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ABSTRACT

This thesis deals with inference procedures for some parametric lifetime models,
involving single as well as multiple samples. In some situations censored (Type 1 and
Type II) samples are considered. The thesis consists of two parts. Part 1 deals with
homogeneity testing involving multiple samples from the gamma, exponential and the
Weibull or the extreme value distributions. Part II deals with confidence interval
procedures for the parameters of the two parameter exponential distribution and the
extreme value models.

Assuming the underlying distribution for several groups of data to be two
parameter gamma with common shape parameter variovt tests are developed for
comparing the means of the groups. The performance of these test statistics are
determined in terms of level and power by conducting simulations. A C() test and 2
likelihood ratio test are presented and compared for checking the validity of the
assumption of common shape parameter. Under failure censoring, various test statistics
for comparing the mean life times of several two parameter exponential distributions are
derived and studied by performing Monte Carlo simulations.

Considering failure censored data, homogeneity tests for extreme value location
parameters with the assumption of a common scale parameter are studied. For this
problem, a C(a) test is derived and compared with other existing methods through
simulations. Also, for testing the assumption of common extreme value scal parameter,

a C(o) statistic is derived and compared with other existing statistics.



In single sample situations several confidence interval estimation procedures for
the scale parameter of a two parameter exponential distribution under time censoring are
discussed. Behaviours of the confidence intervals based on these procedures are examined
by simulation study in terms of average lengths, coverage and tail probabilities.

For extreme value failure censored data (with or without covariates), a simple
method using orthogonality approach (Cox and Reid, 1987) 10 obtain exglicit expression
for the variance-covariance of the MLEs of the parameters is given. For obtaining
confidence intervals for the parameters of interest various procedures, such as the
procedure based on the likelihood ratio, the procedure based on the likelihood score
corrected for bias and skewness and the procedure based on the likelihood ratio adjusted
for mean and variance, are derived. The behaviours of these procedures are investigated
in terms of average lengths, coverage and tail probabilities by conducting Monte Carlo
simulations. The above procedures are extended to extreme value regression model.
Confidence interval procedures are also derived and studied for the parameters of the

extreme value model under time censoring.
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CHAPTER 1

INTRODUCTION

The importance of parametric models for the analysis of life time data is well-
known (Lawless, 1982; Nelson, 1982; Mann, Schefer and Singpurwalla, 1974). Some life
time models, namely the gamma, exponential, Weibull or the extreme value distribution,
play an important role in the analysis of reliability, survival and other related studies.
Gamma distribution is widely used in weather analysis (Neyman and Scott, 1965), in
hydrology (Mielke and Johason, 1974), and in life testing and survival analysis (Lawless,
1982). In life testing problems, the exponential distribution describes the life of insulating
oils and fluids, and certain items such as electronic components, light bulbs etc. (Nelson,
1982; Lawless, 1982), and in survival studies it represents the remission times in chronic
diseases. Weibull distribution is widely used as a distribution for product characteristics
such as strength, resistence etc. in the accelerated life tests. It is also used for the life of
roller bearing, elecwric components, ceramics, capacitors in accelerated tests (Nelson,
1990). This distribution represents the remission times in the survival studies dealing with
specified fatal diseases. Weibull data are conveniently analysed in terms of the extreme
value distributdon. Thus, like the Weibull distribution, the extreme value distribution is
useful in a great variety of applications, particularly as a model in the study of breaking
strengths, floods, manufacturing and naval engineering. Its application to air pollution
problems is discussed by Singpurwalla (1972).

Parameter estimation and hypothesis tests involving single as well as multiple

complete or censored samples coming from the parametric survival models are major



aspects of any statistical analysis of life time data. A substantial literature is available
conceming interval estimation and hypothesis testing for the underlying paramerers of
interest. Exact inference procedures for censored samples are often impractical. Various
large sample inference procedures are presented in this thesis. The thesis consists of two
parts. Part I (chapters 3 to S) deals with homogeneity tests involving multiple samples
from the above distributions. Part II (chapters 6 to 8) is concerned with various
approximate interval estimation procedures for the parameters of the exponential and the
extreme value distribution. In this both the two parameter and the regression models are
considered. These procedures are applicable not only in lifetesting and reliability but also
in medical research and other relevant areas.

In chapter 2, we review some basic concepts and the life time models, namely the
gamma, the exponential, the Weibull or the extreme valve distributions. Large sample
hypothesis testing procedures such as the likelihood ratio (LR) test and the C(a) test are
discussed, in general, for homogencity tests. Approximate interval estimation procedures
based on LR and the procedure based on likelihood score are also described briefly.

In chapter 3, we discuss various procedures for testing equality of (L 2 2) gamma
distribution parameters. A simulation study is conducted to compare the performance of
the test statistics in terms of size and power. In view of the complicated expressions of
the quantiles, reliability function or hazard function of the gamma distribution under
censoring, the large sample procedures are difficult to obtain. So we deal with this
distribution here for only complete samples.

In chapter 4, we develop several test statistics for testing homogeneity of scale

parameters of (L 2 2) exponential distributions under failure censoring. We then compare



these statistics in terms of size and power using Monte Carlo simulations.

In chapter 5, we develop various procedures for testing homogeneity of L{ 2 2)
Weibull or extreme value populations. We develop several test statistics for testing the
equality of sxmreme value locaton parameters with the assumption of common scale
parameter. We then conduct a simulation study to compare the performance of these
statistics in terms of size and power. Testing for the assumption of common scale
parameter is also considered. In this case, we develop various test procudures and
compare the test statistics in terms of size and power by simulations.

In chapter 6, we derive several approximate procedures for constructing confidence
intervals for the parameters of exponential distribution under time censoring. We then
investigate the behaviour of these intervals in terms of average lengths of the confidence
intervals and coverage probabilities by performing simulation study.

Chapter 7 develops procedures for setting confidence intervals for the extreme
vaine distribution parameters under failure censoring. These results are extended to
extreme value regression models under failure censoring. A simulation study is conducted
to determine the behaviour of the confidence intervals. Confidence interval procedures for
the parameters of extreme value models under time censoring are considered in chapter
8.

In chapter 9, I make an attempt to identify some gaps in the literature including

my thesis and propose some plans for future study.



CHAPTER 2

SOME BASIC DEFINITIONS, CONCEPTS AND MODELS OF INTEREST

2.1. SOME DEFINITIONS
Cumulative Distribution

Let T be a continuous non-negative random variable that represents the lifetime
of an item in a specified population with parameter 8, where 6 may be a scalar or vector
valued. Then the probability density function (pdf) is denoted by f(t; 6) and the

cumulative distribution function (cdf) is denoted by F(t; ), which is given by
| 4
F(z 6)= PT < 0= [ fis O)dx.

Location Parameter

Let X be a continuous non- negative random variable. Suppose X ~ F(X; u). If Z
= (X-u) ~ G(Z), where the distribution G(Z) does not depend on u, then u is a location
parameter; that is F(X; u) = G(X-u).
Scale Parameter

Suppose X ~ FCX; b). If Z = X/b ~ G(Z), where the distribution G(Z) does not
depend on b, then b is 2 scale parametcs; that is F(X; b) = G(X/b).
Location- Scale Parameters

Suppose X ~ I X; u, b). If Z = (X-u)/b ~ G(Z), where the distribution G(Z) does

not depend on the parameters u and b then u and b are called location- scale parameters;



that is

F(X; u, b) = G((X-u)/b).

2.2 MAXIMUM LIKELIHOOD ESTIMATION (MLE)
Suppose 6 = (91,...,99)’ € £, the parameter space and L(8) = f(X,....X; 8) is the
joint probability density function of n random variables X;,..X,. The maximum

likzlihood estimates of the parameters 6.8, are obtained by solving

L) _
%,

i=1,...p. (2.2.1)
Since L(B) and logarithm of L(8) have their maxima at the same value of 6, it is often
more convenient to work with logarithm of L(0).

The soludons of the system of likelihood equations in (2.2.1) are not always
availavle explicitly. In this situation, solutions of the above system of likelihood equations
or maximization of likelihood function can be obtained iteratively. For this problem,
various approaches have been suggested by several authors. For exampie: Pike(1966) used
the Hooke-Jezns derivative free search procedure to obtain the maximum likelihood
estimators of the Weibull parameters. Jenkinson(1969) described an iterative procedure
for the parameters of the generalized extreme value distribution. Johnson and Kotz(1970)
have given an iterative method for the maximum likelihood estimators for the parameters
of extreme value distribution. Archer(1980) proposed 2 hybrid technique for solving this
problem. But one of the main well- known approaches to solving these problems, used

by numerous researchers, is the Newton-Raphson method. However, in this thesis, the



system of non- linear equations has been solved iteratively by using the appropriate IMSL

subroutines, such as the DZBREN, DZREAL and the DNEQNFE.

2.3 FISHER INFORMATION MATRIX

Elements of the Fisher information matrix are minus the expected values of the
second order mixed partial derivatives of the log likelihood function with respect to the
parameters. Suppose {(X, 6, ¢) is the log likelihood function and 6 = (6,,....6,)" and ¢ =

(¢1.--9,)" then the Fisher information matrix I is given by

( 3 / \
_E azzl _E a’zl

S S
_E a’zl _E 32[:

= \awe) \a¢a¢ )_

2.4 VARIANCE- COVARIANCE MATRIX
Suppose 6 and ¢ are the maximum likelihood estimates of © and ¢ respectively.
Then the asymptotic variance covariance marix of (6, ¢) is obtained by inverting the

Fisher information matrix.

2.5 ROOT-N CONSISTENT ESTIMATOR

A sequence of estimates {8_}, n = 1,2,..., is said to be Toot-n consistent estimate
for the parameter 8 if the quantity Vn [6,-6| remains bounded in probability as n tends
10 infinity.



Corollary: Let {Gn}, n = 1,2,...,, be a sequence of estimates of 0 such that variance of
{8,) tends to 2ero when n tends to infinity, then the sequence of estimates {8,). n =
1,2,..., is root-n consistent.
Proof: Following Chebychev’s inequality, for a given € > 0,

P(Vn |86 |<e)21-nVar(d)/e?
From the definitions of 2.3 and 2.4, if Gn is the MLE of 6, then by the asymptotic
properties of MLE, Var(8,) tends to zero as n tends to infinity. That is, Var(d,) is O(n’!)

( Kendall and Stuart, Vol. 2, p. 51 ). Thus, MLE is root-n consistent.

2.6 PIVOTAL QUANTITY

Suppose X,,..., X, is a sample of size n from a location- scale family of the form

e By 1 X-u

where u and b are the location - scale parameters. Let & and b be the maximum likelihood
estimators of the parameters u and b respectively. Then the estimators & and b have the
property that the pivotal quantities (G-u)/b and b/b are distribution free of the parameters

1 and b.

2.7 ORDER STATISTICS
Suppose that a random variable X has a pdf f(X) and cdf F(X). The random
sample X,..., X, of size n is rearranged in the order of magnitude and is denoted by X,

< ... S X()- Then the variables Xyy5,..., X, are called the order statistics of the sample.



Result 1:

The joint pdf of Xgy,..., X¢p), (r S n), is

Sy “(r)) [Hﬁx‘ﬂ)][ 1-Flx <r))](n "

Result 2:

The pdf of X, (1 <i <), is

! i-1) n=i)
ﬂx(a)=m for) [P [ 1-Fee™ ™

Result 3:

The joint pdf of X;) and Xgp(1si<jsn)is

= 1>'o-f-n'(n—n. %l o] [P ™

) 1)
[1 -F (xo))](n ! [F - Fx ))](' -
The derivations of the above results can be found in several books ( see David 1970;

Sarhan and Greenberg, 1962; etc.).

2.8 TYPES OF LIKELIHOODS

Suppose & = (0,0)” € Q, the parameter space, where 0 = (6),..-,8;)" are of interest
and ¢ = (¢,,....4,)" are weated as nuisence parameters. Let X = X;,..., X, be a random
sample of size n. Then the likelihood function is given by L{X; 6, ¢) = £(X; 9, ¢). To
eliminate the nuisance parameter from the likelihood function L(X; 6, ¢), various methods

have been proposed in the statistical literature ( see Kalbfleisch and Sprott, 1970; Cox and

8



Reid, 1987).

2.8.1 Integrated Likelihood
If the prior density of ¢, g(0, 6), is known then the integrated likelihood function

denoted by Ly(0) is given by

Lg®) = _Lﬂ X; 010) 2(6,8) do.

2.8.2 Marginal Likelihood

This method depends on factoring the likelihood function into two parts. One
contains the parameter © only, which is of interest, and the other has a joint likelihood
for © and ¢, where ¢ is treated as nuisance parameter. Let ay,..., 2, be jointly ancillary for
9, for a given 6. Suppose there exists a non singular transformation (Xi,..., X,)--->

4oy Y15y Y gy SUCh that

£% 6, 0)dx sl =[Rypwr @),

B 1 Tary O O | Qpeo@ YA el
If the conditional density g contains no information on @ when ¢ is unknown, the
marginal likelihood L () is defined as a function of 6, which is given by the joint
density of (ay,...., 2,); that is
L (@) = f(a,,...,a)) day,..., da..
2.8.3 Conditional Likelihood

Assume that for a given 0, there exists a minimal sufficient statistic T, with pdf



&(T; 6,9), for the estination of ¢ such that

fX;6,9)=h(X |T; 8) g(T;86, ¢)

Then h(X [ T; 8), which has a distribution involving 8 only, is called conditiona!
likelihood of ©; that is

L.(®) = h{X;,.... X, | T; 6).

The main advantage of these methods is that the resulting likelihoods Ly(6), L. (0) or
L (6) depend only on the parameter of interest. However, the elimination of some
parameters may result in less of information relative to that contained in the full

likelihood L(8, ¢).

2.9 RELIABILITY FUNCTION (SURVIVOR FUNCTION)

Let T be a continuous non-negative random variable representing the lifetime of
an item from a specified population. Further, let F(t; 8) and f(t; ©) be the cdf and pdf of
T respectively, where 6 is an unknown parameter. Then the reliability function R(t; 0) is

defined by the probability of an item surviving at least until time t; that is
R 0)= PT 2 9= [ ).

In Iii‘e sciences, the reliability function R(t; ) is referred to as the survivor function and
denoted by S(t; 6). It is obvious that R(t; 8) is a monstone decreasing continuous function

with R(0, 8) = 1 and

R(e, 8) = lim R(; 6) = 0.

I =00
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2.10 HAZARD FUNCTION
The instantaneous failure rate is often referred to as the hazard function, h(t; 0),

since it describes the way in which the instantaneous probability of a failure changes with

time. The hazard function h(t; 8) is defined as

He 6)= lim Pe<Tst+h|T21
h—0 h

which can be written as

hz; 8) = lim PesTsi+h,T21 _ Rn 9)
k0 h PT 21] R(r; 0)

In the actuarial field, the hazard rate h(t; ) is referred to as the force of mortality.

2.11. RELATIONSHIP AMONG f, F, R AND h

£, 8) = Fi5, 0) = R, 9) = -% RG; 0).

Since h(t; 9) = f(t; 6)/R(t; ©), we obtain
h _ d
(; 6) = -—log R(; ©),
dr
Thus,

R@ 6) = exp ( - L‘h(x, 0)dx )

11



2.12 TYPES OF CENSORING
2.12.1 Type II {Failure) Censoring

Suppose a random sample contains n units and is placed on a life test. The first
r failure times are observed. Denote the ordered failure times by T, < ... S T.. When the
unfailed units exceed a time L = T, the sample is said to be type Il censored or failure
censored.

Now T, <... ST, out of a random sample of size n are i.i.d and have a continuous
distribution with pdf f(t; 6) and reliability function R(t; 8). From section 2.7, the joint

pdf of T,..., T, which is the likelithood function, is given by

(n-r )! iwl

Le) = > [1‘[ Fi e)J [Ra, ; &))" ™.

2.12.2 Type I (Time) Cersoring

Let n items be placed on a life test. The experiment is terminated after a
predefined dme L for the ith item; that is, the lifetime T; of the ith item, is observed only
if T; < L; i = 1,...,n. In this situation the data arc said to be type I censored or time
censored.

Suppose T;’s are assumed to be iid with pdf f(t; 6) and reliability function R(t;

0). For convenience, we define

5. = 1, T;sL;
; 0, T;>L;,

where 8, indicates whether the lifetime T; is uncensored or censored; that is, the time

12



T, L

T.
I‘- = Min (T‘-L,) = lL; ) T‘. > L‘- '

1sisn

Then the likelihood function is defined as

L® = T | s % ey 9% |

inl

When L, =L, 1= 1,.., n, the above sample is referred to as being singly (time) censored.
There are other types of censoring ( see Lawless, 1982) which we do not deal with in this

thesis.

2.13 MODELS OF INTEREST
2.13.1 Gamma Distribution
The Gamma distribution is available as a model in meteorology, life testing and

relizbility studies. The two parameter gamma distribution of a random variable T has a

pdf of the form

f=1) (21 )
i W 3 B A — t,kkAz20 (2.13.1)
A% T(k)

where A is the scale parameter and k is the shape parameter. Reliability and hazard
functions of the gamma distribution involve the incomplete gamma function which is

given by

Ik x) = % [Fy%0 e gy,

13



Now, the reliability function and the hazard function can be written as

R(t; A.k) = 1- Ik, /A)

h(t; A.k) = {(1, A.k) / R(t, L.X).

When k > 1, it can be shown that the hazard function is a monotone increasing function

with h(0; A.k) = 0 and

h(es; d k) = Lim k(g A, K) = ‘;lr

L = oe
When A = 1, the distribution (2.13.1) reduces to the one parameter gamma distribution
with pdf

_ t(k—l) et

ﬁf;k)-_l_(kT_, Lk20.

When k = 1, the distribution (2.13.1) becomes the well-known one parameter exponential

distribution with pdf
Ao A = _JIL' e vz

2.13.2 Exponential Distribution

This distribution is widely employed as a model in areas such as siudies on the
lifetimes of manufactured items and studies involving remission times in bio-medical
sciences. The pdf of a random variable T having a one parameter exponential distribution

is given by

14



At 8) = _;_ e118 s (2.13.2)

The pdf of T having a two parameter exponential distribution is given by

fitp, ©) = % exp l:— [_I-Tp_] :l , 120 (2.13.3)
where p and @ are location- scale parameters. The parameter p is also referred 1o as
threshold parameter. In lifetime analysis, 1t is often assumed that p 2 0. In hre sciences,
the model (2.13.3) is often applicable in situations where it is assumed that death cannot
occur before some predefined time p. The reliability (survivor) function and the hazard
function are given by
R(5 p, 6) =exp [-(t-p) /6] and h(t; p,6)=1/86.
Since the hazard function is constant, it is a useful model for lifetime data where used
items are to be considered as good as new ones.
2.13.3 Weibull Distribution

‘This is the most popular lifetime distribution in practice, particularly in the field
of engineering, manufacturing, bio- medical science and many other studies. The pdf of

a random variable T having a two parameter Weibull distribution is given as

s P) = E (ir-n exp (—..‘.T 120, B,a>0 (2.13.4)
ala o

where the parameters o and B are, respectively, the scale and shape parameters. The

reliability function R(t; o, B) and the hazard function h(t; ¢, B) can be written as

15



R(t; o, B) = exp [—%T. t290

e o B) = B (i]s-n’ £2 0,
[+ 2 N + 4

When B = 1, the distribution (2.13.4) reduces to

it o =_l.exp (—i), t20,
o o

which is the well-known one parameter exponential distribution with parameter ¢, It can
be shown that the Weibull hazard function is monotone increasing if B > 1, decreasing
if B < 1 and constant for B = 1.
2.13.4 Extreme Value Distribution

This distribution is sometimes referred to as the Gumbel distribution (Gumbel,
1958). There are three types of extreme value distributions with cdf for a random variable

X as follows (Johnson and Kotz, 1970):

Type I : F(x;u,b)':cxpl:-cxp(f.;_'f)] -c0 < XU <00 b>0

- | X ? xX2u
Tyell: Fooub) =% | |75} |’

0 , otherwise

and
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exp | - [ XX ’ xXsu
Type Ill : F(x u, b) = P b ’ '

1 . otherwise

Type I is the smallzst extreme value distribution and the one most often used as a rmodel
in the analysis of lifetime data. It has received extensive attention from many authors,
including Lawless (1982); Nelson (1982); McCool (1979, 1980) and Escobar and Meeker
(1986, 1991). In this thesis we deal with this type (Type I) of extreme value distributions.

The pdf of a random variable X from the smallest extreme value distribution is

given by

1 x-u x-u
=2 - —1- hadiiad (2.13.5)
£ u, b) bexp[[b) cxp(b)}

where -c0o < @ < oo and b > 0 are the location- scale parameters. This distribution is
directly related to the Weibull distribution given by (2.13.4). If T has a Weibull
distribution with pdf (2.13.4), it can be easily seen that X = log T has an extreme value
distribution having pdf (2.13.5) with u = log « and b = Bl. In the light of the
relationship, the extreme value distribution is sometimes referred to as log Weibull
distribution. In analysing Weibull data, it is more convenient to work with log Weibull
lifetimes. The transformed (log Weibull) sample is treated as one from an extreme value
distribution. The reliability function R(x; u, b) and the hazard function h(x; u, b) can be

given as

17



R(x; u,b) = exp [ - exp (ﬂJ ] R

1 x~U
h(x; udb) = — exp | =
(= ub) 5 P(bJ

2.14 DISTRIBUTIONAL PROPERTIES
Suppose X, < ... £ X are the first r ordered observations in a sample of size n
from a one parameter exponential population given by (2.13.2).
Define Y, =nX,
Y; = (n-i+l) XX y), i=2,..r1
Then

(1) Y;,..., Y, are independent and identically distributed with pdf (2.13.2).

s Z.
@ Let X_= J __ . where Z. ~exp (6 = 1), j = 1,..., r are independent.
= X G % pe

Then

3
1
E = .
& ,zl: (n=j+1)

i
VarX) =y —— .
,-):_1: (n=j+1)?

(3) If fi and 8 are the MLEs of p and © respectively, then ji and 8 are independent,

and 2n(-p)/® ~ x*(2) and 2r8/0 ~ x3(2(r-1)), where i = X, and

18



§ = % T (X, -X ) +(n-r)(X,~X,)

i=1

(4) Let X be a random variable having the pdf (2.13.5). Then Z = (X-u)/b has
standard extreme value distribution. If Z is the jth ordered statistic in a sample of size

n, then by 2.7,

@ E @)

Ci " et eI Ne (1" Yl g

c, E (=11 [j 1]( y + log(nj-+s) )

s-1 (n—j+s)

® E (ez,) = cJ J:"‘“ e2z e-(n-j+1)¢' ( 1_e-al )i-l dz

_CZ(I).T-I(.I 1] 1

(n—j+1%

© E@)=¢ J‘_“ z e% o= (i e* (1_pm et Yol 4,

= C (- l)s-l t- Y - log(n-j"'s) ],
E (S 1){ (n-j+s)2 )
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(d) E (ZJZ) Cj J:"'- 22 e?.z e (n=j+l) e* ( l_e-¢' )j-—l dz

Jj-1 . . 2
. s-1 {J-1)| 7%6 + (1 - ¥ - log(n~j+s))* - 1
G Y D 1( )[ J

51 s-1 (n—j+s)?
where C; = nl/( (-1)! (n-j)! ). The expressions for the expected values in (4) are
mathematically messy, so we provide their approximations in (5).
(5) Now, V = exp(Z) has standard exponential distribution. If V; is the jth ordered

statistic in a sample of size n from the standard exponential distribution, then by 2.14 (2),

i 1
E(Vj)=tj=2.____

=1 (n-s+1)
and
J 1
Var(Vj) = dj = z

s\l {n=s+1)?

Using the Taylor series expansion of V; about its mean b, and retaining terms up to the
second order, we have
Z;=log V; = log G+Viy)
= log t + (Vi - [(VyR/s1772.
(@) E(Z)=log ;- dy 2t2.

chxp(zj) = Vj log Vj = (rj-t»Vi-tj) log (rj+VJ—tj)
= [1+ Vi)l log [ (1 + (Vi) ]

20



=t log t; + (V1) (1 + log t) + (V;-1)*/2t,
() E[Z; cxp(Zj)] =y log g + d})‘ZtJ

2§ exp(Z)) = V; (og V)* = (§+V;) [ log (t+Vt) P
= t; (log t)? +{ (1 + log L)/t (V;-1)?
+2 (V;t) log 4.
(©) E[Z7 exp(Z)l = ; (log t)? + & (1+log L)/,

Z? exp(Z) = V; (log Vp* = (+V;t) [ log(t+Vyt) I°
= (log t)* + [ 3t log t+1.5 t; (log t))* )
[ (Vi 12
(@ E[Z? exp(Z)] =t (log )’ + 1.5 log ¢ (2+log ) dift.

Z exp(Z) = V; (log ©)* = (5+Vy1) [ log @+Vye) 1*
= ; (log t)* + 2 (log t)? (3¢ log 1)
[ (Vi 12
() E[Z exp(Z)] = t; (og 1)* + 2 d; (3+log 1)) (log 1) /t;

2.15 LARGE SAMPLE TEST PROCEDURES FOR COMPOSITE HYPOTHESES
Suppose X = (X;,..., X,)" is a random sample of size n taken from a particular
distribution witk pdf f(X; 8), where 8 = (6,4)’ = (64,..., I F ¢q)’ is a (p+q)-component

vector. Then the sample likelihood can be givzn as L(X;,....X,;: 8). It is of interest to test
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the null hypothesis Hy: 6 = 85 = (8;9,...850)" and ¢ = (§y,...,9y)" wreated as nuisance
parameters.
2.15.1 Likelihood Ratio Test

The likelihood ratio for testing Hy is defined as

L(XynX i 69, §)
LXpX i 8, 0)

where & is the restricted MLE of ¢ and § = (8,4)” is the unrestricted MLE of & = (6,4)".
Denote the restricted and unrestricted maximum value of the likelihood function by Ly
and L, respectively. Since it is more convenient to work with the maximum log
likelihoods we denote /, = log Ly and /; = log L,. Then the log likelihood ratio statistic
LR, which is equivalent to the statistic A, is given by

LR =-2log A =2 ({}-y). (2.15.1)
Under the null hypothesis Hy, distribution of LR is approximately chi-square with p
degrees of freedom. It is well-known that this test is versatile and applies to most
statistical distributions and to most types of data.
2152 C(c) Test

Define the partial derivatives evaluated at 8 = 6 = (8,9,...8)"

.,4[3 (a2
% beo, |90, ||,

and
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n:ﬂL - |2, .9 .
aQ) =8, a¢1, ,a(b‘? = 0,

It is known that under mild regularity conditions, (y, 1)” follows a multivariate normal
distribution with mean vector 0 and variance covariance matrix I'!, where
i T

Iy Ip

[ -

is the Fisher information matrix with elements

2
I, =E| - ol
3630 [g.q,
2
I,=E| - o4l
0804’ lg.q
and
2
=E[ -2 | |
399" lg-p,

Following Neyman (1959), the C(ct) test statistic is based on S = (Sl,...,Sp)' = y-Bn,
where B is the partial regression coefficient matrix obtained by regressing 0//d0 on 9/0¢.
From Bartlett (1953), B = I, I'';, and the variance covariance matrix of S is I, ,, where
Lz =1 - L, Il Ly Thus S ~ MN(OL;; ,) and

S’ 1112 S - xz(p), (2.15.2)
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where MIN denotes multivanate normal.

Notice that the above expression depends on the nuisance parameter vector ¢ = (y,...,¢g ',
which makes the statistic inappropriate to use for testing the null hypothesis. Moran(1970)
suggested that the nuisance parameters in (2.15.2) may be replaced by their root-n
consistent estimators. Let 3 = ($1,...,$q)' be a random vector of some root-n consistent
estimators of the parameter vector ¢ = (¢1,...,¢q)’, obtained from the available data. Then,
replacing ¢ by ¢ and 0 by 6, and following Neyman(1959), the C(cx) test statistic is
defined for testing Hy: 0 = 8y, as %%, = s’ I, S which is asymptotically distributed
as chi square with p degrees of freedom.

Note that when we replace the nuisance parameters ¢ by their MLEs ¢, the score function
S; reduces to Y, 1 = 1,...,(L-1). Then, the C(cv) statistic reduces to ' I'l}, , J, in which
situation the procedure is referred to as Score test (Rao, 1947).

The score test is asymptotically equivalent to the likelihood ratio test and tests
using the maximum likelihood estimators, for example Wald tests ( Moran, 1970; Cox
and Hinkley, 1974). The chief advantage of the C(x) class of tests is that it maintains, at
least approximately, a pre-assigned level of significance, say o (Bartoo and Puri, 1967),
it is locally asymptotically most powerful (Moran, 1970) and often produces a statistic
which is simple to calculate. As homogeneity tests, the C(cx) class of tests have been
widely used (see Neyman and Scott, 1966; Moran, 1973; Tarone, 1979; Tarone, 1985;

Barnwal and Paul, 1988; Paul, 1989; etc. ).

2.16 INTERVAL ESTIMATION PROCEDURES
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Let £f(X; 6, ) be a density of a random variable X indexed by 8 and ¢, where 8
is the parameter of interest and ¢ = (¢y,.... ¢P)' is a vector of p nuisanCce parameters.
Given the sample X;,..., X,,, denote the log likelihood by 1(6, ¢).
2.1€.1 Procedure Based on the Asymptotic Properties of MLE

Denote the MLES of the parameters 6 and ¢ = ($y,.... §)" by B and § = Gy B

respectively. The asymptotic 100(1-a)% confiderce interval for © is given by

B - L yvar@® <6 <8+ yvar®, (2.16.1)

where { is an appropriate quantile of a standard normal random variable. The quantity
var(8) can be obtained from the Fisher information matrix of (8,0) as discussed in section
2.3. It is to be noted that 100(1-c)% confidence interval for 8 can also be used to test a
null hypothesis about 8 at the 1000% of significance level. Thus, if a hypothetical value
8, of @ lies outside the confidence interval, then the null hypothesis Hy: 0 = 8, is rejected
at the 100c% significance level, in favour of an alternative hypothesis H;: 0 #6;;
otherwise Hj, is not rejected.
2.16.2 Procedure Based on Likelihood Ratio

Denote the unconstrained maximum log likelihood by 1(8,8), and the constrained
maximum log likelihood by 1(8, ), where § = @y..., §,)" are the values of ¢ = (§1,-., &)’
that maximize the log likelihood function {8, ¢) for a given value of 6. Then the
likelihood ratio statisic LR = 2 [iB, §) - i@, ¢)] has a distibution which is
approximately chi-square with one degree of freedom. Thus, the © values that satisfy

LR =2 {8, §) - 18, §)] = X210 (2.16.2)
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are the approximate 100(1-a)% confidence limits for 8, where xz(l_a)(l) is the (1-o)th
quantile of a chi squared density with one degree of freedom.
2.16.3 Procedure Based on Likelihood Score Corrected for Bias and Skewness

Define

o 9% 3%
I, =E]| - VI =E| - and I, =E| - .
% ( an] % [ aeeJ % ( a¢a¢']

where Iy, is of order 1xp and I, is of order p x p, and Igq = Igg - Igg r! o6 Lpo- Bartlent

(1953) proposed a procedure based on the likelihood score in the presence of nuisance

parameters for constructing confidence interval for a single parameter. Now, we define

dl -1 9l
T, = -1, 1 ,
CI-T) 9¢¢¢'T¢
where
oo Oy
% o, T,

For convenience, we define f = (fl,-..,fp)' = Igy It o0 Then Tg can be written as

_ ol ol

o= %

Bartlett (1953) showed that Ty is asymptotically distributed normal with mean zero and
variance Igg .. Thus an approximate 100(1-at)% confidence interval for © can be obtained

by solving
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where { is an appropriate quantile of a standard normal random variate. However, when
the nuisance parameters ¢ are replaced by their maximum likelihood estimators for a

given 6, the statistic Ty has a bias of order O(n'?) and is given by

Bias=B(T9)=—.;_trace 1;;[5[393124’,]»,2%}
1 -1
+.§.trace[l¢¢M],

where

o’ Olyy | -1 .
M, =|E| 2. |+2_R}1, I, Jj=l...p,
! { (a¢,3¢a¢’] 3 |t

(see Bartlett, 1955; Levin and Kong, 1990). The third cumulant of T, to the order o(n”

372y, is obtained fors, t, qQq=1,.,p as

! 1
K@) =2E|——_|+3_—_—~3 2E + 2 I+

F |, Yop | Ve, e,
+3§'2,:f’f'[25 [aea¢,a¢,]+ 3% %, a5,

b ad
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3% Ago o Oyg
- 2FE . (I e L (Al .
ES: 2:: Zq: 551, { [a¢sa¢,a¢ q} 3, 9y, 00,

Now, the statistic Ty corrected for bias and skewness is better approximated by the
normal distribution and thus an approximate 100(1-)% confidence interval for © can be

obtained by solving

To (B0 K®E-n

\ﬁee. R \/’oe. R 6 (g, Q)sz

When p = 1, we deal with the confidence interval procedure for the parameter 9 in the

(2.16.3)

presence of a single nuisance parameter ¢. Then, f=1Ig, I’ IM.

ol

- _ e ol
TB -ﬁ f&:’

3934 a¢* J
and
K.(6)=2E|—|+3 = - —_— _
I B A
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Now, if ¢ is orthogonal to 8 then Iy, = 0, and the above expressions for Ty, E (Tp) and

K;(0) simplify as foilows:

al
TB a_e-‘
1 ,- !
o322

2.164 Procedure Based on Adjusted Likelihood Ratio

Diciccio, Field and Fraser (1990) developed a confidence interval procedure for
the parameters of a location-scale family of distributions, where the location may be a
function of several regressor variables X,,..., X, Thus, if p = 1, we will deal with
confidence interval procedures for the parameters of a two parameter distribution. To keep
in line with the notations in this section 12t ¢y,..., ¢, be the regression parameters and 6
be the scale parameter. Note that any of these p+1 parameters may be of interest. Now,

we define

V=0, -4)8,s=1,..p
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and

Vo = log (6/8),
where § = (§;,.... §,)" and 8 are the MLEs of ¢ = (9;,..., ¢,)" and © respectively. Let Y;
(i = 1,...,n) be the ith value of the response variable and Xj; @ = 1,..0; j = 1,....p) be the
ith value of the jth regressor variable. Denote the parameter free quantities A; = (Y; -
X8, i = 1,...n, where X; = Xy, + ... + X;,§,.. Then for given Ay, i = 1,...n, the log
likelihood 1(8,9) can be written in tarms of a vector of pivotals V = (Vo V). We
denote this by I(V). It is obvious that the log likelihood I(V) attains its maximum value
0)atV,=0,s=1,., p+l.

Suppose the jth parameter is of interest. Then the associated pivotal is V;, and the
corresponding LR statistic LR; = 2 [ 1(0) - I(V(V))) *. where I(V(V;)) is the maximized
log likelihood function for a given value of Vj. The statistic L)%; is approximately

distributed as chi-square with one degree of freedom. Now we define

—\/LT . Vj<0
‘/LR_J-, Vj>0

The distribution of SR, can be approximated by the standard normal distribution, which

SR; =

bas error of order O(a™'/%); that is P(V; < v)) = ®(SR) +0(n?),

where & is the distribution function of a standard random variable. Many authors
including Bamdorff- Nielsen (1986), Diciccio (1984, 1988) and McCullagh (1984)
concluded that mean and variance adjustments to the distribution of SRj provide better

approximation to the standard normal distribution. These adjustments reduce the error to
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the order O(r*2), and thus the marginal distribution of the pivotal V; is given by

\
SR; - pgp.
P(V;<v) = & __’___i’iJ+0(n'3’2),

o]
SR;

2 . . .
where ngp and O are the mean and variance of the variable SR;. Since exact values
4 4

of the mean and variance of SPﬁ are not easily obtained, Diciccio, Field and Fraser (1990)
provide approximate expressions for the mean and variance of SR; using higher order
partial derivatives. They obtained the marginal tail probability for the pivotal V; given
by

_ 1 |19]1%2
P(V; S v) = ®(SR) + ¢(SR) +

- +0@m™R)
SR; Ly 1"

(2.164)
where ¢ is the density function of N(0,1) variable,
I is the observed information matrix of order {p+1)x{p+1),
I' is 2 sub matrix of I’ corresponding to Vy,..., Vi1:Vistmes Vo)

|1°|“2 and [I°|'? are the square root of the determinants of the matrices I° and ©°

respectively,

and for j = i,..., (p+1),
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W) = 2
i)

Thus, 100(1-a)% approximate lower and upper confidence limits VjL and VjU o V; are
obtained by solving

P(V;sv) = of2

and

PV, Sv; ) = (1-0/2)

respectively. The confidence limits for the jth parameter of interest can then be obtained

from Vi, and Vi,
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PART I

HOMOGENEITY TESTS IN MULTIPLE SAMPLES
FROM
TWO PARAMETER
GAMMA, EXPONENTIAL, WEIBULL
OR
EXTREME VALUE DISTRIBUTIONS
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CHAPTER 3

TESTING HYPOTHESES IN MULTIPLE SAMPLES FROM
TWO PARAMETER GAMMA DISTRIBUTION

3. INTRODUCTION

The gamma distribution is widely used in various hydrological, meteriological,
reliability and life-testing applications. Many authors have studied this distribution. Gupta
and Groll (1961) discussed the use of the gamma distribution in acceptance sampling
based on lif~ =sts. Simpson (1972) studied its use in single-cloud rainfall analysis. For
a general review, including numerous references to applications in diverse fields, see
Johnson and Kotz (1970).

The gamma distibution has the pdf as in equation (2.13.1)

K = e k>0 (3.11)
A* T(k)

The mean is p = kA and the varance is kA2 = pA = p%k = o’ where 6 = Uk
Depending on the value of A , the distribution has mean = variance (A = 1), under
dispersion (A < 1) and over dispersion (A > 1). The analogy is with the mean-variance
relationship of the Poisson, binomial and negative binomial distributions. When k = 1 the
distribution is the well-known exponential distribution with the same mean-variance
relationship as already discussed. The gamma disiibution with integer value of k, called
the Erlangian distribution (Cox, 1962), arises in a fairly natural way as the time to the kth
event in a Poisson process. The distribution also belongs to the natural exponential family
of distributions (McCullagh and Nelder, 1989). The parameter o? (= 1/%) can be
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considered as the precision parameter (McCullagh and Nelder, 1989). Inference
procedures for the parameters k and A based on a single sampic have been discussed by
numerous authors (Lawless, 1982; Nelson, 1982; etc.). In this chapter we deal with
hypothesis testing in multiple samples assumed to have come from two parameter gamma
distributions.

In the area of life-testing, the limited hazard rate is 1/A. Thus in multiple samples
from gamma distributions testing the homogeneity of shape parameters is cquivalent to
testing for homogeneity in precision and testing equal scale parameters with the
assumption of common shape parameter is equivalent to testing the homogeneity of means
or limiting hazard rates. It is therefore necessary to study tests for homogeneity of the
scale parameters as well as shape parameters.

Shiue and Bain (1983) developed an approximate one sided test based on the ratio
of the m=ans of two samples for testing the equality of scale parameters of two gamma
distributions with common shape parameter, and showed that when the unknown shape
parameter is replaced by its MLE, the proposed statistic follows an approximate F
distribution. Shiue, Bain and Engelhardt (1988) extended this test for testing the equality
of two gamma distribution means in presence of unspecified shape parameters. Gastwirth
and Mahmoud (1986) proposed 2 maximurm efficiency robust test for testing whether two
samples come from a common gamma distribution against the alternative that they differ
in scale for situation with increasing hazard rate; that is the value of the shape parameter,

k, is known o be > 1.

By generalizing Shiue and Bain’s statistic we develop an extremal scale parameter
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ratio statistic(EP) for testing the homogeneity of sevaral scale parameters with a common
shape parameter. For L = 2 and sample sizes n; = n, the statistic EP has a truncated F
distribution shown in section 3.3.4. Otherwise, the distribution of EP is not known and
a test based on this statistic has to be performed by using simulated percentage points.
In section 3.2, we describe and develop estimators of the parameters under various
null and alternative hypotheses. In section 3.3, we derive and develop various test
procedures such as a likelihood ratio statistic(LR), two modified likelihood ratio
statistics(M and MB), 2 C(ot) statistic(CL) and the exwemal scale parameter ratio
statistic(EP). Performance of these statistics, in terms of size and power, are studied by
Monte Carlo simulation and are presented in section 3.4. All these tests have been
developed assuming a common shape parameter k across the populations. However, the
assumption of common shape parameter may not always be appropriate in practical
context. Therefore we develop procedures for testing the assumption of common k. For
this, we derive a likelihood rado statistic(LRk) and a C(or) statistic(CLk) in section 3.5.
The behaviour of these two test statistics, in terms of size and power, are examined by
conducting a small scale simulation study and the results of the study are reported in
section 3.6. Some examples are given in section 3.7. As discussed in chapter 1, the

development of necessary relevant theory pertains to only complete sample situations.

3.2. ESTIMATION OF THE PARAMETERS
Consider L samples from gamma distributions, given by (3.1.1), with parameters

(Apkysesykp). Let t;; represent the jth observation in the ith sample of size n;, i =
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1,..,L. For testing the equality of the scale parameters in presence of common shape
parameter k, the competing hypotheses are
Hy: M =X =..=X N
and
H, : at least two A;’s are different, for all k > 0. For testing the hypothesis of a
common shape parameter across all the populations, the competing hypotheses are
H;:k =k, =..=k (=k)
and
H, : not all k;’s are equal, A,,..,A| being unspecified.

