Flow problems in micropolar fluids.

Gurpal Singh. Guram
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation
https://scholar.uwindsor.ca/etd/2126

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.
FLOW PROBLEMS
IN
MICROPOLAR FLUIDS
by
GURPAL SINGH GURAM

A Dissertation
Submitted to the Faculty of Graduate Studies
through the Department of Mathematics
in Partial Fulfillment of the
Requirements for the
Degree of Doctor of Philosophy
At the University of Windsor

Windsor, Ontario, Canada
December, 1973
Respectfully Dedicated to my beloved parents
ABSTRACT

This dissertation deals with various flow problems in micropolar fluids:

1. Unsteady, laminar and incompressible flows of a micropolar fluid near an accelerated infinite flat plate, with no slip or spin on the plate, are investigated. The method of perturbation expansion of functions of a similarity variable is applied to reduce the coupled partial differential equations to a set of ordinary differential equations. Series solutions in terms of parabolic cylinder functions are found for the particular case $(\mu + \kappa)\gamma = \gamma$. Special cases of the flows near uniformly and suddenly accelerated plates are also obtained.

2. Steady porous plane Couette and Poiseuille flows of a micropolar fluid are studied. It is found, for certain ranges of the rate of suction and injection, that the velocity is composed of a linear combination of real exponential terms, whereas for other values products of exponentials and sinusoidal terms occur, provided that the material constants satisfy certain inequalities.

3. Unsteady, laminar and incompressible flows of a micropolar fluid near an accelerated infinite porous flat plate with variable suction, are investigated. Particular cases of the flows near uniformly and suddenly accelerated porous flat plates with variable suction, are studied.
4. The steady flow of a micropolar fluid through an elliptic tube is investigated. A method of successive approximations is applied to uncouple the governing partial differential equations. The equations, subject to the appropriate boundary conditions, are solved using the semi-inverse method. The graphs for the mean fluxes against eccentricity are drawn. It is observed that the steady flow of micropolar fluids in an elliptic tube is not secondary.

5. Finally, the partial differential equations governing the two dimensional unsteady flow of micropolar fluids, with no external forces and no body couples, are formulated. Kampé de Fériet's (1932) method is extended to find solutions such that the vorticity and spin are constant along a streamline at any particular time. Taylor's (1923) motions of micropolar fluids are studied. Motion due to a single vortex and/or spin filament is investigated. A semi-inverse solution for fluid velocity and spin, in the case \((\mu + \lambda \kappa)j = \gamma\), in terms of Bessel's functions is found.
ACKNOWLEDGEMENTS

The author wishes to express his sincere gratitude to his thesis director, Professor A. C. Smith, for his kind help, guidance and encouragement throughout the course of the research and preparation of this dissertation. It has been a privilege and great pleasure for the author to work with Professor Smith. He is also very grateful to him for providing the financial assistance through grant No. A3098 during the author's graduate work.

The author is indeed grateful to Professor A. C. Eringen, Princeton University, Princeton, New Jersey, U. S. A., for his valuable suggestions and comments.

The author wishes to express his deep gratitude to Rev. D. T. Faught, C.S.B., Professor and Head, Department of Mathematics, for providing research facilities, teaching assistantship and personal encouragement during the course of this study.

Thanks are due to Professor P. H. Kaloni for his untiring help and encouragement during the preparation of this dissertation.

The author is thankful to Dr. O. P. Chandna, Dr. C. K. Meadley and Dr. H. R. Atkinson for their help and personal interest throughout the course of his graduate studies.

The encouraging letters from Sardar Harnek Singh Gill were indeed very helpful and for which the author is grateful to him. The author is also highly grateful to his beloved
parents for their patience, help and encouraging words at all times and to whom this dissertation is respectfully dedicated.

Lastly, he wishes to thank Mrs. V. Stein for her excellence and patience in typing this dissertation.
Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>Acknowledgements</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>Table of Contents</td>
<td>vii</td>
</tr>
<tr>
<td>I</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Section 1. Introduction to fluids with local effects.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Section 2. Basic Equations of Micropolar Fluids.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Section 3. Outline of the present work.</td>
<td>8</td>
</tr>
<tr>
<td>II</td>
<td>Accelerated Flat Plate Problem</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Section 1. Flow of micropolar fluids near an accelerated flat plate.</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Section 2. Flow near a uniformly accelerated flat plate.</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Section 3. Flow near a suddenly accelerated flat plate.</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Section 4. Numerical results for a suddenly accelerated flat plate problem.</td>
<td>44</td>
</tr>
<tr>
<td>III</td>
<td>Flows with Suction and Injection</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Section 1. (a) Steady flows with suction and injection.</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>(b) The nature of the solution.</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>(c) Particular solutions.</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Section 2. Flow near an accelerated porous flat plate with variable suction.</td>
<td>65</td>
</tr>
</tbody>
</table>
Section 3. Flow near a uniformly accelerated porous flat plate with variable suction.

Section 4. Flow near a suddenly accelerated porous flat plate with variable suction.

CHAPTER IV. STEADY FLOW IN AN ELLIPTIC TUBE

Section 1. Equations of motion.

Section 2. Solutions by successive approximations and semi-inverse methods.

Section 3. Remarks.

CHAPTER V. TWO DIMENSIONAL UNSTEADY MICROPOLAR FLOWS

Section 1. Equations of motion.

Section 2. Kampé de Fériet solutions in which the vorticity and spin are constant along streamlines.

Section 3. Taylor motions of micropolar fluids.

Section 4. Motion due to single vortex and/or spin filament.

REFERENCES

VITA AUCTORIS
CHAPTER I
INTRODUCTION

Section 1. Introduction to fluids with local effects.

Several authors have formulated fluid theories which take into account the micro-structure of the fluid. Einstein (1896) studied the motion of spherical particles immersed in a viscous fluid. The presence of the particles influences the properties of the fluid and in particular, its viscosity will be increased.

Jeffery (1922) extended the work of Einstein to the case of ellipsoidal particles. He calculated the fluid motion in the vicinity of a suspended ellipsoid and used the results to find the increase in viscosity due to the presence of ellipsoidal particles in a Newtonian fluid. He ignored particle interactions and observed that the increase in viscosity is greatest when the particles are spherical.

It is well known that many liquids do not move according to the Navier-Stokes equations because of the non-spherical structure of their molecules and thus many recent fluid theories have been developed.

Oseen (1933) gave a theory of liquid crystals, in which the fluid particles are not spherical. According to him,
the forces which cause molecules to combine so as to form a liquid crystal are not of electrostatic nature but are molecular forces. Newton's Law of Viscosity for the stress tensor does not hold for liquid crystals. Oseen assumed that stress is a function of the rate of strain and particle substructure.

Prager (1957) considered a suspension of non-interacting dumbbell particles and found a constitutive equation for the stress and an equation determining the 'preferred' direction adopted by the particles.

Ericksen (1960) gave a theory of anisotropic fluids. Ericksen pointed out that his equations governing the motion of a particle with a single preferred direction can be shown to be the same as the equations obtained by Jeffery (1922) for the motion of an oblate or prolate spheroid. The preferred direction coincides with the axis of revolution of the ellipsoid. However, Ericksen's equations do not account for rotation about this axis. Ericksen's equations may be classified as those governing a fluid with non-interacting substructure. The stress tensor for anisotropic fluids is symmetric because of the absence of couple stress.

Hand (1962) proposed a theory of anisotropic fluids in which the stress tensor is a function of the rate of the deformation tensor and a symmetric tensor describing the microscopic structure of a fluid. He considered the fluid
to be incompressible and its properties independent of
temperature. These fluids exhibit non-Newtonian behavior
typical of certain higher polymer solutions. The expression,
for the stress tensor has been written using results from the
Hamilton-Cayley theorem. This theory is shown to contain
Prager's (1957) theory of dumbbell suspensions as a special
case. Hand compared the results of the anisotropic theory
with experiments on high polymers such as polyisobutylene.

Eringen (1966) has presented a theory of micropolar
fluids. The theory of micropolar fluids has appeared under
a variety of names (Cosserat fluids, generalised fluids,
polar fluids, ...) during the past decade, with a corresponding
multiplicity of notation. Following Eringen (1966), micropolar
fluids are viscous fluids with five additional coefficients
of viscosity when compared with the usual Newtonian fluids.
These fluids differ from non-Newtonian fluids in that they
exhibit microinertial effects and can support couple stresses
and body couples. Shearing stress components in these fluids
are affected by the vorticity and micro-rotation of the fluid
and are no longer symmetric. The important feature of these
fluids is the micro-rotation. According to Eringen (1966),
micro-rotation bears a resemblance to the vorticity in as
much as only those components of it are non-vanishing which
correspond to the non-vanishing components of vorticity and
they depend upon the same variable on which the vorticity
components depend. Physically, some polymeric fluids and
fluids containing small amounts of polymeric additives may
be represented by the mathematical model underlying micropolar fluids. Animal blood happens to fall into this category. In a series of papers Lee and Eringen (1971) have applied the theory of micropolar fluids to the study of liquid crystals and have obtained many new interesting results. One may refer to Eringen (1966) for a detailed account of this theory and for a derivation of the basic equations governing the behaviour of such a fluid.
Section 2. Basic Equations of Micropolar Fluids.

The basic equations of the micropolar fluids are the field equations, the constitutive equations, boundary conditions and restrictions on the constitutive coefficients.

(i) Field Equations. The field equations for incompressible micropolar fluids as given by Eringen (1966) are,

\[\nabla \cdot \mathbf{v} = 0 \] \hspace{1cm} (1.1)

\[(\lambda + 2\mu + \kappa) (\nabla \cdot \mathbf{v}) - (\mu + \kappa) \nabla \times \nabla \times \mathbf{v} + \kappa \mathbf{v} - \nabla p + \rho \mathbf{j} = \rho \mathbf{a} \] \hspace{1cm} (1.2)

\[(\alpha + \beta + \gamma) \nabla \times (\nabla \times \mathbf{v}) - \gamma (\nabla \times \nabla \times \mathbf{v}) + \kappa \nabla \times \mathbf{v} - 2\kappa \mathbf{v} + \rho \mathbf{j} = \rho \mathbf{j} \cdot \mathbf{v} \] \hspace{1cm} (1.3)

where \(\mathbf{v} \) is the velocity, \(\mathbf{j} \) the micro-rotation or spin, \(p \) the thermodynamic pressure, \(\mathbf{a} \) and \(\mathbf{j} \) the body-force and couple per unit mass, \(\rho \) the density and \(\mathbf{j} \) the micro-inertia; \(\lambda \), \(\mu \), \(\kappa \), \(\alpha \), \(\beta \) and \(\gamma \) are the material constants (viscosity coefficients), where the dot signifies material differentiation with respect to time. Thermal effects have been neglected.

(ii) Constitutive Equations. The constitutive equations giving \(t_{kl} \), the stress tensor, and \(m_{kl} \), the couple stress tensor, are, in the Cartesian co-ordinates, as given by Eringen (1966),

\[t_{kl} = (-p + \lambda \nabla_{r} \cdot \mathbf{v}) \delta_{kl} + \mu (\nabla_{k} \cdot \mathbf{v} + \nabla_{l} \cdot \mathbf{v}) + \kappa (\nabla_{k} \cdot \mathbf{v} - \delta_{kl} e_{kl} \cdot \mathbf{v} \cdot \mathbf{v}) \] \hspace{1cm} (1.4)

\[m_{kl} = \alpha \nabla_{r} \times \mathbf{v} \cdot \mathbf{v}_{l,k} + \beta \mathbf{v}_{k,l} + \gamma \mathbf{v}_{k,k} \] \hspace{1cm} (1.5)

where \(\delta_{kl} \) and \(e_{klm} \) are the Kronecker delta and the
alternating symbol respectively, and the comma denotes partial differentiation with respect to a space co-ordinate. Repeated indices are to be summed.

(iii) **Boundary Conditions.** The boundary conditions of micropolar fluids at a rigid boundary are given by Eringen (1966),

\[
\begin{align*}
\phi(x_B, t) &= \phi_B \\
\gamma(x_B, t) &= \gamma_B
\end{align*}
\]

(1.6)

where \(x_B \) is a point on a solid boundary having prescribed velocity \(\phi_B \) and prescribed micro-rotation velocity \(\gamma_B \). These conditions express the assumption of adherence of the fluid to the solid boundary.

There have been other boundary conditions, particularly for the micro-rotation or spin, proposed by Aero et al (1969) and Condiff and Dahler (1964). As an alternative to (1.6), which implies no spin at the solid boundary, these authors have suggested that the boundary condition in which the anti-symmetric part of the stress is zero at wall, may be more appropriate in some circumstances. Aero et al (1965) have put forward yet another boundary condition in which the angular velocity of a fluid particle is equal to the angular velocity of the surface.

(iv) **Restrictions on Constitutive Coefficients.** The following restrictions on the viscosity coefficients were obtained, provided
that the Clausius-Duhem inequality is satisfied locally for all independent processes by Eringen (1966).

\[(3\lambda + 2\mu + \kappa) \geq 0 , \quad 2\mu + \kappa > 0 , \quad \kappa \geq 0 \]

\[(3\sigma + \beta + \gamma) > 0 , \quad -\gamma \leq \beta \leq \gamma \quad (1.7)\]
Section 3. Outline of the present work.

The problems in micropolar fluids are challenging because of the fact that one has to deal with coupled non-linear partial differential equations. It is interesting to study the behaviour of micropolar fluids to determine if they resemble Newtonian fluids or if they exhibit characteristic non-Newtonian behaviour. In the micropolar fluid model, these fluids have a micro-structure endowed with spin inertia and a capacity for sustaining stress and body moments. The behaviour of the micro-structure is coupled to the macroscopic behaviour, and vice versa. Eringen (1966) worked out in detail the steady flow along a circular channel. Willson (1969) analysed several other basic flows, such as plane shear flow, flow between rotating cylinders, surface waves and similar properties and in (1968) the same author had studied the stability of the flow of a micropolar fluid down an inclined plane. The main feature of all these investigations was the role played by a certain combination of the parameters describing the fluid. Willson (1970) investigated steady flows of the boundary layer type using the Kármán-Polhausen method and, in particular, flows in the neighbourhood of stagnation points.

The purpose of the present work is to investigate the generally accelerated flat plate problem, some steady and unsteady flows with suction and injection, steady flow in an elliptic tube, and the problem of the most general solutions.
possible when the vorticity and spin are constant along a streamline at any particular time.

In chapter II, unsteady, laminar and incompressible flows of a micropolar fluid near an accelerated infinite flat plate, with no slip or spin on the plate, are investigated. The method of perturbation expansion of functions of a similarity variable is applied to reduce the coupled partial differential equations to a set of ordinary differential equations. Series solutions in terms of parabolic cylinder functions are found for the particular case \((u+\kappa)|j = \gamma\). Expressions for the fluid velocity, micro-rotation or spin velocity, stresses and couple stresses are obtained. For \(\kappa = 0\) and vanishing micro-rotation, our solution reduces to the classical form. Special cases of the flows near uniformly and suddenly accelerated plates are obtained by putting \(n = 1\) and \(n = 0\) respectively, in the accelerated flat plate problem. In the last section of this chapter, some numerical results for different values of parameters for a suddenly accelerated flat plate problem are obtained.

In section 1 of chapter III, steady porous plane Couette and Poiseuille flows of a micropolar fluid are studied. It is found, for certain ranges of the rate of suction and injection, that the velocity is composed of a linear combination of real exponential terms, whereas for other values products of exponentials and sinusoidal terms occur, provided that the material constants satisfy certain inequalities.
In section 2 of chapter III, unsteady, laminar and incompressible flow of a micropolar fluid near an accelerated infinite porous flat plate with variable suction, are investigated. A perturbation expansion of functions of a dimensionless variable is used and in the case \((\omega + \kappa)j = \gamma\), a series solution in terms of parabolic cylinder functions is found. Expressions for fluid velocity, and micro-rotation or spin velocity are obtained. For \(\kappa = 0\) and vanishing micro-rotation, our solution reduces to the classical form. In sections 3 and 4 of this chapter, particular cases of the flows near uniformly and suddenly accelerated porous flat plates with variable suction, are studied.

In chapter IV, the steady flow of a micropolar fluid through an elliptic tube is investigated. A method of successive approximations is applied to uncouple the governing partial differential equations. The equations, subject to the appropriate boundary conditions, are solved using the semi-inverse method. Expressions for fluid velocity, and two micro-rotation velocity components are obtained. The difference between the volume fluxes \(\int w_0 dA\) and \(\int w_1 dA\), in order to estimate the magnitude of the first approximation to the zeroth approximation, is found. The graphs for mean fluxes \(F_0\), \(F_1\) and \(F_2\) against \(\epsilon\) (eccentricity) are drawn. It is observed that the steady flow in an elliptic tube is not secondary but that curves of spin velocity \(\nu = \text{constant}, \) and
\(\phi = \text{constant} \), are similar in pattern to the secondary flow type as observed in non-Newtonian fluids by Green and Rivlin (1956), and in visco-elastic fluids by Langlois and Rivlin (1963).

In section 1 of chapter V, the partial differential equations governing the two-dimensional unsteady flow of micropolar fluids, with no external forces and no body couples, are formulated in the Cartesian co-ordinate system. In section 2 of this chapter, Kampé de Fériet's (1932) method is extended to find solutions such as the vorticity and spin are constant along a streamline at any particular time. In section 3 of this chapter, following Taylor (1923), we study Taylor's motions of micropolar fluids. In section 4, motion due to a single vortex and/or spin filament is investigated. A semi-inverse solution for fluid velocity and "spin" in the case \((\mu + \frac{1}{2} k) j = \gamma \), in terms of Bessel's functions, is found.

The problems mentioned in this chapter have no rigid boundaries, hence the solutions and the behaviour of fluids do not depend on the particular choice of boundary conditions (i.e. "hyperstick").
CHAPTER II
ACCELERATED FLAT PLATE PROBLEM

Unsteady flows of a micropolar fluid, also called a Cosserat or polar fluid, or a fluid with rigid micro-
structure, have been considered by several authors in the past few years. Peddisen and McNitt (1970) investigated
the problem of the infinite flat plate, started impulsively from rest, and obtained a solution good for small times
and distances from the plate by truncating a series expansion of the Laplace transform of the solution in powers of distance
from the plate.

Willson (1969) considered the propagation of plane wave disturbances in an unbounded fluid and also the flow
induced by an infinite plane boundary executing sinusoidal oscillations parallel to itself.

Allen and Kline (1970) obtained solutions for flow in the half-space above an infinite plate performing sinusoidal
oscillations.

Kirwan and Newman (1972) considered flow in a channel of unit width when the boundary conditions are time-dependent,
and examined the transition from arbitrary initial conditions to steady flow.

In this chapter we consider unsteady, laminar and incompressible flows of a micropolar fluid near a generally
accelerated flat plate using Eringen's (1966) theory.
Section 1. Flow of micropolar fluids near an accelerated
flat plate:

Here we consider one dimensional, unsteady, laminar
and incompressible flow of a micropolar fluid near an
infinite flat plate, choosing the x-axis along the flat
plate, and the y-axis perpendicular to it. The flow is
independent of z.

When \(t \leq 0 \), the fluid is assumed to be everywhere
stationary, and when \(t > 0 \), the plate is assumed to have
velocity \(u = At^n \), where \(n \) is a positive integer (or
half-integer) and \(A \) is a constant. As the plate is infinite
in length, all the variables in this problem are functions
of y and t only.

The material constants of the micropolar fluid namely
\(\lambda, \mu, \kappa, \alpha, \beta \) and \(\gamma \), the density \(\rho \), and the micro-
inertia \(j \), are assumed to be independent of position. We
eglect body forces and body couples. Setting,

\[
y = (u(y,t), 0, 0), \quad \dot{y} = (0, 0, \phi(y,t))
\tag{2.1}
\]

and \(\rho = \text{constant} \), the equation of continuity (1.1) is
satisfied identically, and the field equations (1.2) and
(1.3) reduce to

\[
(\mu+\kappa) \frac{\partial^2 u}{\partial y^2} + \kappa \frac{\partial \phi}{\partial y} = \rho \frac{\partial u}{\partial t} \tag{2.2}
\]

\[
\gamma \frac{\partial^2 \phi}{\partial y^2} - \kappa \frac{\partial u}{\partial y} - 2\kappa \phi = \rho j \frac{\partial \phi}{\partial t} \tag{2.3}
\]
\[\frac{\partial \rho}{\partial y} = 0 \] \hspace{1cm} (2.4)
\[\frac{\partial \rho}{\partial z} = 0 \] \hspace{1cm} (2.5)

The partial differential equations (2.2) and (2.3) are to be solved subject to the following initial and boundary conditions:

\begin{align*}
y > 0, \ t < 0; \ \ u = \phi = 0
\end{align*}
\begin{align*}
y = 0, \ t > 0; \ \ u = At^n, \ \phi = 0
\end{align*} \hspace{1cm} (2.6)
\begin{align*}
y \to \infty, \ t > 0; \ \ u \to 0, \ \phi \to 0
\end{align*}

The method of perturbation expansion of functions of a similarity variable is applied to reduce the partial differential equations (2.2) and (2.3) to two systems of ordinary differential equations. Series solutions in terms of parabolic cylinder functions are then obtained for two systems of ordinary differential equations. For small values of \(\epsilon \), where \(\epsilon = \frac{k \alpha}{\rho j} \), we expand \(u \) and \(\phi \) in ascending powers of \(\epsilon \) as follows:

\[u = At^n [f_0(n) + \epsilon f_1(n) + \epsilon^2 f_2(n) + \ldots \ldots] , \]
\[\phi = Bt^{n+\frac{1}{2}} [g_0(n) + \epsilon g_1(n) + \epsilon^2 g_2(n) + \ldots \ldots] , \hspace{1cm} (2.7) \]

where \(n = \frac{V}{\sqrt{2kt}} \), \(k = \frac{\mu + k}{\rho} \).
It is easily seen that ϵ and η are both dimensionless. A and B are constants having the dimensions $L^{1}T^{-n-1}$ and $T^{-n-3/2}$ respectively. Substituting (2.7) in (2.2) after a little simplification, we get

\[
(f_{0}'' + \epsilon f_{1}'' + \epsilon^{2}f_{2}'' + \ldots) + \left[(\eta f_{0}' - 2nf_{0}') + \epsilon(\eta f_{1}' - 2(n+1)f_{1})
+ \epsilon^{2}(\eta f_{2}' - (2n+4)f_{2}') + \ldots\right] = b_{1}(\epsilon g_{0}' + \epsilon^{2}g_{1}' + \ldots),
\]

(2.8)

where

\[
b_{1} = \frac{-\sqrt{2} j B}{A\sqrt{k}},
\]

(2.9)

and the prime denotes differentiation with respect to η. Identifying the coefficients of the like powers of ϵ in (2.8), we obtain the following system of ordinary differential equations:

\[
f_{0}'' + \eta f_{0}' - 2nf_{0}' = 0,
\]

\[
f_{1}'' + \eta f_{1}' - 2(n+1)f_{1}' = b_{1}g_{0}',
\]

(2.10)

\[
f_{2}'' + \eta f_{2}' - 2(n+2)f_{2}' = b_{1}g_{1}'.
\]

Substituting (2.7) into (2.3) and simplifying, we obtain

\[
(g_{0}'' + \epsilon g_{1}'' + \epsilon^{2}g_{2}'' + \ldots) + b_{2}[ng_{0}' - (2n+1)g_{0} + \epsilon(ng_{1}' - (2n+3)g_{1})
+ \epsilon^{2}(ng_{2}' - (2n+5)g_{2}') + \ldots] - 4b_{2}(\epsilon g_{0}' + \epsilon^{2}g_{1}') + \ldots
\]

\[
= b_{3}(f_{0}' + \epsilon f_{1}' + \epsilon^{2}f_{2}' + \ldots),
\]

(2.11)
where
\[b_2 = \frac{k \rho_1}{\gamma} \]
\[b_3 = \frac{k}{\gamma} \sqrt{\frac{\Lambda}{B}} \]
(2.12)

and the prime denotes differentiation with respect to \(\eta \).

Comparing the coefficients of like powers of \(\epsilon \) in (2.11), we obtain the following system of ordinary differential equations:

\[\xi_0'' + b_2 \eta \xi_0' - b_2 (2n+1) \xi_0 = b_3 f_0', \]

\[\xi_1'' + b_2 \eta \xi_1' - b_2 (2n+3) \xi_1 = 4b_2 \xi_0 + b_3 f_1', \]
(2.13)

\[\xi_2'' + b_2 \eta \xi_2' - b_2 (2n+5) \xi_2 = 4b_2 \xi_1 + b_3 f_2'. \]

The boundary conditions (2.6) in the new variables become:

at \(n = 0 \), \(f_0 = 1 \), \(\xi_0 = 0 \),
\[f_p = 0, \quad \xi_p = 0, \quad p = 1, 2, 3, \ldots \]
(2.14)

at \(n = \infty \), \(f_p = 0, \quad \xi_p = 0, \quad p = 0, 1, 2, \ldots \)
(2.15)

We need to solve the two systems of ordinary differential equations (2.10) and (2.13) subject to the boundary conditions (2.14) and (2.15).

If we substitute
\[f_0(\eta) = F_0(\eta)e^{-\eta^2/4} \]
(2.16)
in the first equation of (2.10), then \(F_0 \) satisfies the equation

\[
F''_0 - \left(+ \frac{1}{2} + 2n + \frac{n^2}{4} \right) F_0 = 0 .
\] (2.17)

Writing the above equation in the standard form of Weber's equation, which may be found in Whittaker and Watson (1965, pp 347), we obtain

\[
F''_0 + \left[-(2n+1) + \frac{1}{2} - \frac{n^2}{4} \right] F_0 = 0 .
\] (2.18)

Now \(2n+1 \) is an integer, hence two linearly independent solutions of (2.18) are \(D_{-2n-1}(\eta) \) and \(D_{2n}(\eta) \).

