1996

Experimental acoustic model for intake manifold testing.

Colin James. Novak

University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.
NOTICE

The quality of this microform is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and subsequent amendments.

AVIS

La qualité de cette microforme dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

La reproduction, même partielle, de cette microforme est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30, et ses amendements subséquents.
EXPERIMENTAL ACOUSTIC MODEL FOR INTAKE MANIFOLD TESTING

by

Colin Novak

A Thesis submitted to the Faculty of Graduate Studies and Research through the Department of Mechanical Engineering in partial Fulfilment of the requirements for the Degree of Master of Applied Science at the University of Windsor

Windsor, Ontario, Canada

1996
L’auteur a accordé une licence irrévocable et non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de sa thèse de quelque manière et sous quelque forme que ce soit pour mettre des exemplaires de cette thèse à la disposition des personnes intéressées.

L’auteur conserve la propriété du droit d’auteur qui protège sa thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

THE HUMANITIES AND SOCIAL SCIENCES

COMMUNICATIONS AND THE ARTS
- Architecture: 0729
- Art History: 0737
- Chinese Language and Literature: 0738
- Dance: 0736
- Fine Arts: 0735
- Information Sciences: 0723
- Journalism: 0391
- Library Science: 0599
- Mass Communications: 0708
- Music: 0413
- Speech Communication: 0459
- Theatre: 0465

EDUCATION
- General: 0515
- Administration: 0514
- Adult Education: 0516
- Agricultural: 0517
- Art: 0270
- Bilingual Education: 0282
- Business: 0688
- Community College: 0275
- Currents in Instruction: 0277
- Early Childhood: 0516
- Elementary Education: 0524
- Finance: 0277
- Guidance and Counselling: 0519
- Health: 0640
- Higher Education: 0742
- History of Education: 0676
- Home Economics: 0676
- Industrial Education: 0521
- Language and Literature: 0727
- Mathematics: 0280
- Music: 0522
- Philosophy: 0579
- Physical Education: 0533
- Psychology: 0524
- Reading: 0533
- Religious Studies: 0527
- Secondary Education: 0532
- Social Sciences: 0534
- Sociology: 0340
- Special Education: 0529
- Teacher Training: 0570
- Technology: 0710
- Tests and Measurements: 0286
- Vocational: 0747

LANGUAGE, LITERATURE AND LINGUISTICS
- Linguistics: 0401
- Classical: 0294
- Germanic: 0311
- Latin American: 0312
- Romance: 0313
- Slavic and East European: 0314

PHILOSOPHY, RELIGION AND THEOLOGY
- Philosophy: 0422
- Religion: 0423
- Biblical Studies: 0318
- Clergy: 0319
- History of Philosophy: 0320
- Theology: 0469

SOCIAL SCIENCES
- American Studies: 0323
- Anthropology: 0234
- Cultural: 0226
- Physical: 0327
- Business Administration: 0310
- Accounting: 0222
- Banking: 0702
- Management: 0454
- Marketing: 0385
- Canadian Studies: 0385
- Economics: 0391
- American: 0316
- Canadian: 0352
- Canadian (French): 0353
- English: 0310
- Geographical: 0311
- Latin American: 0312
- Middle Eastern: 0319
- Russian: 0313
- Slavic and East European: 0314

THE SCIENCES AND ENGINEERING

BIOLOGICAL SCIENCES
- Agriculture: 0473
- Animal Culture and Husbandry: 0475
- Animal Pathology: 0476
- Food Science and Food Technology: 0476
- Forestry and Wildlife: 0359
- Plant Culture: 0479
- Plant Pathology: 0480
- Plant Physiology: 0817
- Range Management: 0377
- Wood Technology: 0746

Biology
- General: 0306
- Anatomy: 0287
- Biochemistry: 0308
- Botany: 0309
- Cell: 0379
- Ecology: 0293
- Embryology: 0353
- Genetics: 0356
- Genetics and Molecular Biology: 0410
- Molecular Biology: 0307
- Parasitology: 0317
- Oceanography: 0416
- Physiology: 0433
- Bacteriology: 0301
- Veterinary Science: 0776
- Zoology: 0472

BIOCHEMISTRY
- General: 0786
- Medical: 0760

EARTH SCIENCES
- Geochemistry: 0426
- Geochronology: 0994
- Geology: 0380
- Hydrology: 0888
- Mineralogy: 0411
- Palaeontology: 0426
- Palaeoecology: 0418
- Geophysics: 0427
- Physical Geographical: 0518
- Physical Geography: 0415

HEALTH AND ENVIRONMENTAL SCIENCES
- Environmental Sciences: 0768
- Health Sciences: 0654
- Audiology: 0300
- Chemotherapy: 0655
- Dentistry: 0657
- Education: 0350
- Human Development: 0678
- Immunology: 0992
- Anatomy and Surgery: 0364
- Mental Health: 0347
- Nursing: 0599
- Obstetrics and Gynecology: 0380
- Occupational Health: 0654
- Ophthalmology: 0381
- Pathology: 0651
- Phycology: 0619
- Pharmacy: 0672
- Physical Therapy: 0573
- Public Health: 0374
- Radiology: 0675

PHYSICAL SCIENCES
- Pure Sciences: 0768
- Chemistry: 0405
- Physics: 0605
- Acoustics: 0696
- Astronomy: 0666
- Astrophysics: 0666
- Atmospheric Science: 0668
- Atomic Energy: 0768
- Electronics and Electrical Engineering: 0607
- Elementary Particles and Energy: 0678
- Fluid and Plasma Dynamics: 0759
- Molecular Physics: 0659
- Nuclear Physics: 0610
- Optics: 0672
- Radiation: 0676
- Radioactivity: 0619
- Statistics: 0463

APPLIED SCIENCES
- Applied Mechanics: 0346
- Computer Science: 0984

ENGINEERING
- General: 0579
- Agricultural: 0539
- Aircraft: 0540
- Biomedical: 0541
- Chemical: 0542
- Civil: 0543
- Electrical and Electronic: 0544
- Heat and Thermodynamics: 0548
- Hydrodynamics: 0545
- Industrial: 0546
- Marine: 0547
- Materials Science: 0594
- Mechanical: 0548
- Metallurgy: 0763
- Mining: 0551
- Nuclear: 0552
- Packaging: 0549
- Petroleum: 0765
- Sanitary and Municipal: 0554
- System Science: 0790
- Textile Technology: 0795
- Textile Technology: 0994

PSYCHOLOGY
- General: 0621
- Behavioral: 0314
- Clinical: 0652
- Developmental: 0650
- Experimental: 0643
- Sport: 0644
- Personality: 0625
- Physiological: 0549
- Psychological: 0349
- Psychometrics: 0632
- Social: 0451
ABSTRACT

This study was undertaken to see if the pressure pulses which propagate through an automobile induction manifold could be simulated using a computer generated signal fed into amplified speakers attached to a bench mounted intake manifold. To verify the legitimacy of the simulated pressure pulses, the noise emitted from the throttle body was measured and compared to the results of the theoretical Ricardo Wave Model and to similar measurements performed on a operating engine.

The pressure signal was generated using a computer program created with National Instruments’ LabView software and a digital to analogue acquisition card mounted in a personal computer. The input data to this program was taken from the Ricardo Wave Model at an engine RPM of 2400. The noise measured at the throttle body was digitized using a second acquisition card and analyzed by another program, also created with LabView. The analysis program determined the time and frequency domain content of the measured signal for both the simulation model and the actual engine.

It was found that the two measured time domain signals compared favourably to the predicted theoretical time domain curve. The small differences in the experimentally generated time domain signal were accounted to non-linearities in the performance of the speakers used to generate the pressure pulses. The calculated mean and standard deviations for the two measured time signals also compared favourably which was further
reinforced by the determination of the correlation coefficient and covariance of the two signals.

The Fast Fourier Transform (FFT) analysis provided analogous results between the predicted theoretical and two measured signals with a fundamental frequency at approximately 80 Hz and second and third harmonics occurring at 160 Hz and 240 Hz respectively.

While the pressure pulses produced by the experimental simulation model at 2400 RPM closely paralleled the results produced by the theoretical model and actual engine, it is recommended that additional tests be performed at different RPMs. This would, however, require speakers better capable of producing lower frequencies and a faster computer in order to simultaneously generate the pressure signal and perform all analysis in real time.
Dedicated to
Alecia and furry family members
ACKNOWLEDGEMENTS

Sincere gratitude is extended to my supervisor and friend, Dr. R. G. Gaspar, for his kindness, guidance and efforts for ensuring that this research project was possible. Thanks is also extended to my committee members, Dr. Z. Reif and Dr. R. Du for all their assistance.

Special recognition is given to Mr. P. Daly of Siemens Automotive for providing both the opportunity and financial assistance necessary to have made this project feasible.

Most importantly, my warmest acknowledgements are directed to Alecia and other family members and friends who persevered and provided encouragement throughout the period of this study.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>xiv</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. LITERATURE SURVEY</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Experimental Testing</td>
<td>6</td>
</tr>
<tr>
<td>2.1.1 Internal Effects</td>
<td>7</td>
</tr>
<tr>
<td>2.1.2 Surface Effects</td>
<td>11</td>
</tr>
<tr>
<td>2.2 Theoretical Modelling</td>
<td>14</td>
</tr>
<tr>
<td>2.2.1 Internal Effects</td>
<td>14</td>
</tr>
<tr>
<td>2.2.2 Surface Effects</td>
<td>18</td>
</tr>
<tr>
<td>III. EXPERIMENTAL DETAILS</td>
<td>19</td>
</tr>
<tr>
<td>3.1 Equipment and Instrumentation</td>
<td>19</td>
</tr>
<tr>
<td>3.1.1 Equipment used to Generate Waveform</td>
<td>19</td>
</tr>
<tr>
<td>3.1.2 Simulation Components</td>
<td>20</td>
</tr>
<tr>
<td>3.1.3 Acquisition and Analysis Components</td>
<td>21</td>
</tr>
<tr>
<td>3.1.4 Acquisition Components for Engine Tests</td>
<td>24</td>
</tr>
<tr>
<td>3.2 Experimental Design and Preparation</td>
<td>27</td>
</tr>
<tr>
<td>3.2.1 Experimental Simulation Tests</td>
<td>27</td>
</tr>
<tr>
<td>3.2.1.1 Software and Hardware For Simulation Data</td>
<td>29</td>
</tr>
<tr>
<td>3.2.1.2 Software and Hardware Used to Analyze the Data</td>
<td>32</td>
</tr>
<tr>
<td>3.2.2 Operating Engine Tests</td>
<td>34</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Inlet Noise Oscillogram</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Schematic of Test Equipment used by Peat</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Pulsation Simulator</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Volumetric Efficiency Obtained from the Pulsation Simulator and the Actual Engine</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>Intake Noise Characteristics Obtained from the Pulsation Simulator and the Actual Engine</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>Flow Chart Illustrating Optimization Process</td>
<td>15</td>
</tr>
<tr>
<td>2.6</td>
<td>Transform Function of Original and Optimized Manifolds</td>
<td>16</td>
</tr>
<tr>
<td>2.7</td>
<td>Overall Noise Recorded from an Aluminum, an Un-Optimized, and an Optimized Manifold</td>
<td>16</td>
</tr>
<tr>
<td>2.8</td>
<td>Measure and Predicted Insertion Loss</td>
<td>17</td>
</tr>
<tr>
<td>3.1</td>
<td>Manifold with Insulating Enclosure</td>
<td>22</td>
</tr>
<tr>
<td>3.2</td>
<td>Manifold without Insulating Enclosure</td>
<td>23</td>
</tr>
<tr>
<td>3.3</td>
<td>Typical Time Domain Signal</td>
<td>25</td>
</tr>
<tr>
<td>3.4</td>
<td>Typical Frequency Domain Signal</td>
<td>25</td>
</tr>
<tr>
<td>3.5</td>
<td>Equipment Used to Record Engine Data</td>
<td>26</td>
</tr>
<tr>
<td>3.6</td>
<td>Schematic of Simulation Experiment</td>
<td>28</td>
</tr>
<tr>
<td>3.7</td>
<td>Source Code from Main Program</td>
<td>30</td>
</tr>
<tr>
<td>3.8</td>
<td>User Interface Display for Main Program</td>
<td>31</td>
</tr>
<tr>
<td>3.9</td>
<td>Source Code for Analysis Program</td>
<td>33</td>
</tr>
<tr>
<td>3.10</td>
<td>Vehicle Mounted on Dynamometer</td>
<td>35</td>
</tr>
<tr>
<td>3.11</td>
<td>Dynamometer Control Room</td>
<td>36</td>
</tr>
<tr>
<td>3.12</td>
<td>Microphone Position</td>
<td>37</td>
</tr>
<tr>
<td>4.1</td>
<td>Sampling Process of Analog Signal</td>
<td>42</td>
</tr>
<tr>
<td>4.2</td>
<td>Calibration Signal For Simulation Measurements</td>
<td>44</td>
</tr>
<tr>
<td>4.3</td>
<td>Deterministic Data</td>
<td>46</td>
</tr>
<tr>
<td>4.4</td>
<td>Time Domain Output For Neon Engine</td>
<td>47</td>
</tr>
<tr>
<td>4.5</td>
<td>Frequency Domain Output For Neon Engine</td>
<td>51</td>
</tr>
</tbody>
</table>
Figure 4.6: Illustration of Picket Fence Effect ... 53
Figure 4.7: Effect of Averaging on a Stationary Random Signal 54
Figure 5.1: Theoretical Input Pressure Wave ... 57
Figure 5.2: Experimental Input Pressure Wave 58
Figure 5.3: Experimental Input Wave for Four Cylinders 59
Figure 5.4: Time Domain Analysis for Theoretical Signal 61
Figure 5.5: Time Domain Analysis for Actual Engine Signal 62
Figure 5.6: Time Domain Analysis for Experimental Signal 64
Figure 5.7: Theoretical Frequency Response from Ricardo Wave 67
Figure 5.8: Frequency Response for Actual Neon Engine 69
Figure 5.9: Frequency Response for Simulation Model 70
LIST OF TABLES