For the ith, sample, i = 1,...,L, denote the arithmetic mean by

n;

- 1
== U
n; j=1

and

the geometric mean by

ﬂ‘- 1
- n.
r=|II [ I
J=1

Then the log likelihood can be expressed, under the hypothesis H, as

L I

iwl]

(3.2.1)

Maximum likelihood equations are obtained by equating the partial derivatives of the log

likelihood (3.2.1) with respect 10 A; and k;, i = 1,...,.L, to zero. Accordingly we obtain the
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maximum likelihood estimates k; and &; of k; and }; (i = 1,...,L) by solving

n; Qog I; - wk; ) ~log ;) =0

and
n, t. .
-—‘- (—ll - ki ) = 0-
e
The term y(x) is the digamma function of x; thatis y(x) = ?‘iix_ log ['(x). These two
equations yield, fori = 1,....L,
(k) - log k; = log (/1) (32.2)
and
L=, 623

The equation (3.2.2) can be solved iteratively for E, The maximum likelihood estimates
A; then follows from the equation (3.2.3).
Under the hypothesis H,, the maximum likelihood estimator, k, of the common

k is obtained by solving the equation

L
Y@ - log & = % Y n,log G /T, ), (324)

iw]

iteratively, where N = 3, n,, i = 1,...,L. The maximum likelihood esumator of A,, under
H,, then is

A.=t4/k i=1,.L. (32.5)

38



Under the hypothesis Hy, the maximum likelihood estimate k of k is obtained by solving

L
v@) - log £ = % S n; log i - log T, (3.2.6)

i=]

where 1 is the overall mean defined as T = (nt; +et nL?L) / N. The maximum
likelihood estimator A of A, under"'-Ho then , is

L=1/k (32.7)

3.3. TESTING EQUALITY OF THE SCALE PARAMETERS IN THE PRESENCE
OF A COMMON SHAPE PARAMETER
Qur interest is to test
Hypdj=..=2p
against
H;: not all A,s are equal with the assumption of common k.
3.3.1. Likelihood Ratio Statistic (LR)
The maximized log likedhood /; when all the A;’s are possibly different is given

by

L
L=Yn (k- logi -klogX, -log (k) ~1; /K, 1.

i=1
The maximized log likelihood /, under the constraint A; = ... = Ay is written as

L
Iy =% nl(k-1)leg ; ~ klog & - log T(k) - ¢; A

i=]



As discussed in section 2.15.1, the likelihood ratio statistic LR for testing H, against H,

is given by
L .. .
LR=2( -1 =23 n; [ k-k)(1-log 7)) - k log X, ]
i=1 (3.3.1)

+ 2N [ klog A + log F(k) - log (D ).

Under the null hypothesis Hy, the statistic LR is approximately distributed as chisquare
with (L-1) degrees of freedom.
3.3.2. Modified Likeiihood Ratio Statistics (M and MB)

For a single sample of size n from a gamma distribution having pdf (3.1.1), it is
well-known that 2nX/A ~ x3(20k) (Shiue and Bain, 1983), where X is the sample mean
and xz(v) is a chi- squared distribution with v degrees of freedom. Thus, in a mult-
sample situation, for the ith sample, 2nit/A; ~ x%(20k), i = 1,..,L. Alternatively, it can
be written as 2n; k X, /A; ~ x*(2nk). Denote g; = 20k and h; = 2nk, then gl ~
x%(hy), i=1,....L. Bartlett (1937) developed a procedure which is a modification of the
likelihood ratio test for testing the homogeneity of variances of several groups having

normal distribution. Bartlett’s test statistic is of the form

L
M=V10gSz—ZV‘-logS‘-2,

in]

3 L
whee V= Y} v, §2= Y V; S%/V and S% is the sample variance of the ith group

i=1 i=1
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with degrees of freedom V,. When S is replaced by g, /h; the Bartlen’s statistic for

testng equality of scale parameters is of the form

L

im]
where
1 L L
i

iwl
The wue parameter k is in general unknown. It can be replaced by its maximum
likelihood estimaie k. Then g = h; = 2nk, i=1,...,L and the statistic M reduces to

L L
2kY nlog WA, ), where\® = 1—1\" Y A (3.3.2)
iwl

i=]

M

Bartlett (1937) showed that the distribution of M is better approximated by x2(L-1) when
a small sample correction is used. The corrected statistic (MB) is then given by
MB = M/C, (3.3.3)

where the correction factor C is given as

L
C=1+ _1 El"’l -
k-l =1 N

3.3.3 C(c) Statistic (CL)
Let us assume that under the alternative hypothesis A; =A + ¢;, i = 1,...,.L with ¢
= (. Then testing the null hypothesis of homogeneity of scale parameters reduces to

testing Hy: ¢; = 0, for all i, with A and k treated as nuisance parameters. Tarone (1985),
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Bamwal and Paul (1988), Paul (1989) and many others applied this technique in similar

situations.
Define ¢ = (¢},....0..1)" and 6 = (6,,6,)" = (A,k)". Under the above reparametrization, the

log likelihood function for the combined sample becomes

L
1= ¥ n; [(k=D)log §; - k log (A4 - log T(®) = 7; /0] (33.4)

inl

Based on the likelihood I in (3.3.4), we obtain for i = 1....,(L-1},

ol n; ‘-a
W1= | k‘

. x{x J

ol ol Nt
o= =2| =21l
LA o - x[x J

and
ol 3l L B
1,() = % | %L Z; n; log F; - N [y(k)-log A).

Under the null hypothesis, the expected values of the negative mixed partial derivatives

nik
A.=E| - =12
0, 1<i#j<L-1)

, 1<i=j<@-D
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n; k i
— J=1i=1.,(L-1
_ o 1A
B, =E =
' 99,9, ~0 n;
—_ ., J=2i=1L-0)
| A
and
k g
N? » J =1 =1
Cy =E| - 32’, =l Ny . j=i =2
aejaej " )
T j=itii =12

.

Now, the parameters A and k in ¥, 1, T, Ay;, B;; and C; are replaced by their MLE:s.
Then, following the general theory in section 2.15.2, the C(cx) statistic is CL =y’ V1,

where V = A - B C! B’. After considerable steps of algebra the (ij)th element of V is

N kP,‘ (1-p) ..
_—_—— =},
12
V.. =9
Y| Nkp;p; .
————— N I#f,
{ A2

ij = 1,...,(L-1), where p; = n/N, i = 1,...,(L-1). After simplification, we obtain

L
cL=kY n(5;/r -1V (33.5)
iw]

When L = 2, the square root of the statistic CL is identical to the C(c) statistic given by

equation (27) of Moran (1970).

43



3.3.4 Extremal Scale Parameter Ratio (EP)
In two sample case, Shiue and Bain (1983) studied a one sided test based on the

ratio of two sample means. As we described earlier for a known k, 2ni?.i/k -~ xz(znik),

i =1,2. Then,
2 "1?1 i
T
F=_%_ = 1~ F (2nk2nk ) (3.3.6)
2 ryty I
k

In practice, k is an unknown parameter. Shive and Bain (1983) showed that the
distribution of t,/t,, under Hy, is approximately F(2n,k, 2n,k) when k is replaced by its
maximum likelihood estimator k. They also showed that the actual size of the
approximate test given by P (k,&) = P[ t,/t, < F.,(2nk, 2n,k) ] is free of the common
scale parameter A and depends little on k.

Now, for two samples, we consider a two-sided test as this is a special case of the
general hypothesis for testing homogeneity of L scale parameters. We reject the null
hypothesis if F =1,/5, < Fonp@ryk, 20,K) or F =1/t, > Fop 20,k 205K).

An alternative test statistic can be constructed as

m?JC{t-,-} mgx[?;lfé} mgx{ﬁ;c }

EP = = =
min{z}  min{t/k}  min(h; } 337

The statistic EP, known as e:.tremal scale parameter ratio s’.iistic, is in general applicable
for testing the equality of several scale parameters. The null hypothesis would be rejected

in favour of the alternative hypothcéis for large values of EP. McCool(1979) proposed an
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analogous statistic for testing equality of scale parameters of several extreme value
populations. For two samples of equal sizes (n; = n, = n) with known k, the statistic EP
= Max("flI:.')/Min(Tl,?z) has a muncated F(2nk, 2nk) distribution, as shown below.

We know that for known k, X; = 2n/k ~ x%(2nk), i=1,2. If n, = n, = n, then
X, and X, are independently and identically distributed as %3(h), where h = 2nk. Suppose
Xy and X, are the ordered statistics from X, and X, and let R = X(5)/X,), then the

distribution of R is

, ‘L_, X e-m (Rx)hfZ-l e-Xﬂ xhﬁ-l i
2"2 T(h2) 2% T(h12)
2 Rm-l

= . 2 1.
B2 WD) LR

This is the density of a truncated F distribution with degrees of freedom (h,h). The 100
percentage point C of the distribution of R can be obtained from

F.(hh) = -2, (33.8)
where F_(h,h) is the cumulative probability of the F distribution with degrees of freedom
(h,h). The value of C from (3.3.8) can be obtained using appropriate subroutine frem
IMSL or NAG. For L > 2, n; = ... = n; and k known, the distribution of EP has a
complicated form and no closed form solution for the critical value exists. In other
situations, the distribution of EP is not known. Therefore, for L > 2, the percentage points
need to be obtained by Monte Carlo simulations. Now, we discuss the practical situation

that k is not known. In this case, if k is replaced by the maximum likelihood estimate k,
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then, for given o, the zctual size of the test is P(k,) = P[ EP > EP(k,) ], where
EP(k, o) is the 100a% point of the distribution of the statistic EP. Obviously F(k,c) would
be independent of k and A. However, it is unclear if the critical value EP(k,0) remains
unchanged as k and A vary. To investigate the behaviour of EP(k,0x) for various values
of k and A we conducted a small scale simulation study. This study was limited to L =
3; a = 0.01, 0.05, 0.10; (n,, ny, n3) = (10, 10, 10) and A = 0.1, 1.5. For the evaluation of
EP(k,o), 10,000 random samples from two parameter gamma distribution were generated
by using the IMSL subroutine RNGAM. The simulations showed that EP is independent

of A. So we reported results for only A = 0.1 in Table 3.1.
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Table 3.1

Values of EP(E,a) for L = 3; A = 0.1; (n;,ns,13) = (10,10,10).

k 0.01

Im0.5 B ';.-5_:71
1.0 3.8974

1.5 3.0985

2.0 2.5784

25 2.3683

3.0 2.1218

4.0 1.9207

6.5 1.7083

10.0 1.5140

0.05

4.8576
2.9598
2.4195
2.1343
1.9872
1.8309
1.6987
1.5349

1.4024

0.10

Eﬂﬁ
3.8943

2.5724
2.1568
1.9415
1.8049
1.7003
1.5902
1.4598

1.3446

Table 3.1 shows that the critical values EP(k,0) decrease as k increases. This behaviour

of EP(k,c) has been observed in various combinations of sample sizes.

3.4 SIMULATION STUDY

Performance of the statistics LR, M, MB, CL and EP developed in section 3.3 are

compared in terms of size and power by using Monte Carlo simulations. The empirical

levels are computed based on 2000 replications. Empirical levels were found to be

-independent of common scale parameter A, so we present resvlts for A = 0.1. The
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empirical levels were calculated for various combinations of sample sizes; number of
groups L = 2, 3; common shape parameter k = 1.0, 1.5 and the nominal levels & = 0.01,
0.05, 0.10. The results are presented in Tables 3.2 and 3.3. For L = 2, empirical level of
the stutstic EP was computed based on the distribution of F = 1, / t, discussed in
section 3.3.4. For L > 2, EP 1. aot included in the study of empirical size as it’s exact
distribution is not known.

For power comparison, first, the critical values of the statistics LR, M, MB, CL
and EP were computed from the empirical distributions, based on 10,000 replications.
Using these critical values, power of the above five statistics for various combinations of
sample sizes was calculated based on 2000 replications for L =2, 3; k= 1.0, 1.5 and
=0.01, 0.05, 0.10. The results are reported in Tables 3.4 through 3.9.

Results

From Tables 3.2 and 3.3, we see that the statistic CL holds nominal level well for
a = 0.05 and 0.10, although it is slightly conservative for & = 0.01 and small sample
sizes. All other statistics are in general liberal. Note that two times the standard error of
the probabilities based on o = 0.01, 0.05 and 0.10 are respectively 0.005, 0.010 and
0.013. Empirical levels iess than ¢ - 2 (standard error) are termed as conservative and
those greater than o + 2 (standard error) are termed as liberal. Tables 3.4 through 3.9
show that for equal sample size situations power of all the statistics is similar except for
the statistic EP which is slightly more powerful. Further, power of all the statistics
increases as k increases. Performance of the statistics LR, M and MB is similar for the

case of unequal samiple sizes. The behaviour of the statistic CL and that of the statistic
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EP is just opposite in unequal sample size situations. When A < A, < A4 the statistic CL
has least power and the statistic EP is most powerful in the case of n; < n, < n; and the
statistic CL is most powerful and EP is least powerful in the case of n; > n; > n,. In both
cases, some of the n;’s may be equal. The power performance is similar for the nominal
svel o = 0.01, 0.05 and 0.10.

Since the statistics LR, M and MB are, in general, liberal and they do not show
power advantage over the other two statistics, we report on a small scale simulation study
only for the statistics CL and EP for L = 5, 10; a = 0.01, 0.05, 0.10 and k = 1.5; and for
a nurnber of combinations of sample sizes. Empirical levels of the statistic CL based on
its asymptotic chi square distribution are given in Table 3.10. Based on the empirically
computed percentage points, powsr values of the statistics CL and EP are obtained and
are given in Table 3.11. Conclusions for L. = 5, 10 in Table 3.10 and 3.11 for the

statistics CL and EP are the same as those for L = 2, 3 in Tables 3.3 through 3.9.

3.5. TESTING THE HOMOGENEITY OF SHAPE PARAMETERS OF SEVERAL
GAMMA DISTRIBUTIONS

The procedures for testing the equality of scale parameters in section 3.3 are based
on the assumption that the shape parameters of the populations are equal. However, this
assumption should be checked before testing the homogeneity of scale parameters. For
this purpose we develop two test procedures in this section. The competing hypotheses
are

Hl: kl S we = kL = k)
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and
H,: not all k’s are equal, A, ....,A; being unspecified scale parameters.
The test statistics are derived as follows:
3.5.1. Likelihood Ratio Statistic (LRK)
Using the maximum likelihood estimators of the parameters under the null and

alternative hypotheses given in section 3.2, the maximum log likelihood function, under

Hy, is

L . TR _
[2 = Enl ( kl. "1) Iog E‘- - ‘T‘ - k‘- Iog xi - logr(k‘- )
iwl i

and under H,, the maximum log likelihood function is

L z. _
i=] ic

Thus, the log likelihood ratio statistic (LRk), as discussed in section 2.15.1, is given by
LRk = 2 [ L(AK - L(AL0)

L
=2 n{klogh, - klog % + log @@ / T&) } (35.1)

i=]

+ 22Lj m{k -k (1-1ogi}.

il
Under the null hypothesis H,, distribution of the statistic LRk is approximately distributed
as chi square with (L-1) degrees of freedom.
3.5.2. C(c) Statistic (CLk)

We follow the procedure as stated in section 3.3.3. Reparametrize the shape
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parameters as k; =k + ¢;, i = 1,...,L with ¢, = 0. Define ¢ = (¢,,...4_ ) and
9 = (91""‘8L‘6L+1)’ = al"“'ll..‘k)"

Using the notations described earlier

al .
“VE = ) it = 1,...,(L“1)
W
and
L R
%
b=l
Define
L+l
T() = w® - 3. B; 50)
i

where B, i = 1,...,(L-1) is the partial regression coefficient of y; on Bj, j= 1. (L+1). As
stated earlier, when 0 in Ti(0) is replaced by its MLE, the coefficient B;; vanishes for i
= 1,...,(L~1), and thus for i = 1,....,(L-1), T;(8) = y(8), where the MLE 8 of 8 is given by

8 = ( X;-Ap k) Obtained in section 3.2. Now, the variance covariance of T = (

Ty(6),...,T_1(6) ) is given by C- E F! E’, where the (i,j) th elements of C, E and F are

as follows:
C.=E| - azl _ ni .q‘l(k) ’ i =j = 1,...,(L-1)
: Ry oo 0 . di#j = Ll
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*
2 R
e; = E aq?aze = 0, izhi=1..L
om0 i=1,..L-1)
), I=L+li= La(l-1)
and
.'ﬁ L=t =1,.L
A I
0 , I=l=1.L
2
Fop=-E = n
”' 3078y |, = o D=L =L.L
1
V=L+1;1=1,.L
Ny , =1 =(@L+D)

The C(a) statistic has the following form CLk = T C - EF'E’ )T. After some

considerable steps of algebra, and replacing 8 by its MLE 8, the C(c0) statistic is obtained

as
- L 7.,.._2
CLk = %
(Wt -1) =1 ~n
where

T, =y{®0) = n; [ log f; - log X, - w(&) I;

that is
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= L
« Y omllog? -log X, - w1, (3.5.2)

CLk = -_——
kw'e) - 1) =

which is asymptotically distributed as chisquare with (L-1) degrees of freedom.

3.0. SIMULATION STUDY

A small scale simulation study was vonducted to compare the size and power of
the statictics LRk and CLk. For both size and power comparison, we considered L = 2,
3; a = 0.01, 0.05, 0.10. Empirical levels and power are independent of the scale
parameter va'ces, so we chosz A = (A;,A,,A4) = (0.1,0.2,0.3). The common value of k was
chosen as 0.5. Each experiment for empirical levels was based on 2000 replications.
Empirical levels are given in Table 3.12. For power comparison, first empirical percentage
points were obtained based on 10000 replications and then using these percentage points
powers of these two statistics were calculated based on 2000 replications and are reported
in Tables 3.13, 3.14 and 3.15.
Results

From Table 3.12, we can see that the statistic LRk is slightly liberal. The statistic
CLk holds the nominal level well, except in small sample situations for L = 2. When L
increases CLk maintains the significance level quite well. Note that two times the
standard error of the probabilities reported is approximately 0.005, 0.010 and 0.013 for
a = 0.01, 0.05 and 0.10. Table 3.13 shows that for two groups with equal sample sizes,
both statistics have similar power. For L = 3, power of the statistic CLk is consistently

better than that of LRk, except for the situation, where ny 2 ny > n, 0r 0y > n, 2 ny with
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increasing k;"s(i = 1,...,L).

3.7. EXAMPLES
Example 1: The data studied by Simpson (1972) refer to the radar evaluated rainfall
data from 52 South Florida cumulus clouds, 26 seeded and 26 control clouds Lifetimes.
seeded: 129.6, 31.4, 2745.6, 489.1, 430.0, 302.8, 119.0, 4.1, 924, 17.5,
200.7,274.7,274.7,7.7, 1656.0, 978.0, 198.6, 703.4, 1697.8, 334.1,
118.3, 255.0, 115.3, 242.5, 32.7, 40.6.
control: 26.1, 26.3, 87.0, 95.0, 3724, 0.1, 17.3, 244, 11.5, 321.2, 68.5,
81.2, 47.3, 28.6, 830.1, 345.5, 1202.6, 36.6, 4.9, 4.9, 41.1, 29.0,
163.0, 244.3, 147.8, 21.7.
We first test the equality of the shape parameters. In this case, we obtain 4, = 767.342,
A, = 285.687, k = 0.576 and CLk =0.360. This shows no evidence against the assumption
that the shape parameters are equal. Since n; = n, we use the statistic CL for testing
equality of the scale parameters. The value of CL is 5.729 with p- value 0.017. Note that
for this example, the F statistic and the EP statistic are both ( 767.342/285.687 =) 2.686.
The common degree of freedom of F and EP is 2(26) (0.576) = 29.952 with p- value
0.009. Thus, the conclusion based on F or EP is the same as that based on CL. That is,

there is evidence of, possibly, different means for the two groups.

Example 2: For illustraive purposes we simulated three samples from gamma

distributions with parameters (0.1,0.5), (0.2,0.5), (0.3,0.5). Sample sizes are taken as
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(ny,n,,n3) = (10,20,30). The data are:
sample 1:  0.00477, 0.00521, 0.00050, 0.01137, 0.00352, 0.00823, 0.05301,
0.05477, 0.03841, 0.16865.
sample 2:  0.00001, 0.08749, 0.10031, 0.02197, 0.03175, 0.07410, 0.19230,
0.37005, 0.12567, 0.34200, 0.03030, 0.01902, 0.01487, 0.02643,
0.00510,0.23954, 0.00972, 0.05956, 0.15482, 0.02788.
sample 3:  0.25047, 0.00017, 0.02383, £.07534, 0.63579, 1.33650, 0.02926,
0.00229, 0.80316, 0.04149, 0.02522, 0.00013, 0.54039, 0.09198,
0.03544, 0.05421, 0.23740, 0.20021, 0.07539, 0.20822, 0.19611,
0.32148, 0.01334, 0.06759, 0.84330, 0.43629, 0.00821, 0.36822,
0.00972, 0.08071.
Now, for this data set, X; = 0.063, 4, = 0.175, &5 = 0.360, k =0.554. The value of CLX,
on 2 degrees of freedom, is 0.326 indicating strong evidence in favour of the assumption
of common k. Also, in this example &; < 4, < &; and n; < n, < n;, 50, we use the
statistic EP to test for the equality of common scale parameters. The estimate of the
common A is & = 0,279 and that of the common k is k = 0.493. The value of EP is 5.723
with p - value = 0.007. The p- value was calculated from the empirical distribution of the
statistic EP calculated from 10,000 sets of three samples ( n; = 10, n, = 20, n; = 30 )
which were simulated with common A = 0.279 and common k = 0.493. The p- value
indicates evidence that the scale parameters are not equal. Note that the value of CL is
6.592 with p- value 0.010. In this example also conclusion based on CL is the same as

that based on EP.
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Table 3.2: Empirical levels (%) of the test statistics LR, M, MB, CL and EP based on 2000 replications, L = 2,

k=10 k=15
o [+

Tests n.n, 100 50 10 10.0 5.0 1.0
LR 10,10 19 63 18 128 58 14
M 127 73 2.5 134 7.0 20
MB 124 72 24 134 6.7 19
CL 93 43 0.4 104 42 0.4
EP 120 6.6 15 15.4 9.1 27
LR 2020 11.0 58 12 123 59 15
M 11.4 66 16 12.8 6.6 1.8
MB na3 62 15 12.8 66 - 18
CL 103 48 0.6 113 5.1 0.8
EP 112 58 1.1 10.1 45 09
LR 1020 121 64 18 122 65 16
M 128 72 22 126 75 20
MB 125 70 22 125 73 20
cL 100 49 12 104 55 0.7
EP 128 73 19 163 108 34
LR 15,20 103 538 11 122 68 17
M 114 63 15 13.0 74 2.0
MB 111 62 14 128 73 2.0
cL 9.7 46 0.7 114 5.7 09
EP 115 6.1 16 125 6.7 17
LR 20,10 nsg 7.1 18 113 62 11
M 124 7.7 23 117 72 11
MB 12.1 75 22 116 71 14
cL 103 52 09 10.0 48 05
EP 105 59 13 8.4 39 06
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Table 3.3: Empirical levels (%) of the test statistics LR, M, MB, and CL based cn 2000 replications. L = 3.

1.0 15
a o
Tests Ty Tay 100 5.0 1.0 10.0 50 1.0
LR 10,10,10 124 6.7 1.6 124 70 15
M 14.1 82 26 138 8.1 25
MB 13.6 19 25 134 8.0 24
CL 93 38 0.7 9.6 48 0.7
LR 20,20,20 115 59 13 11.8 69 13
M 124 6.6 1.7 127 7.6 1.7
MB 122 65 15 125 15 1.7
CL 99 48 0.8 104 53 08
LR 10,1020 11.8 6.1 1.7 113 6.0 12
M 13.5 12 22 129 7.0 18
MB 13.0 7.0 2.1 127 70 1.7
CL 9.7 43 03 95 42 0.7
LR 15,1520 112 54 13 11.8 6.5 1.1
M 119 64 16 13.1 78 15
MB 112 63 1.6 128 1.7 1.6
CL 92 43 09 103 4.7 0.8
LR 20.20,10 122 63 1.6 11.1 63 15
M 139 72 22 122 69 21
MB 134 7.0 20 119 68 2.1
CL 9.9 4.6 1.1 94 53 1.0
EP 105 59 13 84 39 0.6
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Table 3.4: Empirical power (%) of the statistics LR, M, MB, CL and EP; critical values based on 10,000 replications;
power based on 2000 replications. @ = 0.01, k=10, 1.5 L=2.

k=10 k=15
() (hho)
Tests ny {.4.13) 1.2 (1,25 (L3 (115 (L2}  (1L29 (1.3
LR 10.10 30 10.1 214 332 59 18.8 355 532
M 31 99 209 329 5.8 185 354 526
MB 31 99 209 327 59 184 355 524
CcL 3.0 95 189 304 56 17.8 341 50.6
EP 33 123 259 40.8 73 238 46.1 643
LR 20.20 8.7 295 56.0 76.7 1337 46.4 768 919
M 8.7 29.5 559 766 13.6 463 763 9290
MB 837 2.6 559 76.6 137 462 76.7 919
CL 87 29.4 555 76.4 138 46.0 75.1 951.7
EP 93 337 622 813 141 49.7 80.8 94.1
LR 10,20 53 163 327 49.0 75 265 499 70.1
M 52 163 326 489 73 262 435 69.8
MB 53 165 325 487 75 26.1 494 69.7
CL 1.1 39 84 14.6 36 139 292 473
EP 6.7 213 387 565 93 326 584 %2
LR 1520 69 255 46.7 653 120 3%.0 683 865
M 6.7 25.1 464 65.1 119 389 633 865
MB 6.3 250 464 649 120 388 632 865
CL 55 209 405 593 9.7 333 627 824
EP 74 278 51.0 718 134 435 754 909
LR 20,10 5.6 192 374 5438 105 35.1 612 79.0
M 55 19.1 372 546 104 343 609 78.6
MB 55 191 371 545 105 346 61.0 78.6
CcL 7.8 26.5 46.6 635 152 40 69.7 85.1
EP 4.1 170 354 53.6 82 329 602 78.6
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Table 3.5: Empirical pawer (%) of the statstics LR, M, MB, CL and EP; critical valucs based on 10,000 replicaticns;
power based on 2000 replications. o = 0.05, k = 1.0, 1.5; L = 2.

k=10 k=135
(Ag.h) Ay
Tests NIy (L15) (L2} (L) (L3 (L1%)  (L2) (L2S) (L3
LR 10,10 127 30.7 47.6 62.4 187 °2 652 719.6
M 126 30.6 413 623 18.7 420 65.0 793
MB 127 30.5 493 621 187 419 649 9.1
CL 126 328 46.7 614 18.6 41.7 64.6 789
EP 143 321 518 €23 19.0 457 68.3 842
LR 2020 232 56.1 803 924 327 2 93.1 98.8
M 231 56.1 80.2 924 327 742 93.1 98.7
MB 232 562 80.4 924 327 742 93.1 98.8
cL 232 560 803 924 327 744 93.2 98.8
EP 24.7 58.6 83.1 933 340 763 94,0 98.7
LR 1020 16.1 38.1 594 743 23 521 76.6 80.6
M 16.1 380 594 743 23.0 52.6 713 50.9
MB 16.1 380 595 744 223 520 76.5 905
CL 115 289 48.4 652 17.0 490 689 85.1
EP 19.4 422 64.6 80.0 255 515 813 935
LR 15,20 215 492 24 86.6 2738 66.1 879 96.5
M 214 49.1 724 865 277 659 879 96.4
MB 21.6 49.1 724 86.6 27.8 65.9 879 96.5
cL 197 45.7 693 842 258 63.7 862 95.7
EP 223 520 756 839 29.6 702 90.8 973
LR 20,10 17.4 408 61.9 78.1 255 582 80.1 91.7
M 173 40.7 619 78.1 254 58.1 80.0 91.7
MB 175 409 62.1 782 252 583 759 91.7
CL 218 474 684 826 295 633 839 933
EP 16.1 39.8 61.5 716 244 56.6 80.2 924
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Table 3.6: Empirical power (%) of the statistics LR, M, MB, CL and EP; Critical values based on 10,000 replications;
Power based on 2000 replications. @ = 0.10, k= 1.0, 1.5: L= 2

k=10 k=15
(M) (M)
Tests a0, (1L..15)  (1.2) (.1.-25) (.1,.3) {.1,.1%) (1,.2) (1,.25) (-1..3)
LR 1010 240 4.6 62.8 167 2717 555 75.6 88.1
M 24.0 44.5 62.7 76.6 217 554 75.6 88.0
MB 240 444 62.7 765 2718 555 754 878
CL 240 442 625 763 27.6 855 753 877
EP 242 469 649 785 288 57.1 794 871
LR 20,20 345 694 88.8 963 45 828 965 993
M 334 694 888 962 444 82.7 96.4 993
MB 344 694 888 963 444 828 96.4 993
CL 34 694 88.8 2 444 828 96.4 993
EP 355 70.7 899 96.4 454 839 969 NS
LR 10,20 265 s1.2 724 856 332 66.7 86.6 96.1
M 264 51.1 723 855 331 66.7 865 959
MB 263 51.0 T24 855 332 66.7 865 $6.0
CL 22 46.1 673 81.1 29 621 835 93.8
EP 29.1 54.1 749 882 358 70.6 895 96.6
LR 15,20 3138 622 82.6 934 399 783 937 98.5
M 317 62.1 825 933 398 782 93.6 985
MB 318 621 826 934 9 783 93.7 98.5
CL 301 59.8 812 925 EYN] 76.4 93.0 982
EP 334 645 85.1 945 409 80.1 945 98.9
LR 20,10 279 543 747 86.6 35.1 68.6 876 954
M 279 543 743 86.6 35.1 634 875 954
MB 279 543 746 86.6 350 684 874 954
CL 313 586 78.1 889 39.1 s 89.6 963
EP 26.7 53.6 n3 862 344 639 869 95.4



Table 3.7: Empirical power (%) of the test statistics LR, M, MB, CL and EP; critical values based on 10,000
replications; power based on 2000 replications. L =3, 2 =0.01: k = L5,

By Aey)
Tests LIPS S (-1..12,.12) (.1..1,.15) (.1.2.2) (-1..4.25) (.1.2.3)
LR 10,10,10 1.75 540 1730 29.70 44.60
M 1./5 530 17.05 29.15 4395
MB 1.15 525 1695 29.00 43.75
CL 120 550 995 18.05 33.60
EP 1.55 5.45 18.80 3265 50.68
LR 20,20,20 230 13.20 4835 70.75 87.60
M 230 13.30 4845 70.55 87.65
MB 235 1330 48.55 70.45 87.65
CL 220 1595 36.05 60.05 83.05
EP 2.30 14.00 54.05 7695 91.20
LR 10.10.20 1.80 840 2030 3150 58.40
M 1.80 840 2020 37.75 5830
MB 1.80 840 20.20 37.80 58,25
CL 1.10 4.65 740 1430 3020
EP 2.05 695 25.00 42.05 62.65
LR 15,1520 205 1225 34.60 5655 7730
M 200 12.15 34.45 5625 71.10
MB 200 12.10 3435 56.10 71.00
CL 1.75 1190 22.35 4210 66.85
EP 220 1095 41.25 62.90 83.15
LR 20.20.10 245 745 4280 58.70 7305
M 245 740 42,65 5855 1295
MB 245 735 42.50 58.40 12590
CL 235 11.40 34.10 5205 69.50
EP 155 720 3630 56.95 1355
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Table 3.8; Empirical power (%) of the test statistics LR, M, MB, CL and EP; critical values based on 10,000
replications; power based on 2000 replications. ©. = 3, @ = 0.05; k = 1.5,

(Apdady )
Tests ANy (.1.12..12) (.1.1,.15) (.1.2.2) (.1..2,.25) (.1.2.3)
LR 10,10,10 7.40 1745 42,05 57.60 7135
M 7.45 17.45 4190 57150 7125
MB 745 17.50 41.80 51.15 71.00
CL 7.40 1930 36.00 50.15 65.09
EP 120 17.65 46.45 62.60 7635
LR 202020 9.55 3425 76.75 90.70 9735
M 9.55 34,15 76.80 90.75 9735
MB 9.60 34.15 76.80 90,65 9735
CL 9.65 36.10 7130 88.55 96.60
EP 9.65 32.60 78355 92.05 97.80
LR 10,10,20 8.00 23.40 4595 6645 83.10
M 8.00 23.45 46.05 6645 83.05
MB 995 23.40 4595 66.10 8295
CL 695 1935 3395 33.20 7425
EP 855 2115 53.45 71.40 85.15
LR 15,1520 7.50 2945 £0.50 80.75 93.00
M 7.50 2930 60.85 80.65 93.00
MB 745 2925 60.80 80.65 9250
CL 6.75 2920 5250 75.15 89.90
EP 8.60 2855 66.10 84.15 94.50
LR 20.20,10 9.15 2230 7050 81.55 89.80
M 920 235 7055 8155 89.80
MB 5.20 230 70.45 8150 89.80
CL 9.65 28.60 69.80 81.50 29.65
EP 7.60 2350 63.40 7825 88.75
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Table 3.9: Empirical power (%) of the test statistics LR, M, MB, CL and EP; criiical values based on 10,000
replications; power based on 2000 replications. L = 3, = 0.10; k = 1.5,

(ApAady )
Tests Ny gy (112,12 (1.0.15) (122 (1,229 (1.2.3)
LR 10.10,10 13.70 27.65 $1.4° 7130 82.05
M 13.60 27.60 5730 735 81.80
MB 13.60 27.60 51%v 7120 81.80
CL 13.10 29.75 5230 66.60 8025
EP 14.00 27.60 60.80 7465 85.45
LR 20,2020 16.80 4625 85.90 95.30 98.80
M 1680 4625 85.90 9530 98.80
MB 1680 4625 8590 95.25 98.80
cL 17.10 4835 84.10 94.65 98.50
EP 17.00 45.80 8730 95.90 98.80
LR 10,1020 14.00 3545 6125 80.45 90.95
M 13.95 35.40 61.15 8050 9095
MB 1395 35.40 6105 80.40 90.85
CcL 1325 3230 53.05 72.15 8635
EP 15.00 33.40 6695 8275 92.90
LR 15.15.20 14.85 4185 74.65 89.60 96.75
M 14.90 4135 74.60 89.65 96.75
MB 1495 4180 74.45 89.70 96.75
CL 1430 41.00 69.65 8635 96.10
EP 16.05 4195 7195 91.45 97.65
LR 20.20,10 1595 3290 80.45 8930 94.15
M 1590 32.90 80.45 8930 94.15
MB 15.85 3275 8035 89.25 94.15
cL 1695 38,70 $0.90 89.05 94.55
EP 1425 3550 7730 86.80 94.10
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Tablc 3.10: Empirical level (%) of the siatistics CL;
A=01k=15L=510

L=35
a
T I T TR Y 100 50 10
10,10,10.10,10 939 42 08
20,20,20.20,20 10.5 46 0.7
10,10,10.20,20 10.1 52 08
15,15,15,20,20 93 43 1.1
20,20,20,10,10 108 53 0.7
L=10
a
LI T P Y 10.0 50 1.0
DgTllg g Tt
10.10.10,10,10 9.6 4.3 1.0
10.10,10.10,10
20,20,20,20,20 9.5 45 0.7
20,20,20,20,20
10,10,10.10,10 93 43 08
10,20,20,20,20
15,15,15,15,15 103 53 12
15,20,20,20,20
20,20,20,20,20 107 56 1.6

20.10,10,10,10



Table 3.11: Empirical power (%) of the statistics CL and EP based on empirically calculated critical values: k = 1.5,
L =5, 10; a = 0.05.

L=5
( llo’“_hlgl&lzﬂ )

Tests LI T VR (.1.1.15, (.1.15.15 (L2 (1.2.3
.15,.15) 2,25) 2.3) 4.5)
CL 10.10,10,10,10 204 413 812 93.4
EP 20.8 50.7 80.6 917
CL 20,20.20,20.20 422 847 93 100
EP 41.6 86.0 85.0 100
CL 10,10,10,20,20 174 53.1 86.8 95.8
EP 2.8 61.4 911 99.4
CL 15,15,15,20,20 310 739 96.4 99.7
EP 345 76.9 96.6 95
CL 20,20,20,10,10 40.1 720 969 99.7
EP 249 653 91.5 99.9

L=10

R e Tt

T} i Ny Ny Tis (.1.1..15, (.1..1,.15, {.1,.15.15 (.1,.1,.15
gDy Tl Tl .15,.15,.15,.15, .15,.15.2,  .2,2,.2.25, .2,25,25,

.15,.15,.15) 2.2.22) 25.25.25) 3.3,3.3)

CL 10,10,10,10,10 165 45.6 50.1 878
EP 10,10,10,10,10 17.7 4712 583 91.6
CL 20,20,20,20,20 340 865 503 100
EP 20,20,20,20,20 38.7 843 933 100
CL 10,10,1¢,10,10 136 435 504 90.8
EP 10,20,20,20,20 2.2 530 62.7 95.6
CL 15,15,15,15,15 213 69.2 713 9.4
EP 15,20,20,20,20 30.0 715 83.9 99.6
CL 20,20,20,20,20 350 805 84,1 9.7
EP 20,10,10,10,10 184 599 76.0 98.0



Table 2,32, Empirical levels (%) of the test statistics LRk and CLk based on 2000 replications; k = 0.5, & = (0.1,0.3).

L=2 [+

Tests n.y 0.01 0.05 0.10

LRk 10,10 150 6.15 1120
Clk 025 375 9.55
LRk 20,20 150 6.50 1245
Clk 0.80 5.40 1005
LRk 1020 1.05 6.00 12,00
CLk 0.45 3.40 935
LRk 20,10 155 5.65 11.60
Cix 0.75 4.10 845
LRk 20,15 1.40 5.70 1090
CLk 0.55 425 995

gy L=3

LRk 10,10,10 135 715 13.15
CLk 0.90 445 9.50
LRk 20,2020 128 6.20 11.64
CLk 092 4.5 1024
LRk 10,10,20 152 6.72 13.48
CLk 1.00 492 932
LRk 2020,10 135 6.40 12550
CLk . 0.30 450 9.10
LRk 20,15,15 125 545 1035
CLx 0.55 430 8.80



Table 3.13: Empirical power (%) of the statistics LRk and CLX corresponding to nominal level & = 0.01; critical values
based on 10,000 replications; power based on 2000 replications. L =2, A = (0.1,03) and L = 3, A = (0.1,0.2.0.3).

(kpka)
Tests nyny (5.5) (5.8) (S (5.1.2) (5.1.5)
LRk 10,10 0.80 3.70 7.25 12.70 21.35
CLk 050 3.70 125 12,65 2075
LRk 20,20 035 830 19.05 3335 53.15
CLk 0.70 8.00 18.85 3240 5330
LRk 10.20 050 435 10.90 19.30 34.15
CLk 130 1195 23.80 35.40 51.80
LRk 20,10 1.05 370 1055 16.65 28.20
CLk 090 035 095 150 2.50
LRK 20,15 185 8.25 1890 29.20 48.85
CLk 090 5.10 13.65 2155 40,10
(kpkpky )

NNy (5.6.8) (5.8.1) (5112)  (512139) (5.15.2)
LRk 10,1¢,10 3.70 595 12.00 22.45 3735
CLk 2.80 6.85 14.40 2520 43.05
LRk 20,2020 480 1635 3330 5550 80.05
CLk 5.60 19.50 39.65 6155 84.45
LRk 10,1020 4.05 8.05 1590 29.15 50.00
CLx 7.05 14.65 2500 41.90 62.90
LRk 20,20,10 440 1235 27.15 4525 7025
CLk 225 1.10 25.85 4390 68.75
LRk 20,1515 430 14.60 29.50 50.80 7245
CLk 2.95 1275 27.95 49.10 71.70
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Table 3.14: Empirical power (%) of the statistics LRk end CLk correspending o nominal level & = 0.05; eritical values
based on 10,000 replications; power based on 2000 replications. L =2, & = ( 0.1,03} and L = 3, & = (0.1.0.20.3).

Ckpy )
Tests nyny (5.5) (5.8) (5.) (5.12) (5.15)
LRk 10,10 450 13.05 23.10 3190 4535
CLk 440 13.00 22.80 31.65 4530
LRk 2020 390 23.50 4330 60.45 80.55
CLk 3.90 2350 43.10 6025 80.30
LRk 10,20 430 1535 28.20 39.75 5735
CLk 450 210 3730 4350 6695
LRk 20,10 420 1550 2725 39.10 56.10
CLk 4.00 10.40 19.45 28.85 46,05
LRK 20,15 505 2085 38.00 5345 7275
CLk 520 18.40 34.45 4850 69.55
(kypkyky )

RN (5.6.8) (5.8.1)  (5112) (51215 (5152
LRk 10,10,10 1085 1735 3025 42.35 60.30
CLk 1055 19.40 3225 4530 63.15
LRk 20,2020 16.60 3595 5135 76.60 9270
CLk 1690 38.70 60.15 79.55 94.00
LRk 10,10,20 11.8¢ 2150 35.45 4995 6930
CLk 17.15 30.10 44.80 60.95 7825
LRk 20.20,10 1435 28.00 4745 67.65 $7.10
CLx 10.80 2620 47,10 66.85 86.85
LRk 20,1515 14.85 3130 50.85 70.00 86.15
CLk 12.85 3095 51.10 T30 8125



Table 3.15: Empirical power (%) of the statistics LRk and CLX comesponding to nominal level @ = 0,10; eritical valucs
based on 10,000 replications; power based on 2000 replications. L =2, A = (0.1.03)and L = 3, A = (0.1,0.2,0.3),

(kyky)
Tests 0y (5.9 (5.8) (5.1) (5.12) (5.15)
LRk 10,10 9.30 22,60 3475 45.40 5995
CLk 9.30 2245 3455 44.60 $9.50
LRk 2020 8.25 3495 5635 nas 88.35
CLk 8.25 3490 5635 7120 8830
LRk 1020 8.85 23.85 3955 5235 68.50
CLk 9.55 29.80 45.00 58.55 7485
LRk 20,10 8.50 2130 42,05 56.00 7230
CLk 2,10 21.40 34.90 48,05 64.85
LRK 20,15 9.75 32.60 51.05 67.10 83.05
CLk 9.45 30.85 48.65 64.10 81.40
Ckpkay )

Dy (5.6.8) (5.8.1) (5112 (51219 (5.152)
LRk 10,10,10 17.35 28.60 4215 53.85 7185
CLk 18.00 29.60 4350 5635 7425
LRk 20.20.20 27.10 4765 68.85 84.10 96.05
CLk 2725 48.85 70.10 85.40 96.55
LRk 10,1020 19.05 32.15 46.05 6150 78.85
CLx 2575 39.15 $54.45 69.15 84.65
LRk 20,20,10 2320 40.00 6120 77.85 92.60
CLk 1890 3795 60.25 77.45 92.45
LRk 20,1515 25.45 44.40 6330 80.50 91.55
CLk 235 42.45 62.00 80.20 9130



CHAPTER 4

TESTING HYPOTHESES IN MULTIPLE SAMPLES FROM
TWO PARAMETER EXPONENTIAL DISTRIBUTIONS
4.1 INTRODUCTION
The two parameter exponential distribution is often proposed for modeling the
lifetime distribution of items such as electronic components, light bulbs, etc. or the tme
to mortality. Recall the two parameter exponential distribution having probability density

function

fp 8)= % exp (-(f_} ] t2n, (4.1.1)

where the location parameter p is interpreted as the minimum ( or the guarantee ) time
before which no failures or deaths occur, and the scale parameter, as the mean life. When
p = 0, the model in (4.1.1) reduces to the one parameter exponential distribution.
Inference procedures for the parameters p and © have been dealt with, among others, by
Lawless (1982). Chapter 6 of this thesis deals with confidence interval procedures for
these parameters.