[Erdeyyl et al (Volume II, 1953, pp 117)], parabolic cylinder functions, where \(D_{\alpha}(\eta) \) satisfies [Whittaker and Watson (1965, pp 347)] the equation

\[
\frac{d^2 D_{\alpha}(\eta)}{d\eta^2} + \left(\alpha + \frac{1}{2} - \frac{n^2}{4} \right) D_{\alpha}(\eta) = 0 .
\] (2.19)

The general solution of (2.18) is given by

\[
F_0 = C_1 D_{-2n-1}(\eta) + C_2 D_{2n}(\eta) ,
\] (2.20)

where \(C_1 \) and \(C_2 \) are arbitrary constants of integration.

Using (2.20) in (2.16), the general solution of the first of (2.10) is found to be

\[
f_0 = C_1 e^{-\eta^2/4} D_{-2n-1}(\eta) + C_2 e^{-\eta^2/4} D_{2n}(\eta) .
\] (2.21)
The behaviour of the parabolic cylinder function at infinity, is given by the asymptotic expansion, which may be found in Whittaker and Watson (1965; pp 347), as \(n \to \infty \),

\[
D_\alpha(n) \sim e^{-n^2/4} n^{\alpha} \left(1 - \frac{\alpha(\alpha-1)}{2n^2} + \frac{\alpha(\alpha-1)(\alpha-2)(\alpha-3)}{2 \cdot 4 \cdot n^4} + \ldots \right)
\]

where \(|\arg n| < \frac{3\pi}{4} \). \((2.22) \)

We need to find the arbitrary constants \(C_1 \) and \(C_2 \) in (2.21) subject to the boundary conditions (2.14) and (2.15). If the solution (2.21) is to be bounded at \(n = \infty \), in view of (2.22), we must have \(C_2 = 0 \). The boundary condition at \(n = 0 \), gives

\[
C_1 = \frac{1}{D_{-2n-1}(0)} = \Gamma(n+1). (\pi)^{\frac{1}{2}} \cdot 2^{\frac{1}{2}} \cdot n^{\frac{1}{2}}
\]

(2.23)

where we made use of the formula for the series for \(D_\alpha(z) \), which may be found in Whittaker and Watson (1965; pp 347).

Using (2.23) in (2.21) and taking \(C_2 = 0 \), we obtain

\[
f_0 = \Gamma(n+1). (\pi)^{\frac{1}{2}} \cdot 2^{\frac{1}{2}} \cdot n^{\frac{1}{2}} \cdot e^{-n^2/4} \cdot D_{-2n-1}(n).
\]

(2.24)

Differentiating (2.24), with respect to \(n \), we get

\[
f_0' = (-1)\Gamma(n+1)(\pi)^{\frac{1}{2}} \cdot 2^{\frac{1}{2}} \cdot n^{\frac{1}{2}} \cdot e^{-n^2/4} \cdot D_{-2n}(n),
\]

(2.25)

where we made use of the formula Erdelyi et al (1953, p. 119),
\[
\frac{d}{dn} \left[n^{-\frac{3}{2}} D_{-2n-1}(\eta) \right] = (-1)^{n+\frac{1}{2}} n^{\frac{1}{2}} D_{-2n}(\eta) \quad (2.26)
\]

Using (2.25) in the right-hand side of the first of (2.13), we obtain

\[
\xi_0 + b_2 n \xi_0 - b_2 (2n+1) \xi_0 = -\frac{b_3(\pi)}{2} \eta^{n+\frac{1}{2}} - n^{2/4} D_{-2n}(\eta) \quad (2.27)
\]

The homogeneous differential equation of (2.27) is

\[
\frac{d^2 \xi_0}{b_2 \eta^2} + \frac{d \xi_0}{dn} - (2n+1) \xi_0 = 0 \quad (2.28)
\]

In (2.28) let the equation be written in the form

\[
\frac{1}{b_2} \frac{d^2 \xi_0}{\eta^2} + \frac{d \xi_0}{dn} - (2n+1) \xi_0 = 0 \quad (2.29)
\]

and let \(\xi = n \eta \sqrt{b_2} \),

then

\[
\frac{d^2 \xi_0}{\eta^2} + \xi \frac{d \xi_0}{d \xi} - (2n+1) \xi_0 = 0 \quad (2.30)
\]

Now let \(\xi_0 = \xi_0 e^{-\frac{1}{4} \xi^2} \),

then

\[
\frac{d^2 \xi_0}{\eta^2} + \left[-2n - \frac{3}{2} - \frac{1}{4} \xi^2 \right] \xi_0 = 0 \quad (2.31)
\]

Writing (2.32) in the standard form of Weber's differential equation, we obtain
\[G_0'' + \left[-(2n+2) + \frac{1}{2} - \frac{\xi^2}{4} \right] G_0 = 0. \tag{2.33} \]

Here \(2n+2\) is an integer and so two linearly independent solutions of (2.33) are \(D_{-2n-2}(\xi)\) and \(D_{2n+1}(i\xi)\). The general solution of (2.33) is given by

\[G_0 = C_3 D_{-2n-2}(\xi) + C_4 D_{2n+1}(i\xi), \tag{2.34} \]

where \(C_3\) and \(C_4\) are arbitrary constants.

If we change the independent variable \(\xi = \sqrt{b_2} \eta\), the equation (2.27) transforms into

\[
\frac{d^2 g_0}{d\xi^2} + \xi \frac{dg_0}{d\xi} - (2n+1)g_0 = \frac{b_2}{b_2} \left(\frac{1}{2} \right)^{\frac{1}{2}} \left(\frac{n+\frac{1}{2}}{2} \right)^{\frac{1}{2}} \left(\frac{\xi^2}{4b_2} \right). \tag{2.35} \]

Using (2.34) into (2.29) and changing the independent variable, the complementary function of (2.35) is given by

\[g_0 = C_3 e^{-\frac{\xi^2}{4b_2}} D_{-2n-2}(\xi) + C_4 e^{-\frac{\xi^2}{4b_2}} D_{2n+1}(i\xi). \tag{2.36} \]

To find the particular solution of the differential equation (2.35), we let

\[g_0 = A e^{-\frac{1}{4} \frac{\xi^2}{b_2}} D_{-2n}(\frac{\xi}{\sqrt{b_2}}). \tag{2.37} \]

where \(A\) is a constant yet to be determined. Using (2.37) and the formula (2.26), the left-hand side of (2.35)
becomes

\[\frac{d^2 \xi_0}{d \xi^2} + \frac{d \xi_0}{d \xi} - (2n+1) \xi_0 \]

\[= \frac{A}{b_2} e^{-\frac{1}{4} \left(\frac{\xi}{\sqrt{b_2}} \right)^2} D_{-2n+2} \left(\frac{\xi}{\sqrt{b_2}} \right) - \frac{A}{\sqrt{b_2}} \xi \left(\frac{\xi}{\sqrt{b_2}} \right)^2 D_{-2n+1} \left(\frac{\xi}{\sqrt{b_2}} \right) \]

\[- (2n+1) \cdot A \cdot e^{-\frac{1}{4} \left(\frac{\xi}{\sqrt{b_2}} \right)^2} D_{-2n} \left(\frac{\xi}{\sqrt{b_2}} \right). \]

(2.38)

It is clear that the computation would become increasingly lengthy as we proceed, due to the occurrence of parabolic cylinder function with arguments \(\eta \) and \(\xi = \eta \sqrt{b_2} \).

However, considerable simplification is achieved if we consider the particular case \(b_2 = 1 \), that is \((\mu + \kappa)j = \gamma \), and this we proceed to do.

Our system of equations (2.13) then reduces to

\[\xi_0'' + \xi_0 = (2n+1) \xi_0 = b_3 f_0 \]

\[\xi_1'' + \xi_1 = (2n+3) \xi_1 = 4 \xi_0 + b_3 f_1 \]

(2.39)

\[\xi_2'' + \xi_2 = (2n+5) \xi_2 = 4 \xi_1 + b_3 f_2 \]

We shall make use of the formula Erdélyi et al (1953, pp 119):

\[D_{m+1}(n) - n D_m(n) + m D_{m+1}(n) = 0 \]

(2.40)
Using (2.40) and letting \(b_2 = 1 \) so that \(\xi = n \), we find from (2.38) that

\[
\xi_0' + n \xi_0' - (2n+1)\xi_0 = -2A e^{-n^2/4} D_{-2n}(n). \tag{2.41}
\]

Also, from equation (2.35) when \(b_2 = 1 \) and so \(\xi = n \), we have

\[
\xi_0' + n \xi_0' - (2n+1)\xi_0 = -b_3(\pi) \frac{1}{2} n^{1/2} \Gamma(n+1) e^{-n^2/4} D_{-2n}(n). \tag{2.42}
\]

Comparing the coefficients of \(e^{-n^2/4} D_{-2n}(n) \) in the right-hand sides of (2.41) and (2.42), we find that

\[
A = b_3(\pi) \frac{1}{2} \Gamma(n+1) 2^{n-1/2}. \tag{2.43}
\]

Thus the particular integral of the first of (2.39) is given by

\[
\xi_0 = b_3(\pi) \frac{1}{2} \Gamma(n+1) 2^{n-1/2} e^{-n^2/4} D_{-2n}(n). \tag{2.44}
\]

The complementary function of the first of (2.39) is

\[
\xi_0 = C_3 e^{-n^2/4} D_{-2n}(n) + C_4 e^{-n^2/4} D_{2n+1}(in). \tag{2.45}
\]

Hence the general solution of the first of (2.39), which is the sum of the complementary function (2.45) and the particular integral (2.44), is given by
\[
G_0 = C_3 e^{-n^2/4} D_{-2n-2}(\eta) + C_4 e^{-n^2/4} D_{2n+1}(\eta)
\]
\[
+ b_3(\pi)^{-1/2} \cdot \Gamma(n+1)^{1/2} \cdot e^{-n^2/4} D_{-2n}(\eta). \tag{2.46}
\]

We need to find \(C_3 \) and \(C_4 \) subject to the boundary conditions (2.14) and (2.15). If the solution (2.46) is to be bounded at \(\eta = \infty \), we must have \(C_4 = 0 \), and the boundary condition at \(\eta = 0 \) gives

\[
C_3 = -b_3(\pi)^{-1/2} \cdot \Gamma(n+1)^{1/2} \cdot 2^{n-1/2} \cdot \frac{D_{-2n}(0)}{D_{-2n-2}(0)}
\]
\[
= -b_3(\pi)^{-1/2} \cdot \Gamma(n+1)^{1/2} \cdot 2^{n+1/2} \cdot (n+1/2). \tag{2.47}
\]

Using (2.47) and taking \(C_4 = 0 \) in (2.46), we obtain the general solution of the first of (2.39), subject to the appropriate boundary conditions, as follows:

\[
G_0 = -b_3(\pi)^{-1/2} \cdot \Gamma(n+1)^{1/2} \cdot 2^{n+1/2} \cdot (n+1/2) \cdot e^{-n^2/4} D_{-2n-2}(\eta)
\]
\[
+ b_3(\pi)^{-1/2} \cdot \Gamma(n+1)^{1/2} \cdot 2^{-n-1/2} \cdot e^{-n^2/4} D_{-2n}(\eta). \tag{2.48}
\]

We shall use the formula Erdélyi et al at (1953, pp 119):
\[
\frac{d^m}{dn^m}[e^{-\frac{n^2}{4}} D_p(n)] = (-1)^m e^{-\frac{n^2}{4}} D_{p+m}(n) \quad (2.49)
\]

\[m = 1, 2, 3, \ldots \]

Differentiating (2.48) with respect to \(n \) and using the formula (2.49), we find that

\[
g_0 = b_3(\pi)^{-\frac{1}{2}} \Gamma(n+1) \cdot 2^{\frac{n+1}{2}} \cdot (\frac{n+1}{2}) \cdot e^{-\frac{n^2}{4}} D_{-2n-1}(n)
\]

\[- b_3(\pi)^{-\frac{1}{2}} \Gamma(n+1) \cdot 2^{\frac{n-1}{2}} \cdot e^{-\frac{n^2}{4}} D_{-2n+1}(n) \quad (2.50)
\]

Substituting (2.50) into the right hand side of the second of (2.10), the differential equation becomes

\[
f_1'' + nf_1' - 2(n+1)f_1 = b_1 b_3(\pi)^{-\frac{1}{2}} \Gamma(n+1) \cdot 2^{\frac{n+1}{2}} \cdot (\frac{n+1}{2}) \cdot e^{-\frac{n^2}{4}} D_{-2n-1}(n) - b_1 b_3(\pi)^{-\frac{1}{2}} \Gamma(n+1) \cdot 2^{\frac{n-1}{2}} \cdot e^{-\frac{n^2}{4}} D_{-2n+1}(n) \quad (2.51)
\]

To find the complementary function of the differential equation (2.51), the corresponding homogeneous equation is

\[
f_1'' + nf_1' - 2(n+1)f_1 = 0 \quad (2.52)
\]

If we substitute
\[f_1 = F_1 e^{-\frac{\eta^2}{4}} \]

into the equation (2.52), then \(F_1 \) satisfies the equation

\[F_1'' + [-(2n+3) + \frac{1}{2} - \frac{n^2}{4}] F_1 = 0 . \quad (2.53) \]

Now \((2n+3)\) is an integer, hence two linearly independent solutions of the differential equation (2.53) are

\[D_{-(2n+3)}(\eta) \quad \text{and} \quad D_{2n+2}(\eta_1) . \]

The general solution of (2.53) is given by

\[F_1 = C_5 D_{-2n-3}(\eta) + C_6 D_{2n+2}(\eta_1) , \quad (2.54) \]

where \(C_5 \) and \(C_6 \) are arbitrary constants of integration.

Therefore, the complementary function of the differential equation (2.51) is

\[f_1 = C_5 e^{-\frac{\eta^2}{4}} D_{-2n-3}(\eta) + C_6 e^{-\frac{\eta^2}{4}} D_{2n+2}(\eta_1) . \quad (2.55) \]

To find the particular integral of the differential equation (2.51), we let

\[f_1 = A_1 e^{-\frac{\eta^2}{4}} D_{-2n-1}(\eta) + A_2 e^{-\frac{\eta^2}{4}} D_{-2n+1}(\eta) , \quad (2.56) \]

where \(A_1 \) and \(A_2 \) are constants yet to be determined.

Substituting (2.56) into (2.51) and making use of the formulae (2.40) and (2.49), we find
\[A_1 = -b_1 b_3(\pi)^{-\frac{1}{2}} \cdot (n+\frac{1}{2}) \cdot \Gamma(n+1) \cdot 2^{n-\frac{1}{2}} \]
\[A_2 = b_1 b_3(\pi)^{-\frac{1}{2}} \cdot \Gamma(n+1) \cdot 2^{\frac{n-5}{2}} \]
\[(2.57) \]

Using (2.57) in (2.56), the particular integral of the differential equation (2.51) becomes

\[g_1 = -b_1 b_3(\pi)^{-\frac{1}{2}} \cdot (n+\frac{1}{2}) \cdot \Gamma(n+1) \cdot 2^{n-\frac{1}{2}} \cdot e^{-\frac{n^2}{4}} \]
\[+ b_1 b_3(\pi)^{-\frac{1}{2}} \cdot \Gamma(n+1) \cdot 2^{\frac{n-5}{2}} \cdot e^{-\frac{n^2}{4}} \]
\[D_{-2n+1}(\eta). \quad (2.58) \]

Thus the general solution of the differential equation, which is the sum of the complementary function (2.55) and the particular integral (2.58), is

\[f_1 = C_5 e^{-\frac{n^2}{4}} \cdot D_{-2n+3}(\eta) + C_6 e^{-\frac{n^2}{4}} \cdot D_{2n+2}(\eta) \]
\[- b_1 b_3(\pi)^{-\frac{1}{2}} \cdot (n+\frac{1}{2}) \cdot \Gamma(n+1) \cdot 2^{n-\frac{1}{2}} \cdot e^{-\frac{n^2}{4}} \]
\[+ b_1 b_3(\pi)^{-\frac{1}{2}} \cdot \Gamma(n+1) \cdot 2^{\frac{n-5}{2}} \cdot e^{-\frac{n^2}{4}} \]
\[D_{-2n+1}(\eta). \quad (2.59) \]

If the solution (2.59) is to be bounded at \(n = \infty \), we must have \(C_6 = 0 \), and the boundary condition (2.14) at \(n = 0 \) gives
\[C_5 = b_1 b_3 (\pi)^{-\frac{1}{2}} \cdot (n+\frac{1}{2}) \cdot \Gamma(n+1) \cdot 2^{n-\frac{1}{2}} \cdot \frac{D_{-2n-1}(0)}{D_{-2n-3}(0)} \]

\[-b_1 b_3 (\pi)^{-\frac{1}{2}} \cdot \Gamma(n+1) \cdot 2^{-\frac{5}{2}} \cdot \frac{D_{-2n+1}(0)}{D_{-2n-3}(0)}, \]

which simplifies to

\[C_5 = b_1 b_3 (n+1) \cdot (\pi)^{-\frac{1}{2}} \cdot 2^{n-\frac{1}{2}} \cdot \Gamma(n+2). \quad (2.60) \]

Using (2.60) in (2.59) and taking \(C_6 = 0 \), we obtain

the general solution of (2.51), subject to the appropriate
boundary conditions, as follows:

\[f_1 = b_1 b_3 (n+1)(\pi)^{-\frac{1}{2}} \cdot 2^{n-\frac{1}{2}} \cdot \Gamma(n+2) e^{-\eta^2/4} \cdot D_{-2n-3}(\eta) \]

\[-b_1 b_3 (\pi)^{-\frac{1}{2}} \cdot (n+\frac{1}{2}) \cdot \Gamma(n+1) 2^{n-\frac{1}{2}} \cdot e^{-\eta^2/4} \cdot D_{-2n-1}(\eta) \]

\[+ b_1 b_3 (\pi)^{-\frac{1}{2}} \cdot \Gamma(n+1) \cdot 2^{-\frac{5}{2}} \cdot e^{-\eta^2/4} \cdot D_{-2n+1}(\eta). \quad (2.61) \]

Differentiating (2.61) with respect to \(\eta \), and making use of the formula (2.49), we obtain

\[f_1' = -b_1 b_3 (n+1)(\pi)^{-\frac{1}{2}} \cdot 2^{n-\frac{1}{2}} \cdot \Gamma(n+2) e^{-\eta^2/4} \cdot D_{-2n-2}(\eta) \]

\[+ b_1 b_3 (\pi)^{-\frac{1}{2}} \cdot (n+\frac{1}{2}) \cdot \Gamma(n+1) \cdot 2^{n-\frac{1}{2}} \cdot e^{-\eta^2/4} \cdot D_{-2n}(\eta) \]

\[-b_1 b_3 (\pi)^{-\frac{1}{2}} \cdot \Gamma(n+1) \cdot 2^{n-\frac{5}{2}} \cdot e^{-\eta^2/4} \cdot D_{-2n+2}(\eta). \quad (2.62) \]
Substituting (2.48) and (2.62) into the right hand side of the second of (2.39), the differential equation becomes

\[G''_1 + \eta G'_1 - (2n+3)G_1 = -b_3(\pi) \frac{1}{2} \Gamma(n+1) 2^{n-\frac{1}{2}} \left[4(2n+1) + b_1 b_3(n+1)^2 \right] e^{-\frac{\eta^2}{4}} D_{2n-2}(\eta) \]

\[+ b_3(\pi) \frac{1}{2} \Gamma(n+1) 2^{n-\frac{3}{2}} [8 + b_1 b_3(2n+1)] e^{-\frac{\eta^2}{4}} D_{2n}(\eta) \]

\[- b_1 b_3^2(\pi) \frac{1}{2} \Gamma(n+1) 2^{n-\frac{5}{2}} e^{-\frac{\eta^2}{4}} D_{2n+2}(\eta). \] \hspace{1cm} (2.63)

To find the complementary function of the differential equation (2.63), the corresponding homogeneous equation is

\[G''_1 + \eta G'_1 - (2n+3)G_1 = 0. \] \hspace{1cm} (2.64)

If we let

\[G_1 = G_1 e^{-\frac{\eta^2}{4}}, \]

in (2.64), then \(G_1 \) satisfies the equation

\[G''_1 + \left[-(2n+4) + \frac{1}{2} - \frac{\eta^2}{4} \right] G_1 = 0. \] \hspace{1cm} (2.65)

The general solution of (2.65) is given by

\[G_1 = C_7 D_{2n-4}(\eta) + C_8 D_{2n+3}(\eta), \] \hspace{1cm} (2.66)

where \(C_7 \) and \(C_8 \) are arbitrary constants of integration.

Therefore, the complementary function of the differential equation (2.63) is
\[e_1 = C_7 e^{-\frac{n^2}{4} \eta} D_{-2n-4}(\eta) + C_8 e^{-\frac{n^2}{4} \eta} D_{2n+3}(\eta). \]

(2.67)

To find the particular integral of the differential equation (2.63), we let

\[e_1 = \lambda_3 e^{-\frac{n^2}{4} \eta} D_{-2n-2}(\eta) + \lambda_4 e^{-\frac{n^2}{4} \eta} D_{-2n}(\eta) + \lambda_5 e^{-\frac{n^2}{4} \eta} D_{-2n+2}(\eta), \]

(2.68)

where \(\lambda_3, \lambda_4, \) and \(\lambda_5 \) are constants yet to be determined.

Substituting (2.68) into (2.63) and making use of the formulae (2.40) and (2.49), we find

\[\lambda_3 = \frac{b_1 b_3 (n+1)^2}{\sqrt{\pi}} \left[4(2n+1) + b_1 b_3 (n+1)^2 \right] \]

(2.69)

\[\lambda_4 = \frac{b_1 b_3 (n+1)^2}{3 \sqrt{\pi}} \left[8 + b_1 b_3 (2n+1) \right] \]

\[\lambda_5 = \frac{b_1 b_3 (n+1)^2}{5 \sqrt{\pi}} \left(n^\frac{5}{2} \right) \]

Using (2.69) with (2.68), the particular integral of the differential equation (2.63) becomes
\[C_1 = b_3(n) \frac{1}{2} \Gamma(n+1) 2^{n-\frac{1}{2}} \left[4(2n+1)+b_1 b_3(n+1)^2 \right] e^{-\frac{n^2}{4}} D_{-2n+2}(n) \]

\[+ \frac{1}{3} b_3(\pi)^{-\frac{1}{2}} \Gamma(n+1) 2^{n-\frac{3}{2}} \left[8+b_1 b_3(2n+1) \right] e^{-\frac{n^2}{4}} D_{-2n}(n) \]

\[+ \frac{1}{5} b_3^2(\pi)^{-\frac{1}{2}} \Gamma(n+1) 2^{n-\frac{5}{2}} e^{-\frac{n^2}{4}} D_{-2n+2}(n) \] \hspace{1cm} (2.70)

The general solution of the differential equation (2.63) which is the sum of the complementary function (2.67) and the particular integral (2.70), is

\[\Gamma_1 = C_7 e^{-\frac{n^2}{4}} D_{-2n+4}(n) + C_8 e^{-\frac{n^2}{4}} D_{2n+4}(n) \]

\[+ b_3(n)^{-\frac{1}{2}} \Gamma(n+1) 2^{n-\frac{1}{2}} \left[4(2n+1)+b_1 b_3(n+1)^2 \right] e^{-\frac{n^2}{4}} D_{-2n+2}(n) \]

\[- \frac{1}{3} b_3(\pi)^{-\frac{1}{2}} \Gamma(n+1) 2^{n-\frac{3}{2}} \left[8+b_1 b_3(2n+1) \right] e^{-\frac{n^2}{4}} D_{-2n}(n) \]

\[+ \frac{1}{5} b_3^2(\pi)^{-\frac{1}{2}} \Gamma(n+1) 2^{n-\frac{5}{2}} e^{-\frac{n^2}{4}} D_{-2n+2}(n). \] \hspace{1cm} (2.71)

If the solution (2.71) is to be bounded at \(n = \infty \), we must have \(C_8 = 0 \), and the boundary condition (2.14) at \(n = 0 \), gives

\[C_7 = -b_3(\pi)^{-\frac{1}{2}} \Gamma(n+1) 2^{n+\frac{1}{2}} (n+\frac{3}{2}) \left[4(2n+1)+b_1 b_3(n+1)^2 \right] \]

\[+ \frac{1}{3} b_3(\pi)^{-\frac{1}{2}} \Gamma(n+1) 2^{n+\frac{1}{2}} (n+\frac{3}{2}) (n+\frac{1}{2}) \left[8+b_1 b_3(2n+1) \right] \]

\[- \frac{1}{5} b_3^2(\pi)^{-\frac{1}{2}} \Gamma(n+1) 2^{n+\frac{1}{2}} (n+\frac{3}{2}) (n+\frac{1}{2}) (n-\frac{1}{2}) \] \hspace{1cm} (2.72)
Hence the general solution of the differential equation (2.63), subject to the appropriate boundary conditions, is

\[C_1 = C_7 e^{-\frac{n^2}{4}} D_{-2n-4}(\eta) \]

\[+ b_3(\pi) \frac{n}{12} \Gamma(n+1) \eta^{\frac{n-1}{2}} [4(2n+1)+b_1 b_3(n+1)^2] e^{-\frac{n^2}{4}} D_{-2n-2}(\eta) \]

\[- \frac{1}{2} b_3(\pi) \frac{1}{12} \Gamma(n+1) \eta^{\frac{n-3}{2}} [8+b_1 b_3(2n+1)] e^{-\frac{n^2}{4}} D_{-2n}(\eta) \]

\[+ b_1 b_3^2(\pi) \frac{1}{12} \Gamma(n+1) \eta^{\frac{n-5}{2}} e^{-\frac{n^2}{4}} D_{-2n+2}(\eta) \]

\[(2.73) \]

where \(C_7 \) is given by (2.72).