<table>
<thead>
<tr>
<th>NOMENCLATURE</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>Table 1: Mean and Standard Deviation for Modelled and Actual Manifolds</td>
<td>65</td>
</tr>
<tr>
<td>Table 2: Correlation Matrix</td>
<td>65</td>
</tr>
<tr>
<td>Table 3: Covariance Matrix</td>
<td>65</td>
</tr>
</tbody>
</table>

xiii
NOMENCLATURE

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/D</td>
<td>analogue to digital</td>
</tr>
<tr>
<td>BDC</td>
<td>bottom dead centre</td>
</tr>
<tr>
<td>DAT</td>
<td>digital audio tape</td>
</tr>
<tr>
<td>dB</td>
<td>decibels</td>
</tr>
<tr>
<td>D/A</td>
<td>digital to analogue</td>
</tr>
<tr>
<td>DC</td>
<td>direct current</td>
</tr>
<tr>
<td>DFT</td>
<td>discrete fourier transform</td>
</tr>
<tr>
<td>FEM</td>
<td>finite element modelling</td>
</tr>
<tr>
<td>FFT</td>
<td>fast fourier transform</td>
</tr>
<tr>
<td>Hz</td>
<td>hertz (cycles per second)</td>
</tr>
<tr>
<td>P_{ref}</td>
<td>reference pressure</td>
</tr>
<tr>
<td>P_{sys}</td>
<td>system pressure</td>
</tr>
<tr>
<td>RMS</td>
<td>root mean square</td>
</tr>
<tr>
<td>RPM</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>TDA</td>
<td>time domain averaging</td>
</tr>
<tr>
<td>TDC</td>
<td>top dead centre</td>
</tr>
<tr>
<td>V_{ref}</td>
<td>reference voltage</td>
</tr>
<tr>
<td>V_{sys}</td>
<td>system voltage</td>
</tr>
<tr>
<td>μ</td>
<td>mean</td>
</tr>
<tr>
<td>ρ</td>
<td>correlation coefficient</td>
</tr>
<tr>
<td>σ</td>
<td>standard deviation</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

There are a large number of moving parts and associated processes involved with the operation of a modern day internal combustion powered vehicle. Given such conditions, one should not be surprised at the amount of noise that can be heard within the passenger compartment of the vehicle. Some of the causes of this noise include the combustion process of the engine, exterior wind noise, particularly at high speeds, tire noise as well as exhaust and intake noise. Many improvements have been made in recent years with stiffer and better acoustically insulated car bodies, more aerodynamic body designs, better tire technology and quieter muffler systems. While these efforts have improved the overall sound levels within the passenger compartment, it has made some of the other potential noise sources, induction noise in particular, more noticeable. This has resulted in greater efforts being taken in the study of induction noise and what may be done to lessen its impact on the overall comfort of the consumer.

The advent of smaller vehicles with less space under the hood coupled with the increased number of engine components, largely due to emissions controls, impose significant limitations on design engineers in the area of noise control. As a result, it is not always possible to design an induction manifold to be as quiet as possible while maintaining minimum flow requirement objectives as well as space and weight allocation under the hood. In answer to this, engineers may chose to ‘tune’ the manifold as opposed to reducing its overall sound level. All sound levels can be measured
empirically by engineers. Customers, however, may be more concerned with the quality, and not the quantity of sound, within reason. Therefore, if the attenuation efforts have been maximized to their potential, efforts can then be made to the production of a more pleasing sound [14]. This is illustrated by the positive influence on the car buyer by the solid thud of a car door or the muscular purr of a sports car at idle.

In order to achieve the above, efforts must be made in developing new research and design methods for induction systems. This begins with an understanding of what causes inlet noise.

Inlet noise is caused by a number of mechanisms. These mechanisms include the influence on the intake air by the operation of the intake valves, the physical parameters of the manifold ducting and any other attached accessories. Inlet noise is the audible result of the oscillation of intake air at the natural frequency of the inlet passage column. This oscillation is caused by a sharp pulse when the intake valve opens to the cylinder which has a pressure greater than atmospheric, thus resulting in a pulse. At the same time, a high frequency noise is generated at approximately 1000 Hz by the intake air travelling across the valve seat at a high velocity. These noise impulses, however, are usually reduced significantly to 80 - 150 Hz in the engine firing range due to the influence of the manifold ducting, silencers and air cleaner. A second oscillation occurs when the intake valve closes [13]. These two oscillations are illustrated in Figure 1.1.

The objective of this thesis was to develop an experimental model that would simulate the pressure pulses which propagate through a production intake manifold under
operating conditions. Further, the experimental model had to be flexible enough in design so it could be easily adapted to any particular intake manifold. To achieve this, all physical parameters imposed on the experimental model are controlled by a personal computer taking any information specific to a given manifold from a spreadsheet data file. The intent of this thesis was not to eliminate the causes of intake noise or to conceptionalize a new manifold design capable of massive attenuation while maintaining required flow conditions.

The primary reason for developing this benchtop device and simulator model was to develop a tool which would facilitate future research in areas that are currently difficult or impossible to achieve with other experimental or numerical techniques. Examples of such research would be the effects of fuel wall wetting within the manifold or perhaps the potential interactions caused by these pressure pulses and the future use of different alternative fuels.
In order to simulate the pressure pulses, a known quantity of manifold data was required to mimic as input data into the experiment. The manifold data is also required to compare the results, or output information from the experimental model. The Ricardo Wave Model, a theoretical computer model used by Siemens Automotive, was chosen to serve this purpose. The Ricardo program provided pressure data for the manifold runners which was to be simulated in the experiment. The Ricardo program also provided predicted pressure data at the throttle body which could be compared to the measured data produced by the experimental model. Additionally, measurements at the throttle body of an operating engine were made and compared to the results produced by the experimental model to further reinforce the validity of this modelling technique.
II. LITERATURE SURVEY

The stated focus of this thesis is to simulate the pressure pulses in an intake manifold caused by the valve action of the engine through the use of analog data generated by a computer. The following literature survey was conducted to determine if any such or similar work has already been done by others. A thorough search was unable to reveal any literature which indicates that this specific project has been carried out in the past. However, it is apparent from the review of related literature that much research has been done in the study of induction noise. A review of these studies is essential to accumulate both an understanding of the fundamental analysis tools available as well as to gain a better comprehension of what can be achieved from continuing this type of research.

The manner in which intake manifold noise has been studied can be broken down into two primary categories, being Experimental Testing and Theoretical or Numerical Modelling. Experimental testing usually involves the testing of either a complete engine and manifold setup with actual operating conditions or a bench test with simulated operating conditions. Theoretical modelling involves either the implementation of generally accepted mathematical representations with simplifying assumptions and the use of computer programs or the application of finite element modelling (FEM).

The above primary categories can be further reduced down to two subcategories, being Internal and Surface Effects. Internal effects involve the study of the acoustical and fluidic characteristics inside the structure of the manifold and what can be done to
manipulate these in order to achieve a desired outcome. The study of the surface effects of the intake manifold involve the characterization of both acoustical and vibratory energy and how these vary given different manifold design conditions. These topics will be covered in the following sections in order to familiarize the reader with the different approaches taken to date.

2.1 Experimental Testing

Many believe that the experimental approach to manifold testing is the most efficient means to determine the actual characteristics of a system. Schellino [21] stated that he preferred experimental testing of intake manifolds over any numerical methods available. While this may be so in some circumstances, there is just as strong an argument on the numerical methods side that will be explored in a later section.

As already mentioned, experimental testing of intake manifolds may be done on either an operating engine or on a simulating test bench. The method to be used is largely dependant on the measured variables. If for instance, it is important to maintain the volumetric efficiency in the manifold while evaluating acoustical performance, the experiment would most likely be executed on an operating engine. However, if it were critical that all other acoustical influences be eliminated, testing would most likely be done under the controlled conditions of a bench test often in an anechoic chamber.

Much experimental work has concentrated on either the internal acoustical effects of the intake manifold or the exterior or surface effects. Internal effects deal with optimizing the acoustical design of the manifold, often through the implementation of a
Helmholtz resonator. Surface noise studies, which also include the area of vibrations, focus on the stiffness of the manifold structure and how this can be optimized. Each of these areas are explored in greater detail below.

2.1.1 Internal Effects

Through the opening and closing action of the intake valves in an engine head, pressure pulses are produced which propagate through the intake manifold. As a result of these pressure pulses, or air column oscillations, intake noise is created. This intake noise may be amplified by air column resonance or it may be dampened through the influence of the air cleaner [14]. As a result, both the magnitude and characteristics of intake noise can vary significantly from one engine model to another. The goal in studying these internal interactions in the intake manifold are to better understand how different design criteria influence the air column resonances or intake noise.