Often dam arise in the form of multiple samples. When p = 0, one may be
interested in comparing the means. If the means of the exponential distributions are equal,
then reliabilities, percentiles, hazard rates and other quantities are equal. For this purpose,
analytic methods such as likelihood ratio test, Bartlent test, for both complete and
censored samples, have been proposed in the statistical literature ( See Lawless, 1982;

Nelson, 1982 ). When the location parameter p is not equal to zero but is known,
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statistical analysis for the scale parameter 8 can be carried out as for the one parameter
exponential distribution since (t-p) follows a one parameter exponential distribution. For
studies involving L ( 2 2) groups from the populations having pdf (4.1.1), many authors
have dealt with the problem of testing the equality of location parameters with or without
the assumption of common scale parameters across all the populations, based on failure
censored samples. In an attempt to compare equivalence of two two parameter
cxponential distributions Epstein and Tsao (1953) proposed several hypotheses and
derived a likelihood ratdo statistic for each case. For the same problem, Perng (1978)
proposed a test statistic obtained by combining two independent test statistics, whose null
distributions were based on the F distributions. Hsieh (1981) obtained a likelihood ratio
test and approximated its distribution by a chi squared distribution. For L 2 2, Hogg and
Tanis (1965) described an iterative procedure based on likelihood ratio, for testing
equality of the scale parameters and location parameters of several independent
exponential distributions, which was essentally the repeated use of a procedure by
Epstein and Tsao (1953). For the same problem, for L 2 3, Singh and Narayan (1983)
derived a likelihood ratio test using unequal sample sizes, and approximated its
distribution by an F distribution. For testing the equality of L. ( 2 2) location parameters
with unspecified scale parameters Hsieh (1986) developed a modified likelihood ratio test
procedure which was 2 generalization of Epstein and Tsao (1953). For the comparison of
two exponential location parameters with the assumption of a common scale parameter,
Kumar and Patel (1971) proposed 2 test based on ordered samples and derived the null

distribution of the test statistic. In this case, Tiku (1981) developed an approximate
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procedure based on t distribution for doubly censored data. The power function of this
statistic was given by Khatri (1981). Kambo and Awad (1985) generalized Tiku's statistic
for testing the homogeneity of several location parameters assuming a common scale
parameter across the populations. Considering Type II censored data, Singh (1983)
nroposed a likelihood ratio test for the same problem. However, very little attempt has
been made to develop and evaluate statistics for testing the assumption of a common scale
parameter. Note, testing the assumption of a common scale parameter is equivalent to
testing the equality of mean life times of a number of exponential populations. In this
case, Epstein and Tsao (1953) gave a likelihood ratio statistic, and Pemg (1978) suggested
a statistic based on F distribution for two samples. For L 2 2, Singh (1985) described an
approximate test, based on likelihood ratio, which was originally proposed by Bartlett
(1937).

In this chapter we deal with testing the equality of scale parameters of L. (2 2)
groups from the two parameter exponential populations in the presence of unspecified
location parameters based on complete and failure censored data. For this purpose, various
estimation procedures for the scale parameters are considered in section 4.2. In section
4.3 we derive a likelihood ratio statistic {LR), a marginal likelihood ratio statistic (ML),
a C(o) statistic (CM) (Neyman, 1959 ) based on the marginal likelihood estimate of the
scale parameters under the null hypothesis and an extremal scale parameter ratio statistic
(EP)( McCool, 1979 ). We show in the following section that the marginal likelihood
ratio statistic (ML) is equivalent to the modified Bartlett test statistic discussed by Singh

(1985), Lawless (1982) and Nelson (1982). Bartlett’s small sample correction to the
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statistic ML is also taken into account and is called the modified marginal likelihood ratio
statistic (MB). The performance of the test statistics LR, ML, MB, CM and EP are
examined in terms of size and power by conducting Monte Carlo simulation studies and

are discussed in section 4.4, Some examples are given in section 4.5,

4.2 ESTIMATION

Suppose t;; S ... S Ly, @i = 1,...,L) is a set of the first r; observations in a random

sample of size n; taken from the ith, i = 1,...,.L, two parameter expcnential population

having pdf

The parameters p; and 6, are the location and scale parameters respectively of the ith
population. It is easily seen that when r; = n;, for all i, we deal with the complete
samples. Our interest is to test

Hy 6,=..=6_(=0)
against

H;: at least two ©’s are unequal, in the presence of unspecified location
parameters p,..., By .
4.2.1 Maximum Likelihood Esimation

Define n= ( Bpse-r UL )’ and 0 = ( 91,...,9L )'.
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When the data are Type II censored, the likelihood function L(p, 8), under the alternative

hypothesis is

L r;
Limeoy=]I = [Hﬁ‘s‘i P 8 )J (S ¢, ))( S

w1 | (mmrp | G
Apart from a constant, the likelihood function L{;, 6;) for the ith group from the two

parameter exponential population is given by

L, 6 = —';- exp| - -él- (E(I;j -0 ) + (mp-r; ) (&r‘. =B; )] . (4.2.1)
9, i | J=1

The MLEs of the parameters p; and §;; i = 1,...L., are easily obtained, but the usual
method of equating the derivative 9l/a; to zero is not applicable, since the maximum

occurs on a boundary. It may be noted that for the ith sample, the likelihood function

increases with g, but p; <S¢, S .. <

]
w;

i=1,.,L. So, the maximum likelihood

estimates of ; is Jf; = t;;, 1 = 1,...,.L.
With §i; = t;, i = 1,...,L, the maximum likelihood estimate 6, i = 1,....L, is the 6; value
that maximizes the likelihood L(jL, 8,) or log of the likelihood L(#,, 6;). Alternatively, 6.,

i = 1,..L, can be obtained by solving the equation

.a%_log LG, 8) =0, i=1..L.

Taking logarithms of L( fi;, 6;), = obtain the log likelihood function I(fi, 6,), which is
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given by

L Fi
LOEB) =3, | -rlogt - ei Y () + () (‘sr,.“u]
= i | e

Define

S;=3 Gy ~ty) + (amry) Gy, 8y )
J=1

Then

L

i=l
The maximum likelihood equation

aa_el = S;‘ Iégz =-r; /é‘ =0 1mplies Gi = Si/ri’ i=1,.,L.

]

Under the null hypothesis H,, the maximum likelihood estimate f;, i = 1,...,L, remains

unchanged; that is j; = t;;, 1 = 1,...,L. Now, the log likelihood function i(f, 6) reduces to

L
I38) = - ) (r;log© + 5;/8) =R log & + 56,

im]

L L
where S =Y S, and ! =Y ;.

i=] i=l

~
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Thus, the estimaung equation 9408 = - RM - S/8% = 0 implies & = S/R, which is the
maximum likelihood estimator of a common € under the null hypowesis. Now, in section
2.14, 2 §/8. ~ x*(2(r;-1)) and hence E(S;) = 8; (r-1), i = 1,....L. Then E@)) = (r-1)6yx;
# 6, and E(®) = (R-LYB/R = 6. It is evident that the MLEs &;, i = 1,..,L and 8 are biased
estimates respectively for 6, i = 1,...,L. and 6.
4.22 Marginai Likelihood Estimation

The marginal likelihood procedure discussed by Kalbfleisch and Sprott (1970) is
applied 1o eliminate thc nuisance parameters p;, i = 1,..,L from the likelihood function

(4.2.1). Ignoring the constant term, the marginal likelihood for 8,,...,6; is obtained as

L S.
L.® =T] (_rt-f)'cxP{__Gi]'

iw] 0

£
Taking logarithm of L_(6), we have
iml i

L I S.
1@ =-% | (r-1)log §; + .e_‘ ) (4.2.2)

Maximum marginal log likelihood equations are obtained by equating the partial

derivatives of the log marginal likelihood function [,(0) to zero. Accordingly, we obtain,

under H,,

al, S;  (r-D 0 i=1.L
2| e - = (), 1 =1L,

-a?i A 5;

and under H, the maximum likelihood equation is
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a[m L Sl- (r"‘l)
_a'é"z(“e_z' 5 ]‘“‘

il

The maximum marginal likelihood estimat (MMLE) 8, , of ©, follows as 8, = S/(r;-1),
i=1,...L and MMLE 8_ of common 6 follows as 8 = S/(R-L). We can see that E@,)
=0,1=1,.,L and E(Gm) = 0. Thus the maximum marginal likelihood estimates of 6, i

= 1,...,.L and © are unbiased.

4.3 TEST STATISTICS
4.3.1 Likelihood Ratio Statistic (LR)

Suppose that I(j1,8) denotes the maximum value of the log likelihood function
under the altemative hypothesis H, and /(,8) derotes the maximum value of the log
likelihood under Hy. Then we have

L -

L
8) = - 3 [rilc’géi*’%‘;} and K@B) = - Y, {fglogé*%}.
iw] i i=]

where 8, i = 1,..,L and 9 are defined as in section 4.2. Thus the log likelihood ratio

statistic (LR) is given by

L
LR =2 (I(9) - 28) =2 |:r‘- log (%)]. (4.3.1)

i=l ;

Under the null bvpothesis, the distribution of the statistic LR is approximately chi- square
with (L-1) degrees of freedom.

43.2 Marginal Likelihood Ratio Statistic (ML)
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As discussed in section (4.2), [(8,) denctes the maximum value of the log
marginal likelihood function under H, and I(Qm) denotes the maximum value of the log

marginal likelihood under Hy. Thus, we have

- L S;
i6,) = - [(r,--l) log §;,, + E"J
iw] im
and
L S.
MB,y=-y l:(r,-—l) log 8, + _g_‘}
iw] -

where 8,,, i = 1,.,L and 8, are as in section (4.2). The log marginal likelihood ratio

statistic (ML) is given by

(4.3.2)

i=]

L
ML =2[1®,) -16,)] =2 {@:-1) log :_”‘ »

un
which is approximately distributed as chi- square with @L-1) degrees of freedom.
4.33 Modified Marginal Likelihood Ratio Statistic (MB)
Since 8, = S/R-L) and &, = S/(r;-1), i = 1,...L the expression for the statistic

ML can be rewritten as

ML=2I- R-L) log |5 -i (r=1) log | ¢
'_ R-Ly) o °° r-D ||

L
Define V; = 2(r1),i=1,..,Land ¥V =Y V,. Then the statistic ML reduces to

iwl
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L
ML =V log(S/V) - ¥ V; log(S/V).

i=]

From section 2.14, 2§,/6; ~ xZ(Vi) and it is easily seen that the statistic ML is modified
Bartlett statistic { see Lawless, 1982; Singh, 1985 ). Now, using the Bartlett’s small
sample correction to the statistic ML, we obtain the statstic

MB = ML/C, {£3.3)

where

L
IR S
which is also approximately distributed as chi- square with (L-1) degrees of freedom.
Hsieh (1986) suggested this test statistic to test the homogeneity of sevsral scale
parameters from two parameter exponential populations.
4.3.4 Extremal Scale Parameter Ratio Statistic (EP)

As mentioned in section 4.1, Epstein and Tsao (1953) and Perng (1978) discussed
the two sample problem of testing the two parameter exponential scale parameters by
considering the ratio of the estimates of the scale parameters. We here extend this
technique to test the homogeneity of L (22) scale parameters. In terms of the estimates
of the exponential scale paraméters, the extremal scale parameter ratio statistic (EP) is

given by
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Max {8} Max (9, }

EP = 1SiL _ lsisl (43.4)
Min (8} Min (8, )
1isL 1sesL

For L =2 and 1, = 1 = 1, the distribution of EP is truncated F((2r-2),(2r-2)} and the
critical values can be obtained explicitly as discussed in chapter 3. Since 2 S/6; ~ xz(.?ri-
2), for L = 2, under the null hypothesis Hy the ratio

F, = [S;(r-DVIS,(ry-1} = 8,0, ~ F((2ry-2).(2r5-2)).

An appropriate two sided test based on the statistic EP is to reject Hy if either F; S F.
nrm((Zrl-2),(21'2-2)) orF 2 Fm((Zrl-?.},(Zrz-Z)), where Fy(vy,vy) denotes the upper oth
quantile of the F distribution with degrees of freedom vy and v,. For L > 2, the
distribution of EP is not known and the percentage points need to be evaluated by Monte
Carlo simulations.

435 C(o) Statistic (CM)

In this section, we derive a C(c) statistic from the marginal likelihood /;, given
in section 4.2.2. Suppose that the altemative hypothesis is defined by 6, = O+¢,i=
1,....L with ¢; = 0. Then testing the null hypothesis Hy is equivalent to testing Hy: ¢; =
0, i = 1,...,(L-1). After reparametrizing the scale parameters, the log marginal likelihood

functon [ can be given as

L

S.
.= - .—1 l +{.} + _...__l .
ok [(r‘ )08 G1®0 <e+¢;>]

i=1

Define ¢ = (¢1,---0 1) We obtain, for i = 1,..., (L-1),
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ol S. 1 ol -
¥ = — IR ), and N = 2 -5 KD
%, 6 O Bl & 8

The variance- covariance of Y = (Y. ;)" is obtained as G - ab™'a’, where the (L,j)th

(ij = 1,...,(L-1)) element of G is

=1
e o, (r‘z ), i=j
g;" = - = e ’
4 a¢1361 -0 0 , i¢j

with
04l -1
al'—'E —_..a'am =(r‘2)
\ 09 Lo 6;
and
2
p=g|-Tm| |- &L
36 |oug 6?

Replacing 6 by ém , the maximum marginal likelihood estimator of § which is root-n

consistent and after some simplification we obtain the C(ct) statistic CM as

L
M =y G-ablaN Ty =} ['gi‘" (r;—l)}zl(r‘--l) .
= | 0,

Since 8, = S/(r;-1), i = 1,...,.L, the quantity CM can be written as

81



)

8, -0

m m

L
M=% -} Z 21|,
il ¢

m

which is approximately distributed as chi- square with (L-1) degrees of freedom.

4.4 SIMULATION STUDY

The performance of the statistics LR, ML, MB, EP and CM in terms of size and
power, has been examined by conducting a simulation experiment, The samples from the
two parameter exponential distribution were generated using iIMSL (1987) subroutine
RNEXP. Simulations were conducted for L = 2, 5 taking nominal levels o = 0.01, 0.05
and 0.10 with various combinations of (n,r), where n and r represent, respectively, the
sample size and the number of failures in the sample. Without loss of generality we chose
n = (1, Bp) =(0.0,04) for L =2 and p = (,-..p5) = (0.0,0.2,0.4,0.6,0.8) for L =5 and
the common true parameter 6 = 1.0. Each experiment, for computing empirical sizes, was
based on 2,000 replications. The results are reported in Tables 4.1 and 4.2. For L =2,the
empirical level of the statistic EP was based on the distribution of the statistic F, =
8, /8, Since the asymptotic distribution of the statistic EP is naknown when L > 2, it
is not included in Table 4.2 for L. = 5.

For the comparison of power performance of the all five statistics, a simulation
study was conducted for L =2, 5; o = 0.01, 0.05, 0.10 and the same combinations of
(n.1) presented in Tables 4.1 and 4.2. We computed the critical values from the empirical

distribution of the foregoing statistics based on 10,000 replications. These critical values
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were then used in the power study. In this case, each experiment was based on 2,000
replications. The results of this study are reported in Tables 4.3 through 4.8.
Results

From Tables 4.1 and 4.2, it is evident that the statistic LR is often too liberal. For
L = 2, the statistic CM holds the significance level reasonably well, although in some
situations it is liberal for & = 0.10 and conservative for & = 0.01. As L increases (for
example, for L = 5) this statistic shows some severe anti-conservative behaviour. The
statistics ML and MB hold the nominal level well in all situations. For L = 2, the
empirical size of the statistic EP based on F distribution is reasonably close to the
nominal level. Note that two times the standard error of the probabilities reported is
approximately 0.005, 0.010 and 0.013 respectively for o = 0.01, 0.05 and 0.10.

From Tables 4.3 to 4.5, we can see that for L =2, and 1y =1, all five statistics
LR, ML, MB, EP and CM have similar power even under heavy censoring. Forr; > 1,
and 6, < 8, the statistic CM is most powerful and the power of the other statistics ML,
MB and EP is closer to that of CM. For 1, <1, and 8; < 6, the statistic LR is most
powerful and the next best statistics are ML and MB. These behaviours are observed at
all levels of o presented in Tables 4.3 to 4.5. In the case of L = 5, Tables 4.6 through 4.8
show that for r; = .... = Ts, the power of the statistic CM is always smaller than those of
the other statistics. In the situations where 6;’s and 1;’s are increasing, the statistics ML
and MB provide better power and in the situations where decreasing r;’s are associated
with increasing ©.’s, the statistic EP is the most powerful.

Note that the comparative performance of the statistics does not seem to depend
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on sample size configurations. Overall, the C(a) statistic shows anti- conservative
behaviour and based on empirically computed critical values, this statistic does not show
power advantage over other statistics. Based on empirically calculated percentage points
the statistic EP is the most powerful in only one particular sample size and 6;’s values
configuration. However, its null distribution is not known, so it is difficult to be used in
practice. The performance of the statistics ML and MB are similar and they hold
significance level well. However, the statistic ML is slightly liberal in very small sample
size situations. Thus we recommend the statistic MB for use in practice in all situations

based on its asymptotic null distribution as chi- squared with (L-1) degrees of freedom.

4.5 EXAMPLES
Example 1: The data in this example are from Pemg (1978). Two processes for
manufacturing a certain type of electronic components are to be used. Fifteen components
from each: process were cn test and the number of failures in cach process are defined as
12. The data are (in thousands of hours):
L 0.044, 0.134, 0.142, 0.158, 0.216, 0.625, 0.649, 0.658, 1.062, 1.140, 1.159,
1.238
. 0.060, 0.174, ©.237, 0.272, 0.335, 0.391, 0.670, 0.902, 1.543, 1.615,2.013,
2.309.
The value of the statistic MB is 1.208 with p-value 0.272 which shows no evidence
against the hypothesis of common scale parameters. The same conclusion is also reached

by the other statistics, namely CM = 1.311 with p-value 0.252 and EP = 1.610 with p-
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value 0.277.

Example 2: The following example is taken from Singh (1985). The data are on
jmervals between failures (in hours) of the air-conditioning systems of a fleet of 13
Boeing 720 jet airplanes. In the following, we tes: the equality of three exponential scale
parameters based on three random samples of sizes 27, 22, and 25. The first 15 ordered
observations in each case are given below.

I 1, 4,11, 16, 18, 24, 31, 39, 46, 51, 54, 63, 68, 77, 80

II. 3,5, 13, 14, 15, 22, 23, 30, 36, 39, 44, 46, 50, 72, 88
III. 10, 14, 20, 23, 24, 25, 26, 29, 44, 49, 56, 59, 60, 61, 62.
The value of the statistic MB is 1.827 with p-value = 0.401 which indicates very litde
evidence against the hypothesis of equality of the scale parameters. This conclusion is
also reached by the other statistics CM = 2.104 with p-value = 0.349 and EP = 1.627 with

p-value = 0.408.
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Tabls 4.1: Empirical level (%) of the test statistics LR, ML, MB.EP and CM based on 2000 replications for both

complete and Type 11 censored samples. For L = 2; p = (0.0,0.4); common 6 = 1.0.

a

Tests N} Tl 10.0 50 1.0
LR 5.5.5.5 15.85 9.55 295
ML 14.40 6.40 1.15
MB 1¢.50 525 G0
EP 1050 530 090
CcM 1290 620 030
LR 10,10,10,10 1135 530 1.45
ML 895 435 1.05
MB 8.05 4.05 1.00
EP 8.05 4.05 1.00
M 9.75 4.40 0.80
LR 10,7,10,7 1295 715 1.58
ML 10.10 535 0.65
MB 9.55 495 045
EP 9.55 495 045
CM 10.80 535 035
LR 10,5,10,5 1450 8.65 240
ML 1025 6.00 130
MB 9.55 525 1.15
EP 955 525 1.15
M 11.75 550 045
LR 20,20.20,20 10.75 505 1.15
ML 9.70 425 095
MR 935 415 0.85
EP 935 415 0.85
CM 9.85 425 0.85
LR 20,15,20,15 10.45 530 1.00
ML 9.75 4.65 0.75
MB 9.45 440 0.65
EP 9.45 4.40 0.65
cM 9.50 4.65 0.55
LR 20,10,20,10 11.75 6.25 1.20
ML 10.00 4385 0.75
MB 9.25 4.40 0.70
EP 925 4.40 0.70
M 1055 4.85 0.50
LR 205205 13.80 7.65 2.10
ML 9.15 5.00 1.05
MB 840 4.55 1.00
EP 8.40 455 1.00
M 10.80 490 030
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Tablc 4.1 continued

QREEL QR

10,10.20,20

10,7.29,15

10,520,106

20,20,10,10

20,15,10,7

20,10,10,5

20,10,10,10

30,10.20,10

30,15,20,10

1275
9.95
335
5.85

10.05

1250
10.65
595
9.60
10.75

13.85
995
8.80
9.50

1020

10.65
845

8.50
8.75

13.30
10.20

9.55
1030

13.60
1025
9.60
950
10.40
11.50
9.65
9.05
9.10
1030

12.40
1035
10.00
10.00
1110

1170
9.55
9.10

9.85

6.30
495
4.70
4.60
435

735
5.15
4.60
485
440

8.45
4.70
4.40
4.40
3.85

545
4.00
395
4.15
690

4380
455

125
0.80
035
0.60
0.65

150
0.85
0.70
0.75
0.30

2.15
1.00
0.80
050
0.20

105

0.65
0.75
0.35

1.75
0.85
0.80
0380
055

0.80
0.70
0.65
0.75

120
0.85
015
0.75
0.50

135

050

0.80
0.55

1.05
0.85

0.75
045



Table 4.2: Empirical level (%) of the test statstics LR, ML, MB and CM based on 2000 replications for both complete
and Type II censored samples. For L = 5; p = (0.0,0.2,0.4,0.6,0.8); common 6 = 1.0.

a
Tests T o N K 10.0 5.0 1.0
T aeDseTs

LR 55,5555 20.45 1230 4.00
ML 5.55.5 11.60 630 130
MB 1035 525 090
™ 14.00 795 245
LR 10,10,10,10,10,10 12.00 635 1.60
ML 10,10,10.10 8.90 4.55 0.50
MB 830 430 0.85
cM 10.65 5.80 1.20
LR 10,7.10,7,10,7 15.15 £.60 2.00
ML 10,2.10.7 9.15 4.65 0.85
MB 890 425 .75
M 1115 530 1.65
LR 10,5,105,10.5 20.10 1125 335
ML 105,105 10.40 5.00 0.95
MB 9.10 355 0.90
™ 14.10 6.95 2.10
LR 20,20,20,20,29,20 1050 6.15 135
ML 20,20,20,20 9.25 5.00 0.90
MB 9.20 495 0.80
cM 1050 5.70 1.10
LR 20,15.20,15,20,15 1245 6.15 1.15
ML 20,15,20,15 10.40 4.30 0.90
MB 9.80 4.60 0.50
CcM 11.65 510 1.15
LR 20,10,20,10,20,1C 1255 7.10 190
ML 20,10,20,10 9.40 4.90 1.10
MB 8.65 4,30 0395
M 10.50 530 130
LR 20,5,205.20.5 19.20 1185 345
ML 20,5205 1120 5.75 135
MB 9.20 4.85 115
cM 14.85 785 1.90
LR 10,10,10,10,10,10 13.75 6.80 195
ML 20,20220,20 1020 5.10 1.50
MB 9.65 4.70 1.40
™ 1195 590 1.50



Table 4.2 continued

LR 10,7,10,7,10,7
ML 20,15,20,15

MB

CM

LR 105,105,105
ML 20,1020,10

MB

M

LR 20.20,20,20,20.20
ML 10,10,10.10

MB

cM

LR 20,15,20,15,20,15
ML 10,7,10.7

MB

M

LR 20,10,20,10,20,10
ML 105,105

MB

cM

LR 20,10,20,10,20,10
ML 10,10,10,10

MB

M

LR 30,10.25,10,20,10
ML 15,10,10,10

MB

CM

LR 30,20,25,20,20,15
ML 15,10,10.5

MB

M

1535
9.60
8.90

1120

1825
1025

9.05
1275

12.65
9.80
9.45

10.60

14.15
10.15

9.65
11.10

18.10
10.10

9.10
1L15

13.60
9.45
895

11.10

1350
9.80
9.05

12.10

1575
1035

9.75
11.00

8.10
530
485
555
11.00

4.70
650

720
5.40
5.00
550

8.15
520
485
555

9.85
535
4.65
620

730
485
440
585

1.65
530
4.80
6.10

9.06
475
450
535

220
125
120
155

335
120
1.05
175
145
0.85
1.15

050
0.35
Lo

1.80

0.75
150

210

055
110



Table 4 3: Empirical power (%) of the statistics LR, ML, MB, EP and CM cormresponding to nominal size ¢ = 0.01;
cyiticu] values based on 10,000 replications; power based on 2000 replications. L = 2.

(6,5,)
Tests RN (D (1.1.5) (1.2.0) (1.2.5)
LR 555.5 1.00 195 445 .45
ML 1.00 195 445 745
MB 1.00 195 345 745
EP 095 175 430 6.85
cM 1.00 195 445 745
LR 10.10,10,10 1.05 375 1165 23.20
ML 1.05 3.5 11.65 20
MB 1.05 3.75 11.65 2320
EP 1.0 3.15 1055 2055
cM 1.05 375 11.65 23.20
LR 10,7,10.7 0.65 3.05 745 1325
ML 0.65 3.05 745 1325
MB 0.65 3.05 745 1325
EP 0.75 3.00 715 12.70
cM 065 3.05 745 1325
LR 105.10.5 115 150 3.90 7.05
ML 115 150 3.90 7.65
MB LIS 190 3.90 705
EP 115 1.90 3.90 7.05
cM 115 190 3.90 17.05
LR 20,20.20,20 110 9.45 32.80 61.00
ML 110 9.45 32.80 61,00
MB 1.10 9.45 32.80 61.00
EP 1.00 825 29.80 58.25
cM 1.10 9.45 32.80 61.05
LR 20,15.20,15 0.80 5.85 2095 4330
ML 085 585 2095 4339
MB 085 5.85 2095 4330
EP 085 635 22.80 45.00
cM 0.80 585 2095 4330
LR 20,10,20,10 0.20 3.75 12.05 24.65
ML 0.85 3.75 12.05 24.65
MB 0.85 335 12.05 24.65
EP 0.80 3.0 12.05 24.75
cM 085 375 12.05 24.65
LR 20,5.20.5 1.00 205 435 7.20
ML 100 2.0 435 7.20
MB 1.00 205 435 7.20
EP 1.0 215 450 735
cM 1.00 205 435 7.20



Table 4.3 continued

LR
ML
MB
EP
M

LR
ML
MB
EP
CcM

LR
ML
MB
EP
cM

LR
ML
MB
EP
CcM

LR
ML
MB
EP
cM

LR
ML
MB
EP
™M

2BEEL

QRFEL 2REEL

10.10,20,20

10,7.20,15

10,5.20,10

20.20.10,10

20,15,10.7

20,10,10.5

20,10,13,10

30,10,20,10

30,15,20,10

0.70
095
0.95
1.00
095

095
0.85
0.85
0.80
0.85

0.85
0.75
0.75
0.65
0.70

0.80
0.80
0.30
0.70

090
0.80
0.80
0.80

0.65
0.70
0.70
0.30
1.10

090
0.90
050
1.00
0.50

0.75
0.75
0.75
0.75
0.30
0950
0.85
0.35

1.00
1.0G

9N

6.10

525
425
345

425
3355
355
285
125

375
5.80
5.80
6.35
7.60

4.10
4.10

390
390

335
350

350
390
390
4.10
390

425
4.5
4.75
6.10
6.70

17.70
15.25
1525
14.00
1255

1045
8.90¢
8.90

4.40

1425
16.10

435
7.70
7.70
9.20
13.05

13.05
13.05
13.05
12.60
13.05

11.00
11.00
11.00
1135
11.00

1550
1750
1750
19.80
2175

8.00

23.00
2370
23.00

31.75
3450
34.50
3735
3930



Table 4,4: Empirical power (%) of the statistics LR, ML, MB, EP and CM correspordding 10 nominal size & = 0.05;
critical valves based on 10,000 replications; power based on 2000 replications. L = 2.

()

Tests BTy Ty (L1 (11.5) (1.2.0) (1,25)
LR 555.5 5.05 795 1450 2145
ML 5.00 795 1450 21.45
MB 5.00 795 1456 2145
EP 5.05 795 14.50 21.45
cM 5.05 795 14.50 21.45
LR 10,10,10,10 445 1290 29.70 48.85
ML 4.40 1250 29.70 48.85
MB .40 1290 29.70 48.80
EP 445 12.85 29.45 48.65
cM 445 1250 29.70 48.85
LR 10,7107 5.15 .60 2020 3345
ML 515 9.60 2020 3345
MB 5.5 9.60 2020 33.45
EP 5.10 955 1995 3305
cM 5.15 9.60 2020 33.45
LR 105,10.5 520 8.25 13.45 20.90
ML 520 8.25 13.45 2090
MB 520 8.25 1350 2090
EP 520 8.10 1330 20.65
cM 520 825 13.45 2090
LR 20,20,20,20 415 22.90 57.05 7955
ML 415 22.90 5705 79.55
MB 415 2290 57.05 79.55
EP 4.10 22.70 57.00 7930
cM 415 2290 57.05 79.55
LR 20,15.20,15 4.40 16.75 4390 66.85
ML 4.40 16.75 4390 66.85
MB 440 1675 4390 66.85
EP 445 17.00 4425 6135
cM 440 16.75 4390 66.85
LR 20,10,20,10 470 1220 29.00 4635
ML 4.70 1220 29.00 4635
MB 4.70 1220 29.00 46.35
EP 4.60 12.00 28.60 46,10
cM 4.70 12.20 29.00 4635
LR 205.20,5 485 7.75 15.15 22.80
ML 4.85 7.80 15.15 22.80
MB 485 275 15.15 22.80
EP 4.80 1.70 1490 245
cM 485 7.75 1515 22.90



Table 4.4 continued

LR
ML
MB
EP
M

LR
ML
MB
EP
CcM

LR
ML
MB
EP
M

LR
ML
MB
EP
cM

10,10,20,20

10,7.20,15

10,5,20,10

20,20,10,10

20,15,10,7

20,10,10,5

20,10,10,10

30,10,20,10

30,15,20,10

4.70
5.00
5.00
4.80
4.80

4.70
450
4.50
4.40
4.45

435
4.50
450
430
435

4,40
435
435
4.25
430

450
455
4.55
4.65
4.50
4.85
4.90
450
4.50
495

4.55
4.55
455
450
4.55

555
555
555
550
555

4.60
4.70
4.70
4.60
455

93

1825
15.10
15.10
14.05
1435

13.15
10.90
10.50
9.35
9.40

1135
955
9.55
8.15
8.40

13.10
16,60
16.60
1735
1755

9.85
1255
1255
1355
13.60

7.00
10.15
10.15
1050
11.40

13.75
13.75
13.75
13.95
13.75

13.60
13.60
13.60
14.15
13.60

13.45
15.05
15.05
1635
16.10

44.00
39.10
39.10
36.25
36.70

28.70
2425
24325
2135
2145

2055
17.10
17.10
14.60
14.95

3500
4190
4150
4335
43.65

2340
30.10
30.10
31.85
3225

14.60
2175
2175

2350

3030
30.30
3030
30.40
3030

31.05
31.05
31.05
3155
31.05

3340
3635
3635
3795
37.60

65.05
60.45
60.45
56.85
58.10

46,00
41.25
4125
3650
37.15

3190
27.10
27.10

23.80



Table 4.5: Empirical power (%) of the statistics LR, ML, MB, EP and CM correspording to nominal size o = 0.10;
critical values based on 10,000 replications; power based on 2000 replications. L = 2.

(), ta)

Tests T Ty (11) (1.1.5) (1.2.0) (1.2.5)

5555 10.00 14.05 2245 32.30
ML 10.00 14,05 2245 3230
MB 10.00 14.05 2245 32,30
EP 9.50 14.05 2225 32.15
cM 10.00 14.05 2245 3230
LR 10,10.10,10 9.55 2110 4325 61.15
ML 9.50 21.10 4325 61.15
ME 9.55 21.10 43.25 6l.15
EP 9.60 21.05 4320 61.15
CcM 9.50 21.10 43.25 6115
LR 10,7,10,7 9.90 16.80 32.05 46.80
ML 9.85 16.80 3205 46.80
MB 9.90 16.30 32.05 46.80
EP 9.85 1655 3150 46.45
cM 9.85 16.80 32.05 46.80
LR 10,5,10,5 9.70 13.85 23.20 34,65
ML 9.70 13.85 23.20 34.65
MB 9.70 1390 23.20 34.65
EP 9.75 13.60 2295 34.05
cM 9.70 1390 23.20 34.65
LR 20,20,20,20 9.55 3330 68.75 88.40
ML 9.55 3330 68.75 £8.40
MB 9.55 3330 68.75 §8.40
EP 9.40 31315 63.50 8830
M 9.55 3330 68,73 §8.40
LR 20,15,20,15 9.40 27.00 57.20 7780
ML 9.40 27.00 5720 7190
MB 9.40 21.00 5720 7190
EP 9.45 27.10 57.30 78.10
cM 9.40 27.00 57.20 7190
LR 20,10,20,10 9.95 20.95 41.00 59.90
ML 9.95 2095 41.00 59.90
MB 9.95 2095 41.00 5590
EP 10.15 20.85 40.70 59.60
CM 9.95 21.00 41.00 59.90
LR 20,5.20.5 8.90 1455 2395 3455
ML 8.90 14.55 2395 34.55
MB 8.50 14.55 2395 34.55
EP 5.05 14.05 2350 3390
M 890 1455 2395 34.55
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Table 4.5 continued

LR
ML
MB
EP
M

LR
ML
MB
EP
M

LR
ML
MB
EP
cM

LR
ML
MB
EP
cM

LR
ML
MB
EP
M

LR
ML
MB
EP
M

LR
ML
MB
EP

2

IRFEL 2RFES

10,10,20,20

10,7.20,15

10.5.20,10

20,20,10,10

20.15,10,7

20,10,105

20,10,10,10

30,10,20,10

30,15,20,10

10.05
9.65
9.65
9.50
9.70

9.40

1025
1025
1025
10.25
16.25

9.60
9.30
935
9.10
9.30

95

28.85
24.80
24.80
2230
25.10

2250
18.50
1850
17.10
18.50

18.50
1535
1535
1330
1535

2220
26.80
26.80
27.40
26.00

15.65
20.80
20.80
22.15
20.65

1245
17.45
17.45
19.55
1750

22.70
22.70
2270

22.70

5595
5235
5235
49.25
5245

4335
3795
3795
33.90
3795

3295
2730
27.30
23.60
2125
4150

5330
5330

52.80

34.65
41.85
41.85
4295
41.55

2325
3195
3195

31.95

42.00
4200
42.00
4125
42.00

43.45
4345
4345

43.45

4525
48.40
48.40
49.00
48.15

75.70
7135
7135
69.65
7225

61.60
55.00
55.00
5090
55.00

47.10
40.10
40.10
35.55
40.00

0/.85
1335
7335
73.80
72.80

5220
59.05
59.05
6035
55.00

3590
44.45
4445
47.80
4455

6190
61.85
61.96
61.15
61.90

6075
60.75
60.75
60.75
60.75

64.20
66.95
6695
67.80
66.85



Table 4.6: Empirical power (%) of the statistics LR, ML, MB, EP and CM comrespording 1o nominal size a = 0.01;
critical values based on 10,000 replications; power based on 2000 replications; L = 5.

(51.82.8,9,.85)
Tests mretiyty (WI21A1618)  (LI618222)  (12222426) (12426283)
Ty Ty Mg T
LR 555555 2.45 340 4.45 5.80
ML 5.5.5.5 245 340 445 5.80
MB 245 3.40 4.45 580
EP 2.30 3.15 440 5.35
CM 2.00 2.45 3.05 3.70
LR 10,10,10,10,10,10 4,75 8.40 13.80 20.85
ML 10,10,10,10 475 8.40 1380 20.85
MB 4.75 8.40 13.80 20.85
EP 4.05 8.45 1525 25.40
cM 4.60 6.10 7.80 9.65
LR 10,7,10,7,10,7 2.85 4.45 6.95 995
ML 10,7,10.7 285 445 6.95 9.95
MB 285 4.45 695 9.95
EP 270 4.85 17.80 12.80
cM 3.20 3.80 435 5.10
LR 10,5,10.5,10,5 1.95 2.55 3.80 5.05
ML 10.5,10,5 195 255 3.80 5.05
MB 1.95 2.55 3.80 5.05
EP 1.55 2.85 4.30 6.15
CcM 2.05 2.50 310 355
LR 20,20,20,20,20,20 13.85 2820 4835 69.45
ML 20,20,20,20 13.85 2820 48.35 69.45
MB 13.85 28.20 4835 69.45
EP 12.10 29.15 53.15 74,60
cM 13.15 18,75 29.80 43.45
LR 20,1520,15,20,15 850 18.45 31.75 48.00
ML 20,1520,15 8.90 18.45 31.75 43.00
MB 8.90 18.45 3175 48.00
EP 7.80 17.70 3470 5280
M 7.40 10.15 14.40 19.60
LR 20,10,20,10,20,10 4.70 8.45 15.45 23.65
ML 20,10,20,10 4.70 8.45 15.45 23,65
MB 4.70 8.45 1545 23.65
EP 4.05 8.10 16.45 23.65
cM 4.85 6.25 7.85 9.60
LR 20,5,20,5,20,5 2,00 250 3.40 490
ML 20,5205 2.00 2.50 3.40 4950
MB 200 2.50 340 4.90
EP 220 3.15 3.90 5.65
cM 245 2.45 280 3.20



Table 4.6 continued

LR
ML
MB
EP
cM

LR
ML
MB
EP
™

LR
ML
MB
EP
™

LR
ML
MB
EP
M

LR
ML
MB
EP
cM

LR
ML
MB
EP

™

LR
ML
MB
EP
M

LR
ML

RFER 288

10,10,10,10,10,10
20,20,20,20

10.7,10,7,10,7
20,15,20,15

10,5,10,5,10,5
20,10.20,10

20,20,20,20,20,20
10,10,10,10

20,15,20,15,20,15
10,7.10.7

20,10,20,10.20,10
105,10,5

20,10,20,10,20,10
16,10.10,10

30,10,25,10,20,10
15,10,10.10

30,20,25,20,20,15
15,10,10.5

8.50
6.55
6.55
6.05
5.50

5.40
3.85
3.85
3.55
3.00

430
2.65
2,65
2.85
1.40

6.80

8.60
3.10
1095

3.00
5.00
5.00
0.35
6.85

210
3.55
355
0.65
4,20

1330
1090
1090
1230

6.40

830

5.8
7.00
10

545
385
385
4.35
145

1850
21.65
2165

6.70
18.70

7.55
11.80
11.80

1.60
1030

4.65
6.80
6.80
1.00
555
9.40
9.40
5.40

835
725

8.45
8.45

295
6.10

9.70
16.70
16,70

0.55
1175

97

20.75
17.10
17.10
2210

7.75

1135
9.10
9.10

11.60
3.80

7.40
5.05

6.75
1.70

38.60
4350
4350
16.80
29.40

17.40
2220

415
1495

8.65
12.65
12.65

1.60

1.65

1525
1525
15.25
16.45

850

1450
14.50
1450
15.70

730

2430
33.75
3335

0.80
21.10

29.15
2535
2535
33.60

9.60

15.85
1245
125¢
17.55

4.35

13.80
19.85
19.85

285

9.65
22.60
22.60
2.60
27.00
1070

2235
2235
235
24.15

9.15

43.70
54.70
54.70

155
3285



Table 4.7: Empirical power (%) of the statistics LR, ML, MB, EP and €M comesponding to nominal size a = 0.05;
critical values based on 10,000 replications; power hased on 2000 replications; L = 3.