The general solutions for \(f_2, f_3 \) and higher order solutions may be found in a similar manner, although the computation becomes increasingly lengthy.

For \(\kappa = 0 \) and the vanishing micro-rotation, our solution (2.7) reduces to the classical form

\[u(y,t) = A \lambda^n \Gamma(n+1) \eta^{\frac{1}{2}} \eta^{\frac{n+1}{2}} e^{-\frac{n^2}{4}} D_{-2n-1}(\eta) \]

(2.74)

for a Newtonian fluid.

Using (2.1) in the constitutive equations (1.4) and (1.5), the stresses and couple stresses are found to be
\[t_{xx} = t_{yy} = t_{zz} = -p, \]
\[t_{xy} = \mu \frac{\partial u}{\partial y} - \kappa \phi, \]
\[t_{yx} = (\mu + \kappa) \frac{\partial u}{\partial y} + \kappa \phi, \]
\[t_{xz} = t_{zx} = t_{yz} = t_{zy} = 0, \]
\[m_{xx} = m_{yy} = m_{zz} = m_{xy} = m_{yx} = m_{xz} = m_{zx} = 0, \]
\[m_{zy} = \beta \frac{\partial \phi}{\partial y}, \]
\[m_{yz} = \gamma \frac{\partial \phi}{\partial y}. \]

For \(\kappa = 0 \), we have the classical value

\[t_{xy} = t_{yx} = \mu \frac{\partial u}{\partial y}. \]

Substituting (2.7) in (2.75), we find that the non-zero components of stresses and couple stresses are given by

\[t_{xy} = \mu \frac{At}{\sqrt{2k}} \left[f_0'(\eta) + \varepsilon f_1'(\eta) + \ldots \right] - \kappa Bt \frac{n+\frac{1}{2}}{2} \left[\varepsilon_0(\eta) + \varepsilon_1(\eta) + \ldots \right]. \]

\[t_{yx} = (\mu + \kappa) \frac{At}{\sqrt{2k}} \left[f_0'(\eta) + \varepsilon f_1'(\eta) + \ldots \right] + \kappa Bt \frac{n+\frac{1}{2}}{2} \left[\varepsilon_0(\eta) + \varepsilon_1(\eta) + \ldots \right]. \]

\[m_{zy} = \beta \left[\frac{Bt n}{\sqrt{2k}} \left[\varepsilon_0(\eta) + \varepsilon_1(\eta) + \ldots \right] \right] \quad (2.76) \]

\[m_{yz} = \gamma \left[\frac{Bt n}{\sqrt{2k}} \left[\varepsilon_0(\eta) + \varepsilon_1(\eta) + \ldots \right] \right]. \]
Therefore, the non-zero components of stresses and couple stresses on \(y = 0 \) are found as follows:

\[
\begin{align*}
 t_{xy} &= \mu \frac{\Delta t}{\sqrt{2k}} [f'_0(0) + \epsilon f'_1(0) + \ldots] \\
 &= \mu \frac{\Delta t}{\sqrt{2k}} n^{\frac{1}{2}} [g'_0(0) + \epsilon g'_1(0) + \ldots] \\
 t_{yx} &= (\mu + \kappa) \frac{\Delta t}{\sqrt{2k}} [f'_0(0) + \epsilon f'_1(\phi) + \ldots] \\
 &= (\mu + \kappa) \frac{\Delta t}{\sqrt{2k}} n^{\frac{1}{2}} [g'_0(0) + \epsilon g'_1(0) + \ldots], \\
 m_{zy} &= \frac{B t}{\sqrt{2k}} n^{\frac{1}{2}} [g'_0(0) + \epsilon g'_1(0) + \ldots], \\
 m_{yz} &= \frac{B t}{\sqrt{2k}} n^{\frac{1}{2}} [g'_0(0) + \epsilon g'_1(0) + \ldots],
\end{align*}
\]

where \(f'_0(0), f'_1(0), g'_0(0), g'_1(0), g'_0(0) \) and \(g'_1(0) \) in (2.77) and (2.78) are given by

\[
f'_0(0) = (-1)^{n+1} \Gamma(n+1) \left(\frac{1}{2} \right)^{n+\frac{1}{2}} D_{-n}(0) \\
= (-1)^{n+\frac{1}{2}} \frac{\Gamma(n+\frac{1}{2})}{\Gamma(n+\frac{1}{2})}
\]

(2.79)
\[
\begin{align*}
\tag{2.80}
\theta_1(0) &= -b_1 b_3 (n+1) \cdot \pi \cdot \frac{1}{2} \cdot 2^{n-\frac{1}{2}} \Gamma(n+2) D_{-2n-2}(0) \\
&\quad + b_1 b_3 (\pi) \cdot \frac{1}{2} \cdot (n+\frac{1}{2}) \Gamma(n+1) 2^{n-\frac{1}{2}} \Gamma_{-2n}(0) \\
&\quad - b_1 b_3 (\pi) \cdot \frac{1}{2} \cdot (n+\frac{1}{2}) \Gamma(n+1) 2^{n-\frac{5}{2}} \Gamma_{-2n+2}(0) \\
&= -b_1 b_3 (n+1) \cdot 2^{\frac{3}{2}} \frac{\Gamma(n+2)}{\Gamma(n+\frac{3}{2})} + b_1 b_3 (n+\frac{1}{2}) 2^{\frac{1}{2}} \frac{\Gamma(n+1)}{\Gamma(n+\frac{1}{2})} \\
&\quad - b_1 b_3 (n+\frac{1}{2}) \cdot 2^{\frac{1}{2}} \frac{\Gamma(n+1)}{\Gamma(n-\frac{1}{2})} \\
\theta_0(0) &= -b_3 (\pi) \cdot \frac{1}{2} \cdot \Gamma(n+1) 2^{n+\frac{1}{2}} (n+\frac{1}{2}) D_{-2n-2}(0) \\
&\quad + b_3 (\pi) \cdot \frac{1}{2} \cdot \Gamma(n+1) 2^{n-\frac{1}{2}} D_{-2n}(0) \\
&= -b_3 2^{\frac{1}{2}} (n+\frac{1}{2}) \cdot \frac{\Gamma(n+1)}{\Gamma(n+\frac{3}{2})} + b_3 2^{\frac{1}{2}} \frac{\Gamma(n+1)}{\Gamma(n+\frac{1}{2})} \\
\theta_1(0) &= C_7 D_{-2n-4}(0) + b_3 (\pi) \cdot \frac{1}{2} \Gamma(n+1) 2^{n-\frac{1}{2}} [4(2n+1)+b_1 b_3 (n+1)^2] \\\n&\quad - b_1 b_3 (n+1) \cdot \frac{1}{2} \Gamma(n+1) 2^{n-\frac{3}{2}} [8+b_1 b_3 (2n+1)] D_{-2n}(0) \\
&\quad + b_1 b_3 (\pi) \cdot \frac{1}{2} \Gamma(n+1) 2^{n-\frac{5}{2}} D_{-2n-2}(0)
\end{align*}
\]
which simplifies to

\[\xi_1(0) \equiv C_7 \frac{\sqrt{\pi}}{\Gamma(n+\frac{5}{2})^{2n+2}} + b_3 \frac{3}{2} \frac{\Gamma(n+1)}{\Gamma(n+\frac{3}{2})} \left[4(2n+1)b_1b_3(n+1)^2 \right] \]

\[\frac{1}{3b_3} \frac{3}{2} \left[8b_1b_3(2n+1) \right] \frac{\Gamma(n+1)}{\Gamma(n+\frac{1}{2})} \]

\[+ \frac{1}{5b_1b_3} \frac{3}{2} \left[8b_1b_3(2n+1) \right] \frac{\Gamma(n+1)}{\Gamma(n+\frac{3}{2})} \]

(2.82)

where \(C_7 \) is given in (2.72).

\[\xi_0(0) = b_3(\pi) \frac{3}{2} \Gamma(n+1) \frac{\sqrt{n+\frac{1}{2}}}{\Gamma(n+\frac{1}{2})} D_{-2n-1}(0) \]

\[-b_3(\pi) \frac{3}{2} \Gamma(n+1) \frac{\sqrt{n}}{2} D_{-2n+1}(0) \]

\[= \frac{1}{2} b_3 \]

(2.83)

\[\xi_1(0) = -C_7 D_{-2n-3}(0) \]

\[-b_3(\pi) \frac{3}{2} \Gamma(n+1) \frac{\sqrt{n}}{2} \left[4(2n+1)b_1b_3(n+1)^2 \right] D_{-2n-1}(0) \]

\[+ \frac{3}{5b_1b_3(\pi)} \frac{3}{2} \frac{\Gamma(n+1)}{\Gamma(n+\frac{1}{2})} \left[8b_1b_3(2n+1) \right] D_{-2n+1}(0) \]

\[- \frac{1}{5b_1b_3} \frac{3}{2} \frac{\Gamma(n+1)}{\Gamma(n+\frac{3}{2})} \]

\[= -C_7 \frac{\sqrt{n}}{\Gamma(n+2) \sqrt{n+3/2}} - \frac{b_3}{2} \left[4(2n+1)b_1b_3(n+1)^2 \right] \]

\[+ \frac{1}{6b_3} \left[8b_1b_3(2n+1) \right] \frac{1}{10b_1b_3^2} n(n-1) \cdot (2.84) \]
Section 2: Flow near a uniformly accelerated flat plate:

In this section, we consider the unsteady, laminar and incompressible flow of a micropolar fluid near a uniformly accelerated infinite flat plate initially at rest, under the same assumptions as used in Section 1 of this chapter. Here for $t > 0$, the plate is assumed to have velocity $u = At$.

The particular case $\eta = 1$ in Section 1 of this chapter, corresponds to a fluid motion caused by a uniformly accelerated flat plate.

The governing partial differential equations are the same as the equations (2.2) and (2.3) obtained in Section 1 of this chapter. The equations (2.2) and (2.3) are to be solved subject to the following initial and boundary conditions:

\[
\begin{align*}
y \geq 0, & \quad t < 0; \quad u = \phi = 0, \\
y = 0, & \quad t > 0; \quad u = At, \quad \phi = 0, \quad (2.85) \\
y \to \infty, & \quad t > 0; \quad u \to 0, \quad \phi \to 0.
\end{align*}
\]

To solve the partial differential equations (2.2) and (2.3), subject to the conditions (2.74), we let

\[
\begin{align*}
u &= At[f_0(\eta) + \epsilon f_1(\eta) + \epsilon^2 f_2(\eta) + \ldots] \\
\phi &= Bt^2[g_0(\eta) + \epsilon g_1(\eta) + \epsilon^2 g_2(\eta) + \ldots], \quad (2.86)
\end{align*}
\]
where ε and η are the same as in Section 1 of this chapter, and in this case A and B are constants having the dimensions L^1T^{-2} and $T^{-5/2}$ respectively.

Substituting (2.75) into (2.2) and (2.3), and then equating the coefficients of like powers of ε, we obtain two systems of ordinary differential equations as follows:

\[
\begin{align*}
 f_0'' + \eta f_0' - 2f_0 &= 0 \\
 f_1'' + \eta f_1' - 4f_1 &= b_1 f_0' \\
 f_2'' + \eta f_2' - 6f_2 &= b_1 f_1 \\
\end{align*}
\]

and

\[
\begin{align*}
 \xi_0'' + \eta b_2 \xi_0' - 3b_2 \xi_0 &= b_3 f_0' \\
 \xi_1'' + b_2 \eta \xi_1' - 5b_2 \xi_1 &= 4b_2 \xi_0 + b_3 f_1' \\
 \xi_2'' + b_2 \eta \xi_2' - 7b_2 \xi_2 &= 4b_2 \xi_1 + b_3 f_2' \\
\end{align*}
\]

where b_1, b_2, and b_3 are given by (2.9) and (2.12).

In this case, the boundary conditions (2.85) in the new variables become the same as the conditions (2.14) and (2.15). As we have seen in Section 1 of this chapter, that the computation becomes increasingly lengthy due to the occurrence of parabolic cylinder functions of different arguments; hence we consider the particular case $b_2 = 1$, that is $(\mu + \kappa)j = \gamma$, so that the equations (2.88) reduce to
\[E_0 + 9E_0 - 3E_0 = b_3 f_0 \]
\[E_1 + 9E_1 - 5E_1 = 4E_0 + b_3 f_1 \]
\[E_2 + 9E_2 - 7E_2 = 4E_1 + b_3 f_2 \]

The general solutions of the differential equations (2.87) and (2.89) subject to the boundary conditions (2.14) and (2.15), for \(f_0, \quad \xi_0, \quad f_1 \) and \(\xi_1 \) are found by putting \(n = 1 \) in (2.24), (2.48), (2.58) and (2.73) as follows:

\[f_0 = 2^{\frac{3}{2}} (\pi)^{-\frac{1}{2}} e^{-\frac{\eta^2}{4}} D_{-3}(\eta) \] \hspace{1cm} (2.90)

\[\xi_0 = -3b_3(\pi)^{-\frac{1}{2}} e^{-\frac{\eta^2}{4}} D_{-4}(\eta) \] \hspace{1cm} (2.91)

\[f_1 = b_1 b_3(\pi)^{-\frac{1}{2}} e^{-\frac{\eta^2}{4}} D_{-5}(\eta) - 3b_1 b_3(\pi)^{-\frac{1}{2}} e^{-\frac{\eta^2}{4}} D_{-3}(\eta) \]

\[+ b_1 b_3(\pi)^{-\frac{1}{2}} e^{-\frac{\eta^2}{4}} D_{-1}(\eta) \] \hspace{1cm} (2.92)

and
where C_7, in this case, is given by

$$C_7 = -5b_3(\pi) \frac{1}{2} \frac{5}{2} \left(4b_1b_3 + 5b_3(\pi)\right)^{-\frac{1}{2}} \frac{1}{2} \frac{1}{2} \left(8 + 3b_1b_3\right)$$

and

$$-3b_1b_3^2(\pi) \frac{1}{2} \frac{3}{2}$$

For $\kappa = 0$ and the vanishing of micro-rotation, our solution (2.86) reduces to

$$u(y,t) = At \cdot 2^{\frac{3}{2}} \cdot (\pi)^{-\frac{1}{2}} \cdot e^{-\frac{n^2}{4}} D_{-3}(n).$$

(2.95)
Section 3: Flow near a suddenly accelerated flat plate.

Kline and Allen (1970) studied the flow when the flat plate is accelerated from rest, obtaining a solution in closed form when the gradient of the micro-rotation vanishes on the plate and the transform of the solution when the micro-rotation itself vanishes on the plate.

Chawla (1972) studied the boundary layer growth when the flat plate is accelerated from rest impulsively in its own plane.

In this section, our object is to find the solution of the suddenly accelerated flat plate problem as a special case of the most general problem of the accelerated flat plate studied in Section 1 of this chapter.

The particular case \(\eta = 0 \) in Section 1 of this chapter corresponds to fluid motion caused by a suddenly accelerated flat plate. The governing partial differential equations, are the same as equations (2.2) and (2.3) obtained in Section 1 of this chapter.

The initial and boundary conditions are:

\[
\begin{align*}
 y \geq 0, \quad t \leq 0: & \quad u = \phi = 0 \\
 y = 0, \quad t > 0: & \quad u = A, \quad \phi = 0 \\
 y = \infty, \quad t > 0: & \quad u = 0, \quad \phi = 0.
\end{align*}
\]

(2.96)

To solve the differential equations (2.2) and (2.3) subject to the conditions (2.96), we let
\[u = A[r_0(n) + \varepsilon r_1(n) + \varepsilon^2 r_2(n) + \ldots] \]
\[\phi = Bt^{-\frac{2}{3}}[r_0(n) + \varepsilon r_1(n) + \varepsilon^2 r_2(n) + \ldots], \]

where \(\varepsilon \) and \(n \) are the same as in Section 1 of this chapter.

Substituting the relations (2.97) into equations (2.2) and (2.3) and equating the coefficients of like powers of \(\varepsilon \), we obtain two systems of ordinary differential equations, whose form is simplified if we set \((\mu + \kappa)j = \gamma \) as follows:

\[\frac{\varepsilon''}{r_0} + \eta r_0' = 0 \]
\[\frac{\varepsilon''}{r_1} + \eta r_1' = 2r_1 = b_1 r_0' \]
\[\frac{\varepsilon''}{r_2} + \eta r_2' = 4r_2 = b_1 r_1' \]

and

\[\frac{\varepsilon''}{e_0} + \eta e_0' = e_0 = b_3 e_0' \]
\[\frac{\varepsilon''}{e_1} + \eta e_1' = 3e_1 = 4e_0 + b_3 e_1' \]
\[\frac{\varepsilon''}{e_2} + \eta e_2' = 5e_2 = 4e_1 + b_3 e_2' \]

where \(b_1 \) and \(b_3 \) are given by (2.9) and (2.12) respectively.

In this case also the boundary conditions (2.96) in the new variables become the same as conditions (2.14) and (2.15).

The general solutions of the differential equations (2.98)
and (2.99), subject to the boundary conditions (2.14) and (2.15), for \(f_0, \xi_0, f_1, \) and \(\eta_1 \) are found by putting \(n = 0 \) in (2.24), (2.48), (2.58) and (2.73) as follows:

\[
f_0 = \sqrt{\frac{2}{\pi}} e^{-\eta^2/4} D_{-1}(\eta) = 1 - \text{erf} \, \eta
\]

where \(\text{erf} \, \eta \) is the error function and \(\text{erfc} \, \eta \) is the complementary error function. The error and complementary error functions are defined as

\[
\text{erf} \, \eta = \frac{2}{\sqrt{\pi}} \int_0^\eta e^{-t^2} \, dt
\]

\[
\text{erfc} \, \eta = \frac{2}{\sqrt{\pi}} \int_\eta^\infty e^{-t^2} \, dt
\]

\[
\xi_0 = -b_3(\pi) \frac{1}{\pi} \frac{1}{2} \frac{1}{Z_2} e^{-\eta^2/4} D_{-2}(\eta) + b_3(\pi) \frac{1}{\pi} \frac{1}{2} \frac{1}{Z_2} e^{-\eta^2/4} D_{0}(\eta)
\]

\[
f_1 = b_1 b_3(\pi) \frac{1}{\pi} \frac{1}{2} \frac{1}{Z_2} e^{-\eta^2/4} D_{-3}(\eta) - b_1 b_3(\pi) \frac{1}{\pi} \frac{1}{2} \frac{1}{Z_2} e^{-\eta^2/4} D_{-1}(\eta)
\]

\[
+ b_1 b_3(\pi) \frac{1}{\pi} \frac{1}{2} \frac{5}{Z_2} e^{-\eta^2/4} D_{1}(\eta)
\]

and
\[u_1 = c_7 e^{-\eta^2/4} \Big(D_1(\eta) + (4 + b_2 b_3) b_3(\pi) \frac{1}{2} \frac{3}{2} e^{-\eta^2/4} \Big) \]

\[- (8 + b_1 b_3) b_3(\pi) \frac{1}{2} \frac{7}{2} e^{-\eta^2/4} D_0(\eta) \]

\[+ \frac{1}{2} b_1 b_3^2(\pi) \frac{1}{2} \frac{7}{2} e^{-\eta^2/4} D_2(\eta), \quad (2.104) \]

where in this case

\[c_7 = -3(4 + b_1 b_3) b_3(\pi) \frac{1}{2} \frac{1}{2} + b_3(\pi) \frac{1}{2} \frac{1}{2} (8 + b_1 b_3) \]

\[+ \frac{2}{5} b_1 b_3^2(\pi) \frac{1}{2} \frac{5}{2}, \quad (2.105) \]

For \(\kappa \neq 0 \) and vanishing micro-rotation or spin, our solution (2.97) reduces to the classical form

\[u = A \sqrt{\frac{2}{\pi}} e^{-\kappa^2/4} D_{-1}(\eta) \]

\[= A \wp e^{-\kappa^2/4} \]

\[= A \wp e^{-\kappa^2/4} \]

for a Newtonian fluid, \(\wp \).
Section 4. Numerical results for a suddenly accelerated flat plate problem.

In this section, we give some numerical values for the functions \(f_0, g_0, f_1 \) and \(g_1 \), which occur in the expressions for the velocity component \(u(y, t) \) and the micro-rotation component \(\phi(y, t) \), when the flat plate is given sudden acceleration. The general solutions for \(f_0, g_0, f_1 \) and \(g_1 \) have been obtained, subject to the appropriate boundary conditions, in the preceding section of this chapter and are given by the equations (2.100), (2.102), (2.103), and (2.104) respectively. However, these functions \(f_0, g_0, f_1 \) and \(g_1 \) depend upon the parameters \(b_1 \) and \(b_3 \) defined in (2.9) and (2.12) respectively, and a set of values for them have been obtained by giving some suitable numerical values to these parameters.

We point out that the parabolic cylinder function defined by the equation (2.19) bears the following relationship with the parabolic cylinder function \(U(a, \eta) \) as used in Abramowitz and Stegun (1965, p. 687),

\[
U(a, \eta) = \sqrt{\frac{-a}{\eta}} D_{\frac{1}{2}}^{1}(\eta)
\]

We have made use of the tables given by Abramowitz and Stegun (1965, pp. 702-710) for the parabolic cylinder functions, in computing the values of \(f_0, g_0, f_1 \) and \(g_1 \) for various numerical combinations of the parameters \(b_1 \) and \(b_3 \).
Tables 1 to 6 show the different possible variations. The following observations from these tables are in order.

Table 1 shows the variation of f_0 for different values of n. As can be seen from the table, f_0 decreases significantly as the value of n increases. We note that b_1 and b_3 do not appear in the expression for f_0.

In the tables 2(a), 2(b) and 2(c), we observe the variation of g_0 for different values of n when the parameter b_3 is small, medium and large. For small values of n, g_0 increases but for large n, g_0 decreases as may be seen from the tables. We note that b_1 does not appear in the expression for g_0 and b_3 appears linearly.

Tables 3(a) through 3(f) show the variation of f_1 for various values of n. It is observed that for small values of n, f_1 decreases; for intermediate values of n, f_1 increases and for large values of n, f_1 decreases significantly. We also note that b_1 and b_3 both appear linearly in a product form in the expression for f_1. Tables 3(a) through 3(f) are computed for small, medium and large values of the parameters b_1 and b_3.
In tables 4(a) through 4(f), the variation of g_1 is observed for different values of n when the parameters b_1 and b_3 are small, medium and large. In the expression for g_1, the parameters b_1 and b_3 do not occur linearly. For small and medium values of the parameters, g_1 decreases as n increases for small values of n and for large n, g_1 increases. It is quite interesting to observe that for large values of the parameters, g_1 increases as n increases, and for large n, g_1 decreases significantly. These observations are quite apparent from the tables 4(a) through 4(f).

