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2. C LAM PED  M E M S M IC RO PH O N E D ESIG N

This is felt to be more intuitive. The mechanical equivalent shown in Figure 2.7 is actually 

the equivalent for the chosen state of the art design given in reference [2]. The various 

parameters are as follows.

*  = (2J)
Rr is the radiative resistance and ,Mr , is the mass of the air in contact with the vibrating 

diaphragm, po is the air density; c is the sound velocity; co is the angular vibration frequency 

(27r /) ;  and a is the diaphragm width. The diaphragm stiffness ,K m, is given by the inverse 

of the compliance as given in Reference [2].

The equivalent mass element M m of the square diaphragm is,

M m =  - V(2T^ . +  (2 .8)

D  is the flexural rigidity, and T  is the residual tension of the diaphragm. The viscosity loss 

in the air gap, R g, is given by,

„  12tta2 .a  a 2 , a  3. _

s > = A (r ? - l n r ! )- (2-10)

its stiffness, K a, is given by the inverse of the air gap compliance, Ca, as

Ka = * 2 (2.11)
poc Q: u

Where n  is the hole density in the backplate, a  is the surface fraction occupied by the holes, 

u is the air viscosity coefficient, and d is the average air gap distance. The viscosity loss of 

the back plate holes R^  is,

R h =  (2-12)7T nr^

where h is the back plate height and r is the radius of the air gap vent holes. There is some 

confusion as to what is meant by r. Hsu et ah, [2] refer to this parameter as the radius of 

the vent holes; however, the fabricated microphones have backplate holes that are 60pm by
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Figure 2.8: Sum of the Forces Acting on the Diaphragm

60/im square. It is assumed that r in this case means the effective radius of a circular hole 

that is of the same area. Also the number of vent holes used in the 2.6 mm diameter design 

is unclear. This thesis has assumed tha t since the 2 mm design has 17 by 17 holes, giving 

289 total, tha t the 2.6 mm design must be approximately 19 by 19 giving 361 holes by linear 

scaling. The number of holes on the 2 mm design has been determined from Figure 2 in the 

paper [2]. From the mechanical equivalent, the forces acting on the diaphragm are derived 

as shown in Figure 2.8. From Figure 2.8 the sum of the forces can be obtained, and the 

equation of motion in the frequency domain for the clamped microphone can be derived by 

solving for X m(s).

Fa +  Fe
Xm{$) — (Mm +  M r)s2 +  R rs +  K m +

(2.13)
{Rg+Rh)S Ka

where X m (s) is the displacement of the diaphragm with the down direction considered 

positive. X m(s) is a function of s; the absolute value of X m (s) is the magnitude of the 

response; and the phase is the tarF1 of the ratio of the real and imaginary parts. Further 

references to X m in this thesis imply the absolute value of X m(s). Fa is the force due to 

the applied air pressure difference, and Fe is the force due to the electrostatic attraction 

between the plates. The MATLAB implementation of the above Equations can be found 

in Appendix A. The first output plot from this program can be seen in Figure 2.9, which 

displays the displacement X m(s) versus frequency. An average displacement of 3.67 nm is
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Figure 2.9: Displacement X m(s) vs Frequency

noted with a quick drop off in amplitude above 10 kHz due to back plate viscosity losses at 

higher frequencies. Hsu et al., [2] estimate the resonant frequency of the microphone by,

(2-i4 >

Evaluating Equation 2.14 gives 25 kHz for the resonant frequency. Both electrical and 

mechanical models are using lumped parameter values to predict the approximate behavior 

of the system based upon the derived transfer function of the model. As will be seen this 

equation can predict the behavior of these systems with reasonable accuracy for almost all 

behaviors. The limitations of this method are discussed in the following sections.

Where lumped parameter models fail, finite difference/element models are used. W ith 

clamped microphones, the diaphragm does not deflect like a piston; most lumped parameter 

models assume this behavior. In actuality the diaphragm deforms in a continuous manner 

as shown in Figure 2.10. The dashed structures represent the initial positions before and 

the solids are after displacement. For this reason tha t lumped param eter models fail to 

predict pull-in voltage with any accuracy.