(91.62,5.89,.85)

Tests T Ta iyt (L12141618) (L1618222) (12222426) (1.2426283)
Ny Tylige Ty

LR 555,555 38.75 10.70 14.25 1750
ML 55.5.5 8.75 10.70 14.25 17.50
MB 8.75 10.70 14.25 17.50
EP 7.80 9.90 13.85 1830
™ 9.00 9.80 11.05 1240
LR 10,10,10,10,10,10 14,50 2150 3270 4525
ML 10,10,10,10 14.50 2190 32.70 4530
MB 14.50 2150 3230 45.25
EP 13.70 23.00 36.25 49.15
CcM 14.15 1795 23.60 2930
LR 10,7,10,7,10,7 11.90 17.15 2320 30.00
ML 10,7.10,7 1190 17.15 23,20 30.00
MB 11.90 17.15 2320 30.00
EP 10.65 1675 23.65 150
cM 10.95 1335 1630 19.65
LR 10,5,10,5,10,5 8.70 11.45 15.50 19.00
ML 10,5105 8.70 11.45 1550 19.00
MB 8.70 11.45 15.50 19.00
EP 8.40 1135 14.30 19.95
cM 8.25 9.55 11.05 1230
LR 20,20,20,20,20,20 32.00 5290 74.10 8855
ML 20,20,20,20 32.00 5290 7410 8855
MB 32.00 5250 74.30 88.55
EP 30.15 $3.75 77.55 50.55
M 30.15 45.60 62.60 T30
LR 20,15,20,15,20,15 23.15 3855 57.70 .70
ML 20,15,20,15 2320 3855 51.70 73.70
MB 2320 3855 57.70 73.70
EP 2210 40.75 60.75 77.15
CcM 23.05 3195 44.55 §7.15
LR 20,10,20,10,20,10 16.50 2545 36.60 49.15
ML 20,10,20,10 16.50 25.45 36.60 45.15
MB 16.50 25.45 36.60 49,15
EP 14.05 23.80 36.80 5050
CcM 16.00 20.50 26,60 3330
LR 20,5,20,5205 9.10 11.50 15.45 19.20
ML 20,5205 Q.10 1150 1545 19.20
MB 9.10 11.50 15.45 19.20
EP 8.05 10.50 14.40 19.70
M 9.05 11,10 12.55 1445
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Table 4.7 continued

LR
ML
MB
EP
cM

LR
ML
MB
EP
cM

LR
ML
MB
EP
cM

LR
ML
MB
EP

cM

LR
ML
MB
EP
cM

LR
ML
MB
EP
cM

LR
ML
MB
EP
™

LR
ML
MB
EP

CcM

LR
ML
MB
EP
CcM

10,10,10,10,10,10
20,20,20,20

10,2,10,7,10,7
20,15,20,15

10,5,10,5,105
20,10.20,10

20,20,20,20,20.20
10,10,10,10

20,1520,15,20,15
10,7,10,7

20,10,20,10,20,10
10,5,10,5

20,10.20,10,20,10
10,20,10,10

30,10,25,14,20,10
15,10,10,10

30.20,25,20,20,15
15,10,10,5

24.80
20,40
20.40
19.90
18.05

1745
1435
1435
14.65
13.05

1350
10.60
10.60
1130
10.60

20.40
2425
2425
12.25
2520

13.05
16.80
16.80

755
18.75

9.05
1240
12.40

4.65
13.00

17.00
17.00
17.00
14.75
15.70

15.70
15.70
15.70
14.60
15.80

12.05
19.25
19.25

3.55
20.20

34.40
29.80
29.80
32.60
2250

23.70
20.15
20.15
2155
15.05

17.50
1265
12.65
16.05
11.60

40.45
4720
4720
26.15
40.50

24.60
31.70
31.70
12.60
28.85

14.50
19.70
19.70

6.50
17.60

2435
2435
2435
2385
19.70

23.40
23.40
2355
2025
28.05
37.95
37.95

6.35
34.45

46.40
41.05
41.05
48.05
28.65

31.65
2695
2695
3170
17.45

200
17.65
17.65
21.05
1295

64,75
69.00
69.00
48.40
59.35

43.40
51.15
5115
2735
4145

2430
3125
3125
1135
23.65

3705
3705
3105
3785
2585

34.10
34.10
34.10
36.70
2540

50.60
61.20
61.20
12.15
5210



Table 4.8: Empirical powe. (%) of the statistics LR, ML, MB, EP and CM corresponding 10 nominal size a = 0.10;
critical values based on 10,000 replications: power based on 2000 replications; L = 5.

{B1.5,0,,6,.85)

Tests 171 T TauTly Ty (112141618 (11618222 (1.2222426) (1,2426283)
Ny T4ullseTs

LR 555555 15.05 19.15 24.70 30.10
ML 5555 15.05 19.15 2470 30.10
MB 15.05 19.15 2470 30.10
EP 14.45 18.60 2455 3095
M 15.25 1730 20.25 23.20
LR 10,10,10,10,10,10 2375 3395 4745 60.45
ML 10,10,10,10 23.35 3395 4145 60.45
MB 2335 3395 47.45 60.45
EP 2285 34.65 48,65 62.60
cM 23.90 3115 3895 47.05
LR 10,7.10,7,10,7 1955 2550 33.20 43.25
ML 10,7.16,7 1955 2550 3320 4330
MB 1955 2550 3320 43.30
EP 19.10 2575 34.15 44.40
M 18,70 2345 21.85 3310
LR 10,5,10,5,10,5 1590 19.70 24.60 30.75
ML 10,5,10,5 1590 19.70 24,60 3035
MB 1550 19.70 24.60 30.75
EP 1590 1%.80 25.55 3250
ol 15.15 17.85 2030 23.05
LR 20.20,20,20,20,20 4530 6725 84.75 93.55
ML 20,20.20,20 4530 67.35 84.75 93.55
MB 4530 6735 84.75 93.55
EP 4295 66.70 85.75 9430
M 44.70 61.85 78.20 88.85
LR 20,15,20,15,20,15 35.15 5355 .55 83.70
ML 20,15,20,15 35.15 53.55 71355 83.70
MB 35.15 53.55 .55 83.70
EP 3265 54.05 73.60 86.10
™ 35.00 4830 62.10 74.45
LR 20,10,20,10,20,10 26.85 38.05 50.70 64.05
ML 20,10,20,10 26.85 38.05 50.70 64.05
MB 26.85 38.05 50.70 64.05
EP 25.00 36.80 5120 6735
M 26.85 3375 4220 51.00
LR 20,5,20,5,20,5 1635 20,70 25.75 31.85
ML 20,5205 16.35 20.70 2535 31.85
MB 1635 20.70 25.75 3185
EP 1470 18,75 2520 31.80
M 16.40 19.25 21.55 24.60
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Table 4.8 continucd

LR 10,10,10,10,10,10 36.00 46.90 58.80 7125
ML 20,20,20,20 3150 41.95 5425 67.55
MB 3150 4195 5425 67355
EP 31.60 4550 61.95 7555
CM 30.20 3695 4495 5255
LR 10,7,10,7,10,7 29.10 3695 4550 55.15
ML 20,1520,15 23.65 30.85 40.00 50.15
MB 23.65 30.85 40.00 50.15
EP 24.90 3465 47.00 5875
cM 2225 26.40 3090 3530
LR 105,10,5,10,5 .15 27.80 33.50 4025
ML 20.10,20,10 1935 2335 28,65 3550
MB 1935 2335 28,85 3550
EP 20.10 2590 3430 42.15
CcM 18.40 19.85 2245 24.80
LR 20,20,20,20,20,20 30.70 54.65 76.45 §9.40
ML 10,10,10,1¢ 35.70 59.60 7995 9150
MB 35.70 59.60 7995 9150
EP 2255 4335 65.40 81.80
M 35.60 5495 7335 8550
LR 20,15,20,15,20,15 2290 3835 58.70 73.60
ML 10,7,10,7 28.00 46.00 64.65 78.10
MB 28.00 46.00 64.65 78.10
EP 16.10 25.45 42.00 5855
CcM 2830 41.70 5130 6950
LR 20,10,20,10,20,10 1585 24.55 3745 5055
ML 105,105 2120 30.85 4525 58.75
MB 2120 3035 45.25 58.80
EP 1075 16,10 325 3325
CM 21.10 28.55 37.85 4820
LR 20,10,20,10,20,10 25.70 36.80 5135 64.60
ML 10,10,10,10 25.70 36.80 5135 64.60
MB 25.70 36.80 5135 64.60
EP 24.60 3750 5240 67.40
M 25.00 33.05 41.80 5135
LR 30,10,25,10,20,10 2525 3590 48.75 62.95
ML 15,10,10,10 2525 3590 48.75 6295
MB 2525 3590 48.75 6290
EP 2405 3590 50.60 6550
CcM 24.55 3035 3530 48.60
LR 30,20.25,20,20,15 20,10 39.80 63.60 8135
ML 15,10,10,5 28.40 50.00 72.70 8125
MB 28.40 50.00 7270 8125
EP 9.80 16.65 29.30 44.00
cM 3035 46.80 6735 8255
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CHAPTER 5

TESTING HYPOTHESES FOR MULTIPLE SAMPLES FROM
TWO PARAMETER EXTREME VALUE DISTRIBUTIONS

5.1 INTRODUCTION

In the previous two chapters, we developed and studied procedures for testing the
equality of several scale parameters based on samples from the two parameter gamma and
exponential distributions. In this chapter we deal with testing the equality of several scale
parameters in presence of a common shape parameter for failure censored samples from
Weibull distributions having pdf (2.13.4). Equivalently and more conveniently we deai
with testing the equality of several location parameters in the presence of common scale

parameter for type II censored samples from extreme value distributions with pdf as in

(2.13.5)

by = L Xou)_exp X% 5.1.1
FX; wb) bcxp{(b) cxp(b)} (5.1.0)

where u and b are the location and scale parameters respectively. The Weibull distribution
is one of the most widely used distributions, particularly in the fields of engineering,
manufacturing, acronautics and bio-medical sciences. Various problems associated with
both the Weibull and the extreme value distributions have been considered by many
authors, among whom are Cohen (1965), Harter and Moore (1965, 1967), Kimball (1946),
Engelhardt and Bain (1973, 1974, 1977, 1981) and McCool (1979, 1982). Many of the
available results about these distributions are reviewed by Lawless (1982), Nelson (1982)

and Mann, Schefer and Singpurwalla (1974). As we described in chapter 2, since u and
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b are location- scale parameters, it is easier to work with the extreme value distribution
given by (5.1.1).

In the statistical literature, many estimators have been proposed for the extreme
value location- scale parameters based on failure censored data. For example, best linear
unbiased estimators for these parameters arc developed by Lieblein and Zelen (1956); best
linear invariant estimators are considered by Mann (1967) and Mann and Fertig (1973).
For the computation of these estimators, the necessary coefficients are tabulated by Mann
(1967) for samples of size up to 25. Another set of estimators called the simple linear
estimators are proposed by Bain (1972) and modified by Engelhardt and Bain (1973,
1974). One of the most reliable estimators is the maximum likelihood estimator (MLE)
because of its desirable properties such as consistency, asymptotic normality and
asymptotic efficiency. It is applicable to most statistical models and to most types of data.
The maximum likelihood estimators of the parameters of the Weibull or extreme value
distributions are not easily obtained since they usually involve the numerical solutions of
a system of non- linear equations. However, routines for solving such non- linear
equations are readily available in subroutine libraries such as IMSL and NAG.

Often lifetime data are collected in the form of maltiple samples assumed to have
come from extreme value distribution with common scale parameter b ( or equivalently
from Weibull distribution with common shape parameter f ) (Nelson, 1970). This
situation is analogous to assuming common variance in normal theory analysis of
variance. If the scale parameters can be assumed equal then the test of equality of location

parameters ( or equivalently testing homogeneity of the Weibull scale parameters ) is
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equivalent to testing the equality of reliabilities at a certain time. This can be seen from
the definition of reliability function given in section 2.13.3. Lawless (1982) proposed 3
likelihood ratio test statistic for testing the equality of several location parameters in the
presence of a common scale parameter b, McCool (1979, 1982) derived a statistic,
namely, the shape parameter ratio statistic, which is based on the ratio of the two
maximum likelihood estimators of the scale parameters with and without assuming
different location parameters across the populations, and compared with the likelihood
ratio statistic. Nelson (1982) proposed a general purpose quadratic test of homogeneity.
In various situations we found that this statistic is very anti- conservative. So, we do not
consider it here or elsewhere. For testing the above hypothesis, we derive a C(o) statistic
and conduct extensive Monte Carlo studies to examine the behaviour of this statistic and
the statistics proposed by Lawless (1982) and McCool (1979, 1980), in terms of size and
power.

The above three test procedures have been developed with the assumption of
common scale parameter b. It may be of concemn to test whether the assumption of a
common b is valid. For this purpose, Lawless and Mann (1976) proposed a modified
likelihood ratio statistic ( Bartleit’s statistic ) and a marginal likelihood ratio statistic.
McCool (1979) derived an extremal scale parameter ratio statistic whose null distribution
depends only on the sample size (n), the number of failures (r) and the number of groups
(L). In this case, we derive a C{(0v) statistic and then compare the performance of all these
statistics in terms of size and power by conducting a simulation study.

In section 5.2, we describe and develop estimators of the parameters under
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different null and altemative hypotheses to be tested in sections 5.3 and 5.6. Secton 5.3
presents the procedures for the tests of homogeneity of location parameters in the
presence of common scale parameter b, and section 5.4 presents the simulation study and
results. An adjustment to the C(c) statistic, to hold the nominal level, is developed and
validated in section 5.5. Section 5.6 studies the procedures for testing the assumption of
common scale parameter and section 5.7 reports the simulaton study and results. Two
examples are given in section 5.8. Expected mixed partial derivatives for the derivation

of the C(cr) statistics are given in section 5.9.

5.2 ESTIMATION
5.2.1 Maximum Likelihood Estimation

Consider L samples from Weibull distributions with parameters (01,81),....(0¢,Bp)
or equivalently L samples from extreme value distributions with parameters
(up,by)ses(ug,by). Let t; or X, (= log ) denote the jth ordered observation in a sample
of size n; drawn from the ith population. It is assumed that n; items from the ith
population are tested until the rth item has failed (r; Sn, i=1,..,L ). Thus, if r; =,
i = 1,...,L, we deal with complete samples. For testing the hypothesis of equality of the
extreme value location parameters with common scale parameter b, the competing
hypotheses are

Hy uy=..=y (=u)
and

H;:  notall y’s are equal for all b > 0.
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This is equivalent to testing the equality of Weibull scale parameters in the presence of
a common shape parameter B; that is

Hy: o=..=0¢ (=)
and

H,": notall o’s are equal for all § > 0.
For testing the hypothesis of equality of the extreme value scale parameters in the
presence of unspecified location parameters, the competing hypotheses are

H;: by =..=b (=b), uy,...,u are unspecified and possibly not equal
and

H,: not all b;’s are equal, uy,...,u are unspecified and possibly not equal.
This is equivalent to testing the equality of Weibull shape parameters in the presence of
unspecified scale parameters ¢y,...,0% ; that is

H" By=-.=B.(=B)
and

H,: not all B;’s are equal, a;,...,0y are unspecified.

For convenience, derivations and results presented in this chapter are based on
extreme value distributions.
Denote u = (uy,...,uy)’ and b = (by,....by )". From section 2.12.1, the log likelihood function
L(u,b) of a random sample { Xij }, j = 1,....x;, from the distribution with pdf (5.1.1) is,

apart from a constant term, given by
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X..-u.

! _L_ L Xy~ | e ij i
(u,by = Y. ) - r; log b; +y > Yo" exp = \

(5.2.1)

i i j=1 i
r
where we use the notation Y *W; =3 W;+ (n-r) W, , for a  sequence

J=l J=1

Wi W; o 1= 1,..,.L, as stated in chapter 4.

Under the hypothests H,, for i = 1,...,L,, soluton of the likelihood egquations 9i/ob; = 0
and 9i/dy; = 0 yields the maximum likelihood estimates b, and ; of b; and u; respectively.

Now,

ol 1 . Xij~u;
—_— = - ex .

and

LD =T X.—U- X.—u.
a1 r+ Y i -y i exp i
ab‘- b" !.1 bl' j-] b" bi

It is easily seen that d//oy; = O implies

X.. ) P
exp(d) = [ri Y exp (?'. J} .

Substituting the expression for §; into 9//db; = 0, we obtain
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j=1 R

X..
- X;; exp —
b -—
X i i
> exp | oL
Jj=1 b.

4

where )_(, =2 Xiftp i = Lot i= Lol The equation (5.2.2) involves only b; and thus
it can be solved for Bi. Once b, is obtained, the MLE §; of u;, again under Hy, is

- X..
g; = b; log l:l 2" exp [.T"J] . (5.2.3)
ry = b,

[

Under the hypothesis H,, the log likelihood function (5.2.1) reduces to

= - | X X~y 2.
Kby =] -rylog b+ 3 |28 |- 3 exp |0 (52.4)
=1 M b 1 b

Differentiating and equating partial derivatives d//du; and 9I/db to zero, we obtain

X..~u:
Zl exp[‘f u‘]_ri=0 , l.=1,...,L

L X.-u. X..~u, i X.-u,
Y1y (i exp i -y g -r;[=0.
e = W b b

As shown earlier, u,, i = 1,...,L, can be eliminated from the second equation 9//db = 0 to

give
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Lo | Y Xjexp X)) o

J=! -y X;-br;(=0.
§ Y oep X )

=

(8.2.5)

It is quite easy to solve the equation (5.2.5) iteratively for b, the MLE of b under H,.

Subsequentiy, @&, the MLE of u;, follows from the equation 9l/0y; = 0, 1 = 1,...L, as
r; =

4, = b log l:_l. Yo' oexp (X,-j /b ) ] (5.2.6)

Under the hypothesis Hy, the log likelihood function (5.2.1) becomes

L i x.- X.—

i=1 =1 jul

527

Differentiating the log likelihood function (5.2.7) with respect to u and b, and equating

partial derivatives dl/ou and 9//db to zero, we obtain the ML equations

L X.-u Xo~u| 5 |X.-u
> 21( Cha Y Gt B o) Cacd B R
L Jj= j=

On eliminating u from the second equation, we obtain the following equation, which can

be solved for b, the MLE of b, iteratively.
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L
Y XX, e (X8, )

M “% -5, =0,
Lo . e (5.2.8)
E 2 exp (X,-j /b, )
=1 jul
Wllcm 1 L 4 L
X__=§.EEX‘-J-; R=Er‘-
=1 j=1 i=1
From the equation dl/du = 0, &, the MLE of u follows as
. 1 ¢ X 529
a,=b,logy =Y Y exp| 2 |- (5.2.9)
R i T b,

5.2.2 Maximum Marginal Likelihood Estimation
Following the theory in section 2.8.2, the log marginal likelihood function L;(b)

for the scale parameter b, under H,, is given by

L X. 5.2.1
L@ =Y 1= (r;-Diog b; + T" - r;logl 3" exp(X; /b‘-) . (52.10)
i=l i =l

Differentiating the log marginal likelihood 1 (b) with respect to the parameters b; and

equating the partial derivatives dl/db; to zero we obtain , fori = 1,...L,

X
r; E‘ X;; exp {_b_’]
s L X, - (r-1)b; = 0. (5.2.11)
Srepli|
exp | —
=1 b;
Solutions of these equations yield the maximum marginal likelihood estimates (MMLE)
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b, for b;, i = 1,....L, under the hypothesis H,.

Under the hypothesis H;, the log marginal likelihood function reduces to

L X. X 5.2.12
[, =-Y10;-1)logd - (-tf) + r; log [E‘ CXP(—BZ)} . ( )

i=1 =1

The consequent maximum likelihood equation for b is

L |7 E' X;; exp ( X,/b)

21: > exp (X,/b)
=1

which can be solved iteratively for b, the maximum marginal likelihood estimate for b,

under the hypothesis H,.

5.3 TESTING EQUALITY OF SEVERAL LOCATION PARAMETERS IN
PRESENCE OF A COMMON SCALE PARAMETER b
5.3.1 Likelihood Ratio Statistic (LRu)

The hypothesis of interest is Hy u; = ... = uy and the alternative hypothesis H;:
not all u’s are equal. Using the maximum likelihood estimators of the parameters, under

H, and H,, given in section 5.2, the maximized log likelihood function J;, under H, is,

L Ti = .
L=Y1X "5 £l-r;logb

=l | jm=l

and, under that H is
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=1 | jml c

L |5 (x.-4 3
10=E E{ '15 ‘]-r,-logbc

Hence the log likelihood ratio statistic (LRu) is given by

L rl‘ --_.- oy ~ -
Lu=21% 2 {x.,-um }_ [ it ] - Rilog 55 ) | (5.3.1)
b

i=l j=l b ¢
where R= 2,1, i = 1,...,.L. Under the null hypothesis Hy, the distribution of the statistic
LRu is approximately distributed as chi-square with (L-1) degrees of freedom.
5.32 Shape Parameter Ratio Statistic (SP)

McCool (1979, 1982) proposed a statistic based on the ratio of the estimates of
the Weibull shape parameters under the altenative and the null hypotheses for testing the
equality of Weibull scale parameters in the presence of 2 common shape parameter. He
notes that under the null hypothesis of equal scale parameters the distribution of the ratio
of the estimators of the shape parameters is parameter free and hence it can be considered
a pivotal quantity. In terms of extreme value distribution scale parameters, the statistic
denoted by SP is
SP = b/b. (5.3.2)
Under the null hypothesis, the distribution of the statistic SP is parameter free and
therefore can be used as a test statistic for testing Hy. However, its distribution is
unknown and the critical values need to be evaluated empirically.

533 Cio) Statistic (CLu)

As in section 3.3.3, suppose that the alternative hypothesis H; is written as u; =
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u + ¢; with ¢, = 0. Then testing hypothesis H is equivalent to testing Hy: ¢; = 0 for all
i w th u and b weated as nuisance parameters. This reparametrization is more convenient
for the derivation of the C{cx) test.

Now, the log likelihood (5.2.4) in terms of ¢;, i =1,...,.L,uand b is

L i o= . ey % 3.
1=Y1-rilogb+y [X”:—IP'J"E' exp [Xu:‘st ’ (5.3.3)

inl j=1 j=1
Denote ¢ = ( §y,....0y_1)" and 3 = (8,,8,)" = (u,b)".
5.3.3.1 C(o) Statistic for Complete Samples

Based on the likelihood ! in (5.3.3), we obtain,

fori=1,..L,

H
R X
n
o] =
=
o
~
—
>
—
1
=
—_~
1
_=

Vi = =
oo =
L
ol ol 1 - X-u
‘rl‘- = = exp —N
‘aelnoau_obiz..l:,-% [b]
and

al al 1{e © Xi-u Xi-u
N A “1|-N1
- - A b§,§[z, “P T

Further, from section 5.9, we have
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b _E 32 i , 1<i=js@-1)
ij = - = :
aq’:aq’j =0
0 , 1gi#js(L-1
; . .
_ ,  J=l =l (-1}
2 b2
AI" = - E a l = [
! 9098; |, o n; (1~7)
,  J=2 =1, (LD
bz
and
N Y
-b—2 » .u' - J 1
NK .
B‘i’-I:_E _az_l_ =<__2 . J=J,=2
N(1- Y
| ;27) NS R

where K = 72/6 + (1-y)? and ¥ is the Euler’s constant.

Now, the nuisance parameters u and b in ;, Ty, Tip, Dy;, A;; and By are replaced by their
MLEs. Then, following the general theory in section 2.15.2, the C(c) statistic is

CLu =¥ V!, where V=D-AB!A"

After some simplification, we obtain the (i,))th element of V as
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Np.(l1-p.
Neilpd  cicjcwe
b2
v, =1
1
-Nop.p.
PR gy gisjseD
b2

where p;, = ny/N, i = 1,..,,L. After further simplification the C(a) statistic is obtained as

2
L ~y X..~0 5.34
CLu=zi Ecxp['{_ ]-—1 . 34
i=] B; | j=l b

which is asymptotically distributed as chi-square with (L-1) degrees of freedom.
5.3.3.2. C(a) Statistic for Censored Samples

For type 1 censored samples, we have

ai 1 - Xij-u
Y. = = exp =-Tr; ’
o, © );-.:1 [ b ] ‘
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=0
L r -
1 o | Xiu X;-u X;u
= exp -
s & {E[ : } ( ) H |

From section 5.9, we have fori = 1,...,(L-1),

r.

i . - . -
b -k 31 B 1<Si=js -1
] -TW ’ -
0 , 1Si#js@-D
r.
_‘5 . j=li=l.n(L-1)
4 - op| b
¥ a¢‘§ej I.
=0 LI Sy 13 WO ( 8
[ b2
and
R .
? . j=j’=1
L
oy ) J; s
Buy=-E 1Y =, j5=2
i 42
aejaejl =0 iul] b
L
Y = . ik
jml
where
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d.
=% |z log 1, + 2L
‘ §1 [J & 2‘-]

J

and

d. i d.
J.-=Zv (2+logtj){tjlog:j+ J]_E 2logtj—_;. -

j=l
New, the nuisance parameters o and b in ¥, M;, Ny, Py A;; and By are replaced by their
MLEs. Then, following section 2.16.2, the C(cx) statistic for censored samples is

CLu =V (D - AB'A) V. (5.3.5)

5.4 SIMULATION STUDY

A simulation study was conducted to compare the empirical size of the statistics
LRu and CLu whose asymptotic distribution is known as %%(L-1). The shape parameter
ratio statistic SP, which will be included in the power study, was not included here as its
asymptotic null distribution is not known. For each L, samples from extreme value
distribution were generated through IMSL (1982) subroutine GGWIB. Without ioss of
generality we chose u = 0.0 and b = 0.3. Simulations were performed for L = 2, 3 and
5 using nominal levels & = 0.10, 0.05 and 0.01. Each experiment was based on 2000
replications. The results are reported in Table 5.1 for various combinations of (n,r), which
represent the degree of censoring in each sample. To examine the power performance of
the statistics LRu, CLu and SP, we conducted a simulation study again for L = 2, 3, 5;

a = 0.10, 0.05, 0.01 and all combinations of (n,r) presented in Table 5.1. The results are

117



reported in Tables 5.2 through 5.10. From Table 5.1, we can see that the null distribution
¢ the staristics LRu and CLu vary widely unless the sample sizes are large. Also the
distribution of the statistic SP is not known. Therefore, to examine the power performance
of the statistics, we calculated critical values from the empirical distribution of all the
statistics, based on 10,000 replications. These critical values were then used in the power
study which was based on 2000 replications.

Results

Table 5.1 shows that the statisic LRu is too liberal for all nrL and «
combinations that we investigated. The performance of this statistic worsens as the
number of groups (L) and the percentage of censoring increases. The statistic CLu holds
nominal level reasonably well for & = 0.10, but it shows conservative behaviour with
decreasing ¢ and also with increasing percentage of censoring. Note that 2 times the
standard error of the probabilities based on o = 0.01, 0.05 and 0.10 are respectively,
0.005, 0.010 and 0.013. Empirical levels less than o - 2 standard error are termed as
conservative and those greater than ¢ + 2 standard error are termed as liberal.

From Tables 5.2 through 5.4, we can see that for fixed absolute values of (u,-u;),
power of all three statistics increases with decreasing b. However, if the absolute relative
value of (u,-u,)/b remains fixed then the power of the statistics remains unchanged as b
increases. Further, Tables 5.5 through 5.10 show that the power of all three statistics
decreases as percentage of censoring increases. In siations where ny = ... =n and r
=..=1,L =2,3,35, all three statistics have similar power. The statistic CLu is, in

general, most powerful, particularly in situations where ny > ... > n and by <... <bg.
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For situations n; < ... <ng and b; <... < by the power of the statistic CLu is found to be
less than that of the other statistics. In both situations, some of the ny’s (i = 1,...,L) may
be equal.

Overall, the statistic CLu is conservative for small sample size and for censored
sample situations. However, when all the tests maintain nominal level, CLu is never less
powerful than the others. So based on empirically computed critical values the statistic
CLu is preferable. In the next section we propose an adjusted C(a) statistic (ACLu),
which holds nominal level well and therefore will have same power properties as the CLu

based on empirical critical values.

5.5 IMPROVEMENT OF THE STATISTIC CLu TO MAINTAIN LEVEL

The asymptotic distribution of CLu is %3(L-1), which we observed to be
conservative for small samples. A common way to improve the performance is to adopt
a cx’(d) distribution for CLu. Such a distribution for a C(0) statistic showed improved
approximation in other situations; for example Dean and Lawless (1989). The constants
¢ and d are obtained by equating the first two moments of cx3(d) and CLu. Let M and
V be the mean and variance of CLu. Then ¢ = V/2M and d = 2 M%/V. Thus, the adjusted
CLu, denoted by ACLu, is given by ACLu = CLu/c ~ ¥Xd). It is difficult to obtain
analytic expressions for M and V. So, we conducted extensive simulations to find M and
V. For each L (L is the number of groups ), let N be the average sample size and R be
the average number of lifetimes. For various combinations of (L, N, R), M and V were

computed from the empirical distributions of CLu based on 2000 replications. We noticed
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that M varies only over L and N, but V varies over L, N and R. For each L (L = 2,..,10),
we obtained M and V empirically for 116 points (N, R) = (53)....(5.5)
(7,3),.,(7,1,(10,3),...,(10,10),(12,3),...,(12,12),(15,3),....(15,15),18,3).....(18,18),(20,3),...
.(20,20),(22,3),...,(22,22),(25,3),...,(25,25). We belicve the range of values of L, N and R
taken here is sufficient for practical applications.

By fitting polynomial regression model for M in terms of L, N and R, we found
a single equation which depends only on L and N, as

M = - 1.0133 + 0.9989 L +0.0022 N.
For V, no satisfactory single equation could be found which fit the 9x 116 = 1044 data
points well. So, we fitted a regression equation for each L. For better fit we retained, in
some cases, some terms even if they were insignificant. The equations forL = 2, ..., 10
are given in Table 5.11.

For fixed L, we take the average of the sample N and that of the lifetimes R and
then compute M and V from the equations given in Table 5.11. Using these values of M
and V, we calculate ¢ and d. If ACLu is greater than xz(d) then we reject the null
hypothesis Hy. Table 5.12 presents the empirical levels of the statistic ACLu for o = 0.10,
0.05,0.01; L =2, 3, 5, 10; and various combinations of (n,r). Each experiment was based
on 2000 replications.

At o = 0.01, the statistic ACLu shows some conservative behaviour for small
number of groups, small sample size and heavy censoring; otherwise it holds nominal

level well. Note that at & = 0.10, ACLu is slightly inflated for L = 2,3.
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5.6 TESTING EQUALITY OF SCALE PARAMETERS IN PRESENCE OF
UNSPECIFIED LOCATION PARAMETERS

In section 5.3 for testing equality of location parameters we assumed that the scale
parameters are the same across all the exweme value populations. However, this
assumption should be checked before testing the homogeneity of location parameters. For
this problem, the competing hypotheses are

Hi: by=..=b (=b)
against

H,: not all b;’s are equal, with unspecified uy,...,ug.
5.6.1 Likelihood Ratio Statistic (LRb)

Using the maximum likelihood estimators of the parameters under the hypotheses
H, and H, given in section 5.2, the maximized log likelihood function, under H,, is given

by

=l | j=l ;

L T X.-a, R
Iz=2 E{ :} ‘]"”elogbi

and under H;, the maximized log likelihood function is given by

L ]S [ x -a .

L=Y 1Y | 2L =< |-rlogh
inl | =l b

Thus, the log likelihood ratio statistic, as discussed in section 2.15.1, is given by

Under the null hypothesis H;, the distribution of the statistic LRb is approximately chi-

square with (L-1) degrees of freedom.
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LRb = 2 i i [Xs{--ﬁ,- ] ) [ Xij:ﬁic }] .r, log’_g] : (5.6.1)
iwl | jm J
5.62 Modified Likelihood Ratio Statistic (MB)

Lawless (1974) gave an approximation to the pdf of b/b in a complete single
sample situation where b is the MLE of b. The approximation, which was developed
empirically, is of the form g(b/b) ~ x*(h) for type I censored sample. The constants g =
g(r,n); h = h(r,n), where the first r lifetimes were observed from a sample of size n, are
obtained by simulation studies, and are tabulated for some combinations of (n,r) by
Lawless and Mann (1976) and Lawless (198Z). Based on this approximation, Lawless and
Mann (1976) developed a modified likelihood ratio statistic, using a Barden type
correction, which is given by

L g; b,
hlog b* - Y h;log % , (5.6.2)
i=1 i

MB =

1
»
where

1 [« 1 _1
.=h.+2;K‘=1+_ —_ = - |
§: = & 3C-D) gh‘. P

L L o b
h‘- =h(ri,n‘~); h = Z h", b- = _‘.h_.:..

=]l el

The statistic MB is also approximately distributed as xz(L-l). The constants h; for given
values of r; and n; are given in Table 4.1.2 of Lawless (1982).

5.63 Marginal Likelihood Ratio Statistic (ML)
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Lawless and Mann (1976) further studied a likelihood ratio statistic based on
marginal likelihood to test the homogeneity of the extreme value scale parameters. Using
the maximum marginal likelihood estimators of the scale parameters under H, and H,
presented in section (5.2), the maximum log marginal likelihood function, under the

hypothesis H,, is given by

. X; [ X;; i}
L =Y (= ~rlog LE exp (_5_.) - (r;-1) log b; |-

iw] i J‘l i

Under H,, the maximum log marginal likelihood function is given by

. LolXx X )
=Y _l;‘;-r‘.log[z:' cxp(_b_'-'.)}—(r‘-—l)logb .

i=l jel

Thus, the log marginal likelihood ratio statistic can be written as

[Xi. Xi} 2-: exp (Xi/b))
-r;lo J

ML = 2§L; (r-Dlog(bib) + |— - — -
iml b b g: exp (x;/b)
(5.6.3)
which is also approximately distributed as x2(L-1).
5.6.4 Extremal Scale Parameter Ratio Statistic (EP)
As discussed in previous chapters, the extremal scale parameter ratio statistic (EP),
in terms of the estimates of the extreme value scale parameters, is given by
MzCool (1979) showed that under the null hypothesis H,), the statistic EP follows a

distribution that depends only on n, r and L. He tebulated the results only for equal
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Max (b;)

EP - 1sisL _ .
Min {b‘}
15isL

(5.6.4)

sample size and equal number of failures in each group.
5.6.5 C(c) Statistic (CLb)

We follow the procedure as given in section 2.15.2. Suppose b; =b + ¢; with ¢
=0, i= 1,...L. Define ¢ = @,,...d 1) and 8 = (8;,....81,8) 1) = (u,.uy,b)". Then for
the derivations of the C(c0) statistic (CLb) for complete samples the required quantities

are given below.

ol G; .
v, = 2| =L, i=l.,l-D),
a0; et b
i X.-u. X..—u
G. = 1 g "t g e 11-1 , =1,
ol | al H,
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= —--—-al '—"ﬁ '.:_C_;_
Mt = Ly Bl O

L

, where G =Y, G,

=l

Further we define K = 7%/6 + (1-7)*. From section 5.9, we have

o2

C,--=—E
J] m_ i

. = o
* 9090, |,

and

L

nK
B
0

. izl LD,

, =l (LD,

» i=k=1'---y(L—1>,

,  #k k=1,...L,
, ki i=1,.,(L-1),
,  k=L+1; i=1,..,(L-1),
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= I:
= k=k'=1...L,
0, kek'=1.L,
34 < nfl-
Foi==-E|—c— =1 71-7) g
ol 30,90, e
k=1,..Lik'=L+1,
_A_,..E . k:k’=L+1_
| b?

When we use the MLEs of 6, in the expressions for ¥, T, C;,E; and Fyy., the C(a)

statistic, after considerable steps of algebra, reduces to

(5.6.5)

For the derivation of the C(c) statistic for censored samples the necessary quantities are

given below.
r.
1 . X‘-j_u‘- Xij-u‘- ! X‘-j-u‘-}
L= e - -r. [,
v‘b%{b]xp[b igb)‘
J; el (L-1)
— * ==l \L—1l),
Cl.j =-E -—-azl = b2 y
909%; |,
0 s =1.a(L-1),
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Ii .
£ i=k=1,..(L-D),
bz
E. =-E 321 _ p, 0 N i?tk; k=1,...,L,
* 3639 |, ke i1, (-1,
J; X
—_ . k=L+1;i=1,.(L-1),
b2
\
and
r
£ k=k'=1,0L
b2
0 . kkh k=1L,
I
31 _* , Kk=L+1; k’=1,...,L
Fkkf = - E 7 = A b2 N
30,99
k=0 k=1,..L; k'=L+1,
L
2 J;
i=1 . k=k'=L+1.
b2

where the terms J;’s and I’s are as defined in section 5.3.3.2. Now, we use the MLEs for
0, in the expressions of Y, My, C;;Ey and Fyy. Then the C(o) statistic reduces to
CLb =¥ (C - EF'EN! v, (5.6.6)

which is asymptotically distributed as 2(L-1).

5.7 SIMULATION STUDY

A simulation study was conducted to investigate the behaviour of the statistics
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LRb, MB, ML, EP and CLb in terms of size and power. For both level and power
comparisons we considered the significance level o = 0.10, 0.05 and 0.01. Empirical
levels and power were independent of the values of location parameters chosen so we
took (i, uy) = (0.1, 0.5) for L = 2. The common scale parameter was taken as 0.33. Each
experiment for empirical levels was based on 2000 replications. Asymptotic null
distribution of the statistic EP is not xnown and hence it was not included in the
computation of empirical levels. For power comparison we first calculated empirical
critical values for all the statistics by simulation. Each critical value was based on 10,000
replications and power was based on 2000 replications. Empirical levels and power, for
L =2: o = 0.10, 0.05, 0.01, are reported in Tables 5.13, 5.14 and 5.15. Simulations, in this
section, have been studied only for L =2 groups. This was partly because of
computational costs and partly because similar conclusions are expected, for other values

of L.
Results

From Tables 5.13, 5.14, 5.15, we can see that the likelihood ratio statistic LRb is,
in general, liberal. The C(c) statistic CLb holds nominal level well for complete samples
except for o = 0.01 and small samples, in which case it is conservative. For censored
sample situations this statistic is always conservative, particularly as the number of
failures in the groups decreases. The marginal likelihood ratio statistic ML and the
modified likelihood ratio statistic MB hold nominal level well, except in very small
sample situations such as n; =1; = n, =1, = 5, where the statistic MB is slighdly liberal.

This behaviour is similar for all values of ¢, although some inconsistent behaviour for
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the statistic MB is evident at & = 0.01. Note that two times the standard error of the
probabilities reported is roughty 0.005, 0.010 and 0.013 respectively, for « = 0.01, 0.05
and 0.10.

Now, we compare the power performance of all five statistics. For equal sample
size situations all statistics have similar power. For the situation in which sample sizes
in the groups are different, power of the statistics MB, ML and CLb is in general similar
except in some instances, in which CLb is more powerful, the statistic EP has the least
power. Since the statistic ML, based on its asymptotic chi- square distribution holds the
Jevels well and when all the statistics hold the level, the statistic ML performs reasonably
well in terms of power, we recommend its usc in practice. Notice that the statistic CLb
is in general conservative, but it has slight power advantage in some instances. For this
slight advantage in power, we find that it may not be worthwhile to try to improve its

level.

5.8 EXAMPLES

Example 1: The data analyzed by Lawless and Mann (1976) and Lawless (1982, Table
4.3.2 ) refer to time (T) to breakdown of a particular type of insulating fluid, subject to
constant voltage stress. The experiment was conducted at 7 different voltage levels. The
time T is assumed to follow a Weibull distribution and hence logT has extreme value
distribution with parameters u and b depending on voltage levels. The Weibull data (tme

in minutes, voltage in kilovolts ) are as follows:
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Voltage Sample size Breakdown times

26 3 5.79, 1579.52, 2323.7
28 5 68.85, 426.07, 110.29, 108.29, 1067.6
30 11 17.05, 22.66, 21.02, 175.88, 139.07, 144.12, 20.46,

43.40, 104.9, 47.3, 7.74

32 15 0.40, 82.85, 9.88, 89.29, 215.10, 2.75, 0.79, 15.93,
3.91, 0.27, 0.65, 100.58, 27.80, 13.95, 53.24

34 19 0.96, 4.15, 0.19, 0.78, 8.01, 31.75, 7.35, 6.50, 8.27,
33.91, 32.5Z, 3.16, 4.85, 2.78, 4.67, 1.31, 12.06,
36.71, 72.89

36 15 1.97, 0.59, 2.58, 1.69, 2.71, 25.50, 0.35, 0.99, 3.99,
3.67, 2.07, 0.96, 5.35, 2.90, 13.77

38 8 0.47, 0.73, 1.40, 0.74, 0.39, 1.13, 0.09, 2.38

We first test the equality of the scale parameters. The value of the recommended statistic
ML is 8.35 with 6 degrees of freedom. It appears that there is no evidence against the
assumption of a common scale parameter at 5% level. The recommended statistic for
testing the equality of the location parameters in the presence of a common scale

parameter is ACLu, which is approximately distributed as x%(d). The value of ¢ = 0.88;
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d = 6.81; CLu = 66.93; ACLu = 75.93 and x%5(6.81) = 13.16. The p-values for CLu
and ACLu are, for all practical purposes, indistinguishable from zero. This indicates

strong evidence that the location parameters are not the same for all voltage levels.

Example 2: The following data are taken from Lawless (1982, p. 202). They refer to
failure times (in hours) for two types of polyethylene cable insulation, obtained from an
accelerated life test. Of the 10 items of each type tested, 9 of each failed.

Type I: 5.1,9.2, 93, 11.8, 17.7, 194, 22.1, 26.7, 37.3

Type I: 11.0, 15.1, 18.3, 24.0, 29.1, 38.6, 44.2, 45.1, 509.

Assuming that the failure times for each type follow the Weibull distribution, we obtain,
for testing the homogeneity of scale parameters. ML = (.43, which is distributed as chi-
square with 1 degree of freedom. This shows that there is a sttong evidence in favour of
a common b. For testing the equality of location parameters with a common scale
parzmeter, we obtain ¢ = 0.73, d = 1.38, CLu = 2.83, ACLu = 3.8, 1%)10(1.38) = 3.48,
%20.05(1-38) = 4.72 and x%,0,(1.38) = 7.70. The p-values for the statistics CLu and ACLu
are 0.08 and 0.09 respectively. Thus, there is no evidence at 5% level against the

hypothesis that the location parameters are same.

5.9 APPENDIX

Expected Mixed Partial Derivatives for the Derivation of the C(x) Statistics for

Homogeneity Testing in Several Extreme Value Distributions

Denote that Z;; = (X; - w)/b, for j = 1,...,n;; i=1,....L. Then, for complete samples
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the expected mixed partial derivatives are

o 1 . e n;
D.,=-E|[— = —_E exp \Z; )] = —
i a¢l‘2 bz 1-21 ( 1 ) b2

) A I _ nfl-y)
Ap=-E _EFL - E ,2,1: { @pvexp@ - 1} = =
0

4 L2y ¥y 3
B,=-E| — '_ZEEE“F(ZU)__” N=Y 7
outly | % =l j=l =1
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o4 QA
B, =B,=-E =__E Z.+1) exp(Z;) - 1
21 = P12 33 |y, 2 25-1 ;E-l 1 @&+1) expZy) }

_N({1-v
b:
o 1 L & 2
Bp=-E| 2| |2 SEX 3 { @2z exe@y - 22; - 1}
ab? |y | b i
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—2 Y

where K = n/6 + (1-9)% Fork = 1,...L, and i = 1,..,(L-1), we define Z;; = (Xj; - w)/b,

j=l..n Thus we have

2 1 oxs [ 2
Ci=-E| = =_2_EE{(zij+z,.j)cxp(z,.j)-zz,.j-1}
od; be m
1
_n‘-K
-
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C;=-E =0, i%j,
Y db,09;

133



3 1 o o (1)
E.=-E| —— = _.E (Z.+1) exp(Z;) - 1} = .
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Fius=Fipn=-E P = lej { @+1) exp@) - 1}
i, -
R nk (I-Y)
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and
- 34 le
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Il
b

For censored samples recall that

E‘ 5 -Er + (n; r)t

=1 J=1
Now, we denote C,-j =n;! /{G-1)! (n-3)!} and we define

r

[ L= E‘ JE ( 1)8-1 .’ 1 1
. U s=1 J(n, s
Iy = (1) ¢, 2(1)3‘1 ch| 1
b 5=l s=1 j(n;-r +s)2
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¥, j ,. 2 —y-] —ie
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Then the expected mixed partial derivatives for censored samples are

136



9 94
D.=-~E{ 2" = - F = A.
i [ aq)z rp,au il
i Iﬂ [+
1 . TR
— E {El exp (Z;) } = )
J-
o4 .
D,=-E — =0, i#
’ 0] [y,
Ap = 3_2’ =L 3 @) exp@y) - 1
d¢,db 1 b2 =1
_ U+l -
= e
B,=-E 8_7"1 -1k EL: Y7 exp(Zy)
afiz o bz =] j-l Y
L

137



3
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i=1 jml

| L
"5z 2 Uy + I =),

inl
and

2

ob?