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
n & erf n & f_0 \\
\hline
0.0 & 0.00000 & 1.00000 \\
0.1 & 0.11246 & 0.88754 \\
1.0 & 0.84270 & 0.15730 \\
2.0 & 0.99532 & 0.00468 \\
5.0 & 0.9999994267 & 5.7330745 \times 10^{-7} \\
\hline
\end{tabular}
\caption{Table 1.}
\end{table}
Table 2(a)

When \(b_3 = 0.1 \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\xi_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.00000</td>
</tr>
<tr>
<td>0.1</td>
<td>(4.6014516 \times 10^{-3})</td>
</tr>
<tr>
<td>1.0</td>
<td>(1.5865409 \times 10^{-2})</td>
</tr>
<tr>
<td>2.0</td>
<td>(4.5500388 \times 10^{-3})</td>
</tr>
<tr>
<td>5.0</td>
<td>(1.4324600 \times 10^{-7})</td>
</tr>
</tbody>
</table>

Table 2(b)

When \(b_3 = 1.0 \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\xi_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.00000</td>
</tr>
<tr>
<td>0.1</td>
<td>(4.6014516 \times 10^{-2})</td>
</tr>
<tr>
<td>1.0</td>
<td>(1.5865409 \times 10^{-1})</td>
</tr>
<tr>
<td>2.0</td>
<td>(4.5500388 \times 10^{-2})</td>
</tr>
<tr>
<td>5.0</td>
<td>(1.4324600 \times 10^{-6})</td>
</tr>
</tbody>
</table>
Table 2(c)

When \(b_3 = 10.0 \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\xi_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.00000</td>
</tr>
<tr>
<td>0.1</td>
<td>4.6014516 \times 10^{-1}</td>
</tr>
<tr>
<td>1.0</td>
<td>1.5865409</td>
</tr>
<tr>
<td>2.0</td>
<td>4.5500388 \times 10^{-1}</td>
</tr>
<tr>
<td>5.0</td>
<td>1.4324600 \times 10^{-5}</td>
</tr>
</tbody>
</table>

Table 3(a)

When \(b_1 = 0.1 \), \(b_3 = 0.1 \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(f_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.00000</td>
</tr>
<tr>
<td>0.1</td>
<td>-7.6286281 \times 10^{-5}</td>
</tr>
<tr>
<td>1.0</td>
<td>1.8834425 \times 10^{-4}</td>
</tr>
<tr>
<td>2.0</td>
<td>2.8778397 \times 10^{-4}</td>
</tr>
<tr>
<td>5.0</td>
<td>1.7251131 \times 10^{-8}</td>
</tr>
</tbody>
</table>
Table 3(b)

When \(b_1 = 0.1, b_3 = 1.0 \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(f_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.000000</td>
</tr>
<tr>
<td>0.1</td>
<td>-7.6286281 \times 10^{-4}</td>
</tr>
<tr>
<td>1.0</td>
<td>1.8834425 \times 10^{-3}</td>
</tr>
<tr>
<td>2.0</td>
<td>2.8778397 \times 10^{-3}</td>
</tr>
<tr>
<td>5.0</td>
<td>1.7251131 \times 10^{-7}</td>
</tr>
</tbody>
</table>

Table 3(c)

When \(b_1 = 0.1, b_3 = 10.0 \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(f_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.000000</td>
</tr>
<tr>
<td>0.1</td>
<td>-7.6286281 \times 10^{-3}</td>
</tr>
<tr>
<td>1.0</td>
<td>1.8834425 \times 10^{-2}</td>
</tr>
<tr>
<td>2.0</td>
<td>2.8778397 \times 10^{-2}</td>
</tr>
<tr>
<td>5.0</td>
<td>1.7251131 \times 10^{-6}</td>
</tr>
</tbody>
</table>
Table 3(d)

When \(b_1 = 1.0, b_3 = 1.0 \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(f_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.00000</td>
</tr>
<tr>
<td>0.1</td>
<td>-7.6286281 \times 10^{-3}</td>
</tr>
<tr>
<td>1.0</td>
<td>1.8834425 \times 10^{-2}</td>
</tr>
<tr>
<td>2.0</td>
<td>2.8778397 \times 10^{-2}</td>
</tr>
<tr>
<td>5.0</td>
<td>1.7251131 \times 10^{-6}</td>
</tr>
</tbody>
</table>

Table 3(e)

When \(b_1 = 1.0, b_3 = 10.0 \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(f_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.00000</td>
</tr>
<tr>
<td>0.1</td>
<td>-7.6286281 \times 10^{-2}</td>
</tr>
<tr>
<td>1.0</td>
<td>1.8834425 \times 10^{-1}</td>
</tr>
<tr>
<td>2.0</td>
<td>2.8778397 \times 10^{-1}</td>
</tr>
<tr>
<td>5.0</td>
<td>1.7251131 \times 10^{-5}</td>
</tr>
</tbody>
</table>
Table 3(f)

When \(b_1 = 10.0, \ b_3 = 10.0 \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(f_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.00000</td>
</tr>
<tr>
<td>0.1</td>
<td>(-7.5286281 \times 10^{-1})</td>
</tr>
<tr>
<td>1.0</td>
<td>1.8834425</td>
</tr>
<tr>
<td>2.0</td>
<td>2.8778397</td>
</tr>
<tr>
<td>5.0</td>
<td>(1.7251131 \times 10^{-4})</td>
</tr>
</tbody>
</table>

Table 4(a)

When \(b_1 = 0.1, \ b_3 = 0.1 \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(g_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>(1.4672448 \times 10^{-1})</td>
</tr>
<tr>
<td>0.1</td>
<td>(-5.7570650 \times 10^{-2})</td>
</tr>
<tr>
<td>1.0</td>
<td>(-1.9730211 \times 10^{-2})</td>
</tr>
<tr>
<td>2.0</td>
<td>(-4.4314732 \times 10^{-3})</td>
</tr>
<tr>
<td>5.0</td>
<td>(-1.3809440 \times 10^{-7})</td>
</tr>
</tbody>
</table>
Table 4(b)

When $b_1 = 0.1$, $b_3 = 1.0$

<table>
<thead>
<tr>
<th>n</th>
<th>ξ_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>$-6.828562029 \times 10^{-1}$</td>
</tr>
<tr>
<td>0.1</td>
<td>$-5.890977064 \times 10^{-1}$</td>
</tr>
<tr>
<td>1.0</td>
<td>-0.199493037</td>
</tr>
<tr>
<td>2.0</td>
<td>$-4.405708849 \times 10^{-2}$</td>
</tr>
<tr>
<td>5.0</td>
<td>$-1.261079860 \times 10^{-6}$</td>
</tr>
</tbody>
</table>

Table 4(c)

When $b_1 = 0.1$, $b_3 = 10.0$

<table>
<thead>
<tr>
<th>n</th>
<th>ξ_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>-8.444278267</td>
</tr>
<tr>
<td>0.1</td>
<td>-7.241126337</td>
</tr>
<tr>
<td>1.0</td>
<td>-2.214023224</td>
</tr>
<tr>
<td>2.0</td>
<td>$-4.215551618 \times 10^{-1}$</td>
</tr>
<tr>
<td>5.0</td>
<td>$-6.982956100 \times 10^{-7}$</td>
</tr>
</tbody>
</table>
Table 4(d)

When \(b_1 = 1.0, b_3 = 1.0 \)

<table>
<thead>
<tr>
<th>(\eta)</th>
<th>(\xi_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>-3.444278267 x 10^{-1}</td>
</tr>
<tr>
<td>0.1</td>
<td>-0.722993410</td>
</tr>
<tr>
<td>1.0</td>
<td>-0.221402322</td>
</tr>
<tr>
<td>2.0</td>
<td>-0.042155516</td>
</tr>
<tr>
<td>5.0</td>
<td>-6.982956100 x 10^{-8}</td>
</tr>
</tbody>
</table>

Table 4(e)

When \(b_1 = 1.0, b_3 = 10.0 \)

<table>
<thead>
<tr>
<th>(\eta)</th>
<th>(\xi_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>-24.601440620</td>
</tr>
<tr>
<td>0.1</td>
<td>-20.619504530</td>
</tr>
<tr>
<td>1.0</td>
<td>-4.404951749</td>
</tr>
<tr>
<td>2.0</td>
<td>0.928208014</td>
</tr>
<tr>
<td>5.0</td>
<td>1.184267343 x 10^{-4}</td>
</tr>
</tbody>
</table>
Table 4(f)

When $b_1 = 10.0$, $b_3 = 10.0$

<table>
<thead>
<tr>
<th>n</th>
<th>u_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>-186.173064100</td>
</tr>
<tr>
<td>0.1</td>
<td>-154.515209000</td>
</tr>
<tr>
<td>1.0</td>
<td>-26.314237030</td>
</tr>
<tr>
<td>2.0</td>
<td>1.670174420</td>
</tr>
<tr>
<td>5.0</td>
<td>1.309677034 x 10^{-3}</td>
</tr>
</tbody>
</table>
CHAPTER III

FLOWS WITH SUCTION AND INJECTION

Ariman, Cakmak and Hill (1967) applied Eringen's (1966) theory to the steady flow of micropolar fluids between two concentric cylinders. They investigated Couette and Poiseuille flows.

Verma and Sehgal (1968) studied Couette flow of micropolar fluids which is the flow between two coaxial right circular cylinders of different radii and rotating about the common axis with constant angular velocities. The object of the paper was to investigate the nature of the flow in the annulus. Explicit expressions for fluid velocity, micro-rotation velocity, the stresses, couple stresses, rate of shear and shearing stress differences were obtained.

Ariman and Cakmak (1968) solved problems in some basic viscous flows in micropolar fluids. These are plane Couette and Poiseuille flows between two parallel plates and the problem of a rotating fluid with a free surface.

It is observed that not much attention has been given to problems in micropolar fluids with suction and injection. In this chapter, we have investigated some steady and non-steady flows with suction and injection.
Section 1(a). Steady Flows with Suction and Injection.

Consider steady, laminar and incompressible flow of a micropolar fluid between two infinite parallel plates, a distance h apart, the lower of which is fixed and the upper of which moves with constant speed U in the x-direction. The y-direction is taken perpendicular to the plates and the flow is assumed to be independent of z.

Fluid is injected along the upper plate with constant normal velocity V and sucked out along the lower plate. The material constants of the micropolar fluid are assumed to be independent of position. The body forces and body couples are neglected.

Setting
\[v = (u(y), -V, 0), \quad \psi = (0, 0, \phi(y)) \] (3.1)
and \(\rho = \text{constant} \), the equation of continuity (1.1) is satisfied identically and the momentum equations (1.2) and (1.3) yield

\[(u + \kappa)u' + \rho V u' + \kappa \phi' = \frac{\partial \rho}{\partial x}, \] (3.2)

\[\frac{\partial \rho}{\partial y} = \frac{\partial \rho}{\partial z} = 0, \] (3.3)

\[\gamma \phi'' + \rho j V \phi' - 2 \kappa \phi - \kappa u' = 0, \] (3.4)

where the prime denotes differentiation with respect to y.
It is clear from (3.2) and (3.3) that \(\frac{\partial p}{\partial x} \) must be constant, hence we write

\[
\frac{\partial p}{\partial x} = 2 \rho V P
\]

(3.5)
Section 1(b). The Nature of the Solution.

If we set

$$u = Ce^{my}, \quad \phi = De^{my}$$ \hspace{1cm} (3.6)

in the homogeneous equations obtained from (3.2) and (3.4) by equating the right hand side of (3.2) to zero, we obtain a quartic in \(m \):

$$m(m^3 + am^2 + bm + c) = 0$$ \hspace{1cm} (3.7)

where

$$a = \rho V \left(\frac{\mu + \kappa}{\mu + \kappa} \right) + \gamma;$$

$$b = \rho \left(\frac{\mu + \kappa}{\mu + \kappa} \right)^2 - \frac{(2\mu + \kappa)\kappa}{(\mu + \kappa)^2};$$

$$c = -\rho V \left(\frac{2\kappa}{\mu + \kappa} \right);$$ \hspace{1cm} (3.8)

whence the solution is obtained in the form (where the roots are distinct)

$$u = C_0 + C_1 e^{m_1 y} + C_2 e^{m_2 y} + C_3 e^{m_3 y};$$

$$\phi = a_1 C_1 e^{m_1 y} + a_2 C_2 e^{m_2 y} + a_3 C_3 e^{m_3 y};$$ \hspace{1cm} (3.9)

where \(m_0 = 0 \), \(m_1 \), \(m_2 \) and \(m_3 \) are the roots of the equation (3.7) and
\[\frac{D_i}{c_1} = a_i = \frac{(\mu + \kappa)m_i + \rho V}{\kappa} \]

\[\gamma m_i^2 \frac{\kappa}{\gamma m_i^2 + \rho j m_i V = 2 \kappa} \]

(3.10)

\[(i = 1, 2, 3) \]

It is well known from the theory of equations by USPENSKY (1948, p. 84) that the non-zero roots of (3.7) are real and distinct, or include a complex pair according as the sign of \(\Delta \) is negative or positive, where

\[108 \Delta = 4p^3 + 27q^2 \]

\[3p = 3b - a^2 \]

\[27q = 2a^3 - 9ab + 27c \]

Substituting (3.8) into (3.11) and setting \(\sqrt{\mathbf{V}}^2 = \rho^2 \sqrt{\kappa} \),

we obtain,

\[\Delta = \frac{108h(\mu + \kappa)^2 \gamma^4}{\kappa^3} = A + B + C + D \]

(3.12)

where

\[A = -j^2[\mu + \kappa]j - \gamma]^2 \]

\[B = 2[6j(\mu + \kappa)\gamma[\mu + 2\kappa]j + 3\gamma] - [(2\mu + 3\kappa)j + 4\gamma][\mu + \kappa]j + \gamma]^2 \]

\[C = 12(\mu + \kappa)(\mu + 2\kappa)\gamma[3\gamma - j(2\mu + \kappa)] - (2\mu + \kappa)^2[\mu + \kappa]j + \gamma)^2 \]

\[D = -4(2\mu + \kappa)^3(\mu + \kappa)\gamma \]

(3.13)
The coefficients \(A \) and \(D \) are never positive, hence if \((\mu+\kappa)j \neq \gamma, \Delta < 0\) when \(V^2\) is small and when \(V^2\) is large, that is the roots of (3.7) are real and distinct.

For intermediate values of \(V^2\), \(\Delta\) is positive for some values provided that

\[
B^2 - 3AC > 0, \quad (3.14)
\]

\[
\left(\frac{B^2 - 3AC}{A^2}\right)^{\frac{1}{2}} - \frac{D}{A} > 0, \quad (3.15)
\]

\[
\frac{2B^3 - 9ABC + 27A^2D}{A^3} - 2\left(\frac{B^2 - 3AC}{A^2}\right)^{\frac{3}{2}} > 0, \quad (3.16)
\]

inequalities which follow, respectively, from the conditions that the cubic (3.12) in \(V^2\) should have a maximum and a minimum; that the maximum should occur for a positive value of \(V^2\); and that the value of \(\Delta\) at the maximum should be positive. The positive square root of \(B^2 - 3AC\) is to be taken in (3.15) and (3.16).

In the particular case \((\mu+\kappa)j = \gamma\), (3.12) reduces to

\[
\bar{\Delta} = \frac{4\gamma^2}{\kappa j} \left\{ \frac{1}{\bar{V}^4} - (\mu^2 - 8\kappa \mu - 11\kappa^2)\bar{V}^2 - (2\mu+\kappa)^3 \right\} \quad (3.17)
\]

where \(\bar{V}^2 = \kappa j \bar{V}^2\), whence it follows that the non-zero roots of (3.7) are real and distinct, or include a complex pair, according as \(\bar{V}^2\) is less than, or greater than \(\bar{V}_0^2\), the
positive root of the quadratic in \bar{v}^2 obtained by setting (3.17) equal to zero.

Thus it appears that when $(\mu+\kappa)J \neq \gamma$, and the inequalities (3.14 - 16) are satisfied, the transverse components of velocity and spin will contain terms oscillatory in space for a certain range of injection, $V_1^2 < \bar{v}^2 < V_2^2$, but only real exponential terms for the remaining values $0 \leq \bar{v}^2 \leq V_1^2$, $V_2^2 < \bar{v}^2$; when $(\mu+\kappa)J = \gamma$, the flow is oscillatory for all rates of injection $\bar{v}^2 > V_0^2$.

The calculation of explicit solutions in the various cases is a matter of straightforward, if lengthy, manipulation. Two solutions will be obtained in the next part of this section.
Section 1(c). Particular Solutions.

(1) Flow due to movement of the upper plate with no pressure gradient.

The boundary conditions are

\[y = 0, \quad u = 0, \quad \phi = 0 \]
\[y = h, \quad u = U, \quad \phi = 0 \]

and \(\frac{\partial p}{\partial x} = 0 \) in (3.2).

Assuming that the four roots are distinct, and substituting (3.9) into (3.18), we obtain, with the aid of (3.10),

\[C_i = \frac{U a_j a_k (m_{j} h - m_{k} h)}{M} \quad \text{(3.19)} \]

where

\[M = \sum_{j=1}^{3} a_j a_k (m_1 h - 1) (m_j h - m_k h) \]

\[C_0 = -(C_1 + C_2 + C_3) \quad \text{(3.20)} \]

and where \(1, j, k \) is a cyclic permutation of \(123 \).

The tangential stress and couple stress across a plane \(y = \text{constant} \) are given by

\[t_x = (\mu + \kappa) u' + \kappa \phi \]

\[m_z = \gamma \phi' \quad \text{(3.21)} \]
The corresponding solution for a Newtonian fluid is

\[u = \frac{U(1 - e^{my})}{(1 - e^{mH})} \quad \text{where} \quad m = -\frac{\rho V}{\mu}. \]

(ii) Flow due to pressure gradient alone, when the plates remain stationary.

The boundary conditions are

\[y = 0, \quad u = 0, \quad \phi = 0, \]
\[y = H, \quad u = 0, \quad \phi = 0. \quad \text{(3.22)} \]

The complete solution in this case is

\[u = C_0 + C_1 e^{m_1 y} + C_2 e^{m_2 y} + C_3 e^{m_3 y} + 2Py \]
\[\phi = a_1 C_1 e^{m_1 y} + a_2 C_2 e^{m_2 y} + a_3 C_3 e^{m_3 y} - \Gamma \quad \text{(3.23)} \]

where \(2\rho VF = \frac{\partial P}{\partial x} \).

Substituting (3.23) into (3.22), and using (3.10) we find that

\[C_1 = \frac{P}{M} [2m a_j a_k (e^{m_j h} - e^{m_k h}) + (a_j - a_k) (e^{m_j h} - 1)(e^{m_k h} - 1)] \quad \text{(3.24)} \]

where again \(1jk \) is a cyclic permutation of \(123 \), \(M \) is given by (3.20), and \(C_0 = -C_1 - C_2 - C_3 \). The tangential stress and couple stress are obtained from (3.21).
The corresponding solution for a Newtonian fluid is

\[u = 2P\{y - \frac{h(1 - e^{my})}{(1 - e^{mh})}\}, \tag{3.25} \]

where

\[\frac{\partial p}{\partial x} = 2p \rho V \quad \text{and} \quad m = -\frac{V}{\mu} \]
Section 2: Flow Near an Accelerated Porous Flat Plate With Variable Suction.

We consider unsteady, laminar and incompressible flow of a micropolar fluid near an infinite porous flat plate with variable suction. Let \(x \) and \(y \) be the co-ordinates along the plate and perpendicular to it respectively and \(u \) and \(v \) be the corresponding components of velocity. Micro-rotation has only one non-zero component about \(z \)-axis and let that be denoted by \(\phi \).

When \(t < 0 \), the fluid is assumed to be everywhere stationary, and when \(t > 0 \), the plate is accelerated at the velocity \(u = At^n \) (where \(n > 0 \) is an integer and \(A \) is a constant). As the plate is infinite in length, all the variables in this problem are functions of \(y \) and \(t \) only. The material constants of the micropolar fluid are assumed to be independent of position. We neglect body forces and body couples.

Thus, for an infinite porous flat plate, using the above assumptions, the equation of continuity (1.1) and the momentum equations (1.2) and (1.3), provided pressure gradient in \(x \)-direction is zero, reduce to

\[
-\frac{\partial v}{\partial y} = 0 \tag{3.26}
\]

\[
\frac{\partial v}{\partial t} - \frac{1}{\rho} \frac{\partial p}{\partial y} \quad \phi \tag{3.27}
\]
\begin{align}
(u + \kappa) \frac{\partial^2 u}{\partial y^2} + \kappa \frac{\partial \phi}{\partial y} &= \rho \left(\frac{\partial u}{\partial t} + v \frac{\partial u}{\partial y} \right) \\
\gamma \frac{\partial^2 \phi}{\partial y^2} - \kappa \frac{\partial u}{\partial y} - 2\kappa \phi &= \rho j \left(\frac{\partial \phi}{\partial t} + v \frac{\partial \phi}{\partial y} \right) .
\end{align}
(3.28)

Equation (3.26), upon integration, gives
\begin{equation}
v = -V(t) = -V_0 \left(\frac{1}{t} \right)^{1/2} (s ay),
(3.30)
\end{equation}

where \(V_0 (>0) \) represents the suction.

The reason we choose \(v = -V_0 \left(\frac{1}{t} \right)^{1/2} \) is to permit similarity solutions to be valid.

Introducing (3.30) into (3.27), (3.28) and (3.29), and then integrating (3.27), we get the following equations:
\begin{align}
p &= p_0 - \frac{V_0}{2} \rho y \ t^{-3/2} ,
(3.31)
(u + \kappa) \frac{\partial^2 u}{\partial y^2} + \kappa \frac{\partial \phi}{\partial y} &= \eta \left(\frac{\partial u}{\partial t} - \frac{\rho y \ t^{1/2}}{V_0 \ t^{1/2}} \right) ,
(3.32)
\gamma \frac{\partial^2 \phi}{\partial y^2} - \kappa \frac{\partial u}{\partial y} - 2\kappa \phi &= \rho j \left(\frac{\partial \phi}{\partial t} - \frac{V_0}{t^{1/2}} \frac{\partial \phi}{\partial y} \right) ,
(3.33)
\end{align}

where \(p_0 \) is the value of \(p \) at \(y = 0 \).

The boundary conditions are
\begin{align}
u(0, t) &= A t^{11} , \quad \phi(0, t) = 0 , \\
u(\omega, t) &= 0 , \quad \phi(\omega, t) = 0 .
(3.34)
\end{align}
A method of perturbation expansion of functions of a dimensionless variable is applied to solve the equations (3.32) and (3.33) and series solutions in terms of parabolic cylinder functions, in the particular case \((u+k)j = \gamma\), are found.

For small values of \(\varepsilon\), where \(\varepsilon = \frac{k\tau}{\rho j}\), we expand \(u\) and \(\phi\) in ascending powers of \(\varepsilon\) as follows:

\[
\begin{align*}
 u &= At^n \left[\gamma_0(\eta) + \varepsilon \gamma_1(\eta) + \varepsilon^2 \gamma_2(\eta) + \ldots \right], \\
 \phi &= Bt^{-\frac{n+1}{2}} \left[\gamma_0(\eta) + \varepsilon \gamma_1(\eta) + \varepsilon^2 \gamma_2(\eta) + \ldots \right],
\end{align*}
\]

(3.35)

where \(\eta = \frac{X}{\sqrt{2k\tau}}\), \(k = \frac{u+k}{\rho}\).

We note that \(\varepsilon\) and \(\eta\) are both dimensionless quantities.

Substituting the relations (3.35) into the equations (3.32) and (3.33) and equating the like powers of \(\varepsilon\), we get two systems of ordinary differential equations:

\[
\begin{align*}
 f_0'' + (n+n_0)f_0' - 2nf_0 &= 0, \quad (3.36) \\
 f_1'' + (n+n_0)f_1' - 2(n+1)f_1 &= b_1 f_0', \quad (3.37) \\
 f_2'' + (n+n_0)f_2' - 2(n+2)f_2 &= b_1 f_1', \quad (3.38)
\end{align*}
\]

and
\[\begin{align*}
\varepsilon_0'' + b_2(n+n_0)\varepsilon_0' - b_2(2n+1)\varepsilon_0 &= b_3f_0'' \\
\varepsilon_1'' + b_2(n+n_0)\varepsilon_1' - b_2'(2n+3)\varepsilon_1 &= b_3f_1'' + 4b_2\varepsilon_0 \\
\varepsilon_2'' + b_2(n+n_0)\varepsilon_2' - b_2'(2n+5)\varepsilon_2 &= b_3f_2'' + 4b_2\varepsilon_1
\end{align*} \] (3.39)

where the prime denotes differentiation with respect to \(n \), and

\[\begin{align*}
b_1 &= -\frac{2\sqrt{\frac{1}{b}}} \frac{1}{\kappa} \\
b_2 &= k \frac{p_j}{\gamma} \\
b_3 &= \frac{\kappa \sqrt{2k}} \gamma \frac{A}{B}
\end{align*} \]

\[\eta_0 = \sqrt[\gamma]{\left(\frac{\eta}{\kappa}\right)} \] (3.40)

The boundary conditions (3.34) in the new variables become

\[\begin{align*}
f_0(0) &= 1, & f_0'(0) &= 0 \\
f_k'(0) &= f_k'(0) = 0, & k &= 1, 2, 3, \ldots \\
f_k(\infty) &= f_k(\infty) = 0, & k &= 0, 1, 2, \ldots
\end{align*} \] (3.41)

We have seen that the computation would become increasingly lengthy due to the occurrence of parabolic cylinder functions with arguments \((n+n_0)\) and \((n+n_0)\sqrt{2} \). However, considerable simplification is introduced if we consider the particular case \(b_2 = 1 \), that is \((\mu+k)j = \gamma \). Therefore, the system of equations (3.39) reduce to
\[\varepsilon''_0 + (n+n_0)\varepsilon'_0 - (2n+1)\varepsilon_0 = b_3 f'_0 \quad (3.42) \]
\[\varepsilon''_1 + (n+n_0)\varepsilon'_1 - (2n+3)\varepsilon_1 = b_3 f'_1 + 4\varepsilon_0 \quad (3.43) \]
\[\varepsilon''_2 + (n+n_0)\varepsilon'_2 - (2n+5)\varepsilon_2 = b_3 f'_2 + 4\varepsilon_1 \quad (3.44) \]

If we substitute

\[f_0(\eta) = F_0(\eta) e^{-\frac{1}{4}(\eta+n_0)^2 + \frac{n_0^2}{4}} \quad (3.45) \]

into equation (3.36), then \(F_0 \) satisfies the equation

\[F''_0 + \left[-2n - \frac{1}{2} - \frac{1}{4}(\eta+n_0)^2 \right] F_0 = 0 \quad (3.46) \]

Writing the above equation in the standard form of Weber's differential equation, we have

\[F''_0 + \left[-(2n+1) + \frac{1}{2} - \frac{1}{4}(\eta+n_0)^2 \right] F_0 = 0 \quad (3.47) \]

The general solution of (3.47) is given by

\[F_0 = C_1 D_{-2n-1}(\eta+n_0) + C_2 D_{2n}(\eta+n_0) \quad (3.48) \]

where \(C_1 \) and \(C_2 \) are arbitrary constants, and \(D_{-2n-1}(\eta+n_0) \) and \(D_{2n}(\eta+n_0) \) are the parabolic cylinder functions.