Jon W. Parsons [16] and K.S. Peat et al. [18] used an experimental test bench to investigate a 400 Hz boom in the induction system of a Jaguar V12 engine operating at 4000 RPM. The schematic layout of the test is illustrate in Figure 2.1. The noise source used to excite the system was an electromagnetic sound source of high acoustic impedance similar to a conventional pressure unit used to drive horn loudspeakers. A microphone located at the output of the manifold picked up the resulting noise and sent this information to the analyzer. Separate measurements were made for both the test system and a known reference system thus allowing determination of an overall insertion loss between the two systems. This was first done by determining the transfer function
between the microphone noise and the voltage at the noise source for both the test and reference systems. The insertion loss was then calculated by the division of the two transfer functions as represented by the equation below, where \(P \) is the sound pressure level at the microphone and \(V \) is the sound source input voltage.

\[
\text{Insertion Loss} = \left(\frac{P_{r}}{V_{r}} \right) \times \left(\frac{V_{s}}{P_{s}} \right)
\]

Once analyzed, it became apparent that the problems at 400 Hz were due to the length and volume of the ductwork and air cleaner box respectively. However, since
these parameters were fixed, a remedy was found by installing tuning holes in the inlet venturi. The effectiveness of the solution was reinforced by repeating the experiment.

Schellino et al. [21] set up an experimental setup to verify the results of a numerical FEM analysis used to determine the acoustic modes of the fluid inside the manifold. The experimental setup included a loudspeaker and reference microphone located at the manifold entrance as well as a number of measuring microphones used to measure the internal sound pressure along the centreline of the manifold duct. The loudspeaker produced a sine-sweep signal in the 300 - 500 Hz frequency range. The resultant acoustic measurements were in the form of transfer functions between the pressure levels measured by the internal microphones and that of the exciter measured by the reference microphone. It was determined that the measurements had close correlation to the numerical results.

Payri et al. [17] employed the three microphone method which allowed calculation of the frequency spectrum at the inlet and outlet of the manifold. The excitation source was described only as a pulsating flow test rig used to generate pressure wave amplitudes and mean flow in the same order of magnitude as the actual engine. The goal once again was to verify results of an analytical model to experimental results.

Nishio et al. [14] of Japan was concerned that the study of induction noise was usually an afterthought in the design stages of the intake manifold, with volumetric efficiency always given the priority. To eliminate this, Nishio developed a test system called the Pulsation Simulator which would facilitate the study of air intake noise reduction at an early stage and in parallel with the study of volumetric efficiency.
The system as illustrated in Figure 2.2 reproduced intake pulsations and flow precisely in the actual engine using its cylinder head.

The pressure pulses were created by the action of the intake valves which was operated by a variable speed electric motor. Negative pressure, to reproduce the air intake inertia effects, is created by a vacuum pump at the exhaust manifold. Air flow rates for the system were controlled and measured by critical flow, or sonic nozzles. Noise measurements were made with a microphone located at the inlet of the air intake system.

Figure 2.2: Pulsation Simulator [14]
When compared to measurements of an actual engine, it was shown that both volumetric efficiency and sound pressure levels produced by the Pulsation Simulator had good correlation as illustrated in Figures 2.3 and 2.4.

Using this simulator, Nishio [14] demonstrated that optimization of resonator design, usually conducted at the final stages of engine development, can be conducted at an earlier stage in parallel to volumetric efficiency tests.

2.1.2 Surface Effects

The need to study noise emissions from the surface or shell of the intake manifold is the manifestation of thinner and or alternative materials being employed in the manufacturing of automotive parts. While lighter gauge metals and plastic materials are cheaper in material and manufacturing costs and more importantly result in a lower overall weight of the vehicle, they may impose acoustical problems associated with their lower density. The general solution in the past was to replace the part with another of higher density so as to control transmission loss. This however, results in the reduction of design flexibility, possible part integrity and potential weight and cost advantages [5].

W. W. Kraft et al. [5] of BASF used noise intensity measurements in addition to experimental modal analysis and holographic analysis to compare the noise emissions from both a plastic and an aluminum manifold. The aluminum manifold had twice the thickness of the plastic one which meant it was also much heavier. The tests were repeated with a modified plastic manifold which had been stiffened with the addition of
Figure 2.3: Volumetric Efficiency Obtained from the Pulsation Simulator and the Actual Engine [14]
Figure 2.4: Intake Noise Characteristics Obtained from the Pulsation Simulator and the Actual Engine [14]
ribs and modifications to wall thickness at specific locations. Through this iterative optimization process, the resulting plastic manifold had a significant reduction in thickness. A flow chart illustrating the process taken by Kraft [5] is reproduced in Figure 2.5. The tests were then repeated by measuring vibration as shown in Figure 2.6. It was also shown that the overall noise levels emitted from the modified manifold compared closely to the much heavier aluminum manifold as illustrated in Figure 2.7.

2.2 Theoretical Modelling

In most cases, experimental testing will provide results as close to actual conditions as possible. This is due to the elimination of many simplifying assumptions related to both the physical characteristics and internal flow conditions used in analytical methods. In some cases, however, theoretical modelling has proven to be a useful tool for manifold design. The fundamental obstacle to overcome in theoretical modelling is to ensure that any influences from the engine and other individual elements in the system are understood and accounted for. On the other hand, “the primary benefit is seen to be in the reduction of development cycle times and cost of prototype systems” [16].

2.2.1 Internal Effects

Parsons [16] and Peat [18] used a modelling software package, LAMPS, developed in part by Loughborough University, to determine the insertion loss in induction manifolds. Using an input data file containing the geometry, temperature and gas flow
Figure 2.5: Flow Chart Illustrating Optimization Process [5]
Figure 2.6: Transform Function of Original and Optimized Manifolds [5]

Figure 2.7: Overall Noise Recorded from an Aluminum, an Un-Optimized, and an Optimized Manifold [5]
characteristics of the system under consideration, the software package utilizes a transfer matrix approach assuming a linear one dimensional theory to model the acoustics through the manifold. It was proven that within the frequency range of concern, the computer model provided good correlation with the experimental results as described in section 2.1.2 of this thesis. This is shown in Figure 2.8 which illustrates the theoretical and experimental results of a Jaguar V12 manifold along with identifiers of any significant variations.

![Graph showing measured and predicted insertion loss](image)

Figure 2.8: Measure and Predicted Insertion Loss [16]
Schellino [21] employed two numerical models, both built within the Sysnoise software package. The first one described later on in section 2.2.2 employs a surface analysis. The second model, using FEM, "was used to determine the acoustic modes of the fluid located inside the intake duct" [21]. The model contained a volumetric mesh to represent the air volume in the duct where the walls were assumed rigid. The duct wall was represented by a zero velocity boundary condition. The open ends of the duct were modelled with a zero pressure boundary condition. Using this approach, the first 20 acoustic modes were determined and were found to be similar to those found in experimental tests as described in section 2.1.1.

2.2.2 Surface Effects

Surface noise, which as implied earlier, is largely dependant on structure stiffness, may also be modelled by numerical methods. The most popular of these would be finite element analysis.

Schellino [21] was able to predict the coupled structural-acoustic frequency response of a manifold using a finite element/acoustic boundary element method. This model employed a surface mesh to represent the shell of the manifold which allowed the calculation of the frequency response function for the manifold. When compared to experimental results, the numerical simulation was very close with the presence of some differences being explained by the fact that no structural damping was included in the numerical calculations.
III. EXPERIMENTAL DETAILS

As in any experiment, it is important that the data collected be meaningful, repeatable and in conformance to any physical and theoretical restrictions imposed by the measurement systems. In order to ensure this, an understanding of the experimental procedure and equipment used is paramount. The following sections will describe the equipment and instrumentation selected, the design and preparation of the experiment and a description of the tests done on the system.

3.1 Equipment and Instrumentation

The equipment and instrumentation used to facilitate the experimental procedure can be classified into four separate areas being:

1. Equipment and instrumentation used to generate the synthesized waveform.

2. Experimental air intake manifold model and associated equipment and instrumentation used to simulate operating conditions.

3. Equipment and instrumentation used for acquiring and analyzing the modelled data.

4. Equipment and instrumentation used to acquire induction noise from the operating Neon engine.

3.1.1 Equipment used to Generate Waveform

The primary focus of the experiment is to simulate the pressure pulses within the intake manifold with some sort of pressure induction devise. However, irrespective of
what this device may be, focus must first be on the generation of a signal to excite such a device. A National Instruments AT-AO-10 high performance 12-bit ten channel digital to analog output board was chosen to serve this purpose. This board was housed in a 486 DX4-100 computer. Although only four channels were necessary to fulfill the experimental requirements on the manifold under study, it was desired to have the capability to output to a minimum of eight channels to accommodate the potential testing of different manifolds. A more thorough description of the technical characteristics of the analog output board can be found in Appendix A and in the references [10][11][12].

A computer program was created to control the D/A board using National Instruments’ LabView software package. This graphical based programming package was used to synthesize communications between the user, a Quattro spreadsheet containing the raw waveform data and the D/A board. A more detailed description of the program created will be presented later in this chapter.

3.1.2 Simulation Components

Once the analog data had been generated and outputted from the computer it was sent to the test apparatus where the pressure pulses were simulated inside the intake manifold. This portion of the experiment consisted of two 500 watt MEI amplifiers used to boost the analog signal, four 4 inch speakers were used to transduce the signal into the manifold runners and the intake manifold being studied. The manifold used was a polypropylene constructed manifold used on the single cam Chrysler Neon engine. This manifold was chosen for its relatively simple geometry and for its availability of noise
and waveform data. An aluminum block was also constructed to act as an interface between the round speakers and the oval manifold runner openings. The block also incorporated an insulating enclosure around each of the four speakers so as to eliminate any acoustical influences between the speakers. Figures 3.1 and 3.2 illustrate the aluminum block mounted to the manifold with and without the insulating enclosure respectively.

3.1.3 Acquisition and Analysis Components

The equipment and instrumentation required for data acquisition and analysis include a microphone, an analog to digital input board and analysis software.

A Bruel and Kjaer type 4134 condenser microphone with a useful range of 20 Hz to 20,000 Hz was used to pickup the manifold signal at the throttle body of the intake manifold. The Electronic Instrument Master Catalogue by Bruel & Kjaer [1] can be examined for a more technical description of the microphone. The microphone was mounted using a clamping device which rigidly held the microphone at a selected position relative to the throttle body opening. The microphone signal was amplified with a Bruel and Kjaer Type 2606 measuring amplifier prior to being sent to the computer. This amplifier is further described in the B&K reference [1].

A National Instruments AT-A2150 dynamic signal acquisition board was used to digitize the microphone's analog signal prior to processing by the analyzer software. The AT-A2150 is capable of digitizing a signal with a bandwidth from DC to 20 kHz and was designed for applications including sonar, shock and vibration, noise audio, speech and
Figure 3.1: Manifold with Insulating Enclosure
Figure 3.2: Manifold without Insulating Enclosure
acoustic testing and analysis. A more thorough description of the technical characteristics of the analog to digital input board can be found in the Appendix A or in the references [10][11][12].

Once digitized, the microphone signal was analyzed using a modified Dynamic Signal Analyzer software program created using National Instruments’ LabView programming software. This analyzer is capable of displaying the signal in both the time and frequency domain.

A typical time domain signal is illustrated in Figure 3.3. This complete cycle shows the amplitude of the microphone’s voltage signal over the time period required to complete one cycle.

The signal was also analyzed in the frequency domain as illustrated in Figure 3.4. The software utilizes the Fast Fourier Transform (FFT) algorithm to convert the input time domain signal into the frequency domain. The analyzer is capable of applying a number of outputs including amplitude spectrum, power and cross-power spectrum as well as impulse response. Additionally, different smoothing windows can be applied depending on the most appropriate application. All tests were done at a sampling rate of 612 with 25 averages taken. This was determined to be the most appropriate number resulting in a steady state output.

