency varies in the range of 300-3000 (Hz).
Recall from the discussion of last chapter that a different phase shift results in a different interpolation error. The reason is that the signal phase shift alters the initial and the ending values of the signal in the finite duration system and hence changes the height of the jump at the periodic boundary; therefore, interpolation error, the height of ripples at the vicinity of the discontinuity, also changes.

![NMSE Curves with Different Window Sizes](image)

Figure 4.8

Fig.(4.8) shows the smoothed NMSE curves with different window sizes. In general, larger window size results in lower interpolation error. With full window the error curve is reduced throughout the range of the signal frequency and keeps the same
curve trend compared to the usual curve with no windowing. It is encouraging that even a small window ($N_w=4$) makes significant improvement in accuracy. But larger windowing needs more computation. Note that all curves are measured over centre half of the sequence, which means the large tilt up caused by the recovery procedure (Eq. (4.6)) is mostly neglected in Fig.(4.8).

![NMSE Curves by Different Approaches](image)

Figure 4.9

Fig.(4.9) and Fig.(4.10) show the NMSE curves measured over the full and the centre half of the sequence respectively by the traditional approach, windowing technique, and the linear sequence transform. It is obvious that the linear sequence transform results
in the lowest error overall since the recovery error generated by the reverse windowing seems unacceptable because a large portion of windowing curve is above 0dB line (which means failed interpolation) in Fig.(4.9) although the windowing reduces Gibbs phenomena more than the linear sequence transform, which may be concluded from Fig.(4.10). Besides, from the computation point of view, the windowing obviously needs one multiplication for each sample of the sequence as shown in Eq.(4.4). It seems that the linear sequence transform also needs one multiplication for each sample, however, the multiplication can be implemented in terms of addition by the following programming technique
\[f'(t_i) = f'(t_{i-1}) - \frac{f(T) - f(0)}{T} \]

(4.9)

where the initial value \(f'(0) = f(0) \). Therefore, the linear transform has another advantage over windowing in terms of computation complexity.

![AE Curve under Frame Technique](image)

Figure 4.11

As mentioned in the last chapter, longer signals can be divided into shorter frames with reasonable frame length (e.g., \(N_s = 128 \)). Since window technique introduces recovery error, it is not suitable for frame consideration because the peak value at the frame edge could be unacceptable. Only the linear sequence transform technique is considered for using with frames in these experiments. However, the frame consideration under the linear
sequence transform is slightly different from that given in the previous section. Note that \(f(T) \) is used in the computation for the transform constant (i.e., \((f(T)-f(0))/T\)) and it is same as \(f(0) \) in the next frame. This means that there is one sample overlapped between every two adjacent frames and the function must be defined in the closed interval \([0,T]\) for the transform of last frame, which is different from the half closed interval of \([0,T]\) in the traditional definition of the finite duration function as shown in the last chapter. Fig.(4.11) shows the AE curves over the whole sequence. Note that the peak value at the edges of frame is only 10% of the maximum signal amplitude reduced from 80% as shown in Fig.(3.4).

![NMSE Curves with Different Frame Size](image)

Figure 4.12
Fig. (4.12) shows a group of NMSE curves with different frame sizes using the linear sequence transform technique. Similar to not performing linear transform, smaller frame size results in a larger error when the linear transform is performed. However, it can also be observed that the interpolation error using linear transform is still less than that without using the linear sequence transform when the frame technique is applied. Therefore, it can be concluded that the linear sequence transform not only greatly reduces the interpolation error, but is also suitable for the frame analysis of long signals, while the windowing technique appears not to be suitable.
5.1 TWO-DIMENSIONAL DFT BASED INTERPOLATION ALGORITHM

From a band-limited continuous 2D signal \(f(t_1, t_2) \) of finite duration \((T_1, T_2)\) with discrete version \(f(n_1, n_2) \) of length \((N_1, N_2)\), which is obtained by sampling both variables of \(f(t_1, t_2) \) with a uniform sampling rate \(f_s \), we want to obtain a 2D sequence \(g(n_1, n_2) \) of length \((M_1 = P \cdot N_1, M_2 = P \cdot N_2)\), which can be understood as sampling \(f(t_1, t_2) \) at a higher sampling rate \(f_s' \) (\(f_s' = P \cdot f_s \)). It is obvious that the sequence \(f(n_1, n_2) \) only provides one sample for every \(P^2 \) samples in sequence \(g(n_1, n_2) \), others must be interpolated by the interpolation process from \(f(n_1, n_2) \). It should be understood that after interpolation the sequence \(g(n_1, n_2) \) must possesses the property of \(g(Pn_i, Pn_j) = f(n_i, n_j) \) \(\{i=0, 1, ..., N_1-1; j=0, 1, ..., N_2-1\} \).

To interpolate the \(f(n_1, n_2) \), first compute its 2D DFT as

1 We assume that the sampling rate is the same for both variables and above the Nyquist frequency in order to keep the notation simple.
$F(k_1,k_2) = \frac{1}{N_1N_2} \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} f(n_1,n_2) W_{n_1}^{n_1k_1} W_{n_2}^{n_2k_2}$

\[k_1 = 0,1,\ldots,N_1-1\]
\[k_2 = 0,1,\ldots,N_2-1\]

(5.1)

where

$W_n = e^{-j2\pi n/N}$

(5.2)

Note that since the sequence $f(n_1,n_2)$ is real, the Fourier coefficients $F(k_1,k_2)$ possess the Hermitian symmetry of

$F(k_1,k_2) = (N_1-k_1,N_2-k_2)$

\[k_1 = 0,1,\ldots,N_1/2\]
\[k_2 = 0,1,\ldots,N_2/2\]

(5.3)

Secondly, construct an intermediate coefficient sequence $G(k_1,k_2)$ of length (M_1,M_2) by zero padding $F(k_1,k_2)$. By defining