Using (3.48) with (3.45), the general solution of the differential equation (3.36) is
\[f_0 = C_1 e^{\frac{1}{4}(n+n_0)^2 + \frac{n_0^2}{4}} D_{-2n-1}(n+n_0) \]

+ \[C_2 e^{\frac{1}{4}(n+n_0)^2 + \frac{n_0^2}{4}} D_{2n}((n+n_0)i) \] . \hspace{1cm} (3.49)

If the solution (3.49) is to be bounded at \(n = \infty \), we must have \(C_2 = 0 \). Therefore, we have

\[f_0 = C_1 e^{\frac{1}{4}(n+n_0)^2 + \frac{n_0^2}{4}} D_{-2n-1}(n+n_0) \] . \hspace{1cm} (3.50)

The boundary condition at \(n = 0 \) gives

\[C_1 = \frac{1}{D_{-2n-1}(n_0)} \] \hspace{1cm} (3.51)

Using (3.51) in (3.50), we find that

\[f_0 = e^{\frac{1}{4}(n+n_0)^2 + \frac{n_0^2}{4}} \frac{D_{-2n-1}(n+n_0)}{D_{-2n-1}(n_0)} \] . \hspace{1cm} (3.52)

Differentiating (3.52) with respect to \(n \), and making use of the formula (2.26), we get

\[f_0' = (-1) e^{\frac{1}{4}(n+n_0)^2 + \frac{n_0^2}{4}} \frac{D_{-2n}(n+n_0)}{D_{-2n-1}(n_0)} \] \hspace{1cm} (3.53)

Substituting (3.53) into (3.42), the differential equation becomes
\[\varepsilon_0'' + (\eta_0^2 + \eta_0) \varepsilon_0' - (2n+1) \varepsilon_0 = (-1)^n b_3 e^{-\frac{1}{4}((n+\eta_0)^2 + \eta_0^2)} \frac{D_{-2n-1}(\eta_0)}{D_{-2n-1}(\eta_0)} \]

(3.54)

To find the complementary function of the differential equation (3.54), the corresponding homogeneous equation is

\[\varepsilon_0'' + (\eta_0^2 + \eta_0) \varepsilon_0' - (2n+1) \varepsilon_0 = 0 \]

(3.55)

If we substitute

\[\varepsilon_0 = C_0 e^{-\frac{1}{4}((n+\eta_0)^2 + \eta_0^2)} \]

(3.56)

into (3.55), then \(C_0 \) satisfies the equation

\[\varepsilon_0'' + \left[-(2n+1) - \frac{1}{2} - \frac{1}{4}(n+\eta_0)^2\right] \varepsilon_0 = 0 \]

(3.57)

Writing the above equation in the standard form of Weber's differential equation, we have

\[\varepsilon_0'' + \left[-(2n+2) + \frac{1}{2} - \frac{1}{4}(n+\eta_0)^2\right] \varepsilon_0 = 0 \]

(3.58)

The general solution of (3.58) is

\[\varepsilon_0 = C_3 D_{-2n-2}(\eta_0) + C_4 D_{2n+1}(\eta_0) \]

(3.59)

where \(C_3 \) and \(C_4 \) are arbitrary constants.

Substituting (3.59) into (3.56), we find that the complementary function of the differential equation (3.54) is
\[e_0 = C_3 e^{-\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{4} D_{-2n-2}(n+n_0) + C_4 e^{-\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{4} D_{2n+1}(n+n_0) \]

(3.60)

To find the particular integral of (3.54), we let

\[e_0 = A e^{-\frac{1}{4}(n+n_0)^2} D_{-2n}(n+n_0) \]

(3.61)

where \(A \) is an unknown constant to be determined.

Substituting (3.61) into the left hand side of (3.54) and making use of the formulae (2.40) and (2.49), we find that

\[e_0'' + (n+n_0)e_0' - (2n+1)e_0 = -2A e^{-\frac{1}{4}(n+n_0)^2} D_{-2n}(n+n_0) \]

(3.62)

Comparing the coefficients in the right hand sides of the equations (3.54) and (3.62), we have

\[A = \frac{b_3}{2} e^{-\frac{n_0^2}{4}} \]

(3.63)

Hence, the particular integral becomes

\[e_0 = \frac{b_3}{2} D_{-2n}(n+n_0) e^{-\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{4} \]

(3.64)

Therefore, the general solution of (3.42) or (3.54), which is the sum of the complementary function (3.60) and the
particular integral (3.64), is
\[
\varepsilon_0 = C_3 \ e^{-\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{4} D_{-2n-2}(n+n_0)
\]
\[+ C_4 \ e^{-\frac{1}{4}(n+n_0)^2} \frac{n_0^2}{4} D_{2n+1}(n+n_0) \]
\[+ \frac{b_3}{2} \ e^{-\frac{1}{4}(n+n_0)^2} \frac{n_0^2}{4} \frac{D_{-2n}(n+n_0)}{D_{-2n-1}(n_0)} \] \hspace{1cm} (3.65)

If the solution (3.65) is to be bounded at \(n = \infty \), we must have \(C_4 = 0 \), and thus
\[
\varepsilon_0 = C_3 \ e^{-\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{4} D_{-2n-2}(n+n_0)
\]
\[+ \frac{b_3}{2} \ e^{-\frac{1}{4}(n+n_0)^2} \frac{n_0^2}{4} \frac{D_{-2n}(n+n_0)}{D_{-2n-1}(n_0)} \] \hspace{1cm} (3.66)

The boundary condition at \(n = 0 \), gives
\[
C_3 = -\frac{b_3}{2} \frac{D_{-2n}(n_0)}{D_{-2n-1}(n_0)D_{-2n-2}(n_0)} \] \hspace{1cm} (3.67)

Differentiating (3.66) with respect to \(n \) and using the formula (2.49), we find that
\[
\varepsilon_0 = -C_3 \ e^{-\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{4} D_{-2n-1}(n+n_0)
\]
\[+ \frac{b_3}{2} \ e^{-\frac{1}{4}(n+n_0)^2} \frac{n_0^2}{4} \frac{D_{-2n+1}(n+n_0)}{D_{-2n-1}(n_0)} \] \hspace{1cm} (3.68)
Substituting (3.68) into (3.37), the differential equation becomes

\[f_1'' + (n+n_0)f_1' - 2(n+1)f_1^2 = -b_1 c_3 e^{-\frac{1}{4}(n+n_0)^2 + \frac{n_0^2}{4}} D_{-2n-1}^2(n+n_0) \]

\[+ \frac{b_1}{2} b_3 e^{-\frac{1}{4}(n+n_0)^2 + \frac{n_0^2}{4}} \frac{D_{-2n+1}(n+n_0)}{D_{-2n-1}(n_0)} \]

(3.69)

The homogeneous differential equation of (3.69) is

\[f_1'' + (n+n_0)f_1' - 2(n+1)f_1 = 0 \]

(3.70)

If we substitute

\[f_1 = F_1 e^{-\frac{1}{4}(n+n_0)^2 + \frac{n_0^2}{4}} \]

(3.71)

into (3.70), then \(F_1 \) satisfies the equation

\[F_1'' + [-(2n+1) - \frac{1}{2} - \frac{1}{4}(n+n_0)^2]F_1 = 0 \]

(3.72)

which may be written in the form

\[F_1'' + [-(2n+3) + \frac{1}{2} - \frac{1}{4}(n+n_0)^2]F_1 = 0 \]

(3.73)

The general solution of (3.73) is

\[F_1 = C_5 D_{-2n-3}((n+n_0) + C_6 D_{2n+2}((n+n_0) \text{i}) \]

(3.74)

where \(C_5 \) and \(C_6 \) are arbitrary constants of integration.

Substituting (3.74) into (3.71), we find that the complementary
function of the differential equation (3.69) is

\[f_1 = C_5 e^{-\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{4} D_{-2n-3}(n+n_0) \]
\[+ C_6 e^{-\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{4} D_{2n+2}((n+n_0)i). \]

(3.75)

In order to find the particular integral of the differential equation (3.69), we let

\[f_1 = A_1 e^{-\frac{1}{4}(n+n_0)^2} D_{-2n-1}(n+n_0) \]
\[+ A_2 e^{-\frac{1}{4}(n+n_0)^2} D_{-2n+1}(n+n_0), \]

(3.76)

where \(A_1 \) and \(A_2 \) are unknown constants yet to be determined.

Substituting (3.76) into the left hand side of (3.69) and using the formula (2.40) and (2.49), we obtain

\[f_1'' + (n+n_0)f_1' - 2(n+1)f_1 = -2A_1 e^{-\frac{1}{4}(n+n_0)^2} D_{-2n-1}(n+n_0) \]
\[-4A_2 e^{-\frac{1}{4}(n+n_0)^2} D_{-2n+1}(n+n_0). \]

(3.77)
Comparing the right hand sides of equations (3.69) and (3.77), we find that

\[A_1 = \frac{b_1}{2} \frac{1}{c_3} e^{\frac{1}{4}n_0^2} \]

\[A_2 = \frac{b_1b_3}{8} \frac{1}{D_{-2n-1}(n_0)} e^{\frac{1}{4}n_0^2} \]

Hence by (3.78), the particular integral (3.76) becomes

\[f_1 = \frac{b_1}{2} c_3 e^{\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{4} D_{-2n-1}(n+n_0) \]

\[+ \frac{b_1b_3}{8} e^{\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{4} D_{-2n-1}(n+n_0) \]

\[+ \frac{b_1b_3}{8} e^{\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{4} D_{-2n-1}(n+n_0) \]

The general solution of (3.77) or (3.69), which is the sum of the complementary function (3.75) and the particular integral (3.79), is

\[f_1 = c_5 e^{\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{4} D_{-2n-3}(n+n_0) \]

\[+ c_6 e^{\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{4} D_{-2n+2}((n+n_0)1) \]

\[+ \frac{b_1}{2} c_3 e^{\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{4} D_{-2n-1}(n+n_0) \]

\[+ \frac{b_1b_3}{8} e^{\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{4} D_{-2n-1}(n+n_0) \]

\[+ \frac{b_1b_3}{8} e^{\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{4} D_{-2n-1}(n+n_0) \]

(3.80)
To find C_5 and C_6, we apply the boundary conditions (3.41), and if the solution (3.80) is to be bounded at $n = \infty$, we must have $C_6 = 0$, and then

$$f_1 = C_5 e^{-\frac{1}{4}(n+n_0)^2} + \frac{\eta_0}{4} D_{-2n-3}(n+n_0) + \frac{b_1}{2} C_3 e^{-\frac{1}{4}(n+n_0)^2} + \frac{\eta_0}{4} D_{-2n-1}(n+n_0) + \frac{b_1 b_3}{8} e^{-\frac{1}{4}(n+n_0)^2} + \frac{\eta_0}{4} D_{-2n+1}(n+n_0)$$

$$D_{-2n-1}(n_0)$$

The boundary condition at $n = 0$ gives

$$C_5 = \frac{1}{D_{-2n-3}(n_0)} \left[-\frac{b_1 C_3}{2} D_{-2n-1}(n_0) - \frac{b_1 b_3}{8} D_{-2n+1}(n_0) \right]$$

Using (3.67) in (3.82) we find that

$$C_5 = \frac{b_1 b_3}{8 D_{-2n-3}(n_0)} \left[2 \frac{D_{-2n}(n_0)}{D_{-2n-2}(n_0)} - \frac{D_{-2n+1}(n_0)}{D_{-2n-1}(n_0)} \right]$$

Differentiating (3.81) with respect to n, and making use of the formulae (2.40) and (2.49), we obtain
\[f_1' = -c_5 e^{-\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{4} D_{-2n-2}(n+n_0) \]
\[- \frac{b_1}{2} c_3 e^{-\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{4} D_{-2n}(n+n_0) \]
\[- \frac{b_1}{8} c_3 e^{-\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{4} D_{-2n+2}(n+n_0) \]
\[D_{-2n-1}(n_0) \]

(3.84)

Substituting (3.66) and (3.84) into (3.43), the differential equation becomes

\[g_1'' + (n+n_0)g_1' - (2n+3)g_1 \]
\[= (4c_3 - b_3 c_5) e^{-\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{4} D_{-2n-2}(n+n_0) \]
\[+ \left(\frac{2b_3}{D_{-2n-1}(n_0)} - \frac{b_1 b_3 c_3}{2} \right) e^{-\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{4} D_{-2n}(n+n_0) \]
\[- \frac{b_1 b_3^2}{8} e^{-\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{4} D_{-2n+2}(n+n_0) \]
\[D_{-2n-1}(n_0) \]

(3.85)

The homogeneous differential equation of (3.85) is

\[g_1'' + (n+n_0)g_1' - (2n+3)g_1 = 0 \]

(3.86)
If we substitute
\[g_1(n) = G_1(n) e^{-\frac{1}{4}(n+n_0)^2 + \frac{n_0^2}{4}} \]
(3.87)
into (3.86), then \(G_1 \) satisfies the equation
\[G_1'' + \left[-(2n+3) - \frac{1}{2} - \frac{1}{4} (n+n_0)^2 \right] G_1 = 0. \]
(3.88)
The equation (3.88) may be written in the standard form of Weber's differential equation
\[G_1'' + \left[-(2n+4) + \frac{1}{2} - \frac{1}{4} (n+n_0)^2 \right] G_1 = 0. \]
(3.89)
The general solution of (3.89) is
\[G_1 = C_7 D_{-2n+4}(n+n_0) + C_8 D_{2n+3}((n+n_0)1), \]
(3.90)
where \(C_7 \) and \(C_8 \) are arbitrary constants of integration.
Using (3.90) in (3.87), the complementary function of the differential equation (3.85) becomes
\[g_1 = C_7 e^{-\frac{1}{4}(n+n_0)^2 + \frac{n_0^2}{4}} D_{-2n+4}(n+n_0) \]
\[+ \ C_8 e^{-\frac{1}{4}(n+n_0)^2 + \frac{n_0^2}{4}} D_{2n+3}((n+n_0)1). \]
(3.91)
To find the particular integral of the differential equation (3.85), we let
\[g_1 = B_1 e^{-\frac{1}{4}(n+n_0)^2} D_{-2n-2}(n+n_0) + B_2 e^{-\frac{1}{4}(n+n_0)^2} D_{-2n}(n+n_0) \]

\[+ B_3 e^{-\frac{1}{4}(n+n_0)^2} D_{-2n+2}(n+n_0), \quad (3.92) \]

where \(B_1, B_2 \), and \(B_3 \) are unknown constants yet to be determined.

Substituting (3.92) into the left hand side of (3.85) and using the formulae (2.40) and (2.49), we find that

\[g_1'' + (n+n_0)g_1' - (2n+3)g_1 \]

\[= -2B_1 e^{-\frac{1}{4}(n+n_0)^2} D_{-2n-2}(n+n_0) \]

\[- 4B_2 e^{-\frac{1}{4}(n+n_0)^2} D_{-2n}(n+n_0) \]

\[- 6B_3 e^{-\frac{1}{4}(n+n_0)^2} D_{-2n+2}(n+n_0). \quad (3.93) \]

Comparing the right hand sides of the equations (3.85) and (3.93), we obtain
\[B_1 = -\frac{1}{2} \left(4c_3 - b_3 c_5 \right) e^{\frac{n_0^2}{4}} \]

\[B_2 = -\frac{1}{4} \left(\frac{2b_3}{D_{-2n-1}(n_0)} - \frac{b_1 b_3}{2} c_3 e^{\frac{n_0^2}{4}} \right) \]

\[B_3 = \frac{1}{6} \frac{b_1 b_3^2}{8} \frac{n_0^2}{4} \frac{1}{D_{-2n-1}(n_0)} \]

Hence the particular integral (3.92), by aid of (3.94), becomes

\[C_1 = -\frac{1}{2} (4c_3 - b_3 c_5) e^{\frac{1}{4} (n+n_0)^2} + \frac{n_0^2}{4} D_{-2n-2}(n+n_0) \]

\[+ \frac{1}{4} \left(\frac{b_1 b_3 c_3}{2} - \frac{2b_3}{D_{-2n-1}(n_0)} \right) e^{\frac{1}{4} (n+n_0)^2} + \frac{n_0^2}{4} D_{-2n}(n+n_0) \]

\[+ \frac{b_1 b_3^2}{48} \frac{1}{D_{-2n-1}(n_0)} e^{\frac{1}{4} (n+n_0)^2} D_{-2n+2}(n+n_0) \]

Therefore the general solution of the differential equation (3.43) or (3.85), which is the complementary function (3.91) plus the particular integral (3.95), is
\[e_1 = C_7 e^{-\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{4} D_{-2n-4}(n+n_0) \]

\[+ C_8 e^{-\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{4} D_{2n+3}(n+n_0) \]

\[- \frac{1}{2}(4C_3 - b_3 C_5) e^{-\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{4} D_{-2n-2}(n+n_0) \]

\[+ \frac{1}{4} \left(\frac{b_3 C_3}{2} - \frac{2b_3}{D_{-2n-1}(n_0)} \right) e^{-\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{4} D_{-2n}(n+n_0) \]

\[+ \frac{b_3^2}{48} \cdot \frac{1}{D_{-2n-1}(n_0)} e^{-\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{4} D_{-2n+2}(n+n_0) \]

(3.96)

We need to find \(C_7 \) and \(C_8 \), subject to the boundary conditions (3.41), and if the solution (3.96) is to be bounded at \(\eta = \infty \), we must have \(C_8 = 0 \), and therefore from (3.96), we have
\[G_1 = C_7 e^{-\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{4} D_{-2n-4}(n+n_0) \]

\[- \frac{1}{2} \left[\frac{4c_3 - b_3 c_5}{2} \right] e^{-\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{4} D_{-2n-2}(n+n_0) \]

\[+ \frac{1}{4} \left(\frac{b_1 b_3 c_3}{2} - \frac{2b_3}{D_{-2n-1}(n_0)} \right) e^{-\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{4} D_{-2n}(n+n_0) \]

\[+ \frac{b_1 b_3^2}{48} D_{-2n-1}(n_0) e^{-\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{4} D_{-2n+2}(n+n_0) \]

The boundary condition at \(n = 0 \), gives us

\[C_7 = \frac{1}{D_{-2n-4}(n_0)} \left[\frac{1}{2} \left(\frac{4c_3 - b_3 c_5}{2} \right) D_{-2n-2}(n_0) \right] \]

\[- \frac{1}{4} \left(\frac{b_1 b_3 c_3}{2} - \frac{2b_3}{D_{-2n-1}(n_0)} \right) D_{-2n}(n_0) \]

\[- \frac{b_1 b_3^2}{48} D_{-2n+2}(n_0) \left(\frac{D_{-2n-1}(n_0)}{D_{-2n-1}(n_0)} \right) \]

\[(3.97) \]

The general solutions of the differential equations (3.38) and (3.44), subject to the boundary conditions (3.41), may be found similarly, although the computation would become increasingly lengthy.
It is interesting to note that for $\kappa = 0$, and vanishing micro-rotation, our solution (3.35) reduces to the classical solution for Newtonian fluids,

$$u(y,t) = At^t \Gamma_0(\eta),$$

where

$$\Gamma_0(\eta) = e^{-\frac{1}{\pi}(\eta+\eta_0)^2} + \frac{\eta_0^2}{\pi} [D_{-2n-1}(\eta_0)]^{-1} \cdot D_{-2n-1}(\eta+\eta_0).$$
Section 3. Flow near a uniformly accelerated porous flat plate with variable suction.

The particular case \(n = 1 \) in section 2 of this chapter corresponds to a fluid motion caused by uniformly accelerating a porous flat plate with variable suction.

Our two systems of ordinary differential equations (3.36) through (3.38), and (3.42) through (3.44), reduce to

\[
\begin{align*}
 f''_0 + (n+n_0)f'_0 - 2f_0 &= 0, \\
 f''_1 + (n+n_0)f'_1 - 4f_1 &= b_1f_0, \\
 f''_2 + (n+n_0)f'_2 - 6f_2 &= b_1f_1,
\end{align*}
\]

and

\[
\begin{align*}
 r''_0 + (n+n_0)r'_0 - 3r_0 &= b_3r_0, \\
 r''_1 + (n+n_0)r'_1 - 5r_1 &= b_3r_1 + 4r_0, \\
 r''_2 + (n+n_0)r'_2 - 7r_2 &= b_3r_2 + 4r_1,
\end{align*}
\]

where we have assumed that \(b_2 = 1 \), that is the particular case when \((n+k)\lambda = \gamma \).

The general solutions of the differential equations (3.99), (3.102), (3.100) and (3.103), subject to the boundary conditions (3.41), are found by putting \(n = 1 \) in the solutions (3.52), (3.66), (3.81) and (3.97) as follows:
\[
\gamma_0 = e^{\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{n} \frac{D_{-3}(n+n_0)}{D_{-3}(n_0)}
\]
(3.105)

\[
\gamma'_0 = c_3 e^{\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{n} \frac{D_{-4}(n+n_0)}{D_{-4}(n_0)}
\]
(3.106)

where
\[
c_3 = -\frac{b_3}{2} \frac{D_{-2}(n_0)}{D_{-3}(n_0) D_{-4}(n_0)}
\]

\[
\gamma_1 = c_5 e^{\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{n} \frac{D_{-5}(n+n_0)}{D_{-3}(n_0)}
\]
(3.107)

where
\[
c_{ij} = \frac{1}{D_{-3}(n_0)} \left[\frac{b_1 b_3}{n} \frac{D_{-2}(n_0)}{D_{-3}(n_0)} - \frac{b_1 b_3}{8} \frac{D_{-1}(n_0)}{D_{-3}(n_0)} \right]
\]
\[g_1 = c_7 e^{-\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{4} D_{-6}(n+n_0) \]
\[- \frac{1}{2}(4c_3 - b_3 c_5) e^{-\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{4} D_{-4}(n+n_0) \]
\[+ \frac{1}{4} \left(\frac{b_1 b_3 c_3}{4} - \frac{2b_3}{D_{-3}(n_0)} \right) e^{-\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{4} D_{-2}(n+n_0) \]
\[+ \frac{b_1 b_3^2}{48} e^{-\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{4} \frac{D_0(n+n_0)}{D_{-3}(n_0)} \] (3.108)

where

\[c_7 = \frac{1}{D_{-6}(n_0)} \left[\frac{1}{2}(4c_3 - b_3 c_5) D_{-4}(n_0) \right. \]
\[- \frac{1}{4} \left(\frac{b_1 b_3 c_3}{4} - \frac{2b_3}{D_{-3}(n_0)} \right) D_{-2}(n_0) \]
\[- \frac{b_1 b_3^2}{48} \frac{D_0(n_0)}{D_{-3}(n_0)} \]

The general solutions of the differential equations (3.101) and (3.104), subject to the boundary conditions (3.41), may be found similarly.

The velocity and micro-rotation or spin, found by putting \(n = 1 \) in (3.35), are.
\[u = A t [f_0(n) + \varepsilon f_1(n) + \varepsilon^2 f_2(n) + \ldots] \]
\[\phi = B t^3 [g_0(n) + \varepsilon g_1(n) + \varepsilon^2 g_2(n) + \ldots] , \]

where \(A \) and \(B \) are constants having the dimensions \(L^1 T^{-2} \) and \(T^{-5/2} \) respectively. The functions \(f_0, g_0, f_1 \) and \(g_1 \) have values as given in (3.105), (3.106), (3.107) and (3.108) respectively.

\[B = \frac{\sqrt{k} b_1}{\sqrt{2} j}, \quad k = \frac{(u+k)}{\varphi} \quad \text{and} \quad \varepsilon = \frac{kt}{\rho j} , \]

For \(\kappa = 0 \) and vanishing spin, our solution (3.109) reduces to

\[u = A t f_0(n) , \]

where

\[f_0(n) = e^{-\frac{1}{\eta}(n+n_0)^2} + \frac{n_0^2}{4} \frac{D_3(n+n_0)}{D_3(n_0)} \]
Section 4. Flow near a suddenly accelerated porous flat plate with variable suction.

The particular case \(n = 0 \) in section 2 of this chapter corresponds to a fluid motion caused by the sudden acceleration of a porous flat plate with variable suction. Therefore, the two systems of ordinary differential equations (3.36) through (3.38), and (3.42) through (3.44) reduce to

\[
f''_0 + (n+n_0)f'_0 = 0 \tag{3.110}
\]

\[
f''_1 + (n+n_0)f'_1 - 2f_1 = b_1 \xi_0 \tag{3.111}
\]

\[
f''_2 + (n+n_0)f'_2 - 4f_2 = b_1 \xi_1 \tag{3.112}
\]

and

\[
\xi''_0 + (n+n_0)\xi'_0 - \xi_0 = b_3 f'_0 \tag{3.113}
\]

\[
\xi''_1 + (n+n_0)\xi'_1 - 3\xi_1 = b_3 f'_1 + 4\xi_0 \tag{3.114}
\]

\[
\xi''_2 + (n+n_0)\xi'_2 - 5\xi_2 = b_3 f'_2 + 4\xi_1 \tag{3.115}
\]

where we have considered the particular case when \((\mu+\kappa)^4 = \gamma \).

The general solutions of the differential equations (3.110), (3.113), (3.111) and (3.114), subject to the boundary conditions (3.41), are found by putting \(n = 0 \) in the solutions (3.52), (3.66), (3.81) and (3.97) as follows:
\[f_0 = e^{-\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{4} \frac{D_{-1}(n+n_0)}{D_{-1}(n_0)} \]

(3.116)

The right hand side in (3.116) can be written in terms of the error function with the aid of the formula given in Erdélyi et al. (1953, Volume 2, p. 119),

\[D_{-1}(z) = \sqrt{2} e^{-\frac{1}{4}z^2} \operatorname{Erfc}\left(\frac{z}{\sqrt{2}}\right) \]

(3.117)

where \(\operatorname{Erfc} \) is the complementary error function, which is defined in (2.101).

