1979

Mini-computer Fermat number transform and application to digital signal processing.

Ah-Hin. Kok

University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation
https://scholar.uwindsor.ca/etd/2736

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.
NOTICE

The quality of this microfiche is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us a poor photocopy.

Previously copyrighted materials (journal articles, published tests, etc.) are not filmed.

Reproduction in full or in part of this film is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30. Please read the authorization forms which accompany this thesis.

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED

AVIS

La qualité de cette microfiche dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de mauvaise qualité.

Les documents qui font déjà l'objet d'un droit d'auteur (articles de revue, examens publiés, etc.) ne sont pas microfilmés.

La reproduction, même partielle, de ce microfilm est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c, C-30. Veuillez prendre connaissance des formules d'autorisation qui accompagnent cette thèse.

LA THÈSE A ÉTÉ MICROFILMÉE TELLE QUE NOUS L'AVONS RECEUE
MINI-COMPUTER -ORIENTED

FERMAT NUMBER TRANSFORM AND APPLICATION

TO DIGITAL SIGNAL PROCESSING

by

Ah-Hin Kok

A Thesis
submitted to the Faculty of Graduate Studies through
the Department of Electrical Engineering in partial
fulfillment of the requirements for the
Degree of Master of Applied Science at
The University of Windsor

Windsor, Ontario, Canada

1979
ABSTRACT

This thesis investigates a Fermat Number Transform suitable for implementation with a mini-computer, its fast transform algorithms and applications to digital signal processing.

The transform considered is the FNT with modulus equals to the 4th Fermat number. From the investigation of its properties and the characteristics of the FFT-type fast transform algorithms, an efficient algorithm is developed. This algorithm makes possible a more efficient evaluation of the butterfly computations which are the major computations in the fast transform algorithms.

The realization of this transform is made on a 16-bit mini-computer. An efficient scheme is also developed to incorporate the diminished-1 coding technique to avoid ambiguity in number representation.

Application of this FNT to both one-dimensional and two-dimensional digital signal processing is investigated. The efficiency of the developed algorithm is tested with examples on digitized speech signal low pass filtering and Image enhancement.
ACKNOWLEDGEMENT

The author wishes to express his appreciation to Dr. J. J. Soltis for his advice and assistance in this work. The author also expresses his gratitude to Dr. G. A. Jullien and Dr. W. C. Miller for their suggestion and encouragement. Thanks also goes to other members of the department who assisted the author.
TABLE OF CONTENTS

ABSTRACT .. I

ACKNOWLEDGEMENTS .. II

TABLE OF CONTENTS .. III

CHAPTER 1: INTRODUCTION 1

1-1 Discrete-time System 2
1-2 Linear, Time-invariant System 2
1-3 Linear Convolution 3
1-4 Periodic Convolution 3
1-5 Linear Convolution via Periodic Convolution 4
1-6 Discrete Fourier Transform 4
1-7 Cyclic Convolution Property of DFT 11
1-8 The Fast Fourier Transform 11
1-8-1 Decimation-in-time Algorithm 6
1-8-2 Decimation-in-frequency Algorithm 8
1-9 Efficiency of Convolution via FFT 11
1-10 The Number Theoretic Transform 11
1-11 Cyclic Convolution Property of NTT 12
1-12 Outline of this Work 13

CHAPTER 2: THE FERMAT NUMBER TRANSFORM 15

2-1 Introduction .. 15
2-2 The Fermat Number Transform 17
2-3 Properties of FMT 19
2-4 Choice of a Suitable FMT 21
2-5 Fast Transform Algorithms 23
2-5-1 DIT-type Algorithm 23
2-5-2 EIT-type Algorithm 26
2-6 Modified Fast Algorithm (the Shift-Diminished Algorithm) 29

CHAPTER 3: REPRESENTATION OF NUMBER AND IMPLEMENTATION 33

3-1 Number Representation 33
3-2 The Diminished-1 Number Representation 35
3-3 Binary Arithmetic Operation 35
3-3-1 Negation ... 35
3-3-2 Addition .. 36
3-3-3 Subtraction ... 37
CHAPTER 4: APPLICATION TO DIGITAL SIGNAL PROCESSING...

4-1. Convolution using the FFT ...
4-2. Some Techniques for Weakening the Restrictions ...
4-2-1 One-dimensional Convolution by Multi-dimensional Method ...
4-2-2 Wordlength Sectioning ...
4-2-3 Impulse Response Sectioning ...
4-3 One-dimensional Signal Filtering ...
4-3-1 Example of 1-D Signal Filtering ...
4-4 Correlation via FFT ...
4-5 Two-dimensional Signal Filtering ...
4-5-1 Two-dimensional Fourier Number Transform ...
4-6 Correlation via 2-D FFT ...
4-7 Two-dimensional Convolution via 2-D FFT ...
4-8 Picture Processing ...
4-7-1 Examples of Picture Processing Application ...
4-7-2 Edge Enhancement ...

CHAPTER 5: SUMMARY AND CONCLUSION ...

APPENDIX ...

REFERENCES ...
CHAPTER I
INTRODUCTION

Finite digital convolution has many useful applications in signal processing, such as digital signal filtering, the calculation of auto- and cross correlation. The direct computation of digital convolution is a very time-consuming operation due to a large number of multiplications required. However, by means of the fast transform techniques it can be implemented with much higher efficiency.

The Discrete Fourier Transform (DFT) is a well known transform that can be used to perform digital convolution efficiently via the Fast Fourier Transform (FFT) algorithms. One of the other transforms that can be utilized for efficient computation of digital convolution is the Number Theoretic Transforms (NTT). The NTT is a class of transforms unveiled fairly recently. It is an analogy to the DFT, but whose structure is based on the ring of integers modulo a certain integer.

This work investigates the implementation of a particular NTT, called the Fermat Number Transform (FNT), using a general purpose mini-computer. An algorithm that improves the efficiency of the transform in software implementation is developed. For ease of distinguish, this algorithm is called Fermat Number Transform Shift Diminished Algorithm (FNTSD). The efficiency of this algorithm is tested with its applications in both one- and two-dimensional signal filtering.
In this chapter, some of the definitions and theories with regard to fast implementation of finite digital convolution will be reviewed. The outline of this work will then be described.

1-1 Discrete-time System

A discrete-time system is essentially a transformation, \(T(\cdot) \), that maps a number sequence \(x(n) \), representing the input discrete-time signal, into another number sequence \(y(n) \), representing the output discrete-time signal. This is usually denoted as \(y(n) = T(x(n)) \) and depicted as in FIG. 1-1.

![FIG. 1-1](image)

1-2 Linear, Time-invariant System

A linear, time-invariant system (LTI system) is characterized by the properties that

(a) if \(T(x_1(n)) = y_1(n) \)

\[T(x_2(n)) = y_2(n) \]

then \(T(ax_1(n) + bx_2(n)) = ay_1(n) + by_2(n) \)

\[= ay_1(n) + by_2(n) \]
(b) if \(T(x(n)) = y(n) \)

then \(T(x(n-m)) = y(n-m) \)

where \(a \) and \(b \) are arbitrary constant, and \(m \) an integer.

The input and output of an LTI system has a convolutional relation.

\[1.3 \text{ Linear Convolution} \]

Let \(h(n) \) and \(x(n) \) be two sequences with some values defined within the finite durations of \(N_1 \) and \(N_2 \) respectively, and zero otherwise. The linear convolution of \(h(n) \) and \(x(n) \) to give another sequence \(y(n) \) is defined as

\[
y(n) = \sum_{m=0}^{N-1} h(n-m)x(m) \quad , \quad N = N_1 + N_2 \quad , \quad n = 0, 1, 2, \ldots
\]

\[1.4 \text{ Periodic Convolution (Cyclic Convolution)} \]

If \(h(n) \) represents one period section of the periodic sequence \(h_p(n) \), and \(x(n) \) represents that of the periodic sequence \(x_p(n) \) of both period \(N \) samples, then the periodic convolution of \(h(n) \) and \(x(n) \) to give the sequence \(y(n) \) is defined as (where \(((.)) \) denotes \((. \mod N) \))

\[
y(n) = \sum_{m=0}^{N-1} h((m))x((n-m))
\]

or \(y(n) = \sum_{m=0}^{N-1} h_p(m)x_p(n) \) for \(n = 0, 1, 2, \ldots, N-1 \)

\[\ldots (1.4.1) \]
l-5 Linear Convolution via Periodic Convolution

Let the sequences $h(n)$ and $x(n)$ be of duration M and L respectively. If $h(n)$ and $x(n)$ are appended with zero-valued samples to the length of $N=M+L$, then the linear convolution of $h(n)$ and $x(n)$ can be obtained from the periodic convolution of $h(n)$ and $x(n)$, i.e.,

$$y(n) = \sum_{m=0}^{M+L-1} h((n-m))x((m))$$

$$= \sum_{m=0}^{N-1} h(n-m)x(m) \quad \cdots (1.5.1)$$

l-6 Discrete Fourier Transform (DFT)

The Discrete Fourier Transform of a sequence $x(n)$ of N samples is defined as

$$X(k) = \sum_{n=0}^{N-1} x(n)W^{nk} \quad k = 0, 1, 2, \ldots, N-1 \quad \cdots (1.6.1)$$

and the inverse transform (IDFT) is defined as

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k)W^{-nk} \quad n = 0, 1, 2, \ldots, N-1 \quad \cdots (1.6.2)$$

where $W = \exp(-j2\pi/N)$
1-7 Cyclic Convolution Property of DFT

Let the sequences $H(k)$ and $X(k)$ be the DFT of the sequences $h(n)$ and $x(n)$ respectively, and both are of length N samples. The IDFT of the product $H(k)X(k)$ is equal to the cyclic convolution of $h(n)$ and $x(n)$, i.e.,

$$X(k) = \sum_{n=0}^{N-1} x(n)W^{nk}$$

and $$H(k) = \sum_{n=0}^{N-1} h(n)W^{nk}, \quad k = 0, 1, 2, \ldots, N-1$$

then $$y(n) = \sum_{k=0}^{N-1} H(k)X(k)W^{-kn}, \quad n = 0, 1, 2, \ldots, N-1$$

$$= \sum_{m=0}^{N-1} h((n-m))x((m))$$

...(1.7.1)

where $y(n)$ is the cyclic convolution of $h(n)$ and $x(n)$.

1-8 The Fast Fourier Transform (FFT)

The Fast Fourier Transform is a class of algorithms that make use of the symmetry and periodicity of the exponential weight $W = \exp(-j2\pi/N)$ to decompose a long DFT computation into smaller length DFT computations. In this way a significant reduce in the number of arithmetic operations can be obtained. Basically there are two types of FFT algorithms, call the decimation-in-time algorithm and the decimation-in-frequency algorithm.
1-8-1 Decimation-in-Time (DIT) Algorithm

Algorithms in which the decomposition is based on dividing the input sequence (time domain sequence) into successively smaller sequences for processing is called the decimation-in-time algorithms. The procedure is illustrated for an N-point sequence $x(n)$, where N is an integer power of two.

By definition,

$$x(k) = \sum_{n=0}^{N-1} x(n)w_{N}^{nk}, \quad k = 0, 1, 2, \ldots, N-1$$

$$w_{N} = e^{j2\pi/N}$$

Seperating the time sequence $x(n)$ into two sequences, $x_1(n)$ and $x_2(n)$, composed of the even- and odd-sample points respectively, we have,

$$x(k) = \sum_{r=0}^{N/2-1} x(2r)w_{N}^{2rk} + \sum_{r=0}^{N/2-1} x(2r+1)w_{N}^{(2r+1)k}$$

$$= \sum_{r=0}^{N/2-1} x(2r)(w_{N}^{2})^{rk} + \sum_{r=0}^{N/2-1} x(2r+1)(w_{N}^{2})^{rk}w_{N}^{k}$$

By

$$w_{N}^{2} = e^{j2(-j2\pi/N)}$$

$$= e^{j\pi/N}$$

$$= w_{N}/2$$

$$x(k) = \sum_{n=0}^{N/2-1} x_1(n)w_{N/2}^{nk} + w_{N}^{K} \sum_{n=0}^{N/2-1} x_2(n)w_{N/2}^{nk}$$
\[X(k) = X_1(k) + W_N^k X_2(k) \]

\(X_1(k) \) and \(X_2(k) \) are DFT's of \(x_1(n) \) and \(x_2(n) \) respectively, and both are periodic of period \(N/2 \) samples. They have the relation,

\[X_1(k) = X_1(k-N/2) \quad \text{for} \quad N/2 \leq k \leq N-1 \]
\[X_2(k) = X_1(k-N/2) \]

also \(W_N^k = -W_N^{k-N/2} \).

Therefore

\[X(k) = X_1(k) + W_N^k X_2(k) \quad \text{for} \quad 0 \leq k \leq N/2-1 \]

\[= X_1(k-N/2) + W_N^k X_2(k-N/2) \quad \text{for} \quad N/2 \leq k \leq N-1 \]

The procedure is repeatedly applied to each of the successive subsequences, until only two-point DFT's are left to be evaluated. (1.3.1) forms the basic computation units and is usually called the 'butterflies'. For this illustration they have the flow graph of FIG. 1-3-1 and 1-3-2.

\[\text{FIG 1-3-1} \]
1-8-2 Decimation-in-Frequency (DIF) Algorithm

DIF algorithms are based on appropriate combination of input points such that the output sequence can be successively divided into smaller subsequences for processing. This is illustrated for a sequence $x(n)$ of length N equals to an integer power of two.

If $x(n)$ is partitioned into two sequences $x_1(n)$ and $x_2(n)$ such that

$$x_1(n) = x(n)$$

and $$x_2(n) = x(n + N/2)$$, \quad $n = 0, 1, 2, \ldots, N/2 - 1$

then the DFT of $x(n)$ is

$$X(k) = \sum_{n=0}^{N/2-1} x_1(n)W_N^{nk} + \sum_{n=0}^{N/2-1} x_2(n)W_N^{nk+Nk/2}$$
\[X(k) = \sum_{n=0}^{N/2-1} (x_1(n) + x_2(n)) w_{n/2}^k, \quad k = 0,1,2,...,N-1 \]

Decompose \(X(k) \) into even- and odd-sample sequences, then we have

\[X(2k) = \sum_{n=0}^{N/2-1} (x_1(n) + x_2(n)) w_{n/2}^k \]

\[= \sum_{n=0}^{N/2-1} x_1(n) w_{n/2}^k + \sum_{n=0}^{N/2-1} x_2(n) w_{n/2}^k \quad [(1.8.3)] \]

\[= \sum_{n=0}^{N/2-1} f(n) w_{n/2}^k, \quad k = 0,1,2,...,N/2-1 \]

and \(X(2k+1) = \sum_{n=0}^{N/2-1} (x_1(n) - x_2(n)) w_{n/2}^{2k+1} \)

\[= \sum_{n=0}^{N/2-1} (x_1(n) - x_2(n)) w_{n/2}^k \quad [(1.8.4)] \]

\[= \sum_{n=0}^{N/2-1} g(n) w_{n/2}^k, \quad k = 0,1,2,...,N/2-1 \]

(1.8.3) and (1.8.4) are equivalent to two \(N/2 \)-point DFT's. The procedure is repeatedly applied to each of the even- and odd-sample output subsequences until finally only two-point DFT's are left to be evaluated. (1.8.3) and (1.8.4) indicate the basic computational units (butterflies) for the DIF algorithms. FIG. 1-8-3 and FIG. 1-8-4 show the flow graphs of a butterfly and the overall algorithm for \(N \) equals to eight.
\[A \quad C = A + B \]

\[D \quad D = (A - B)W_n^D \]

FIG. 1-8-3 Butterfly for DIF Algorithm

FIG. 1-8-4 Flow Graph for DIF Algorithm
1-9 Efficiency of Convolution via FFT.