$S_i = \{k_i | k_i = 0,1,\ldots,N_i/2-1\}$

$Q_i = \{k_i | k_i = M_i-N_i/2,\ldots,M_i-1\}$

(5.4)

the zero padded sequence $G(k_1,k_2)$ is expressed as
\[
G(k_1, k_2) = \begin{cases}
F(k_1, k_2) & k_1 \in S_1, k_2 \in S_2 \\
F(k_1 + N_1 - M_1, k_2) & k_1 \in Q_1, k_2 \in S_2 \\
F(k_1, k_2 + N_2 - M_2) & k_1 \in S_1, k_2 \in Q_2 \\
0.5F(k_1, N_2/2) & k_1 \in S_1, k_2 = N_2/2, M_2 - N_2/2 \\
0.5F(N_1/2, k_2) & k_1 = N_1/2, M_1 - N_1/2, k_2 \in S_2 \\
0.5F(k_1 + N_1 - M_1, N_2/2) & k_1 \in Q_1, k_2 = N_2/2, M_2 - N_2/2 \\
0.5F(N_1/2, k_2 + N_2 - M_2) & k_1 = N_1/2, M_1 - N_1/2, k_2 \in Q_2 \\
0.25F(N_1/2, N_2/2) & k_1 = N_1/2, M_1 - N_1/2, k_2 = N_2/2, M_2 - N_2/2 \\
0 & \text{others}
\end{cases}
\]

(5.5)

It can be noticed from the above equation that the sequence \(G(k_1, k_2) \) preserves the Hermitian symmetry from \(F(k_1, k_2) \), which means

\[
G(k_1, k_2) = G^*(M_1 - k_1, M_2 - k_2)
\]

(5.6)

\[
k_1 = 0, 1, \ldots, M_1/2 \\
k_2 = 0, 1, \ldots, M_2/2
\]

Finally, compute the inverse discrete Fourier transform of the intermediate sequence \(G(k_1, k_2) \) as
\[g(n_1, n_2) = \sum_{k_1=0}^{M_1-1} \sum_{k_2=0}^{M_2-1} G(k_1, k_2) W_{M_1}^{-n_1 k_1} W_{M_2}^{-n_2 k_2} \]

(5.7)

Therefore we obtain a sequence \(g(n_1, n_2) \) of size \((M_1, M_2)\). To prove the obtained sequence \(g(n_1, n_2) \) is the desired interpolated sequence, substituting Eq.(5.5) in Eq.(5.6), we have

\[g(P_{n_1}, P_{n_2}) = \sum_{k_1=0}^{M_1-1} \sum_{k_2=0}^{M_2-1} G(k_1, k_2) W_{M_1}^{-P_{n_1} k_1} W_{M_2}^{-P_{n_2} k_2} \]

\[= \sum_{k_1=0}^{M_1-1} \sum_{k_2=0}^{M_2-1} G(k_1, k_2) W_{N_1}^{-n_1 k_1} W_{N_2}^{-n_2 k_2} \]

\[= \sum_{k_1 \in S_1 \cup Q_1, \ k_2 \in S_2 \cup Q_2} G(k_1, k_2) W_{N_1}^{-n_1 k_1} W_{N_2}^{-n_2 k_2} \]

(5.8)

\[+ (-1)^{n_2} \sum_{k_1 \in S_1 \cup Q_1} [G(k_1, N_2/2) + G(k_1, M_2 - N_2/2)] W_{N_1}^{-n_1 k_1} \]

\[+ (-1)^{n_1} \sum_{k_2 \in S_2 \cup Q_2} [G(N_1/2, k_2) + G(M_1 - N_1/2, k_2)] W_{N_2}^{-n_2 k_2} \]

\[+ (-1)^{n_1 + n_2} \left[G(N_1/2, N_2/2) + G(M_1 - N_1/2, N_2/2) + G(N_1/2, M_2 - N_2/2) + G(M_1 - N_1/2, M_2 - N_2/2) \right] \]

By defining another group as

61
\[P_i \in \{k_i : k_i = N/2 + 1, N/2 + 2, \ldots, N_i - 1\} \quad (5.9) \]

the Eq.(5.8) can be expressed as

\[
g(P_{n_1}, P_{n_2}) = \sum_{k_i \in S_1, P_1} \sum_{k_i \in S_2, P_2} F(k_1, k_2) W_{N_1}^{-n_{i1} k_i} W_{N_1}^{-n_{i2} k_2} + (-1)^{n_{i2}} \left[\sum_{k_i \in S_2, P_2} F(N_i/2, k_2) W_{N_1}^{-n_{i2} k_2} \right] + (-1)^{n_{i1}} \left[\sum_{k_i \in S_1, P_1} F(k_1, N_i/2) W_{N_1}^{-n_{i1} k_i} \right] + F(N_i/2, N_i/2) \]

\[
= \sum_{k_i = 0}^{N_i/2 - 1} \sum_{k_i = 0}^{N_i/2 - 1} F(k_1, k_2) W_{N_1}^{-n_{i1} k_i} W_{N_1}^{-n_{i2} k_2} = f(n_{1}, n_{2}) \quad (5.10)
\]

Therefore, the obtained sequence \(g(n_1, n_2) \) is the desired interpolated sequence from \(f(n_1, n_2) \).

5.2 TWO-DIMENSIONAL LINEAR SEQUENCE TRANSFORM

As discussed in the one-dimensional case, the discontinuity at the periodical boundary results in the large oscillation error for the inverse discrete Fourier transform
approximation. It has been also shown before that the elimination of the discontinuity achieves much higher interpolation accuracy. Therefore, the reduction of the discontinuity at the periodic boundary for two-dimensional function should also be considered. However, the periodic expansion of a two-dimensional signal is different from the one-dimensional case, because there exist different boundary samples. Hence different considerations must be taken.

Let \(f(t_1, t_2) \) be a finite duration two-dimensional function with \(0 \leq t_1 < T_1 \) and \(0 \leq t_2 < T_2 \). When the discrete Fourier transform is applied to this function, the function is assumed to be in the one period of the periodical function as

\[
f_p(t_1, t_2) = f(t_1, t_2) \otimes \delta_{t_1T_1}(t_1, t_2)
\]

(5.11)

where \(T(t_1, t_2) \) is illustrated in Fig.(5.1). Note that there are several possible discontinuity jumps in the periodic function \(f_p(t_1, t_2) \). These discontinuities could be the differences between \(f(0, t_2) \) and \(f(T_1, t_2) \), \(f(t_1, 0) \) and \(f(t_1, T_2) \), \(f(0, 0) \) and \(f(T_1, T_2) \) and \(f(0, T_2) \) and \(f(T_1, 0) \). To eliminate the discontinuities, it must be ensured that \(f(0, t_2) = f(T_1, t_2) \), \(f(t_1, 0) = f(t_1, T_2) \) and \(f(0, 0) = f(0, T_2) = f(T_1, 0) = f(T_1, T_2) \).
CHAPTER 5 TWO-DIMENSIONAL INTERPOLATION

If the window function described in Eq.(4.5) is applied to each row and column for the sampled two-dimensional function separately, all boundary values are set to zero. The discontinuities are eliminated and hence the interpolation for the windowed function is reduced. But windowing also introduces the recovery error as discussed in one-dimensional case. It will be shown in the experimental results later in this chapter that the recovery error results in an unacceptable effect on the image.