Therefore, we have

\[D_{-1}(n+n_0) = \sqrt{2} e^{-\frac{1}{4}(n+n_0)^2} \operatorname{Erfc}\left(\frac{n+n_0}{\sqrt{2}}\right) \]

(3.118)

and

\[D_{-1}(n_0) = \sqrt{2} e^{-\frac{n_0^2}{4}} \operatorname{Erfc}\left(\frac{n_0}{\sqrt{2}}\right) \]

(3.119)

Using (3.118) and (3.119) in (3.116), we find that

\[f_0 = \frac{\operatorname{Erfc}\left(\frac{n+n_0}{\sqrt{2}}\right)}{\operatorname{Erfc}\left(\frac{n_0}{\sqrt{2}}\right)} \]

(3.120)

\[g_0 = c_3 e^{-\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{4} \frac{D_{-2}(n+n_0)}{D_{-2}(n_0)} \]

\[+ \frac{b_3}{2} e^{-\frac{1}{4}(n+n_0)^2} + \frac{n_0^2}{4} \frac{D_0(n+n_0)}{D_{-1}(n_0)} \]

(3.121)
where
\[c_3 = -\frac{b_3}{2} \frac{D_0(n_0)}{D_{-1}(n_0) D_{-2}(n_0)} \]
\[f_1 = c_5 e^{-\frac{1}{4}(n+n_0)^2 + \frac{n_0^2}{4} D_{-3}(n+n_0)} \]
\[+ \frac{b_1}{2} c_3 e^{-\frac{1}{4}(n+n_0)^2 + \frac{n_0^2}{4} D_{-1}(n+n_0)} \]
\[+ \frac{b_1 b_3}{8} e^{-\frac{1}{4}(n+n_0)^2 + \frac{n_0^2}{4} D_{1}(n+n_0)} \]
\[+ \frac{b_1 b_3}{8} e^{-\frac{1}{4}(n+n_0)^2 + \frac{n_0^2}{4} D_{-1}(n_0)} \]
\[(3.122) \]

where
\[c_5 = \frac{1}{D_{-3}(n_0)} \left[\frac{b_1 b_3}{4} \frac{D_0(n_0)}{D_{-2}(n_0)} - \frac{b_1 b_3}{8} \frac{D_1(n_0)}{D_{-1}(n_0)} \right] \]
\[g_1 = c_7 e^{-\frac{1}{4}(n+n_0)^2 + \frac{n_0^2}{4} D_{-4}(n+n_0)} \]
\[- \frac{1}{2} (4c_3 - b_3 c_5) e^{-\frac{1}{4}(n+n_0)^2 + \frac{n_0^2}{4} D_{-2}(n+n_0)} \]
\[+ \frac{1}{4} \left(\frac{b_1 b_3 c_3}{2} - \frac{2b_3}{D_{-1}(n_0)} \right) e^{-\frac{1}{4}(n+n_0)^2 + \frac{n_0^2}{4} D_0(n+n_0)} \]
\[+ \frac{b_1 b_2}{8} \frac{b_3}{2} e^{-\frac{1}{4}(n+n_0)^2 + \frac{n_0^2}{4} D_{2}(n+n_0)} \]
\[+ \frac{b_1 b_2}{8} \frac{b_3}{2} e^{-\frac{1}{4}(n+n_0)^2 + \frac{n_0^2}{4} D_{-1}(n_0)} \]
\[(3.123) \]
where

$$C_7 = \frac{1}{D_{-2}(\eta_0)} \left[\frac{1}{2} (4 C_3 - b_3 C_5) D_{-2}(\eta_0) \right]$$

$$= \frac{b_3 C_3}{2} D_{-1}(\eta_0) - \frac{2 b_3}{48} D_{-1}(\eta_0) - \frac{b_1}{b_3} \frac{D_2(\eta_0)}{D_{-1}(\eta_0)}$$

The general solutions of the differential equations (3.112) and (3.115), subject to the boundary conditions (3.41), may be found in a similar manner.

The velocity and micro-rotation or spin, found by putting \(n = 0 \) in (3.35), are

$$u = A [f_0(\eta) + \varepsilon f_1(\eta) + \varepsilon^2 f_2(\eta) + \ldots]$$

$$\phi = B \left[\frac{1}{2} \varepsilon f_0(\eta) + \varepsilon^2 f_1(\eta) + \varepsilon^3 f_2(\eta) + \ldots \right]$$

(3.124)

where \(A \) and \(B \) are constants having the dimensions \(L^1 T^{-1} \) and \(T^{-3} \) respectively. The functions \(f_0, \varphi_0, f_1, \varphi_1 \) and \(\varphi_2 \) have solutions as given in (3.120), (3.121), (3.122) and (3.123) respectively.

$$B = \sqrt{\frac{k}{2} \frac{b_1}{A}}, \quad k = \frac{(u+\kappa)}{\rho} \quad \text{and} \quad \varepsilon = \frac{\kappa t}{\rho j}.$$

It should be noted here that for \(\kappa = 0 \), and vanishing micro-rotation, our solution (3.124) reduces to
\[u = A f_0, \text{ where} \]
\[f_0 = \frac{\text{Erfc} \left(\frac{n + n_0}{\sqrt{2}} \right)}{\text{Erfc} \left(\frac{n_0}{\sqrt{2}} \right)} \]

which is the same as the solution for Newtonian fluids.
CHAPTER IV

STEADY FLOW IN AN ELLIPTIC TUBE

Section 1. Equations of motion:

Green and Rivlin (1956) have worked out the case of non-Newtonian fluids in a tube of elliptic cross-section and observed that the flow is secondary.

Langlois and Rivlin (1963) have studied the slow steady-state flow of visco-elastic fluids through non-circular tubes and also observed that the flow is secondary.

Eringen (1966) investigated the steady flow of micropolar fluids through a circular pipe.

It is quite interesting to work out the case of micropolar fluids in an elliptic tube and to see whether the flow is secondary or not.

Here we consider steady, incompressible flow of micropolar fluids with no external forces and body couples, and take axes Ox, Oy, Oz, where Oz is parallel to the generators of the elliptic tube with axes 2a, 2b and Ox, Oy are perpendicular thereto. (Figure 4.1). We look for a solution for which

\[\mathbf{v} = (0, 0, w(x, y)) \quad \text{and} \quad \mathbf{v} = (v(x, y), \phi(x, y), 0) \quad (4.1) \]

The equation of continuity (1.1) is satisfied identically,
Figure 4.1 Co-ordinate system for flow through elliptic tube.
and the field equations (1.2) and (1.3), due to (4.1), reduce to

\[
\frac{\partial p}{\partial x} = 0, \quad (4.2)
\]

\[
\frac{\partial p}{\partial y} = 0, \quad (4.3)
\]

\[
(\mu + \kappa)\left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2}\right) + \kappa (\frac{\partial \phi}{\partial x} - \frac{\partial v}{\partial y}) - \frac{\partial p}{\partial z} = 0, \quad (4.4)
\]

\[
(\alpha + \beta + \gamma)\left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial x \partial y}\right) - \gamma \left(\frac{\partial^2 \phi}{\partial y \partial x} - \frac{\partial^2 v}{\partial y^2}\right) + \kappa \frac{\partial w}{\partial y} = 2\kappa v = 0, \quad (4.5)
\]

and

\[
(\alpha + \beta + \gamma)\left(\frac{\partial^2 w}{\partial y \partial x} + \frac{\partial^2 w}{\partial y^2}\right) + \gamma \left(\frac{\partial^2 \phi}{\partial x \partial y} - \frac{\partial^2 v}{\partial x^2}\right) - \kappa \frac{\partial w}{\partial x} - 2\kappa \phi = 0. \quad (4.6)
\]

Equations (4.2) and (4.3) show that \(p = p(z) \) only, so that equation (4.4) becomes

\[
(\mu + \kappa)\left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2}\right) + \kappa (\frac{\partial \phi}{\partial x} - \frac{\partial v}{\partial y}) = \frac{dp}{dz}. \quad (4.7)
\]

In the above equation, the left-hand side is a function of \(x \) and \(y \) only and the right-hand side is a function of \(z \) only. We deduce that both are constants, and write

\[
\frac{dp}{dz} = (\mu + \kappa)\left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2}\right) + \kappa (\frac{\partial \phi}{\partial x} - \frac{\partial v}{\partial y}) = -p. \quad (4.8)
\]
We need to solve the partial differential equations (4.5), (4.6) and (4.7), subject to the following boundary conditions:

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 ; \quad w(x,y) = v(x,y) = \phi(x,y) = 0. \]

(4.8)

The method of successive approximations is applied to uncouple the partial differential equations (4.5), (4.6) and (4.7), which are then solved using the semi-inverse method [Langelouis (1964, p. 119-120)].
Section 2. Solution by successive approximation and semi-inverse methods.

We seek a solution of the partial differential equations (4.5), (4.6), and (4.7) in powers of \(\epsilon \), assuming that \(\epsilon \) is a parameter which is sufficiently small, where

\[
\epsilon = \frac{K L}{\rho_0 \nu_0}.
\]

Thus we expand \(w, v, \) and \(\phi \) in ascending powers of \(\epsilon \) as follows:

\[
w(x, y) = w_0(x, y) + \epsilon w_1(x, y) + \epsilon^2 w_2(x, y) + \epsilon^3 w_3(x, y) + \ldots
\]

\[
v(x, y) = v_0(x, y) + \epsilon v_1(x, y) + \epsilon^2 v_2(x, y) + \epsilon^3 v_3(x, y) + \ldots \tag{4.9}
\]

\[
\phi(x, y) = \phi_0(x, y) + \epsilon \phi_1(x, y) + \epsilon^2 \phi_2(x, y) + \epsilon^3 \phi_3(x, y) + \ldots
\]

Substituting the relations (4.9) into equations (4.7), (4.5) and (4.6), we find that

\[
\mu \left[\frac{\partial^2 w_0}{\partial x^2} + \frac{\partial^2 w_0}{\partial y^2} \right] + \epsilon \left(\frac{\partial^2 w_1}{\partial x^2} + \frac{\partial^2 w_1}{\partial y^2} \right) + \epsilon^2 \left(\frac{\partial^2 w_2}{\partial x^2} + \frac{\partial^2 w_2}{\partial y^2} \right)
\]

\[+ \epsilon^3 \left(\frac{\partial^2 w_3}{\partial x^2} + \frac{\partial^2 w_3}{\partial y^2} \right) + \ldots \] + \epsilon b_1 \left[\frac{\partial^2 w_0}{\partial x^2} + \frac{\partial^2 w_0}{\partial y^2} \right]

\[+ \epsilon \left(\frac{\partial w_1}{\partial x} + \frac{\partial w_1}{\partial y} \right) + \epsilon^2 \left(\frac{\partial^2 w_2}{\partial x^2} + \frac{\partial w_1}{\partial x} + \frac{\partial^2 w_2}{\partial y^2} \right) + \ldots \] + \epsilon b_1 \left[\frac{\partial \phi_0}{\partial x} - \frac{\partial \nu_0}{\partial y} \right]

\[+ \epsilon \left(\frac{\partial \phi_1}{\partial x} - \frac{\partial \nu_1}{\partial y} \right) + \epsilon^2 \left(\frac{\partial^2 \phi_2}{\partial x^2} - \frac{\partial \nu_2}{\partial y} \right) + \ldots \] = - p. \tag{4.10}
\[(\alpha + \beta + \gamma)[(\frac{a^2 v_0}{\partial x^2} + \frac{a^2 \phi_0}{\partial x \partial y}) + \epsilon (\frac{a^2 v_1}{\partial x^2} + \frac{a^2 \phi_1}{\partial x \partial y})]

+ \epsilon^2 (\frac{a^2 v_2}{\partial x^2} + \frac{a^2 \phi_2}{\partial x \partial y}) + \epsilon^3 (\frac{a^2 v_3}{\partial x^2} + \frac{a^2 \phi_3}{\partial x \partial y}) + \ldots \]

\[\gamma (\frac{a^2 v_0}{\partial y \partial x} - \frac{a^2 v_0}{\partial y^2}) + \epsilon (\frac{a^2 \phi_1}{\partial y \partial x} - \frac{a^2 \phi_1}{\partial y^2}) + \epsilon^2 (\frac{a^2 v_2}{\partial y \partial x} - \frac{a^2 v_2}{\partial y^2})

+ \epsilon^3 (\frac{a^2 \phi_3}{\partial y \partial x} - \frac{a^2 \phi_3}{\partial y^2}) + \ldots \]

+ \frac{a \omega_0}{\partial x} + \epsilon \frac{a \omega_1}{\partial x} + \epsilon^2 \frac{a \omega_2}{\partial x} + \ldots \]

= 2b_1 \epsilon (v_0 + \epsilon v_1 + \epsilon^2 v_2 + \ldots) \tag{4.11}

and

\[(\alpha + \beta + \gamma)[(\frac{a^2 v_0}{\partial y^2} + \frac{a^2 \phi_0}{\partial x \partial y}) + \epsilon (\frac{a^2 v_1}{\partial y^2} + \frac{a^2 \phi_1}{\partial x \partial y})]

+ \epsilon^2 (\frac{a^2 v_2}{\partial y^2} + \frac{a^2 \phi_2}{\partial x \partial y}) + \epsilon^3 (\frac{a^2 v_3}{\partial y^2} + \frac{a^2 \phi_3}{\partial x \partial y}) + \ldots \]

\[\gamma (\frac{a^2 v_0}{\partial x^2} - \frac{a^2 v_0}{\partial x \partial y}) + \epsilon (\frac{a^2 \phi_1}{\partial x^2} - \frac{a^2 \phi_1}{\partial x \partial y})

+ \epsilon^2 (\frac{a^2 \phi_2}{\partial x^2} - \frac{a^2 \phi_2}{\partial x \partial y}) + \epsilon^3 (\frac{a^2 \phi_3}{\partial x^2} - \frac{a^2 \phi_3}{\partial x \partial y}) + \ldots \]

\[b_1 \epsilon (\frac{a \omega_0}{\partial x} + \epsilon \frac{a \omega_1}{\partial x} + \epsilon^2 \frac{a \omega_2}{\partial x} + \ldots) \tag{4.12} \]
where
\[b_1 = \frac{\rho_0 l_0 v_0}{L} \]

Identifying like powers of \(\varepsilon \) in equations (4.10), (4.11) and (4.12), we find the following:

Zeroth order approximation:
\[
\frac{\partial^2 w_0}{\partial x^2} + \frac{\partial^2 w_0}{\partial y^2} = -\frac{\rho}{\mu},
\]
\[
(\alpha+\beta+\gamma)\left(\frac{\partial^2 v_0}{\partial x^2} + \frac{\partial^2 \phi_0}{\partial x \partial y}\right) - \gamma \left(\frac{\partial^2 \phi_0}{\partial y \partial x} - \frac{\partial^2 v_0}{\partial y^2}\right) = 0, \quad (4.13)
\]
\[
(\alpha+\beta+\gamma)\left(\frac{\partial^2 v_0}{\partial x^2} + \frac{\partial^2 \phi_0}{\partial y^2}\right) + \gamma \left(\frac{\partial^2 \phi_0}{\partial x^2} - \frac{\partial^2 v_0}{\partial x \partial y}\right) = 0.
\]

First order approximation:
\[
\mu \left(\frac{\partial^2 w_1}{\partial x^2} + \frac{\partial^2 w_1}{\partial y^2}\right) + b_1 \left(\frac{\partial^2 w_0}{\partial x^2} + \frac{\partial^2 w_0}{\partial y^2}\right) + b_1 \left(\frac{\partial \phi_1}{\partial x} - \frac{\partial v_0}{\partial y}\right) \neq 0,
\]
\[
(\alpha+\beta+\gamma)\left(\frac{\partial^2 v_1}{\partial x^2} + \frac{\partial^2 \phi_1}{\partial x \partial y}\right) - \gamma \left(\frac{\partial^2 \phi_1}{\partial y \partial x} - \frac{\partial^2 v_1}{\partial y^2}\right) + b_1 \frac{\partial w_0}{\partial y} = 2b_1 v_0, \quad (4.14)
\]
\[
(\alpha+\beta+\gamma)\left(\frac{\partial^2 v_1}{\partial y \partial x} + \frac{\partial^2 \phi_1}{\partial y^2}\right) + \gamma \left(\frac{\partial^2 \phi_1}{\partial x^2} - \frac{\partial^2 v_1}{\partial x \partial y}\right) - b_1 \frac{\partial w_0}{\partial x} = 2b_1 \phi_0.
\]
Second order approximation:

\[\mu \left(\frac{\partial^2 w_2}{\partial x^2} + \frac{\partial^2 w_2}{\partial y^2} \right) + b_1 \left(\frac{\partial^2 w_1}{\partial x^2} + \frac{\partial^2 w_1}{\partial y^2} \right) + b_2 \left(\frac{\partial \phi_1}{\partial x} - \frac{\partial \psi_1}{\partial y} \right) = 0, \]

\[(\alpha + \beta + \gamma) \left(\frac{\partial^2 \psi_2}{\partial x^2} + \frac{\partial^2 \phi_2}{\partial x \partial y} \right) - \gamma \left(\frac{\partial^2 \phi_2}{\partial y \partial x} - \frac{\partial^2 \psi_2}{\partial y^2} \right) + b_1 \frac{\partial \psi_1}{\partial y} = 2b_1 \psi_1, \quad (4.15) \]

Third order approximation:

\[\mu \left(\frac{\partial^2 w_3}{\partial x^2} + \frac{\partial^2 w_3}{\partial y^2} \right) + b_1 \left(\frac{\partial^2 w_2}{\partial x^2} + \frac{\partial^2 w_2}{\partial y^2} \right) + b_2 \left(\frac{\partial \phi_2}{\partial x} - \frac{\partial \psi_2}{\partial y} \right) = 0, \]

\[(\alpha + \beta + \gamma) \left(\frac{\partial^2 \psi_3}{\partial x^2} + \frac{\partial^2 \phi_3}{\partial x \partial y} \right) - \gamma \left(\frac{\partial^2 \phi_3}{\partial y \partial x} - \frac{\partial^2 \psi_3}{\partial y^2} \right) + b_1 \frac{\partial \psi_2}{\partial y} = 2b_1 \psi_2, \quad (4.16) \]

The boundary conditions (4.8), in view of (4.9), become:

when \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \); \(w_k(x,y) = \psi_k(x,y) = \phi_k(x,y) = 0 \). \quad (4.17)

The partial differential equations (4.13) through (4.16), subject to the boundary conditions (4.17), are solved using the semi-inverse method [Langlois (1964, p. 119-120)].

The solution of the first of (4.13), subject to the boundary condition that \(w_0(x,y) = 0 \) when...
\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \] is easily found as

\[w_0(x,y) = C_1(b^2x^2 + a^2y^2 - a^2b^2), \quad (4.18) \]

where

\[C_1 = -\frac{p}{2u(a^2 + b^2)} \]

Therefore, we have

\[w_0(x,y) = -\frac{p}{2u(a^2 + b^2)}(b^2x^2 + a^2y^2 - a^2b^2), \quad (4.19) \]

The pair of equations (4.13) is elliptic and the boundary conditions are \(v_0 = \phi_0 = 0 \), when \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \). A solution satisfying the equations and boundary conditions is

\[v_0 \equiv 0, \quad \phi_0 = 0. \quad (4.20) \]

Hence this is the unique solution.

Using (4.20) in equations (4.14), the equations become

\[u\left(\frac{\partial^2 w_1}{\partial x^2} + \frac{\partial^2 w_1}{\partial y^2}\right) + b_1\left(\frac{\partial^2 w_0}{\partial x^2} + \frac{\partial^2 w_0}{\partial y^2}\right) = 0, \]

\[(\alpha + \beta + \gamma)\left(\frac{\partial^2 v_1}{\partial x^2} + \frac{\partial^2 \phi_1}{\partial x \partial y}\right) - \gamma\left(\frac{\partial^2 \phi_1}{\partial y \partial x} - \frac{\partial^2 v_1}{\partial y^2}\right) + b_1\frac{\partial w_0}{\partial y} = 0, \quad (4.21) \]

\[(\alpha + \beta + \gamma)\left(\frac{\partial^2 v_1}{\partial y \partial x} + \frac{\partial^2 \phi_1}{\partial y^2}\right) + \gamma\left(\frac{\partial^2 \phi_1}{\partial x^2} - \frac{\partial^2 v_1}{\partial x \partial y}\right) - b_1\frac{\partial w_0}{\partial x} = 0. \]
Using the first of (4.13) in the first of (4.21), we have

\[
\frac{\partial^2 w_1}{\partial x^2} + \frac{\partial^2 w_1}{\partial y^2} = \frac{b_1 P}{\mu^2}.
\] (4.22)

The solution of the partial differential equation (4.22), subject to the boundary condition that \(w_1(x, y) = 0 \) when \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \), is

\[
w_1(x, y) = c_2(b^2x^2 + a^2y^2 - a^2b^2)
\] (4.23)

where

\[
c_2 = \frac{b_1 P}{2\mu^2(a^2 + b^2)}.
\]

Therefore, we have

\[
w_1(x, y) = \frac{b_1 P}{2\mu^2(a^2 + b^2)} (b^2x^2 + a^2y^2 - a^2b^2). \] (4.24)

Using (4.19) in the second and third of (4.21) and after a little simplification, the equations become

\[
(a + \beta + \gamma)(\frac{\partial^2 v_1}{\partial x^2} + \frac{\partial^2 \phi_1}{\partial x \partial y}) - \gamma(\frac{\partial^2 \phi_1}{\partial y \partial x} - \frac{\partial^2 v_1}{\partial y^2}) = \frac{b_1 P a^2 y}{\mu(a^2 + b^2)}
\] (4.25)

and

\[
(a + \beta + \gamma)(\frac{\partial^2 v_1}{\partial y \partial x} + \frac{\partial^2 \phi_1}{\partial y^2}) + \gamma(\frac{\partial^2 \phi_1}{\partial x^2} - \frac{\partial^2 v_1}{\partial x \partial y}) = -\frac{b_1 P b^2 x}{\mu(a^2 + b^2)}
\] (4.26)
The solutions of the partial differential equations (4.25) and (4.26), subject to the boundary conditions that \(v_1(x,y) = \phi_1(x,y) = 0 \) when \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \), using the semi-inverse method, are found to be

\[
v_1(x,y) = C_3 y (b^2 x^2 + a^2 y^2 - a^2 b^2),
\]

(4.27)

\[
\phi_1(x,y) = C_4 x (b^2 x^2 + a^2 y^2 - a^2 b^2),
\]

(4.28)

provided that \(x \neq 0 \), \(y \neq 0 \), and where \(C_3 \) and \(C_4 \) are constants, which are found to be

\[
C_3 = \frac{b_1 Pa^2 [(\alpha+\beta)(a^2+b^2) + \gamma (3b^2+a^2)]}{2u(a^2+b^2) \gamma [(\alpha+\beta)a^2b^2 + 3b^4(\alpha+\beta)+a^2(3a^2+b^2)(\alpha+\beta+\gamma)} + 3b^2 \gamma (3a^2+b^2)]
\]

and

\[
C_4 = -\frac{b_1 Pb^2 [(\alpha+\beta)(a^2+b^2) + \gamma (3a^2+b^2)]}{2u(a^2+b^2) \gamma [(\alpha+\beta)a^2b^2 + 3b^4(\alpha+\beta)+a^2(3a^2+b^2)(\alpha+\beta+\gamma)} + 3b^2 \gamma (3a^2+b^2)]
\]

(4.30)

We would like to point out here that if \(w_0 \) is a polynomial of degree 2, and \(\phi_0 = v_0 = 0 \), then \(w_1 \) could be a polynomial of degree 2, and \(\phi_1, v_1 \) could be polynomials of degree 3. Similarly \(w_2 \) could be a polynomial of degree 4, and
\(v_2, \psi_2 \) could be polynomial of degree 5.

We make \(v \) odd in \(y \) and even in \(x \), \(\psi \) odd in \(x \) and even in \(y \), \(w \) even in both, because the partial differential equations are not satisfied otherwise.

We find the difference between the volume fluxes \(\int_{w_0} dA \) and \(\int_{w_1} dA \) in order to estimate the magnitude of first approximation to the zeroth approximation.