In both the DIT and DIF algorithms illustrated for sequence length equals to an integer power of two, the number of complex multiplications and additions required for one transform is reduced to $(N/2) \log_2 N$ and $N \log_2 N$ respectively, while a direct DFT computation requires N^2 complex multiplications and additions.

If a sequence of duration N samples is to be linearly convolved with another sequence of the same duration and assume its DFT already known, then by using the method mentioned in section 1-5, the number of complex multiplications is approximately equal to $2N \log_2 N + 4N$ and that of additions equals to $4N \log_2 N + 4N$. In contrast to the direct convolution, N^2 real multiplications and additions are required.

Assume that 1 complex number multiplication takes as much time as 4 real number multiplications and 3 real number additions, and that 1 complex number addition that takes as much time as 2 real number additions, gain in efficiency can be obtained for convolution via DFT for sequence length greater than approximately 64 points.

1-10 The Number Theoretic Transform (NTT)

The general structure of NTT and its inverse transform is given by the transform pair,

$$x(k) = \left(\sum_{n=0}^{N-1} x(n) a^{nk} \right) \mod N, \quad k = 0, 1, 2, \ldots, N-1$$
\[x(n) = \left(\sum_{k=0}^{N-1} x(k) a^{-nk} \right) \mod M, \quad n = 0, 1, 2, \ldots, N-1 \]

...(1.10.1)

Where,

- \(a \) is a root of unity of order \(N \) in the ring of integer modulo an integer, \(M \).
- \(a^{-nk} \) is the multiplicative inverse of \(a^{nk} \mod M \), and \(Q \) is the multiplicative inverse of \(N \mod M \). \(Q \) is often denoted as \(N^{-1} \).

1-11 Cyclic Convolution Property of NTT

Let the sequences \(H(k) \) and \(X(k) \) be the NTT of the \(N \)-point sequences \(h(n) \) and \(x(n) \) respectively, and that magnitude of the cyclic convolution of \(h(n) \) and \(x(n) \) does not exceed \(||H||/2 \), where \(M \) is the modulus of the NTT. The inverse NTT of the product \(H(k) X(k) \mod M \) is equivalent to the cyclic convolution of \(h(n) \) and \(x(n) \). In notation, that is

\[X(k) = \left(\sum_{n=0}^{N-1} x(n) a^{-nk} \right) \mod M \]

\[H(k) = \left(\sum_{n=0}^{N-1} h(n) a^{-nk} \right) \mod M \]

If \(Y(k) = (H(k) X(k)) \mod M \),

\[y(n) = \left(Q \sum_{k=0}^{N-1} Y(k) a^{-nk} \right) \mod M \]
\[y(n) = \sum_{m=-\frac{N}{2}}^{\frac{N}{2}} h(n-m) \cdot x((n)) \]

where \(-\frac{N}{2} \leq y(n) \leq \frac{N}{2} \),

\((0^*) \mod N = 1\)

and \((\cdot^*)\) indicate \((\cdot) \mod N\)

If there exists an NTT such that 'a' has a simple binary representation such as 2, and \(N\) is a highly composite integer, also that the modulo \(N\) operation can be easily done, then such an NTT can be implemented efficiently using the algorithms similar to that of FFT. The arithmetic operations required for such an NTT can be only additions and binary bit-shifts. It can be used for fast computation of cyclic convolution.

1-12 Outline of This Work

This work investigates the efficient software implementation of a particular NTT called the Fermat Number Transform defined in [1] and [2] by Rader, and Agarwal and Burrus. It is found that the symmetric and periodic properties of the basis function, \(a^k\), can be utilized to reduce the number of bit-shifts required when multiplying the data points with higher power of \(a\). This reduces the power of 'a' in various butterfly computations from the range of (0 to \(N/2-1\)) to the range of (0 to \(N/4\)). This enables considerable decrease in computation time required in software implementation. Efficient algorithm is developed. It is applied to the implementation of an FNT with modulus \(N = 2^{16} + 1\) and \(a = \sqrt{2} \mod N\).
The computer used is the NOVA 840 mini-computer. It is a 16-bit machine with 32K main memory and 80K extended memory.

The FNT of modulus \(M = 2^{16} + 1 \) requires 17 bits to represent all the possible data quantities. The diminished-1 (D-1) code, proposed by Leibowitz [4] is utilized for unambiguous arithmetic operations with the 16-bit word computer. An efficient scheme is developed to accomplish this coding technique in the software realization of the FNT for error free processing.

Subroutine programs are written in assembly language for the FNT of transform length of 64 points and for multiplication of data sequences in the transformed domain. The efficiency of the improved fast FNT algorithm is compared to that of the unmodified FNT and FFT algorithms.

The applicability of the FNT in signal processing is investigated. Particularly, its practical application in digital image filtering is examined. FORTRAN programs are written for two dimensional FNT and two dimensional non-recursive filter using overlap-save technique.
A field of integers mod \mathbb{M}—

A set of integers, \mathbb{M}, each of whose elements is congruent mod \mathbb{M} to some integer in the set $\{0, 1, 2, \ldots, \mathbb{M}-1\}$. \mathbb{M} is closed under addition, subtraction, multiplication as well as division, i.e., each element in \mathbb{M} has a multiplicative inverse in \mathbb{M}. Thus a field is also a ring.

Rules and Theorems for operations in a Ring of Integer mod \mathbb{M}

with '≡' denotes congruent mod \mathbb{M}, the following statements hold [6].

- $a \equiv b \Rightarrow a + b \equiv b + a$; $ab \equiv ba$... commutative
- $(a + b) + c \equiv a + (b + c)$; $(ab)c \equiv a(bc)$... associative
- $a(b + c) \equiv ab + ac$... distributive
- $a + 0 \equiv a$; $a(1) \equiv a$

For every a there is an element, $(-a)$, such that

- $a + (-a) \equiv 0$
- $a \equiv b \Rightarrow ca \equiv cb$
- $a \equiv b \Rightarrow a - b \equiv 0$; $b - a \equiv 0$
- $a \equiv b \Rightarrow a^n \equiv b^n$
- $a \equiv b$, $c \equiv d \Rightarrow a + c \equiv b + d$
- $a \equiv b$, $c \equiv d \Rightarrow ar + cs \equiv br + ds$
- $a \equiv b$, $c \equiv d \Rightarrow ac \equiv bd$

A quantity, p, has a multiplicative inverse, q, mod \mathbb{M} if p and \mathbb{M} are mutually prime.
CHAPTER 2
THE FERMAT NUMBER TRANSFORM

2-1 Introduction

Fairly recently, the transforms having the structure similar to that of the DFT have been defined on finite rings or fields of integers with arithmetic operations performed modulo an integer [1], [2]. This class of transforms is generally referred to as Number Theoretic Transform (NTT). The Fermat Number Transform (FNT) is a subclass of NTT defined with the modulus equals to a Fermat number.

In the following, some definitions and theorems relevant to the later descriptions are given.

Definitions
Congruence -

Two integers, \(a\) and \(b\), are said to be congruent modulo \(M\), denoted as \(a \equiv b \pmod{M}\), if \(a = b + kM\), where \(k\) is some integer and \(M\) is the modulus.

A ring of integers mod \(M\) -

A set of integers, \(S_m\), each of whose elements is congruent to some integer in the set \(\{0, 1, 2, \ldots, M-1\}\), where \(M\) is the modulus. \(S_m\) is closed under addition, subtraction and multiplication, i.e., the sum, difference or product of \(S_m\)'s elements is in \(S_m\).
2-2 The Fermat Number Transform

For a sequence \(x(n) \) of length \(N \) samples, a general transform pair of the form given by,

\[
x(k) = \sum_{n=0}^{N-1} x(n) a^{nk}, \quad k = 0, 1, 2, \ldots, N-1
\]

\[
x(n) = N^{-1} \sum_{k=0}^{N-1} x(k) a^{-nk}, \quad n = 0, 1, 2, \ldots, N-1
\]

is said to have the DFT structure.

In (2), (3), it is shown that if \(N^{-1} \), the multiplicative inverse of \(N \), exists, and if \(a \) is a root of unity of order \(N \), i.e., for the least positive integer, \(N \), such that

\[
a^N = 1
\]

then the transform pair (2.2.1) possess the cyclic convolution properties.

If the sequence \(x(n) \) is of integer values and (2.2.1) is defined on the ring of integers mod some integer, \(M \), with the imposed conditions hold, i.e., if \(N \) is the least positive integer, and

\[
x(k) = \left(\sum_{n=0}^{N-1} x(n) a^{nk} \right) \text{mod} M, \quad k = 0, 1, 2, \ldots, N-1
\]

\[
x(n) = \left(\sum_{k=0}^{N-1} x(k) a^{-nk} \right) \text{mod} M, \quad n = 0, 1, 2, \ldots, N-1
\]

\[
QN = 1 \text{ mod } M; \quad a^N = 1 \text{ mod } M \quad \cdots (2.2.2)
\]
it is the general form of the Number Theoretic Transform.

Rader has shown that (1), (5), if the modulus is a Fermat number, i.e.,

\[M = F_t = 2^b + 1, \quad b = 2^t, \quad t = 1, 2, 3, \ldots \]

then for \(a = 2, \quad N = 2b \) is the least positive integer such that

\[a^N \equiv 1 \mod M, \]

and \(\alpha \), the multiplicative inverse of \(N \), exists.

This transform with modulus equals to a Fermat number is called the Fermat Number Transform (FNT). For this case the transform sequence length, \(N \), is equal to \(2b \). Since this transform has the DFT structure with \(N \) equals to an integer power of two, it can be computed with the FFT type fast algorithms. Multiplication by the basis function, the power of two, can be performed by simple binary bit shifting.

In [2], Agarwal and Burrus defined an FNT using

\[a = 2^{b/4} (2^{b/2} - 1). \]

It is shown that this value of \(a \) is of order \(4b \) for \(t \geq 2 \).

The sequence length for this transform is \(N = 4b \).

Since \(a^2 \equiv 2 \mod F_t \), this value of \(a \) is denoted as

\[a = \sqrt{2} \mod F_t. \]
2-3 Properties of FNT

Some important properties of FNT are listed below [2], where the sequence, \(X(k) \), is the FNT of the sequence, \(x(n) \).

(a). Periodicity

\(x(n) \) and \(X(k) \) can be periodically extended,
\[
x(n+N) = x(n) \\
X(k+n) = X(k)
\]

(b). Symmetry

If \(x(n) \) is symmetric, i.e.,
\[
x(n) = x(-n) = x(N-n)
\]
then, \(X(k) = X(-k) = X(N-k) \)

If \(x(n) \) is antisymmetric, i.e.,
\[
x(n) = -x(-n) = -x(N-n)
\]
then, \(X(k) = -X(-k) = -X(N-k) \)

(c). Symmetry of the transform pair

\[
\text{FNT} \left[\text{FNT} \left[x(n) \right] \right] = N x(-n)
\]

(d). Shift theorem

If \(\text{FNT} \left[x(n) \right] = X(k) \);
then, \(\text{FNT} \left[x(n+m) \right] = X(k) a^{-mk} \)

(e). Fast computation algorithm

If \(N \) can be factored as
\[
N = R_1 \cdot R_2 \cdot R_3 \cdots R_m
\]
then a fast computational algorithm similar to that of FFT exists.
(f) Cyclic convolution property

If \(X(k) = \text{FNT}[x(n)] \)
\(H(k) = \text{FNT}[h(n)] \)
and \(Y(k) = (H(k) \ast (k)) \)
then \(y(n) = \text{IFNT}[Y(k)] \)
\[= x(n) \ast h(n) \]

Where \(\ast \) denotes cyclic convolution.
Choice of a suitable FNT

The following factors affect the choice of a suitable FNT for convolution application.

(a). The computer word length

If the computer is of b-bit word length, where \(b = 2^t \), \(t = 1, 2, \ldots \), then the most suitable modulus would be \(F_t = 2^b + 1 \). This enables the efficient arithmetic operations modulo \(F_t \) with the b-bit Arithmetic-Logical Unit.

(b). The transform length

This affects the appropriate selection of the weight, a. The transform length, N, and the weight, a, are restricted by the conditions imposed on the transform pair (2.2.2.). So, N can be chosen to be equal to or greater than the desired transform length, such that N is highly composite and a has a simple binary representation. Such N and a enable the use of the FFT-type fast algorithms.

(c). Dynamic range of the sequence magnitude

This factor has less control over the choice of the FNT, as the existence of the FNT is governed by the existence of the appropriate \(F_t \), a, N and \(N^{-1} \). Since the magnitude representable by the ring of integers mod \(F_t \) ranges from \(-F_t/2\) to \(F_t/2\), the transform is valid if the magnitude of the convolved sequence is less than \(|F_t/2|\).
For the purpose of convolution application using a 16-bit mini-computer, the fourth Fermat number, \(F_4 = 2^{16} + 1 \), is most suitable to be considered as the modulus. Taking

\[
a = 2^{12} - 2^4 = \sqrt{2} \mod F_4 = 4090
\]

\[
F_4 = 2^{16} + 1
\]

the sequence length for transform is \(N = 64 \).

This should be the optimal FFT with regard to the word length of the mini-computer and the practical value of the transform with the associated possible transform length and dynamic range. The available digital signal processing facility for this work is configured around a 16-bit mini-computer. The investigation thus concentrates on the efficient implementation of the FFT using this modulus and basis function.

In the following sections, the FFT-type fast algorithms will be illustrated. An efficient algorithm, resulted from studying the symmetric and periodic properties of the basis function, is then developed.
2-5 Fast Transform Algorithms

FNT is similar in structure to DFT. The way of decimating a long DFT computation into shorter DFT computations can be applied to FNT. This is illustrated for the FNT of basis function, \(a \), and transform length, \(N \), equal the integer powers of two.

2-5-1 DIT-type Algorithm

By definition, the FNT of a sequence \(x(n) \) of length, \(N \), is given by,

\[
x(k) = \left(\sum_{n=0}^{N-1} x(n) a^{nk} \right) \mod F_t, \quad k = 0, 1, 2, \ldots, N-1
\]

where \(N \) is the least positive integer such that

\[
a^N = 1 \mod F_t
\]

and \(F_t = 2^b + 1, \quad b = 2^t, \quad t = 1, 2, 3, \ldots \)

Let \(x_e(n) \) and \(x_0(n) \) be two sequences of length, \(N/2 \), composed of the even- and odd-samples of \(x(n) \) respectively. Then,

\[
x(k) = \left(\sum_{r=0}^{N/2-1} x(2r) a^{2rk} \right) + \sum_{r=0}^{N/2-1} x(2r+1) a^{(2r+1)k} \mod F_t
\]

\[
= \left(\sum_{n=0}^{N/2-1} x_e(n) a^{2nk} + a^k \sum_{n=0}^{N/2-1} x_0(n) a^{2nk} \right) \mod F_t
\]

\[\ldots (2.5.1)\]
The right side of (2.5.1) is the sum of two $N/2$-point FNT's with the second one weighted with a^k, i.e.,

$$X(k) = X_e(k) + a^kX_o(k)$$

$x_e(k)$ and $x_o(k)$ are the FNT of $x_e(n)$ and $x_o(n)$ respectively, and are periodic of period $N/2$. They have the relation,

$$x_e(k) = x_e(k-N/2) \quad \text{for } k/2 \leq k \leq N-1$$

$$x_o(k) = x_o(k-N/2) \quad \text{for } k/2 \leq k \leq N-1$$

Also $a^k = -(a^{k-N/2}) \mod F_t$

Therefore,

$$X(k) = (x_e(k) + a^kx_o(k)) \mod F_t \quad \text{for } k/2 \leq k \leq N-1$$

$$= (x_e(k-N/2) - a^kx_o(k-N/2)) \mod F_t \quad \text{for } k/2 \leq k \leq N-1$$

The procedure is repeatedly applied to each of the successive subsequences, until only two-point FNT's are left to be evaluated. The FNT computational unit, or the 'butterfly', has the flow graph shown in FIG. 2-5-1. The overall flow graph for the DIT-type FNT algorithm of $F_t = 2a+1$, $a = 2$ and $N = 8$ is shown in FIG. 2-5-2.
\[C = (A + Ba^k) \mod F_t \]
\[D = (A - Ba^k) \mod F_t \]

FIG. 2-5-1 The Computational Unit, 'Butterfly', for DIT-type FFT Algorithm.