Now consider a two-dimensional linear transform\(^{(32,33)}\)

\[
f'(t_1,t_2) = f(t_1,t_2) + c_1(t_1)t_2 + c_2(t_2)t_1 + c_0t_1t_2 \tag{5.12}
\]

where the transform coefficients are obtained by

\[
c_1(t_1) = \frac{f(t_1,0) - f(t_1,T_2)}{T_2} \quad 0 \leq t_1 < T_1
\]

\[
c_2(t_2) = \frac{f(0,t_2) - f(T_1,t_2)}{T_1} \quad 0 \leq t_2 < T_2 \tag{5.13}
\]

\[
c_0 = \frac{f(0,0) - f(T_1,0) - f(0,T_2) + f(T_1,T_2)}{T_1T_2}
\]

It is easy to see that the new function \(f'(t_1,t_2)\) possesses the property of

\[
f'(0,t_2) = f'(T_1,t_2) \quad 0 \leq t_2 < T_2
\]

\[
f'(t_1,0) = f'(t_1,T_2) \quad 0 \leq t_1 < T_1 \tag{5.14}
\]

In other words, the function \(f'(t_1,t_2)\) is continuous at the periodical edges when it is
extended periodically and thus the Gibbs phenomenon is eliminated when the discrete Fourier transform is performed. Therefore the error of the interpolated two-dimensional signal will be reduced as it has already been observed in the one-dimensional case.

To recover the original function \(g(t_1, t_2) \) from the transformed-interpolated function \(g'(t_1, t_2) \), similar to the one-dimensional case, a reverse linear transform can be done as

\[
g(t_1, t_2) = g'(t_1, t_2) - d_1(t_1) t_2 - d_2(t_2) t_1 - d_0 t_1 t_2
\]

\[0 \leq t_1 < T_1\]

\[0 \leq t_2 < T_2\]

(5.15)

where

\[
d_1(t_1) = \frac{g'(t_1, 0) - g'(t_1, T_2)}{T_2}
\]

\[0 \leq t_1 < T_1\]

\[
d_2(t_2) = \frac{g'(0, t_2) - g'(T_1, t_2)}{T_1}
\]

\[0 \leq t_2 < T_2\]

(5.16)

\[
d_0 = \frac{g(0, 0) - g(0, T_2) - g(T_1, 0) + g(T_1, T_2)}{T_1 T_2}
\]

The value of \(g'(T_1, T_2) \) is set to \(f(T_1, T_1) \) as \(g'(T) \) is set to \(f(T) \) in the one-dimensional case. However, \(g'(t_1, T_2) \) and \(g'(T_1, t_2) \) cannot simply set to \(f(t_1, T_2) \) and \(f(T_1, t_2) \) respectively because they are also time functions, although only for one variable, and the function is under new sampling rate. Therefore, one-dimensional interpolation on \(f(t_1, T_2) \) and \(f(T_1, t_2) \) must be performed in order to obtain the linear transform coefficients \(d_1(t_1) \)
and $d_2(t_2)$. Since there exits interpolation error on these two coefficients, although it can be reduced by employing one-dimensional linear transform technique, the recovery of a two-dimensional function also introduces error to the entire interpolation process. But as we will see in the next section, the error introduced by the recovery is not as much as that introduced by the windowing, and usually is acceptable.

5.3 IMAGE ZOOMING BY TWO-DIMENSIONAL INTERPOLATION

Image zooming is a part of practical image processing on geometric processes or image scaling[34]. Since the interpolation of a two-dimensional function is to approximate the sample value under higher sampling rate from an already sampled function, it is suitable for the purpose of image zooming, which is to insert pixels between the existing pixels. In this section, the two-dimensional discrete Fourier transform based interpolation is applied to image zooming.

The test image is a subimage cut from the common human face "lena" image as marked in the bright frame in Fig.(5.2). The size of the test image is $N1\times N2$ ($N1=N2=64$ pixel in our experiments). The zooming ratio P is fixed to 8 in our experiments, which means the zoomed image is the size of 256×256. Since the image under the desired higher sampling rate is not available, the visual effect becomes the judgement of the zooming quality, which is also common in image processing.
Figure 5.2
The Original Lena Image

Figure 5.3
Zoomed image by pixel duplication
In image processing, the most common method for image zooming is called pixel duplication. That is, to repeat each pixel on both directions several times. This indeed saves computation time but usually does not achieve good results. Fig.(5.3) shows the zoomed image using pixel duplication. It can be noticed that details are blurred under this method and zooming zig-zaging can be observed at the edges of the image.

![Figure 5.4](image)

Figure 5.4
Zoomed Image by DFT Interpolation

Fig.(5.4) shows the image zoomed by two-dimensional interpolation using the conventional DFT method. Much better results are achieved than the pixel duplication method. However, as mentioned before, the Gibbs phenomenon, i.e., the interpolation error caused by discontinuity at the periodical boundary, results in the ripples at the edge of the image.
CHAPTER 5 TWO-DIMENSIONAL INTERPOLATION

Fig.(5.5) shows the image zoomed from DFT based interpolation using windowing technique. The size of window is half the size of the image. Because of the recovery error from the reverse windowing process, i.e., the big tilt up at the ends of the sequence in one-dimensional case, a vignetting effect is observed in the image. It is known that the larger the window size, the lower the interpolation error for the one-dimensional function. However, for two-dimensional images, larger size windows give a worse visual effect. This can be observed from the image zoomed under full window size shown in Fig.(5.5).

The reasons are that first, the smaller window (e.g., size of 4) limits the tilt up in the smaller area (only within two rows or columns at each edge of the image for the size of 4 window); second, the errors at the centre of the image are below the quantization level.