The volume flux for the zeroth order approximation is \(F_0 \) given by

\[
F_0 = \int \int_{w_0} (x, y) dx \, dy
\]

\[
= \int \int_{y=0}^{\frac{a}{b}} \int_{x=0}^{\frac{a}{b}} \frac{P}{2\mu(a^2 + b^2)} \left(b^2 x^2 + a^2 y^2 - a^2 b^2 \right) dx \, dy \quad (4.31)
\]

which on integration gives us

\[
F_0 = \frac{\pi \, P \, a^3 \, b^3}{4\mu(a^2 + b^2)} \quad (4.32)
\]

The volume flux for the first order approximation is

\[
F_1 = \int \int_{w_1} (x, y) dx \, dy
\]

\[
= \frac{4\, b_1 \, P}{2\mu^2(a^2 + b^2)} \int_{y=0}^{\frac{a}{b}} \int_{x=0}^{\frac{a}{b}} \left(b^2 x^2 + a^2 y^2 - a^2 b^2 \right) dx \, dy
\]

\[
= \frac{\pi \, b_1 \, P \, a^3 b^3}{4\mu^2(a^2 + b^2)} \quad (4.33)
\]
Using (4.24), (4.27) and (4.28) in the partial differential equations (4.15) and after a little simplification, the equations become

\[
\frac{\partial^2 w_2}{\partial x^2} + \frac{\partial^2 w_2}{\partial y^2} = \frac{b_1 b_2^2}{\mu} (C_3 - 3C_4)x^2 + \frac{b_1 a^2}{\mu} (3C_3 - C_4)y^2
\]

\[
- \frac{b_1^2 p}{\mu^3} + \frac{b_1 a^2 b_2^2}{\mu} (C_3 - C_4),
\]

(4.34)

\[
(\alpha + \beta + \gamma)(\frac{\partial^2 v_2}{\partial x^2} + \frac{\partial^2 \phi_2}{\partial y^2}) + \gamma(\frac{\partial^2 \phi_2}{\partial y^2} - \frac{\partial^2 v_2}{\partial y^2})
\]

\[
= b_1 y[2C_3 b^2 x^2 + 2C_3 a^2 y^2 - 2C_3 a^2 b^2 - \frac{b_1 p a^2}{\mu^2 (a^2 + b^2)}]
\]

(4.35)

and

\[
(\alpha + \beta + \gamma)(\frac{\partial^2 v_2}{\partial y \partial x} + \frac{\partial^2 \phi_2}{\partial y^2}) + \gamma(\frac{\partial^2 \phi_2}{\partial x \partial y} - \frac{\partial^2 v_2}{\partial x \partial y})
\]

\[
= b_1 x[2C_3 b^2 x^2 + 2C_3 a^2 y^2 - 2C_3 a^2 b^2 + \frac{b_1 p b^2}{\mu^2 (a^2 + b^2)}]
\]

(4.36)

The solution of the partial differential equation (4.34), subject to the boundary condition that \(w_2(x, y) = 0 \) when \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \), is found to be
\[w_2(x, y) = (b^2x^2 + a^2y^2 - a^2b^2)(A_1x^2 + A_2y^2 + A_3), \]

(4.37)

where

\[A_1 = \frac{b_1b^2(b^2 + 6a^2)(C_3 - 3C_4) - b_1a^2b^2(3C_3 - C_4)}{12\mu(a^4 + b^4 + 6a^2b^2)}, \]

(4.38)

\[A_2 = \frac{b_1a^2(b^2 + 6b^2)(3C_3 - C_4) - b_1a^2b^2(C_3 - 3C_4)}{12\mu(a^4 + b^4 + 6a^2b^2)}, \]

(4.39)

and

\[A_3 = \frac{1}{2(a^2 + b^2)}[2a^2b^2(A_1 + A_2) - b_1^2\mu^3 - \frac{b_1a^2b^2}{\mu}(C_3 - C_4)]. \]

(4.40)

The solutions of the partial differential equations (4.35), and (4.36), subject to the boundary conditions that \[x^2 + \frac{y^2}{a^2} = 1, \] are found using the semi-inverse method as follows:

\[v_2(x, y) = y(b^2x^2 + a^2y^2 - a^2b^2)(A_4x^2 + A_5y^2 + A_6), \]

(4.41)

\[\phi_2(x, y) = x(b^2x^2 + a^2y^2 - a^2b^2)(A_7x^2 + A_8y^2 + A_9), \]

(4.42)

provided that \[x \neq 0, y \neq 0 \], and where \[A_4, A_5, A_6, A_7, A_8 \] and \[A_9 \] are constants given by...
\[\Lambda_4 = \frac{\Lambda_1}{\Delta}, \quad \Lambda_5 = \frac{\Lambda_2}{\Delta}, \quad \Lambda_6 = \frac{\Lambda_3}{\Delta}, \]
\[\Lambda_7 = \frac{\Lambda_4}{\Delta}, \quad \Lambda_8 = \frac{\Lambda_5}{\Delta}, \quad \Lambda_9 = \frac{\Lambda_6}{\Delta}. \]
(4.43)

and where \(\Delta, \Delta_1, \Delta_2, \Delta_3, \Delta_4, \Delta_5 \) and \(\Delta_6 \) are

\[\Delta = [(\alpha + \beta + \gamma) a^2 + 3 \gamma b^2] [(\alpha + \beta + \gamma) b^2 + 3 \gamma a^2] \Delta_0 - a^2 b^2 (\alpha + \beta)^2 \Delta_0, \]

(4.44)

\[\Delta_0 = \begin{vmatrix} (\alpha + \beta + \gamma) a^2 & (\alpha + \beta + \gamma) b^2 + 10 a^2 \gamma & 0 & 2 (\alpha + \beta) a^2 \\ 6 (\alpha + \beta + \gamma) b^2 + 3 a^2 \gamma & 3 b^2 \gamma & 3 a^2 (\alpha + \beta) & 3 b^2 (\alpha + \beta) \\ 2 (\alpha + \beta) b^2 & 0 & (\alpha + \beta + \gamma) a^2 + 10 b^2 \gamma & (\alpha + \beta + \gamma) b^2 \\ 3 (\alpha + \beta) a^2 & 3 (\alpha + \beta) b^2 & 3 \gamma a^2 & 6 a^2 (\alpha + \beta + \gamma) + 3 \gamma b^2 \end{vmatrix}, \]

\[\Delta_1 = [(\alpha + \beta + \gamma) a^2 + 3 \gamma b^2] [(\alpha + \beta + \gamma) b^2 + 3 \gamma a^2] \Delta_1' - a^2 b^2 (\alpha + \beta)^2 \Delta_1', \]

(4.45)

\[\Delta = \begin{vmatrix} b_1 a^2 c_3 & (\alpha + \beta + \gamma) b^2 + 10 a^2 \gamma & 0 & 2 (\alpha + \beta) a^2 \\ b_1 b^2 c_3 & 3 b^2 \gamma & 3 a^2 (\alpha + \beta) & 2 (\alpha + \beta) b^2 \\ b_1 b^2 c_4 & 0 & (\alpha + \beta + \gamma) a^2 + 10 b^2 \gamma & (\alpha + \beta + \gamma) b^2 \\ b_1 a^2 c_4 & 3 (\alpha + \beta) b^2 & 3 \gamma a^2 & 6 a^2 (\alpha + \beta + \gamma) + 3 \gamma b^2 \end{vmatrix}, \]

and
\[\Delta_2 = [(a + \beta + \gamma)a^2 + 3\gamma b^2][a + \beta + \gamma)b^2 + 3\gamma a^2] \Delta'' - a^2 b^2 (a + \beta)^2 \Delta'' , \]

where

\[\Delta'' = \begin{pmatrix}
(a + \beta + \gamma)a^2 & b_1 a^2 c_3 & 0 & 2(a + \beta)a^2 \\
6(a + \beta + \gamma)b^2 + 3\gamma a^2 & b_1 b^2 c_3 & 3a^2 (a + \beta) & 3(a + \beta)b^2 \\
2(a + \beta)b^2 & b_1 b^2 c_4 & (a + \beta + \gamma)a^2 + 10b^2 \gamma & (a + \beta + \gamma)b^2 \\
3(a + \beta)a^2 & b_1 a^2 c_4 & 3a^2 & 6a^2 (a + \beta + \gamma) + 3\gamma b^2 \\
\end{pmatrix} \]

\[\Delta_3 = [(a + \beta + \gamma)a^2 + 3\gamma b^2] \Delta_{30} - a^2 (a + \beta) \Delta_{31} , \]

\[\Delta_{30} = \begin{pmatrix}
(a + \beta + \gamma)a^2 & (a + \beta + \gamma)b^2 + 10a^2 \gamma & b_1 a^2 c_3 & 0 & 2(a + \beta)a^2 \\
6(a + \beta + \gamma)b^2 + 3\gamma a^2 & 3b^2 \gamma & b_1 b^2 c_3 & 3a^2 (a + \beta) & 3b^2 (a + \beta) \\
2(a + \beta)b^2 & 0 & b_1 b^2 c_4 & (a + \beta + \gamma)a^2 + (a + \beta + \gamma)b^2 + 10b^2 \gamma \\
3(a + \beta)a^2 & 3(a + \beta)b^2 & b_1 a^2 c_4 & 3a^2 & 6a^2 (a + \beta + \gamma) + 3\gamma b^2 \\
-(a + \beta + \gamma)a^2 b^2 & -9\gamma a^2 b^2 & a_{11} & 0 & -(a + \beta)a^2 b^2 \\
\end{pmatrix} \]

\[a_{11} = -b_1 c_3 a^2 b^2 + \frac{2^2}{b_1 a^2 b^2} \]
\[
\Delta_{31} = \begin{bmatrix}
(a+\beta+\gamma)a^2 & (a+\beta+\gamma)b^2+10a^2\gamma & b\cdot a^2c_3 & 0 & 2(a+\beta)a^2 \\
6(a+\beta+\gamma)a^2+3a^2\gamma & 3b^2\gamma & b\cdot b^2c_3 & 3a^2(\alpha+\beta) & 3b^2(\alpha+\beta) \\
2(a+\beta)b^2 & 0 & b\cdot b^2c_4 & (\alpha+\beta+\gamma)a^2 & (\alpha+\beta+\gamma)b^2 \\
3(a+\beta)a^2 & 3(a+\beta)b^2 & b\cdot b^2c_4 & 3ya^2 & 6a^2(\alpha+\gamma)+3yb^2 \\
-(\alpha+\beta)a^2b^2 & 0 & a_12 & -3ya^2b^2 & -(\alpha+\beta+\gamma)a^2b^2
\end{bmatrix}
\]

\[a_{12} = -b\cdot b\cdot c_4 \cdot a^2b^2 + \frac{b_1^2 + b^2}{2\mu^2(a^2+b^2)}\]

\[\Delta_4 = [(a+\beta+\gamma)a^2+3yb^2][(a+\beta+\gamma)b^2+3ya^2]\Delta''' = a^2b^2(\alpha+\beta)^2\Delta''', \quad (4.48)\]

where

\[
\Delta''' = \begin{bmatrix}
(a+\beta+\gamma)a^2 & (a+\beta+\gamma)b^2+10a^2\gamma & b\cdot a^2c_3 & 2(a+\beta)a^2 \\
6(a+\beta+\gamma)b^2+3ya^2 & 3b^2\gamma & b\cdot b^2c_3 & 3b^2(\alpha+\beta) \\
2(a+\beta)b^2 & 0 & b\cdot b^2c_4 & (\alpha+\beta+\gamma)b^2 \\
3(a+\beta)a^2 & 3(a+\beta)b^2 & b\cdot a^2c_4 & 6a^2(\alpha+\gamma)+3yb^2
\end{bmatrix}
\]

\[\Delta_5 = [(a+\beta+\gamma)a^2+3yb^2][(a+\beta+\gamma)b^2+3ya^2]\Delta^{IV} = a^2b^2(\alpha+\beta)^2\Delta^{IV}, \quad (4.49)\]
\[\Delta_{iv} = \begin{vmatrix} (\alpha + \beta + \gamma)a^2 & (\alpha + \beta + \gamma)b^2 + 10a^2\gamma & 0 & b_1a^2c_3 \\ 6(\alpha + \beta + \gamma)b^2 + 3a^2\gamma & 3b^2\gamma & 3a^2(\alpha + \beta) & b_1b^2c_3 \\ 2(\alpha + \beta)b^2 & 0 & (\alpha + \beta + \gamma)a^2 + 10b^2\gamma & b_1b^2c_4 \\ 3(\alpha + \beta)a^2 & 3(\alpha + \beta)b^2 & 3\gamma a^3b & b_1a^2c_4 \end{vmatrix} \]

\[\Delta_6 = [(\alpha + \beta + \gamma)b^2 + 3\gamma a^2]\Delta_{60} - (\alpha + \beta)b^2\Delta_{61} \quad (4.50) \]

where

\[\Delta_{60} = \begin{vmatrix} (\alpha + \beta + \gamma)a^2 & (\alpha + \beta + \gamma)b^2 + 10a^2\gamma & 0 & 2(\alpha + \beta)a^2 & b_1a^2c_3 \\ 6(\alpha + \beta + \gamma)b^2 + 3a^2\gamma & 3b^2\gamma & 3a^2(\alpha + \beta) & 3(\alpha + \beta)b^2 & b_1b^2c_3 \\ 2(\alpha + \beta)b^2 & 0 & (\alpha + \beta + \gamma)a^2 & (\alpha + \beta + \gamma)b^2 & b_1b^2c_4 \\ 3(\alpha + \beta)a^2 & 3(\alpha + \beta)b^2 & 3\gamma a^3b & 6a^2(\alpha + \beta + \gamma) & b_1a^2c_4 \\ -(\alpha + \beta)a^2b^2 & 0 & -3\gamma a^2b^2 & -(\alpha + \beta + \gamma)a^2b^2 & a_{12} \end{vmatrix} \]

and
\[\Delta_{01} = \begin{vmatrix} (\alpha + \beta + \gamma) a^2 & (\alpha + \beta + \gamma) b^2 + 10a^2 \gamma & 0 & 2(\alpha + \beta) a^2 & b_1 a^2 c_3 \\ 6(\alpha + \beta + \gamma) b^2 & 3b^2 \gamma & 3a^2(\alpha + \beta) & 3(\alpha + \beta) b^2 & b_1 b^2 c_3 \\ +3a^2 \gamma & & & & \\ 2(\alpha + \beta) b^2 & 0 & (\alpha + \beta + \gamma) a^2 & (\alpha + \beta + \gamma) b^2 & b_1 b^2 c_4 \\ -(\alpha + \beta + \gamma) a^2 b^2 & -9\gamma a^2 b^2 & 0 & -(\alpha + \beta) a^2 b^2 & a_{11} \end{vmatrix} \]

The volume flux for the second order approximation is

\[F_2 = \iint w_2(x, y) \, dx \, dy \]

\[= 4 \int_{y=0}^{b} \int_{x=0}^{\frac{a}{b} \sqrt{b^2 - y^2}} (b^2 x^2 + a^2 y^2 - a^2 b^2) (A_1 x^2 + A_2 y^2 + A_3) \, dx \, dy \]

\[= 4 \int_{y=0}^{b} \int_{x=0}^{\frac{a}{b} \sqrt{b^2 - y^2}} (A_1 b^2 x^4 + (A_1 a^2 + A_2 b^2) x^2 y^2 + x^2 (A_3 - A_1 a^2) b^2 + A_2 a^2 y^4 + (A_3 - A_2 b^2) a^2 y^2 - A_3 a^2 b^2) \, dx \, dy, \quad (4.51) \]

which on integration gives
\[F_2 = \frac{\pi}{12} [A_1 a^5 b^3 + A_2 a^3 b^5 + 6A_3 a^3 b^3] \quad (4.52) \]

where
\[A_1 = \frac{b_1^2 b_2^2 P(3s(a^2+b^2)(a^4+b^4+6a^2b^2)+3a^6+3b^6+29a^2b^4+61a^4b^2)}{24\mu^2\gamma(a^2+b^2)(a^4+b^4+6a^2b^2)[s(3a^4+3b^4+2a^2b^2)+3a^4+3b^4+10a^2b^2]} \quad (4.53) \]

\[A_2 = \frac{b_1^2 a^2 P(3s(a^2+b^2)(a^4+b^4+6a^2b^2)+3a^6+3b^6+29a^2b^4+61a^4b^2)}{24\mu^2\gamma(a^2+b^2)(a^4+b^4+6a^2b^2)[s(3a^4+3b^4+2a^2b^2)+3a^4+3b^4+10a^2b^2]} \quad (4.54) \]

and
\[A_3 = \frac{1}{2(a^2+b^2)} \left[2a^2b^2(A_1 + A_2) - \frac{b_1^2 P}{\mu^3} \right] + \frac{b_1^2 a^2 b^2 P(s(a^2+b^2)^2+a^4+b^4+6a^2b^2)}{4\mu^2\gamma(a^2+b^2)^2[s(3a^4+3b^4+2a^2b^2)+3a^4+3b^4+10a^2b^2]} \quad (4.55) \]

\[s = \frac{a + b}{\gamma} \]

Clearly, \[F_1 = -\frac{b_1^2}{4\mu} F_0 \quad (4.56) \]

Area of an ellipse with semi-axes \(a \) and \(b \)
\[= \pi ab \quad (4.57) \]

hence mean fluxes:
\[
\bar{F}_0 = \frac{P \, a^2 b^2}{4\mu(a^2 + b^2)},
\]

\[
\bar{F}_1 = -\frac{b_1 P a^2 b^2}{16\mu^2(a^2 + b^2)},
\]

and

\[
\bar{F}_2 = -\frac{1}{12}\left[A_1 a^4 b^2 + A_2 a^2 b^4 + 6A_3 a^2 b^2 \right].
\]

The effect of spin does not enter \(F_1 \) (since \(\nu_0 = \phi_0 = 0 \)), but \(F_2 \) is definitely effected.

We may find the effect of eccentricity \(e \) of the ellipse on flux: \(b^2 = a^2(1-e^2) \). We take \(a = 1 \), then

\[
\bar{F}_0 = \frac{P(1-e^2)}{4\mu(2-e^2)},
\]

\[
\bar{F}_1 = -\frac{b_1 P(1-e^2)}{16\mu^2(2-e^2)},
\]

and

\[
\bar{F}_2 = -\frac{1}{12}\left[A_1 (1-e^2) + A_2 (1-e^2)^2 + 6A_3 (1-e^2) \right].
\]

We plot \(\bar{F}_0, \bar{F}_1 \) and \(\bar{F}_2 \) [Figures 4.2 through 4.7] against \(e \) (eccentricity). \(\bar{F}_2 \) shows the effect of the constants \(\alpha, \beta \) and \(\gamma \). These in turn might be calculated by running the fluid through elliptic pipes of different
eccentricity.

If we let \(P = 5, \ b_1 = 0.1, \ \mu = 0.5 \), then we have the tables and graphs for various \(s, \gamma \) as follows:

Table 1

<table>
<thead>
<tr>
<th>e</th>
<th>(F_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1.250000</td>
</tr>
<tr>
<td>0.25</td>
<td>1.209625</td>
</tr>
<tr>
<td>0.50</td>
<td>1.071375</td>
</tr>
<tr>
<td>0.75</td>
<td>0.761250</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>e</th>
<th>(F_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>-0.062500</td>
</tr>
<tr>
<td>0.25</td>
<td>-0.060481</td>
</tr>
<tr>
<td>0.50</td>
<td>-0.053569</td>
</tr>
<tr>
<td>0.75</td>
<td>-0.038063</td>
</tr>
</tbody>
</table>
Table 3(a)

When $s = 3, \gamma = 3$

<table>
<thead>
<tr>
<th>e</th>
<th>F_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.022743</td>
</tr>
<tr>
<td>0.25</td>
<td>0.047048</td>
</tr>
<tr>
<td>0.50</td>
<td>0.041609</td>
</tr>
<tr>
<td>0.75</td>
<td>0.029587</td>
</tr>
</tbody>
</table>

Table 3(b)

When $s = 3, \gamma = 1$

<table>
<thead>
<tr>
<th>e</th>
<th>F_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.044792</td>
</tr>
<tr>
<td>0.25</td>
<td>0.043516</td>
</tr>
<tr>
<td>0.50</td>
<td>0.039062</td>
</tr>
<tr>
<td>0.75</td>
<td>0.028620</td>
</tr>
</tbody>
</table>
Table 3(c)

When \(s = 3, \gamma = \frac{1}{3} \)

<table>
<thead>
<tr>
<th>(e)</th>
<th>(\bar{F}_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.034375</td>
</tr>
<tr>
<td>0.25</td>
<td>0.033775</td>
</tr>
<tr>
<td>0.50</td>
<td>0.031471</td>
</tr>
<tr>
<td>0.75</td>
<td>0.024990</td>
</tr>
</tbody>
</table>

Table 3(d)

When \(s = 1, \gamma = 1 \)

<table>
<thead>
<tr>
<th>(e)</th>
<th>(\bar{F}_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.044792</td>
</tr>
<tr>
<td>0.25</td>
<td>0.041574</td>
</tr>
<tr>
<td>0.50</td>
<td>0.039057</td>
</tr>
<tr>
<td>0.75</td>
<td>0.029041</td>
</tr>
</tbody>
</table>
When \(s = 3, \gamma = 3 \).

Figure 4.4
When $s = 3$, $y = 1$.

Figure 4.5
When $s = 3$, $y = \frac{1}{3}$.

Figure 4.6
The solutions of the partial differential equations (4.16), subject to the boundary conditions that

\[w_3(x,y) = v_3(x,y) = \phi_3(x,y) = 0 \quad \text{when} \quad \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \]

are of the form

\[w_3(x,y) = (b^2x^2 + a^2y^2 - a^2b^2)(B_1x^4 + B_2x^2y^2 + B_3y^4 + B_4x^2 + B_5y^2 + B_6), \]

(4.60)

\[v_3(x,y) = y(b^2x^2 + a^2y^2 - a^2b^2)(B_7x^4 + B_8x^2y^2 + B_9y^4 + B_{10}x^2 + B_{11}y^2 + B_{12}), \]

(4.61)

and

\[\phi_3(x,y) = x(b^2x^2 + a^2y^2 - a^2b^2)(B_{13}x^4 + B_{14}x^2y^2 + B_{15}y^4 + B_{16}x^2 + B_{17}y^2 + B_{18}). \]

(4.62)

provided that \(x \neq 0, y \neq 0 \), and where \(B \)'s are constants which may be found in a similar manner as the constants in the zeroth, first and second order approximations.
From the constitutive equations of micropolar fluids, namely (1.4) and (1.5), we obtain the stresses and couple stresses as follows:

\[t_{xx} = t_{yy} = t_{zz} = -p, \]
\[t_{xy} = t_{yx} = 0, \]
\[t_{yz} = (\mu + \kappa) \frac{\partial w}{\partial y} - \kappa \nu, \]
\[t_{zy} = \mu \frac{\partial u}{\partial y} + \kappa \nu, \]
\[t_{xz} = (\mu + \kappa) \frac{\partial w}{\partial x} + \kappa \phi, \]
\[t_{zx} = \mu \frac{\partial w}{\partial x} - \kappa \phi, \]

and

\[m_{xx} = (\alpha + \beta + \gamma) \frac{\partial u}{\partial x} + \alpha \frac{\partial \phi}{\partial x}, \]
\[m_{yy} = (\alpha + \beta + \gamma) \frac{\partial \phi}{\partial y} + \alpha \frac{\partial u}{\partial y}, \]
\[m_{zz} = \alpha \left(\frac{\partial u}{\partial x} + \frac{\partial \phi}{\partial y} \right), \]
\[m_{xy} = \beta \frac{\partial u}{\partial y} + \gamma \frac{\partial \phi}{\partial x}, \]
\[m_{yx} = \beta \frac{\partial \phi}{\partial x} + \gamma \frac{\partial u}{\partial y}, \]
\[m_{xz} = m_{zx}, m_{yz} = m_{zy} = 0. \]
Section 3. Remarks

1. For \(\kappa = 0 \) and the vanishing micro-rotation or spin, our solution (4.9) reduces to the classical solution for Newtonian fluids,

\[
w(x,y) = w_0(x,y) = -\frac{P}{2\mu(a^2+b^2)} \left(b^2x^2 + a^2y^2 - a^2b^2 \right).
\]

(4.65)

2. The flow is not secondary here, whereas in the case of non-Newtonian fluids and visco-elastic fluids, the flow is observed to be secondary by Green and Rivlin (1956) and by Langlois and Rivlin (1963) respectively.

3. The curves of spin velocity, \(v=\text{constant} \) and \(\phi = \text{constant} \) [Figure 4.8], are similar in pattern to the secondary flow type as observed in non-Newtonian fluids by Green and Rivlin (1956), and in visco-elastic fluids by Langlois and Rivlin (1963).
Figure 4.8 Graph of curves, $v=$constant, and $\phi=$constant.
CHAPTER V

TWO DIMENSIONAL UNSTEADY MICROPOLAR FLOWS

In this chapter we have extended Kampe de Feriet's (1932) method to find solutions such that the vorticity ω and the spin φ are constant along streamlines, that is, ω = ω(ψ) and φ = φ(ψ) at any time. We also study Taylor (1923) Motions and motion due to a single vortex and/or spin. One may refer to Eringen (1967, p. 253-256) for the classical treatment of these problems.

Section 1: Equations of motion.

We consider two-dimensional, unsteady, incompressible flow of micropolar fluids with equations of motion in Cartesian co-ordinates.

\begin{align}
(u + \kappa)\nabla^2 u + \kappa \frac{\partial \phi}{\partial y} - \frac{\partial p}{\partial x} &= \rho \left(u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + \frac{\partial u}{\partial t} \right) \\
(u + \kappa)\nabla^2 v - \kappa \frac{\partial \phi}{\partial x} - \frac{\partial p}{\partial y} &= \rho \left(u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + \frac{\partial v}{\partial t} \right) \\
\gamma \nabla^2 \phi + \kappa \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) - 2\kappa \phi &= \rho \gamma \left(u \frac{\partial \phi}{\partial x} + v \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial t} \right) \\
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} &= 0
\end{align}

where

\[y = (u(x,y,t), v(x,y,t), 0) \]
\[\nu = (0, 0, \phi(x,y,t)) \]

(5.1)
(5.2)
(5.3)
(5.4)
(5.5)
To eliminate pressure \(p \) between (5.1) and (5.2), we differentiate (5.1) with respect to \(y \) and (5.2) with respect to \(x \) and then subtracting, we get

\[
(\mu + \kappa) \psi \left(\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x} \right) + \kappa \psi \psi
\]

\[
= \rho \left[\frac{\partial}{\partial t} + u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} \right] \left(\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x} \right),
\]

where we have made use of the equation of continuity (5.4), and the assumption that \(\frac{\partial^2 p}{\partial x \partial y} = \frac{\partial^2 p}{\partial y \partial x} \).

We introduce a stream function \(\psi(x,y,t) \) such that

\[
u = \frac{\partial \psi}{\partial y}, \quad v = -\frac{\partial \psi}{\partial x}.
\]

Using (5.7) in the equations (5.6) and (5.3), after a little simplification, we find that

\[
(\mu + \kappa) \psi + \kappa \psi \psi = \rho \left| \frac{\partial (\psi^2 \psi)}{\partial (x,y)} \right| + \rho \frac{\partial}{\partial t} (\psi^2 \psi),
\]

\[
\gamma \psi \psi - \kappa \psi \psi - 2 \kappa \phi = \rho j \left| \frac{\partial (\phi, \psi)}{\partial (x,y)} \right| + \rho j \frac{\partial \phi}{\partial t}.
\]

Let \(\frac{\partial}{\partial x} - \frac{\partial}{\partial y} = -\nabla^2 \psi = \omega \) (vorticity), then the equations (5.8) and (5.9) become

\[
(\mu + \kappa) \nabla^2 \omega - \kappa \nabla^2 \phi = \rho \left| \frac{\partial (\omega, \psi)}{\partial (x,y)} \right| - \rho \frac{\partial \omega}{\partial t},
\]

\[
\gamma \nabla^2 \phi + \kappa \omega - 2 \kappa \phi = \rho j \left| \frac{\partial (\phi, \psi)}{\partial (x,y)} \right| + \rho j \frac{\partial \phi}{\partial t}.
\]
Section 2: Kampe de Feriet solutions in which vorticity and spin are constant along streamlines.