FIG. 2-5-2 Flow graph of the DIT-type 8-point FFT Algorithm. (Computations are carried out \(\mod 17 \)).
2-5-2 DIF-type Algorithm

Let $x(n)$ be partitioned into two sequences, $x_1(n)$ and $x_2(n)$, such that,

$$x_1(n) = x(n)$$

$$x_2(n) = x(n + N/2) \quad \text{for} \quad n = 0, 1, 2, \ldots, N/2-1$$

The FFT of $x(n)$ is reduced to

$$X(k) = \left(\sum_{n=0}^{N/2-1} x_1(n) a^{nk} \right) \text{mod } F_t$$

$$+ \left(\sum_{n=0}^{N/2-1} x_2(n) a^{(n+N/2)k} \right) \text{mod } F_t$$

$$= \left(\sum_{n=0}^{N/2-1} x_1(n) a^{nk} \right) \text{mod } F_t$$

$$+ \left(a^{Nk/2} \sum_{n=0}^{N/2-1} x_2(n) a^{nk} \right) \text{mod } F_t$$

where $k = 0, 1, 2, \ldots, N-1$

The two summations at the right of equal sign can be combined before modulo F_t. Decomposing $X(k)$ into the even- and odd-sequences, we have for even $X(k)$,

$$X(2k) = \left(\sum_{n=0}^{N/2-1} (x_1(n) + a^{Nk}x_2(n))(a^2)^{nk} \right) \text{mod } F_t.$$
Since \(a^{Nk} = (1 \mod F_t)^k = 1 \mod F_t \),

\[
X(2k) = \left(\sum_{n=0}^{N/2-1} (x_1(n) + x_2(n)(a^2)^{nk}) \right) \mod F_t \quad \ldots \ldots (2.5.2)
\]

For odd-\(X(k)\),

\[
X(2k+1) = \left(\sum_{n=0}^{N/2-1} (x_1(n) + a^{nk+N/2} x_2(n))a^{n(2k+1)} \right) \mod F_t
\]

Since \(a^{Nk+N/2} = -1 \mod F_t \),

\[
X(2k+1) = \left(\sum_{n=0}^{N/2-1} ((x_1(n) - x_2(n))a^n) (a^2)^{nk} \right) \mod F_t \quad \ldots \ldots (2.5.3)
\]

(2.5.2) and (2.5.3) indicate that the even- and odd-samples of the FNT of \(x(n) \) can be obtained from the FNT's of \((x_1(n) + x_2(n)) \) and \((x_1(n) - x_2(n))a^n \) respectively. This procedure is applied repeatedly until finally two-point FNT's are left to be evaluated.

(2.5.2) and (2.5.3) form the basic computational unit, or the 'butterfly', of the DIF-type algorithms. Its flow graph representation is shown in FIG. 2-5-3. The overall flow graph of the DIF-type algorithm of \(F_t = 2^4 + 1 \), \(a = 2 \) and \(N = 8 \) is shown in FIG. 2-5-4.
A \quad C = (A - B) \mod F_t

B \quad D = (A - B) a^n \mod F_t

FIG. 2-5-3 Butterfly for DIF-type FNT Algorithm

\[
x(0) \quad X(0) \\
x(1) \quad X(1) \\
x(2) \quad X(2) \\
x(3) \quad X(3) \\
x(4) \quad X(4) \\
x(5) \quad X(5) \\
x(6) \quad X(6) \\
x(7) \quad X(7)
\]

FIG. 2-5-4 Flow Graph for DIF-type 8-point FNT Algorithm. (Computation for each data point is carried out \(\mod 17 \)).
2-6 Modified Fast Algorithm (the Shift-Diminished Algorithm)

In both the DIT- and DIF-type of FNT algorithms illustrated, each butterfly requires multiplication of data by the basis function, \(a^k \). The values of \(k \) varies from 0 to \(N/2-1 \).

In their software implementation of FNT using \(a = 2 \) and \(a = \sqrt{2} \mod F_t \), (2), Agarwal and Burrus suggested that multiplication by \(2^k \) can be performed by shifting the binary bit pattern of the data by \(k \) bit positions, instead of multiplication of the data by the value of \(2^k \). This results in considerable saving in butterfly computation time.

Usually a general-purpose digital computer does not have the instruction for performing a single multi-bit shift; multiplication by \(2^k \) has to be done by \(k \) repetitions of one-bit shift instruction. Although bit-shifting is a simple operation, it still needs considerable amount of time when \(k \) is large. This situation can be improved if we make use of the periodic and symmetric properties of the basis function.

Consider the fact that,

\[a^{N/2} = -1 \mod F_t \]

then \(a^k \) can be written as

\[a^k = (a^{N/2} \mod F_t)(a^{k-N/2} \mod F_t) \]

\[= (a^{N/2} a^{k-N/2}) \mod F_t \]
\[a^k = -a^{-(N/2-k)} \mod F_t \] ... (2.6.1)

Thus the DIT-type butterfly computation units can be modified to

\[X(k) = (X_e(k) + a^k X_0(k)) \mod F_t \quad \text{for} \quad 0 \leq k \leq N/4 \]
\[= (X_e(k) - a^{-(N/2-k)} X_0(k)) \mod F_t \quad \text{for} \quad N/4 \leq k \leq N/2-1 \]

and

\[X(k+N/2) = (X_e(k) - a^k X_0(k)) \mod F_t \quad \text{for} \quad 0 \leq k \leq N/4 \]
\[= (X_e(k) + a^{-(N/2-k)} X_0(k)) \mod F_t \quad \text{for} \quad N/4 \leq k \leq N/2-1 \]
While in the DIF-type algorithm, the computations can be modified to:

$$X(2k) = \sum_{n=0}^{N/2-1} (x_1(n) + x_2(n)) (a^2)^{nk} \mod F_t$$

for $0 \leq n \leq N/2-1$

and

$$X(2k+1) = \sum_{n=0}^{N/2-1} ((x_1(n) - x_2(n))a^n) (a^2)^{nk} \mod F_t$$

for $0 \leq n \leq N/4$

and

$$= \sum_{n=0}^{N/2-1} (- (x_1(n) - x_2(n)) a^{(N/2-n)}) (a^2)^{nk} \mod F_t$$

for $N/4 \leq n \leq N/2-1$
For \(k \geq \frac{N}{4} \), \((N/2-k) \leq \frac{N}{4} \).

Hence, multiplication by \(a^k \) with \(k \) greater than \(N/4 \) can be replaced by multiplication by \(-a^{-(N/2-k)} \). This modification enables the number of bit-shifts in various butterfly computations to be reduced to the range of \((0 \text{ to } N/4)\) instead of \((0 \text{ to } (N/2-1))\) as required in the algorithm given in [1] and [2].

Take for example, the FNT of modulus \(f_t = 2^{16} + 1 \) with \(a = 2 \) and \(N = 32 \), the computation of \(A \cdot 2^{14} \mod f_t \) can be done by,

\[
A \cdot 2^{14} = (-A) \cdot 2^{-(16-14)} \mod f_t
\]

\[
= (-A) \cdot 2^{-2} \mod f_t
\]

two binary bit shifts are required rather than 14 bit shifts.

A general-purpose computer usually has the instruction for performing half-word swap. Further reduction in computation time is possible with this instruction to compute multiplication of data by \(2^k \) when \(k = b/2 \), where \(b \) is the computer wordlength.

The details of implementation by these two techniques will be described in chapter 3.
CHAPTER 3

REPRESENTATION OF NUMBER AND IMPLEMENTATION

To implement an FNT of modulus $F_b = 2^b + 1$ with a b-bit computer, the following are desirable.

- Efficient operation of residue reduction modulo F_b.
- Efficient operation of multiplication by the basis function.
- Error free operation.
- Arithmetic operations on $b+1$-bit numbers in the ring of integers modulo F_b should be avoided to enable efficient computation.

3-1 Number Representation

Arithmetic operations in the computation of FNT are carried out modulo F_b. This restricts the numbers involved in the computation to be within the set of integers, \{0, 1, 2, \ldots, 2^b\}. Zero and positive values are represented by 0, 1, 2, \ldots, $2^b/2$, and negative values by $(2^b/2)+1, (2^b/2)+2, \ldots, 2^b$ each of which is equivalent to adding 2^b+1 to each respective negative number. The magnitude of the transform sequence should be less than or equal to $|2^b/2|$, to avoid aliasing in magnitude when it is carried out modulo F_b.

To represent all the possible number in binary, $b+1$ bits are required. But the computer used is of b-bit ($b = 16$ in this work) wordlength. Agarwal and Burrus, in their
software realization of FMT with a b-bit \((b = 32)\) computer, simplified the computation to b-bit arithmetics which enables efficient residue reduction. This involves using \(b\) bits to represent numbers from 0 to \(2^b - 1\) in the way described in the previous paragraph. All numbers whose values do not exceed \(\frac{2^b}{2}\) can be represented exactly except the value \((-1)\). Since \(-1 = 2^b \mod F_t\), the number \(2^b\) required \(b+1\) bits.

It can not be represented with a b-bit computer word. So, if it is encountered in the input data, it can be rounded to 0 or -2. This is equivalent to introducing some quantization error. But if \(2^b\) appears as a result of some arithmetic operations, it cannot be represented. Erroneous output may result for that block.

In order to have error free computation, consideration has to be made on appropriate representation of numbers. Some special coding schemes have been introduced by several authors for special hardware FMT implementations,\((4), (9), (10)\)

Among these coding schemes, the "Diminished-1 number representation" proposed by Leibowitz \((4)\) is most simple and applicable to this work. Arithmetics with this diminished-1 number representation will be described. Feasible technique is developed to accomplish this coding scheme in the software implementation of the FMT.

More specifically, the advantage of using the Diminished-1 number representation are: (a) the problem of ambiguity in number representation can be overcome and (b), operation on \(17\) bits numbers can be avoided, enabling efficient computation with 16 bits CPU.
3-2 The Diminished-1 Number Representation

In the set of integers, \(S_m = \{1, 2, 3, \ldots, 2^b+1\} \), the numbers required \(b+1 \) bits binary representation are \(2^b \) and \(2^b+1 \). \(2^b \) is congruent to \(-1 \mod F_t\) and \(2^b+1 \) congruent to \(0 \mod F_t \). If every element in \(S_m \) is subtracted by 1, a new set, \(S_d = \{0, 1, 2, \ldots, 2^b\} \) is obtained. The elements in \(S_m \) and \(S_d \) are one to one correspondence, with \(2^b \) in \(S_d \) corresponds to \(2^b+1 \equiv 0 \mod F_t \) in \(S_m \), 0 in \(S_d \) corresponds to 1 in \(S_m \), and so on. \(S_d \) can be used to represent all the possible integers allowed in FNT computation, and is called the "Diminished-1 number representation" [4].

The only number in \(S_d \) with a 1 in the \(b+1 \)th bit (or the most significant bit, msb) is \(2^b \), which represents \(2^b+1 \equiv 0 \mod F_t \) in \(S_m \). Zero can be exempted from calculation. Thus using this number representation, arithmetic operations on \(b+1 \)-bit numbers can be avoided. Table 3-4-1 illustrates the correspondence between the normal and diminished-1 number representations for \(b = 4 \).

3-3 Binary Arithmetic Operations

The following illustrates the arithmetic operations necessary in computing FNT using the diminished-1 number representation as given in [4].

3-3-1 Negation

A negative integer, \(-A\), is represented by \((-A) - 1\). It is obtained by complementing the \(b \)-lsb (\(b \) least-significant-bits) of its diminished-1 positive counterpart, \(A - 1 \).
Denoting the b-lsb complement by an overbar, this is shown as,

\[\overline{A - 1} = 2^b - 1 - (A - 1) \]

\[= 2^b + 1 - A - 1 \]

\[= (-A) - 1 \mod F_t \]

A 1 at the msb indicates the number is the representation of zero, and negation is inhibited.

Example

\[-4 \equiv 13 \mod F_t \]

\[0 \overline{0011} = 0 \overline{1100} \]

3-3-2 **Addition**

The sum of two diminished-1 integers, A-1 and B-1, is

\[(A-1) + (B-1) = A + B - 2 \]

The required sum in diminished-1 representation is \((A+B)-1\), thus

\[(A+B) - 1 = (A-1) + (B-1) + 1 \]

The above indicates a 1 should be added to the addition to get the correct diminished-1 representation of the sum.

A carry generated from the b-lsb addition indicates the result is greater than or equal to the modulus, thus a residue reduction \(\mod F_t \) requires the subtraction of 1 from
the result, because \(2^b = -1 \mod F_t \). Therefore no corrective addition is necessary.

If the msb of either addend is 1, the addition is inhibited, and the remaining addend is the sum.

Example 1

\[
\begin{array}{c}
8 \\
+14
\end{array}
\Rightarrow 5 \mod 17
\]

\[
\begin{array}{c}
0.0111 \\
+0.1101
\end{array}
\Rightarrow 1.0100
\]

\[
0.0100 \rightarrow 5 \mod 17
\]

Example 2

\[
\begin{array}{c}
0 \\
+5
\end{array}
\Rightarrow 5 \mod 17
\]

\[
\begin{array}{c}
1.0000 \\
-0.0100
\end{array}
\Rightarrow 0.0100 \rightarrow 5 \mod 17
\]

3-3-3 Subtraction

Subtraction is performed by negating the subtrahend and adding it to the minuend according to the previous description.

3-3-4 Multiplication by power of two

The result of multiplying a diminished-1 number, \(A-1 \), by 2 is

\[
(A-1) \times 2 = (2A-1) - 1
\]

The desired diminished-1 representation of the product is \((2A-1) \), thus,

\[
2A - 1 = (A-1) \times 2 + 1
\]
This is equivalent to left-shifting (A-1) by one bit position and a corrective addition of 1. If the bit shifted out of the bth bit is a zero, a corrective 1 should be added to the result. If the bit shifted out is a 1, a residue reduction mod \(F_t \) requires the subtraction of 1 from the result, which cancels out the corrective addition, and the shifted b-lsb is the desired product.

Multiplication by a higher power of 2 is equivalent to a repetition of left-shifts and corrective additions.

If the multiplicand represents zero as indicated by a 1 at the msb, the multiplication is inhibited. The product is still zero.

Example

\[
\begin{align*}
11 & \rightarrow 0 \: 1010 \\
11 \times 2 &= 22 \equiv 5 \pmod{17} \rightarrow 0.0100 \rightarrow 5 \\
11 \times 2^2 &= 44 \equiv 10 \pmod{17} \rightarrow 0.1001 \rightarrow 10 \\
11 \times 2^3 &= 88 \equiv 3 \pmod{17} \rightarrow 0.0011 \rightarrow 3
\end{align*}
\]

3-3-5 General Multiplication

The product of two diminished-1 number, (A-1) and (B-1), is

\[
(A-1)(B-1) = AB - A - B + 1 \\
= (AB-1) - (A+B-1) - 1
\]

The desired product in diminished-1 representation is \((AB-1)\), therefore,
\[AB-1 = (A-1)(B-1) + (A+B-1) - 1 \]

This is obtained by adding the diminished-1 sum of \((A-1)\) and \((B-1)\) to the product of \((A-1)\) and \((B-1)\), then perform the residue reduction by diminished-1 subtraction of the b-msb of the result from the b-1sb.

If the msb of either \((A-1)\) or \((B-1)\) is a 1, which indicates zero representation, multiplication is inhibited and the result is set to diminished-1 representation of zero.