Figure 5.5
Zoomed image under windowing
Window size = 64 (Full window)
Fig.(5.7) shows the zoomed image by the linear transform method. To use the linear transform technique, the size of the test image must be \((N_1+1)*(N_2+1)\) (the extra row and column represents \(f(t_1,T_2)\) and \(f(T_1,t_2)\) respectively in Eq.(5.12)). The extra row and column is obtained by cutting the test image from standard image at the desired size in our experiments. In the situation where there is no larger image available to cut from, (e.g. to zoom the whole existing image), the extra row and column can be obtained by extrapolation. Although there are errors in the recovery process caused by the interpolation error in the last row and the last column under the linear transform technique, the errors seem also below the quantization level. Therefore, a superior smooth image is observed: there are no visible ripples and there is no vignetting effect.
Block technique is a widely used technique in image processing because of the computation and memory saving by dividing large size image into smaller size blocks. The block technique, which is similar to the frame technique in one dimensional signal interpolation, can also be applied to image zooming.

Fig.(5.8) shows the zoomed image using the block technique by the traditional two-dimensional interpolation scheme. The image is first divided into blocks with a size of $Nb_1 \times Nb_2$, where $N_1/Nb_1=K_1$ and $N_2/Nb_2=K_2$, then each block is interpolated separately to obtain the zoomed image. It is obvious that the interpolation error, especially the Gibbs phenomenon at the edge of the block, causes the block effect that severely deteriorates the image.
Figure 5.8
Zoomed image by block technique
Block size = 8*8

Figure 5.9
Zoomed image by blocks under linear transform technique.
Block size = 8*8
To eliminate the block effect, some techniques should be used to reduce the interpolation error, especially at the edge of blocks. Since the vignetting effect at the block edges is caused by the window technique, the windowing is not considered for the block technique. Fortunately, the linear transform technique gives the perfect solution for eliminating the block effect. However, different block divisions and operations must be considered under the linear transform technique because one more row and column are needed for each block to perform the linear transform.

Different from the block size of Nb_1*Nb_2 in the conventional block technique, the image is divided into blocks of size $(Nb_1+1)*(Nb_2+1)$ with one row and column overlap to the previous one. Then each block is transformed and interpolated without considering the last row and last column in a certain order. (The last row and column only participate in the transform and recovery and are interpolated separately as discussed under the two-dimensional linear transform technique.) The zoomed blocks are placed back without overlapping and therefore an intermediate image of size N_1*N_2 is obtained. To recover the desired zoomed image from linear transform, the last row and column of the image must be interpolated by a one-dimensional interpolation (certainly one dimensional linear transform and recovery should be applied) and must be considered as an extra row and column of the intermediate image respectively. Then the two-dimensional recovery transform is performed on each block but in reverse order from transform and zooming order.
Fig. (5.9) shows the zoomed image by using the block technique described above. The image appears smooth and no block effect can be observed.
CHAPTER 6

CONCLUSIONS

6.1 CONCLUSIONS

In this thesis, the fundamental theory of discrete Fourier transform based interpolation is studied in detail. It is shown in this thesis that the discrete Fourier transform based interpolation is the problem of approximating a finite duration function by Fourier series. The discrete Fourier transform coefficients, in fact, are the aliased Fourier series coefficients of a sampled function. By examining the Gibbs phenomenon in detail, which occurs at the vicinity of the discontinuity of the original function, an efficient linear sequence transform is proposed to efficiently suppress the Gibbs phenomenon. Compared to the windowing technique, the proposed linear sequence transform has several advantages. First, the linear sequence transform does not introduce recovery error; second, by applying the programming technique, linear sequence transform achieves higher computation saving; third, the linear sequence transform is suitable for frame operation on a long signal which may imply that signal interpolator can be implemented at a small cost without compromising the accuracy too much.

The interpolation of two-dimensional functions is also studied in this thesis and is applied to the practical problem of image zooming. In correspondence with one-
dimensional linear sequence transform, a two-dimensional linear sequence transform is also proposed. It gives better results than the window method. Besides, it gives a very good solution for eliminating the block effect when using block technique in image zooming.

FUTURE DIRECTION

This work has already provoked some interest in the interpolation problem. Macleod in Cambridge University proposed a further improvement on DFT based interpolation by removing the wraparound discontinuity also in the first derivative at the periodic boundary of assumed periodically extended function1331. He also implied that such an effect could be extended to remove higher order wraparound discontinuities in derivatives, certainly, with the compromise of the computation involvement. The problem is that there exit errors when obtaining the derivative at a certain point of the function from the discrete values and to calculate high order derivatives, such errors can be accumulated. This implies that removing higher order wraparound discontinuities may not generate better results.
REFERENCES

[8] D. Fraser. "Interpolation by the FFT Revisited - An Experimental Investigation",

APPENDIX

C PROGRAM FOR IMAGE ZOOMING
APPENDIX

C PROGRAM FOR IMAGE ZOOMING

/*
* C Code for Image Zooming
*
* File name : Zooming.c
* Input File : A recognizable image file
* Output File : Zoomed image file in same format
*/

#define pi 3.14159265358979 /* define π */
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

void zoom(); /* Major function for zooming images */
void extrapolate(); /* Function for extrapolating extra row and column */
void interpolation(); /* Function for 2-Dimensional DFT interpolation */
void L_transform(); /* Function for 2-Dimensional linear transform */
void spectrum(); /* Spectrum domain zero padding */
void getprime(); /* Function compute the prime factor of image size */
void FFT(); /* Function for FFT algorithm */
void One_D_interpolate(); /* Function for 1-Dimensional interpolation */
void output_image();

void main (argc, argv)

int argc;
char *argv[];

{ /* main */
 FILE *fp_in, *fp_out;
 char ch;
 int width_in, length_in;
 int depth;
 int width_out, length_out;
 int ratio;
 int i, j;
 unsigned char head[3];
 unsigned char *img_in, *img_out;

 if (argc < 2)
 {

printf("You forgot to type input and output file name\n\n");
printf("on the command line. Try again.\n\n");
exit (1);
}

if(argc < 3)
{
printf("You forgot to give output file name\n\n");
exit (2);
}

if ((fp_in=fopen(argv[1],"rb+"))==NULL)
{
printf("cannot open input file\n\n");
exit (3);
}

if ((fp_out=fopen(argv[2],"wb"))==NULL)
{
printf("cannot open output file\n\n");
exit (4);
}

fgets (head, 3, fp_in);
ch = fgetc(fp_in);
scanf(fp_in, "%d", &width_in); /* get image width */
ch = fgetc(fp_in);
scanf (fp_in, "%d", &length_in); /* get image length */
ch = fgetc(fp_in);
scanf (fp_in, "%d", &depth); /* get image depth */
ch = fgetc(fp_in);