3.1.4 Acquisition Components for Engine Tests

Figure 3.5 illustrates the equipment employed to record the induction noise data produced by an operating Chrysler Neon. A Bruel & Kjaer type 4134 condenser
Figure 3.3: Typical Time Domain Signal

Figure 3.4: Typical Frequency Domain Signal
Figure 3.5: Equipment Used to Record Engine Data
microphone mounted on a B&K Type 2231 Sound Level Meter equipped with a BZ7101 Statistical Analyzer Application Module was used to record the produced intake noise at the throttle body. This signal was then stored on a Sony Digital Audio Tape recorder for future playback and analysis. All processing and analysis of the stored information was done with the National Instruments A/D board and analysis software as described previously in section 3.1.3.

3.2 Experimental Design and Preparation

In order to ensure the integrity and repeatability of the data collected, care must be taken in the design of the experimental setup. The following section describes how the different components mentioned earlier are combined to achieve the overall design configuration used to produce and collect reliable data.

3.2.1 Experimental Simulation Tests

The schematic diagram in Figure 3.6 illustrates the flow and interaction of the various components used in the experimental simulation and measuring tests. The fundamental components used to simulate the desired effects include the computer program and hardware used to produce the simulation data, the amplification device and speakers used to produce the pressure pulses along with the manifold and supporting structure under study. The fundamental components used to measure and analyze the data include the microphone and signal amplifier and the computer program and supporting hardware required for analysis.
Figure 3.6: Schematic of Simulation Experiment
3.2.1.1 Software and Hardware For Simulation Data

As mention earlier, the pressure pulses generated in the manifold runners are derived from digital information acquired from the Ricardo Wave Model, a theoretical simulation model used by industry. A listing of this data has been included in Appendix B. This sample represents the pressure amplitude at the four runner openings versus the piston’s crank angle at an engine operating speed of 2400 RPM.

In this simulation, the data, stored in a Quattro spreadsheet, is retrieved by a computer program which interfaces with the AT-AO-10 digital to analog output board. The controlling computer program was created using the graphical programming software package LabView. An illustration of the source code for the main program is given as Figure 3.7.

The initial functions of the program include the configuration of the output board, defining the buffer size to contain the data and providing an interface with the user. This interface allows the user to define some of the output board parameters such as device and channel identification. Figure 3.8 illustrates the user interface screen which controls the execution and operation of the program.

The program then retrieves the wave data from the four column matrix spreadsheet and stores it in the allocated buffer. The four columns represent each of the four channels of information which must be output from the A/D board with each channel representing one of the four engine cylinders. When ready, the program begins to write
Figure 3.7: Source Code from Main Program
Figure 3.8: User Interface Display for Main Program
the data to the D/A board and user screen at the rate and number of cycles specified by
the user. Once complete, the program re-initializes the board for the next run.

Many of the functions are carried out by subprograms as identified by the square
boxes in the source code diagram. A description of the use of the subprogram
components can be found in Appendix C or in reference [9].

Once the digitized information is sent to the output board, each of the four channels
are simultaneously converted to a voltage signal proportional to the initial pressure
information. This analogue signal is then sent to two dual channel battery powered
amplifiers which boost the signal to a level suitable to drive the four speakers. It is these
speakers which are interfaced with the manifold runners which mechanically reproduce
the pressure information thus simulating the timed pressure pulses which propagate
through the manifold.

3.2.1.2 Software and Hardware Used to Analyze the Data

The noise signal released through the throttle body opening is picked up by the
microphone which is concentrically mounted 5 cm above the opening. The height of 5
cm was chosen to be consistent with industry standard tests and data [2][3]. This also
provides a common reference permitting better correlation of results from other tests.
The microphone output is then amplified and sent to the AT-A2150 dynamic signal
acquisition board for digitization. Both the controlling of the acquisition board and
processing of the measured data is administered by a second computer program, also
created using LabView.
Figure 3.9 is an illustration of the graphical source code for the main portion of the analysis program. The primary functions associated with the main program are initializing and controlling the interface functions with the user and providing the platform for the analysis subprograms. Due to the complexity of this program, it is recommended that the reader refer to reference [9] for a more detailed description of the various operations associated with this program.
3.2.2 Operating Engine Tests

The fundamental components used in the testing and analysis of the manifold mounted on the operating engine include the intake manifold under study, the acquisition equipment used to record and store the data and the computer program and supporting hardware required for analysis.

All experimental tests were performed on an intake manifold mounted on a 1996 model year Chrysler Neon. The vehicle was mounted on a dynamometer as shown in Figures 3.10 and 3.11. Figure 3.10 shows the vehicle mounted on the dynamometer complete with noise attenuation shields to minimize any potential tire noise impact on the measurements being made. Figure 3.11 illustrates the dynamometer control room which controls and monitors the operations of the dynamometer and subsequently the automobile and engine being tested. The dynamometer allowed for the tests to be performed under conditions which most simulate every day operating conditions by including the interaction with all other engine components with the vehicle under loading conditions similar to those found on the road.

Once the engine was brought to steady state conditions at the desired RPM, the measurements were made using the Brüel & Kjaer microphone and sound level meter. It should be noted that the microphone was mounted at the same position above the throttle body opening as it was during the experimental simulation tests done on the test bench. The position of the microphone is illustrated in Figure 3.12. The signal was then taken from the sound level meter and recorded on a digital audio tape.
Figure 3.10: Vehicle Mounted on Dynamometer
Figure 3.11: Dynamometer Control Room
Figure 3.12: Microphone Position
Once all tests were recorded on the digital tape, the DAT recorder was connected to the AT-A2150 dynamic signal acquisition board and computer for analysis. From this point, the procedure for analysis of the recorded information is the same as that for the simulation tests as described previously in section 3.2.1.2.

3.3 Experimental Procedure

The steps taken to generate the simulated pressure pulses in the experimental manifold and simultaneously acquire and analyze the noise data at the throttle body are outlined in the following section. Also given below is the process used to acquire the intake noise data from the operating engine.

3.3.1 Simulation Tests on Experimental Manifold

The following is a step by step procedure outlining the steps taken to generate and analyze the data for the experimental manifold simulation:

1. Develop the experimental model and purchase and/or manufacture any required supporting elements.

2. Create the computer program using LabView that will read a pressure data file, configure the D/A output board, and write the data to the output board to be converted to a voltage signal.

3. Create the computer program using LabView that will accept the acquired noise data from the A/D input board and display the time and frequency content of the measured signal for analysis.

4. Obtain manifold runner pressure versus crank angle data from the Ricardo Wave program and store in a file format suitable for retrieval by the LabView generation program.
5. Obtain manifold throttle body noise data from the Ricardo Wave program for future comparison with measured data from the experimental model.

6. Execute the generation program to simulate the pressure pulses in the intake manifold for an engine operating speed of 2400 RPM.

7. Acquire data with microphone at five cm from throttle body, amplify the signal and send to the input card for digitization.

8. Process the acquired data and output the time and frequency content of the noise signal.

9. Do a comparison of the acquired time signal to the time signal as specified by the Ricardo Wave Model. Quantitatively compare the fundamental frequencies of the acquired experimental data to the frequencies as specified by the Ricardo Wave Model.

3.3.2 Actual Tests on Operating Engine

The following is a step by step procedure outlining the steps taken to acquire and analyze the data for an intake manifold on an operating engine under load:

1. Drive automobile onto dynamometer and prepare vehicle for loading tests. Remove air cleaner and ducting from automobile engine and mount microphone five cm above throttle body opening.

2. Bring vehicle to test speed under load such that engine RPM is at 2400.

3. Acquire noise data with microphone and store on digital audio tape for future analysis.

4. Retrieve stored noise signal and send to the input card in computer for digitization. Process the acquired data and output the time and frequency content of the noise signal.

9. Do a comparison of the time signal from the operating engine to the time signal as specified by the Ricardo Wave Model and the time signal from the simulation experiment. Also quantitatively compare the fundamental
frequencies of the acquired data from the operating engine tests to the frequencies as specified by the Ricardo Wave Model and the fundamental frequencies from the simulation experiment.
IV. ANALYSIS OF DATA

The most important step in developing a simulation model is collecting the appropriate data required to compare the simulated data to the known benchmarks. Two types of data were used for correlating the simulation results to the other data sources. These two types being time domain information and frequency domain information. In this chapter, the fundamental concepts describing the two data types will be separately explored along with a description of the measurement and analysis procedures used.

4.1 Data Analysis

The first step in analyzing the noise data involves either the playback of the stored Neon engine noise data from the DAT recorder or the real time data measurement from the simulator model. This information is digitized and fed into the LabView analysis program. Special attention must be given to the conversion process from analog to digital. Specifically, the rate of data sampling must be carefully considered as well as proper calibration of the signal.

4.1.1 Sampling

Sampling is the process of representing a continuous time record or wave by a number of discrete equi-spaced points. Figure 4.1 illustrates a continuous analog wave that has been represented by a number of equally spaced points. The interval between points, defined by 'h' in the figure is the sampling interval and must be chosen carefully.
Figure 4.1: Sampling Process of Analog Signal [4]
If too small an interval is chosen, the time record will be represented by more data points than are required. This redundancy of data results in an unnecessary increase in time and labour in processing of the data. If too large a sampling interval is used, the high frequency components, that is, the frequencies above half the sampling frequency, are misinterpreted as lower frequencies. This phenomenon is referred to as aliasing and must be avoided when digitizing continuous signals. A common example of aliasing is illustrated by the backward movement, or negative frequency, of wagon wheels in western movies because of the sampling involved in the filming [19]. In order to eliminate the adverse effects of aliasing, the Nyquist theory postulates that the sampling rate required for digitization should be no less than 2.56 times the highest frequency of the original data acquired [20].

4.1.2 Calibration

In the analysis of the acquired signal, it may be desirable to express the results directly as an amplitude spectrum where the amplitudes have the same dimensions as the input signal [19]. In order to accomplish this, a reference, or calibration signal, is digitized and recorded before and/or after the data is digitized. Reference to this calibration signal is then made later to determine the relationship between the digitized units and the physical units. For this study, a calibration signal of 1000 Hz and 93.8 dB was recorded prior to the acquisition of all data. Figure 4.2 illustrates the LabView output for the calibration signal recorded prior to the acquisition of data for the pulsation simulator model. Given this information, the voltage measured for both the simulated
and actual intake data can be directly related to the amplitude units provided by the calibrator unit.

4.2 Time Domain Signal

As mentioned at the beginning of this chapter, two types of data will be used to correlate the data measured from the simulation model to the theoretical and actual Neon engine data. The first type, being time domain data, will be discussed in this section.

4.2.1 Classification of the Measured Signal

The type of signal to be analyzed has an influence on the type of analysis to be carried out [19]. For a stationary signal, that is, a signal whose average properties do not vary with time, it must be established whether the signal is deterministic or random. For a deterministic signal, a given instantaneous value is easy to predict at all points in time. In other words, the signal can be described by some explicit mathematical function as illustrated in Figure 4.3. Random signals on the other hand, can not be described by an explicit mathematical function. Stationary random signals can only be described by their statistical properties such as the mean values, variances etc.

Figure 4.4 illustrates a typical measurement at the throttle body of the Neon engine. The graph shows the measured signal in the time domain. From this, it is obvious that the signal belongs to the non-determinate, or random category. Therefore, the characteristics of the signals in this study had to be described using statistical functions in addition to qualitative descriptors. For this purpose it was decided that mean value,
Figure 4.3: Deterministic Data [4]
Figure 4.4: Time Domain Output For Neon Engine
standard deviation, correlation coefficient and covariance be used to compare the simulated data points to the actual data points measured on the operating Neon engine. This exercise is not possible with the theoretical time domain curve since the data describing this curve was not available. A plot of the theoretical time domain is, however, available thus allowing for a qualitative comparison to be made. This qualitative analysis will also include the plots from the simulated and actual time domain analysis.

4.2.2 Statistical Descriptors

The following is a description of the statistical parameters that were used to compare the data points from the experimental model to the actual data points measured on the operating Neon engine. A more detailed description can be found in the references [7][15].