Example

\[
\begin{array}{c}
14 \\
\times \ 3 \\
\hline
112 = 10 \mod 17 \\
\end{array}
\]

\[
\begin{array}{c}
0 \ 1101 \\
\times \ 0 \ 0111 \\
\hline
0101 \ 1011 \\
\end{array}
\]

\[
\begin{array}{c}
0 \ 1101 \\
\times \ 0 \ 0111 \\
\hline
0 \ 0100 \\
\end{array}
\]

\[
\begin{array}{c}
0101 \ 1111 \\
+ \ 1010 \\
\hline
0 \ 1001 \\
\rightarrow 10 \mod 17 \\
\end{array}
\]

3-4 Implementation with NOVA mini-computer

The underlying motivation in the implementation of FNT is its efficiency for computing discrete convolution; and this should be compatible with the more versatile FFT. The most important consideration is whether fast operation is possible for the butterfly computational units. This requires an understanding of the capability of the computer used, particularly that of the arithmetic-and-logical unit (ALU). The following gives a brief description of the NOVA-840's arithmetic unit and instructions, on which the FNT software program is developed.
3-4-1 The Arithmetic Unit

The logical organization of the arithmetic unit is illustrated in FIG. 3-4-1.

![Diagram of the arithmetic unit with labels: FUNCTION GENERATOR, SHIFTER, CARRY, ACCUMULATORS, SKIP SENSOR.]

FIG. 3-4-1

The Accumulators

There are four 16-bit accumulators, AC0 to AC3, act as working and scratch-pad registers. Any one or two of them can be specified by an instruction to supply operands to the function generator. Data can be moved in either direction between any accumulator and memory location. AC2 or AC3 can also be used as an index register for addressing memory. These features are very useful for efficient butterfly computation. The pair of index registers make convenient the addressing of the data blocks. The other two accumulators do the computations and temporary store the intermediate result.
The Carry

It is a flag indicates the occurrence of a carry bit out of the 16th bit in an arithmetic operation. It can be used to indicate an overflow that requires residue reduction modulo \(2^{16} + 1\).

The Shifter

The 17-bit result after the operation of the function generator can be shifted one bit position left or right. The left and right halves of the 16 lsb can also be swapped in the shifter. These are illustrated in FIG. 3-4-2. The combination of these two instructions enables fast operation of multiplications by various powers of 2.

![Diagram showing left-shift, right-shift, and swap operations](image)

The Skip Sensor

The content of the 17th bit and/or the other 16 bits can be tested for a skip over the next sequential instruction. This function is required or in associated with the Load/No load switch, for test for overflow that requires
a residue reduction, test for zero or sign of numbers in code translation and branching of execution to different computational modules.

The Function Generator

The function generator performs the functions specified by the instruction. The arithmetic and logical instructions available are,

- COM (complement)
- NEG (negate)
- MOV (move)
- INC (increment)
- ADC (add complement)
- SUB (subtract)
- ADD (add)
- AND (and)

In each of the above instructions, the left or right shift, swap, skip conditions, base value of Carry and load/no load can be specified.

Other instructions available and required in programming the FMT are the memory reference instructions,

- LDA (load accumulator from memory)
- STA (store accumulator to memory)
- ISZ (increment content of memory & skip if zero)
- DSZ (decrement content of memory & skip if zero)
- JMP (jump)
- JSR (jump to subroutine)
Code Translation and Mapped Memory Block for MSB

In NOVA system, integer number are represented using 16-bit binary. The integer values which can be represented without ambiguity are \(-2^{15}, \ldots, -2, -1, 0, 1, 2, \ldots, 2^{15} - 1\). Negative values are represented using two's complement representation, i.e., if \(A\) is a 16-digit binary number within \((1, 2^{15})\), its two's complement is equivalent to \(2^{16} - A\) which represents \(-A\). The 16th bit stands for sign, 0 for positive and 1 for negative.

As can be seen from TABLE 3-4-1, the diminished-1 representation of negative values is exactly the same as the two's complement representation. Thus to translate the numbers in two's complement to diminished-1 representation, the negative numbers are left unchanged; only the positive numbers are to be subtracted by 1.

One problem arises in the representation of the diminished-1 numbers, zero and one, with 16-bit-word memory. The 16-1sb of these two numbers are both all 0's; a means has to be set up to distinguish between them. In this work, a block of memory that maps to the block that stores the 16-1sb of the data is set up to stand for the msb (the 17th bit), such that the word in the mapped msb block corresponds to zero is set to 1 and all others are set to 0, as illustrated in FIG. 3-4-3. The increase in addressing complexity is trivial with the use of the accumulators, AC2 and AC3, as a pair of index registers for addressing the two blocks at the same time.
<table>
<thead>
<tr>
<th>Value (mod 17)</th>
<th>Diminished-1 Representation</th>
<th>Two's Complement Representation (4-bit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 0000</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>0 0001</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>0 0010</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>0 0011</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>0 0100</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>0 0101</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>0 0110</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>0 0111</td>
<td></td>
</tr>
<tr>
<td>-8 (9)</td>
<td>0 1000</td>
<td>1000</td>
</tr>
<tr>
<td>-7 (10)</td>
<td>0 1001</td>
<td>1001</td>
</tr>
<tr>
<td>-6 (11)</td>
<td>0 1010</td>
<td>1010</td>
</tr>
<tr>
<td>-5 (12)</td>
<td>0 1011</td>
<td>1011</td>
</tr>
<tr>
<td>-4 (13)</td>
<td>0 1100</td>
<td>1100</td>
</tr>
<tr>
<td>-3 (14)</td>
<td>0 1101</td>
<td>1101</td>
</tr>
<tr>
<td>-2 (15)</td>
<td>0 1110</td>
<td>1110</td>
</tr>
<tr>
<td>-1 (16)</td>
<td>0 1111</td>
<td>1111</td>
</tr>
<tr>
<td>0 (17)</td>
<td>1 0000</td>
<td>0000</td>
</tr>
</tbody>
</table>

TABLE 3-4-1 Correspondence between Diminished-1 and Two's Complement Representations
FIG. 3-4-5 Two mapping blocks of memory for storage of 17-bit data sequence in diminished-1 representation. AC2 and AC3 are used as index register pair for addressing the two corresponding words.
3-4-3 Consideration on Possible Error due to Code Translation

In the Format Number Transform, there are 2^{b+1} possible integers, which represent values within the range $-2^b/2$ to $2^b/2$. With the diminished-1 coding scheme they can all be represented, using an additional bit for the representation of zero. But with two's complement representation using b bits word, the range of integers representable is $-2^b/2$ to $(2^b/2-1)$; the positive integer, $2^b/2$, can not be represented.

To avoid ambiguity without increasing the complexity in both computation and memory addressing, the mapped block of memory that stands for the msb's has to be maintained through out the procedure of computation for convolution, i.e., starting from the two's complement-to-diminished-1 code translation, forward FMT, multiplication in the transformed domain, to the end of inverse transform. The possible error due to ambiguity in number representation may then happen during the code translation from diminished-1 back to two's complement representation. The representable dynamic range in various stage of the convolution procedure is depicted in fig.3-4-4.

If the diminished-1 number, $(2^b/2-1)$, happens to occur after the inverse FMT, the normal code translation will add 1 to the number, and the result in the b-bit register will be then $2^b/2$. But in two's complement $2^b/2$ represents the value $-2^b/2$ instead of $+2^b/2$; a change of sign occurs. The error is -2^b in magnitude. If this number is not to be translated, the error would be -1.
This error can be avoided. Consider the diminished-1 number, \(\frac{2^b}{2} - 1 \), which represents \(\frac{2^b}{2} \) in normal value for the result of the convolution. If the input sequences are properly scaled such that the magnitude of their convolution is less than \(\frac{2^b}{2} \), then the diminished-1 number, \(\frac{2^b}{2} - 1 \), will never occur at the end of the inverse FNT. Hence, ambiguity in code translation from diminished-1 code to 2's complement representation is avoided.
3-4-4 Computational Modules for Multiplication by Powers of 2

In the FFT-type algorithms with $F_t = 2^{16} + 1$, $N = 64$ and $a = \sqrt{2} \mod F_t$, there are six stages. Each stage requires $N/2 = 32^a$ butterfly computations. Each butterfly requires a multiplication by a power of $\sqrt{2}$. The power of $\sqrt{2}$ for each stage in the DIT-type algorithm are listed below.

Stage 1 (stage 6 for DIF-type)
$32 \times \{0\}$

Stage 2 (stage 5 for DIF-type)
$16 \times \{0,16\}$

Stage 3 (stage 4 for DIF-type)
$8 \times \{0,8,16,24\}$

Stage 4 (stage 3 for DIF-type)
$4 \times \{0,4,8,12,16,20,24,28\}$

Stage 5 (stage 2 for DIF-type)
$2 \times \{0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30\}$

Stage 6 (stage 1 for DIF-type)
$1 \times \{0,1,2,3,4,\ldots,28,29,30,31\}$

Multiplication by an even power of $\sqrt{2}$ is equivalent to multiplication by half that power of 2, for example $(A \cdot (\sqrt{2})^{16}) \mod F_t = A \cdot 2^8 \mod F_t$. Multiplication by an odd power of $\sqrt{2}$ is equiva-
lent to multiplication by half of the next lower power of 2 and then by $\sqrt{2} \mod F_t$, for example, $\mathbf{A} \cdot (\sqrt{2})^{17} = \mathbf{A} \cdot 2^8 \cdot \sqrt{2} \mod F_t$.

By the modified algorithm, multiplications in various butterfly are reduced to multiplications by

$\sqrt{2} \mod F_t$

$(\sqrt{2})^2 = 2 \mod F_t$

$(\sqrt{2})^3 = 2/2 \mod F_t$

$(\sqrt{2})^4 = 2 \mod F_t$

$(\sqrt{2})^{17} = 2^8 \sqrt{2} \mod F_t$

$(\sqrt{2})^{13} = 2^9 = -2^{-1} \cdot (16-9) = -2^{-7} \mod F_t$

$(\sqrt{2})^{19} = 2^9 \sqrt{2} = -2^{-7} \sqrt{2} \mod F_t$

$(\sqrt{2})^{20} = 2^{10} = -2^{-6} \mod F_t$

$(\sqrt{2})^{31} = 2^{15} \sqrt{2} = -2^{-1} \sqrt{2} \mod F_t$

In order to increase the efficiency, these operations are implemented in separate modules within the program. Only two sets of test and indexing instructions are needed, one for updating the index of the stages, and the other for updating the address of the modules associated with the current butterfly. 16 modules are necessary, 15 of which for performing multiplications by $2^1, 2^2, 2^3, \ldots, 2^{15} \mod F_t$, and one of which for performing multiplication by $(\sqrt{2} \mod F_t) = 4080$.
For inverse FNT, the same set of computational modules can be used in the reversed order for multiplication by negative powers of $\sqrt{2}$.

The basic instruction set used to perform multiplication by $2 \mod F,t$ (having accumulator loaded with data to be operated), are

```
MOVZL 1,1,SHC
INC 1,1
```

If the probability of a 1 shifting into the carry-bit after the shift operation is $1/2$, then the average execution time for this pair of instructions is $(1.0 + 0.8/2) = 1.4 \mu\text{sec}$.

If multiplication by 2^8 is performed by 8 repetitions of this instruction pair, $8 \times 1.4 = 11.2 \mu\text{sec}$ is required. The operation can be performed, instead, by complementing the higher significant byte of the data followed by a swap of the two bytes, as illustrated in FIG. 3-4-5.

Data in ACl: $(15453)_{10}$

<table>
<thead>
<tr>
<th>H</th>
<th>L</th>
<th>00111100</th>
<th>01011100</th>
</tr>
</thead>
</table>

Get low byte of ACl:

<table>
<thead>
<tr>
<th>L</th>
<th>00000000</th>
<th>01011100</th>
</tr>
</thead>
</table>

Compl. and move to ACO

<table>
<thead>
<tr>
<th>H</th>
<th>L</th>
<th>11000011</th>
<th>10100011</th>
</tr>
</thead>
</table>

Get high byte of ACO

<table>
<thead>
<tr>
<th>H</th>
<th>11000011</th>
<th>00000000</th>
</tr>
</thead>
</table>

Add ACO to ACl and swap:

<table>
<thead>
<tr>
<th>01011100</th>
<th>11000011</th>
</tr>
</thead>
</table>

$15453 \times 2^8 = 23748 \mod (2^{16} + 1)$

FIG. 3-4-5 Operation for Multiplication by $2^8 \mod F,t$.
The set of instructions to accomplish multiplication by $2^8 \mod P_7$ is: (included in the program routine through MACRO command)

; data having loaded in Acl, and content of AC3 is (11111111 00000000)₂

COM 1,0 ;move compl. of C(Acl) to ACO
AND 3,0 ;get high sig. byte of ACO
COM 3,2
AND 2,1 ;get low sig. byte of Acl
ADDS 0,1 ;add and swap

Instead of 11.2 \(\mu\)sec required by 8 repeated shifts, this module requires \(5 \times 0.8 = 4.0\ \mu\)sec which is approximately equivalent to the time required for 3 repeated shifts.

The total number of bit-shifts for multiplication by powers of 2 in one forward FFT using the unmodified algorithm is 904. While the time required for the same operation with the modifications described is equivalent to the time required for approximately 369 single-bit shifts.

The execution time of a single-bit shift instruction is the same as that for one addition. The total number of additions (includes subtractions) for transform is \(N\log_2 N = 64 \times 6 = 192\). Thus the average execution time for one "multiplication by a power of 2" is reduced to approximately twice that for addition.

5-4-5 Algorithms for Forward and Inverse Transforms

As can be seen from FIG. 2-5-2 and FIG. 2-5-4, the input sequence of DIF-type transform algorithm is in natural order, but the transformed sequence is in index's bit-rever-
sed order; while it is the contrary for that of the DIT-type algorithm. Since the index order of the transformed sequence is not important, the routine for index sorting and reordering can be avoided by using DIF-type algorithm for forward FNT and DIT-type algorithm for inverse FNT computation. The number of program instructions increase is little compare to the program using the same algorithm for both forward and inverse transform with an index sorting and reordering routine.
CHAPTER 4
APPLICATION TO DIGITAL SIGNAL PROCESSING

The Format Number Transform coefficients do not have any physical meaning. The purpose of implementing the FNT is to utilize it as a tool to compute the finite convolution sum of two sequences. Convolution has many important applications in signal processing. The ability of an algorithm to compute convolution is also able to compute auto- and cross-correlations. This chapter discusses the practical application of the particular FNT investigated in this work. Emphasis is made on two-dimensional digital signal processing which could be most rewarding area of its applications. Some examples of image processing application are thus done to test the efficiency of the improved algorithm, (the shift-diminished algorithm,) developed in chapters two and three.

4-1 Convolution Using The FNT

The cyclic convolution of two sequences can be computed by multiplying their FNT's and followed by an inverse transform (IFNT). This is shown in the following.

If \(X(k) \) and \(H(k) \) are the FNT's of the two \(N \)-point sequences \(x(n) \) and \(h(n) \) respectively, then by definition,

\[
x(k) = \left(\sum_{n=0}^{N-1} x(n)a^{nk} \right) \mod Ft,
\]
\[H(k) = \left(\sum_{n=0}^{N-1} h(n)a^{nk} \right) \mod F_t, \quad k = 0,1,\ldots,N-1 \]

where \(F_t = 2^{16} + 1 = 65537 \), \(a = \sqrt{2} \mod F_t = 4080 \) and \(N = 64 \).

Let \(Y(k) \) be the product in the transform domain, defined as

\[Y(k) = \left(X(k)H(k) \right) \mod F_t, \quad k = 0,1,\ldots,N-1 \]

and \(y(n) \) be the IFFT of \(Y(k) \), then

\[y(n) = \left(Q \sum_{k=0}^{N-1} Y(k)a^{-nk} \right) \mod F_t, \quad n = 0,1,\ldots,N-1 \]

and \(QN = 1 \mod F_t \)

or

\[y(n) = \left(Q \sum_{k=0}^{N-1} \sum_{m=0}^{N-1} x(m)a^{mk} \sum_{r=0}^{N-1} h(r)a^{rk} a^{-nk} \right) \mod F_t \]

\[= \left(\sum_{m=0}^{N-1} \sum_{r=0}^{N-1} x(m)h(r) Q \sum_{k=0}^{N-1} a^{-k(n-m-r)} \right) \mod F_t \]

since

\(Q \sum_{k=0}^{N-1} a^{-k(n-m-r)} \mod F_t = 1 \) if \(r = n-m \)

\(= 0 \) otherwise.