In microphone design, finite difference can be used to model the bending plate problem

16

Displacement vs Frequency Mech Equiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2. C LAM PED  M E M S M IC RO PH O N E D ESIG N

Figure 2.10: Piston Like (Left) vs Actual Plate Deflection (Right)

as seen in Equation 2.15. The method of finite differences can be used to solve partial 

differential equations [14].

D v 4 W  + T V 2 W  = Pappued (2.15)

where Pappiied is the applied pressure difference to the top plate [15]. The applied pressure 

can also include electrostatic forces which can be viewed as an applied pressure. A solution 

to this equation would allow the correct calculation of displacement or change in capacitance 

versus applied pressure. Section 2.7 discusses some problems with finite difference modeling. 

The MATLAB m code for this can be found in Appendix B. An output plot of deflection 

versus node number can be seen in Figure 2.11. This plot is at 1 Pa with 1 V applied to 

the diaphragm. Finite difference reveals how the diaphragm has been deflected and the 

limitations of the piston-like displacement assumption, as can be seen in Figure 2.13.

A MATLAB program was written to investigate the deflection of the diaphragm for a 

range 0 to 1 Pa pressure differences, Figure 2.14; the program to generate the plot can be 

found in Appendix C. The nodes correspond to how the diaphragm has been broken up 

by the program: the higher the number of nodes, the more finely divided the diaphragm. 

W ith finite difference, the question arises as to how many nodes are needed for accuracy. 

A MATLAB program w ritten to investigate this question can be found in Appendix D. 

The output of this program is seen in Figure 2.12, which illustrates the convergence of the 

displacement with the number of nodes. The number of nodes equals the number of pieces 

the diaphragm has been divided from side to side; thus a number of nodes of 40 means 

that the diaphragm has been divided into 40 pieces. As is seen in the figure, the larger the 

number of nodes the better. At around 100 nodes the solution begins to converge. As such 

at least 100 nodes are needed in order to ensure accuracy of the solution. However, the 

computation time needed at 100 nodes can be significant. Running the MATLAB program

17
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Displacement vs Node Number
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Figure 2.11: Displacement vs Node Number 

in Appendix D required 2 weeks of computation time on a Sun Blade 1000, at 900 MHz.

2.6 Sensitivity  E stim ation

An im portant design parameter in microphone design is sensitivity. The sensitivity of a 

microphone is given in Volts per Pascal referenced to lm V /Pa, which corresponds to the 

lowest sound pressure humans can hear. This sensitivity is measured at 1 kHz for all 

microphones. Sensitivity can be broken into mechanical and electrical sensitivity.

5  =  SmSe (2.16)

The mechanical sensitivity Sm corresponds to how much the diaphragm deforms per Pascal 

and is measured in m /Pa. Electrical sensitivity S e corresponds to the change in V per 

meter and is measured in V/m. When comparing microphones, sensitivity only becomes 

meaningful when discussing open circuit sensitivity. Open circuit sensitivity is the change in 

voltage for a given pressure for a microphone tha t is not connected to any other amplification 

circuitry. If a microphone is connected to an amplifier then any sensitivity can be obtained 

simply by increasing outside amplification.

18
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Displacement vs Node Number
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Figure 2.13: Displacement vs Delta
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Figure 2.15: A Typical Detection Circuit

Another microphone property tha t is required when comparing microphones is the mi­

crophones capacitance. It is im portant because the capacitance of the microphone combines 

with parasitic and preamplifier intrinsic capacitance, which reduce the voltage that is de­

tected by the amplifier. A typical detection circuit is show in Figure 2.15. Cm corresponds 

to the capacitance of the microphone. Cp is parasitic capacitance including the capaci­

tance of the bonding pad, approximately 3 pF. C* and Rb is the intrinsic capacitance of the 

amplifier and the bias resistor respectively.