printf("The current image is %d x %d\n", width_in, length_in);
printf("Give the zooming ratio (power of 2):\n");
scanf("%d", &ratio);
printf("\n");

width_out = ratio*width_in;
length_out = ratio*length_in;

img_out = (unsigned char*)malloc(length_out*width_out*sizeof(unsigned char));
if (!img_out)
{
printf("memory request failed (img_out)\n\n");
}


```c
exit (6):
}

img_in = (unsigned char*)malloc((width_in+1)*(length_in+1)*sizeof(unsigned char));
if ( !img_in )
{
 printf("memory request failed (img_in)\n");
 exit (7);
}

for ( i=0; i<length_in; i++)
for ( j=0; j<width_in; j++ )
{
 img_in[i*width_in+j] = fgetc ( fp_in );
}

zoom(img_in, img_out, width_in, length_in, ratio);

fputs(head, fp_out);
fputc(ch, fp_out);
fprintf(fp_out, "%d", width_out);
fputc(ch, fp_out);
fprintf(fp_out, "%d", length_out);
fputc(ch, fp_out);
fprintf(fp_out, "%d", depth);
fputc(ch, fp_out);
fwrite(img_out, length_out*sizeof(unsigned char), width_out, fp_out);

fclose(fp_in);
fclose(fp_out);
free(img_in);
free(img_out);
exit(0);
}
/* main */

void zoom(img_in, img_out, width_in, length_in, ratio)  /* calling from main */
unsigned char  *img_in, *img_out;
```

84
APPENDIX

C PROGRAM FOR IMAGE ZOOMING

int width_in, length_in, ratio;
{
 /* zoom */
 float *blk_in, *blk_out;
 int blk_width_in, blk_length_in;
 int blk_width_out, blk_length_out;
 int i, j;
 int fblk_width_in, fblk_length_in;
 int fblk_width_out, fblk_length_out;
 int width_out;

 printf(" The current image size is : %d x %d\n", width_in, length_in);
 printf(" Give the width of block (2 < size < %d)\n", width_in);
 printf(" Block width= ");
 scanf(" %d", &blk_width_in);
 printf(" \n ");
 printf(" Give the length of block (2 < size < %d)\n", length_in);
 printf(" Block length= ");
 scanf("%d", &blk_length_in);
 printf(" \n ");

 blk_length_out = blk_length_in*ratio;
 blk_width_out = blk_width_in*ratio;
 width_out = width_in*ratio;
 printf("%d #", img_in[65]);
 extrapolate (img_in, width_in, length_in);
 printf("%d &", img_in[65]);
 blk_in = (float *)malloc((blk_length_in+1)*(blk_width_in+1)*sizeof(float));
 if (!blk_in)
 {
 printf("memory request failed\n");
 exit (6);
 }
 blk_out = (float *)malloc((blk_length_out+1)*(blk_width_out+1)*sizeof(float));
 if (!blk_out)
 {
 printf("memory request failed\n");
 exit (7);
 }
}
fblk_length_in = 0;
fblk_length_out = 0;
while (fblk_length_in<length_in)
{
 fblk_width_in = 0;
 fblk_width_out = 0;
 while (fblk_width_in<width_in)
 {
 for (i=0; i<=fblk_length_in; i++)
 for (j=0; j<=fblk_width_in; j++)
 blk_in[i*blk_width_in+j] = (float)
 img_in[(i+fblk_length_in)*width_in+(j+fblk_width_in)];

 interpolation(blk_in, blk_out, blk_length_in, blk_width_in, ratio);
 }

 for (i=0; i<blk_length_out; i++)
 for (j=0; j<blk_width_out; j++)
 img_out[(i+fblk_length_out)*width_out+(j+fblk_width_out)]
 = (unsigned char)blk_out[i*blk_width_out+j];

 fblk_width_out += blk_width_out;
 fblk_width_in += blk_width_in;
}

fblk_length_out += blk_length_out;
fblk_length_in += blk_length_in;
}

free (blk_in);
free (blk_out);

return;
} /* end of zoom */

void extrapolate (input_img, width_in, length_in) /* calling from zooming */

unsigned char *input_img;
int width_in, length_in;

{ /* extrapolate */
int a,b,c;
int i,j;

for (i=0; i<length_in; i++)
{
 a = (int) input_img[(i+1)*(width_in+1)-4];
 b = (int) input_img[(i+1)*(width_in+1)-3];
 c = (int) input_img[(i+1)*(width_in+1)-2];
 input_img[(i+1)*(width_in+1)-1] = (unsigned char) a-3*b+3*c;
}

for (j=0; j<=width_in; j++)
{
 a = (int) input_img[(length_in-3)*(width_in+1)+j];
 b = (int) input_img[(length_in-2)*(width_in+1)+j];
 c = (int) input_img[(length_in-1)*(width_in+1)+j];
 input_img[length_in*(width_in+1)+j] = (unsigned char) a-3*b+3*c;
}

return;
} /* end of extrapolate */

void interpolation (blk_in, blk_out, length_in, width_in, ratio)
 /* calling from zooming */
{
 float *blk_in, *blk_out;
 int length_in, width_in;
 int ratio;

 /* interpolation */
 int width_out, length_out;
 int T_flag, S_flag;
 int i, j, Ns;
 float *Real_in, *Real_out;
 float *Imag_in, *Imag_out;
 float *last_row_in, *last_row_out;
 float *last_clm_in, *last_clm_out;

 Real_in = (float *)malloc(length_in*width_in*sizeof(float));
if (!Real_in)

 printf("memory request failed\n");
 exit (6);

 Real_out = (float*)malloc(length_out*width_out*sizeof(float));
 if (!Real_out)

 printf("memory request failed\n");
 exit (7);

 Imag_in = (float*)malloc(length_in*width_in*sizeof(float));
 if (!Imag_in)

 printf("memory request failed\n");
 exit (6);

 Imag_out = (float*)malloc(length_out*width_out*sizeof(float));
 if (!Imag_out)

 printf("memory request failed\n");
 exit (7);

 last_row_in = (float*)malloc((width_in+1)*sizeof(float));
 if (!last_row_in)

 printf("memory request failed\n");
 exit (6);

 last_row_out = (float*)malloc((width_out+1)*sizeof(float));
 if (!last_row_out)

 printf("memory request failed\n");
 exit (7);

 last_clm_in = (float*)malloc((length_in+1)*sizeof(float));
 if (!last_clm_in)

 printf("memory request failed\n");
 exit (6);
last_clm_out = (float *)malloc((length_out+1)*sizeof(float));
if (!last_clm_out)
{
 printf("memory request failed\n");
 exit (7);
}

width_out = width_in*ratio;
length_out = length_in*ratio;