Therefore

\[y(n) = \left(\sum_{m=0}^{N-1} x(m)h(n-m) \right) \mod F_t \quad \ldots \quad (4.1.1) \]

If \(x(n) \) and \(h(n) \) are properly bounded such that

\[\left(\sum_{n=0}^{N-1} x(m)h(n-m), \ n=0,1,\ldots,N-1 \right) \text{ lies within } -F_t/2 \text{ and } \]

\(F_t/2 \), then \((4.1.1) \) has the equivalent relation, i.e.,
\[y(n) = \sum_{m=0}^{N-1} x(m)h(n-m), \quad n = 0,1,\ldots,N-1 \]

Advantages of Convolution via the FNT

The main advantage of convolution via the FNT is its efficiency. The reason for the speedup is that the FNT computation requires \(N \log_2 N \) addition (includes subtractions) and \((N/2) \log_2 N \) "multiplications by powers of \(\sqrt{2} \) mod \(F_t \)" which, by the shift-diminished algorithm developed in chapter 3, require a total execution time approximately equivalent to twice that for the additions.

Assume the FNT of one of the two convolving sequences is known, the implementation of convolution by the FNT requires \(N \) multiplications \(\mod F_t \) and a total of operations which requires an execution time approximately equivalent to the execution time required by \(4N \log_2 N \) additions \(\mod F_t \). While the direct computation of the convolution requires \(N^2 \) multiplications and \(N^2 \) additions.

Disadvantages of Convolution via the FNT

The short coming of the FNT results from restrictions due to the constraints of the Modulus, \(F_t \), the basis function, \(a \), and the transform length, \(N \). For the particular FNT investigated, the application is thus subjected to the restrictions:

1. The transform sequence length should be less than or
equal to 64 points and
2). The magnitude of the convolved sequence should be within
32767 and -32768 for signed number.
4-2 Some Techniques for Weakening the Restrictions

There are several techniques proposed by different authors possible for relaxing the limitations of FNT. This section describes three of the techniques proposed specifically to cope with the constraints. Their practical values to the present case of study are investigated.

4-2-1 One-dimensional Convolution by Multi-dimensional Method

In [9] R. C. Agarwal and C. S. Burrus presented the formulation of multi-dimensional array from one-dimensional digital sequence, so that one-dimensional convolution could be obtained from the multi-dimensional convolution. The scheme to convolve long one-dimensional (1-D) sequences by two-dimensional (2-D) convolution is described.

Assume that \(x(n) \) and \(h(n) \) are the two sequences, both of duration \(N_1 \) points, to be convolved to give the sequence \(y(n) \), and that \(N_1 \) can be factorized as \(N_1 = L \cdot M \). \(x(n) \) and \(h(n) \) are then arranged as shown in (4.2.1) and (4.2.2) to form the 2-D arrays of \(x_2 \) and \(h_2 \) respectively. The size of \(x_2 \) and \(h_2 \) are both \(N \times N \), where \(N = 2L \), and \(N \times N \) is the size of the two-dimensional FNT.

Two-dimensional cyclic convolution is then carried out by multiplying \(x_2 \) and \(h_2 \) in the transform domain and taking the two-dimensional inverse FNT. The result is

\[
y_2(1,m) = x_2(1,m) * h_2(1,m), \quad 1,m = 0,1,\ldots,N-1
\]

where * * denotes 2-D cyclic convolution.
\[
x_2(1,m) = \begin{bmatrix}
x(0) & x(L) & \cdots & x(N_1-L) & 0 & 0 & \cdots & 0 \\
x(1) & x(L+1) & \cdots & x(N_1-L+1) & 0 & 0 & \cdots & 0 \\
x(2) & x(L+2) & \cdots & x(N_1-L+2) & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\frac{0}{0} & \frac{0}{0} & \cdots & \frac{0}{0} & \frac{0}{0} & \cdots & \frac{0}{0} & \cdots (4.2.1)
\end{bmatrix}
\]

\[
h_2(1,m) = \begin{bmatrix}
0 & h(0) & h(L) & \cdots & h(N_1-L) & 0 & \cdots & 0 \\
0 & h(1) & h(L+1) & \cdots & h(N_1-L+1) & 0 & \cdots & 0 \\
0 & h(2) & h(L+2) & \cdots & h(N_1-L+2) & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & h(L-1) & h(2L-1) & \cdots & h(N_1-L) & 0 & \cdots & 0 \\
h(0) & h(L) & h(2L) & \cdots & 0 & 0 & \cdots & 0 \\
h(1) & h(L+1) & h(2L+1) & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\frac{h(L-1)}{h(L-1)} & \frac{h(2L-1)}{h(2L-1)} & \frac{h(3L-1)}{h(3L-1)} & \cdots & 0 & 0 & \cdots & 0 \\
\frac{0}{0} & \frac{0}{0} & \frac{0}{0} & \cdots & \frac{0}{0} & \frac{0}{0} & \cdots & \frac{0}{0} & \cdots (4.2.2)
\end{bmatrix}
\]

\[y_2 = x_2 \ast h_2\]

The columns of the lower \(L \times N \) of \(y_2 \) is the desired
linear convolution of x and h, i.e.,

$$y(n) = y_2(l, m), \quad n = 1 + mL$$

$$l = 0, 1, 2, \ldots, L-1$$

$$m = 0, 1, 2, \ldots, N-1$$

For FMT with larger modulus, such as $F_t = F_5 = 2^{32} + 1$, this technique could be useful for lengthening the transform length. But for the FMT implemented with the 16-bit mini-computer, this technique for extending the transform length is greatly limited. This is because with 16-bit word, and modulus equal to $2^{16} + 1$, the dynamic range of the convolved result is limited to within $\pm 2^{15}$. The convolution of two 32-point sequences of magnitudes larger than 2^5 by using the original 64 points transform length could cause overflow. The extension of the transform length would make the problem of overflow even worse. For example, if the transform length is to be lengthen to 512 points, the magnitude of the input sequences, assume they have the same dynamic range, should be scaled down to about 2^3. This is too severe for most of the one-dimensional digital signal processing applications.

4-2-2 Wordlength Sectioning

The wordlength limitation could be relaxed by sectioning the input data word into shorter blocks and convolve them separately. The results are then added to the proper scale to give the desired convolution. This is shown as follows [2].

$$x(n) = x_1(n) \cdot 2^k + x_2(n), \quad |x_2(n)| \leq 2^k$$
and \(h(n) = h_1(n) \cdot 2^k + h_2(n), \quad |h_2(n)| \leq 2^k \)

Then \(y(n) = x(n) * h(n) \)
\[
= x_1(n) * h_1(n) 2^{2k} + (x_1(n) * h_2(n) + x_2(n) * h_1(n)) 2^k \\
+ x_2(n) * h_2(n),
\]
\(n = 0, 1, \ldots, N-1 \)

\(...(4.2.3)\)

This method can increase the dynamic range considerably, and bring some light to the applicability of the FFT to 1-D digital signal processing.

4-2-3 Impulse Response Sectioning

N. S. Reddy and V. U. Reddy [10] proposed the partitioning of the impulse response sequence into shorter lengths. The segments of the impulse response sequence are then convolved separately with the signal sequence. The separate results are then added together with appropriate delays. This is shown in the following.

The impulse response, \(h(n), n = 0, 1, \ldots, N-1 \), could be partitioned into \(M \) sections, each of length \(L \) points, such that

\[
h_k(n) = h(kL + n) \quad \text{for } n = 0, 1, \ldots, L-1
\]
\[
= 0 \quad \text{otherwise;}
\]
\(k = 0, 1, \ldots, M-1 \)

The separate convolutions yield \(y_k(n) = x(n) * h_k(n) \). The desired result is

\[
y(n) = y_0(n) + y_1(n-L) + y_2(n-2L) + \cdots + y_{M-1}(n-ML+L),
\]
\(n = 0, 1, 2, \ldots \)
This technique can be used to extend the length of the impulse response sequence as well as the dynamic range. But the extension is rather limited. In practical situations, considerations may include the comparison of the resultant efficiency with that of the FFT technique. As will be seen in the later sections, convolution using the FNT without applying any of these extension techniques is 4 to 5 times faster than using FFT. Unless the exact computation is required, the impulse response sectioning of more than five sections is not attractive.

4-3 One-dimensional Signal Filtering

The realization of the finite impulse response (FIR) filter involves the convolution of a digital signal sequence with a finite length impulse response sequence. The implementation could utilize the FNT for fast convolution.

The signal sequence, \(x(n); n = 0,1,2,\ldots \), can be considered to be infinitely long. Using the overlap-save or overlap-add technique [7], it can be partitioned into the appropriate length sequences, \(x_k(n); n = 0,1,\ldots,L-1 \), and convolve via the FNT with the finite length impulse response sequence, \(h(n); n = 0,1,\ldots,N_1 \), as depicted in Fig. 4-3-1, where FFNT denotes the forward FNT, IFNT denotes the inverse FNT, and \(\times \) means transform domain multiplication modulo 65537.

![Diagram](image)

Fig. 4-3-1
It should be noted that the sequences involved in the transform are integer valued. If the input sequences are originally not integers, modification is needed to ensure that they have integer values lying within the appropriate dynamic ranges, so that overflow would not occur at the output. The dynamic ranges could be set by the bound \[2\],

\[|x(n)|_{\text{max}} \sum_{n=0}^{N-1} |h(n)| \leq F_t/2 \]

The wordlength limitation is rather severe with the modulus of 65537. One or the combination of the techniques described in the last section may be needed to release the restrictions on wordlength and transform length. The following situations could be considered.

1) Without wordlength or sequence length segmentation

For each lap of convolution, the maximum length of the sum of the two convolving sequences is 65 points. While the accuracy of the data, assuming it is the same for both sequences, could only be about 5 bits.

2) With wordlength segmentation

If the wordlength of both the transform sequences is segmented, the accuracy of the data could be raised to about 10 bits. That is, if the segmentation is such that

\[x(n) = x_1(n)2^5 + x_2(n), \quad |x_1(n)| \leq 2^5, \quad |x_2(n)| \leq 2^5 \]

and \[h(n) = h_1(n)2^5 + h_2(n), \quad |h_1(n)| \leq 2^5, \quad |h_2(n)| \leq 2^5 \]
\[y(n) = x(n) * h(n) \]
\[= x_1 * h_1 . 2^{10} + (x_1 * h_2 + x_2 * h_1) . 2^5 + x_2 * h_2 \]
\[\ldots (4.3.1) \]

In (4.3.1), the summation within the parentheses could be done in the transform domain, and the last term which is very small compared with the first term, can be neglected. In this case, each lap of the convolutions requires 2 FFT's, 3N multiplications and additions mod 65537, 2 IFFT's, 2N multiplications by \(2^{10}\) and \(2^5\) and N additions. The execution time would be more than twice that for case one.

3) With both wordlength and sequence length segmentation

This would further increase both the accuracy of the input data and filter length to some extend. But the efficiency may not be competitive with the FFT technique. The following example illustrates this.

Assume that the magnitude of both the input data, \(x(n)\), and impulse response, \(h(n)\), are of 10 bits; and that the impulse response is of 64 points long. The wordlength can be partitioned into two blocks such that

\[x(n) = x_1(n) \cdot 2^5 + x_2(n), \quad |x_1(n)|, |x_2(n)| \leq 2^5 \]

\[h(n) = h_1(n) \cdot 2^5 + h_2(n), \quad |h_1(n)|, |h_2(n)| \leq 2^5 \]

The impulse response can be partitioned into two subsequences such that
\[h'(n) = h(0), h(1), \ldots, h(31) \]
\[h''(n) = h(32), h(33), \ldots, h(63) \]

The separately convolved results would be

\[y'(n) = h'(n) \ast x(n) \]
\[= x_1 \ast h_1 \ast x_{10} + (x_1 \ast h_2 + x_2 \ast h_1) \ast 2^5 + x_2 \ast h_2 \]

\[y''(n) = h''(n) \ast x(n) \]
\[= h_1'' \ast x_1 \ast 2_{10} + (x_1 \ast h_2' + x_2 \ast h_1') \ast 2^5 + x_2 \ast h_2' \]

The desired result is

\[y(n) = y'(n) + y''(n) \]

Eight convolutions are required. Each convolution is performed via the 64-point FFT.
4-3-1 Example of 1-D Signal Filtering

This example shows the application of FFT technique to one-dimensional digital signal filtering. The input data sequence is digitized speech signal. The sampling interval of the speech signal is 100 usec. The dynamic range of the recorded signal is from -46 to 46. It is scaled down by multiplying the data by the factor, 0.6, and truncated to get the integer part. The filter used is a low pass filter. The normalized cutoff frequency (-3db) is 0.08 and the stop frequency is 0.16.

The original impulse response has a maximum value of 0.235946 and minimum value of -0.030112. The multiplying factor for scaling up is 100, and the integer part is taken.

Overlap-save technique is used. Each lap of convolution processes 41 points of data.

Fig. 4-5-2 and Fig. 4-5-5 show the original signal waveform and the filtered waveform respectively.

4-4 Correlation via FFT

Consider the FFT and inverse FFT of the sequences, \(x(n) \) and \(y(n) \), \(n = 0, 1, 2, \ldots, N-1 \), respectively.

\[
X(k) = \left(\sum_{n=0}^{N-1} x(n)a^{nk} \right) \mod F_t \quad \ldots \quad (4.4.1)
\]

\[
Y'(k) = \left(\sum_{n=0}^{N-1} y(n)a^{-nk} \right) \mod F_t \quad \ldots \quad (4.4.2)
\]

If \(R_{xy}(k) = (X(k)Y'(k)) \mod F_t \)

\(k = 0, 1, \ldots, N-1 \)
Fig. 4-3-2 A plot of a section of speech signal.

Number of points plotted: 1024
Sampling interval: 100 μsec.
Fig. 4-3-5 Speech signal after low pass filtering using FNT technique.

The original speech signal is shown in Fig. 4-3-2.

-5 db frequency = 800 Hz.
the inverse FNT of \(R_{xy}(k) \) is
\[
r_{xy}(m) = \sum_{k=0}^{N-1} R_{xy}(k)a^{-mk} \mod F_t, \quad m = 0, 1, \ldots, N-1
\]
\[
= \sum_{k=0}^{N-1} \sum_{p=0}^{N-1} x(p) a^{pk} \sum_{n=0}^{N-1} y(n) a^{-nk} a^{-mk} \mod F_t
\]
\[
= \left(\sum_{n=0}^{N-1} \sum_{p=0}^{N-1} x(p) y(n) \right) \sum_{k=0}^{N-1} a^{-k(m+n-p)} \mod F_t
\]
But \(\sum_{k=0}^{N-1} a^{-k(m+n-p)} \mod F_t = 1 \) if \(p = n+m \)
\[
= 0 \quad \text{otherwise}
\]
Therefore \(r_{xy}(m) = \sum_{n=0}^{N-1} x(n+m)y(m) \)
\[
\text{or} \quad r_{xy}(m) = \sum_{n=0}^{N-1} x(m)y(n+m) \quad \cdots (4.4.3)
\]

(4.4.3) is the cyclic correlation of the sequences, \(x(n) \) and \(y(n) \), \(n = 0, 1, 2, \ldots, N-1 \).

If \(x(n) \) has been constructed in such a way that only the first \((N/2 + 1) \) points are the actual sample values, and the rest of the points are zeros, then the sequence \(r_{xy}(m) \), \(m = 0, 1, 2, \ldots, N/2 \), is the non-cyclic cross-correlation of \(x(n) \) and \(y(n) \).