In order to estimate the actual measured sensitivity, S meas, the open circuit sensitivity, 

Soc, is required as well as the capacitance of the microphone. The intrinsic capacitance, C-t,

20
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of the preamplifier connected to the microphone, and the parasitic capacitance, Cp, tha t 

will be encountered. Knowing these values allows an estimate of the capacitive signal a tten­

uation, Hc, due to the input capacitance of the preamplifier and the parasitic capacitance. 

It is given by,

H ° = Cm + Q + C p  (2'17)

The measured sensitivity can be calculated finally as,

Smeas =  ~ S mSeH cHa (2.18)

where H a is the gain of the preamplifier, with a value usually around one. Most MEMS 

microphones give an open circuit sensitivity in the range of a few millivolts per Pascal with 

a capacitance of around 1 to 10 pF. Another way to estimate sensitivity is to derive it from 

fundamentals. Starting with

Qo =  VqCq (2.19)

where Qo is the initial charge on the MEMS microphone capacitor, Vq, the applied initial

voltage supplied by the battery, Co, the initial capacitance with no displacement. Applying

a displacement and assuming conservation of charge gives,

Qn = VnCn (2.20)

where Qn is equal to Qo, Vn, the new voltage and Cn, the new capacitance created by the 

displacement. Equating Equation 2.19 to Equation 2.20 and rearranging gives,

Vn =  ( 2 . 2 1 )

noting that,

and,

C0 = ~  (2.22)
do

Cn ~  ( d o - AX m ) ( 2 ' 2 3 )

subbing 2.22 and 2.23 into 2.21 gives,

Vn = v o(do Xrn) (2.24)
do

21
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Figure 2.16: Capacitance vs Frequency

where do, the original air gap distance and ,X m, the displacement of the diaphragm. The 

fundamental definition of sensitivity is the change in voltage for a given change in pressure,

A V
S =  A P  (2‘25)

subbing in 2.24 for the change in voltage and P =  1 Pa as the change in pressure gives,

s =  (2.26)
do

Which shows tha t the sensitivity is proportional to the ratio of the old and new capacitance. 

Which, ultimately becomes the air gap height of the new capacitance divided by the old 

air gap. From which can be concluded, the larger the change in capacitance the larger the 

sensitivity. From X m(s) the change in capacitance can be calculated by Equation 2.23 as

seen in Figure 2.16. The base capacitance can be seen at 0 Hz to be around 15 pF. This

capacitance is close to the papers stated capacitance 16.2 pF. Applying Equation 2.26 to 

Equation 2.13 and calculating the absolute value of the sensitivity from 0 to  30 kHz gives 

Figure 2.17. As with figures 2.9, 2.16 and 2.17 were generated by the program listed in 

Appendix A. This is the sensitivity for a clamped microphone based upon the lumped 

parameter mechanical model. The predicted sensitivity for the design is around 9.2 m V /Pa

Capacitance vs Frequency Mech Equiv
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Sensitivity vs Frequency Mech Equiv
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Figure 2.17: Sensitivity vs Voltage

which is close to the reference papers 8 m V /Pa. As expected from the derivation the 

capacitance and sensitivity plots follow the basic trend as the displacement.

2.7  P u ll-In  V oltage E stim a tio n

Another im portant design requirement is pull-in voltage [16]. Pull-in occurs when the 

bias voltage on capacitative type microphones is too high and causes the electric field to 

pull down the diaphragm onto the backplate. Effectively the spring forces supporting the 

diaphragm have been overcome by the electrostatic attractive forces. Knowing the bias 

voltage is important since it has a direct effect on the sensitivity of the microphone. Pull-in 

voltage can be derived directly from the mechanical model of the microphone. By setting 

the applied frequency s = 0 gives,

x m =  (2 .27)
IXr)

Subbing in for Fe(s), [17],

p  — _ ____________________ (2 281
e 2(d0 - X my  { ' 8)
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2. C LAM PED  M E M S M IC RO PH O N E D ESIG N

% iq-6 Displacement vs Volts
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Figure 2.18: Displacement X m vs Voltage

solving for X m gives,

K mX l  -  (2d0K m +  Fa) X 2m +  (K rndl +  2d0Fa)X m -  (2.29)

This displacement of the diaphragm is considered positive down. Plotting Equation 2.29 

gives the curve shown in Figure 2.18. This plot shows three lines corresponding to the three 

roots of Equation 2.29. The first root shows a straight line going down. This corresponds to 

the diaphragm moving away from the backplate and it is discarded as a nonsensical solution. 