T_flag=1;
L_transform (blk_in, width_in, length_in, T_flag);

for (i=0; i<length_in; i++)
for (j=0; j<width_in; j++)
{
 Real_in[i*width_in+j] = blk_in[i*width_in+j];
 Imag_in[i*width_in+j] = 0;
}

S_flag=1;
spectrum (Real_in, Imag_in, width_in, length_in, S_flag);

UFFIX ------------------Zero Padding------------------*/

Ns = length_in*width_in;
for (i=0; i<length_out; i++)
for (j=0; j<width_out; j++)
{
 Real_out[i*width_out+j] = 0;
 Imag_out[i*width_out+j] = 0;
}

for (i=0; i<length_in/2; i++)
for (j=0; j<width_in/2; j++)
{
 Real_out[i*width_out+j] = Real_in[i*width_in+j]/Ns;
 Imag_out[i*width_out+j] = Imag_in[i*width_in+j]/Ns;
}

for (i=0; i<length_in/2; i++)
for (j=1; j<width_in/2; j++)
{
 Real_out[(i+1)*width_out-width_in/2+j] =
 Real_in[i*width_in+width_in/2+j]/Ns;
 Imag_out[(i+1)*width_out-width_in/2+j] =
 Imag_in[i*width_in+width_in/2+j]/Ns;
}

for (j=0; j<width_in/2; j++)
for (i=1; i<length_in/2; i++)
{
 Real_out[(length_out-length_in/2+i)*width_out+j] =
 Real_in[(length_in/2+i)*width_in+j]/Ns;
 Imag_out[(length_out-length_in/2+i)*width_out+j] =
 Imag_in[(length_in/2+i)*width_in+j]/Ns;
}

for (i=1; i<length_in/2; i++)
for (j=1; j<width_in/2; j++)
{
 Real_out[(length_out-length_in/2+i)*width_out+width_out-width_in/2+j]
 = Real_in[(length_in/2+i)*width_in+width_in/2+j]/Ns;
 Imag_out[(length_out-length_in/2+i)*width_out+width_out-width_in/2+j]
 = Imag_in[(length_in/2+i)*width_in+width_in/2+j]/Ns;
}

for (i=0; i<length_in/2; i++)
{
 Real_out[i*width_out+width_in/2] =
 0.5*Real_in[i*width_in+width_in/2]/Ns;
 Imag_out[i*width_out+width_in/2] =
 0.5*Imag_in[i*width_in+width_in/2]/Ns;
 Real_out[i*width_out+width_out-width_in/2] =
 0.5*Real_in[i*width_in+width_in/2]/Ns;
 Imag_out[i*width_out+width_out-width_in/2] =
 0.5*Imag_in[i*width_in+width_in/2]/Ns;
}

for (i=1; i<length_in/2; i++)
{
 Real_out[(length_out-length_in/2+i)*width_out+width_in/2] =
 0.5*Real_in[(length_in/2+i)*width_in+width_in/2]/Ns;
 Imag_out[(length_out-length_in/2+i)*width_out+width_in/2] =
 0.5*Imag_in[(length_in/2+i)*width_in+width_in/2]/Ns;
}

for (i=1; i<length_in/2; i++)
{
 Real_out[(length_out-length_in/2+i)*width_out+width_in/2] =
 0.5*Real_in[(length_in/2+i)*width_in+width_in/2]/Ns;
 Imag_out[(length_out-length_in/2+i)*width_out+width_in/2] =
 0.5*Imag_in[(length_in/2+i)*width_in+width_in/2]/Ns;
}
0.5*Real_in[(length_in/2+i)*width_in+width_in/2]/Ns;
Imag_out[(length_out-length_in/2+i)*width_out+width_in/2] =
0.5*Imag_in[(length_in/2+i)*width_in+width_in/2]/Ns;
Real_out[(length_out-length_in/2+i)*width_out+width_out-width_in/2] =
0.5*Real_in[(length_in/2+i)*width_in+width_in/2]/Ns;
Imag_out[(length_out-length_in/2+i)*width_out+width_out-width_in/2] =
0.5*Imag_in[(length_in/2+i)*width_in+width_in/2]/Ns;
}

for (j=0; j<width_in/2; j++)
{
 Real_out[(length_in/2)*width_out+j] =
 0.5*Real_in[(length_in/2)*width_in+j]/Ns;
 Imag_out[(length_in/2)*width_out+j] =
 0.5*Imag_in[(length_in/2)*width_in+j]/Ns;
 Real_out[(length_out-length_in/2)*width_out+j] =
 0.5*Real_in[(length_in/2)*width_in+j]/Ns;
 Imag_out[(length_out-length_in/2)*width_out+j] =
 0.5*Imag_in[(length_in/2)*width_in+j]/Ns;
}

for (j=1; j<width_in/2; j++)
{
 Real_out[(length_in/2)*width_out+width_out-width_in/2+j] =
 0.5*Real_in[(length_in/2)*width_in+width_in/2+j]/Ns;
 Imag_out[(length_in/2)*width_out+width_out-width_in/2+j] =
 0.5*Imag_in[(length_in/2)*width_in+width_in/2+j]/Ns;
 Real_out[(length_out-length_in/2)*width_out+width_out-width_in/2+j] =
 0.5*Real_in[(length_in/2)*width_in+width_in/2+j]/Ns;
 Imag_out[(length_out-length_in/2)*width_out+width_out-width_in/2+j] =
 0.5*Imag_in[(length_in/2)*width_in+width_in/2+j]/Ns;
}

Real_out[(length_in/2)*width_out+width_in/2] =
0.25*Real_in[(length_in/2)*width_in+width_in/2]/Ns;
Imag_out[(length_in/2)*width_out+width_in/2] =
0.25*Imag_in[(length_in/2)*width_in+width_in/2]/Ns;
Real_out[(length_in/2)*width_out+width_out-width_in/2] =
0.25*Real_in[(length_in/2)*width_in+width_in/2]/Ns;
Imag_out[(length_in/2)*width_out+width_out-width_in/2] =
0.25*Imag_in[(length_in/2)*width_in+width_in/2]/Ns;
Real_out[(length_out-length_in/2)*width_out+width_in/2] =
0.25*Real_in[(length_in/2)*width_in+width_in/2]/Ns;
Imag_out[(length_out-length_in/2)*width_out+width_in/2] =
0.25*Imag_in[(length_in/2)*width_in+width_in/2]/Ns;
Real_out[(length_out-length_in/2)*width_out+width_out-width_in/2] =
0.25*Real_in[(length_in/2)*width_in+width_in/2]/Ns;
Imag_out[(length_out-length_in/2)*width_out+width_out-width_in/2] =
0.25*Imag_in[(length_in/2)*width_in+width_in/2]/Ns;