In (4.4.2), if \(Y'(k) \) and \(Y(n) \) are replaced by \(X'(k) \) and \(x(n) \) respectively, then by the same evaluation as for (4.4.3), the auto-correlation of \(x(n) \) can be obtained, which is
\[
r_{xx}(m) = \sum_{n=0}^{N-1} x(m)x(n+m), \quad 0 \leq m \leq N/2
\]
4-5 Two-dimensional (2-D) Signal Processing

The Fermat Number Transform can be extended to two-dimensional case. It could be particularly useful for the realization of two-dimensional finite impulse response filter, where the filter size and signal dynamic range are small. The two-dimensional Fermat Number Transform can be used as a tool to compute the two-dimensional convolution of the 2-D input signal and the 2-D filter sequence, as depicted in Fig. 4-5-1.

\[
x(n_1, n_2) \xrightarrow{\text{2-D FNT}} \cdot \xrightarrow{\times} \xrightarrow{\text{2-D IFNT}} y(n_1, n_2)
\]

\[
h(n_1, n_2) \xrightarrow{\text{2-D FNT}}
\]

FIG. 4-5-1

4-5-1 Two-dimensional Fermat Number Transform (2-D FNT)

The 2-D FNT can be defined as an extension of the 1-D FNT. If \(x(n_1, n_2)\) is assumed to be one period of a periodic 2-D signal with period \(N_1\) points along both dimensions, the 2-D FNT of \(x(n_1, n_2)\) is

\[
X(k_1, k_2) = \left(\sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} x(n_1, n_2) a_{n_1}^{k_1} a_{n_2}^{k_2} \right) \mod F_t
\]

\[
k_{1,2} = 0, 1, \ldots, N-1
\]
where \[F_t = 2^{16} + 1 = 65537 \]
\[a = \text{mod } F_t = 4080 \]
\[N = 64 \]

The two-dimensional inverse Fermat Number Transform (2-D \(\text{IFNT} \)) of \(x(k_1, k_2) \) is

\[
x(n_1, n_2) = (Q Q \sum_{k_1=0}^{N-1} \sum_{k_2=0}^{N-1} x(k_1, k_2) a^{-n_1 k_1} a^{-n_2 k_2}) \text{ mod } F_t
\]
\[n_1, n_2 = 0, 1, \ldots, N-1 \]

\[
\text{....(4.5.2)}
\]

where \(Q \) is the multiplicative inverse \(\text{mod } F_t \) of \(N \), i.e.

\[Q N = 1 \text{ mod } F_t \]

* In (4.5.1), an interchange of the summation gives

\[
x(k_1, k_2) = (\sum_{n_2=0}^{N-1} \sum_{n_1=0}^{N-1} x(n_1, n_2) a^{n_1 k_1} a^{n_2 k_2}) \text{ mod } F_t
\]

\[
\text{....(4.5.3)}
\]

If \(x(n_1, n_2) \) is represented as a row-column array as does a matrix, then from (4.5.3), it can be seen that the 2-D FNT can be obtained by performing a series of 1-D FNT's, first over the column and then over the rows. With the 64-point 1-D FNT algorithm developed, a 64x64 points 2-D FNT can be performed efficiently.
4-5-2 Two-dimensional Convolution via 2-D FNT

If \(x(n_1,n_2) \) represents a 2-D sequence of duration \(L \) points on both dimensions and \(h(n_1,n_2) \) represents another 2-D sequence of duration \(M \) points on both dimensions,
\[
(x(n_1,n_2) = h(n_1,n_2) = 0 \text{ for } n_1,n_2 \neq 0,1,\ldots,N-1),
\]
the linear 2-D convolution of \(x \) and \(h \) is
\[
y(n_1,n_2) = \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1} x(m_1,m_2)h(n_1-m_1,n_2-m_2),
\]
\[
N = L+M,
\]
\[
n_1,n_2 = 0,1,2,\ldots,N-1
\]

Let both \(x \) and \(h \) be appended with zeros to the dimension of \(N \times N \), and \(x(k_1,k_2) \), \(h(k_1,k_2) \) represent the 2-D FFT's of the appended sequences respectively. Then, the 2-D IFFT of the product,
\[
Y(k_1,k_2) = (X(k_1,k_2)H(k_1,k_2)) \mod F_t \quad k_1,k_2 = 0,1,\ldots,N-1,
\]
which is
\[
y(n_1,n_2) = \sum_{k_1=0}^{N-1} \sum_{k_2=0}^{N-1} Y(k_1,k_2) a^{-n_1k_1} a^{-n_2k_2} \mod F_t
\]
\[
n_1,n_2 = 0,1,\ldots,N-1
\]
\[(4.5.4)\]
is equivalent to the 2-D convolution of \(x \) and \(h \).
The problem of wordlength constraint also exists in this application. The dynamic ranges could be set by the bound,

\[|x(n_1, n_2)| \max \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1} |h(n_1, n_2)| \leq F_t/2, \quad \ldots (4.5.5) \]

If this dynamic range restriction is too severe, the wordlength segmentation described in section 4.2.2 could be applied to the filter array, \(h(n_1, n_2) \), so that each word of \(h(n_1, n_2) \) is partitioned into two blocks of appropriate numbers of bits, such as

\[h = h_1 2^k + h_2, \quad |h_2| < 2^k \]

The convolution is then computed as

\[y = x \star h_1 2^k + x \star h_2 \]

The execution time required would be roughly 50% more of that required by (4.5.4).

The sectioned 2-D convolution technique [7] can also be applied to the processing of large pictures by the 2-D FNT.
4-6 Picture Processing

In [12], Rader proposed that the FNT could be employed to implement picture filtering which involves, in most of the practical cases, two-dimensional FTR filters of size less than 20 x 20 samples.

This application of the FNT could be particularly rewarding for implementation with small computers, such as the NOVA-840 mini-computer. The short sequence length along each dimension of the filter array is one reason that makes the FNT technique for picture processing superior to the conventional method, such as the FFT's. The other reasons are:

1) The dynamic range of the digital image signal is not large. Four bits of intensity value for each pixel is usually acceptable. In fact, a 4-bit array and a 6-bit array of the same image, when normalized to 256 gray levels and displayed on the cathode ray tube, are difficult to be distinguished by telling from naked eyes. The FNT method is efficient for such type of processing.

2) The main memory size of the mini-computer limits the use of large two-dimensional array for transform. The efficiency of short sequence 2-D filtering using the conventional FFT method is not attractive. This is not true for the FNT method.

3) FNT computation employs integer arithmetics, which is simple and faster on the mini-computer than floating point arithmetics.
4-7 Examples of Picture Processing Application

To test the efficiency of the FNT Shift-Diminished Algorithm developed in this work, a main program in FORTRAN is written. This program makes use of the two-dimensional overlap-save technique to process the image array of size up to 256 x 256 samples. 24 k-words of the extended memory is assigned for temporary storage of the intermediate results during the computation. This is to reduce the frequency of the time consuming I/O operations between the disk files and CPU. The size of the filter array can be less than or equal to 33 x 33 points.

Fig. 4-7-1 depicts the 2-D sectioned convolution by overlap-save technique. The 256x256 points picture array is partition into 64 blocks of size 32x32 points each as shown in Fig. 4-7-1 (a). Each lap of convolution processes one new block. At the beginning of each lap of processing, the new block of data is placed into the lower right quadrant of the 64x64 array to be transformed; and the other three quadrants are appended with the last three adjoining blocks. The array is forward transformed to give its 2-D FNT array which is then multiplied by \(H(k_1, k_2) \mod 65537 \), where \(H(k_1, k_2) \) is the 2-D FNT of the impulse response appended with zeros to the size of 64x64 points. The transform domain product is finally inverse transformed to give the convolved result. The 32x32 partition at the lower right quadrant of the resultant array is the desired result for that lap of convolution. The process is repeated for all the 64 blocks.
Fig. 4-7-1 (a). Partition of 256x256 points picture into 64 blocks of size 32x32 points each for overlap-save convolutions.
Fig. 4-7-1 (b). 2-D sectioned convolution (overlap-save method) via 2-D FNT. 'O' denotes zeros appended; 'X' denotes useless result.
Fig. 4-7-I (c). 256x256 points processed picture formed of 64 blocks of partial results from sectioned convolution by 2-D FNT technique.
4-7-1 Edge Enhancement

This example shows how the FNT is used for edge enhancement of an image pattern.

The original image is shown in Fig.4-7-2. The image is of size 128x128 points with 8 bits representation for intensity at each point. It is scaled to 4 bits by truncation before processing.

The filter is the Laplacian \([14],[15]\) whose magnitude specification is

\[H(\omega_{ij}) = \omega_{ij}^2 \]

where

\[\omega_{ij} = \left(\omega_1^2 + \omega_2^2 \right)^\frac{1}{2} \]

and \(\omega_1, \omega_2\) are frequency variables along the two dimensions. This specification is computer generated for the size of 32x32 points. Two-dimensional inverse DFT is performed over this array to obtain the impulse response. The impulse response is scaled up to 5 bits by multiplying each sample by 2^5. It is then appended with zeros to the size of 64x64 points, and its 2-D FNT, \(H(k_1,k_2)\), is taken.

The filtering is performed via FNT as described previously. The execution time for each lap of convolution (processing one block of 32x32 points image partition) is recorded. The filtered image is shown in Fig.4-7-3.

The same image, filtering using the FNT algorithm of Agarwal and Burrus[2], as well as using the FFT techniques have also been performed, and their execution times are recorded for reference.
Average execution time for each lap of convolution using 64x64-point transform:

By FFT
approximately 29 sec.

By FNT (algorithm of Agarwal and Burrus[2])"
7.4 sec

By FNTSD
4.6 sec

Overall processing time for 128x128 points image (includes approximately 20 sec. of I/O operation between the CPU and disk):

By FFT
approximately 484 sec.

By FNT (algorithm of Agarwal and Burrus[2])"
133 sec.

By FNTSD
94 sec.

** Note: The FFT used corresponds to the fastest algorithm of its family, which transforms two blocks of real data at the same time.

FNTSD is the FNT Shift-Diminished algorithm developed in this work.
Fig. 4-7-2 Original image

Fig. 4-7-3 Edge enhanced Image
CHAPTER 5

SUMMARY AND CONCLUSION

The DFT has long been known to possess the property for computing convolution. Nevertheless, the study and systematic description of the cyclic convolution property that the transform possesses is the matter of recent years. The FNT investigated in this work is one of the results of generalizing the cyclic convolution property to other class of transform in different number system. FNT has turned out to be a useful transform which can be utilized for computing convolution using computer of wordlength equals to a power of 2. A few research works have been done on the hardware realization of FNT to gain the full advantage of this transform without multiplication, 11, 13. In this work, the objective was to develop an efficient, error free algorithm which could be implemented with a general purpose computer to meet the requirement in general situation where the special purpose machine is not readily available.

Any algorithm, the Shift-Diminished algorithm, is developed, and the efficiency is verified. This algorithm is particularly advantageous in speed for implementation with the computer which does not have high speed hardware for multiplication. The efficiency of this FNT algorithm is tested with examples of actual application. It is more than 50% faster for convolution than the implementation using the
algorithm of Agarwal and Burrus.

Table 5-1 lists the number of arithmetic and logical operations as well as the memory requirement for computing convolution via 64-point FNT Shift-Diminished algorithm and the algorithm of Agarwal and Burrus.

Table 5-2 lists the number of arithmetic and logical operations as well as the memory requirement for computing convolution via 64×64-point 2-D FNT using Shift-Diminished algorithm and the algorithm of Agarwal and Burrus.

Also entered in these two tables are the number of operations and memory requirement (floating point number) for convolution by the conventional FFT technique. This serves to provide the idea on the superiority of the FNT technique in terms of speed. It should be noted that the programs written for the FFT's are all in FORTRAN and that the variable and arrays are for floating point number operations. While the subprograms for the FNT evaluations are written in assembly language with arithmetics operated on integer numbers. An appropriate comparison between these two classes of transform should not be made by merely looking at the figures on the tables but should include the difference between FORTRAN and assembly languages as well as the difference between operations on floating and integer numbers.
<table>
<thead>
<tr>
<th></th>
<th>FFT</th>
<th>FNTAB</th>
<th>FNTSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplications</td>
<td>448</td>
<td>94</td>
<td>94</td>
</tr>
<tr>
<td>Additions</td>
<td>768</td>
<td>768</td>
<td>768</td>
</tr>
<tr>
<td>Shifts</td>
<td>0</td>
<td>904</td>
<td>389</td>
</tr>
<tr>
<td>Memory (words)</td>
<td>512</td>
<td>228</td>
<td>256</td>
</tr>
</tbody>
</table>

Table 5-1 Number of arithmetic and logical operations and memory requirement for computing convolution using 64-point transforms.

Note: *FNTAB represents FNT with the algorithm of Agarwal and Burrus.*

FNTSD is the FNT Shift-Diminished algorithm developed in this work.

The arithmetic operations under FFT are on complex number.
<table>
<thead>
<tr>
<th></th>
<th>FFT</th>
<th>FNTAB</th>
<th>FITSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplications</td>
<td>57344</td>
<td>12032</td>
<td>12032</td>
</tr>
<tr>
<td>Additions</td>
<td>98304</td>
<td>98304</td>
<td>98304</td>
</tr>
<tr>
<td>Shifts</td>
<td>0</td>
<td>115712</td>
<td>49792</td>
</tr>
<tr>
<td>Memory (words)</td>
<td>32768</td>
<td>8192</td>
<td>16584</td>
</tr>
</tbody>
</table>

Table 5-2. Number of arithmetic, logical operations and memory requirements for computing 2-dimensional convolution using 64x64-point 2-D transforms.

Notes:
1. FNTAB is the FNT algorithm of Agarwal and Burrus.
2. FITSD is the the FNT algorithm developed in this work.
3. The arithmetic operations under FFT are on complex number.
The features incorporated in FNT implementation with the Shift-Diminished algorithm developed in this work are summarized in the following:

1. Modification of the fast transform algorithm to reduce the powers of the basis function, $\sqrt{2} \mod F_t$, in the butterfly computations from the range of 0 to $N/2-1$ to the range of 0 to $N/4$, where N is the transform length. The "butterflies", which are the major computations in the fast transform algorithm, can thus be computed more efficiently as the multiplications of data by the basis function are performed by less bit shifting.

2. Incorporation of the Diminished-1 number coding $[4]$ with an efficient scheme to avoid the error due to ambiguity in number representation.

The advantages of this FNT algorithm are:

1. High speed, and
2. Error-free computation.
3. Using integer arithmetics which is simple in programming and requiring less memory space.

The disadvantages are due to the nature of FNT, they are:

1. Limited dynamic range. The result of convolution via this approach should lie within the values, $-F_t/2$ and $F_t/2-1$, where F_t is the modulus of the FNT.
2. The transform length is fixed and restricted by the constraints of F_t, a and N.
A conclusion can be drawn with regard to the application of the FNT to digital signal processing. Knowing the advantages and disadvantages of the FNT technique, it can be concluded that the problems with the following characteristics could be benefit from the FNT approach.
1. Requiring convolution where the sequence lengths are short and the dynamic range is small.
2. Multiplication is costly.
3. Exact computation during convolution is needed.

Possible Area of Further Study

Further expansion of the transform length and dynamic range could be possible by slicing a large modulus into smaller moduli for separate operations and combine the partial results.

Searching into other number fields may unveil other transforms with the advantages of FNT and less or none of the disadvantages.
APPENDIX

Included in the following pages are the compiled or assembled listing of the programs:

1. **OSPNT**: The mainline program written in FORTRAN-5 of the NOVA-840. This program performs image filtering via FMT technique (Shift-diminished algorithm developed in this thesis work). Overlap-save method is used for 2-D sectioned convolution.

2. **Subroutine TDFNT**: This subprogram is written in FORTRAN-5. It performs two-dimensional Fermat Number Transform by a sequence of 1-D FMT over the rows and columns of the data array.