4.2.2.1 Mean

The mean of a set of data is a measure of the centre of the set in the sense of an average. That is, observations usually group themselves about a central value. The measurement of this central tendency is described as the mean denoted by the Greek letter \(\mu \) (mu). The mean is also described as the first moment about the origin.
4.2.2.2 Standard Deviation

Quantification of the dispersion, or degree of clusterness of a set of data about the mean is defined as the variance, also known as the second moment about the mean. However, the dimension of variance is in square units which are not the same dimension of the random variables. This can be adjusted by taking the square root, thus defining the standard deviation which is denoted by the Greek letter σ (sigma).

4.2.2.3 Correlation Coefficient

Determination of the correlation coefficient quantifies the correlation between the numeric values in two or more sets of data. Correlation coefficients range in value from -1.0 to 1.0. A set of data correlated with itself returns a correlation coefficient of 1.0 whereas a correlation coefficient of zero means that the two sets are not correlated [15]. The correlation coefficient is depicted by ρ (rho).

4.2.2.4 Covariance

Another analysis tool used to compare two or more sets of data is the determination of covariance. A positive covariance indicates that as the values increase in one set of data they also increase in the other. That is, the sets move together. A negative covariance indicates that as the values in one set of data increase, they decrease in another. Here the sets move apart. Unrelated data sets have a covariance approaching zero [15].
4.3 Frequency Domain Signal

The second type of data used to correlate the data measured from the simulation model to the theoretical and actual Neon engine data is from the frequency domain. The fundamental basis of frequency analysis is the Fourier Transform which can take different forms. For this study, the Fast Fourier Transform (FFT) is employed for the purpose of deriving the measured signal contents into the frequency domain. Figure 4.5 illustrates a typical measurement at the throttle body of the Neon engine. This diagram shows the measured signal in the frequency domain.

4.3.1 Fast Fourier Transform

The Fast Fourier Transform has become a widely accepted diagnostic tool in such areas as the detection of misalignment and out of balance of mechanical systems, preventative maintenance and noise quantification to name a few. The Fast Fourier Transform accomplishes these tasks by breaking down a complex measured signal into separate components at various frequencies. Once isolated, these frequency components provide a unique signature characteristic useful for problem solving diagnostics and signal source identification. The latter of which was employed in this study for comparing the frequency contents of the various sources of induction noise.

4.3.1.1 Mathematical Properties of the FFT

The Fast Fourier Transform is an alternative calculation procedure to obtain the Discrete Fourier Transform (DFT). The implementation of the FFT algorithm results
in the identical final answer as the DFT with a greatly reduced number of arithmetic operations. Once a time signal has undergone an FFT process, the signal is represented by a vector in which each value represents the magnitude of the signal’s frequency over the range of frequency values given in the vector. This is usually illustrated in graphical form. For a detailed technical explanation the reader is encouraged to consult with the references [8] [19].

4.3.1.2 Limitations of the FFT Process

While the FFT process provides an efficient means of determining the frequency content of a time signal, precautions must be taken to avoid three common pitfalls, these being aliasing, leakage and picket fence effect.

As explained earlier, aliasing is the misrepresentation of higher frequency information due to an inadequate sampling rate. To eliminate this problem, care must be taken to ensure that the sampling rate be at least 2.56 times greater than the highest frequency of interest within the data. Alternatively, a low pass filter may be employed to eliminate the frequencies measured greater than half the sampling rate.

Leakage, also known as 'side window effect' and 'sidelobe generation', is the result of the time limitation necessary to fit the time signal into a finite record length. The effects of leakage can be combated through a technique called windowing. A thorough description of leakage and windowing can be found in the references [8][19].

The third effect, as illustrated in Figure 4.6 is known as the picket fence effect. Since it is not possible to represent the continuous spectrum of a signal, it must be
sampled discretely, much like looking through the slits of a fence. As a result, "the
discrete sampling in the frequency domain corresponds to a periodic repetition of the
time record with the period equal to the record length" [19].

4.3.2 Time Domain Averaging

Most stationary signals are comprised of three fundamental components being the
periodic, semi-periodic and noise components [7]. For the purposes of this study, it is
the periodic component that is desired, therefore, any spurious components must be
eliminated from the original signal. This is accomplished by time domain averaging
(TDA) which is accomplished by averaging the same data point within several time
traces, thus producing an average time trace. Figure 4.7 illustrates the effect of two
different averages performed on a stationary random signal.
Figure 4.7: Effect of Averaging on a Stationary Random Signal [19]
V. DISCUSSION OF RESULTS

The results presented in this chapter compare the measurements amassed from the simulation model to the same measurements performed on both the actual Neon engine and to the outcome as predicted by the theoretical Ricardo Wave model. The data used to make these comparisons include the input data produced by the simulation model as well as the output noise signal as manifested at the throttle body opening.

5.1 Input Signal

The input signals that are presented here for comparing are from the Ricardo Wave model and from the simulation experiment. The theoretical data was derived by connecting a theoretical anechoic termination at the signal source. This allowed for the determination of the input signal without alterations from any other potential influences. It is not possible in the real world to perform the same experiment on the actual Neon engine and compile the same type of data. As a result, the comparisons of input data are restricted to the theoretical and simulated data sources.

Input data, that is, the data that enters the intake manifold runners at the manifold/engine head interface, was derived theoretically using an anechoic termination as described above. This input data, or pressure information, is caused by the pressure pulses resulting from the opening and closing of the intake valves as was described in the introduction of this thesis. Assuming that each of the valves are identical, the pressure
data is the same at each runner interface. Figure 5.1 illustrates the theoretical input data for one runner as determined by the Ricardo Wave model.

The theoretical data was input into the LabView program for signal generation via a spreadsheet file. Figure 5.2 illustrates the generated LabView signal for one runner.

Since the generated data was directly obtained from the theoretical Ricardo data it was felt that a qualitative evaluation of the two wave signals would suffice for the purposes of this study. This is reinforced by the fact that the principal focus of this thesis is on the resulting output waves at the throttle body and analysis of the input data is included only for thoroughness.

Given the above, it is explicit that the two input signals are the same. They have the same amplitude, duration and overall characteristic shape. This provides a high enough level of confidence in the input data to proceed with the analysis of the resulting output signals. It should be noted that the above referenced curves are representative for one manifold runner. Figure 5.3 shows the wave information for all four runners simultaneously. It is obvious that the four curves are identical in all respects except for phase. This is representative of the firing order for the engine which for the Neon is cylinders 3,4,2,1 respectively [3].

5.2 Output Signal

As was described in the previous chapters, the output signal was taken to be the resultant signal determined five centimetres up from the throttle body opening. Also, the analysis performed on the output signals were from two different data types. The results
Figure 5.1: Theoretical Input Pressure Wave
Figure 5.2: Experimental Input Pressure Wave
Figure 5.3: Experimental Input Wave for Four Cylinders
of the two data types, being the time domain and the frequency domain, are individually outlined below.

5.2.1 Results of Time Domain

The theoretical amplitude versus time output as predicted by the Ricardo Wave model is illustrated in Figure 5.4. The time axis has been represented by the crank angle degrees for one complete combustion cycle instead of seconds. It should be noted that the 720 degrees required for one combustion cycle consumes approximately 0.05 seconds.

Figure 5.5 illustrates one complete cycle for the amplitude versus time output for the measurements made on the Neon engine. This figure also shows that the combustion cycle encompassed a duration of 720 degrees, however, although not shown in the figure, it should be noted that the time duration for this cycle was approximately 0.054 seconds. The duration increase of 0.004 seconds was due to inaccuracies in maintaining a speed of 2400 RPM with the dynamometer. However, upon examination of the theoretical and actual time outputs, it can be concluded that they both possess the same general shape. This includes having the same characteristic peaks and troughs occurring at approximately the same position with respect to crank angle. The two outputs also display characteristic sub-peaks following each of the four major summits. Again, these appear to position themselves at the same locations with respect to the crank angle. Given this, it can be reasonably concluded that the time response results for the theoretical and actual engine tests correlate with a considerable degree of confidence.
Figure 5.4: Time Domain Analysis for Theoretical Signal
Figure 5.5: Time Domain Analysis for Actual Engine Signal
The experimental amplitude versus time output as measured by the LabView analysis program is illustrated in Figure 5.6. The general shape of the experimental time wave follows relatively close to that of the theoretical and actual time waves. The apexes that occur in the vicinity of the crank angles of 0 and 180 degrees appear to be somewhat premature. Alternatively, in the locality of -180 and 360 degrees, the peaks correspond closely to that of the other two time traces. The experimental plot also reveals sub-peaks proceeding the major summits which is counter to the other plots. It is suspected that these are the result of non-linearities in the performance of the speakers used to produce the simulated pressure pulses at the manifold runner openings. Despite this, the misplacement of these sub-peaks does not alter the overall pattern similarities between this time analysis compared to the theoretical and actual plots. Although not evident in Figure 5.6, the period for this plot is 0.05 seconds which corresponds exactly to that of the theoretical time wave. Further, the displayed amplitudes at any given crank angle and relative maximum to minimum amplitudes correlate extremely well between all three of the time plots. As a result, even though each of the three plots display unique properties, they do all possess the same general qualitative characteristics which would allude that they each represent the same source, being the pressure wave at the throttle body outlet.

In addition to the above qualitative assessment, a quantitative evaluation comparing the time domain plots for the experimental model and actual neon engine was pursued using the statistical parameters discussed in section 4.2.2. The results of this evaluation are presented in Tables 1, 2 and 3.
Figure 5.6: Time Domain Analysis for Experimental Signal
Table 1: Mean and Standard Deviation for Modelled and Actual Manifolds

<table>
<thead>
<tr>
<th>Statistical Evaluation</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Simulation Model</td>
</tr>
<tr>
<td>Mean</td>
<td>-0.02</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Table 2: Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>Simulation Model</th>
<th>Actual Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation Model</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Actual Engine</td>
<td>0.6</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3: Covariance Matrix

<table>
<thead>
<tr>
<th></th>
<th>Simulation Model</th>
<th>Actual Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation Model</td>
<td>0.34</td>
<td>-</td>
</tr>
<tr>
<td>Actual Engine</td>
<td>0.16</td>
<td>0.21</td>
</tr>
</tbody>
</table>
The calculated mean values for the two curves remain fairly constant at zero volts indicating that both signals have the same central tendency as would be predicted for two similar data plots.

Similarly, both the experimental and the actual engine outputs have calculated standard deviations of 0.58 and 0.45 respectively. Therefore, not only do the two curves group about the same central value, but they do so with approximately the same measure of dispersion.

Perhaps the most convincing affinity between the two sets of data lie within the correlation and covariance analysis. The correlation coefficient between the two curves is 0.6 indicating a good correlation between the two plots. The covariance analysis resulted in a value of 0.16 indicating that the two curves trend in a similar manner. Given the great differences in the sources of the data for the two plots, the statistical analysis provided encouraging results. These quantitative observations serve only to reinforce the qualitative conclusions discussed earlier in justifying the high degree of similarity between the curves from the experimental model and actual neon engine.

5.2.2 Results of Frequency Domain

The frequency analysis for the theoretical output as described by the Ricardo Wave model is depicted in Figure 5.7. The results show that the output produced a fundamental frequency of 80 Hz followed by a second and third harmonic frequency of 160 and 240 Hz respectively. These results follow the expectations for a four cylinder engine operating at 2400 RPM. That is, a four cycle engine at 2400 RPM, or 40
Figure 5.7: Theoretical Frequency Response from Ricardo Wave
revolution per second, would produce a fundamental frequency of 20 Hz for every combustion cycle. This multiplied by four, one for each cylinder, results in a fundamental frequency of 80 Hz. Given this reasoning, it is justified to accept the validity of the frequency analysis produced by the theoretical Ricardo Wave model.