/*------------------------ Change back to time domain ------------------------*/

S_flag=-1;
spectrum (Real_out, Imag_out, width_out, length_out, S_flag);

for (i=0; i<length_out; i++)
for (j=0; j<width_out; j++)
 blk_out[i*width_out+j] = Real_out[i*width_out+j];

/*------------------------ Interpolate last column ------------------------*/

for (i=0; i<=length_in; i++)
 last_clm_in[i] = blk_in[(i+1)*(width_in+1)-1];

One_D_interpolate (last_clm_in, last_clm_out, length_in, length_out);

for (i=0; i<=length_out; i++)
 blk_out[(i+1)*(width_out+1)-1] = last_clm_out[i];

/*------------------------ Interpolate last row ------------------------*/

for (i=0; i<=width_in; i++)
 last_row_in[i] = blk_in[length_in*(width_in+1)+i];

One_D_interpolate (last_row_in, last_row_out, width_in, width_out);

for (i=0; i<=width_out; i++)
 blk_out[length_out*(width_out+1)+i] = last_row_out[i];

/*------------------------ Recovery Transform ------------------------*/

92
T_flag=-1;
L_transform (blk_out, width_out, length_out, T_flag);

free (Real_in);
free (Imag_in);
free (Imag_out);
free (Real_out);

return;
} /* end of interpolation */

/*-------------------Linear Transform-------------------*/

void L_transform (blk, width, length, T_flag) /* calling from block */

float *blk;
int width, length;
int T_flag:

{ /* L_transform */
 float p;
 float *p_row, *p_column;
 int i, j;

 p_row = (float *)malloc(length*sizeof(float));
 if (!p_row)
 {
 printf("memory request failed\n");
 exit (15);
 }
 p_column = (float *)malloc(width*sizeof(float));
 if (!p_column)
 { printf("memory request failed\n");
 exit (16);
 }

 p = (blk[0]-blk[length]-blk[length*(width+1)]+blk[(length+1)*(width+1)-1])/
 (width*length); /* constant coefficients */

 p_row[0] = (blk[width]-blk[0])/width; /* calculate coefficients for first row */
APPENDIX

C PROGRAM FOR IMAGE ZOOMING

\[p_{column}(i) = (blk[length\times(width+1)]-blk[0])/length; \]
\hspace{1cm} /* calculate coefficients for first column */

\textbf{if} (T_flag == -1)
\begin{verbatim}
{
 for (i=1; i<width; i++)
 blk[i] = blk[i]-T_flag*p_row[0]*i; /* recovery first row */
 for (i=1; i<length; i++)
 blk[i*(width+1)] = blk[i*(width+1)]-T_flag*p_column[0]*i;
 /* recovery first column */
}
\end{verbatim}

for (i=1; i<width; i++)
\begin{verbatim}
 p_column(i) = (blk[length*(width+1)+i]-blk[i])/length;
 /* calculate coefficients for each column */
\end{verbatim}

for (i=1; i<length; i++)
\begin{verbatim}
 p_row(i) = (blk[(i+1)*(width+1)-1]-blk[i*(width+1)])/width;
 /* calculate coefficients for each row */
\end{verbatim}

for (i=1; i<length; i++)
\begin{verbatim}
 for (j=1; j<width; j++)
 blk[i*(width+1)+j] = blk[i*(width+1)+j]+T_flag*(p_i*p_j-p_row(i)*p_j-p_column(j)*i);
 /* transform or recover each row and column */
\end{verbatim}

\textbf{if} (T_flag == 1)
\begin{verbatim}
{
 for (i=1; i<width; i++)
 blk[i] = blk[i]-T_flag*p_row[0]*i; /* transform first row */
 for (i=1; i<length; i++)
 blk[i*(width+1)] = blk[i*(width+1)]-T_flag*p_column[0]*i;
 /* transform first column */
}
\end{verbatim}

free (p_row);
free (p_column);

\textbf{return};
\hspace{1cm} /* end of linear transform */

94
void spectrum (Real, Imag, width, length, S_flag)

float *Real, *Imag;
int width, length;
int S_flag;
{
 /* spectrum */

 float *row_real, *row_imag;
 float *col_real, *col_imag;
 int length_prime, width_prime;
 int *prime;
 int pm;
 int i, j;

col_real = (float *)malloc((length+1)*sizeof(float));
if (!col_real)
{
 printf("memory request failed\n");
 exit(17);
}
col_imag = (float *)malloc((length+1)*sizeof(float));
if (!col_imag)
{
 printf("memory request failed\n");
 exit(18);
}
row_real = (float *)malloc((width+1)*sizeof(float));
if (!row_real)
{
 printf("memory request failed\n");
 exit(19);
}
row_imag = (float *)malloc((width+1)*sizeof(float));
if (!row_imag)
{
 printf("memory request failed\n");
 exit(20);
}

prime = ±
APPENDIX

C PROGRAM FOR IMAGE ZOOMING

getprime (length, prime);
length_prime = *prime;

getprime (width, prime);
width_prime = *prime;

for (i=0; i<length; i++)
{
 for (j=0; j<width; j++)
 {
 row_imag[j+1] = S_flag*Imag[i*width+j];
 row_real[j+1] = Real[i*width+j];
 }
}

FFT (row_real, row_imag, width, width_prime);

for (j=0; j<width; j++)
{
 Real[i*width+j] = row_real[j+1];
 Imag[i*width+j] = row_imag[j+1];
}

for (j=0; j<width; j++)
{
 for (i=0; i<length; i++)
 {
 col_real[i+1] = Real[i*width+j];
 col_imag[i+1] = Imag[i*width+j];
 }
}