0

L .
" 2
> E [2 (Z3+2Z,) exp@;) - 23, Z.-r';]

1
b? i 7l =

;L
o ZI: Us; + Iy = 2q; = 1)

Now, we take Z; = (X;; - up/b, j = 1,...m;, 1 = 1,...,L. Then
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The above formulac for the expected negative mixed partial derivatives are
mathematically and computationally messy. Simple but very accurate formualae can be
obtained by using section 2.14.

Now, we define

J J
1 1
. = E and d. = —_—
i = sl " g (n;-s+1)*

For notational simplicity we denote %, =tand @, =d; thatis, tjand d; will be

understood to be with respect to n,. Then we have for i = 1,...,(L-1),

Dﬁ-—-AiI:b—;’ D"j=ot i¢j’
1 d
Apg=— Y. (t.logtj+—-’-). ,
b2 j=l ’ 2’.1
;L
By== 3
b* jm1
L
1 d;
Bp=By=—Y ¥ @;logt; + 1)
12 = By ,
o=~ N 1)

141



J‘

d.
By = — 2 Y." @+log r)(; log ¢; + __) -y @lgn - -,
il J=1 J j=1 IJ
1 . d.
Ci = — | X" (2+log 1)(; log #;+.L ) - 2(2 log 1; = -2) - 1,
J
Clj = 0, i §¢j,
——.E @; log 1; +_),
b Jj=1
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1 . dj i dj
b =1 5 G r
=rkjb2’
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KL+l b2§1 (1; log 4 25-)
and 4. v, 'I
Frata = E 2 (2+log t)(t log ¢, +_-’.) - 2(2 log ¢; —_) -r;
=1 m i j=t tj J

Note that the approximations are involved only in two quantities, namely,
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» d-
;=Y (rjlogtj+.2_:.)

1 j
and d 7 d
Ji=Y" @elog ) (flog g+ L) - Y (2log #; =~ —= = r;-
= t] Jj=1 fj

We compare in chapter 7 these values with the corresponding exact values for a single
sample for some combinations of (n,r). For a single sample we denote the above values,

in chapter 7, as C and J.
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Table 5.1. Empirical level (%) of the Test Statistics LRu, and CM Lu based on 2000 replications

L=2 L=3 L=3%
a «a e
Tests ni, ™ 10 05 01 ng,nm .10 05 01 ny,rq,n2,ra.ny, Ty .10 05 .01
na,r2 na, rz Nyg, Tq, N5, 5
na, ry
LRu 5,5 17.0 106 3.3 99 178 110 36 555555 18.1 103 2.7
CMLu 109 32 0.8 55 g 32 02 76 28 04
LRu 10,10 13.1 w2 20 170,10 133 76 24 10,10,10,10,10,10 135 Tl 24
CMZLu 101 43 03 10,10 9.4 b5 0.1 86 39 05
LRu 10,5 175 109 3.8 10,5 19.3 110 32 10,510,510,5 208 133 449
CMLu 94 28 00 10,5 67 21 03 76 26 0.2
LRu 10,3 26.2 176 5.8 10,3 28.1 194 7.5 103,10,3,10,3 331 215 B4
CMLu 6.7 02 0.0 10,3 64 12 09 62 21 0.2
LRu 20,20 12.1 58 13 20,20 124 69 19 20,20,20,20,20,20 119 68 13
CMLu 10.5 45 0.7 20,20 106 50 0.1 94 46 08
LRu 20,10 13.1 80 18 20,10 153 990 23 20,10,20,10,20,10 149 84 2.0
CMIu 10.c 42 01 20,10 96 40 03 84 32 05
LRu 20,5 18.8 1:0.7 3.1 20,5 20.7 121 3.3 20,5,20,5,20,5 224 13.0 43
CMLu 94 21 00 20,5 7.3 1.7 0.0 69 23 03
LRu 20,20 12.1 59 L3 20,20 120 6.6 1.7 20,20,16,16,12,12 135 7.0 1.7
CMLu 99 39 03 1212 9.5 47 0.7 9.7 48 1.0
LRu 20,10 144 83 24 20,10 157 91 24 20,10,16,8,126 178 103 3.1
CMLu 9.1 33 05 12,6 85 34 04 8.1 3.5 0.5
LRu 29,5 204 13.0 3.8 20,5 22.1 146 6.7 20,5,16,4,12,3 288 191 7.0
CMLu 74 L7 0.0 12,3 7.2 23 0.0 64 27 0.2
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‘Table 5.2: Empirical puwer (%) of the statistics LRu, SP and CLu; critical values based on 10,000 replications; power
bascd on 2000 replications, a = 0.01; L = 2.

b=03 b=15
( uuy) (u,u,)
Tests N0 (0,0.1) {0,02) (0.0.5) {0.1.0) {0,0.1) (0,02) (0.0.5) (0,1.0}
Nty
LRu 5.5 1.55 390 2690 8520 1.40 130 155 3%
Sp 55 140 295 2325 8250 1.00 1.1¢ 1.40 295
CLu 155 3.60 26.40 8320 130 1.15 155 3.60
LRu 53 125 1.75 715 31.10 120 120 125 175
SP 53 115 1AS 650 2950 1.15 115 1.15 1.65
CLu 125 195 705 30.40 1.15 1.15 125 195
LRu 10,10 270 Gis 7275 9995 135 135 270 10.15
sp 10,10 2.55 9.20 71.15 99.95 1.05 1.40 255 920
CLu 275 9.55 72.40 99.95 130 125 275 955
LRu 10,7 1.75 4.70 417 97.60 115 120 175 4.70
Sp 10,7 1.65 4.95 40.65 97.75 125 125 1.65 495
CLu 1.75 4.65 41.85 97.50 115 1.10 1.75 4.65
LRu 105 120 2.70 19.50 Ti.10 125 090 1.20 270
Sp 105 1.40 2.80 20.15 7185 1.10 1.00 1.40 280
ClLu 130 295 20.10 T7.00 115 105 1.7 295
LRu 103 1.00 1.75 680 28.70 0.75 .70 1.00 175
sp 10,3 105 1.80 6,70 2870 0.80 0.70 1.05 1.80
CLu 095 1.65 625 2790 0.80 0.85 095 1.65
LRu 20,20 595 27.65 98.35 100. 1.05 1.65 595 27.65
SP 2020 550 25.75 98.40 100. 1.25 150 550 25.75
Clu 5.70 2115 98.90 100. 095 1.70 5.70 2175
LRu 20,15 4.65 18.90 94,10 100. 1.10 1.65 4.65 1850
spP 20,15 4.65 18.85 94.05 100. 110 175 4.65 18.85
Clu 4.55 19.05 9355 100. 1.00 150 455 19.05
LRu 20,10 250 9.20 68.25 99.95 0.80 050 250 9.20
SP 20,10 2.55 9.60 69.70 99.95 050 105 265 9.60
Clu 250 9.15 67.60 99.90 090 0.95 250 9.15
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Table 5.2 continued

LRu 205 150 330 20.85 79.80 1.00 1.10 150 330
SP 205 1.40 3.15 2095 79.70 100 1.00 1.40 3.15
Clu 1.50 330 21.10 79.65 0.95 1.05 1.50 330
LRu 20,20 3.15 18.25 92.05 100, 0.65 110 3.15 18.25
SP 10,10 355 19.60 9175 100, 0.75 125 3.55 19.60
CLu 7.05 26,75 95.40 100. 125 1.85 7.05 26.75
LRu 20,15 250 11.05 76.80 100. 0.85 1.00 290 1105
SP 10,7 0.10 0.45 26.85 98.00 0385 0.85 0.10 0.45
CLu 490 17.85 8550 100 130 1.85 490 17.85
LRu 20,10 1.65 495 4450 98.15 1.00 1.00 1.65 495
sp 105 195 580 4890 98.60 095 105 1.95 5.80
CLu 345 935 60.65 9930 130 1.70 345 9.35
LRu 20,5 145 270 12.70 5350 055 120 145 270
SP 103 1.70 3.10 1550 5950 1.05 1.10 1.70 3.10
Cle 235 4.60 20.85 7055 115 150 235 4.60
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Table 5.3: Empirical power (%) of the statistics LRu, SP and CLu; critical values based on 10,000 replications; power
based on 2000 replications. a = 0.10; L = 2.

b=03 b=15
() (uyu)
Tests m.a ©0.1) 0,02 0,05 0,1.0) (0.0.1) 0,02} 0.,0.5) 0,10
e
LRu 55 7135 14.05 5675  98.05 545 5.75 735 14,05
Sp 55 7.60 1420 5640  98.05 555 5.75 7.60 1420
CLu 7.40 1335 5675 9760 545 550 7.40 1375
LRu 53 635 9.75 2740 6945 4.50 470 635 9.75
sp 53 6.30 9.45 2115 6930 4.70 4.65 6.30 945
Clu 6.05 9.40 2665 6855 4.40 4.60 6.05 9.40
LRu 10,10 10.55 2695 91.80 100. 535 6.00 1055 2695
sp 10,10 10.25 2720 90.65 100. 5.05 595 1025 2720
CLu 10.70 27.05 91.75 100. 535 6.00 10.70 27.05
LRu 10,7 8.80 18.20 7410  95.80 535 6.00 8.80 1820
SP 10,7 8.40 18.10 7430 9995 545 6.10 8.40 18.10
CLu 8.55 18.60 7405  99.20 550 6.00 8355 18.60
LRu 105 650 1230 5210 9710 5.15 535 650 12.30
Sp 105 720 12.70 5185 9710 535 535 7.20 1270
CLu 7.00 1235 5230 97.00 530 550 7.00 1235
LRu 10,3 535 7.85 2460 6825 425 430 535 7.85
SP 103 5.15 7355 2415 6745 420 430 515 755
CLu 520 7.60 2450 6790 435 450 520 7.60
LRu 2020 17.00 5215 100. 100. 5.00 6.80 17.00 5215
SP 2020 16.65 51.00 99.95 100. 5.05 6.70 16.65 51.00
CLu 17.15 52.10 $9.95 100. 5.10 655 17.15 5210
LRu 20,15 13.75 39.60 $9.05 100. 5.10 6.60 13,75 39.60
SP 20,15 13.05 3850 99.00 100. 5.10 6.40 13.05 3850
CLu 1395 39.60 99.10 100. 5.10 650 1395 39.60
LRu 20,10 1030 2430 8995 100. 5.10 5.80 1030 2430
Sp 20,10 10.15 24.60 90.15 100. 495 5.55 10.15 24.60
CLu 10.15 2420 8995 100. 5.15 5.80 10.15 2420
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Table 53 continued

LRu 20,5 6.10 11.60 5220 9695 4.60 4.70 6.10 11.60
SP 20,5 6.10 11.60 5185  96.65 4.60 4.65 6.10 11.60
CLu 6.10 11.60 5160  96.95 445 4.75 6.10 11.60
LRu 20,20 14.55 39.40 98.00 100, 5.10 5.85 14.55 3940
SP 10,10 14.00 3775 9785 100, 495 6.15 14.00 3735
CLu 18.05 45.60 98.85 100. 5.90 8.05 18.05 45.60
LRu 20,15 9.90 28.60 91.60 100. 5.45 5.60 950 28.60
Sp 10,7 895 2585 90.15 100. 5.10 570 855 25.85
Clu 14.70 3750 9555 100. 595 750 1470 3750
LRu '20,10 110 16.15 7435 970 4.85 5.00 1.10 16.15
sp 105 7.60 17.55 7540 99.80 4,80 520 7.60 1735
CLu 10.75 26.80 83.55 9995 555 6.75 10.75 26.80
LRu 20,5 6.15 1045 3635  86.10 4.65 4.80 6.15 1045
SP 103 135 12.25 4205  89.85 4.85 5.50 735 1225
CLu 835 14.25 48.15  93.15 490 550 835 14.25
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Table 5.4: Empirical power (%) of the statistics LRu, SP and CLu; critical values based on 10,000 replications; power
based on 2000 replications. @ = 0.10; L = 2.

b=03 b=15
( u 1-“‘2) (upuz)
Tests n.T, ©.0.1) (9.0.2) G025 (0,1.0) 0.0.1) (0.0.2) 0,05 (0.1.0)
25
LRu 55 1480 2525 7195 9950 1080 1090 1480 2525
SP 55 1435 2395 7075 9945 1070 1145 1435 2395
CLu 1455 2485 7140 9925 1075 1120 1455 2485
LRu 53 1295 1705 4335 8690 1035 1080 1295  17.05
sp 53 1275 1705 4325 8655 1035 1080 1275 1715
Clu 1315 1690 4310 8630 1000 1040 13.15 1650
LRu 10,10 1875 3930 9575 100. 1045 1130 1875 3930
sp 10.10 1840 3935  95.65 100. 1040 1135 1840 3935
CLu 1850 3940 9580 100 1040 1130 1850  39.40
LRu 107 1470  28..0 3555 100. 1060 1135 1470 2870
sp 107 1460 281¢ 8515  100. 1100 1100 1460 2810
Clu 1510 2865 8595  100. 1075 1145 1510 2865
LRu 10,5 1310 2280  69.60 9945 1015 1085 1310 2280
SP 105 13.00 2280 69.80 5950 1050 1125 1300 2280
CLu 1325 2270 6945 9945 1015 1060 1325 2270
LRu 103 1145 1545 4050 8600 9.60 990 1145 1545
sp 103 1135 1550 4125 8555 9.50 985 1135 1550
CLu 1.15 1525 4100 86.00 850 1010 1115 1525
LRu 2020 2655  64.85 1Cs. 106 1015 1230 2655  64.85
sP 20,20 2580 6275 100. 100. 1035 1255 2580 6275
CLu 265 6475 100. 100. 1030 1230 2665 6475
LRu 20,15 2185 5225  99.65 106, 1045 1165 2135 5225
SP 20,15 2180 5225 9965 10u. 1035 1170 2180 5225
CLu 2170 5220 9970  100. 1940 1145 2170 5220
LRu 20,10 1735 3745 9600  100. 985 1075 1735 3745
sP 20,10 1740 3745 9585  100. 995 1105 1740 3745
CLu 1720 3760  96.00 100. 965 1080 1720 3760
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Table 5.4 continued

LRy 20,5 11.70 2125 69.70  98.70 9.45 9.75 11.70 21.25
Sp 20,5 11.80 21.15 69.70  98.75 930 9.45 11.80 2115
ClLu 11.50 21.50 6970  98.75 950 9.75 11.50 250
LRxu 20,20 23.10 50.60 99.20 100. 10.55 12.55 23.10 S50.60
Sp 10,10 23.0% 49.15 99.10 100. 10.25 12.00 23.05 49.15
CLu 2635 54.80 PN 100. 1135 13.95 2635 54.80
LRu 20,15 17.95 40.60 96.15 100. 1030 11.00 17.95 40.60
sp 10,7 16.65 3755 9530 100. 10,15 10.80 16.65 3795
Clu 2295 4750 9730 100. 11.70 1350 2295 4750
LRu 20,10 14.40 2970 8550 100. 10.40 10.65 14.40 29.70
SP 105 1495 3120 8635 100. 10.25 1050 1495 3120
CLu 17.85 37.05 915 100, 1035 11.20 17.85 37.05
LRu W 1i.45 17.25 3395 9510 10.05 1020 11.45 17.25
SP 103 13.05 2030 5935 9645 Q.75 10.10 13.05 2030
CLu 14.45 2225 o. 78 97.10 930 1030 14.45 225
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Table 5.5: Empirical power (%) of the statistics LRu, SP and CLu; critical values based on 10,000 replications; power
based on 2000 replications. & = 0.01, b =03, 1.5; L = 3.

b=03 b=15
(u)aua) (uy,0,.04)
n,.r
Tesis Ny, 0.00) (0.1.2) ©.2.4 (0.5 000 (0.1.2) 0249 (G510
n3.r3
LRu 55 1.25 2,65 1035 7230 1.25 130 1.60 330
sP 55 1.10 255 9.60 69.80 110 135 115 3.00
CLu 55 G.70 270 8.80 69.20 0.70 0.80 1.00 295
LRu 53 1.05 1.40 2.80 2190 1.05 1.05 1.15 130
sp 53 1.10 135 280 2090 1.10 1.05 1.00 135
CLu 53 1.05 1.50 3.85 2095 1.05 1.20 1.25 2,00
LRu 10,10 1.05 545 29.95 99.45 1.05 1.10 155 685
SP 10,10 1.10 515 2025 9935 1.10 1.00 155 725
CLu 10,10 130 5.05 2925 98.80 130 1.40 2.00 6,65
LRu 10.7 1.10 3.55 15.05 9235 110 120 145 440
SP 10,7 1.05 3.75 1595 9190 1.05 135 1.65 435
CLu 10.7 095 3.40 14.70 8595 095 1.00 1.40 416
LRu 10.5 1.05 1.75 635 65.10 1.05 1.1 195 9.15
sp 10,5 095 1.60 7.10 65.40 095 1.05 1.10 2,05
CLu 105 1.00 1.80 8.60 58.65 1.00 0.60 0.70 215
LRu 10,3 1.00 155 350 2150 1.00 1.10 1.05 1.60
sp 103 1.05 1.65 350 2225 1.05 1.20 1.20 1.85
CLu 103 138 2680 550 210 135 1.40 1.60 285
LRu 20,20 145 1735 76.80 100. 145 2.10 345 270
SP 20,20 155 1655 7295 100, 1.55 195 340 2055
CLu 20,20 130 17.55 74.60 100. 130 1.85 3.00 2155
LRu 20,15 120 10.50 58.10 100. 120 1.60 2385 13.70
sp 20,15 145 10.65 5765 100. 145 2.10 3.00 13.30
Clu 20,15 130 1055 5595 100. 130 2.00 330 13.45
LRu 20,10 1.05 6.10 3220 99.40 1.05 135 190 750
SP 20,10 1.05 585 3175 9930 1.05 125 1.65 175
Clu 20,10 1.05 550 3025 98.70 1.05 1.15 200 735
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Table 5.5 continued

LRu
SP
CLu

LRu
SP
CLu

LRu
Sp
CLu

LRu
sp
CLu

LRu
SP
CLu

20,5
20,5
20,5

16,16
12,12
8.3

16,12
12,9
8.6

16,8
12,6
84

164
123
82

1.10
1.05
1.00

0.85
0.35
1.00

115
1.05
1.10

0.80
0.75
0.85

125
125
120

230
235
3.10

1.25
6.85
1035

4.05
455
790

340
3.85
580

1.45
1.85
375

8.25
g.10
980

39.65
38.20
4.15

23385
2490
32.00

1230
1325
17.75

355

430
9.30

152

6725
66.85
61.50

99.95
99.85
99.85

9855
98.60
98.80

33.00
83.65
84.25

2250
26.00
3635

1.10
1.05
1.00

035
035
1.00

115
1.05
1.10

0.30
0.75
0385

1.25
125
120

1.20
1.05
125

1.10
.10
1235

135
120

175

0.90
0.95
1.70

120
1.20
1,65

130
130
155

155
1.60
250

1350
1.50

"

=

1.10
125
255

125
1.2%
2.10

235
255
355

9.00
8§95
1320

5.60
555
92
4.15

425
6.65

1.50
210
4.10



Table 5.6: Empirical power (%) of the statistics LRu, SP and CLu; critical valucs based on 10,000 replications; power
buscd on 2000 replications, @ = 0.05,b=03, 1.5 L =3,

b=03 b=15
(u),u5t) (uyu30,)
0.0
Tests Ny (0,0,0) (0.1.2) (0.2.4) (0.5.1) (0,000 ¢0.1,.2) (0,2.4) (0,51)
TiyFy
LRu 55 5.15 1025 2720 9215 515 535 635 11.65
sp 55 4.80 10.10 2545 91.10 430 4,80 580 11.20
CLu 55 4.80 1045 2490 87465 4380 545 635 11.65
LRu 53 480 7.10 1450 5520 480 5.00 555 7.60
sp 53 4.85 6.95 1440 5440 485 495 540 7.05
ClLu 53 5.15 7.10 1535 5445 5.15 430 520 750
LRu 10,10 5.15 1755 5730 100. 5.15 5.80 725 20.05
sp 10,10 490 16.85 5470 100. 490 5.80 135 1924
CLu 10,10 495 17.15 5495 99.90 495 535 695 20.10
LRu 10,7 5.15 12.00 3795 99.05 515 5.50 6.50 1330
SP 10,7 490 12.05 3785 98.80 490 585 6.60 14.10
CLu 10,7 530 12.00 3625 9795 530 5.55 6.40 14.15
LRu 10,5 435 930 25.15 91.75 435 4.60 5.10 10.65
sP 105 420 10.00 25.80 91.60 420 475 530 11.05
CLu 10,5 4,10 10.00 25.15 86.00 4.10 445 525 11.10
LRu 103 525 125 13.50 5435 525 5.45 59¢ 7.85
sp 10,3 520 1.50 1390 5540 520 5.10 6.00 8.05
CLu 103 5.65 825 1495 51.50 5.65 625 6.10 2.00
LRu 20,20 550 36.70 90.25 100. 550 650 10.70 42.70
SP 2020 525 33.85 88.50 100. 525 650 10.05 4040
ClLu 20,20 525 35.80 89.15 100. 525 7.00 10.45 41.2¢
LRu 20,15 550 26.50 79.05 100. 550 650 920 3220
sp 20.15 5.10 2535 7875 100. 5.10 625 885 3125
Clu 20,15 555 26.80 78.00 100. 555 6.15 9.05 3230
LRu 20,10 525 1825 57125 99.90 525 6.00 7.30 20.70
SP 20.10 545 1825 57.65 99.90 545 635 7.70 21.45
Clu 20,10 495 18.70 57.15 99.80 495 580 750 2155
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Table 5.6 continued

LRu
Sp
CLu

LRu
SP
Clu

LRu
sp
CLu

LRu
sp
CLu

LRu
SP
CLu

205
205
20,5

16,16
12,12
88

16,12
129
8.6

168
12,6
34

164
123
82

4.85
4.80
520

4.65
4.70
5.00

4.65
4.80
515

4.85
4.80
5.4

4.80
4.7
5.40

9.65
9.85
9.95

2110
2050
2680

1625
16.40
2155

10.45
11.25
1555

6.90
1.75
12.10

2535
26.20
2590

64.05
62.85
68.45

5030
51.10
56.75

30.55
3235
40.50

1330
520
23.25

91.00
91.15
86.55

100.
100.
100.
99.85
99.85
9520
95.40
95.60
52.65

5650
64.25

154

4385
4.30
20

4.65
4.70
5.00

4.65
4.80
315

4385
4.80
545

430
4.70
540

5.05
315
475

530
5.10
6.90

5.40
5.60
6.50
515

535
635

4.65
495
7.00

3.65
590
5.80

750
7.30
10.55

7.00
7.50
9.70
6.00

6.25
825

515
570
8.00

10.75
11.00
1135

2470
2435
31.00

1830
18.95
2485

11.80
12.60
1795

735
795
1330



Tablc 5.7: Empirical power (%) of the statistics LRu, SP and CLu; critical values based on 10,000 replications; power
based on 2000 replications. & = 0.10, b= 03,15 L =3,

b=03 b=15
(ugp0) (up.uz0y)
m.r
Tests N0y (000) (0.1.2) (0.2.4) {0.51) 000 0.1.2) @24 (0.351)
T,y
LRu 5.5 1616 1835 3915 9710 1010 1070 1160 2055
SP 5.5 1020 1800 3805 9650 1020 1115 1210 1980
CLu € 1060 1775 37135 95.00 1060 1070 11L70  19.05
LRu . 53 1030 1360 2460 7150 1030 1055 1045 1450
SP 53 990 1390 2450  70.60 950 1005 1045 1515
CLu 53 950 1405 2410 6995 990 1060 1110 1520
LRu 10,10 98¢ 2810  70.80 100. 980 1020 1330 3230
SP 10,10 990 2635  67.80 100. 990 1050 1310 3030
CLu 10,10 980 2805 7020 100. 980 1050 1350 31.60
LRu 10,7 1620 2105 5365 9975 1020 1055 1215 2375
sP 10,7 1020 2160 5355  99.60 1020 1050 1195 2415
Clu 107 1040 2055 5295  99.40 1040 1025 1166 2375
LRu 105 935 1745 3895 9650 935 945 1025 19.15
SP 105 915 1770 3940 9645 9.15 9.10 1085 1920
CLu 105 875 1735 3875 9485 875 965 1075 1860
LRu 103 1000 1335 2350 7210 1000 1035 1085 1395
SP 103 1015 1315 2365 7220 1015 1010 1080  14.10
CLu 103 1075 1375 2345 6635 1075 1060 1080 1430
LRu 2020 995 4720  94.40 100. 995 118¢ 1815 5120
sP 2020 1035 4500 9355 100. 1035 1125 1765 5215
CLu 2020 1055 4755 9405 100. 1055 1210 1845 5390
LRu 20,15 1025 3910 8765 100. 1025 1155 1560 4530
SP 20,15 1005 3825 8730 100. 1005 1125 1560 4430
Clu 20,15 1025 3915 8635 100. 1025 1145 1540 4530
LRu 20,10 1060 2890 7020 100. 1060 1140 1465 3255
sP 20,10 1045 2850  69.75 100. 1045 1145 1460 3230
CLu 20,10 1050 2880 6950 100. 1050 1145 1435 3265
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Table 5.7 continued

LRu
Sp
CLu

LRu
SP
ClLu

LRu
sP
CLu

LRu
34
CLu

LRu
SP
Clu

205
205
20,5

16,16
1212
8.8

16,12
129
8.6

16,8
12,6
84

164
123
82

9.85
9.70
10.25

9.60
5.10
10.25

1020
10.15
10.00

10.70
10.85
10.50

9.60
9.70
9.95

16.65
16.80
17.20

3095
30.85
36.45

24.75
2495
3028

17.95
1890
24.40

1350
14.00
18.60

40.20
40.80
40.15

75.10
13.60
925

63.00
63.05
6195

4350
44.95
52.65

3.25
2435
33.70

96.60
96.70
95.45

100.
100.
100,

100.
99.95
100,

98.40
98.70
98.80

70.20

71210
7835

156

9.85
9.0
10.25

9.60
9.70
1025

1020
10.15
10.00

10.70
10.85
1050

9.60
9.70
995

10.10
10.10
10.10

10.75
11.15
12.70

11.00
10.85
1220
1095
11.15
12.20
10,20

11.80

11.40
1145
1145

1425
14.50
1795

1325
1255
15.65

11.85
12.05
13.65

10.15
1020
13.90

18.05
18.60
1895

3540
3555
41.20

2850
3435
2025
21.08
2135
1455

1535
2015



Table 5.8: Empirical power (%) of the statistic:. LRu, SP and CLu; critical values based on 10,000 replications; power
based on 2000 replications. @ = 001, b=03,15; L = 5.

b=03 b=15
(U0, ) (100,810,180
Tzl

Tests DTy T 0,0,0,0,0) 0..1,.2,3,4) {0.2.4.6.8) 0.0,0,0,0) (0..1,2,2.4) (0.2,.4.6.8)

Nty (0.5.1.1.52) (0.5.1,1.52)
LRu 55.5.5 095 785 55.00 100. 095 1.00 145 1110
sp 555.5 0.50 810 5325 100. 0.90 095 140 1040
Clu 55 0.65 815 4415 9980 0.65 0.70 120 1090
LRu 5353 1.00 330 1780 9260 1.00 1.10 135 395
sp 5353 050 335 1805 9255 0.90 1.00 135 430
Clu 53 1.00 3.5 1415 6110 1.00 0.50 130 4.40
LRu 10,10,10,10 105 3380 9820 100. 1.05 1.65 460 4415
sp 10,10,1G,10 105 3100 9760 100. 1.05 195 420 4020
CLu 10,10 090 30.05 95.20 100. 050 155 450 40.00
LRu 10,7,10,7 1.00 1565 8120 100. 1.00 095 255 2015
SP 10,7,10.7 1.00 1635 81.30 100. 1.00 1.15 260 2120
CLu 10,7 0.90 14.70 71.10 100. 050 1.40 210 19.95
LRu 105,105 075 705 4530 100. 075 065 1.50 920
sp 10,5,105 0.75 120 46.70 100. 0.75 0.60 1.40 10.45

10,5 0.80 875 3970 9950 0.30 0.80 195 10.60
LRu 103,103 095 320 14.85 88.04 095 120 150 395
SP 10,3,103 125 335 1550 87.65 125 130 155 430
CLu 103 125 825 49.75 5720 120 145 1.70 4.65
LRu 20,20,20,20 120 8055 100. 100. 120 3.00 1235  90.10
SP 20.20,20,20 135 7655 100, 120, 135 265 1160 8770
CLu 20,20 1.15 7695 100. 100. 115 2.30 1145 86.75
LRu 20,1520.15 110 5770  99.95 100. 1.10 1.80 665 7040
SP 20,15.20,15 080 5800 9995 100. 0.90 210 695 7035
Clu 20,15 130 5530 9550 100, 130 210 795 6705
LRu 20,10,20,10 050 31.10 96.63 100. .50 1.70 3.75 41.15
SP 20,10.20,10 110 3195 96.60 100. 110 1.60 3.75 4120
Clu 20,10 LI0  29.00 93.60 100 1.10 175 385 3830
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Table 5.8 continued

LRu 20.5,205 125 8.25 49.75 100. 1.25 1.40 200 11.30
SP 205,205 LIS 9.15 5125 100. 115 1.60 220 1155
CLu 205 1.05 835 40.05 99.95 1.05 1.25 1.85 10.75
LRu 16,16 0950 4130 99.55 100. 0.90 1.60 4.00 5275
Sp 12,12 0.75 3975 99.60 100. 0.75 1.55 4.65 51.50
CLu 8.8 1.05 46.05 99.10 100. 1.05 225 6.80 58.60
LRu 16,12 1.05 2535 94.15 100. 1.08 1.25 3.40 3310
sp 129 095 26.80 9435 100 085 1.30 385 36.00
CLu 8.6 0.85 3350 93.95 100. 0.85 230 645 4135
LRu 163 0.95 1250 67.70 100. 095 1.10 150 16.80
sp 12,6 0.85 14.15 69.65 100. 0.85 1.05 235 18.15
CLa 34 090 20,50 70.00 100. 050 205 395 24.70
LRu 164 050 325 17355 52.00 050 0.50 1.10 3.70
SP 123 0.80 3.80 20.40 94.05 0.80 1.00 150 485
Clu %2 120 7.80 2345 8035 120 1.85 2.85 895
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Table 5.9: Empirical power (%) of the statistics LRu, SP and CLu; critical values based on 10,000 replications; power
based on 2000 replications. @ = 0.05, b= 03, 15: L = 5.

b= 03 b=15
(ui .uz.ug.u‘-us) (ulougo“m“‘o“s)
L CITL 2]

Tests I P (0,0,0,00) (0,.1,.2.3..4) (0.2.4,6,.8) (0,0,0,0,0) (0,.1,2,3,4) (0.2,4,6..8)

0,.5,1,1.52) (0.5,1,1.5.2)

NgTy

LRu 5555 435 26.65 81.40 100. 435 4.80 7190 3230
Sp 55.5.5 4,50 2635 80.70 100. 4.50 5.00 830 30.70
Clu 5.5 430 2650 7525 100. 430 4.80 7.85 3125
LRu 5353 4.60 13.15 4220 9935 4.60 445 550 1555
§p 5353 4.85 1325 4245 99.10 4385 4.30 6.00 15.65
CLu 53 5.70 1390 3685 9320 570 5.65 6.40 15.70
LRu 10.10,10,10 435 5850 99.55 100. 435 715 13.20 6855
sp 10,10,10,10 4.80 56.05 9950 100, 4380 6.80 12.75 66.15
Clu 10,10 4.55 S5.85 99.25 100 455 7.10 13.85 6590
LRu 10,2,10,7 4.60 38.05 95.60 100. 4.60 6.15 10.15 46.70
sp 10,7,10,7 4.60 3645 94.85 100. 4.60 6.00 1000 45.05
CLu 10,7 4.45 3855 9195 100. 4.45 5385 10.70 45.65
LRu 10,5,10,5 465 2385 7115 100, 4.65 580 8.15 29.00
SP 10.5,10,5 450 2430 720 100. 450 555 79¢ 2910

105 4.65 24.10 70.50 100. 4.65 5.5 8.15 28.60
LRu 10,3,10.3 495 12.70 40.60 98.65 495 520 6.20 1450
SP 103,103 5.05 1335 41.70 98.60 5.05 535 6.20 1530
CLu 103 575 14.10 3825 92.30 515 5.70 6.85 16.05
LRu 20,20,20,20 5.60 9220 100. 100, 5.60 9.65 2765 9735
SP 20.20.20,20 530 9115 100. 100. 530 9.80 2655 95.80
Clu 20,20 535 91.95 160, 100. 535 10.05 27.85 97.05
LRu 20,15,20,15 525 81.00 100. 100. 3.25 855 21.65 8950
SP 20,15.20,15 550 8075 100. 100. 550 8.45 2180 8370
CLu 2015 4.80 7850 100. 100, 480 750 20.45 8725
LRu 20.10,20,10 4.40 57145 99.50 100. 4.40 6.75 14.00 61.15
SP 20,10,20.10 4.40 57.15 99.45 100. 4.40 6.45 1395 67.15
Clu 20,10 440 55.45 99.20 100. 4.40 6.45 14.05 65.10

159



Table 5.9 continucd

LRu
sSp
Clu

LRu
SP
CLu

LRu
sp
CLa

LRu
SP
Clu

LRu
SP
CLu

20.5.20,5
20,5.20.5
205

16,16
12,12
8.8

6,12
129
8.6

168
12,6
84

164
123
82

495
5.15
4.60

4.85
4.85
4.70

4350
5.00
525

5.05
4.85
5.05

4.60
4.75
495

3.90
3525
2635

68.75
65.85
7250
5240

52.60
5155

33.80
34.55
40.85

13.60
15.10
21.80

18.30
7895
7240

99.95
99.95
99.95

98.70
98.80
98.55

89.70
89.80
90.50

4205

45.60
54.10

160

100.
100.
100.

100.
100,
100.

100.
100.
100.

100.
100.
100.

9935
99.55
98.45

495
5.15
4.60

4385
4.85
4.70

450
5.00
535
5.05

4385
5.05

4.60
4.75
495

585
6.20
515

7.20
7.10
835

6.40
7.05
8.25
6.55

6.40
755

5.00
495
7.00

8.50
8.85
835

1525
15.05
20,20

13.00
13.10
1645

9.70
11.00
13.00

550
640
1020

28.50
3035
3145

79.00
1555
81350

6130
60.85
65.85

40.75
4220
46.25

15.75
17.65
25.10



Table 5.10: Empirical power (%) of the statistics LRu, SP and CL; critical values based on 10,000 replications; power
bascd on 2000 replications. & = 0.10, b =03, 1L.5; L = 5.

b=03 k=13
(U Up Uy, 85) (00, Ug, 01
N TLhph

Tests  nynynr, (0,0,0,00) (0.1,2.3,4) 0,2.4,6,8) {0,00,0,03 (0.1,2,3.4) (0.2,4,6,3)

ng.rs (0.5.1.0.52) ©.5.1,1.52)
LRu 5555 845 38.85 90.15 100, .45 1030 15.20 45.05
SP 5555 8.80 3820 88.80 100. 8.80 10.40 14.05 4430
Clu 55 9.40 37.65 86.05 100. 9.40 1045 14.85 4335
LRu 5353 10.00 2330 5790 99.95 10.00 1105 12,70 26.40
sp 5353 10.20 2355 58.55 99.95 1020 1125 1295 26.65
Clu 53 1020 23.60 5245 98.45 10.20 11.15 12.30 26,70
LRu 10,10,10,10 9.70 7115 99.80 100. 9.70 13.00 2220 79.90
sp 10,10,10,10 1030 68.55 99.70 100. 1030 12.20 2125 7705
CLu 10,10 9.60 7035 99.55 100. 9.60 13.05 22.15 7845
LRu 10.7,10.7 9.55 5205 97.90 100. 9.55 11.55 17.40 60.45
SpP 10.7.10.7 935 5190 97.65 100. 9.35 11.70 17.70 59.85
CLu 107 950 5135 96.50 100. 9.50 11.75 1750 58.85
LRu 105,105 1020 36.65 86.80 100. 10.20 10.60 1455 42,75
sP 105,105 1030 37.15 86.90 100. 1030 10.30 1475 43.05

105 1030 3750 83.10 100. 1030 11.20 15.85 4295
LRu 103,103 9.75 2205 57.15 99.75 9.75 10.15 12.15 24.80
SP 103,103 945 2320 58.30 99.85 9.45 10.70 1225 2620
CLu 10,3 1025 23,70 5435 93.15 1025 10,50 1235 2140
LRu 20,20,20,20 1035  96.80 100. 100, 1035 1860 4020 9875
SP 20,20,20,20 10.10 94.95 100. 100. 10.10 17.10 3775 98.25
CLu 20,20 10,05 96.60 100. 100. 10.05 1750 4030 98.60
LRu 20,15,20,15 955 8930 100. 100, 9.55 1520 31.65 94.05
SP 20,15.20,15 950 8820 100. 100. 950 1535 3175 93.65
CLu 20,15 9.45 88.45 100, 100. 9.45 1540 33.10 93.75
LRu 20,10.20,10 950 59.65 99.85 100. 9.50 12.05 2290 T1.80
sp 20,10,20,10 930 70.00 99.85 100. 930 1265 2330 T1.15
Cla 20,10 9.20 68.65 99.80 100. 920 12,10 23.00 T77.05
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Table 5.10 continued

LRu
sp
CLu

LRu
SP
CLu

205,20.5
20,5205
205

16.16
12,12
88

16,12
129
8.6

16,8
126
84

164
123
82

9.35
9.40
9.20

9.90
9.80
10.05

9.20
9.50
9.80

1025
10.40
9.80

935
9.25
10.15

3650
3695
3750

80.35
7145
82.80

65.00
64.45
69.55

46.65
47.85
5325

2230
23.60
3345

87.05
87.05
83.25

100,
100,
100.

99.25
9930
9930

95.00
95.10
95.70

5695

60.10
69.20

162

100.
100.
100,

100.
100.
100.

100.
100
100.

100.
100
100,

99.85
99.90
99.75

935
9.40
.20

9.50
9.80
10.05
9.20

950
9.80

10.25
10.40
9.80
9.35

10.15

11.20
10.90
10.75

13.35
1330
15.80

12.60
12.75
1545

1230
12590
13.65

9.25
10.05
13.00

14.65
14350
15,65

2640
24.60
30.10

2090
21.35
26,25

17.50
18.05
22.80

1230
13.00
17.10

42.65
4285
44.10

88.30
85.65
89.45

T2.60
73.20
7.0

5330
5435
60.15

2535
27.05
3735



Table 5.11: Variance of CLu in terms of N ( = average sample size per group ) and R (= average number of failures
per group )} for L = 2....,10 groups.

L Variance Formulae

2 V = 0.6201 + 6.1846 R - 0.0100 R? + 0.0002 R?
-0.0202 N + 0.0006 N2 - 0.000004 NR

3 V = 1.5869 + 0.3485 R - 0.0190 RZ + 0.0003 R®
- 0.0471 N + 0.0010 N2 + 0.0012 NR

4 V = 25017 + 0.5343 R - 0.0313 R? + 0.0006 B>
- 0.0630 N + 0.0013 N2 + 0.0016 NR
5 V = 32923 + 06872 R - 0.0336 R? + 0.0006 R?

- 00386 N + 0.0012 N2 - 00024 NR

6 V = 43556 + 0.8717 R - 0.0405 R? + 0.0008 R?
- 0,0758 N + 0,0033 N2 - 0,0063 NR

7 V = 6.4400 + 0.9532 R - 0.0433 R? + 0.0007 R*
- 02057 N + 0.0072 N2 . 0.0052 NR

8 V = 64400 + 0.9532 R - 0.0433 R2 . 0.0007 R?
- 02057 N + 0.0072 N2 . 00052 NR

9 V =9.9533 + 1.0470 R - 0.0385 R2 + 0.0006 R3
- 03344 N + 00114 N2 - 0.0080 NR

10 V = 11.0495 + 1.1347 R - 0.0478 R2 + 0.0008 R*
- 02982 N +0.0092 N2 - 0.0052 NR

163



Table £.12: Empirical levels (5) of the statistics ACLu based on 2000 replications.