3. **MULMOD**: This is the Assembly language subprogram which performs multiplication mod 65537 of two sequences of data in diminished-1 coding.

4. **FNTSD**: This subprogram is written in the assembly language of the NOVA-840. It performs Fermat Number Transform on a 64-point sequence using the Shift-diminished algorithm developed in this thesis.
C FILENAME: OSFNT
C THIS PROGRAM PERFORMS IMAGE FILTERING VIA 2D-FNT
C TECHNIQUE. THE MAXIMUM SIZE OF FILTER (IMPULSE RESPONSE)
C IS 33 X 33 POINTS.
C THE MAXIMUM SIZE OF IMAGE IS 256 X 256 POINTS.
C TWO DIMENSIONAL OVERLAP-SAVE METHOD IS EMPLOYED FOR
C SECTIONED CONVOLUTION.
C
C FILENAMES OF SUBROUTINE REQUIRED: TDFNT, FNTSD, MULMOD
C
INTEGER IWIN(8192), XI(32, 256), XC(64, 64), XT(64, 64)
INTEGER H(64, 64), HC(64, 64), XTI(64, 64), H1(64), XCl(64), HC1(64)
DIMENSION R(64), NAME(5), ITIME(3)
COMMON/WINDOW/IWIN
EQUIVALENCE(IWIN(4097), XT(1))
EQUIVALENCE(IWIN, XI, XC, R)
COMMON/TEMP/XTL, XC1
DATA NAME/'5*/'./NT/64/, NX/32/, NBFL/8/
100 FORMAT(' ', IX, 'FILE NAME OF T.F. (IMPULSE RESP.): ', Z)
200 FORMAT(5A2)
1 WRITE(10, 100)
2 READ(11, 200) NAME
3 ACCEPT"SIZE OF T.F. = # COLUMN = # ROWS = ", NH
4 ACCEPT"INPUT TYPE= (INTEGER:0, REAL:1) ", ITY
5 ACCEPT"MULTIPLY FACTOR = ", AH
6 I=2
7 IF(ITY.EQ.1) I=4
8 OPEN 0, NAME, LEN=I+NH, REC=NH
9 DO 10 I=1, NT
10 IX=I
11 DO 10 J=1, NT
12 XI(I, J)=0
13 IF(ITY.EQ.0) READ(0) <H(I, J), J=1, NH
14 IF(ITY.EQ.0) GO TO 11
15 IF(ITY.EQ.1) READ(0) <R(J), J=1, NH
16 DO 11 J=1, NH
17 XI(I, J)=IFIX(R(J)+AH+0.5)
18 11 CONTINUE
19 CALL TDFNT(H, NT, 0, HC)
20 WRITE(10, 110)
21 READ(11, 200) NAME
22 TYPE"SIZE OF IMAGE:
23 ACCEPT"# OF COLUMNS = ", NJ
24 ACCEPT"# OF ROWS = ", NI
25 ACCEPT"WISH TO SCALE IMAGE MAG. ? YES(1), NO(0): ", IVES
26 OPEN 1, NAME, LEN=2*NJ, REC=NI
27 TYPE"WISH TO STORE PROCESSED IMAGE IN" ACCEPT"ORIGINAL(IO=0) OR NEW(IO=1) FILE, IO = ", IO
28 IF(IO.EQ.0) GO TO 19
29 IO=2
30 120 FORMAT(' ', IX, 'OUTPUT FILE NAME: ', Z)
31 WRITE(10, 120)
32 READ(11, 200) NAME
33 OPEN 2, NAME, LEN=2*NJ, REC=NI
34 IF(IO.EQ.0) IO=1
35 CALL VMEM(K, IER)
59: IF(IER.GE.5) GO TO 1000
60: TYPE"EXT. MEMORY AVAILABLE (1024-WORD BLOCKS):", K
61: CALL MAPDF(K, IHIND, 8, IER)
62: IF(IER.GE.5) GO TO 1001
63: NXB1=N1/NX
64: NXB1=NJ/NX
65: NOMAP=3*NXBJ
66: DO 90 L=1, NXB1
67: IB=0
68: IF((I.GT.1).AND.(MOD(I,2).EQ.0)) IB=NXBJ
69: CALL REMAP(0, IB, NXBJ, IER)
70: IER1=19
71: IF(IER.GE.5) GO TO 1002
72: IF(I0.EQ.2) GO TO 21
73: IREC=(I-1)*NX+1
74: CALL FSEEK(1, IREC)
75: 21 DO 20 L=1, NX
76: READ(1) (XI(L,K),K=1,NJ)
77: IF(IYEQ.NE.1) GO TO 20
78: DO 20 K=1, NJ
79: XI(L,K)=XI(L,K)*AH
80: 20 CONTINUE
81: IER1=20
82: CALL REMAP(0, NOMAP, NBLK, IER)
83: IF(IER.GE.5) GO TO 1002
84: DO 30 L=1, NT
85: DO 30 K=1, NX
86: 30 XT(L,K)=0
87: DO 60 J=1, NXBJ
88: IF(I.GT.1) GO TO 35
89: IF(J.GT.1) GO TO 32
90: IER1=31
91: CALL REMAP(0, IB, 1, IER)
92: IF(IER.GE.5) GO TO 1002
93: DO 31 L=1, NX
94: DO 31 K=1, NX
95: XT(L,NX+K)=0
96: 31 XT(NX+L,NX+K)=XI(L,K)
97: GO TO 39
98: 32 IER1=32
99: JB=J-2
100: CALL REMAP(0, JB, 2, IER)
101: IF(IER.GE.5) GO TO 1002
102: DO 33 L=1, NX
103: DO 33 K=1, NT
104: XT(L,K)=0
105: 33 XT(NX+L,K)=XI(L,K)
106: GO TO 39
107: 35 IF(I.GT.1) GO TO 37
108: IER1=35
109: JB=NXBJ-IB
110: CALL REMAP(0, JB, 1, IER)
111: IF(IER.GE.5) GO TO 1002
112: DO 360 L=1, NX
113: DO 360 K=1, NX
114: 360 XT(L,NX+K)=XI(L,K)
115: JB=IB
CALL REMAP(0, JB, 1, IER)
DO 361 L=1, NX
DO 361 K=1, NX
361 XT(NX+L, NX+K)=XI(L, K)
GO TO 39
37 JB=NXBJ-1B+J-2
CALL REMAP(0, JB, 2, IER)
IER1=37
IF(IER. GE. 5) GO TO 1002
DO 370 L=1, NX
DO 370 K=1, NT
370 XT(L, K)=XI(L, K)
JB=1B+J-2
CALL REMAP(0, JB, 2, IER)
IER1=370
IF(IER. GE. 5) GO TO 1002
DO 371 L=1, NX
DO 371 K=1, NT
371 XT(NX+L, K)=XI(L, K)
39 CONTINUE
IER1=39
CALL REMAP(0, NOMAP, NBLK, IER)
IF(IER. GE. 5) GO TO 1002
TYPE" . "
130 FORMAT<', 1X, 'PROCESSING BLOCK:', 8X, '<', I3, ' >', I3>
WRITE(IO, 130) I, J
CALL TIME(ITIME, IER)
TYPE"CONV BEGIN. TIME ->", ITIME(1), ITIME(2), ITIME(3)
CALL TDFNT(XT, NT, 1, XC)
DO 41 L=1, NT
DO 40 K=1, NT
40 HC1(K)=HC(L, K)
XC1(K)=XC(L, K)
HL(K)=H(L, K)
XT1(K)=XT(L, K)
CALL MULMOD(XT1, HL, NT, XC1, HC1)
DO 41 K=1, NT
XC(L, K)=XC1(K)
41 XT(L, K)=XT1(K)
CALL TDFNT(XT, NT, -1, XC)
CALL TIME(ITIME, IER)
TYPE" . "
158 TYPE"CONV END. TIME ->", ITIME(1), ITIME(2), ITIME(3)
JB=J-1+NXBJ+2
IER1=50
CALL REMAP(0, JB, 1, IER)
IF(IER. GE. 5) GO TO 1002
DO 50 L=1, NX
DO 50 K=1, NX
50 XI(L, K)=XT(NX+L, NX+K)
60 CONTINUE
JB=2*NXBJ
CALL REMAP(0, JB, NXBJ, IER)
IER1=50
IF(IER. GE. 5) GO TO 1002
171 IF(IO. EQ. 1) CALL FSEEK(1, IREC)
172 DO 70 L=1, NX
70 WRITE(IO) (XI(L,K),K=1,NJ)
90 CONTINUE
175: IF(IO.EQ.2) CLOSE 2
176: CLOSE 1
177: CLOSE 0
178: ACCEPT"WISH TO CONTINUE? NO: 0, YES: 1", K
179: IF(K.EQ.1) GO TO 1
180: GO TO 1004
181: 1000 TYPE"ERROR IN VMEM ---->ERROR # =", IER
182: GO TO 1003
183: 1001 TYPE"ERROR IN NAPDF ---->ERROR # =", IER:
184: GO TO 1003
185: 1002 TYPE"ERROR IN REHAP ---->ERROR # =", IER
186: TYPE"ERROR NEAR STATEMENT # ",IER1
187: 1003 IF(IO.EQ.2) CLOSE 2
188: IF(IO.EQ.2) DELETE NAME
189: CLOSE 1
190: CLOSE 0
191: 1004 STOP
192: END
SUBROUTINE TDFNT(XT, ND, IFNT, XC)

THIS ROUTINE PERFORMS TWO-DIMENSIONAL
FERMAT NUMBER TRANSFORM (2-D FNT).

XT CONTAINS 2-DIMENSIONAL DATA ARRAY
TO BE TRANSFORMED. THE TRANSFORMED DATA
WILL BE RETURNED VIA THIS SAME ARRAY.
ND=64
IFNT=0 FOR FORWARD 2-D FNT,
IFNT=1 FOR INVERSE 2-D FNT;
XC HOLDS THE 17TH BIT OF CORRESPONDING
DIMINISHED-1 CODED DATA.
INTEGER XT(64,64), XC(64,64), XT1(64), XC1(64)
COMMON/TEMP/XT1, XC1
LCODX=1
KCODX=0
IF(IFNT .LT. 0) LCODX=0
IF(IFNT .LT. 0) KCODX=1
DO 2 L=1, ND
DO 1 K=1, ND
XT1(K)=XT(L,K)
1
CALL FNT64(XT1, ND, IFNT, LCODX, XC1)
2
DO 2 K=1, ND
DO 1 L=1, ND
XT(L,K)=XC1(K)
1
XT(L,K)=XT1(K)
2
CALL FNT64(XT1, ND, IFNT, KCODX, XC1)
3
DO 4 L=1, ND
DO 3 K=1, ND
XC1(K)=XC(L,K)
3
XT1(L)=XT(L,K)
4
CALL FNT64(XT1, ND, IFNT, KCODX, XC1)
RETURN
END
0001 MULMOD MACRO.REV 06.00

FILE:N MULMOD

THIS ROUTINE PERFORMS DIMINISHED-1
MULTIPLICATION MOD 65537 OF TWO
64-POINT DATA SEQUENCES.

CALLING STATEMENT FROM FORTRAN ROUTINE
CALL MULMOD(IX, IH, N, IXC, IHC)
WHERE
IX AND IH ARE BOTH 64-ELEMENT 1-D ARRAYS
CONTAINING 2 DIMINISHED-1 CODED DATA SETS
RESPECTIVELY;
N=64;
IXC AND IHC ARE BOTH 64-ELEMENT 1-D ARRAYS
CONTAINING THE 17TH BIT OF THE CORRESPONDING
DATA POINTS IN IX AND IH RESPECTIVELY.

TITL: MULMOD
ENT MULMOD

.EXTU
.ZREL

00000-00000 MULMOD: MLD

NREL

MLD: SAVE 0

STA 3, ND1
JSR 0, SAV2

0 STACK EXTENSION
OFFSET TO MODEL STACK

LDA 0, 0-5, 3
STA 0, K
SUBZL 1, 1
LDA 0, -3, 2
SUB 1, 0
STA 0, X
LDA 0, -4, 3
SUB 1, 0
STA 0, H
LDA 0, -6, 3
SUB 1, 0
STA 0, XC
LDA 0, -7, 3
SUB 1, 0
STA 0, HC

ML1: ISZ XC
ISZ X
ISZ HC
ISZ H
LDA 0, 0XC
MOV# 0, 0, SZR
JMP ML3
LDA 0, 0HC
MOV 0, 0, SNR
JMP .+3
SUB 1, 1
JMP ML2
56 00035'176400 SUB 3, 3
57 00036'025224 LDA 1, 0X
58 00037'032420 LDA 2, 0H
59 00048'141000 MOV 2, 0
60 00041'123022 ADDZ 1, 0, 5ZC

0062 MULNO
01 00042'000403 JMP +3
02 00043'101405 INC 0, 0, SNR
03 00044'101400 INC 0, 0
04 00045'073301 MUL
05 00046'106023 ADCZ 0, 1, SNC
06 00047'125404 INC 1, 1, SZR
07 00050'000403 JMP +3
08 00051'102520 SUBZL 0, 0
09 00052'042411 ML2 STA 0, 0X
10 00053'046407 STA 1, 0X
11 00054'014405 ML1 DSZ K
12 00055'000744 JMP ML1
13 RTN
14 00057'000000 H: 0
15 00060'000000 HC: 0
16 00061'000000 K: 0
17 00062'000000 X: 0
18 00063'000000 XC: 0
19 END

***00000 TOTAL ERRORS, 00000 PASS 1 ERRORS
FILENAME: FNTSD

THIS ROUTINE PERFORMS 64-POINT
FERMAT NUMBER TRANSFORM (FNT) USING
SHIFT-DIMINISHES ALGORITHM.

CALLING STATEMENT FROM FORTRAN ROUTINE:
CALL FNT64(IN, N, IFT, IC, IXC)
WHERE
IX IS A 64-POINT 1-D ARRAY WHICH CONTAINS
DATA POINTS TO BE TRANSFORMED.
N=64
IFT IS A CONTROL VARIABLE.
IFT=0 FOR FORWARD FNT,
IFT=1 FOR INVERSE FNT.
IC IS ANOTHER CONTROL VARIABLE.
IC=1 IF CODE TRANSLATION REQUIRED,
IC=0 IF NO CODE TRANSLATION REQUIRED.
IXC IS A 64-POINT 1-D ARRAY WHICH
CONTAINS THE 17TH BIT OF THE DIMINISHED-1 CO:
DATA.