FFT (col_real, col_imag, length, length_prime);

for (i=0; i<length; i++)
{
 Real[i*width+j] = col_real[i+1];
 Imag[i*width+j] = col_imag[i+1];
}

free (row_real);
free (row_imag);
APPENDIX

C PROGRAM FOR IMAGE ZOOMING

free (col_real);
free (col_imag);

return;
} /* end of specrum */

void One_D_interpolate (In, Out, Num_in, Num_out, last_point)
float *In, *Out;
int Num_in, Num_out;
float last_point;

{ /* One_D_interpolation */
float *real_in, *imag_in;
float *real_out, *imag_out;
int row_out, clm_out;
int prime;
int *pm;
float p1, p2;
int i;

real_in = (float *)malloc((Num_in+1)*sizeof(float));
if (!real_in)
{
 printf("memory request failed\n");
 exit (21);
}
imag_in = (float *)malloc((Num_in+1)*sizeof(float));
if (!imag_in)
{
 printf("memory request failed\n");
 exit (22);
}
real_out = (float *)malloc((Num_out+1)*sizeof(float));
if (!real_out)
{
 printf("memory request failed\n");
 exit (12);
}
imag_out = (float *)malloc((Num_out+1)*sizeof(float));
if (!imag_out)
{
APPENDIX C PROGRAM FOR IMAGE ZOOMING

printf("memory request failed\n");
exit (23);
}

pm = ′

getprime (Num_in, pm);
prime = *pm;

p1 = (ln[Num_in]-ln[0])/Num_in;
p2 = (ln[Num_in]-ln[0])/Num_out;

for (i=0; i<=Num_in; i++)
 real_in[i+1] = ln[i]-p1*i;

for (i=0; i<=Num_in; i++)
 imag_in[i] = 0;

FFT(real_in, imag_in, Num_in, prime);

for (i=1; i<=Num_out; i++)
{
 real_out[i] = 0;
 imag_out[i] = 0;
}

for (i=1; i<=Num_in/2; i++)
{
 real_out[i] = real_in[i]/Num_in;
 imag_out[i] = imag_in[i]/Num_in;
}

for (i=2; i<=Num_in/2; i++)
{
 real_out[Num_out-Num_in/2+i] = real_in[Num_in/2+i]/Num_in;
 imag_out[Num_out-Num_in/2+i] = imag_in[Num_in/2+i]/Num_in;
}
real_out[Num_out-Num_in/2+1] = 0.5*real_in[Num_in/2+1]/Num_in;
real_out[Num_in/2+1] = 0.5*real_in[Num_in/2+1]/Num_in;
imag_out[Num_out-Num_in/2+1] = 0.5*imag_in[Num_in/2+1]/Num_in;
imag_out[Num_in/2+1] = 0.5*imag_in[Num_in/2+1]/Num_in;

getprime(Num_out, pm);

98
prime = *pm;

FFT(imag_out, real_out, Num_out, prime);

for (i=0; i<Num_out; i++)
 Out[i] = real_out[i+1]+p2*i;

free (real_in);
free (imag_in);
free (real_out);
free (imag_out);

return;
} /* end of One_D_interpolation */

void getprime (num, prime)

int num;
int *prime;

{ /* getprime */

 *prime = 0;
 while (num != 1)
 {
 num=num/2;
 (*prime)++;
 }
 return;
} /* end of getprime */

void FFT (Re, Im, Nz, M)
float *Re, *Im;
int M, Nz;

{ /* FFT */
 int i, j, k, I0;
 int No1, No2, N4, IS, ID, I1, I2, I3;
 float E, A, A3, R1, R2, S1, S2, S3;
float CC1, CC3, SS1, SS3, XT:

N02=2*Nz:
for (k=1: k<M; k++)
{
 N02 = N02/2:
 N4 = N02/4:
 E = 2*pi/N02:
 A = 0:
 for (j=1: j<=N4; j++)
 {
 A3 = 3*A:
 CC1 = cos(A):
 SS1 = sin(A):
 CC3 = cos(A3):
 SS3 = sin(A3):
 A = j*E:
 IS = j:
 ID = 2*N02:
 while (IS<Nz)
 {
 for (I0=IS; I0<Nz; I0=I0+ID)
 {
 I1 = I0+N4:
 I2 = I1+N4:
 I3 = I2+N4:

 R1 = Re[I0]-Re[I2];
 Re[I0] = Re[I0]+Re[I2];
 R2 = Re[I1]-Re[I3];
 Re[I1] = Re[I1]+Re[I3];
 S1 = Im[I0]-Im[I2];
 Im[I0] = Im[I0]+Im[I2];
 S2 = Im[I1]-Im[I3];
 Im[I1] = Im[I1]+Im[I3];

 S3 = R1-S2;
 R1 = R1+S2;
 S2 = R2-S1;
 R2 = R2+S1;
 }
 }
 }
}
APPENDIX

C PROGRAM FOR IMAGE ZOOMING

Re[12] = R1*CC1-S2*SS1;
Im[12] = -S2*CC1-R1*SS1;
Re[13] = S3*CC3+R2*SS3;
Im[13] = R2*CC3-S3*SS3;
}
IS = 2*ID-No2+j;
ID = 4*ID;
}
{/*

LAST STAGE. LENGTH-2 BUTTERFLY--------*/

IS = 1;
ID = 4;
while (IS<Nz)
{
 for (i0=IS; i0<=Nz; i0=i0+1)
 {
 I1 = i0+1;
 R1 = Re[i0];
 Re[i0] = R1+Re[i1];
 Re[i1] = R1-Re[i1];
 R1 = Im[i0];
 Im[i0] = R1+Im[i1];
 Im[i1] = R1-Im[i1];
 }
 IS = 2*ID-1;
 ID = 4*ID;
}
{/*

BIT REVERSE COUNTER----------------*/

j = 1;
No1 = Nz-1;
for (i=1; i<=No1; i++)
{
 if (i<j)
 {
 XT = Re[j];
 Re[j] = Re[i];

101
Re[i] = XT;
XT = Im[j];
Im[j] = Im[i];
Im[i] = XT;
}
k = Nz/2;
while(k<j)
{
 j = j-k;
 k = k/2;
}
j = j+k;
}
return;
} /* end of FFT */
VITA AUCTORIS

NAME: Zhiwei (Jerry) Wang

PLACE OF BIRTH: P.R. China

YEAR OF BIRTH: 1966

EDUCATION: B.Eng.
Department of Computer and Telecommunications
Beijing University of Posts and Telecommunications
Beijing, P.R. China

M.A.Sc.
Department of Electrical Engineering
University of Windsor
Windsor, Ontario
Canada