The frequency response for the actual Neon engine is given in Figure 5.8. The first fundamental frequency is shown to be 74 Hz with 148 Hz and 222 Hz shown as the second and third harmonics respectively. This differs somewhat from the theoretical values but is not at all unexpected. As stated earlier, this is due to the fact that it was difficult for the dynamometer to maintain a constant speed of 2400 RPM with no ignition on the engine. It is estimated that the dynamometer was rotating the engine at approximately 2225 RPM thus resulting in the lower fundamental frequency. Despite these differences, the overall similarities between the actual engine results and the theoretical results proved that the effort was certainly worth while and that any short comings were due to the operation of the dynamometer equipment and not the analysis technique.

Figure 5.9 illustrates the LabView output for the frequency response for the simulation experiment. The results show that the output produced a fundamental frequency of 82 Hz followed by a second and third harmonic frequency of 160 and 240 Hz respectively. These results are very similar to the theoretical results indicating that the simulation model produced a frequency response that correlates closely to what it was predicted to. Only the first fundamental frequency differed from the theoretical outcome by a diminutive 2 Hz. The next two harmonics were identical to the theoretical
Figure 5.8: Frequency Response for Actual Neon Engine
Figure 5.9: Frequency Response for Simulation Model
results. The reason for any differences between the experimental and actual engine results were again due to the dynamometer speed and not to any shortcomings associated with the experimental model.
VI. CONCLUSIONS AND RECOMMENDATION

6.1 Conclusions

The following is a list of conclusions that have been reached after studying the results of the data analysis.

1) Given the theoretical input signal at the interface between the intake manifold runner and engine head, it is possible to reproduce this signal. This allows for the simulation of the pressure pulses in the manifold runner caused by the opening and closing of the intake valves.

2) Analysis of the time domain signal for the actual Neon engine compared favourably to the theoretical time domain signal. This validates the use of either source as a reference for comparing the experimental results. Care must, however, be taken to ensure that the recorded period for the actual engine is accurate. That is, the dynamometer operating the engine must be turning at the correct speed.

3) The overall shape of the experimental time domain signal compared favourably to both the theoretical and actual engine results. The statistical parameters determined for the experimental and actual time domain signals also compared favourably to each other. It is suspected that any differences are the result of non-lineararities in the low frequency operation of the speakers. The period of the experimental wave was identical to the theoretical time wave. This
reinforces the validity of the results associated with the experimental model and highlights the potential shortcomings with the actual measurements where precise period values are important.

4) The frequency distribution of all three sources were very similar. This reinforces the validity of the experimental simulation. The frequency results for the actual engine tests were the furthest away from the predicted results. This was again due to the inaccuracies in the dynamometer operation and not in the analysis procedure.

6.2 Recommendations

The creation and testing of the intake manifold simulation model has demonstrated great promise as a potential tool for simulating various operating parameters of the induction manifold. There are, however, some areas where additional efforts can be made to improve and verify this work.

1) The simulation experiment should be modified to allow the simulation at different engine RPMs. This would require the use of a faster computer among other things.

2) This simulation technique should be applied to other makes and configurations of intake manifolds. This would include expanding the equipment to accommodate six and eight cylinder engines.

3) It is recommended that the speakers used be replaced with others that are better able to reproduce signals in the lower frequency range.
4) Better control of the dynamometer used to drive the Neon automobile would result in more accurate measurements of the actual engine. It is thought that a dynamometer coupled directly to the engine as opposed to driving the automobile tires would aid in this effort.
REFERENCES

(1) Brue & Kjaer, Electronic Instruments Master Catalogue, pp. 7.22-7.24, Brue & Kjaer, Denmark, (1989).

(2) Daly, P.D., personal communication, (August, 1995).

(3) Fletcher, S., personal communication, (October, 1995).

76
APPENDIX A

Data Acquisition Equipment Specifications [12]
DATA ACQUISITION PRODUCTS
AT-AO-6, AT-AO-10
Analog Output Boards for the IBM PC AT

Features
* AT-AO-6 has 6 high-speed multiplying DACs
* AT-AO-10 has 10 high-speed multiplying DACs
* 12-bit resolution
* Unipolar or bipolar outputs available from each converter
* Voltage outputs from each converter
* 4 to 20 mA current sink to ground from each converter
* Onboard reference of 10 V
* 8-bit digital I/O (configurable in 4-bit ports)
* External bipolar reference input for each dual channel pair
* Double-buffered D/A latches with simultaneous update capability
* External update and interrupt request signals
* DMA and interrupt capability for waveform generation applications
* 1-Kword FIFO for high continuous throughput
* Counter/timer for periodic interrupt or dma request
* Software calibration
* Programmed with LabVIEW, LabWindows/CVI, and LabWindows

Overview
The National Instruments AT-AO-6 and AT-AO-10 are high-performance, 12-bit analog output boards for the IBM AT and compatibles. They have either 6 or 10 identical DAC channels, each of which has voltage output and can sink 4 to 20 mA current when connected to an external source. Because these boards are identical except for output channel count, they will be described in common and referred to as the AT-AO-u/10. The voltage output of each channel is either bipolar or unipolar and is derived from the onboard reference or an external reference. An 8-bit DIO port provides additional control capability. Software-controlled calibration eliminates removing the PC cover and manually adjusting trimpots.
DATA ACQUISITION PRODUCTS
AT-AO-6, AT-AO-10
Specifications

Typical for 25 degrees C unless otherwise noted

Analog Output
Output Characteristics
Number of channels
 AT-AO-6
 AT-AO-10
Resolution
Maximum update rate
Type of DAC
FIFO buffer size
Data transfers
DMA modes

6 voltage or current
10 voltage or current
12 bits, 1 in 4,096
300 kS/s, system dependent
Double-buffered, multiplying
1,024 samples
DMA, interrupts, programmed I/O
Single transfer

Transfer Characteristics
Relative accuracy (INL)
Absolute accuracy
DNL
Monotonicity
Offset error
 After calibration
 Before calibration
Gain error (relative to internal reference)
 After calibration
 Before calibration
Gain error (relative to external reference)

+/− 0.5 LSB maximum
+/− 0.01 % FSR typical, +/− 0.02% maximum
+/− 0.2 LSB typical, +/− 1.0 LSB maximum
12 bits, guaranteed
1 mV maximum
200 mV maximum
+/− 0.01% of reading maximum
+/− 0.5% of reading maximum
−/− 0.1% of reading maximum, not adjustable

Voltage Output
Ranges
Vref jumper selectable
Output coupling
Output impedance
Current drive
Load impedance
Protection
Power on state
External reference input
Range
Overvoltage protection
Input impedance
Bandwidth (−3 dB)

+/− 10 V, +/− Vref or 0 to 10 V, 0 to DC
0.1 Omega maximum
+/- 5mA maximum
500 pf maximum
short circuit to ground
0 V bipolar, 5 V unipolar range
+/− 10 V
+/− 25 V powered on, +/− 25 V powered off
10 kOmega
1 MHz

Current Output
Range
Type
excitation source
Output impedance
Excitation voltage range
Absolute accuracy
Slow rate
Protection

4 to 20 mA
Sink to ground, requires external
1 GOhm minimum
+7 to +40 V
+/− 0.1% FSR
7.5 mA/ us
Short circuit to ground and open circuit
Power-on state 4 mA bipolar, 12 mA unipolar

Dynamic Characteristics
Settling time to +/- 0.01% FSR [Image]
Slew rate 10 V/µs minimum

Stability
Offset temperature coefficient +/- 50 µV/°C
Gain temperature coefficient
 Internal reference +/- 10 ppm/°C
 External reference +/- 5 ppm/°C

Digital I/O
Number of channels 8 I/O
Compatibility TTL
Digital logic levels [Image]
Power-on state Configured as inputs
Data transfers Programmed I/O

RTSI
Trigger lines 7

Bus Interface
Slave

Power Requirement
AT-AO-6
+5 VDC (+/- 5%) 0.6A
+12 VDC (+/- 5%) 60 mA + load
-12 VDC (+/- 5%) 60 mA + load
AT-AO-10
+5 VDC (+/- 5%) 1.6 A

Physical
Dimensions 34.0 by 11.4 cm (13.3 by 4.5 in.)
I/O connector 50-pin male

Environment
Operating temperature 0 degrees to 70 degrees C
Storage temperature -55 degrees to 150 degrees C
Relative humidity 5% to 90% noncondensing
Data Acquisition Products

AT-A2150
Dynamic Signal Acquisition Board for the PC AT

Features
- Two models with sampling rates tailored to application areas
 - AT-A2150C for general audio band measurements and industry-standard analysis sampling rates
 - AT-A2150S for speech and voice band measurements
- High-accuracy analog inputs
- 4 analog input channels with simultaneous sampling
- 16-bit resolution delta-sigma modulating ADCs
- Linear-phase antialiasing filters attenuate 90 dB in 1/6 octave
- 93 dB SNR for low-noise signal acquisition
- -95 dB THD for high accuracy
- +/-2.828 V input range (2 Vrms)
- Software-programmable AC/DC coupling
- External trigger input can control data acquisition
- Pretrigger, posttrigger, and delay trigger mode
- Level-and-slope detection circuitry to trigger on programmed level and slope on any analog input channel
- Digital trigger control from I/O connector, RTSI bus, or software
- RTSI bus interface
- Multiple-board sampling and/or trigger synchronization
- Programmed with LabVIEW, LabWindows/CVI, and LabWindows

Overview
The AT-A2150 is a high-accuracy, dynamic signal acquisition plug-in board for scientific class measurements with IBM PC AT and compatibles. The AT-A2150C digitizes signals over a bandwidth from DC to 20 kHz, and the AT-A2150S digitizes signals over a bandwidth of DC to 10 kHz. The boards have four 16-bit analog input channels with antialiasing filters and 64-times oversampling delta-sigma modulating ADCs. The antialiasing filters on the input ensure that signals are acquired with extremely high fidelity. A 93 dB SNR, -95 dB THD, and +/-0.025 dB amplitude flatness make it possible to acquire signals with extremely high accuracy and low noise.

The interface to the PC AT/IO channel has FIFO buffers to prevent data loss if DMA or interrupt service latency is long. Flexible pretrigger, posttrigger, and delay trigger modes make it possible to acquire signals when desired.

The AT-A2150 has the National Instruments RTSI bus to synchronize the sampling and/or triggering of multiple AT-A2150 boards. RTSI is a dedicated system timing and communications bus, implemented with a ribbon cable and connected directly between AT-Series boards.
DATA ACQUISITION PRODUCTS

AT-A2150

Specifications

Typical for 25 degrees C unless otherwise noted. Refer to the Data Acquisition Overview for typical frequency response plots.