L=2 a

11 T8 O 1.0 50 16.0
55.5.5 03 63 13.0
5353 0.0 42 14.0
10,10,10,10 08 55 1.1
10,7,10,7 037 59 122
105,105 c3 2 125
103,103 0.0 40 129
20,20,20.20 09 49 108
20.15.20,15 05 4.7 1]
20,10,20,10 0.6 54 10.8
20,5,20,5 03 53 123
20,20,10,10 06 47 103
20,15,10,7 08 49 104
20,10,10,5 09 52 109
205,103 05 49 118
L=3 a

T} Ty T ey Ty 1.0 5.0 100
5555.5.5 07 53 119
535.3.5.3 03 44 108
10,10,10,10,10,10 1.0 54 104
10,7,10,7,10.7 03 58 113
10,5,10,5,10,5 0.7 43 99
103,103,103 03 5.1 115
20,20,20,20,20,20 13 6.1 117
20,1520,15,20,15 09 56 105
20,10,20,10,20,10 0S5 5.1 11.6
20,5,20.5,20,5 0.4 5.1 106
20,20,16,16,12,12 13 5.1 92
20,15.16,12,12,9 0.6 48 10.1
20,10,16,8,12,6 08 52 10.4
20.5,164,12,3 08 52 10.6
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Table 5.12 continued

L=35

LIRST B 2L B BURIBL B 1.0 50 100
5555555555 038 4.5 10.1
5353535353 04 3l 103
16,10,10,10,10,10,10,10,10,10 07 4.8 9.9
10,2,10,7,10,2,10,7,10.7 0.8 42 3.7
105,10,5,10,5,10,5,10,5 07 49 11.0
103.10,3,10,3,10.3,103 0.8 52 102
20,20,20,20,20,20,20,20,20,20 1.0 53 10.1
20,15,20,15,20,15,20,15,20,15 Oy 4.6 88
20,10,20,10,20,10,20,10,20,10 0.9 43 93
20,5,20,5,20,5.20,5.20,5 10 45 9.4
20,20,16,16,12,12,12,12.8,8 12 50 9.2
20,15,16,12,16,12,12,8,8,6 1.1 45 92
20,10,16,8,16,8,12,6,8.4 1.1 5.1 9.9
205,164,164,12382 13 5.0 10.1
L=10 -]

Nyl g TPl Py, T Tl T 1.0 50 10.0
g Tl T T Ty Yo B1anT 10

55.5.5555555 09 53 102
5555555555

5353535353 09 44 9.7
5353535353

10,10,10,10,10,10,10,10,10,10¢ 0.8 44 9.4
10,10,10,10,10,10,10,10,10,10

10,7,10,7,10,7.10,7,10,7 09 4.7 9.8
10,7,10,7,10.7,10,7,10,7

105,105,10,5,105,105 09 48 10.0
105.105.10.5,10,5,10.5

10,3,10,3,10.3,10,3.10.3 1.0 45 9.5
103,10,3,10,3,10,3,103

20,20.20,20,20,20,20,20,20,20 12 54 10.8
20,20,20,20,20,20,20,20,20,20

20,15,20,15,20,15,20,15,20,15 0.8 5.1 9.1
20,15.20,15,20,15,20,15,20,15

20,10.20,10,20,10,20,10,20,10 08 43 9.7
20,10,20,10,20,10,20,10.20,10

20,5.20,5,20,5,20,5,20,5 0.7 4.0 8.7
20,5,20,5,20.5,.20,5,20.5 :

20,20,16,16,12,12,12.12.8.8 13 54 109
20,20,16,16,16,16,12,12.8,8

20,15,16,12,16,12,12,8,8.,6 1.6 6.2 108
20,15,16,12,16,12,12,8,8,6

20,10,16,8,16,8,12,6,8.4 12 6.1 11.6
20.10,16,8,16,8,126,8.4
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Table S.13: Empirical levels (%) and power (%) of the tost statistics LRb, MB, ML, CLb and EP: Empirical levels
based on 2000 replications: critical values based on 10,000 replications; power based on 2000 replications. L = 2, a
= 0.01; b = 033.

level Power
(b
Tests 4,7 N2l {33.33) (.33,.66) (33..59) (-33,1.65)
LRb 5.5.5,5 320 1.10 525 16.20 45.40
MB 2.00 1.05 485 1535 4395
ML 1.65 1.15 4385 1535 4395
CLb 0.00 1.20 490 15.65 4425
EP 1.05 485 1530 4395
LRb 53.5.3 350 025 200 4.40 10.75
MB 0.25 025 2.00 4.20 1030
ML 045 025 2.00 4.10 10,10
CLb 0.00 0.25 2,10 450 1030
EP 0.25 2.00 420 10.75
LRb 10,10,10,10 1.70 135 19.85 59.60 93.80
MB 155 130 19.05 58.715 93.90
ML 1.40 1.35 1995 59.80 93.80
CLb 1.10 135 1955 5930 92.80
EP 130 19.05 58.75 93.90
LRb 10,7,10,7 150 0.90 8.50 27175 6575
MB 0.85 0.85 935 28.05 66.40
ML 0.90 0.85 9.05 2795 66.20
CLlb 035 0.85 935 28.00 6635
EP 0.85 935 2805 66.40
LRb 10,5.10,5 3.05 130 525 14.25 3745
MB 1.15 1.15 4.70 13.65 3585
ML 1.45 1.20 5.15 1395 36.80
CLb 0.00 1.20 495 13.40 3635
EP 1.15 4,70 13.65 3585
LRb 103,103 2.50 0.15 130 340 9.50
MB 0.05 0.15 1.30 330 9.80
ML 025 0.15 1.25 335 9.75
CLb 0.00 0.15 130 335 9,65
EP 0.15 130 330 9.80
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Table 5.13 continued

LRb 20,2020,20 1.05 0.75 5395 94.60 160.00
MB 095 0.50 5270 94.55 100.0)
ML 0.80 0.75 53.80 94.60 100.00
Clb 0.75 0.75 5445 94.80 100.00
EP 0.90 5275 94.55 100.00
LRb 20,15,20,15 1.50 115 29.95 15.75 98.20
MB 1.5 1.15 29.65 7620 98.15
ML 115 115 30.10 75.85 98.05
CLb 025 1.05 3095 76.20 98.15
EP 1.15 29.65 7620 98.15
LRb 20,10.20,10 2.05 1.10 10.05 35.15 74.85
MB 1.25 120 1035 3545 75.15
ML 150 1.10 10.10 35.50 7520
CLb 0.05 1.10 1025 35.55 75.05
EP 125 1035 3545 1525
LRb 20.5.20.5 2590 1.10 4.85 1125 3105
MB 1.00 1.10 5.10 11.40 31.45
ML 130 1.10 5.00 1135 3120
CLb 0.10 110 450 1135 3120
EP 1.10 5.10 11.40 3145
LRb 20,20,10,10 130 0.80 3120 71.15 9850
MB 120 095 3485 8035 98.70
ML 0.85 085 3695 8l.10 95.70
Clb 0.90 1.15 4525 8550 99.05
EP 1.10 20.85 6930 9750
LRb 20,15,10,7 1.80 0.95 11.80 43.10 83.10
MB 0.90 0.90 17.70 51.7¢ 8750
ML 095 0.85 18.60 53.05 8820
Clb 030 095 2.5 6190 91.75
EP 1.10 6.45 2945 7445
LRb 20,10,105 270 1.20 4.60 18.15 5125
MB 1.25 1.20 6.75 24.40 58.75
ML 145 1.25 7.00 2525 59.65
CLb 0.45 1.00 13.00 36.90 59.65
EP 1.05 2.40 875 3725
LRb 205,103 250 030 135 425 1350
MB 0.20 0.30 3.00 8350 23.05
ML 030 030 320 920 24.70
CLb 0.05 050 620 15.10 3475
EP 0.20 03¢ 145 5.80
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Tablc 5.14: Empirical levels (%) and power (%) of the test statistics LRb, MB, ML, CLb and EP; Empirical levels
based on 2000 replications; critical values based on 10.000 replications; power based on 2000 replications. L = 2, @
= 0.05; b =033,

level Power
{b;.bx)
Tests LR P Y (33.33) (33,.66) (33,.99) (33.1.65)
LRb 55.5.5 935 5.65 18.85 4150 74.85
MB 115 565 1795 4095 74.65
ML 6.55 5.65 13.90 41.85 75.20
CLb 430 5.5 18,90 4135 74.60
EP 5.65 17.95 4095 74.65
LRb 5353 11.60 4.05 8.20 16.50 31.45
MB 3%0 395 8.70 16.05 3110
ML 525 4.05 8.15 16.45 3145
CLb 0.10 4.00 825 16.80 3110
EP 395 820 16.05 31.80
LRb 10,10,10,10 6.05 5.15 4395 81358 98.25
MB 555 5.00 44,00 81.60 98.35
ML ‘ 550 525 4418 8125 93.35
CLb 4.45 520 43.60 80.85 98.25
EP 5.00 44.00 81.65 98.35
LRb 10,7,10,7 750 4.80 25.08 54.05 86.55
MB 4.55 5.00 24.75 53.75 86.40
ML 520 4,80 2500 53.70 86.30
CLb 3.50 4,60 24.85 5390 86.10
EP 5.00 24.75 53.75 86.40
LRb 10,5,10.5 8.60 530 17.10 35.85 6490
MB 4.85 5.30 1655 34.85 6425
ML 550 535 16.95 3530 64.65
Clb 3.50 530 16.80 35.70 64.85
EP 5.15 16.55 34.85 6425
LRb 103,103 10.10 335 71495 15.25 2995
MB 2.80 325 7.80 15.15 29.75
ML 430 335 790 1525 2995
CLb 0.05 335 7.85 1535 30.05
EP 330 7.80 15.15 29.75
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Table 5.14 continued

LRb 20,20.20,20

LRb 20,15,20.15

LRb 20,10,20,10

LRb 20,5205

LRb 20.20,10,10

LRb 20,15,10,7

LRb 20,10,10.5

LRb 205,103

270
525
5.00
4.40

6.05
540
5.65
220

7.10
5.05
595
285

9.20
5.10

330

5.65
5.05
450
355

6.60
4.75
525
270

130
3.15

355

930

445
1.50

4.80
4,60
4,75
5.00
4.60

5.45
5.40
5.40
520
540

5.00

510
5.00
5.05

550
550
550
5350
550

450
450
440
435
4.85

455
4.60
4.70
455
450

4.90
5.10
5.05

470

345
3.80
3.5
370
345
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76.50
77.00
7625
75.65
77.00

5495
55.50
54.80
55.05
5550

29.85
29.95
29.70
2995
29.95

1350
14.05
1395
14,00
14.05

5530
59.10
59.40
63.10
5025
2895
35.70
36.00

4035
2275

1545
21.00
21.80
2590
11.00

7.10
1025
1035
15.00

99.00
$9.05
98.95
98.75
99.05

90.40
%050
9035
9055
9050

61.40
6120
6150
61.20
61.60

3095
3135
3115
31.10
3115

91.05
9230
92.70
9325
8895

65.45

7525
58.80

40.65
4750
4830
5295
32.80

1530
275

30.10
9.60

100.00

73.75
79.45
79.95
67.00

3475
4505
45.80
5295
2490



Table 5.15: Empirical levels (%) and power (%) of the test statistics LRb, MB, ML, CLb and EP; Empirical levels
based on 2000 replications; critical values based on 10,000 replications; power based on 2000 replications. L=2, a
=010, b = 033,

level Power
(b,.by)

Tests 1T 4, T Y (33.33) (33,.66) (33,99 (.33.1.65)
LRb 55.5.5 15.05 1045 29.65 56.45 £3.80
MB 12.25 10.45 2920 56,60 84.15
ML 12.00 10.75 29.55 56.55 83.60
CLb 9.90 10.75 3025 56.50 83.15
EP 1045 2920 56.60 83.40
LRb 5353 13.10 8.75 15.45 2145 45.15
MB 8.75 8.75 15.55 2715 45.15
ML 11.20 875 15.60 27.40 4525
CLb 6.90 8.70 15.85 2715 4525
EP 8.75 1555 21.15 45.15
LRb 10,10,10,10 11.85 980 5825 89.05 99.15
MB 10.65 995 58.25 8925 9315
ML 10.25 9.90 58.40 89.15 99.15
CLb .16 9.30 5830 8950 99.15
EP 995 5825 89.20 99.15
LRb 10,7.10.7 1290 2.50 37.15 68.00 9255
MB 9.60 10.20 3720 67.65 92.60
ML 1090 99< 37.10 671.75 92.65
CLb 9.40 10.15 37.00 6745 9245

1020 37.20 67.65 92.60
LRb 10.5.10.5 15.45 10,55 28.70 4890 76.50
MB 9.90 1030 28.50 4885 76.70
ML 1120 10.50 28.55 49.15 7655
CLb 925 1055 28.20 4885 7625
EP 1030 2850 4885 76.710
LRb 103,103 19.10 8.15 16,00 26.10 45,05
MB 7.20 8.10 ' 1595 26.15 45.00
ML 9.50 805 1595 26.10 4495
CLb 5.65 8.15 1550 26,10 45.00
EP 8.10 15.95 26.15 45.00
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Table 5.15 continued

LRb

20,20,20,20

20,15.20,15

20,10.20,10

20,5.20,5

20,20,10,10

20,15,10,7

20,10,10,5

205,103

10.50
10.45
9.85
955

1125
9.75
10.25
6.05

12.45
9.90
10.80
71.80

15.60
10.20
1155

9.60

1095
1035
10.10

8.40

12.45
920
9.90
725

14.00
9.05

7.45

16,60
7.85
9.75
5.15

1M

9.95
10.25
9.85
9.80
10.25

10.00
10.05
10,10
1025
10.05

10.15
10.00
10.10
10.15
10.00

10.60
10.65
10.55
1055
10.60

85.65
86.20
85.75
8530
8620

66.95
6730
66.80
66.90
6730

4255
42.85
42.55
42.85
4235

2335
2335
2340
2355

66.55
6955
7050
71.05
63.75

4090
4995
49.40
5025
35.60

26.40
33.70
3385
3450

12.10
19.80
20.05
2125
10.00

99.40
99.40

5290
6055
60.70
61.20
43,70

24.40
3445
3485
36.65

160.00
100.00
100.00
100.00
100.00

99.80
99.80
99.80
99.80
99.80

95.15
9530
9525
9520
9530

70.85
7105
7095
T71.00
71.05

99.75
9.75
99.75
99.75
99.70

9590
97.00
97.00
9736
95.05

82.75
87.05
87.05
8730
7990

4705
5740
51.70
59.65



PART HI

INTERVAL ESTIMATION FOR THE PARAMET:RS
OF
TWO PARAMETER
EXPONENTIAL AND EXTREME VALUE DISTRIBUTIONS
BASED ON CENSORED DATA
AND
SOME EXTENSIONS TO THE EXTREME VALUE REGRESSION MODEL
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CHAPTER 6

INTERVAL ESTIMATION FOR THE PARAMETERS OF THE
TWO PARAMETER EXPONENTIAL DISTRIBUTION BASED ON

TIME CENSORED DATA

6.1. INTRODUCTION

In chapter 4 the main concern was with testing the homogeneity of several scale
parameters of the two parameter exponential populations. In this chapter we deal with
interval estimation for the scale parameter of the two parameter exponential distribudon.
A general discussion is given by Lawless (1982). Recall the two parameter exponential

density function for time t to failure given by (2.13.3) is

£ = % exp {_(I-Tp)} 2 0>0 (6.1.1)

Inferences for the parameters of this 1~odel based on failure censored data have
been studied by many authors (Hsieh, 1981, 1986; Singh, 1985; Lawless, 1982). In this
case, exact estimation procedures for the parameters of the distribution in (6.1.1) are
availabe. When the data are Type II censored, 2r 8/8 ~ x%(2r-2) and 2n(@-p)/® ~ X2(2)
(See Lawless, 1982, P. 127), where fi and 8 are, respectively, tk. #MLEs of p and 6, and
r is the number of failures. Thus confidence intervals for the parameters p and © are
easily obtained from the above results.

Under time censoring, for the threshold parameter p, Piegorsch (1987) investigated

the peniormance of the likelihood based interval and an interval based on the F



distribution of a pivotal quantity by simulation studies. He concluded that both procedures
provide confidence intervals for p close to the nominal, with the F distribution based
procedure performing siightly better for small samples. For the scale parameter 6, he
examined the performance of the likelihood based interval discussed vy Lawless (1982)
and concluded that the upper tail probabilities are always greater than those of the lower
tail: the convergence of coverage probabilities moves slowly towards the nominal levels
until the sample sie reaches 25.

In this chapter we develop procedures for constructing confidence intervals for 6
which would provide, approximately, in small samples, equal tail probabilities and
coverage nrobabilities close to the nominal. In chapter 4, we used the marginal likelihood
to eliminate the nuisance parameter from the likelihood function for making inferences
about the parameter of interest. Herc, we introduce the conditional approach which is
another way of eliminating the nuisance parameter p from the likelihood, and develop
procedures based on the conditional likelihood. The likelihoods to be used in section 6.3
are discussed in section 6.2. The procedures based on the conditional likelihood to
construct the confidence interval for 8 are derived in section 6.3. The methods are
(1) a metk xd based on likelihood ratio.

(2) a mewnod based on skewness corrected likelihood score (Bartlett, 1953).

(3) a method based on the mean and variance adjusuments to the sign root of the
likelihood ratio (Diciccio, Field and Fraser, 1990).

(4) a method based on parameter transformation to the normal approximation (Sprott,

1973).
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The performance of these procedures with the usual likelihood based procedure examined
by Piegrosch (1987) is studied through simulations in section 6.4. Two examples are

given in secton 6.5.

6.2. LIKELIHOODS

Suppose n items are placed on test and the experiment is terminated after a fixed
time 7; for the ith (i = 1,...,n) item. The length of the experiment is now fixed, but the
number of lifetimes observed is random. Denote the observed lifetime as t; for the ith
item, The random variable T;, i = 1,...,n, are assumed to follow the distribution (6.1.1).
Define the set of observed lifetimes D = [ Min (t, 1;); 1 1< n } and its complement
by C. Denote: §, = 1 if § S ; and & = 0 if > W;. The §;, i = 1,...,n, indicates whether
the lifetime t, is uncensored or censored. From section 2.12.2, the likelihood function

under time censoring is

€D ieC

- 1 _ Ii_p _ Max('flp]-‘)‘}l
L) = = exp| - ¥ [_5-] Yy (_—9-—] .

where t;, = Min { t }, i € D. This has been shown by Lawless (1982, p. 131). In order
to restrict the number of parameters in the simulation study presented in section 6.4, we

consider 1; =1, i = 1,...,n. Thus
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L) = '51'“ exp| - % ["_;f’_ } -y [ Max(n,p)-p } . (62.1)

ieD ieC 0

Piegorsch (1987) examined the likelihood ratio based confidence interval for 8 using the
likelihood L(y, 6) given in (6.2.1). To perform inference on 6, we ¢liminate the nuisance
parameter p from the likelikood L(p, 6) by using the conditional distribution of r and the
failure times after the first, given t). If ;) =T, then r = G and no failures are observed.
If tyy <M, then Pty > 1) = exp[ -n(n-p)/® ] which is obtained from the marginal density

of ty given as

f}m(r)=%cxp[—[_t;_pJ} p<r<n.

Since 1)y is sufficient statistic for p, the conditional density f( tip-.t) iT | ;) is of

the form

(;
- -t
f(I(Z)"“’t(r); r ] t(l)) = Cr exp | - E L (l')e(l) _ E e(1) ,

ieD ieC

n - 1)

where C, =
(n - oL

and ty) S ... Sty <M, which does not depend on p. Thus

the conditional likelihood can be written as

= _1 - Wl | _ M=ty (6.2.2)
O = 7P| T % [—r} % [—e— ]

ieD ieC
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In fact, the random variables y; = t,)) - fqy 1 =l-.(r-1), can be treated as a random
sample of siz¢ (n-1) from the one parameter exponential distribution with (r-1) failures.
It is clear that the procedures based on y; are good since the likelihood L.(2) is

independent of the unknown nuisance parameter p.

6.3. CONFIDENCE INTERVAL PROCEDURES FOR 6
6.3.1. Likelihood Ratio Based Interval (LI)
Based on the likelihood L(p,0) in (6.2.1) the maximum likelihood estimates

(MLEs) fi for p and @ for © are undefined if r = 0. Whenr >0, fi = tay 8 = S/r, where

S=Y @i+ Max {(n-p), 0.
ieD ieC

Then the maximum log likelihood function is I(fi, 8) = - r (log & + 1). Under the
constraint & = €, the MLE i of p is also t;;). The maximum log likelihood function for

the true value of 6 is X(j5,9) = - ( r log 8 + 5/0 ). Using the estimates given above the

likelihood ratio (LR) 1s given by

LR = 2 [ I(71,8) - K{,8)) =2r[%—log{%]-1].

which has approximately chi- squared distribution with one degree of freedom. The ©

values that satisfy
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f

8 _ 2
2r 5 log Lﬁ] 1 [ < x,(D)

(6.3.1

are the approximate 100(1-t)% confidence limits for 6. Denote these limits by 6;; and
Oy such that 6;; <0 <6y
6.3.2 Conditional Likelihood Ratio Based Interval (CI)

Based on the likelihood L (8) in (6.2.2) the maximum conditional likelihood
estimate (MCLE) for 0 is undefined if r € 1. When r > 1, the MCLE of 8 is 6 = S/(r-1),
where $ is as given in section 6.3.1. The MCLEs of p remain t;, under the constraint 6

= @, or not. Thus the conditional likelihood ratio statistic is

e |18 —10e 18-
LR_ = 2(r-1) [.9_ log {‘é’} 1},

which is also approximately distributed chi- square with one degree of freedom. Thus the

0 values that satisfy

5 (6.3.2)

2r-1) g - log [EJ - 1 < 2,
are the approximate 100(1-0)% confidence limits for 6. Denote these limits by 6 and
8¢y such that 8¢ < 8 < By. This procedure is equivalent to method 2 of Lawless (1982,
P 108) based on a sample of size (n-1)} with (r-1) failures from a one parameter
exponential distribution.

6.3.3 Skewness Corrected (Conditional Likelihood) Score Based Interval (BI)

Bartlett (1953) proposed a procedure for constructing confidence interval for a single
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parameter based on the likelihood score. Suppose we are interested in constructing a
confidence interval for a parameter 6 and let /(8) be the log likelihood. Then d¥/d8 is the
likelihood score which is approximately distributed as normal with mean zero and
variance I(8) = E(d%//d6%). Thus, an approximate confidence interval for 6 can be obtained

by solving
al
T, = —NI, ==,
® - ®Ve :

where { is the appropriate quantile of the standard normal distribution. Bartlett (1953)
claims that this interval is asymptotically equivalent to that obtained from the MLE 8 of
® and also it has the property of providing asymptotically shortest intervals on the
average. Further, he has shown that asymptotically better confidence intervals can be
obtained by correcting the statistic Ty for skewness to the order O 2. Thus, if { is the
1000% point of the standard normal distribution then the 100(1-a)% approximate

confidence interval for 6, using skewness corrected score, is obtained by setting
)
Ty - X221 = ¢,

where ¥(0) is the third cumulant of Tj.

In the context of our problem, we take [ = /(B) as the log oi the conditional likelihood

(6.2.2). Using the log likelihood /., we obtain
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a4 e 8

Under the time censoring,

P(Si = 0) =1- P(s. = 1) = C-a, where a = (1]-[(1))/9.

Forie D,
-1, ¥; exp(-y/0)
E @} 8=1=["®Z dy;
! -E 8 (1-e™M)
_eaq- e % - ae™
1-e™)
and
forie C,

E(y;|3; = 0) = (n - tyy) = a6. Thus,
hence E(S) = 6 (n-1) (1-¢®).

Since Er-1) = X, E@) = 2, (1) = (n-1) (1-¢™®). From these results, we obtain
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£

1©) = E |- dil|_ (- (-e® _ Q
d8* 6 o

Y0) = E (%T / ]gﬂ = (2Q - 3a(n-1)e™%) / Qm.

where 2 = (n-1) (1-e¢™).

Thus, 100(1-&)% approximate confidence interval for 6 is obtained by solving

S -ay rl
- (r-1
— ( ) {2Q - 3a(n e }(g 1) =t C

Qlﬂ 6 Q3f2

(6.3.3)
or

$ - oy - 20220 IED L x g
6 Q3*

Denote the solutions by 65, and 6py; such that 8y < 8 < 8.
6.3.4 Adjusted (Conditional) Likelihood Ratio Based Interval (DI)

Diciccio, Field and Fraser (1990) developed a procedure for constructing
confidence interval for a scale parameter based on adjusted likelihood ratio by using an
approximate method of obtaining marginal tail probabilities of the distribution of the sign
square root of the likelihood ratio statistic. Suppose V = log(6/8) and the A; = (taytay®
fori e D and A; = (-t,)/8 for i € C, where 8 is as defined in section 6.3.1. Then the
log conditional likelihood /_ can be written as
Since I; A; = (r-1) as defined in section 6.3.2, the (V) reduces t0 {(V) =-(r-1) e V+V).
Tt is easily seen that [ (V) is maximized at V=0, and thus the conditional likelihood ratio
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n-l
L) =-1% A eV +r-1)V [,

i=]

statistic A can be written as A = 2(r-1)(e”V+V-1). Note that V = 0 implies 8 = 8. Denote

SR = —J!_\ , ¥Y<0

VA . V>0
Lv) = d';ffv) =(r-1)(e"V-1),
and
di
I, = ‘T =(r-1).
dvV® v

Following the procedure discussed in section 2.16.4, the marginal tail probability, for the

pivotal V, which is given by

- O(SR) + LN (6:3.4)
PV < v) = ®(SR) + ¢(SR) 3 1) on™"),

where ¢ is the density function of a N(0,1) variable. Then the 100(1-0t)% approximate
lower and upper confidence limits V; and Vy; of V can be obtained by equating the
expression in (6.3.4) to o/2 and to (1 - &/2) respectively. It is easily shown that the
100(1-0)% approximate confidence interval for @ is given as 8 exp(V;) <6 <8 exp(Vy).
Denote these limits by Op; and Bpy; such that O < 0 < Oy

6.3.5 Interval Based on the Cube-root Transformation of 6 (SI)

Sprott (1973) and many others have indicated that the distribution of § = 877,
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where € is the parameter of a one parameter exponential distribution, is closely
approximated by a normal distribution, even for small sample sizes. In our context we use
& = &7 based on the conditional likelihood (6.2.2). We can easily obtain that E(9) = ¢
and var(§) = 62/9Q, where Q is as defined in section 6.3.3. Thus, the quantity 3VO (3 -
0)/6, where Q = (n-1)(1- exp(-3)) and & = (-1, is approximately distributed as
N(0,1). Thus, the 100(1-t)% approximate confidence limits for © is obtained by solving
3VQ @-6)/6 = % {, where L is the 100a% point of the standard normal distribution. It is

easily seen that the 100(1-t)% approximate confidence interval for © can be given as

-3 -3
5 {1+ g <8<i§(1- g . (6.3.5)
3o Wo

Denote these limits by GSL and esu such that BSL <B< esu.

6.4 SIMULATION STUDY

In this section we study, through simulations, the performance of the confidence
interval procedures presented in section 6.3. IMSL (1987) random number generator
RNEXP was used to simulate two parameter exponential random variables with p = 1.0
and 6 = 0.5. Simulations were performed for sample sizes n = 5, 10, 25, 50 and degree
of censoring & = 0.5, 0.25, 0.1, 0.0. Note that when & = 0 we deal with complete samples.
The number of samples generated for each combination of n and & was taken as 1900.
The censoring mechanism was the same as discussed by Piegorsch (1987), that is, the

reliability at the time t, in the experiment, is given by R(t) = exp{ -(t-p)/@ }. The time 7
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to terminate the process was taken by setting R(n) = n. For all the procedures, we
produce average lengths, the tail probabilities and the coverage probabilities based on the
1900 samples. The results are given in Table 6.1. Our simulations showed that for a given
(n.r) combination all the results, except average lengths, of all the confidence interval
procedures are invariant with respect to the choice of p and 6. Therefore, we present our
results for only one combination of (,8). Note that the LI intervals are valid forr >0 and
CI, BI, DI and SI intervals are valid for r > 1. So, in simulations, for the LI intervals,
samples were taken such that r > 0 and similarly, for the CI, BI, DI and SI intervals,
samples were taken such thatr > 1.
Resuits

From Table 6.1, we can see that the usual likelihood based interval LI provides
the upper tail probabilities which are always larger than those of the lower tail even for
sample size as large as n = 25 and the coverage probabilities converge slowly towards the
nominal until the sample size reaches 25. This finding is similar to that of Piegorsch
(1987). The performance of the intervals CI and SI is similar to that of the LI for small
samples (n = 5). For moderate to large samples (n = 10, 25, 50) these intervals perform
well, although they show some tendency, in some instances, for the upper tail
probabilities to be larger than those of the lower tail. The interval DI shows some
behaviour opposite to that of LI, namely, that the lower tail probabilities tend to be larger
than those of the upper tail even for large samples (n = 25) and heavy censoring (x = 0.5,
0.25). For small n and large  ( for example n =5; £ =0.25 and n = 10; ® = 0.5 etc.) the

coverage probabilities fall short of the nominal coverage. The performance of the
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skewness corrected score interval Bl seems best in that it provides reasonably accurate
lower and upper tail probabilities and coverage probabilities close to the nominal even for
sample sizes as small as n = 5, except forn =5 and £ = 0.5. Forn =5 and x = 0.5 all
procedures perform poorly. For the LI interval, the results in Table 2 and 3 of Piegorsch
(1987) show similar performance. The reason for the poor performance is that although
samples arc obtained with average 50% censoring the actual percentage censoring,
because of the conditions r > O for the LI and r > 1 for the BI, CI, DI and SI, is more
than 50%. The effect of this diminishes as the sample size increases or the percentage
censoring decreases. Considering the lengths of the confidence intervals we find that the
mean of the average lengths is the smallest for the LI interval and largest for the DI
interval. The mean of the average lengths for the intervals CI, BI and SI are aimost
indistinguishable ( in the computation of the mean of average lengths we did not consider
n = 5 and © = 0.5). Thus, in terms of both holding nominal coverage probability and tail
symmetry, the interval BI seems to perform best. The usual likelihood interval LI
maintains, on the average, the shortest length. But it has the disadvantage that unless the
sample size is large it does not maintain the nominal coverage and yields asymmetric tail

probabilities.

6.5. EXAMPLES

Example I: Confidence limits obtained by all the methods discussed, are given
here for the transistor data (n = 34 transistors) considered by Piegrosch (1987). With a

fixed censoring time of 1 = 40 weeks, the observed lifetimes to the nearest weeks are 3,
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4,5,6,7,8,8,9,09, 10, 10, 11, 11, 11, 13, 13, 13, 13, 13, 17, 17, 19, 19, 25, 29 and 33.
Thus, r = 28 and under a two parameter exponential model, we obtain {i =3; 8 =17.464;
8 = 18.111. Choosing @ = 0.05 implies (1) =3.841 and { =1.96. For the 95%
confidence intervals for © we obtain 8y, = 12.321, 8;, = 25.917, 8y, =12.700, Oy =
27.805, 8, = 12.647, 8y, = 27.771, 8, = 12.830, By = 27.491, Bg; = 12.367 and gy
= 25.795. The lengths of the LI, CI, BI, DI and SI intervals are respectively 13.595,

14.385, 15.124, 14.661 and 13.428.

Example 2: The data set by Bartholomew (1963) is considered here. With a fixed
censoring time of 1 = 150 hours, 20 items were placed on lifetest and 15 items failed
with the observed lifetimes, in hours, 3, 19, 23, 27, 37, 38, 41, 45, 58, 84, 90, 109 and
138. Under the two parameter exponential model, we obtain fi = 3; 6 = 101.800 and 8 =
109.071. Choosing & = 0.05 employs x%(1) =3.841 and £ = 1.96. For the 95% confidence
interval for § we obtain 8;; = 63.834, 8, ; = 176.897, 8 = 67.371, By = 193.601, B
= 67.582, B, = 196.068, 8, = 68.681, By = 199.520, 8 = 62.879 and 8y, = 180.780.
The lengths of the LI,CI, BI, DI and SI intervals are respectively 113.063, 126.230,

128.486, 130.839 and 117.901.
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Table 6.1: Average lengths, lower and upper tail probabilities

and coverage probabilities of the confidence intervals
LI, Ci, Bl, DI and §I. p=1.0,0 = 0.5.

a=0.10 a =10.05
n T The

Procedures Length lower upper coverage Length lower upper ‘overage
5 5 LI 1.953 0.000 0.180 0.820 7150 0000 0.105 0.895
Ccr 3.956 0.000 0.063 0.937 7.150 0.600 0.033 0.967
BI 3.524 0.000 0.055 0.945 7.655 0.000 0.033 0.967
Dr 7.950 0.000 0.042 0.958 15.867 0.000 0.025 0.975
SI 4.518 0.000 0.062 0.938 9.723 0,00 0.030 0.970
25 LI 1.231 0005 0.156 0.839 1.991 90.003 0.185 0.893
ClI 2.995 0.056 0.075 0.86% 4.992 0.015 0.041 0.944
BI 2.817 0.046 0.058 0.896 537 0.010 0.018 0972
DI 5.219 0.077  0.05% 0.867 9.659 0034 0.028 0.938
SI 3.258 0.058 0.068 0.873 6.158 0.013 0.038 0.949
1 LI 0.894 0.013 0.167 0.820 1.193 0.008 0.107 0.884
CI 1.724¢ 0.050 0.076 0.874 2549 0.021 0040 0.939
BI 1.764 0.049 0.030 0.910 2.827 0020 0.011 0.969
DI 2416 09068 0.056 0.876 3.862 0.039 0.028 0.933
SI 1.806 0.049 0.074 0.877 2822 4wz 0.039 0.941
0 LI 0.716 0.010 0.167 0.823 0928 0.004 0.107 0.889
CcI 1.052 0.035 0.075 0.890 1.384 0.015 0.040 0.945
BI 1.308 0.042 0.047 0.912 1.720 0.023 0.024 0.954
DI 1204 0.046 0.056 0.898 1.607 0.024 0.028 0.948
sI 1.065 0.035 0075 0.890 1422 0.015 0.040 0.945
10 5 LI 1.143 0.015 0.112 0.873 1.631 0.003 G.n64 0.931
cr 2289 (.052 0.052 0.896 3.642 0.026 0.027 0.947
BI 2,089 0044 0.052 0.903 3.671 0.020 0.025 0.955
DI 3.693 0.086 0.042 0.873 3.975 0.038 0.020 0.942
Sr 2.452 0.048 0.051 0.901 4354 0.024 0.024 0.952
25 LI 0.693 0.022 0.103 0.875 0.884 0.010 0.058 0.932
CI 0.957 0.054 0.052 0.894 1217 (4.02¢4 0.027 0.949
BI 0.954 0.051 0.048 0.901 1242 0.02¢ 0.019 0.957
Dr 1.102 0.073 0.042 0.885 1494 0.037 0.020 0.943
SI 0.975 0.057 0.050 0.892 1.246 0.023 0.026 0.951
1 Ll 0.572 0.020 0.110 0.870 0.715 0.010 0.063 0.927
cI 0.700 0.046 0.058 0.895 0.882 0.021 0.029 0.950
BI 0.722 0.050 0.042 0.908 0.923 0.022 0.020 0.958
DI 0.749 0.058 0.044 0.897 0946 0.029 0.023 0.948
SI 0.709 0.045 0.056 0.898 0.896 0.020 0.028 0.952
0 LI 0.516 0.020 0.111 0.369 0.641 0.009 0.065 0.926
cI 0.611 0.038 0.059 0.903 0.762 0.019 0.029 0.952
BI 0.626 0.044 0.042 0.914 0.821 0.023 0.022 0.955
DI 0.646 0.045 0.045 0.909 0.807 0.024 0.023 0.953
SI 0.613 0.038 0.059 0.903 0.767 0.018 0.029 0.953
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Table 6.1: Continued

a=10.10 a = 0405
n T The

Frocedures Length lower upper coverage Length lower upper coverage
25 R LI 0.519 0.023 0.074 0.965 0.643 0.014 0.038 0.948
cr 0.609 0948 042 0.910 0.758 0.023 0.022 0.953
BI 0.603 0.046 0.042 0912 0.755 0.623 0.021 0.956
DI 0.642 N065  0.03% 0.900 0.801 9.032 0.017 0.951
sI 0.611 0.046 0.040 0.914 0.763 0.024 0.022 0.954
25 Ll 0395 0.027 0.078 0.895 0.481 0.013 0.038 0.949
cl 6432 0.043 0.046 0.912 0.527 0.023 0.019 0.958
Br 0.43¢ 0.046 0.042 0.913 0.533 0.023 0.017 0.960
DI 0444 0.053 0.038 0.908 0.543 0.028 0.017 0.955
s7 0433 0.042  0.044 0.914 0.529 04022 0.020 0.958
A LI 0.351 0.625 0.083 0.892 0.425 0.009 0.044 0.947
cl 0376 0.040 0.055 0.905 0457 0.018 0.026 0.95%
Bl 0.382 0.048 0.047 0.905 84656 0.019 0.022 0.959
DI 0.385 0.047 0.046 0.907 0468 0.023 0.021 0.956
s7 0.378 0.040 0.054 0.906 0.459 0,018 0.025 0.957
0 LI 0327 0.022 0.083 0.896 0396 0.007 0.044 0.949
ClI 0.348 0.040 0.055 0.905 0422 0.015 0.025 0.960
Br 0.357 0.047 0.045 0.908 0433 0.018 0.022 0.960
DI 0.355 0.047 0.047 0.906 0.431 0.0is 0.023 0.959
Sr 0.349 0.040 0.055 0.905 0423 0015 0.025 0.960
5% 5 LI 0.343 C.028 0.078 0.894 0.416 0010 0.038 0.952
cr 0.367 0.046 0.051 0.903 0445 0.022 0.027 0.951
BI 0.366 2.046 0.048 0.906 0.445 0022 0.027 0.951
DI 0.375 0.056 0.046 0.898 0.455 0.027 0.025 0.948
SI 0.368 0.045 0.051 0.904 0446 0.021 0.027 0.952
.25 LI 0.272 0.027 0.078 0.895 0328 0.015 0.039 0.946
CI 0.284 0.041 0.057 0.902 0.342 9.018 0.027 0.955
BI 0.285 0.043 0.055 0.902 0344 0.018 0.025 0.957
DI 0.288 0.048 0.052 0.900 0.347 0020 0.024 0.956
SI 0.284 0.041 0.056 0.903 0.343 0.019 0.025 0.956
.1 LI 0.246 0.03¢ 0.079 0.887 0.296 0.016 0.037 0.947
cI $.255 0.045 0.054 0.901 0.306 0.022 0.026 0.952
BI 0.256 0.047 0.050 0.903 0.309 0024 0.024 0.952
DI 0.257 0.050 0.050 0.900 0301 0.027 0.023 9.950
SI 0.265 0.046 0.053 0.901 0307 0023 0.024 0.952
0 LI 0.231 0.028 0.075 0.897 0278 0.013 0.936 0.951
CcI 0.239 0.040 0.058 0.902 0.287 0.017 0.026 0.957
BI 0.242 0.044 0.050 0.906 0290 0.021 0.024 0.955
DI 0.241 0.044 0.051 0.905 0289 0.021 0.024 0.955
SI 0.239 0.040 0.058 0.902 0.287 0.017 0.026 0.957



CHAPTER 7

CONFIDENCE INTERVAL SSTIMATION FOR THE PARAMETERS OF

EXTREME VALUE MODELS UNDER FAILURE CENSORING

7.1 INTRODUCTION

The previous chapter describes several interval estimation procedures for the scale
parameter of the two parameter exponential distribution under time censoring. This
chapter concerns setting approximate confidence intervals for the parameters of the two
parameter extreme value distribution as well as the extreme value regression model with
failure censored data. A number of procedures exist for the construction of confidence
interval for the location- scale parameters of an exmeme value distribution having pdf
(2.13.5) for failure censored data ( Mann, Fertig and Schefer, 1971; Mann and Fertig,
1979; McCool, 1970, 1974; Lawless, 1978, 1982; Mann, Schefer and Singpurwalla, 1974
). Mann and Fertig (1977) proposc confidence intervals based on linear invariant
estimators. The linear invariant estimators rely on tables and the critical values for the
relevant pivotal quantities need to be evaluated by simulations. However, distributions of
the pivotals depend only on n and r ( n is the sample size; r is the number of failures )
and they tabulate percentage points for 3 <r < n < 25. McCool (1970, 1974) gives similar
types of tables for pivotals employing maximum likelihood estimators (MLEs). All these
methods are exact but they require extensive tables. Lawless (1978, 1982) proposes a
conditional approach whic., is also exact, but it requires extensive computations involving

numerical integrations. For complete samples Bain and Engelhardt (1931 propose an
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approximate method which is reasonably simple to use. Peers and Igbal (1985) develop
a procedure based on Fisher-Cornish expansions in a similar situation. Relevant previous
work on regression analysis based on the extreme value distribution with failure censored
data includes Nelson and Hahn (1972, 1973); Lawless (1976, 1982) and McCool (1980).
Nelson and Hahn (1972, 1973) provide bes: linear unbiased estimates and simple linear
unbiased estimates and approximate confidence limits for the parameters of exreme value
regression mode! with failure censored data. Lawless (1976) considers the power law
model and uses the conditional approach to provide the confidence interval estimates for
the power law model parameters. Lawless (1982) preserts a theory for exact confidence
limits for the parameters of the extreme value regression model, which require extensive
computations involving numerical integrations. For a similar type of problem, McCool
(1980) develops procedures based on appropriate pivotals whose distributions depend
upon the sample sizes and the number of failures. These procedures are applicable only
to equal sample sizes and to equal number of lifedmes. Recently, Diciccio, Field and
Fraser (1990) propose an approximate method based on mean and variance corrected
signed root of the likelihood ratio statistic in constructing confidence intervals for the
parameters of location- scale models.

In section 7.2, the maximum likelthood estimators of the parameters for a single
sample from the extreme value model are reviewed. In secton 7.3, the exact and
approximate cxpected Fisher information matrices for the MILEs of the parameters of both
the two parameter extreme value distribution and the extreme value regression model with

failure censored data are obtained and compared. The elements of approximate expected
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Fisher information matrix have mathematically and computationally simple expressions.
Cox and Reid (1987) give a general procedure for the construction of orthogonal
parameters. Bv using this approach we obtain explicit expressions for the asymptotic
variance-covariance of the MLEs of the parameters in section 7.4. For the parameters of
interest various interval estimation procedures are developed in section 7.5. These include
a method based on asymptotic properties of the MLEs, a method based on the likelihood
ratio statistic, a method based on mean and variance adjustments to the signed root of the
likelihood ratio statistic and a method based on the likelihood score corrected for bias and
skewness. We then compare them in terms of average lengths, tail probabilities and
coverage probabilities by simulations. These procedures are extended to the extreme value

regression model in section 7.6.