Following Kampe de Feriet's (1932) method, the non-linear terms in the equations (5.10) and (5.11) vanish when

\[\omega = \omega(\psi), \quad \phi = \phi(\psi), \]

that is, the vorticity and spin are constant along streamline at a particular time. Then the equations (5.10) and (5.11) reduce to

\[(\nu + \kappa) \nabla^2 \omega - \kappa \nabla^2 \phi = \rho \frac{\partial \omega}{\partial t}. \quad (5.12) \]

and

\[\gamma \nabla^2 \phi + \kappa \omega - 2\kappa \phi = \rho \rho \frac{\partial \phi}{\partial t}. \quad (5.13) \]

Now we introduce streamline co-ordinates with metric (orthogonal):

\[ds^2 = h_1^2 \frac{dq_1^2}{h_1} + h_2^2 \frac{dq_2^2}{h_2} \]

such that \(\psi = q_1 \).

We must have the compatibility condition (since the region is a plane)

\[\frac{\partial}{\partial q_1} \left[\frac{1}{h_1} \frac{\partial h_2}{\partial q_1} \right] + \frac{\partial}{\partial q_2} \left[\frac{1}{h_2} \frac{\partial h_1}{\partial q_2} \right] = 0. \quad (5.14) \]

Now

\[\nu^2 \omega = \frac{1}{h_1 h_2 \frac{\partial q_1}{\partial q_1}} \left[\frac{\partial}{\partial q_1} \left(\frac{h_2}{h_1} \frac{\partial \omega}{\partial q_1} \right) + \frac{\partial}{\partial q_2} \left(\frac{h_1}{h_2} \frac{\partial \omega}{\partial q_2} \right) \right]. \quad (5.15) \]
hence
\[\omega = -\phi^2 \phi = -\frac{1}{h_1 h_2} \frac{\partial}{\partial q_1} \left(\frac{h_2}{h_1} \right) \]
(5.16)

since \(\psi = q_1 \)

and
\[\nabla^2 \omega = \frac{1}{h_1 h_2} \left[\frac{\partial}{\partial q_1} \left(\frac{h_2}{h_1} \frac{\partial \omega}{\partial q_1} \right) + \frac{\partial}{\partial q_2} \left(\frac{h_1}{h_2} \frac{\partial \omega}{\partial q_2} \right) \right] \]
\[= \frac{1}{h_1} \frac{\partial^2 \omega}{\partial q_1^2} - \omega \frac{\partial \omega}{\partial q_1} \]
(5.17)

when \(\omega = \omega(\psi) = \omega(q_1) \).

Using (5.14) through (5.17) in the equations (5.12) and (5.13), we find that
\[\frac{1}{h_1^2} \left| (u + \kappa) \frac{\partial^2 \omega}{\partial q_1^2} - \kappa \frac{\partial^2 \phi}{\partial q_1^2} \right| \left| -\omega \right| (u + \kappa) \frac{\partial \omega}{\partial q_1} - \kappa \frac{\partial \phi}{\partial q_1} = \rho \frac{\partial \omega}{\partial t} , \]
(5.18)

\[\frac{1}{h_1^2} \left\{ \gamma \frac{\partial^2 \phi}{\partial q_1^2} - \gamma h_1^2 \omega \frac{\partial \phi}{\partial q_1} \right\} + \kappa \omega - 2 \kappa \phi = \rho \frac{\partial \phi}{\partial t} . \]
(5.19)

Now \(\omega = \omega(q_1) \), \(\phi = \phi(q_1) \), hence it follows from (5.18) and (5.19) that
\[h_1 = h_1(q_1) \] only, in which case the streamlines are concentric circles or parallel straight lines.
\[\frac{\partial}{\partial q_1} \frac{\partial^2 \omega}{\partial q_1^2} = \frac{\partial^2 \phi}{\partial q_1^2} = 0 \]

Let

\[\frac{\partial \omega}{\partial q_1} = k(t) \]

\[\frac{\partial \phi}{\partial q_1} = m(t) \]

then equations (5.18) and (5.19) reduce to

\[\frac{\partial \omega}{\partial t} + A(t) \omega = 0 \]

(5.20)

\[\frac{\partial \phi}{\partial t} + \alpha \phi + B(t) \omega = 0 \]

(5.21)

where

\[A(t) = \frac{(u + \kappa) k(t) - \kappa m(t)}{\rho} \]

\[B(t) = \frac{\gamma m(t) - \kappa}{\rho j} \]

\[\alpha = \frac{2\kappa}{\rho j} \]

From (5.20) we obtain

\[\phi = e^{-C(t) W(x,y)} \]

(5.23)

where \(C(t) = A(t) \), and the prime denotes differentiation with respect to time \(t \).
But \(\nabla^2 \omega = -\omega \frac{\partial \omega}{\partial q_1} \) \hspace{1cm} (5.24)

and substituting (5.23) into (5.24) we find that
\[\nabla^2 W + k(t) W = 0 \] \hspace{1cm} (5.25)

Hence \(k(t) = k = \text{constant} \).

Again \(\nabla^2 \phi = -\omega \frac{\partial \phi}{\partial q_1} = -m(t) \omega \) \hspace{1cm} (5.26)

Substituting (5.23) into (5.21), we find that
\[\phi = -e^{-\alpha t} [V + I(t) W] \] \hspace{1cm} (5.27)

where
\[I(t) = \int B(u) e^{\alpha u - C(u)} du \] \hspace{1cm} (5.28)

and \(V = V(x,y) \).

Substituting (5.27) and (5.23) into (5.26) and using (5.25), we find that
\[\nabla^2 \phi = \lambda \omega \] \hspace{1cm} (5.29)

and
\[k I(t) + m(t) e^{\alpha t - C(t)} = \lambda , \] \hspace{1cm} (5.30)

where \(\lambda \) is a constant.

Differentiating (5.30) with respect to \(t \), we obtain the differential equation
\[\frac{dm}{dt} = \frac{\rho}{\sigma} \left[m^2(t) + m(t) \left\{ \frac{V - (u + k) \alpha}{\lambda} + \frac{\alpha}{\lambda} \right\} - \frac{k}{\lambda} \right] = 0 \] \hspace{1cm} (5.31)
The nature of the solution of (5.31) depends on the roots of the quadratic

\[x^2 + x\left[\frac{\gamma - (\mu + \kappa)j}{\kappa j} + \frac{2}{j}\right] - \frac{k}{j} = 0 \tag{5.32} \]

which are

\[
m_1 = \frac{1}{2}\left\{\frac{(\mu + \kappa)j - \gamma}{\kappa j} k - \frac{2}{j} + \Delta_1 \right\}, \tag{5.33}
\]

where

\[
k^2j^2 \Delta_1^2 = [\gamma - (\mu + \kappa)j]k^2 + 4\kappa k[\gamma - \mu j] + 4\kappa^2. \tag{5.34}
\]

The discriminant of (5.34) is

\[
\Delta_2^2 = 32k^3j(\gamma - [\mu + \frac{1}{2}\kappa]j). \tag{5.35}
\]

Clearly, if \(\gamma < (\mu + \frac{1}{2}\kappa)j \), \(\Delta_2^2 < 0 \), and \(\Delta_1^2 > 0 \) for all values of \(k \).

But if \(\gamma > (\mu + \frac{1}{2}\kappa)j \), \(\Delta_2^2 > 0 \), then \(\Delta_1^2 = 0 \), has two real roots

\[
k_1 = \frac{4(\mu j - \gamma)k + \Delta_2}{2[\gamma - (\mu + \kappa)j]^2}, \tag{5.36}
\]

\[
k_2 = \frac{4(\mu j - \gamma)k - \Delta_2}{2[\gamma - (\mu + \kappa)j]^2}.
\]

Now

\[
\left. \frac{d}{dr} \Delta_1^2 \right|_{k=0} = 4\kappa[\gamma - \mu j],
\]

hence, we can draw the graphs of \(\Delta_1^2 \) as a function of \(k \) as follows:
When $\gamma < \nu j$
When $\mu J < \gamma < (u + \frac{1}{2} \kappa) J$
When \((u + \frac{1}{2} \kappa)j = \gamma\)
When \((u + \frac{1}{2} \kappa)j < \gamma < (u + \kappa)j\)
\[\bar{K}_1 = -\frac{1}{j} \]

When \((\mu + \kappa)j = \gamma\).
When \((\mu + \kappa)j < \gamma\)
The roots m_1 and m_2 are real and distinct if $\Delta_1^2 > 0$; real and equal if $\Delta_1^2 = 0$ and complex if $\Delta_1^2 < 0$.

We obtain the solutions of (5.31) for the three cases.

Case (1). m_1 and m_2 real and distinct.

Then (f), if $(u+\frac{1}{2}k)j > \gamma$, k can assume any value.

(i) if $(u+\frac{1}{2}k)j < \gamma$, $k < \frac{\gamma}{k_2}$, $k > k_1$.

(ii) if $(u+\frac{1}{2}k)j = \gamma$, $k > k_1$.

The integral of (5.31) is then

$$m(t) = \frac{m_1 - m_2 e^{-\delta_1 t}}{1 - e^{-\Delta_1 t}}$$

where $\delta_1 = \frac{k}{\rho} \Delta_1$

and c is an arbitrary constant depending on the initial value of $m(t)$,

$$c = \frac{m(0) - m_1}{m(0) - m_2}$$

If $m(0) < m_2$, $c > 1$; if $m_2 < m(0) < m_1$ then $c < 0$; and if $m_1 < m(0)$, $0 < c < 1$.
Figure 5.1 Case (1). \(m_1 \) and \(m_2 \) real and distinct.
Case (2). \(m_1 \) and \(m_2 \) real and equal, \(m_1 = m_2 = m_0 \).

Then \(\Delta_1 = 0 \), and hence

1. if \((\mu + \frac{1}{2} \kappa)j \leq \gamma < (\mu + \kappa)j \), \(k = k_1 \) or \(k_2 \).

2. if \((\mu + \kappa)j < \gamma \), \(k = k_1 \) or \(k_2 \).

3. if \((\mu + \kappa)j = \gamma \), \(k = \overline{k}_1 \).

Then (5.31) integrates to give

\[
m(t) = m_0 + \frac{m_0}{\kappa(t-t_0)},
\]

where \(t_0 = 0 \) without loss of generality,

and

\[
m_0 = \frac{(\mu + \kappa)j - \gamma}{2\kappa j}.
\]

Case (3). \(m_1 \) and \(m_2 \) complex.

Then \(\Delta_1^2 < 0 \), hence we have

1. \((\mu + \frac{1}{2} \kappa)j < \gamma < (\mu + \kappa)j \), \(k_2 < k < k_1 \).

2. \((\mu + \kappa)j < \gamma \), \(k_2 < k < k_1 \).

Then (5.31) integrates to give

\[
m(t) = h - m \tan \left(\frac{\kappa}{\rho} (t - t_0) \right),
\]

where
Figure 5.2 Case (2). m_1 and m_2 real and equal.

$m_1 = m_2 = m_0$.

Figure 5.3 Case (3). m_1 and m_2 complex.
\[h = \frac{((\mu + \kappa)j - \gamma)k - 2\kappa}{2\kappa j}, \]

and \[p^2 = -\frac{1}{\hbar^2} \Delta^2. \]

Now we had found that

\[\omega = W \exp[-C(t)] \]
\[\phi = -e^{-at}[V + I(t)W] \]
\[\nabla^2 W + kW = 0, \quad \nabla^2 V = \lambda W \]
\[C'(t) = A(t) = \frac{(\mu + \kappa)k - km(t)}{\rho} \]
\[I(t) = \int_B(u)e^{\alpha u - C(u)}du. \]

Now \[\frac{\partial \omega}{\partial q_1} = k, \quad \frac{\partial \phi}{\partial q_1} = m(t), \]

\[\omega = kq_1 = \exp[-C(t)]W. \]
\[W = kq_1 \exp[C(t)]. \]

\[\phi = -\exp[C(t) - at](e^{-C(t)V + kI(t)q_1}). \]

But \[\frac{\partial \phi}{\partial q_1} = m(t). \]
Therefore,

\[m(t)\exp[-C(t)] + kI(t) = -\exp[-C(t)] \frac{\partial V}{\partial q_1}. \]

Using (5.30) in the above equation, we have

\[\frac{\partial V}{\partial q_1} = -\lambda \exp[C(t)]. \]

Therefore

\[V = -\lambda q_1 \exp[C(t)] \]

\[= -\lambda \frac{W}{k} \]

where we have made use of the first of (5.38).

Thus

\[\phi = e^{-at}[-\lambda \frac{W}{k} + I(t)W] \]

\[= \frac{\exp[-C(t)]m(t)W}{k} \]

since

\[kI(t) + m(t)\exp[\alpha t - C(t)] = \lambda. \]

Then we can write (in general)

\[\psi = W \exp[-C(t)], \quad \psi^2W + kW = 0. \]

\[\omega = kW \exp[-C(t)], \quad C'(t) = A(t) \]

(5.39)

\[\phi = m(t)W \exp[-C(t)] = \frac{\mu + \kappa}{\rho} k - \frac{\mu}{\rho} m(t). \]

It remains to find the functions \(\exp[-C(t)] \) and \(m(t) \exp[-C(t)] \) in the three cases.
Case (1):

\[\exp[-C(t)] = \left| 1 - c \exp(-\delta_1 t) \right| \exp\left[-\left(\frac{\mu+k}{\rho} - \frac{\kappa}{\rho} m_1\right)t\right], \]

\[m(t)\exp[-C(t)] = [m_1 - m_2 c \exp(-\delta_1 t)]\exp\left[-\left(\frac{\mu+k}{\rho} - \frac{\kappa}{\rho} m_1\right)t\right] \times \text{sgn} (1-\exp(-\delta_1 t)), \]

where \(\delta_1 = \frac{\kappa}{\rho} \Lambda_1 \), \(m_1 - m_2 = \Delta_1 \) and \(\frac{m_1 - m_2}{\delta_1} = \frac{\rho}{\kappa} \).

Case (2):

\[\exp(-C(t)) = t \exp\left[-\left(\frac{(\mu+k)\kappa - \kappa m_0}{\rho}\right)t\right], \]

\[m(t)\exp[-C(t)] = (m_0 t + \rho)\exp\left[-\left(\frac{\mu+k}{\rho} - \frac{\kappa}{\rho} m_0\right)t\right]. \] \((5.40) \)

Case (3):

\[\exp[-C(t)] = \cos \frac{kpt}{\rho} \exp\left[-\left(\frac{\mu+k}{\rho} - \frac{\kappa q}{\rho} t\right)\right], \]

\[m(t)\exp[-C(t)] = (q \cos \frac{kpt}{\rho} - p \sin \frac{kpt}{\rho}) \times \exp\left[-\left(\frac{\mu+k}{\rho} - \frac{\kappa q}{\rho} t\right)\right]. \] \((5.41) \)

The above solves the problem of the most general solutions possible when the vorticity and spin are constant along a streamline at any particular time.
Section 3: Taylor Motions of Micropolar Fluids

We suppose, in the manner of G. I. Taylor (1923), that

\[
\nabla^2 \psi = \lambda_1 \psi, \quad \phi = \lambda_2 \psi
\]

(5.42)

where \(\lambda_1 \) and \(\lambda_2 \) are constants.

Using (5.42) in equations (5.10) and (5.11), the non-linear terms vanish and the equations reduce to

\[
(\mu + \kappa) \nabla^2 \omega - \kappa \nabla^2 \phi = \rho \frac{\partial \omega}{\partial t}
\]

(5.43)

\[
\gamma \nabla^2 \phi + \kappa \omega - 2\kappa \phi = \rho \rho \frac{\partial \phi}{\partial t}
\]

(5.44)

where \(\omega = -\nabla^2 \psi \).

Let \(\psi(x, y, t) = e^{-kt} F(x, y) \).

(5.46)

Substituting (5.46) into equations (5.43), (5.44) and (5.45), we find that

\[
\nabla^2 F = \lambda_1 F
\]

(5.47)

\[
(\mu + \kappa) \lambda_1 + \kappa \lambda_2 = -\kappa \rho
\]

(5.48)

\[
\gamma \lambda_1 \lambda_2 - \kappa \lambda_1 - 2\kappa \lambda_2 = -\rho \rho \kappa \lambda_2
\]

(5.49)

whence we find

\[
\lambda_1 = -\lambda_2 \left(\frac{\kappa (\lambda_2 + 2)}{\lambda_2 [(\mu + \kappa)J - \gamma] + \kappa} \right)
\]

(5.50)

\[
\kappa = \frac{\kappa \lambda_2}{\rho \lambda_2 [(\mu + \kappa)J - \gamma] + \kappa}
\]

(5.51)
\[
\frac{\lambda_2}{\lambda_1} = -\frac{\lambda_2[(\mu + \kappa)j - \gamma] + \kappa}{\kappa(j\lambda_2 + 2)}
\] \hspace{1cm} (5.52)

If \(F = \cos \mu x \cos \nu y \), then a solution of (5.47) is obtained when \(\lambda_1 = -2\mu^2 \).

Let \(\mu = \frac{\pi}{d} \), then a solution is
\[
\psi = -e^{-kt} \cos \frac{\pi x}{d} \cos \frac{\pi y}{d}.
\] \hspace{1cm} (5.53)

Thus
\[
u = -\pi \frac{e^{-kt}}{d} \cos \frac{\pi x}{d} \sin \frac{\pi y}{d},
\] \hspace{1cm} (5.54)
\[
\phi = \pi \frac{e^{-kt}}{d} \sin \frac{\pi x}{d} \cos \frac{\pi y}{d},
\] \hspace{1cm} (5.55)

and \(\phi = \lambda_2 e^{-kt} \cos \frac{\pi x}{d} \cos \frac{\pi y}{d} \),

where \(k \) is given in terms of \(\lambda_2 \) in (5.51), and
\[
d^2 = \frac{2\pi^2[\lambda_2((\mu + \kappa)j - \gamma) + \kappa]}{\kappa\lambda_2(j\lambda_2 + 2)}
\] \hspace{1cm} (5.56)

The only values of \(\lambda_2 \) that yield "real" solutions (of interest) are those that make \(d^2 > 0 \) and \(k > 0 \).
Flow pattern of Taylor motions.
Section 4: Motion due to a single vortex and/or spin filament.

We consider

\[
\begin{align*}
\dot{v} &= (0, v_\theta = v(r,t), 0) \\
v &= (0, 0, v_z = \phi(r,t))
\end{align*}
\] (5.57)

in polar co-ordinates, where \(r^2 = x^2 + y^2 \).

The equation of continuity (1.1) is satisfied identically for \(\rho = \text{constant} \), and the field equations (1.2) and (1.3) reduce to

\[
(\mu + \kappa) \left[\frac{\partial^2 v}{\partial r^2} + \frac{\partial v}{r \partial r} - \frac{v}{r^2} \right] - \kappa \frac{\partial \phi}{\partial r} = \rho \frac{\partial v}{\partial t} \] (5.58)

\[
\gamma \left(\frac{\partial^2 \phi}{\partial r^2} + \frac{\partial \phi}{r \partial r} \right) + \kappa \left(\frac{\partial v}{\partial r} + \frac{\partial v}{r} \right) - 2 \kappa \phi = \rho J \frac{\partial \phi}{\partial t} \] (5.59)

We try solutions of the form

\[
v(r,t) = AJ_1(kr)e^{-\lambda t} \]

\[
\phi(r,t) = BJ_0(kr)e^{-\lambda t} \] (5.60)

where \(J_0 \) and \(J_1 \) are Bessel's functions of the first kind, and of order zero and one respectively.

Substituting (5.60) into (5.58) and (5.59), we obtain

\[
(\mu + \kappa)A \left[\frac{d^2}{dr^2} J_1(kr) + \frac{1}{r} \frac{d}{dr} J_1(kr) - \frac{1}{r^2} J_1(kr) \right] - \kappa B \frac{d}{dr} J_0(kr) = -\rho AmJ_1(kr) \] (5.61)
and

$$Y \beta \left[\frac{d^2}{dr^2} J_0(kr) + \frac{1}{r} \frac{d}{dr} J_0(kr) \right] + \kappa A \left[\frac{d}{dr} J_1(kr) + \frac{1}{r} J_1(kr) \right]$$

$$- 2 \kappa B J_0(kr) = -\rho J \beta m J_0(kr).$$

(5.62)

We shall make use of the following differentiation formulae [Churchill (1963, p. 170-171)] for Bessel's functions:

$$\frac{d^2}{dr^2} J_1(kr) = -k^2 J_1(kr) + \frac{k}{r} J_2(kr)$$

(5.63)

$$\frac{1}{r} \frac{d}{dr} J_1(kr) = \frac{1}{r^2} J_1(kr) - \frac{k}{r} J_2(kr)$$

(5.64)

$$\frac{d}{dr} J_0(kr) = -k J_1(kr)$$

(5.65)

$$\frac{d}{dr} J_1(kr) + \frac{1}{r} J_1(kr) = k J_0(kr)$$

(5.66)

$$\frac{d^2}{dr^2} J_0(kr) = -k^2 J_0(kr) + \frac{k}{r} J_1(kr).$$

(5.67)

Substituting (5.63), (5.64) and (5.65) into (5.61), and after a little simplification, we get

$$A[(u+\kappa)k^2 - \rho m] - \kappa k B = 0.$$

(5.68)

Substituting (5.65), (5.66) and (5.67) into (5.62), we find that
-A k \kappa + B[k^2 \gamma + 2k - \rho jm] = 0. \quad (5.69)

If we eliminate A and B between (5.68) and (5.69), it is found that m must satisfy the quadratic

\[\rho^2 j \cdot m^2 - \rho m [2k + k^2 (j(\mu + k) + \gamma)] + k^2 (2\mu + k) \kappa \]

\[+ k^4 (\mu + k) \gamma = 0. \quad (5.70) \]

We consider here the particular case in which \((\mu + \frac{1}{2}k)j = \gamma\), when the discriminant of the quadratic equation (5.70) is a perfect square. Then

\[m_1 = \frac{2k + \mu + k}{\rho j} k^2, \quad m_2 = \frac{\gamma}{\rho j} k^2, \quad (5.71) \]

\[A_1 = -\frac{1}{2} j k B_1, \quad A_2 = \frac{2}{k} B_2 \quad (5.72) \]

and the two solutions, each pair of which may be multiplied by an arbitrary constant, are

\[v_1 = k j \cdot J_1(kr) \exp[-(\frac{2k + \mu + k}{\rho j} k^2) t], \]

\[\phi_1 = -2 J_0(kr) \exp[-(\frac{2k + \mu + k}{\rho j} k^2) t] \quad (5.73) \]

and

\[v_2 = J_1(kr) \exp[-\frac{\gamma}{\rho j} k^2 t] \]

\[\phi_2 = \frac{1}{2} k J_0(kr) \exp[-\frac{\gamma}{\rho j} k^2 t] \quad (5.74) \]
REFERENCES

A. M. Abramowitz and I. A. Stegun

E. L. Acero, A. N. Bulygin and E. V. Kuvshinskii
S. J. Allen and K. A. Kline
T. Ariman and A. S. Cakmak
T. Arimán, A. S. Cakmak and L. R. Hill
S. S. Chawla

R. V. Churchill

D. W. Condiff and J. S. Dahler
A. Einstein
A. Erdélyi et al
J. L. Ericksen

A. C. Eringen

A. C. Eringen

A. E. Green and
R. S. Rivlin
G. L. Hand
G. B. Jeffery
J. Kampé de Fériet

A. D. Kirwan and
N. Newman
K. A. Kline and
S. J. Allen
W. E. Langlois and
R. S. Rivlin
W. E. Langlois
J. D. Lee and
A. C. Eringen

J. D. Lee and A. C. Eringen

C. W. Oseen

J. Pedditson and R. P. McNitt

S. Prager

G. I. Taylor

J. V. Uspensky

P. D. S. Verma and M. M. Sehgal

E. T. Whittaker and G. N. Watson

A. J. Willson

A. J. Willson

A. J. Willson

Recent Advances in Engineering Science, 5/I, p. 405-425, 1970

edited by

A. C. Eringen, Gordon and Breach, London.

VITA AUCTORIS

The author was born at Sultan Pur, Punjab, India, on August 12th, 1946. In 1965, he obtained the B.Sc. degree from Punjab University, Chandigarh, India. He taught at G. G. N. Khalsa College, Ludhiana, and A. S. College, Khanna, both the colleges affiliated to Punjab University, in the year 1965-66. The author obtained his M.Sc. degree in Applied Mathematics from the University of Roorkee, Roorkee, India, in 1968. Before coming to the University of Windsor in 1969; he was a research scholar at the Regional Engineering College, Kurukshetra University, Kurukshetra, India.

The author obtained his M. Sc. degree in Mathematics from the University of Windsor in 1971. He took various graduate courses at the University of Notre Dame, Notre Dame, Indiana, U.S.A.; during the year 1970-71.

At present, the author is a candidate for the degree of Doctor of Philosophy in Mathematics at the University of Windsor, Windsor, Ontario.