Analog Input
Input Characteristics
Number of channels
4 single-ended, simultaneously sampled
Type of ADC
Delta-sigma
Resolution
16 bits, 1 in 65,536

Sampling Rates
AT-A2150S
2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 8.0, 10.0,
12.0,
AT-A2150C
16.0, 20.0, and 24.0 kHz/s
4.0, 5.5125, 6.0, 6.4, 8.0, 11.025, 12.0,
16.0,
51.2 kHz/s
Input signal range
 +/- 2.328 V (2 Vrms)
Input coupling
AC or DC, software selectable
Overvoltage protection
 +/- 20 V powered on or off
Inputs protected
ACH0, ACH1, ACH2, ACH3
Data transfers
DMA, interrupts, programmed I/O

Transfer Characteristics
Offset error after calibration
+/- 5 LSB typical, +/- 15 LSB maximum
Gain adjustment range
+/- 3.5% (+/- 0.3 dB)

Amplifier Characteristics
Input impedance
460 kohms in parallel with 75 pF

Dynamic Characteristics
Bandwidth (-3 dB)
DC to 0.45 times sampling rate, DC coupled
8.8 Hz to 0.45 times sampling rate, AC
couple
System noise
0.5 LSB rms
(including quantization error)
Dynamic range
93 dB
Signal-to-THD plus noise
90 dB for 0 dB input, DC to 22 kHz
THD
-95 dB for 0 dB input, DC to 22 kHz

Amplitude Flatness
AT-A2150C
+/-.01 dB typical, +/- 0.025 dB maximum,
DC to 20 kHz
(48 kHz/s sampling rate)
AT-A2150S
+/-.01 dB typical, +/- 0.025 dB maximum,
DC to 4 kHz
+/-.05 dB maximum, DC to 10 kHz (24 kHz/s
sampling rate)
Phase linearity
+/-.05 degrees, DC to 20 kHz
Interchannel phase
+/-.1 degrees, DC to 20 kHz
IMD

82
SMPTE
DIN
CCIF
Crosstalk

(60 Hz, 7 kHz) -85 dB
(250 Hz, 8 kHz) -85 dB
(14 kHz, 15 kHz) -95 dB
-90 dB, DC to 22 kHz

Filters
Type
Passband ripple
Stopband attenuation
Attenuation rate
Signal delay

Analog and digital antialiasing
+/- 0.01 dB pk-pk, DC to 20 kHz
86 dB
90 dB in 1/6 octave
35.6 sample periods

Triggers
Digital Trigger
Compatibility
Response
Pulse width

TTL
Programmable for rising or falling edge
50 ns

RTSL
Trigger lines
DMA channels
Serial links
Serial transfer rate

1
2
2 full duplex
1.6384 Mb/s

Power Requirement
+5 VDC

1.5 A

Physical
Dimensions
I/O connector

33.6 by 11.4 cm (13.25 by 4.5 in.)
RCA-type phone jacks

Environment
Component operating temperature
Component storage temperature
Relative humidity

0 degrees to 70 degrees C
-55 degrees to 150 degrees C
5% to 90% noncondensing
APPENDIX B

Input Data From Ricardo Wave Model
<table>
<thead>
<tr>
<th>Crank Angle</th>
<th>Cylinder Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>For Cyl. 3</td>
<td>Cyl. 3</td>
</tr>
<tr>
<td>0.180</td>
<td>0.795164</td>
</tr>
<tr>
<td>0.177517241</td>
<td>0.802315</td>
</tr>
<tr>
<td>0.175034493</td>
<td>0.808594</td>
</tr>
<tr>
<td>0.172551724</td>
<td>0.983931</td>
</tr>
<tr>
<td>0.170568965</td>
<td>0.984032</td>
</tr>
<tr>
<td>0.167586207</td>
<td>0.983883</td>
</tr>
<tr>
<td>0.165103448</td>
<td>0.984069</td>
</tr>
<tr>
<td>0.16262069</td>
<td>0.984773</td>
</tr>
<tr>
<td>0.160137931</td>
<td>0.984971</td>
</tr>
<tr>
<td>0.157655172</td>
<td>0.984771</td>
</tr>
<tr>
<td>0.155172414</td>
<td>0.985003</td>
</tr>
<tr>
<td>0.152689655</td>
<td>0.985106</td>
</tr>
<tr>
<td>0.150206897</td>
<td>0.984468</td>
</tr>
<tr>
<td>0.147724138</td>
<td>0.98355</td>
</tr>
<tr>
<td>0.145241379</td>
<td>0.983674</td>
</tr>
<tr>
<td>0.142758621</td>
<td>0.984063</td>
</tr>
<tr>
<td>0.140275862</td>
<td>0.983915</td>
</tr>
<tr>
<td>0.137793103</td>
<td>0.984039</td>
</tr>
<tr>
<td>0.135310345</td>
<td>0.984794</td>
</tr>
<tr>
<td>0.132827586</td>
<td>0.985043</td>
</tr>
<tr>
<td>0.130344828</td>
<td>0.984389</td>
</tr>
<tr>
<td>0.127862069</td>
<td>0.984061</td>
</tr>
<tr>
<td>0.12537931</td>
<td>0.984372</td>
</tr>
<tr>
<td>0.122896652</td>
<td>0.984448</td>
</tr>
<tr>
<td>0.120413793</td>
<td>0.984238</td>
</tr>
<tr>
<td>0.117931034</td>
<td>0.984357</td>
</tr>
<tr>
<td>0.115448276</td>
<td>0.984764</td>
</tr>
<tr>
<td>0.112965517</td>
<td>0.984712</td>
</tr>
<tr>
<td>0.110482759</td>
<td>0.984208</td>
</tr>
<tr>
<td>-108</td>
<td>0.983929</td>
</tr>
<tr>
<td>-105.517241</td>
<td>0.984113</td>
</tr>
<tr>
<td>-103.034483</td>
<td>0.984353</td>
</tr>
<tr>
<td>-100.551724</td>
<td>0.984322</td>
</tr>
<tr>
<td>-98.0686555</td>
<td>0.984487</td>
</tr>
<tr>
<td>-95.5862069</td>
<td>0.984962</td>
</tr>
<tr>
<td>-93.1034483</td>
<td>0.985245</td>
</tr>
<tr>
<td>-90.6206896</td>
<td>0.984975</td>
</tr>
<tr>
<td>-88.137831</td>
<td>0.984743</td>
</tr>
<tr>
<td>-85.6551724</td>
<td>0.984865</td>
</tr>
<tr>
<td>-83.1724139</td>
<td>0.984865</td>
</tr>
<tr>
<td>-80.6865555</td>
<td>0.984525</td>
</tr>
<tr>
<td>-78.2068965</td>
<td>0.984273</td>
</tr>
<tr>
<td>-75.7241379</td>
<td>0.984401</td>
</tr>
<tr>
<td>-73.2413793</td>
<td>0.984434</td>
</tr>
<tr>
<td>-70.7586207</td>
<td>0.984342</td>
</tr>
<tr>
<td>-68.2758621</td>
<td>0.984456</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>65.7934034</td>
<td>0.984638</td>
</tr>
<tr>
<td>63.3103448</td>
<td>0.985011</td>
</tr>
<tr>
<td>60.8275621</td>
<td>0.985192</td>
</tr>
<tr>
<td>66.3448276</td>
<td>0.985025</td>
</tr>
<tr>
<td>55.0620659</td>
<td>0.984947</td>
</tr>
<tr>
<td>53.3793103</td>
<td>0.984788</td>
</tr>
<tr>
<td>50.8965517</td>
<td>0.984788</td>
</tr>
<tr>
<td>48.4137931</td>
<td>0.984833</td>
</tr>
<tr>
<td>45.9303450</td>
<td>0.984848</td>
</tr>
<tr>
<td>43.4482759</td>
<td>0.985065</td>
</tr>
<tr>
<td>40.9655172</td>
<td>0.985065</td>
</tr>
<tr>
<td>38.4827586</td>
<td>0.984968</td>
</tr>
<tr>
<td>-36</td>
<td>0.984517</td>
</tr>
<tr>
<td>33.5172414</td>
<td>0.984372</td>
</tr>
<tr>
<td>31.0344827</td>
<td>0.984465</td>
</tr>
<tr>
<td>28.5517241</td>
<td>0.984719</td>
</tr>
<tr>
<td>26.0689655</td>
<td>0.985025</td>
</tr>
<tr>
<td>23.5862069</td>
<td>0.985317</td>
</tr>
<tr>
<td>21.1034483</td>
<td>0.985777</td>
</tr>
<tr>
<td>18.6206896</td>
<td>0.986695</td>
</tr>
<tr>
<td>16.1379318</td>
<td>0.986526</td>
</tr>
<tr>
<td>13.6651724</td>
<td>0.984771</td>
</tr>
<tr>
<td>11.1724138</td>
<td>0.984712</td>
</tr>
<tr>
<td>8.68965515</td>
<td>0.984765</td>
</tr>
<tr>
<td>6.20689655</td>
<td>0.984577</td>
</tr>
<tr>
<td>3.72413791</td>
<td>0.984821</td>
</tr>
<tr>
<td>1.24137929</td>
<td>0.985224</td>
</tr>
<tr>
<td>1.24137933</td>
<td>0.98537</td>
</tr>
<tr>
<td>3.72413795</td>
<td>0.984967</td>
</tr>
<tr>
<td>6.20689657</td>
<td>0.984881</td>
</tr>
<tr>
<td>8.699655195</td>
<td>0.985273</td>
</tr>
<tr>
<td>11.17241382</td>
<td>0.985243</td>
</tr>
<tr>
<td>13.65517244</td>
<td>0.985128</td>
</tr>
<tr>
<td>16.13793108</td>
<td>0.985325</td>
</tr>
<tr>
<td>18.62068966</td>
<td>0.985702</td>
</tr>
<tr>
<td>21.1034483</td>
<td>0.985471</td>
</tr>
<tr>
<td>23.58620692</td>
<td>0.984951</td>
</tr>
<tr>
<td>26.06896554</td>
<td>0.985077</td>
</tr>
<tr>
<td>28.55172418</td>
<td>0.985193</td>
</tr>
<tr>
<td>31.03448278</td>
<td>0.984956</td>
</tr>
<tr>
<td>33.51724141</td>
<td>0.984711</td>
</tr>
<tr>
<td>36.00000003</td>
<td>0.985008</td>
</tr>
<tr>
<td>38.48275865</td>
<td>0.985388</td>
</tr>
<tr>
<td>40.96551727</td>
<td>0.985185</td>
</tr>
<tr>
<td>43.44827589</td>
<td>0.985253</td>
</tr>
<tr>
<td>45.9303451</td>
<td>0.985174</td>
</tr>
<tr>
<td>48.41379313</td>
<td>0.986036</td>
</tr>
<tr>
<td>50.96655175</td>
<td>0.985651</td>
</tr>
<tr>
<td>53.37931037</td>
<td>0.985244</td>
</tr>
<tr>
<td>55.86206899</td>
<td>0.98537</td>
</tr>
</tbody>
</table>