The second root is the line tha t curves up from the center of the plot up to the third 

root and corresponds to the unstable solution. Unstable means tha t if the diaphragm lies 

anywhere along this curve it would then quickly collapse. The third root is the remaining 

curve. It represents the stable solution. The intersection of the second and third root 

actually corresponds to the pull-in point. It is the maximum voltage that can be applied 

to the diaphragm and still not have it collapse. A voltage greater than this will cause the 

diaphragm to immediately collapse. The third root curve indicates that the diaphragm 

initially drops down in an almost linear fashion until it approaches the pull-in point at 

which it then collapses to the back plate. A range of air pressures can be applied to our 

model and the effects can be seen as in Figure 2.19. This pressure is applied differentially

24
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Displacement vs Volts For Different Pressures
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Figure 2.19: Displacement X m vs Voltage for Various Air Pressures

to the microphone. That is the pressure is the difference between the front and back of the 

diaphragm. The range of pressures applied is 0, 100 and 200 Pa. The curve for 0 Pa is to the 

. right followed by the other two in order. As can be seen the pressure needs to be significantly 

higher than the range of pressure tha t a microphone needs to work with. Our expected range 

of operation is around 1 Pa. So it is apparent tha t pull-in voltage is not greatly affected by 

applied air pressure. The MATLAB m code used to  generate Figure 2.19 and Figure 2.19 can 

be found in Appendix E. Due to the manufacture of MEMS microphones, a residual tension 

is often left in the diaphragm. This residual tension will affect the pull-in voltage as can be 

seen in Figure 2.20. Here there are three pull-in curves for 100, 200 and 300 N for an applied 

pressure of 1 Pa. As the residual tension increases the pull-in voltage also increases. This is 

because the diaphragm is stiffer and bends less to applied pressure. From this it is clear that 

MEMS clamped diaphragm microphones are very dependent on remaining residual tension 

in the diaphragm. Various methods can be implemented to reduce residual tension. The 

first and foremost method is using high temperature annealing. This relaxes the diaphragm 

by allowing the stresses to flex. The second method involves adding a ribbing like structure 

around the diaphragm tha t stretches and relieves residual tension. The MATLAB m code

25
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x  ̂o-6 Displacement vs Volts for Various Residual Tensions
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Figure 2.20: Displacement X m vs Voltage for Various Residual Tensions

for Figure 2.20 can be found in Appendix F. The predicted pull-in voltage for the design 

can be seen from Figure 2.29 to be about 24 V. This estimate is found to be at least 5 V 

to large. The reason for which was discussed in Section 2.5. In this case the assumption 

of piston like motion has underestimated the amount of displacement. A finite difference 

model was developed to  better estimate pull-in voltage. However it was found tha t the 

method of finite differences is not able to estimate pull-in voltage. As can be seen in Figure 

2.21, each curve represents the pull-in voltage for various node sizes ranging from 10 to 100 

nodes, going up by 10 nodes each step. Figure 2.22 is another representation of the data 

shown in Figure 2.21. Here the pull-in voltage is plotted versus delta, which is the number 

of nodes. As can be seen in either Figure, the pull-in voltage is increasing with increasing 

number of nodes. This is counter intuitive since the simulation should be converging to a 

final solution like in Figure 2.12. Thus the conclusion is tha t finite differences prediction of

pull-in voltage diverges instead of converges and as such is inaccurate. The reason for this is

that the partial differential equation describing plate motion is only accurate for small plate 

deflections. Small plate deflections is defined as a deflection tha t is less than the thickness 

of the plate. The behavior of pull-in voltage is a distinctly large scale deflection and as
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