7.2 MAXIMUM LIKELIHOOD ESTIMATION
7.2.1 Two Parameter Extreme Value Distribution

Consider a sample of size n from an extreme value distribution with pdf (2.13.5).
Let Y; denote the jth ordered observation. Suppose the first r smallest observations are

observed. The log likelihood, apart from an irrelevant constant, is

| Yi-u Y. -u
u,b) = -rlog b + 2 i E E* exp |4 , (7.2.1)
j-l b j-l b

where
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Y- W, = Yy W; + (n-r) W,

j=1 =1

As discussed in section 2.2, the maximum likelihood equations are given by

a _ 1 Yi-u (1.2.2)
= __ * - =
i P ( b ] r

A _ 14| ¥ S P SN R R P (723)
&'F%‘[b]cm(b ,-%b i e

From (7.2.2), we obtain

u-blog[iz' exp (=L )] (72.4)
=l

Substituting the value of u in equation (7.2.3) yields

3" Y exp (—) ,

j=1

J - E

Y expd)
3

J=l

(7.2.5)

~ |._."<
Q“‘)
II

The MLE of the scale parameter b, denoted by b, is computed by solving equation (7.2.5)

iteratively. Having obtained b, the MLE of u is calculated from (7.2.4) which is given by

192



. Y,
i = b log [l T exp (D) ] (1.2.6)
r b

J=l
7.2.2 Extreme Value Regression Model

We consider the regression model in which the location parameter u is a linear
combination of the regressor variables X;.,....X,, such that u(X) = B,X; + ... + B X, with

X, = 1, where B = (B;,....B,)" is the vector of m regression coefficients to be estimated

from the available data. The log likelihood (7.2.1) can now be written as

IBDH) = -rlogd + Y, ( Yf';{iﬁ ]_ $ exp [Yf';‘ﬁ ] (7.2.7)

j=1 J=1

where X8 = B,X;; + B,Xj, + ... + ByXjn- The maximum likelihood equations are

m™jm-

al 1 Y-X8 4 (7.2.8)
o= * X I i-Y X |=0
3 %1 » EXP [ 5 ] EI: Jp

for p = 1,....m, and

% - % E- (5—})@ ]cxp [Yj';{jB ]_ i (Yj-;fﬁ ]_ rle0. (7.2.9)

j=l j=1
Solving the above (m+1) equations simultaneously yields the MLE of B,,...,.5,, and b.

Denote these estimates by By,.... B, and b respectively.

7.3 FISHER INFORMATION MATRIX

7.3.1 Two Parameter Extreme Value Distribution
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From the log likelihood (7.2.1), the negative mixed partial derivatives are obtained

as follows:

and

2 o || ¥u Yi-u Y;
-3z (0 e £ 0 )

Let Z; = (Yju)b, j = 1,1, then using the exact expression for the terms E(Z,

E(exp(Zj)), E(Zj cxp(Zj)) and E(ij cxp(Zj)) given in section 2.14, we obtain

p2E| -0 |o4- Sl Call TR S G
[ wu? ] % 2 5-1 ) (n-j+s)?

200 - 1. A s-1 (J-1) @=y-log(n—j+s)) t _
’ E[ WJ R 2(1) [ IJ (n—j+s)* ’

=1 s=1

and
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L

’

1

r

J=1

j (X_-2) + 2-y-log(n-j+s5)?

E (_1)&‘-1

s=]

)
I

i-1
s-1

J .
E (_1).5‘-1 (Jq'l
sw]

s-1

(n=j+s)?

y+log(n—j+s)
(n=j+s)

(7.3.2)

where ¥ = 0.5772... is the Euler’s constant. It is clear that the exact expected values of

these mixed partial

Approximate but very

derivatives are mathematically and computationally messy.

accurate expected values can be obtained by using the approximate

expressions of E(Zj), E(cxp(Zj)), E(Zj cxp(Zj)) and E(sz exp(Zj)) given in section 2.14.

The approximate expected values are

b2 E _a_z,W
auz)

\

pE| - 0L
oudb
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2 d.
bZE{-a_i.J-E‘ (2+logtj)(tjlogtj+.f)

ob j=1 J
r d.
-E (2]ogrj+._; y-r.
J=1 tj

It is easily seen from (7.3.2) and (7.3.3) that A =1,

d.
c~¥r ¢z log ¢; + 2_:)

j=1 J
and (7.3.3)
. 4 < 4;
J«Y¥" @ +log) (rjlogrj-»t_j) -J_}:“f (210gr,--?) -r

J

For complete sample, we replace r by n and obtain

A .+ Y4
BE|-Z =% E J =
[ ou? ] ng |:cxp( b ]] "

196



w s \
."l yj-u ‘)yJ-u yj-u
PRI (£ R 8
b E[ ?]_,};{ E|LL D LA (7.3.9)
yj~u
-2 _-n
~ &)

where K = 7%/6 + (1-y)>. The exact and approximate values for C and J obtained from

(7.3.2) and (7.3.3) respectively, are given for various selected combinations of (n,r) in

Table 7.1.
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Table 7.1
Exact and Approximate values of C and J for a single sample; n = sample size; r =

number of failures.

Exact Approximate
n by C J C J
5 5 2114 9.125 218 9179
5 3 | -0689 4447 0632 4382
0 | 10 | 4228 18250 4283 18221
10 7 | 0630 9655 059 9505
10 5 | 2385 7721 2352 7.564
10 3 | 2913 6979 293 6830
20 | 20 | 8456 36500 8497 36396
20 | 15 | 028 20329 0268 20113
20 | 10 |-5100 15068 5082 14.849
| 20 5 | 6177 13829 6153 13.624
30 | 15 | 7824 22304 7810 22151

As can be seen, the exact and approximate values are similar. As defined in

section 2.3, the Fisher information matrix is given by
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C . (7.3.5)

7.3.2 Extreme Value Regression Model

From the log likelihood (7.2.6), we obtain

94 1 ;X
=% X X i’y
aBPEBq b2 2'1 ip ig ©XP [ 5

J-

3% 1 Yi~X$ YXB| o
- = _ * Y J 1 J ) - X.
Wk X%, P e Y X,

J=1

and

- ﬂ =1 )N YiXp +2 Y X
_ 2w | NXB | r
1525

Since Z; = (Y;-u)/b = (Y. j-)g-B)/b, using the approximate expressions for E(Z;}, E(exp(Z;)),

E(Zexp(Z;) and E(Zexp(Z)) given in section 2.14, we obtain, for p, q = 1,....m,
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/
= he
qu'bE |3 ] E ip JQJ'
\ P
C-sz( il =y X (1+1ogr)+i-zrjx.
P \ '3‘[3—3— i 15 20| =P
and

J=b2E -3_2’
ab?

d d.
= ¥ (2+log 1) (5 log 1 _r;) -Y Qlog :j—_;) -r.

ful j=l .
I J e i

Then the Fisher information matrix, approximately, is given by

Ap - - - A G
I - i . . . . - . . (7.3‘7)
b2 . . . . . .
Amg - - .« An. C,
a6 . . . ¢, J

For the complete sample, for p,g = 1,...m, and j = 1,....n,
Ag=Z Xip Xie
G, =X X;, (1-y), and J = K,

where K is as defined earlier. These results concur with the results of Lawless (1982, P.

301).

200



7.4 ASYMPTOTIC VARIANCE-COVARIANCE OF THE MLEs
7.4.1 Two Parameter Extreme Value Distributioa

Following section 2.4, the asymptotic variance-covariance of the MLEs of the
extreme value distribution parameters can be obtained by inverting the Fisher information
matrix as defined in (7.3.5). In this section we employ the orthogonal approach discussed
by Cox and Reid (1987) to obtain explicit expressions for the variance-covariances of the
MLEs of the parameters u and b.

Orthogonality is defined with respect to the expected (Fisher) information matrix.
A parameter A orthogonal to the scale parameter b is obtained by solving the partial

differential equation ( equation (4) of Cox and Reid, 1987)

E[-ﬁ]yhs[-ﬂ].
ou? | ob Judb

where u = u(A,b); that is

Adudb=-C, (7.4.1)
where A and C are as given in section 7.3 which do not depend on the parameters u and
b. Thus, the solution of the differential equation (7.4.1) is casily given by

A = Au + Cb. (74.2)
Now, we express the log likelihood function (7.2.1) in terms of the parameters A and b.

Since A =T, as shown in section 7.3, we have

201



r | rY,-A+Ch rY.-A+Ch
l(l.b) =-=r logb + 2 [.r_{........__] - Z' exp { J }' (7-403)

j=1 rb j=1 rb

From (7.4.3), we obtain

) o) _ 1 2' exp rYJ- -A+Ch
Nz r2pr G rb |

and
rY.-A rY.~\ rY .-A+Ch
23 )
ob be jm r r T (7.4.4)
- 2 i rYj-l _ r
-b_z j=1 rb ?
Thus,
prE{ - o lye, oL
A" ) P o
9%
b’ E [ - =0
aAdb y, (7.4.5)

2 2
sz[_a_l_}d_c_’
ob? r

where J and C are as defined in section 7.3.1. Denote the MLE of A by & and J - C3fr by
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B. Then we obtain asymptotically

Var(d) = = rb*,

(7.4.6)

and
Cov(A,b) = 0.
Now, from the equation (7.4.2),
Var(@) = [ Var(h) + C* Var() 11
= b? (1+ C¥B)/r (7.4.7)
and
Cov(@b) =( Var (}) - P Var(@) - C* Var(b) )2rC
=- C Var(d)/r=- b2 C/B . (7.4.8)
For complete sample, we have
Var(h) = nb%
Var(b) = 6b%/an;
Var(§) = 6Kb%/nn®
and
Cov(d,B) = - 6(1-y)b¥nr’. (7.4.9)

These results for complete samples were also given by Nelson (1982, P. 337).
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7.4.2 Extreme Value Regression Model
As obtained in section 7.4.1, the orthogonal parameter lp is given by, forp =
1,....m,

A, =% A, B, +bC,. (7.4.10)

sw]

By using the matrix notation, the expression in (7.4.10) can be written as

. A = AB + bC, (7.4.11)
where A = (A;,...A)" B = (By....B,,) and the matrix A = (Ag)mxm and the vector C =
(C}r--Cyp)” are as defined in section 7.3.2. In terms of the parameters A = (A;,..,A,,)" and

b, the log likelihood (7.2.6) can now be written as

IAb) =-rlogb + Y {._..._Yj-fjl +QJCJ‘E. CXP{ Yj-fjl "'QJ'CJ

jm=l
(74.12)
where QA = 2 Q;s A Qs = 2 Xk Prss s,k =1,..,m, and the matrix P = (B}

is the inverse of the matrix A given in (7.4.11). From (7.4.12), we obtain, for p,q =

1,...m,
al = 1 E! Q ex j- ] + Q C - é Q
D |5 P J & S|
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=1\ b
Thus,
2| o A |op L p2E|- P |-
’ E{ axpaqu £ dA.,db
and

205



v
sz[-.a_iJ=B=J—C’A'1C.
b

where P, J and C are as defined in section 7.3.2. As stated before, by inverting the Fisher
informatcon matrix of the maximum lkelihood estimators 11,...,1,“ and 5, we obtain,
asymptotically, Var(b) = b¥/B; Var() = b%P"! = Ab% Var(f) = b? [ Al + A'lCC'A/B
] and Cov( f,5) = b?A"'C/B, where A and C are as defined in section 7.4.2.

When r = n, Var(b), Var(ﬂ) and Cov(B,B) are almost numerically identical to the

corresponding complete sample results of Lawless (1982, P.302).

7.5 INTERVAL ESTIMATION PROCEDURES FOR THE LOCATION AND
SCALE PARAMETERS OF THE TWO PARAMETER EXTREME VALUE
DISTRIBUTION
7.5.1 Intervals Based on Asymptotic Properties of the MLEs (AI)

Following the interval estimation procedure 2.16.1 described in chapter 2, the

approximate 100(1-0)% confidence interval for the parameter b is given by

b-CVar B <b<b + L War (), (7.5.1)

and that for the parameter u is given by

2-CWar @ <u<a-+§var @, (75.2)

where £ is an appropriate quantile of 2 standard normal random variable and § and b are
the MLESs of u and b respectively. Var(i) and Var(b) are as defined in (7.4.7) and (7.4.6)

respectively. Using the expressions for Var(i) and Var(b), we obtain
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B(1-WWB)Y<b<bhb(1+WB). (7.5.3)

and

ﬁ—cBIM cu<i+Ub |1+C“/r3. (7.5.4)
r r

Denote these limits by bap, bay» 84 and uay such that by <b <bysyand uy <u<
UAu.
7.5.2 Intervals Based on Likelihood Score Corrected for Bias and Skewness (BI)

Consider the log likelihood function (7.4.3). Define

o o4 2l
IL,=-El 2% |;L,=-E <1, =-E| 2%

and Iy 5 = Ly - Bay / L -
Suppose that we are interested in constructing confidence interval for the parameter b in
presence of the nuisance parameter A. Then from section 2.16.3, the adjusted score

statistic

where a = ()" and ¢ = -y 13 (s V2, has asymptotically standard

normal distribution. As discussed in section 2.16.3, the approximate 100(1-00)%

confidence interval for b can be obtained by solving
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Ty -B(Ty) - Ky(b) (16 =2 &, (7.5.6)
where { is an appropriate quantile of a standard normal distribution, B(T}) is the bias of
T, of order O(n™") and K,(b) is the third cumulant of T, of order O(n"/?). As shown in
section 7.4.1, A and b are orthogonal and hence I, = 0. Thus,

boa = Ir € =0,

1 -1
BTy =- P _g| 2 ‘2 + 0(n™Y 7.5.7)
2‘/[bb dbd\

A el g )b

J=l

i= (- Cbyr,
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Y; . C
A=A = 1 3 * expl-L+=
A(B) = rb log - exp[b r] ,

j=t
B(Ty) = B2,
Ki(b) = (2D - 6B)/B*?
and

D=F-3CG/r+6Ch+2C/2.

The quantities B and C are as defined in section 7.4.1 and the quantities F and G are,

approximately,

3d;
F=%" (fjlogfj*'—zr-{-}((logrj)z+610grj+6)
J
r d.
- -1 |-
3 z 2logf; - 2r
J=l f
and

d.
G=Y" (tjlogtja-_{
j

Denote the limits obtained from (7.5.6) by bgy and bgy such that bg;, < b < bgy.

d.
logt, + L (+4C.
i

For the construction of confidence interval for u, it is necessary to deal with the log

likelihood I(u,b) given in (7.2.1). For this case,
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and [uu.b = I\:u - Izubl II:)b .

Define the score statistic

a ol .o ol

T _—
u qu ob

where

a' =W, pPandc! = -y Uy ) Uy )
As we described above, the approximate 100(1-c)% confidence interval for u is obtained

by solving

K3(u)
6

T, - B(T,) - G-n=tL, (7.5.9)

where B(T,) is the bias of T, and K;(u) is the third cumulant of T,,. Using the expressions

of B, C, F and G given in this section we obtain,

L, = 6% I, = ClH%, I, =Ji%,

c? - o, - C?
I = - = b, T, = b -—),
e [’ 7 ]’ i A

_aai =1 3 cxp[yjru ]— rf{, (75.10)
u
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al 1 . YJ-u Yj-u r Yj-u (7_5_1 l)
—_ = _ - cxp - - — - r »
b 5 ,21[ b } ( b ,21: b

2
B(Tu)=_[c-%ﬂjju (r-_c}__) ‘ (7.5.12)

and

2 32
Kyw) = {r -3829 .5 & 620 + &P @p }a <

5 )

(7.5.13)
Note that equation (7.5.9) involves the nuisance parameter b which we replace by b(u),
the maximum likelihood estimate of b for given u. This is obtained by setting
olfob = 0. (7.5.14)
However, b(u) cannot be given explicitly from equation (7.5.14). Therefore the asymptotic
100(1-0)% confidence interval for u is obtained by solving (7.5.9) and (7.5.14)
simultaneously. Note the quantities B(T,,) and K5(u) do not depend on the parameters u
and b. Denote B(T,) +K;(u) (£2-1)/6 by K. Then equation (7.5.9) can be written as
T,=Ko2{,

which in turn can be written as

j=l

)3y exp(fff—u]—r=<xoig) r__?; , (7.5.15)
b

Now, from (7.5.10) we obtain
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¥ expy; /5
u=blog i : (1.5.16)

C2
-r Ko £ O Ir_f. |

Putting (7.5.16) in (7.5.15) yields two equations which involve only b. The two solutions

obtained from the resultant equations are then put in (7.5.16) to produce the confidence
liniits for u. Denote these limits by up; and ugy; such that ug < u < ugy.
7.5.3 Intervals Based on Likelihood Ratio (LI)

This procedure has been reviewed by Lawless (1982) for constructing confidence
intervals for the extreme value distribution location and scale parameters with censored
da'a. Now, the log likelihood function in terms of the parameters u and b is given in
(7.2.1). Then, as described in section 2.16.2, the likelihood ratio statistic (LRy) for testing
bis given by LRy = 2 [1(3,b)-X(T,b)], which is asymptotically distributed as chi squared
with one degree of freedom, where I(,b) is the unrestricted maximum log likelihood
function and I(G,b) is the restricted maximum log likelihood function. & = fi(b) is a

function of b obtained by setting 9//du = 0. In our context, we obtain

Jj=l

LR, =2 [r log(b/b) + i {ﬁb'_ﬁ _ Yu ” (75.17)

where
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i = b log [i T exp(Y, /b) ] (7.5.18)

r e

The b values that satisfy
LRy, = Xt (1.5.19)
where fu ol is the (1-c)th chi square quantile with one degree of freedom, are the
approximate 100(1-a)% confidence limits for b. Denote these limits by by, and by, such
that by, < b < byy,. Note that the expression in LR,, involves only the parameter b when
we replace & by its estimate given in (7.5.18). Thus the equation (7.5.19) can be readily
solved iteratively for the values of b.

For the construction of confidence interval for u, the necessary likelihood ratio
statistic is LR, = 2 [/(,b) - ¥u,b)], where b = b(u) is the value of b that maximizes the
log likelihood function (u,b) for a given value of u. This value for b can be obtained by

setting dl/db = 0. In our context, we obtain

,
. r{y-a v- Y-
LR, =2|:rlog(blb) -r+2[._’__. - Y_,-u }+2' exp| ‘ ]}
b

=l b =l \ b
(7.5.20)

and

ol . | Y Y;-u A Yi-u (7.5.21)

— = - L |- b.

% E[]’“[JE )]
Thus the u values that satisfy
LR, = 12(14)(1) (7.5.22)
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subject to 31/ob = 0, are the approximate 100(1-a)% confidence limits for u. Denote these
limits by uy; and uyy such that uyy < u < ugy. Not: that the value b = b(u) cannot be
expressed explicitly as a function of u, from the equation (7.5.21). Therefore, 10 obtain
the confidence limits for u, we need to solve the equations (7.5.22) and (7.5.21)
simultancously.

7.5.4 Intervals Based on Adjusted Likelihood Ratio (DI)

Diciccio, Field and Fraser (1990) derived a procedure based on an approximation
to the distribution of the signed root of the likelihood ratio statistic for constructing
confidence intervals for the location- scale parameters of the extreme value distribution
having pdf (2.13.5). Suppose the log likelihood function in terms of u and b is given by
(7.2.1). Define
V, = (u-i)/, V, = log(b/b) and the quantities
Aj =(Y j-ﬁ)lﬁ. j = 1,....T, whose distributions are parameter free. Then the log likelihood

(7.2.1) reduces to

r
-V, + z; P; - 2; exp(P; ) , (7.5.23)
i J=

Kv,,V,)

where P, = (A;V) exp(-vy), j = L,..T. Since @ and b are the MLEs of u and b
respectively it is clear that (V,,V,) attains its maximum at V = (V,V,)" = (0,0 =0. So
we denote the unrestricted maximum log likelihood function by /(0,C}. X the parameter
b is of interest then the likelihood ratio (Ay) can be given as

A, =2 [10,0) - I(V,, V)], where ¥, is the value of V, that maximizes the log likelihood

K(V) for a given value of V,. The value for V; can be obtained by setting 3l/oV, = 0.
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Define

-fA, . b<b
E.bﬂ;.

Now, the marginal tail probability of v, is, approximately, given by

SR, =

p(V,Sv,) = O(SRy) + G(SRYIs,1 + O(™7 ) . (75.24)
where & and ¢ are respectively the distribution function and the density function of a

standard normal random variable and

. 1 I ] 0 I 12
S b = o4 - — 1 »
SRy 1, (VW) (-1, V.V )R

= ol
lb(Vl,Vz) = =17
2 lv,=v,
> 3%
Iw(Vlvvz) == —a—z-
|
1 lv,=p,
and

I° is the observed information mawix. In our context, we obtain

r
Ay =21V, - Y (P-A) [, P; = (4;-Ve ?,
j=1

215



qu(vlavz) = (E. eP‘l Je- HAE »

J=1
o oo .
e W
0 92 . A,
Ly = - = A.e’
Viub W veo %-:l i
and
IO = - azl = 2- A-2 eA; . r
V:bb §V25V2 e T i .

The approximate 100(1-)% lower and upper confidence limits V®, and V¥, of V, can
be obtained by setting the expression (7.5.24) to /2 and to (1-0/2) respectively. It is
easily shown that the approximate 100(1-0)% confidence interval for the parameter b is

given by

b b
be*<b<be.
Denote these limits by by, and bpy such that by, <b < byy.
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As discussed above, for the construction of confidence interval for the parameter u, the
approximate marginal distribution of the pivotal V, is given by
P(V, < v;) = ®(SR,) + §(SR)) (§",)) + O(@*?), (7.5.25)

where

A, = 2 [HO00)-KV,. V)l ,

-\/I.uqi
‘ A, . owi

SR

1 012
s;=L i ,
SR, LV, [~ L (V. V )12
LWV = |
1 VZ-VZ
. 9%
Ibb(VI,V2) = _2 »
aV2 Vz"‘?z

and V, = V,(V,) is the value of V, that maximizes the log likelihood function K(V) for

a given value of v,. In our context, we obtain

j=l j=1

Ay =2| rlp-l) + AP + T & }

where B, = (A-V) exp(-Vp, V.V = ez [):‘ e’ - r} and
=
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ViV =X B er

V, is obtained by setting 9//dV, = 0; that is

r
" P oo S B -r=0 (7.5.26)
jul o

So the approximate 100(1-c)% lower and upper confidence limits V¥ and V¥ of V can
be obtained by setting the expression (7.5.25) to /2 and to (1-0/2) respectively. Note that
the expression (7.5.25) involves the estimate V,,, which cannot be obtained explicitly from
(7.5.26). Therefore, to obtain the limits stated above, we need to solve the above
appropriate equations with the equation (7.5.26) simultaneously. Thus, the approximate
100(1-)% confidence interval for the parameter u obtained from the pivotal Vi,
approximately, is
@ +b V¥, <u<ii+b V" Denote these limits by upy and upy such that up <u <upy.
7.5.5 Simulation Study

A simulation study was conducted to examine the behaviour of the confidence
intervals Al, BI, LI and DI in terms of average lengths, tail probabilides and coverage
probabilities. The two parameter extreme value distributed random variables, with u =
0.15 and b = 0.9, for various combinations of (n,r), where n is the sample size and r is
the number of failures, were generated via the IMSL (1987) Weibull random number

generator RNWIB. Each experiment was based on 2000 replications. For all the
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procedures, we computed average lengths of the confidence intervals, the tail probabilities
and the coverage probabilities based on 2000 samples using nominal levels & = 0.10 and
0.05. Results for the parameters b and u are reported in Tables 7.2 and 7.3 respectively.,
Results

We now discuss the results for the parameter b. From Table 7.2 we can see that
the procedure Al is inaccurate even for large samples such as n = 40, The procedure LI
provides coverage closer to nominal under no censoring or very light censoring, except
in the small sample siwation, for example, n = 10. Moreover, the procedures LI and Al
have always asymmetric tail probabilities. The procedure BI, in general, produces
satisfactory results except in small sample situations (for example n < 20) in which the
coverage probability is greater than the nominal. Overall, the procedure DI yields nearly
symmetric tail probabilities and desired coverage even for small sample sizes and heavy
censoring. The average interval lengths in ascending order comrespond to Al, LI, Di and
BL

Results in Table 7.3, for the confidence intervals for the parameter u indicate that
all the procedures provide desired coverage and nearly symmetric tail probabilities for
large samples under no censoring. When the degree of censoring increases the procedures
LI and Al yield smaller coverage than desired and have asymmetric tail probabilities. The
behaviour of the procedures BI and DI are, in general, similar. However, the procedure
DI tends to yield more symmetric tail probabilities and accurate coverage for small
sample sizes under heavy censoring. Considering the average interval lengths based on

all procedures, the procedure Al provides the shortest confidence intervals and the
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procedure BI yields the longest confidence intervals. However, as the degree of censoring
decreases, the lengths based on all procedures tend to be closer.

Considering the length of the intervals and coverage and tail probabilides, the
procedure DI is the preferred method for small samples with the degrees of censoring
considered. The performance of the procedure BI is similar to that of the procedure DI
for moderate to large samples, but it gives interval lengths slightly longer than those of
DI. The procedure LI is good for complete samples, where it provides desired coverage
and shorter interval lengths than those of DI and BIL The procedure Al is unsatisfactory

based on coverage probabilities even though it always yields the shortest lengths.

7.6 INTERVAL ESTIMATION PROCEDURES FOR THE PARAMETERS OF
EXTREME VALUE REGRESSION MODEL
7.6.1 Intervals Based on Asymptotic Properties of the MLEs (AI)
As the performance of this procedure in the two parameter model was poor, we
do not consider this method in the regression situation.
7.62 Intervals Based on Likelihood Score Corrected for Bias and Skewness (BI)
Consider the log likelihood function X(B,b) given in (7.2.7). Suppose that the scale
parameter b is of interest and the regression parameters B,...,3,, are treated as nuisance

parameters. As described in section 2.16.2, denote
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where Igg is of order mxm, and [y, = Iy, - Iy I[;g Igp

The adjusted score is

ol -1 0!
Tb=-%- -IbBIBB a—Bv

where
a (a3
o 9B, OBy

Define f = (f,...f;)" = Iy Igg™". Then the statistic T, can be

written as
ol ol
T, =2 -2 6.1
LT 7 oB 6.1

To the order O(n'l), the bias of Ty is given by ( Bartlett, 1955; Levin and Kong, 1990)

B{T,) = - - trace) I} [5(3_3’ b2 Jo ]
2 P \abaBaB' o (7.6.2)

1 !
+Errace_IBBM],
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where

>l olgg | -1
, = + 2 I I I .

The third cumulan: of Ty, is given, fors, t,q = 1,...,m, as

>l ]+ 3 a’bb

Kyb) =2 E {W =

(763)

>l Olyg, 3y,
-3 2E + 2 I+
zs: s [ 3628 J ob 9P,
. 331 . afﬂﬁ' . aIbB‘ . BIbB’
3> z:f,f,[zE[ B MJ I

P g, , g, . Vg,
i} 2 E Yt e
§3 Z‘? %3 fsﬁfq[ (aasaﬁ,aﬁ,, ] B, B, P,

In case of failure censored data from extreme value distribution, for s, t, q = 1,...,m, the

necessary quantities to compute Ty, B(Ty) and Kq(b) are as follows:

.- X. - X. r .- X.
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Ay _ o Mo, _ o b _ 4
3B, 3B, B,
b3 b na b Ef.“:. = -2 O oy
ab st ob TS ’
1
b E =¥ X X, X, t,
(313;3‘13'3" B-q §1 JETR TN )
>l d;
BPE| ¢ |=24 *X. X, (@ logt + 1),
[aﬁsaﬁlab ﬂ+§1 s ﬂ(J Og J+ 2{])

j=1

& .
bBE[WJ=E st{tj((logtj)2+4logrj+2)

d; r
+ L@ +loge)) -2 X;
£ i

and
b* E( 3*/ab*) = F,
where the terms A, C; and J, for st = 1,...,m, are as given in (7.3.6) and F is as in

section 7.5.2. As stated earlier, the statistic T, corrected for bias and skewness is
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asymptotically distributed as Normal with mean zero and variance Iy, g. Thus, the

approximate 100(1-c)% confidence interval for b can be obtained by solving

T, _ BT _ K0) -1 _

Vs lows 600"

Since the quantities B(Ty)/(I, )2 and Ka(b)/(Iy, p)*? are parameter free we denote the

+7. (7.6.4)

expression B(Ty)/(Ty,p)' + K3(0)(G - 1)/16(y,0)*] by Kg. Equation (7.6.4) then reduces
10
Ty = Ko £ §) ()™ (7.6.5)
Note that the term T, in (7.6.5) involves the nuisance parameters B,...B; These
parameters can be replaced by their ML estimators obtained by setting 9l/oB, = 0, s =
1,...,m.

Now we consider the simple linear regression model (n = 2). we here deal with

only one covariate X, and B = (B;, B,)". Thus, we have

!
Tb:%—ﬁ-é%%_ﬁ%' (7.6.6)

J ¥ (yj;xlﬁ ]_ ot (7.67)
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.EI_ - )N exp[-———yj - %P ]- ri{, (7.6:8)

i = l X; cxp[.z_—_}i_BJ - i X A (7.69)
b b o
where X;B = B,X;; + BXjp with Xy = 1, j = Ly,

fi = (Ap Cp - A O T A - (A,

and

f,=@Co-Ap O An- (ARl

Bias of Ty, is given by

BT = A B) *r(8) ~ 24, Gy (7.6.10)

20r Ayy = (Ayp 1 b

where

A =21 +5 A,-Cp,
A, = (£,-2) Ay, + £, A® - C%,
A=(2)Ap+HAp-C

X(tlog 2. ) and A = 2X
§1 2 j=1
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The third cumulant of Ty, is

Kyb) = { 2 (F=fi r-fs A% - 6 [ J+ fY°+2C))+ [(r®+2C)) ]
6 LS (4O + J; UnvCO - i fy A ) @.61h)

-6 fi R An -2f 5 (A" CP 1) 103,

where

d.
Y=y {tj(logrj)z-r_ti(l-#logtj)}
J=1 i

and

d

Y® = 3 Xj(rj(logtj)z-b%
J

j=1

(l+1°grj)}v

and
Tiop =J - (F+Fp2Fp)/ 201 Agy- (A1), where Fy = Ay O, F, =r G2 and Fy = Ay
G GC.
Note that equation (7.6.6) involves the parameter of interest b as well as the nuisance
parameters B, and B,. So equation (7.6.5) needs to be solved subject to the constraints
9l/oB, = 0 and 9//dB, = 0. However, some simplification is possible. From equation

(7.6.8), that is, by setting /0B, = 0, we obtain B, in terms of b and B, as

B, = b log 1 Y exp
r j=l \

Substituting this value of f3; in 9//0B, = 0 and in (7.6.5) we obtain

4
YJ-Xsz g
b
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j=1 -1 Y X =0 (1.6.12)
r .
Y.-X. =l
¥ cpr_J_r’i
=l b
and
Y, - X
ry’ v exp[_-’_..gfiz_]
- | S Y b = Kt D) Iy . O
b Y; -X: B i=
E. exp J j P2
L b i

The equations (7.6.12) and (7.6.13) involve b and B,. Simultaneous solutions of these
equations yield the desired approximate 100(1-c)% confidence limits for b. Denote these
limits as by and bgy such that by < b < by,

For constructing the confidence interval for a regression parameter B, p = 1,....m,
denote © = B, and ¢ = @pd)” = BBt Bt resBrob)”- logs loge log and Igg 4 are as

defined in section 2.16.2. Define the statistic

T,= -y 4, 2L (7.6.14)

where g, s = 1,....m, are the elements of Iy, I‘lw. As discussed above, the approximate

100(1-0)% confidence interval for @ (=B) can be obtained by solving

T, BTy K@ @-1 _

— =t (7.6.15)
Vieos  Yleos 6 U0y
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where B(Ty) and K,(8) are, respectively, the bias and the third cumulant of Ty. Further,
we denote the parameter free quantity B(T, e)fﬂee.o)m + K;;(G)(t';2 - 1)/[6(193_¢)3"2] by K'g.
Thus equation (7.6.15) becomes
Tp = (Ko 2 §) (g 9)'~ (7.6.16)
We can see that the term Ty in (7.6.16) depends on the vector of parameters ¢ =
(@10esd)” = (Bl,....Bp_l,ﬂwl.....Bm,b)’, which can be replaced by their ML estimators for
given B, Thus, for a given B, the MLESs of these parameters can be obtained by setting
9l/oB, =0, s = 1,...,m; ¢ # p and 9/db = 0. Hence, to obtain the approximate 100(1-0)%
confidence interval for the regression parameter B, we need to solve equations (7.6.16},
dlfdB, =0, s = 1,....m; s  p, and /@b = O simultaneously.
Now, we will discuss the results for a simple linear regression model (m = 2). In this
situation we have f§ = (B, B,)" and one regressor variable X. Then X8 = B;X;; + X,
» With X; = 1, j = 1,....T. Suppose the regression parameter B, is of interest. Then 6 = B,;
9= ¢1v¢z)' = ([31,b)' and
To = 0l/d0 - g, 9I/04, - g, 9!/0%;,
where 0l/d0 = d//df,, 9i/ad, = dl/dB, and d!/d¢, = JI/db, which are given in equations
(7.6.9), (7.6.8) and (7.6.7) respectively. The terms g; and g, are obtained as
g1=UAp-C CYIRI- ()]
and
B2=RCy- Ay CUIRI - (C* ).
To the order O(n™), the bias of the statistic Ty is given by

B(Te) ={JA +14,-2C; A )/{2(0T-CH) Jb,
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where
Al =g r+ g, Q+C) - Ay,
A, =g YO+ g, (F-4) - (YR +2T®-2 A),),

A13=gl C1+g2(Y0+2C1)‘C2,
'I°°=X1+...+X,.

Now, the third cumulant of Tg is given by,

Ky®) = {2[A% - fi r-gs (F-3J)] - 608 Ay + 8 (Ap +C°)]
2 2 00
+ 6[81A12+82(Y "‘2C2)"‘28182(A12"'C2)]
2 -

- 608l g (r+C)+g e (Y +20)1 7

The quantity Igq , is given by
2 2 2

We can see that the expression for Ty involves the nuisance parameters B; and b. Thus,

equation (7.6.16) needs to be solved for the parameter of interest € (= B,) subject to the

constraints 8//0B,; = 0 and d//db = 0. By setting equation (7.6.8) to zero w= obtain

Y.-B, X.
B, =blog]L¥" cxp[_*'_Bz_J.}
r

7l b

Substituting this in (7.6.16) and 9//db = 0 we obtain

229



o B,
r E X; exp __’______-’] ,

L = (KO + Q /]99¢ (76.17)

1 J"I b - X
b Y~B, X, ;Zl: !
Y oexpl L1
= b )
and
rye iR X YR X
7= b b
Y. - B, X.
Y oexpl i 2/ _Bz ]
j=t b

(7.6.18)

Note that b can not be expressed explicitly as a function of B, from 9//@b = 0. Therefore,

the approximate 100(1-0t)% confidence interval for B, needs to be computed by solving

the equations (7.6.17) and (7.6.18) simultarously. Denote these limits by Bgy, and Bgy

such that Bg; < B < Bpy-

7.6.3 Intervals Based on Likelihood Ratio (LI)

Consider the likelihood function given by (7.2.2). As we discussed in section 7.5,

for the construction of confidence interval for b, the likelihood ratio statistic (LR,) is

defined as LRy = 2 [ IB,b) - I B,b) ], where I(B,) is the unrestricted maximum log

likelihood function and I(B,b) is the restricted maximum log likelihood function. For the

extreme value distribution with failure censored data, we obtain

LR

L Y-x8 v -X

i~ 4 B) 1, (7.6.19)

»=2[rlog @h) +Y (< -

jel

b
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which is asymptotically distributed as chi-square with one degree of freedom. Note that
B can not be expressed as a function of b by setting BIIBBP =0, p = 1,....m, where the
derivative 81/3[31, is as defined in (7.2.8). So, the b values that satisfy

LRy, = %2 1.c1) (7.6.20)
subject to /B, = 0, p =1,..,m, are the approximate 100(1-x)% confidence limits for b.
Denote the limits by by; and by such that by <b < byy.

For constructing the confidence interval for Bp. p = l..,m, the necessary
likelihood ratio LRy is given by LRy =2 [#(P.B) - 1(B,5)), where = B(B,) and b = b(B,)
are the values that maximize the log likelthood function for a given value of Bp. These
values can not be expressed explicitly by setting al/aB; = 0, s = 1,..,m; s # p and ol/db
= 0. So, 10 obtain 100(1-0)% confidence interval for B, we need to solve LRg =
Lae(D): 018B, =0, s = L,...,m; s # p and 3l/db = 0 simultancously. In our context, we

have

LRp = 2 [r log (bf6) - r + Y. [Yj-}fj p - Yj_}_(j B } + g"' cxp(yj_ij B]}

=1 b b jul

(7.6.21)
and 9//0B, = 0, s = 1,...,m, and 3//db = 0 are as given in equations (7.2.8) and(7.2.9).
Denote the limits obtained by B, and By such that By < B < Byy-

7.6.4 Intervals Based on Adjusted Likelihood Ratio (DI)
As described in section 7.5.4, we define V, = (B, - BB, p = Loty Vg = log
(6/6) and Ay = (¥; - X; BYB, j = 1,...1. Denote V = (Vi Ve Vipsr) a0d A = (A

Now, for given A, the log likelihood (7.2.2) can be written as
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I(V) = =-r Vm o1 - E P‘- _ E' BXP(PJ;), (7623)
i 7

where, for j = 1,....1,

m
Pj=CAj= 3 Xp Vi) exp(-Vi o).

s=]

Suppose the scale parameter b is of interest. Then the associated pivotal quantity is V,;.
Following the procedure discussed in section 2.16.4, the approximate marginal distribution

of V., 1s given by

PV, . SV, ) =®ER, . ) + 0GR, . DISh . 1+0w3), (1624

where @ and ¢ are as defined In section 7.5.4, and

- Lan¢1 » b<b
SR, .1 =
LR ., , b>h,
1
S‘ _ 1 . l[0|f2

e SR”‘*I Im-bl(‘?(vmd-l))ll-(v(v.rn‘*l))|m,

ol

av

Im*l(‘?(vm-pl)): .
melly=V(V, .,)

I is the observed information matrix of order (m+1)x(m+1).
I"(V(V_,,)) is 2 sub matrix of I° which is of order mxm.