86
58.344852/52	0.96510	0.96602	0.96667	0.96667
60.82758624	0.984752	0.984468	0.986279	0.695667
63.31034486	0.98482	0.98355	0.966002	0.6987
65.79310348	0.98545	0.983674	0.986156	0.700938
68.27586217	0.985735	0.984083	0.986389	0.703352
70.75862072	0.985405	0.983915	0.986195	0.706022
73.24137934	0.985414	0.984039	0.985865	0.708865
75.722413796	0.985543	0.984794	0.986030	0.711889
78.16968558	0.98542	0.985043	0.986525	0.715084
81.18965522	0.985126	0.984389	0.986631	0.718461
83.67241393	0.98388	0.984061	0.986718	0.722004
86.15517245	0.985972	0.984372	0.986915	0.725729
88.63739107	0.986025	0.984448	0.988906	0.729645
91.12086969	0.985771	0.984238	0.986419	0.733972
93.60344831	0.985523	0.984357	0.98591	0.738025
98.08620693	0.985426	0.984764	0.985827	0.742499
98.568966555	0.985046	0.984712	0.985656	0.747157
101.0517242	0.984746	0.984208	0.986156	0.751988
103.5344826	0.985005	0.983929	0.986398	0.756981
106.0172414	0.985505	0.984113	0.986694	0.762134
108.5	0.985852	0.984353	0.987688	0.767439
110.9827587	0.985828	0.984322	0.988553	0.772895
113.4655173	0.985962	0.984487	0.989779	0.778501
115.9482759	0.986003	0.984962	0.991692	0.784252
118.4310345	0.98582	0.985245	0.994443	0.790142
120.9137931	0.985519	0.984976	0.997286	0.796154
123.3965518	0.985465	0.984743	1.00195	0.802315
125.8793104	0.985652	0.984885	1.00559	0.808594
128.362069	0.985618	0.984889	1.01179	0.8154
130.8448276	0.985527	0.984525	1.01714	0.821537
133.8275862	0.985455	0.984273	1.02197	0.828225
136.2931449	0.98555	0.984401	1.02603	0.835099
138.7759035	0.98551	0.984434	1.02781	0.84219
141.2505621	0.985531	0.984342	1.02593	0.849504
143.7414207	0.985593	0.984456	1.01898	0.857019
146.2241794	0.985722	0.984838	1.00778	0.864699
148.706938	0.985818	0.985011	0.99287	0.872503
151.189586	0.985868	0.985192	0.974652	0.880391
153.6724552	0.985904	0.985025	0.95527	0.888315
156.1592198	0.985864	0.984947	0.97054	0.896236
158.6379725	0.985974	0.984788	0.919738	0.904114
161.1207311	0.986055	0.984788	0.903839	0.911896
163.6093697	0.986056	0.984833	0.890969	0.919616
166.0862483	0.985784	0.984846	0.880235	0.926909
168.5690069	0.985611	0.985066	0.869681	0.934016
171.0517656	0.985466	0.985066	0.859538	0.940777
173.5346242	0.985359	0.984968	0.843838	0.94714
176.0172828	0.985258	0.984517	0.83322	0.953063
178.5000414	0.985473	0.984372	0.826118	0.959525
180.9828	0.986013	0.984485	0.81381	0.963519
307.6034897	0.98596	0.988426	0.742999	0.984704
310.0862483	0.986156	0.985046	0.747157	0.984712
312.589007	0.98688	0.984746	0.751968	0.984208
316.0617656	0.986954	0.985005	0.756981	0.983929
317.534242	0.987688	0.986605	0.762134	0.984113
320.0172828	0.988553	0.988582	0.767439	0.984353
322.500414	0.989779	0.985828	0.772695	0.984322
325.4828001	0.991692	0.986962	0.778501	0.984487
327.955587	0.994443	0.986003	0.784252	0.984962
330.443173	0.997828	0.985892	0.790142	0.985245
332.9310759	1.0019	0.985613	0.796164	0.984975
335.4138345	1.00659	0.985485	0.802315	0.984743
337.8965932	1.01178	0.985662	0.808594	0.984685
340.3793518	1.01714	0.985618	0.815	0.984885
342.8521104	1.02197	0.985527	0.821537	0.984525
345.344669	1.02608	0.985455	0.828225	0.984273
347.8276277	1.02781	0.98555	0.835099	0.984401
350.3103663	1.02833	0.98551	0.842109	0.984434
352.7814449	1.01898	0.985531	0.849504	0.984342
355.2576035	1.00778	0.985593	0.857019	0.984456
357.7586621	0.99287	0.985722	0.864699	0.984388
360.254208	0.974852	0.985818	0.872503	0.985011
362.7241794	0.95527	0.985968	0.880391	0.985192
355.2065938	0.937054	0.985904	0.886315	0.985025
357.6896966	0.919738	0.985864	0.892636	0.984947
370.1774552	0.903839	0.985974	0.904144	0.984788
372.652139	0.890969	0.986055	0.911696	0.984788
375.1379725	0.880235	0.986056	0.919516	0.98483
377.6207311	0.869681	0.985784	0.926909	0.984846
380.1034897	0.859538	0.985611	0.934016	0.985006
382.5862483	0.849393	0.985486	0.940777	0.98506
385.5690007	0.83822	0.985359	0.94714	0.984968
388.5517655	0.826118	0.985256	0.953063	0.984517
391.0345242	0.81381	0.985473	0.95825	0.984372
393.5172828	0.801608	0.986013	0.963519	0.984465
396.0000415	0.789974	0.986343	0.968075	0.984719
398.4828001	0.77963	0.986381	0.972288	0.985025
400.9655587	0.770777	0.986248	0.97623	0.985317
403.4483173	0.76335	0.986222	0.979805	0.985777
405.9310759	0.756818	0.986664	0.982827	0.985985
408.4138346	0.751011	0.985584	0.984504	0.985266
410.8965932	0.745466	0.985528	0.985476	0.984771
413.3793518	0.73995	0.985896	0.985775	0.984712
415.8621104	0.734394	0.986169	0.985549	0.984765
418.344669	0.728976	0.985989	0.984797	0.984577
420.8276277	0.723835	0.985885	0.985077	0.984821
423.3103663	0.719128	0.985957	0.985705	0.985224
425.7931449	0.714885	0.985829	0.985226	0.98537
428.2759035	0.711084	0.985512	0.985226	0.984967
430.7588621	0.707658	0.985594	0.985631	0.984881
1435.24114208	0.985259	0.985398	0.985143	0.985279
435.7247194	0.701641	0.985751	0.984952	0.985243
438.2069383	0.698992	0.986406	0.984123	0.985129
440.6899966	0.698697	0.986446	0.983344	0.985325
443.1724553	0.694478	0.986509	0.983357	0.985702
445.6552139	0.692652	0.986066	0.983289	0.985471
448.1379725	0.691128	0.985552	0.982655	0.984951
450.6207311	0.689907	0.985741	0.982358	0.985077
453.1034897	0.688982	0.986019	0.982799	0.985193
455.5852494	0.688346	0.985895	0.983046	0.984956
458.099007	0.687985	0.985849	0.982911	0.984711
460.5517656	0.687885	0.986212	0.983262	0.985008
463.0345242	0.686027	0.986521	0.983931	0.985386
466.5172828	0.683863	0.986238	0.984092	0.985186
468.0000415	0.688957	0.986264	0.983386	0.985253
470.4828001	0.689719	0.986575	0.984089	0.985745
472.9655687	0.690692	0.985535	0.984773	0.986038
475.4483173	0.691869	0.986133	0.984971	0.985651
477.9310759	0.693253	0.985978	0.984771	0.985244
480.4163418	0.694851	0.986274	0.985003	0.98637
482.8985932	0.699667	0.986279	0.985196	0.98516
485.3793518	0.6987	0.986002	0.984468	0.984762
487.8621104	0.700908	0.986156	0.984695	0.984882
490.3448689	0.703352	0.986389	0.985674	0.98545
492.8276277	0.706822	0.986195	0.984083	0.985736
495.3103863	0.708865	0.985865	0.983915	0.985405
497.7931449	0.71188	0.985808	0.984099	0.985141
500.2759035	0.715084	0.985525	0.984794	0.985543
502.7586622	0.718461	0.985631	0.985043	0.98542
505.2414208	0.722004	0.985718	0.984389	0.985126
507.7241794	0.725729	0.985915	0.984061	0.985388
510.206938	0.729643	0.985906	0.984372	0.985972
512.6899666	0.733742	0.985419	0.984448	0.986025
515.1724553	0.738826	0.98591	0.984238	0.985771
517.6552139	0.742499	0.985827	0.984357	0.985523
520.1379725	0.747157	0.98596	0.984764	0.985426
522.6207311	0.751988	0.986156	0.984712	0.985046
525.1034897	0.756981	0.986398	0.984208	0.984746
527.5862484	0.762134	0.986954	0.983929	0.985005
530.069007	0.767491	0.987668	0.984113	0.985505
532.5517656	0.772895	0.988553	0.984353	0.985862
535.0345242	0.778507	0.989778	0.984322	0.985828
537.5172828	0.784252	0.991692	0.984487	0.985962
540.0000415	0.790142	0.994443	0.984982	0.986003
APPENDIX C

Description of LabView Subprograms
AO Config.vi

device (1)

device is the device number you assigned to the plug-in DAQ board during configuration. This parameter defaults to 1. For information about configuration, refer to Chapter 2, Getting Started with the Data Acquisition VIs.

taskID

taskID uniquely identifies the device, group, and I/O operation. Use this value as the taskID to refer to this group in subsequent VI calls.

error out

error out contains error information. If the error in cluster indicates an error, the error out cluster contains the same values as the corresponding elements of error in. If error in did not indicate an error, error out describes the error status produced by this VI.

channels (0)

channels is an array of strings that specifies the set of analog output channels for a group and task. You cannot list a channel more than once. The default input is channel 0.

buffer size (1000 updates)

buffer size is the number of updates you want the buffer to hold. The default input is 1,000 updates. Remember, an update is defined as one data point for each channel in the channels array.

either in (no error)

either in describes error conditions occurring before this VI executes. If an error has already occurred, this VI does not perform any configuration and passes the error in to the error out cluster.

AO Config.vi

Most applications need only connect wires to the controls and indicators displayed in bold. Connections to other controls and indicators are useful only if specifically needed.

Configures an analog output operation for a specified set of channels.
AO Start.vi

update rate

(1000 updates/sec)

Update rate is the number of updates to generate per second. The default input is 1000 updates/sec, which means that each channel in the group is written to (updated) 1000 times per second.

error out

Error out contains error information. If the error in cluster indicated an error, the error out cluster contains the same information. Otherwise, error out describes the error status of this VI.

taskID in

Task ID in identifies the group and I/O operation.

taskID out

Task ID out has the same value as taskID in.

error in (vi error)

Error in describes error conditions occurring before this VI executes. If an error has already occurred, this VI does not write the data to the buffer and passes the error in to the error out cluster.

taskID in

Number of buffer iterations...

Update rate (1000 updates/sec)

Error in (no error)

Clock [update clock 1:1]

Clock source [internal 1]

taskID out

Actual update rate

error out

Most applications need only connect wires to the controls and indicators displayed in bold. Connections to other controls and indicators are useful only if specifically needed.

Starts a buffered analog output operation. AO Start sets the update rate and then starts the generation.
AO Write.vi

taskID in
task ID in identifies
the group and I/O
operation.

taskID out
taskID out has
the same value
as taskID in.

error in (no error)
error in describes error conditions
occurring before this VI
executes. If an error has already
occurred, this VI does not write
the data to the buffer and passes
the error in to the error out
cluster.

equation data

equation data is a 2D array that
contains data to be written to the
buffer in volts or milliamperes. If you
have more than one channel in your
group, you must arrange your data in
columns. The bottom dimension
selects which column and which
channel.

error out
error out contains error information. If
the error in cluster indicated an error,
the error out cluster contains the
same information. Otherwise, error
out describes the error status of this
VI.

Most applications need only connect wires to the controls and indicators
displayed in bold. Connections to other controls and indicators are useful
only if specifically needed.

Writes data into the buffer for a buffered analog output operation.
Reading Data from Spreadsheet

number of rows (alt-1)

number of rows is the maximum number of rows or lines the VI reads. The default value is -1.

file path (dialog if empty)

file path is the path name of the file. If file path is empty (default value) or is Not A Path, the VI displays a File dialog box from which you can select a file. Error 43 occurs if the user cancels the dialog.

all rows

all rows is the data read from the file in the form of a 2D array of single-precision numbers.

Read From Spreadsheet File.vi

Reads a specified number of lines or rows from a numeric text file beginning at a specified character offset and converts the data to a 2D single-precision array of numbers. You can optionally transpose the array. The VI opens the file beforehand and closes it afterwards.
1968 Born in Toronto, Ontario on February 20.

1987 Received OSSGHD from Brampton Centennial Secondary School.

1991 Received Degree of Bachelor of Applied Science from the University of Windsor, Windsor, Ontario.

1993 Received Professional Engineer Licence from the Association of Professional Engineers of Ontario.

1996 Candidate for the Degree of Master of Applied Science at the University of Windsor, Windsor, Ontario.