I1°]}2 and |I")"? are the square toots of the determinants of the matrices I° and I"
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respectively. LR, is the likelthood ratio statistic for testing the scale parameter b.
Thus, the approximate 100(1-a)% confidence limits for the pivotal V., are obtained by
settiug the expression in (7.6.24) to /2 and 1-o/2 subject to d//3V,, = 0, p =1,..m.
Denote these limits by VLb and Vy,® such that VLb <Vpa < VyP°. From the pivotal V1.
we obtain the approximate 100(1-a)% confidence limits for b as b cxp(VL") <b<b
exp(Vy®). Define these limits by by, and bpy such that by, < b < bpy.
In case of simple linear regression (m = 2), the required pivotal quantities are V, = (B, -
B1)fb, V, = (B, - Bo)/b and V; = log (b/b). Thus the likelihood ratio statistic for setting
confidence interval for b in terms of pivotals is given by

LR3=2[1’V3"E (P-j‘Aj)],
i

where 13j = (A - V- Xj\-fz) exp(- V3). The elements of the observed information matrix

and of the martrix I” are as follows:

I > _
ns-—3 =r,
aV; v =0
0 4 d
Iy = = ——r =) X,
av,ev, vep o J
Igzz—ﬁ =E' ijcxp(Aj),

2 -
=1
WV lveo 7
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0 32[ E-
=~ = X. A exp(A) ,
ﬂ—vz V, NP~ i J

B‘--
|

— = Z:' Ajz exp(dy) +r,
av. j=1
3ivwo

Nen
w
I

2 -
11‘1 (V3) = - _12 = [2; exp(P_’- ]cxp(- 2V3) y
. (A ’ .
. o . 5
50 = | . (?1 X, exp(Pj)] exp(- 2 Vy)
. 9%l . w2 -
Iy, (V3) = - — = [;1 Xj exp(Pj chp(- 2 V)
v, V= V(V) )
and
ol - - . -
13(V(V3)) = W = Z- Pj exp(Pj - Z Pj -r.
3 Ve ‘7(‘6) Jj=l J=1

For the construction of the confidence interval for a regression coefficient Bp, p=1,.m,
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the associated pivotal is V. Then the approximate marginal distribution of V,, is given

by

P(V,<v,) = ®(SR,) + 4(SR,)[S, 1+ 0@w>"), (7.6.25)

where & and ¢ are as defined in section 7.5.4. The quantity SR, is defined as

'\/I‘E' Bp(Bp
7

where L% =2 [}(0) - IV (Vp))] is the likelihood ratio statistic for testing Bp. The quantiry

SR, =

1(0) is the unrestricted maximum log likelihood function and the quantity v (VP)) is the
maximum log likelihood function for a given value of V.. Expression for the term S'p in
(7.6.25) is given by

_ 1 |IO lllz
PSR, L, 1TV, |

and
_dl
IP(VP) = 'aT [}
P v-v(v,)
where

the matrix I° is the observed information matrix as defined earlier,
the matrix I is a sub matrix of I? corresponding t0 V1,0 Vi1, Vpitsres Vins Viner, and

the term V(V,,) can be expressed by setting @V, =0, s = 1,..,(m+1); s .
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Now, the approximate 100(1-a)% confidence limits for Bp, p = 1,...m, are obtained by
setting the expression in (7.6.25) to &2 and 1-o/2 subject to 9//oV, =0, s = 1,...,(m+1);
s # p. Denote the limits by V; P and VP such that VP <V, < VF. From the definition
of pivotal V,,, the approximate 100(1-¢)% confidence interval for B is given as BP +b
VP < B, < B, + £ V. Denote these limits by Bp P and Bpy® such that B P < B, <
Bpuf- When m = 2, we obtain
r
LRy =2 [ r (V3=1) + J}; A; - P;) + ‘,El exp(?; )] »

j-l j-l

ol . - . -
12(V2)=-§V—2V v(v)=[2 chxP(Pj)-EXj]CXP(-V3),
- 2

» 2 - -
I (Vz)='-a—[2 =(z' exp(Pj)\cxP(“sz),
V|, pev, (A )
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Table 7.20  Average lengths(aLl), lower tail(L), upper tail(U) and coverage{C} probabilities(%) of the confidence
intcrvals Al, BI, LI and DI fcr b under failure censoring. Based on 2000 samples.

u=0,15b=09.
a=100 a=50
nt AL L U C AL L 3 c
10,10 Al 0.677 04 202 .4 0.807 0.1 152 84.7
Bl 1.050 39 30 93.0 1335 1.6 1.1 973
LI 0.749 24 10.7 869 0924 09 5.1 933
DI 0.898 4.7 45 90.8 1.114 2.6 24 95.0
105 Al 0998 03 215 782 1215 0.0 13.7 85.7
BI 2.096 37 27 93.6 2.691 13 1.7 9%u
LI 1.206 14 173 812 1534 0.7 104 889
DI 1549 45 5.1 904 2583 21 26 952
20,20 Al 0.496 09 136 855 0591 02 95 903
BI 0.602 40 4.0 92.0 0.731 20 2.0 96.0
LI 0522 25 8.1 £9.4 0.633 11 42 94.7
D1 0.568 4.1 44 914 0.690 21 20 959
20,10 Al 0.767 02 212 786 0914 0.0 16.2 838
BI 1.240 33 29 93.7 1.549 1.6 1.1 973
LI 0.862 19 10.7 874 1.067 0.7 55 93.7
DI 1.059 4.1 4.1 91,7 1319 22 21 95.7
40,40 Al 0356 1.6 10.1 8383 0427 04 64 932
Bl 0392 4.7 43 91.0 0472 21 22 95.7
Ll 0367 32 65 903 0442 14 38 94.8
DI 0383 4.6 4.6 90.7 0.460 21 24 955
40,30 Al 0.456 15 125 86.0 0544 02 86 912
BI 0519 4.6 42 91.2 0.626 23 19 958
LI 0473 32 80 88.8 0570 1.1 4.1 948
DI 0502 49 4.7 903 0.606 23 24 953
40,20 Al osn 09 149 84.1 0.688 0.1 106 892
BI 0.713 3.8 44 91.8 0.847 21 22 95.7
LI 0.612 25 9.0 885 0.743 12 51 93.7
DI 0.674 4.2 5.1 90.7 0819 23 29 94.8
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Table 7.3: Average lengths(AL), lower til(L), upper tail(V) and coverage(C) probabilitics(%) of the confidence
intervals AL BI, LI and DI for u under failure censoring. Based on 2000 samples.

u=0.15b=05.
e =100 a=50
ne AL L U C AL L 1] C
10,10 Al 0914 12 12 856 1.089 49 50 90.2
BI 1.108 51 4.1 %0.8 1.494 27 1.0 96.3
L1 0987 54 6.8 878 1216 33 39 92.8
DI 1.089 49 4.8 90.3 1350 2.8 2.1 95.1
105 Al 1.009 21 169 81.0 1.072 05 11.8 817
BI 2471 4.1 36 923 3398 13 19 96.8
11 1.499 4.0 143 8137 1951 23 89 888
DI 2256 4.8 50 0.2 3016 26 26 948
20,20 Al 0.669 59 65 876 0.798 3.6 39 925
BI 0.726 49 50 90.1 0500 2.6 23 95.1
B 0.695 50 62 83.8 0.841 30 35 935
DI 0.727 4.8 5.1 90.1 0.881 26 29 945
20,10 Al 0935 1.6 17.7 80.7 1.114 0.8 139 853
Bl 1342 49 39 912 1.610 24 1.7 95.9
LI 1.057 33 103 864 1317 1.7 53 93.0
DI 1.258 45 4.6 90.9 1.576 23 24 95.3
40,40 Al 0.484 52 48 90.0 0.576 25 29 94.6
BI 0.502 45 4.1 914 0.615 2.0 24 95.6
I 0.493 44 48 90.8 0592 20 29 95.1
DI 0503 43 4.1 91.6 0.605 20 24 95.6
40,30 Al 0.525 4.1 7.6 883 0.626 19 4.8 933
BI 0576 44 40 91.6 0.700 1.8 1.6 96.6
LI 0545 42 53 90.5 0.660 18 23 954
DI 0.565 4.4 43 913 0.685 20 19 95.1
40,20 Al 0.701 21 13.1 84.7 0.335 0.7 98 90.0
BI 0.824 43 40 9.7 0.992 23 20 95.7
LI 0.745 34 7.1 89.5 0508 19 38 943
DI 0.808 4.4 4.1 914 0986 il 19 95.7
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CHAPTER 8

INTERVAL ESTIMATION FOR THE PARAMETERS OF

EXTREME VALUE MODELS UNDER TIME CENSORING

8.1 INTRODUCTIUN

The previous chapter presents various procedures to set approximate confidence
intervals for the parameters of the extrenie value models with failure censored data. In
this chapter we deal with the same problem under time censoring. For singly time
censored data from extreme value distribution, Meeker and Nelson (1974, 1977) propose
an approximate method based on the MLEs and their asymptotic variances which are
obtained by using a table produced by Monte Carlo simulations. Lawless (1982) suggested
an approximate method based on likelihood ratio statistic for setting confidence intervals
for the parameters of the extreme value distribution as well as the extreme value
regression model. The exareme value model in regression analysis based on time censored
data has received attention by many authors, recently, due to its widespread use in the
area of life testing and reliability (Ostrouchov and Meeker, 1988; Vander Weil and
Mecker, 1990; Bugarghis, 1988 and Doganaksoy and Scheme, 1991). Ostrouchov and
Mecker (1988) studied LR based intervals for the extreme value parameters and quantiles
based on interval censored data. Vander Weil and Meeker (1990) examined the likelihood
based intervals in the accelerated life tests using the inverse power law model. Bugarghis

(1988) investigated the bias and mean squares of the scale and the regression parameters
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through simulations. Doganaksoy and Scheme (1991) investigate improvements of LR
based intervals and the corrected signed root of the LR statistic and Bartlett correction to
the LR statistc discussed by Diciccio (1988).

The MLEs of the parameters of both extreme value distribution and extreme value
regression model are presented in section 8.2. In section 8.3, we construct the expected
Fisher information matrices for the MLEs of the parameters. The asymptotic variance-
covariance matrices are provided in section 8.4. In section 8.5, the confidence interval
procedures are derived for the parameters of the two parameter extreme value model
under time censoring. These procedures are then compared in terms of coverage
probabilities, tail probabilities and average lengths. Relevant derivations and simulation
study for constructing confidence intervals for the parameters of iiic extreme value

regression model are given in section 8.6.

8.2 MAXIMUM LIKELIHOOD ESTIMATION
8.2.1 Two Parameter Extreme Value Distribution

Denote the observed lifetime as T; and the fixed censoring time L; for the ith
experimental item in a random sample of n items. OUservations are of the form ¢, =
Min(T;,L;), i = 1,..,n. The random variables T;’s are assumed to have a2 Weibull
distribution with pdf (2.13.4) or equivalently Y; = log t, i = 1,...,n has an extreme value

distribution with pdf (2.13.5). Denote 1y; = log L;, i = 1,...,n. For convenience we define
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1, =T,
0., =L

Following section 2.12.2, the likelihood for the ith item under time censoring is given by

i

8

el ol

(82.1)
Thus, the log likelihood for the ith item is
Y.- Y.-u L
Lub) = §; i ~log b - expl—— || + (1-9;) —cxp;n‘_
b b b
= 822
Let r be the number of failures, then Y §; =r. 822)
iwl

Then the likelihood for the entire data can be written as

n r Y.- n Y.
luby= Y L=-rlogh+ Y, [_‘BEJ..E cxp[ lb“‘} (8.2.3)

i=1 iml iml
Note that in the last term of (8.2.3), there are r observed life times and (n-r) censored

times, and also we can see that (8.2.3) is of the form (7.2.1). Taking derivatives of /(u,b)

with respect to u and b, and equating to zero yields the maximum likelihood equations
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a _ 13 ¢ Yiou | 4 (8.2.4)
== 2 cxp[ } r{=0

A _ 13 | Ti# Yiu | Q| Yew | b (8.2.5)
AR [T}’XP( 7 ] ,@1[ 5 } =0

The MLEs & and b of u and b can be obtained by solving equations (8.2.4) and (8.2.5)

simultancously. However, calculations can be reduced by eliminating the parameter u

from equation (8.2.5). From (8.2.4), we have u = b log [_1_ T exp(¥b) ]
T =1
Substituting the value of u in (8.2.5), we obtain
n -~
Y ¥ exp(; /) r
i1 1y y-j5-0 (82.6)
e . ri=l
Y, exp (¥; /b)
i=l

The non-linear equation (8.2.6) involves b only. It can be solved iteratively for b, the

MLE of b, with the use of computer. Once b is obtained, the MLE, &, of u is given by

a=>blogl 1 Y exp (¥; /by 1. 82.7)

i=1

8.2.2 Extreme Value Regression Model
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As defined in section 7.2.2, assume that the location parameter u is a function of
m covariates X = ( X;....X)" such that u(X) = By X, + B, X, + ... + B, X, with X; =1,
where the regression vector of coefficients B = (B),....B,,)" is unknown and is to be
estimated from the available sample data. Then the log likelihood (8.2.3) can be written

as

I(B.b) = - rlog b +z': [ Yi 'bX.-B J_z": exp [ Y; -bx,-B ]

il
(82.8)
where Y; is either a log life time or a log censoring time; r is the number of failures. The

estimating equations for the MLEs of the parameters are obtained from (8.2.8) as, for P

= l,...,m,

% _ 14 Yi-XiB | & _ (8.29)

?_ﬁ:__b- iz-:l X, cxp{_b__] ‘.;1 X, [=0

and

o _1{ & | Yi-XB Y, -X;B ~ | Yi-X; B -

B8 [t e ) g (22 ) )

(8.2.10)
Maximum likelihood estimators 8, p = 1,....m, and b follow as the simultaneous solutions

of the above (m+1) equations given in (8.2.9) and (8.2.10).
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8.3 FISHER INFORMATION MATRIX
8.3.1 Two Parameter Extreme Value Distribution
From the log likelihood (8.2.2), the negative mixed partial derivatives of the

sample likelihood are obtainad as follows:

and

Now, we define Z, = (Y; - u)/b and k; = (1); - u)/b. Then, we have
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v) n
7] i=1

8@ + 1 expz;) - 1]

ST B

dudb p2 T +(1~5‘.)[(ki+l)exp(k‘-)“
and

o o, oa ) &[@2z)e0@) -22-1]
Sy

ab? b2 i + (18 [ &7 + 2 k) exple; ) ]

We obtain expected values of the negatve of the mixed partial derivatives of the

likelihood as

,
A=-b2 E a_zl})n: {1-e-% }

O
n
'
o
(]
try

f

x J zn:{ et oy k-"‘ki}
—_— = ViogVye "dV +k e’
\auab L

i=1

and

eti 2 -V < ki"ti l
R “2 [ vaog vt e Vav ke
352 '

=1 *l'
+] "¢

The expressions for the termis A, B and C are also given in Lawless (1982) and Nelson
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(1982). Thus, the expected Fisher infarmation matrix is given by

\
-E _81_2 -E[ o1
J = du . dudb ) ) L AC ‘ (831)
E[ i \ g| Ve
|\ dudb ) ﬁ)y

8.3.2 Extreme Value Regression Model

From the likelihood (8.2.8), we obtain

i 31332;[3,, ) I}f ,z_:l {Xfp Xiq [ 3, exp(Z;) + (1-9;) explk; )]}

321_1“{ Zo, %4y, k,.}
_aﬁpi’b _-I;Eiz-:l X"P[a'.(z"e Te 1)+ (19 k; e ]

and

2 n ai[(zfafzz‘.)ezf‘—zz,.-l]

SARPYRE 5 :

2 2
ob be i=1 +(1—6‘.)[(k,-2+2k‘-)ek‘]

where Z, = (Y; - X; B)/b and k; = (%; - X; B)/b, i = 1,...,n. We obtain, for p, q = 1,...n,
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o4
A, =-b%E =
P (9B, 9B, |
( \
oA =
C,=-b%E =
’ \ B, v, 521
and
e n
B=-p2E[ 2L |- %
t | 9p? i=1

&; -
L‘ V (log V}ze-vdv"'k‘-z e

+1-27¢

k:

Thus, the expected Fisher Information matrix 1 is of order (m+1)x(m+1) and of the

partiioned form, for p, q = 1,...m, as

it

All Alm
Ay A
Cl cm

Cﬂl

B

a—

(8.3.2)

These results concur with the rosults of Nelson (1978; 1982, P. 342). The integrals

involved in the expressions A, B and C in section 8.3 can be easily evaluated numerically

by using the routines such as DQDAGS from the IMSL library.

8.4 ASYMPTOTIC VARIANCE-COVARIANCE OF THE MLEs

248



8.4.1 Two Parameter Extreme Value Distribution

Following the definition 2.4, the asymptotic variance-covariance of the MLEs of
the parameters u and b can be obtained by inverting the expected Fisher information
marrix I given in (8.3.1), and thus Var(@) = B b%(AB-C?), Var(b) = A b*/(AB-C*) and
Cov(@,b) = - C b2(AB-C?), where the quantities A, B and C are as defined in section
8.2.1.
%42 Extreme Value Regression Model

As discussed in section 8.4.1, the inverse of the expected Fisher information
matrix I given in (8.3.2) implies
Var(®) = b* [ A + AJCC’AY/B ], Var(h) = b2 /(( B - CA"IC ) and Zov( f,b) = b A™'CK
B-C’A’1C), where the matrix A, the vector C and the term B are as defineu 1n section
(8.3.2).
Note that in the two parametsr situation the terms A, B and C represent scalars, while in

the regression situation A is a mxm matrix, C is 2 mx1 vector and B is a scalar.

8.5 INTERVAL ESTIMATION PROCEDURES FOR THE LOCATION AND
SCALE PARAMETERS OF THE EXTREME VALUE DISTRIBUTION
8.5.1 Intervals Based on Asymptotic Properties of the MLEs (AI)

As stated in section 2.16.1, the approximate 100(1-0)% confidence intervals for

the scale parameter b is
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b - L Varth) < b < b + L {varih), @5.1)

and for the location parameter u is

i - \Var@) < u <8 + Vard), (8.5.2)

where { is an appropriate quantile of a standard Normal random variate. Substituting the

expressions for Var(b) and Var(ii) from section 8.4.1 in (8.5.1) and (8.5.2) yields

- - 8-5-3

bli-t |2 |<b <b| 1+7 |2 853)
AB - C? AB - C*

and

a-¢b —B_ < u<a+lb _B_ . (8.5.4)
jAB-Cz \JAB-CZ

Denote these confidence limits by bay, bay, sy and u,y such that by <b < b,y and
u AL <u< Uau-
8.5.2 Intervals Based on Likelihood Score Corrected for Bias and Skewness (B)

Consider the log likelihood (8.2.3). Define

9% 3| o
I =~E| — |31, =~-E| —— |; L, =-E| —

and L, = I, - B, / I, Suppose the scale parameter b is of interest and the location
parameter u is treated as a nuisance parameter. Then following the procedure described

in section 7.5.2, the adjusted score statistic is
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T, = a 3l/db + difdu, (8.5.5)

where a = (I, )2 and ¢ = - Iy ()™ (g, has asymptotically standard normal

distribution. Thus, the approximate 100(1-c)% confidence interval for b can be obtained
by solving
Tb =% C,

where { is as defined in section 8.5.1. Now, to the order O(n‘l). the bias of the statistic

Ty is
1 ol
E 2
1 { [abauz]* ||
B(Tb)=_-2—1— -
m +c| E .?3_1 +2al‘“‘
L du’ ou )
The third cumulant of Ty, is given by
4
i }+3231_,,,,
ob3 ob
\
4
-3%[25 _3_3!_5]_._2_3;7@*?]
oudh u
K'_;(b)=1 * L([bb_,,)-:”z-
ol 'f
c3CF| 2| B |2 B,y
A dbou? db du
ol
-(E)3 2E _33i +3 .2
| A au3 ou

In our context, we have I, = (B - CHAayb?,
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f: (1+k)e ",

n _h
> k1?5

2B+ Y ki + 17 e

iw=]
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aqu 1 1 kE-¢!
-2 924 k. e X
ob b3 +i¥1 i €
\
g| 2% L2a+0),
auzabj b3

—

Fl 1 w— 1 <
E — S — &; . '} .
{ a3 | b3 ;2::1 +6 _f; V(iog V2 e~V av + k} e8¢

k
+4 (1 -e"¢ )

L

Denote the expression above for b° E(@°1/0b°) by G. Then after some steps of algebra, we

obtain
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k-t (8.5.6)

and

Kyb)=(2F+3H)Y6 (U, '3 (8.5.7)

where F=G -3 B -3 CE + C )/A + 2 C(C/A),

= - Cy . (Cy C+ ) + 3k 4 .+ ¢ k-t
H E {(-A-) (I) Bk +2) 3k +4k; )..A.} e

iw]

and
= & 2 -v 2k -et
E=Y L‘ Vdog V) e~  dV +k e .

inl]

Now, the score statistic T,, corrected for bias and skewness given by Ty, - B(Ty) - K3®)(¢?
- 1)/6 is better approximated by N(0,1). The approximate 100(1-)% confidence interval
for b is then obtained by solving

Ky(b)
6

T, - 8(T,) - (-1)=2¢. 85.8)

Equation (8.5.8) involves the nuisance parameter u which is replaced by its MLE
il

a=uald) =blog [l 2 exp(Y; /b) }
r

for a given value of b. Then the equation (8.5.8) can be solved for b iteratively. The
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solutions provide the approximate 100(1-c)% lower and upper confidence limits for b.
Denote these limits by bg; and bgy such that by < b < bgy.

For the construction of confidence interval for u, we define the score statistic

T, =a’ o Lo A (8.5.9)

ou db

where a° = ([,p)™¥? and ¢" = - Ly (i) (,u) "> Following the procedure discussed in

section 7.5.2, we obtain the bias of T, as

B(T“)=--2-:-IB-{E+4C-2P+(2Q-G)%}(Iw_b)'”2, (8.5.10)

and the third cumulant of T, as

Kyw) =(2W +3W/ )16 (U, ,) %3 (8.5.11)

where

&;

= k -¢
P=Y kk+1e ,

i =]

n k,-
Q=Y kk+1n 57,

i=1
C C:* c3
= - + _— F + -
W=4A-3A+0C) 3 ( 3C)(E) G ()

and
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k. » 19 (Cy - .2~.4.1C2
N CICRR AN R PR e

! =
wi=3% . C
inl] + Bk +2 2 -1
B
Following the discussion in section 8.5.1, the approximate 100(1-at)% confidence interval
for u is obtained by solving

W e _y=zt. (8.5.12)

T, - BT,) - =

We can see that the equation (8.5.12) depends on the nuisance parameter b which can be
replaced by its MLE b = b(u) for given u. This can be obtained by sctting 8//ob = 0; that

is

52,::1 [ .b

However, no explicit solution for b = b(u) is available from (8.5.13). Therefore, for the

-~
I
®
S———
g
R
~
I
=

. r Y. -u
; ) ; . (8.5.13)
> J E { - J r=0.

iwml

construction of approximate 100(1-c)% confidence interval for the parameter u, we need
to solve equations (8.5.12) and (8.5.13) simultaneously. Denote the solutions by ug; and
ugy such that ug; <u < ugy.
8.5.3 Intervals Based on Likelihood Ratio (LI)

Again we here follow the procedure discussed in section 7.5.3. Consider the log
likelihood function I(u,b) as given in (8.2.3). Suppose the scale parameter b is of interest
and the location parameter u is treated as a nuisance parameter. Then, following section

2.16.3, the log likelihood ratio statistic for testing b is given by
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iwl

. S (r-a y-a 8.5.14)
LR, =2 rlog(blb)*-Z[ - — ] . ( '

which is approximately distributed as chi- squared with one degree of freedom, where

n

d=a®)=blog]L 3 exp(t;/b)

i=1

(8-5.15)

Expression (8.5.14) cannot be manipulated analytically to obtain explicit confidence limits
for b. The simplest way to determine such limits is obtained from LR, < X.zu (1) Thus,
the b values that satisfy the equation
LR, = xz(l (1) are the approximate 100(1-)% confidence limits for b. Denote these
Limits by by and by, such that by <b < byy.

Sirﬁilarly, for the construction of the confidence interval for u, we obtain the log

likelihood ratio statistic LR, as

i=l i=1

. ro|Y. -a . - z Y, -u
LRu=2 rlog(b/b)q.z:[:“u_y; -u }_r-hz GXP[15 }
b

(8.5.16)

and

o | Yi-u Y; -u " |Yi-u (85.17)
- exp| — - - -r|=0.
;‘2-:1 ( b ] { b ] EEI { b ]

From (8.5.17), b = b(u) cannot be given explicitly as a function of u. However, solving

LR, = Xaal) (85.18)

257



subject 1o (8.5.17) yields the approximate 100(1-)% confidence limits for u. The
solutions are denoted by uy; and u) g such that up; <u <upy.
8.5.4 Intervals Based on Adjusted Likelihood Ratio (DI)

Suppose that the log likelihood function in tarms of u and b is given by (8.2.3).
As stated in section 7.5.4, we define
V, = (u- /b, V, = log/b) and A; = (y; - 8)/b, i =1,..,n. Then the log likelihood

(8.2.3) reduces to

KV, = - rV, + 2 P -% e, (8.5.19)

iw=l iw=l

where P, = ( A, - V Jexp(- V,). Using the notations described in section 7.5.4, we define
the likelihood ratio statistic (A,) for testing the scale parameter b as Ay, = 2400 -
I(V,,V,) 1, where V) = V(V,) is obtained from 8l/@V, = 0. Now, the marginal tail

probability of V, is, approximately, given by

P(Vy<v,) =®(SR,) +&(SR, ) [S; 1+ 0(n™3/2), (2.5.20)

where SR, and S", are as defined in section 7.5.4. In our context, we obtain

rv, + E A; -

im}

P, =(A; -V )exp(-V,),
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0 o2

I . = - =r,

0 ol -

I . = = A: exp(A.
[N avl aV2 oo :EI i XP( :)

and

o __ &I _z": A2 oMy,
thh T S = : .
v aVZaVZ V=0 i =1 )

Now, the approximat: 100(1-c)% lower and upper confidence limits V% and V? of V,
can be obtained by setting the expression (8.5.20) to o/2 and (1-0/2) respectively. Then,
we can easily show that the approximate 100(1-a)% confidence interval for the parameter
b is given by b V?, < b < b V. Denote these limits by by, and bpy such that by <

b < bpy. Following the same steps described above, for constructing confidence interval
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f- u, the approximate marginal tail probability of the pivotal quantity V) is given as

PV, Sv) =O(SR, ) + (SR, ) IS; 1 +0m™31%), (8.5.21)

where SR and S,” are as defined in section 7.5.4. The necessary terms for this expression

are obtained as

i=]

A“=Z[r(l72-l)+ Y A -P)+ 3, cxp(f;s)}'
iwl

P,=@A; -Vpexp(-V,),

L, ViVp) = -?Wl “—{‘Z:l efi r]cxp(— V,),

1, =7,

- . B
=l V) = - = Pie'+r

0% ! =

and V = V(V,) is obtained from
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n r

Py Bef-% B-r=o. (8.5.22
EIA .

iwl i=1

Thus, the approximate 100(1-ct)% lower and upper confidence limits V¥ and V%, of V,
can be obtained by setting the expression (8.5.21) to o/2 and (1-0/2) respectively. Note
that the expression (8.5.21) depends on the estimates \72. which cannot be expressed in
terms of V, explicitly from (8.5.22). Therefore, 10 obtain the limits stated above, we need
to solve the appropriate equations with the equation (8.5.22) simultaneously. The
approximate 100(1-)% confidence interval for the parameter u is then expressed as
@ +5 V¥ <u <ii +b V¥ Denote these limits by up and upy such that up; < u <upy.
8.5.5 Simulation Study

We conduct a simulation study to determine and compare the coverage and tail
probabilities of the confidence intervals for the parameters u and b based on the
procedures Al LI, DI and BI. The results are obtained based on 2000 samples generated
through the IMSL subroutine RNWIB, and are displayed in Tables 8.1 and 8.2 at the
nominal levels ¢ = 0.10 and 0.05. In order to restrict the number of parameters in the
simulaton study, we consider here only the case of common log censoring time ; = 1,
i =1,...n. The values of the parameters were chosen as u = 0.15 and b = 0.9. The
censoring mechanism was defined by considering the reliability function of the extreme
value distribution R(y) = exp( - exp((y - u)/b)), and the fixed censoring time 7, was taken
by setting R() = = for ® = 0.5, 0.25, 0.1, where 7 represents the degree of censoring.
Results based on uncensored situations, where 1 = 0, were also reported in Tables 8.1 and

8.2,
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Results

Results for the parameter b reported in Table 8.1 indicate that the intervals Bl, DI
and LI provide desired coverage in almost all situations. The interval BI has tail
probabilities closer to nominal even for small samples with heavy censoring. The
procedure DI provides nearly symmetric tail probabilities under no censoring or light
censoring. The performance of Al is inaccurate even for large sampie sizes. The
procedures LI and Al give asymmetric tail probabilities in all situations. The average
interval lengths ordered from shortest to longest correspond to Al, LI, BI and DL

From Table 8.2, which represents the results for the parameter u, we can see that
the intervals BI, DI and LI have til probabilities closer to nominal in most sitasdions
except for small sample sizes with heavy censoring. Al has asymmetric tail probabilities
and smaller coverage than nominal for small to moderate sample sizes. The average

lengths of all the four intervals become closer with increasing sample sizes.

8.6 INTERVAL ESTIMATION PROCEDURES FOR THE PARAMETERS OF
EXTREME VALUE REGRESSION MODEL
8.6.1 Intervals Based on Asymptotic properties of the MLEs (AI)

As we mentioned in chapter 7 we do not consider this method in the regression
situation because of its inadequate performance in case of two parameter distribution.
8.6.2 Intervals Based on Likelihoow “core Corrected for Bias and Skewness (BI)

Consider the log likeiikood function /(B,b) given in (8.2.8). Suppose that the scale

parameter b is of interest. Then following the steps discussed in section 7.6.2, using the
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same notation, the appropriate 100(1-a)% confidence interval for b can be obtained by

solving

Kyb) (T - 1)
T, - BT, - — T = 20 Typs - (8.6.1)

For s, t, g = 1,...,m, the required terms 1o compute the quantities Ty, B(T,), K5(b) and

Iypp are as follows:

A _ 14 |¥iX:B iXoBl &YX B (8.6.2)
R

n Y.~ X. " .6.
. =% Exi':xp(‘blﬁ]"zxi > ®63

V.. = J;e"' v log(v) e~ ¥ dv
u ’

k;
Vo = L’ v (og Ve Vadv,
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i=l

=-2C,-Y X, (kE+k)ec,

i=l
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]'—'—‘Exisxaxiq(l‘e-c )‘
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iw]
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al, n i,
b3 a"’=-2 Xy Xy (k; « D e™ 7,

aBr inl

o, n *

B, B k,-¢"
b = - X X, X e

aﬁq 12-1: s g
3 Ay

and

of # - et
b3_é_;3 =-2B-Y k (k12 57,
il

When m = 2, bias of Ty, is obtained as

BT, - Ap My - Hy) -2 Ay My - Hy) + Ay (M3 - H)
2[A11A22'(A12)2]b

(8.6.4)

where

M, =1 2 Qy; +sz X; Qi »

i=] iu]
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W

My=f Y X, Qu+HLY X: Q.

iw] i=]

My=H Y X2 0y +h y X7 0y,

i=] in]

n

Hy =3 Q.
iul
n

H, =Z1: X; Qo s
1)

n
H3=ExiZin-

iw]

fi={ARC-Ap G LA, Ay - (AP,

£=1A C-ARC VAL Ap-(Ap?),

Q;=1-e"% =2¢" °,

and
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—cl

L .
Qp=Vy+2(U-e" ¢ )-Q@~k)e"

The third cumulant of Ty, is

n n
Kh) =2G =35 -3[AY Wy +£ T X Wy

iw] iw]

$ILAL W+ 2R 6% XiWy +f; 3 X[ Wy

i=] i=l inl

-[ffE Ws:*ﬁEX?Wz.;l

i=] iwl

S3ARLAY XiWs+f Y X Wy,

i=] in]
(8.6.5)

where

= k -eli
S=2B+Y k(k+1)?e ",

iw]

'
cI

Wy =2 Vy + 4V, - kFD e,

Wy = Oy + Vy
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‘ _ Lk k.-"
W3‘-=2\1-ee)+3e'c

For the construction of confidence interval for a regression coefficient ﬁp, p=1,..m,as

we discussed in section 7.6.2, we need to solve the equation

EBE -1 —
Tﬁ - B(TB) - _ETIBB.b_' =z IBB-b - (8.6.6)

When m = 2, we obtain

al al ol

TB=‘§E‘_81'$I‘—32$»

BTy - [(BM/ -H')-2C, M/, -H') +A, My -H'Y)
2b (Ay B - CD

n n n n
3 2 "2 3
KB =Y X/ Wy =38 Y X; Wy +3g1 3, X; Wy - gy >y Wy

il i=1 =1 =l

n n n
2 2
-3, Y X Wy +68, 8 Y X;Wy-38 83, Wy

i=} i=] i=l

n n
*3822";""’1;'3813221: W;-8 QG=-39),
in

p=
where
g; = (A}, B - C; C)/(A) B- CP),

g8=(A C-Ap C)(A, B - c2),
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o L n k. -
k - :
M =g A, -5 e ) g [C 24, - (ke

iw] fw]
= k-—ct"
M= -Y @+De” )
in]
2 2 k-—c".
+ 8 [Y (Vy -k +3k+De” YY),
i=]
o k‘-ct"
My=g Y (Vy-kk+2e" )
i=l

n k~-*'.
+8,(G-4B-2% klg+12e 7)),

i=]
/ z K -et
H1=A12'221X£e. s
=
= k.-ck"
H,=C-Y X; @k +De’ =,
i=l

and
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k:
4
k. [

H'y =5 X [ Vy -k (k+2) e

i=l

].

8.6.3 Intervals Based on Likelihood Ratio (LI)

This procedure has been stucied in various situations by many authors including
Ostrouchov and Meeker (1988) and Doganaksoy and Scheme (1991). Considzr the log
likelihood function given in (8.2.8). Following the steps and notations described in section

7.6.3, the likelihood ratio statistic LR, for testing the scale parameter b is obtained as

LR, =2 | r logh/b) + > {Y‘-}f" p_Xkib } :
il b b

which is approximately distributed as chi-square with one degree of freedom. The
expression for § can not be obtained as a function of b explicitly from dl//ofi; = 0, s =
1,...m, given in (8.6.3). Therefore, the LR based approximate 100(1-0)% confidence
limits for the parameter b are obtained by solving the equaticn

LR, = (1D . @6.7)
subject to the constraints 9//B; = 0, s = 1,.. m. Denote the limits by by; and by such
that b, <b < byy.

For constructing the confidence interval for B, p = 1,...,m, the re_.ired likelihood

ratio statistic LRB is obtained as
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)

il b b

n Y -X.
- cxp[ .b‘B]

inl

- . r ’Y.-X‘ —-X.
- togElh) + 3 t X8 Y,’-f.B}

where B = B(B,) and b = b(B,) are the values of the nuisance parameters that maximize
the log likelihood func:ion for a given value of Bp. Because no closed form of these
estimates [ and b arc available the approximate 10C(1-ct)% confidence limits for the
regression parameter 3, , p = 1,...m, need ‘0 be obtainc;i by solving -
LRp = %1} 868)
subject to IAP, = 0, s = 1,..,m; s # p and 9//b = 0. Denote the limits by §;; and By
such that By < B < Bpy-
8.6.4 Intervals Based on Adjusted Likelihood Ratio (DI)

Following the procedure and notations descrited in section 7.6.4, we define V, =
By - BB, P = 1, Vi = log(b/b) and A; = (¥ - X{)/b, i = 1,...,n, where B and b
are the MLEs of [ and b respectively. Now, for given A;, i = 1....,n, the log likelihood
function given 1 (8.2.8) can be written in terms of the pivotals Vy,...,Vp,Vp,; as

IV =-rV, 4+ P; -3 exp(P),

in] ixl
where, fori=1,...,n,

m
P, =(4; - 21 X, V) exp(- V,.0)
=
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and V = (V},...V. V1) Suppose the parameter b is of interest. Then the related pivotal
quantity is V. As discussed in section 7.6.4, the approximate marginal tail probability

of the pivotal V,, is given by

PVt S Vat) = OOR 1) + OSR) (Sl + 0GR ), 8.69).
where @ and ¢ are as defined in section 7.6.4. Equating the probability in (8.6.9) to o/Z
and (1-0¢/2) yield respectively the approximate 100(1-c)% lower and upper confidence
limits for the pivotal V,,,;. Confidence limits for the parameter b are then obtained from
the limits of V__,, as discussed in section 8.5.4. In case of simple linear regression (m =
2), we obtain

LRy =2[rV,-% (P;-4AD1,

iwl]

where B, = (A, - V| - X;V,).exp(- V). The elements of the observed information matrix

I° and the matrix I" are as follows:

A
v}

"
~
Fy

0
Iy =

V=l .

o
|
]
QU
o
1l
|V| -
ol
;)

Iy =
12 W, .

i=]l
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Iy = - = Z Xiz exp(4) .
av-, l-l
< V=0

L[}

0 o4 e
Iﬂ == W = 2 X‘ A‘ exp(A‘-) N

V3 Ly =

13%=- .ilz .-Z Aizexp(A£)+r,
Vs Vo i=l
. . | -
In(v3) = - a_lz. : = [2 CXP(P‘-) chp(— 2V3) R
8V1 |V- 17(V3) i=]
ffz(Vs) =" % = [E X; °xP(ﬁ.') ]cxp(- 2V,) ,
1¥"2 V.p(ys) iw]
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av2 . i=l
VaV(V,)

"2?2(1"3) = - a"fz = (E X :‘,' exp(F."-) ]cxp(- 2Vy)

and

L(V(V3) = o =Y PexpP) - P, -r.

Vs vavyy =1

For constructing the confidence interval for a regression parameter Bp. p = L.,m, the

appropriate marginal tail probability of the associated pivotal V,, is given dy

PV, <v,) = OER) + &SR [S, ] + 0 ™7, (8.6.10)
where the terms SR, S'p, & and ¢ are as defined in section 7.6.4. Following the same
steps described in section 7.6.4 we obtain the approximate 100(1-ct)% confidence interval
for the regression parameter from the marginal tail probability given in (8.6.10). Now, we
consider the simple linear regression situaton. Here, we provide the necessary terms to

compute the required limits for the regression parameter f3,.

LR, =2[r(Va-1) + Y} (4; -P) + Y exp(P) ],

i=l i=]

P, = (4; - V] - V,X; Yexp(- V3) ,
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by = 2 S| 3% XoexpB) - X X, [expt- V),
-W2 i=] in]
V=V(V,)

. 9% z " -
vy = - — = Z]: exp(P) |exp(- 2V3) ,
M iy N
o2 5 s -
I5Vy) = - - =| Y Py +r |exp(-Vy)
and
2 n
InVy) = ___;:, L =Y PR exp(B) +r
3 lvevvy i=1
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Table 8.1: Average lengths(AL), lower tail(L), upper wil(U) and coverage{(C) probubilitics{(%} the confidence intervals
Al, BL LI and DI for b under time censoring, Bascd on 2000 samples.

u=015b=09.
a =100 a=50
nx AL L U C AL L U c
20,05 Al 0877 - 03 129 86.8 1.045 0.0 9.8 90.2
BI 1.053 49 56 895 1.297 2.7 29 944
LI 0942 37 6.3 90.0 1.148 15 23 95.7
DI 1.245 74 24 0.2 1.568 44 13 943
20,025 Al 0.663 0.6 12.8 86.5 0.790 0.1 84 1.5
BI 0.756 4.5 4.8 90.7 0.924 1.7 23 96.0
LI 0.700 24 64 91.2 0.857 13 36 95.1
DI 0.802 63 34 903 0984 29 1.6 95.5
20,0.1 Al 0.567 0.8 121 87.1 0.675 0.1 8.6 912
BI 0.637 4.1 44 915 0.779 20 2.8 952
LI 0.592 27 1.1 20.1 0.720 13 33 954
DI 0.656 51 36 91.3 0.799 25 1.7 95.8
20,00 Al 0.496 0.7 135 85.8 0591 03 9.6 90.1
BI 0.616 4.5 45 91.0 0.743 22 20 95.8
LI 0528 2.6 8.1 893 0.642 12 4.5 942
DI 0.568 4.1 44 015 0.690 21 20 959
40,0.5 Al 0.617 1.0 103 887 0.735 0.1 1.7 922
BI 0.674 4.6 57 89.7 0814 2.1 25 954
L 0.642 29 71 90.0 0.783 14 3.5 95.1
DI 0.716 64 3.7 89.9 0.872 33 12 95.0
40,025 Al 0471 1.1 9.8 89.1 0561 02 63 935
BI 0.500 49 438 903 0.603 22 24 952
LI 0.484 39 6.0 90.1 0.584 1.7 33 95.0
DI 0515 64 38 89.8 0.621 30 i8 e52
40,0.1 Al 0.406 16 9.6 88.8 0.483 02 58 94.0
Pt 0.428 4.6 4.4 91.0 0516 20 24 956
LI 0.415 36 58 %0.6 0500 1.8 31 95.1
DI 0.435 54 4.0 90.56 0524 24 22 95.4
40,00 Al 0358 15 9.8 88.7 0.427 03 62 935
BI 0393 4.4 43 913 0472 2.1 24 955
LI 0368 32 85 90.3 0.442 14 38 94.8
DI 0383 4.6 4.7 90.7 0461 2.1 24 955
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Table 8.2: Average lengths(AL), lower tail(L), upper tail(U} and coverage{C) probabilities(%) the confidence intervals
Al Bl, LI and DI for u under time censoring. Based on 2000 samples.

u=0.15 b=009.
a=100 a=350
nX AL L U C AL L U C
20,05 Al 1.109 0.0 10.8 892 1321 0.0 78 922
BI 1.455 4.6 4.2 912 1.856 28 23 94.9
Ll 1.253 32 6.7 90.1 1.569 1.7 30 952
DI 1586 6.5 35 90.0 2014 32 19 94.9
20,025 Al 0.768 3.0 6.7 90.3 0.915 12 43 94.5
Bl 0.882 4.0 43 91.7 1.097 222 1.8 6.0
Ll 0.829 49 53 894 1.019 26 35 939
DI 0.905 57 4.6 89.7 1.115 29 23 94.8
20,0.1 Al 0.697 5.1 64 88.5 0.830 32 4.0 928
BI 0.760 4.7 45 90.8 0939 1.7 1.8 96.5
Ll 0.734 50 59 89.1 0.894 28 35 93.7
DI 0177 5.1 4.8 0.1 0948 2.8 25 94.7
20,00 Al 0.669 58 64 878 0.798 36 39 925
BI 0.736 43 50 902 0913 26 22 952
Ll 0.703 53 59 8§84 0.852 28 32 94.0
DI 0.727 4.8 52 $0.0 0.881 2.7 29 944
40,05 Al 0.7681 0.6 718 91.6 0507 0.1 45 954
Bi 0.847 51 4.0 0.9 1.035 28 20 952
LI 03814 4.0 4.5 91.5 0.989 20 23 95.7
DI 0.881 64 36 90.0 1076 3.6 1.8 94.6
40,025 Al 0.541 32 56 912 0.645 il 3.0 959
BI 0576 4.5 43 912 0.701 20 22 958
L1 0562 44 4.7 90.9 0.627 22 26 952
DI 0.584 52 37 91.1 0.708 25 20 955
40,0.1 Al 0.498 50 51 89.9 0593 24 238 94.3
BI 0518 44 4.6 91.0 0.628 21 25 954
LI 0512 47 50 903 0.623 22 26 952
DI 0.525 49 42 909 0.632 23 24 953
40,00 Al 0484 52 43 90.0 0576 25 2.8 94.7
BI 0502 4.5 4.1 914 0.609 20 24 95.6
L 0.494 4.2 43 91.0 0.592 20 28 952
DI 0.503 43 4.1 91.6 0.605 20 24 95.6
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CHAPTER 9

CONCLUSIONS AND FURTHER RESEARCH

This chapter attempts to review the conclusions made in this thesis and to suggest
some problems for future development.

In chapter 3, five statistics LR, M, MB, CL and EP, for testing the equality of L
( 2 2) gamma scale parameters in presence of an unknown common shape parameter arc
developed. Of these the C(c) statistic CL, whose asymptotic distribution is known to be
chi-square with (L-1) degrees of freedom, holds nominal level well and it is easy to use.
The distribution of the statistic EP is not known for L > 2. When L = 2, this test is
equivalent to a F test which also shows anti-conservative behaviour. The statistic LR, M
and MB are in general liberal. Based on empirically calculated critical values, in general,
either the C(0) statistic CL or the statistic EP are most powerful. Thus, based on the
information given above, the C(c) statistic is recommended for use except the situadon
where n* € ... € n; and A; < ... <Ap, in which the statistic CL has least power and the
statistic EP is most powerful. For situations for which n; 2 ... 2 np and &; <... <Ay, the
statistic CL is most powerful and EP has least power. More investigations into this
problem such as the improvement of the C(at) statistic when ny S ... Sy, and M<..<
AL needs to be carried out. Moreover, in comparing the gamma means the validity of the
assumption of common shape parameter should be checked. For this purpose, a C(c) test
is recommended based on empirical level and power presented in chapter 3. However, in

practice, the assumption of common shape parameter may not be true. In this situation
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for L = 2, the test statistic proposed by Shiue, Bain and Engelhardt (1988) is preferable.
When L > 2, large sample procedures for this test need 1o be developed. Although tie
gamma modei has been found to be useful in many areas of application including life
testing problems, large sample statistical procedures for this distribution involving
censored data remain unsolved.

In chapter 4, for the comparison of the mean life times of several two parameter
exponential populations under failure censoring, a number of procedures have been
developed. Of these a modified marginal likelihood ratio statistic (MB) is recommended.
Procedures need to be developed for time censored data which is common in practice.

In chapter 5, for the comparison of several extreme value location parameters, first
the validity of the assumption of common shape parameter should be checked. For this
a modified likelihood ratio statistic is recommended. When the assumption of common
scale parameter is valid, an adjusted C(a) statisic (ACLu) is recommended for the
homogeneity test of extreme value location parameters. However, the assumption of
common scale parameter may not be true in practice. It is therefore important to develop
procedures for testing location parameters without the assumption of a common scale
parameter. The procedures developed in this chapter are for failure censored data. Similar
procedures need to be developed and studied for time censored data coming from extreme
value distributions.

In chapters 7 and 8, for constructing confidence intervals for the parameters of
extreme value distribution under both failure and time censoring, various procedures based

on the likelihood are developed and studied through simulations. The procedures have
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been extended to construct confidence intervals for the parameters of the extreme value
regression models. The  performance of these procedures are currently under

investigation.
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