.TITL_ FNT64
.ENT_ FNT64
.EXITU
.ZREL
.DFDT

MACRO DEFINITION FOR SHIFT AND
MODULO REDUCTION
.MACRO SHIFT
*** .IFE ~1-0
*** .DO ~2
MOVZL ~1,1,SNC
INC ~1,1

*** .ENDC
*** .ENDC
*** .IFE ~1-1
SUBZR 0,0
*** .DO ~2
MOVZR ~1,1,SNC
ADD 0,1

*** .ENDC
*** .ENDC
JMP .GRT2
%

MACRO DEFINITION FOR
PERFORMING MULTIPLICATION OF
DATA POINTS BY 2**8 MOD 65537
.MACRO SWAP
.COM 1,0
.ANDS 3,0
.COM, 3,2
.ANDS 2:1
.ADD 0,1
%

00001-00065'TWD1 : .TWD1
00002-000715'DITH : .DITH
00003-000046'FFNT : .DIF
00004-000446'IFNT : .DIT
00005-000617'DYN : .DYN
01 .DFDT: SAVE 0
02 STA 3,.ND1
03 JSR @.SAV2
04 ;STACK EXTENSION
05 ;OFFSET TO MODEL STACK
06 07 00002'023774 LDA 0,.ARG1,3
07 08 00003'040017- STA 0,.N
08 09 00004'030445- LDA 2,.FN56
09 10 00005'050020- STA 2,.NL
10 11 00006'025775 LDA 1,.ARG0,3
11 12 00007'124400 NEG 1,1
12 13 00010'124600 CON 1,1
13 14 00011'044035- STA 1,.XO
14 15 00012'107800 ADD 0,1
15 16 00013'044036- STA 1,.XN
16 17 00014'023772 LDA 0,.6-6,3
17 18 00015'040046- STA 0,.CODX
18 19 00016'031771 LDA 2,-7,3
19 20 00017'050037- STA 2,.XN
20 21 ;;IFT=-1 ;FOR IFNT WITHOUT X (1/N)
21 22 ;IFT=1 ;FOR FFNT
23 24 ;IFT=0 ;FOR FFNT FOLLOWED BY X (1/N)
24 25 00020'027773 LDA 1,.ARG2,3
25 26 00021'044041- STA 1,.IFT
26 27 00022'125234 MOVZR# 1,1,.SZR
27 28 00023'000410 JMP @YSTR
28 29 00024'101004 MOV 0,.SZR
29 30 00025'000001- JSR @THD1
30 31 00026'000003- JSR @FFNT
31 32 00027'034041- LDA 1,.IFT
32 33 00030'125005 MOV 1,.SNR
33 34 00031'000005- JSR @DVYN
34 35 00033'000004-@YSTR: JSR @IFNT
36 37 00034'000446- LDA 0,.CODX
37 38 00035'101004 MOV 0,.SZR
38 39 00036'000002- JSR @DITW
39 40 RTN
40 41 SUBROUTINE .DIF
41 42 ;TO PERFORM FORWARD FNT
42 43 44 00040'054015-.DIF: STA 3,.AC3
44 45 00041'034043- LDA 3,.HEYT
45 46 00042'102400 SUB 0,0
46 47 00043'040006- STA 0,.RT1
47 48 00044'024010- LDA 1,.RT3
48 49 50 00045'044007- STA 1,.RT2
50 51 51 00046'024012- LDA 1,.L0
51 52 52 00047'044016- STA 1,.AB3
52 53 53 00050'030017- LDA 2,.N
53 54 54 00051'050032- STA 2,.LE1
54 55 55 00052'126520 SUBZL 1,1
55 56 56 00053'044030- STA 1,.K
56 57 57 00054'030032-.DOL1: LDA 2,.LE1
57 58 58 00055'050031- STA 2,.LE
58 59 59 00056'151220 MOVZR 2,2
59 60 60 00057'050032- STA 2,.LE1
61 00009 '050021-
62 00006 '102480
63 00005 '040033-
64 00005 '020012-
65 00004 '125235
66 00005 '020010-
67 00006 '040034-
68 00007 '024035-
69 00007 '125400
70 00007 '044026-
71 00007 '030637-
72 00007 '050027-
73 00004 '024026-
74 00007 '030027-
75 00006 '040242-
76 00007 '050022-
77 00100 '020012-
78 00101 '107000
79 00102 '044025-
80 00102 '143000
81 00104 '040023-
82 00105 '025000
83 00106 '125005
84 00107 '000414
85 00110 '026023-
86 00111 '125005
87 00112 '000404
88 00113 '102480
89 00114 '040006-
90 00115 '008437
91 00116 '045000
92 00117 '026025-
93 00120 '046024-
94 00121 '124000
95 00122 '002034-
96 00123 '022023-
97 00124 '101005
98 00125 '000134
99 00126 '046023-
9A 00127 '026024-
9B 00130 '002034-
9C 00131 '022024-
9D 00132 '032025-
9E 00133 '144000
9F 00134 '113022
A0 00135 '000406
A1 00136 '151484
A2 00137 '000404
A3 00140 '152520
A4 00141 '050022-
A5 00142 '152460
A6 00143 '050024-
A7 00144 '197922
A8 00145 '002034-
A9 00146 '125404
A0 00147 '002034-
A1 00150 '044006-
A2 00151 '152520
A3 00152 '052023-
A4 00153 '046025-

STA 2, NJ
SUB 0, 0
STA 0, PW
LDA 0, SL0
MOVZ 1, 1, SNR
LDA 0, RT3
STA 0, AFW
LDA 1, X0
INC 1, 1
STA 1, J
LDA 2, XC
STA 2, JC
LDA 1, J
STA 2, JC
STA 1, 1
STA 2, IC
LDA 0, LEI
ADD 0, 1
STA 1, IP
ADD 2, 0
STA 0, IPC
LDA 1, 0, 2
MOV 1, 1, SNR
JMP . A0
LDA 1, @IPC
MOV 1, 1, SNR
JMP . +4
SUB 0, 0
LDA 0, RT1
LDA 0, RT1
LDA 0, @IPC
MOV 0, 0, SNR
LDA 0, A1
LDA 1, @IPC
LDA 1, @1
JMP @AFW
LDA 0, @1
LDA 2, @IP
COM 2, 1
ADDZ 0, 2, SZC
JMP . A2
INC 2, 2, SZR
JMP . A2
SUBZL 2, 2
STA 2, @IC
SUB 2, 2
STA 2, @1
ADDZ 0, 1, SZC
JMP @AFW
INC 1, 1, SZR
JMP @AFW
STA 1, RT1
SUBZL 2, 2
STA 2, @IPC
STA 1, @IP
01 00154 ' 024024 - LP11: LDA 1, I
02 00153 ' 020031 - LDA 0, LE
03 00156 ' 030022 - LDA 2, IC
04 00157 ' 187000 - ADD 0, 1
05 00160 ' 113000 - ADD 0, 2
06 00161 ' 020036 - LDA 0, RN
07 00162 ' 122513 - SUBL# 1, 0, SNC
08 00163 ' 006713 - JMP . DO11
09 00164 ' 030036 - LDA 2, K
10 00165 ' 020033 - LDA 0, PW
11 00166 ' 143020 - ADDZ 2, 0
12 00167 ' 040033 - STA 0, PW
13 00170 ' 181222 - MOVZR 0, 0, S2C
14 00171 ' 100421 - JMP . RT10
15 00172 ' 030011 - LDA 2, SL
16 00173 ' 113000 - ADD 0, 2
17 00174 ' 025000 - LDA 1, 0, 2
18 00175 ' 044034 - STA 1, APW
19 00176 ' 010026 - INJ1: ISZ J
20 00177 ' 010027 - ISZ JC
21 00200 ' 014021 - DSZ NJ
22 00201 ' 000673 - JMP . DQJ1
23 00202 ' 020012 - LDA 0, SL0
24 00203 ' 040007 - STA 0, RT2
25 00204 ' 240830 - LDA 1, K
26 00205 ' 125120 - MOVL 1, 1
27 00206 ' 044030 - STA 1, K
28 00207 ' 010020 - ISZ NL
29 00210 ' 006444 - JMP . DOL1
30 00211 ' 002015 - JMP @AC3
31 00212 ' 126520 - RT10: SUBZL 1, 1
32 00213 ' 044066 - STA 1, RT1
33 00214 ' 000762 - JMP . INJ1
34
35 ; TO PERFORM DIMINISHED-1 MULTIPLICATION
36 ; OF DATA POINT BY 4080 *2**1/2 MOD 65537
37
38 00215 ' 14006 - RT3: DSZ RT1
39 00216 ' 002016 - JMP @AB3
40 00217 ' 121123 - MOVL 1, 0, SNC
41 00220 ' 101400 - INC 0, 0
42 00221 ' 101123 - MOVL 0, 0, SNC
43 00222 ' 101400 - INC 0, 0
44 00223 ' 101123 - MOVL 0, 0, SNC
45 00224 ' 101400 - INC 0, 0
46 00225 ' 101123 - MOVL 0, 0, SNC
47 00226 ' 101400 - INC 0, 0
48 00227 ' 152520 - SUBZR 2, 2
49 00230 ' 124223 - COMZR 1, 1, SNC
50 00231 ' 147000 - ADD 2, 1
51 00232 ' 125223 - MOVZR 1, 1, SNC
52 00233 ' 147000 - ADD 2, 1
53 00234 ' 125223 - MOVZR 1, 1, SNC
54 00235 ' 147000 - ADD 2, 1
55 00236 ' 125223 - MOVZR 1, 1, SNC
56 00237 ' 147000 - ADD 2, 1
57 00240 ' 108023 - ADD 0, 1, SNC
58 00241 ' 125400 - INC 1, 1
59 00242 ' 002016 - JMP @AB3
60
ROUTINE MODULES FOR PERFORMING 'MULTIPLICATION' OF DATA POINTS BY DIFFERENT POWERS OF 2

05 00243'124000 .SR16: CON 1.1
06 00244'002007- JMP 0RT2
07 00245'124000 .SR15: CON 1.1
08 .SL1: SHFT 0.1
09 00246'125123 MOVZL 1.1, SNC
10 00247'125400 INC 1.1
11 SUBZR 0.0
12 MOVZR 1.1, SNC
13 ADD 0.1
14 00250'002007- JMP 0RT2
15 00251'124000 .SR14: CON 1.1
16 .SL2: SHFT 0.2
17 00252'125123 MOVZL 1.1, SNC
18 00253'125400 INC 1.1
19 00254'125123 MOVZL 1.1, SNC
20 00255'125400 INC 1.1
21 SUBZR 0.0
22 MOVZR 1.1, SNC
23 ADD 0.1
24 00256'002007- JMP 0RT2
25 00257'124000 .SR13: CON 1.1
26 .SL3: SHFT 0.3
27 00260'125123 MOVZL 1.1, SNC
28 00261'125400 INC 1.1
29 00262'125123 MOVZL 1.1, SNC
30 00263'125400 INC 1.1
31 00264'125123 MOVZL 1.1, SNC
32 00265'125400 INC 1.1
33 SUBZR 0.0
34 MOVZR 1.1, SNC
35 ADD 0.1
36 00266'002007- JMP 0RT2
37 00267'124000 .SR12: CON 1.1
38 .SL4: SHFT 0.4
39 00270'125123 MOVZL 1.1, SNC
40 00271'125400 INC 1.1
41 00272'125123 MOVZL 1.1, SNC
42 00273'125400 INC 1.1
43 00274'125123 MOVZL 1.1, SNC
44 00275'125400 INC 1.1
45 00276'125123 MOVZL 1.1, SNC
46 00277'125400 INC 1.1
47 SUBZR 0.0
48 MOVZR 1.1, SNC
49 ADD 0.1
50 00300'002007- JMP 0RT2
51 00301'124000 .SR11: CON 1.1
52 .SL5: SHFT 0.5
53 00302'125123 MOVZL 1.1, SNC
54 00303'125400 INC 1.1
55 00304'125123 MOVZL 1.1, SNC
56 00305'125400 INC 1.1
57 00306'125123 MOVZL 1.1, SNC
58 00307'125400 INC 1.1
59 00310'125423 MOVZL 1.1, SNC
60 00311'125400 INC 1.1
0007 FNT64
01 00364'125123
02 00365'125400
03 00366'125123
04 00367'125400
05 MOVZL 1.1, SNC
06 INC 1.1
07 MOVZL 1.1, SNC
08 INC 1.1
09 SUBZR 0.0
10 MOVZR 1.1, SNC
11 ADD 0.1
12 JMP @RT2
13 SR5: COM 1.1
14 MOVZL 1.1, SNC
15 INC 1.1
16 SUBZR 0.0
17 MOVZR 1.1, SNC
18 ADD 0.1
19 MOVZR 1.1, SNC
20 ADD 0.1
21 MOVZR 1.1, SNC
22 ADD 0.1
23 MOVZR 1.1, SNC
24 ADD 0.1
25 JMP @RT2
26 MOVZL 1.1, SNC
27 INC 1.1
28 SUBZR 0.0
29 MOVZR 1.1, SNC
30 ADD 0.1
31 MOVZR 1.1, SNC
32 ADD 0.1
33 MOVZR 1.1, SNC
34 ADD 0.1
35 MOVZR 1.1, SNC
36 ADD 0.1
37 MOVZR 1.1, SNC
38 ADD 0.1
39 MOVZR 1.1, SNC
40 JMP @RT2
41 MOVZL 1.1, SNC
42 INC 1.1
43 SUBZR 0.0
44 MOVZR 1.1, SNC
45 ADD 0.1
46 MOVZR 1.1, SNC
47 ADD 0.1
48 MOVZR 1.1, SNC
49 ADD 0.1
50 MOVZR 1.1, SNC
51 JMP @RT2
52 MOVZL 1.1, SNC
53 INC 1.1
54 SUBZR 0.0
55 MOVZR 1.1, SNC
56 ADD 0.1
57 MOVZR 1.1, SNC
58 ADD 0.1
59 MOVZR 1.1, SNC
60 ADD 0.1
JMP @RT2
SL15: COM 1,1
SHFT 1,1
MOVZL 1,1,SNCH
INC 1,1
SUBZ 0,0
MOVZ 1,1,SNC
ADD 0,1
JMP @RT2

SUBROUTINE DIT
TO PERFORM INVERSE FNT

0046E'054015- DIT:
STA 3,ACS
LDA 3,LEVY
SUB 0,0
STA 0,RT1
LDA 1,SR0
STA 1,RT2
STA 1,ABS
SUBZL 1,1
STA 1,LE
LDA 0,NB
STA 0,K
MOVZL 2,LE
STA 1,LE1
MOVZL 2,NJ
STA 0,0
MOVZL 2,A2
STA 2,LE
LDA 0
STA 2,J
LDA 0,BW
STA 0,APN
LDA 1,0B
STA 1,0
LDA 2,XC
STAJ 0,J
LDA 2,JC
STA 2,JC
LDA 0
STA 1,IP
LDA 0,2
ADD 0,2
LDA 0,IPC
LDA 0,0,2
ADD 0,0
LDA 1,0P
MOV 0,0,SRN
JMP 0,APN
SUB 0,0
MOV 0,0,SRN
LDA 1,0C
LDA 0,0,SRN
JMP 0,LP12
LDA 0,0,
LDA 2,0i
JMP 0,E3
LDA 0,0,SRN
JMP .B1
SUB 0, 0
STA 0, 0
cC
STA 1, 0
cI
COM 1, 2
JMP .B3
LDA 2, 0I
COM 1, 0
ADDZ 2, 15ZC
JMP .B2
INC 1, 1, SZR
JMP .B2
SUBZL 1, 1
STA 1, 0
cI
SUB 1, 1
STA 1, 0
ADDZ 0, 2, SZC
JMP .B3
INC 2, 2, SZR
JMP .B3
SUBZL 0, 0
STA 0, 0, IPO
STA 2, 0, IP
LDA 1, I
LDA 0, LE
LDA 2, 1C
ADD 0, 1
ADD 0, 2
LDA 0, NN
SUBL# 1, 0, SNC
LDA 0, 0, SNC
LDA 2, 0, K
LDA 0, PW
ADD 2, 0
STA 0, PW
MOVZR 0, 0, SIZ
MOVZR 0, 0, SIZ
JMP .RT20
LDA 2, SR
ADD 0, 2
LDA 1, 0, 2
STA 1, APW
ISZ J
ISZ JC
DSZ NJ
JMP .DOJ2
LDA 0, K
MOVZR 0, 0
STA 0, K
LDA 1, NL
INC 1, 1, SNR
JMP 0, 0, 0
STA 1, NL
INC 1, 1, SZR
JMP .DOL2
LDA 1, RT3
STA 1, RT2
JMP .DOL2
TO PERFORM DIVISION BY 2**6 MOD 65537
SUBROUTINE TD1
TO PERFORM TWO'S COMPLEMENT TO
DIMINISHED-1 CODE TRANSLATION

0065'0054015-. TD1: STA 3, AC3
0066'0126520-. STM 0, AC2
0067'0074037-. LDA 3, XC
0067'0134040-. STA 0, I
0067'0154040-. INC 3, 3
0067'0214050-. LDA 0, N
0067'0244060-. STM 0, AC2
0067'0304070-. INC 2, 2
0067'0404080-. LDA 0, N
0067'0474090-. STM 0, AC2
0067'0474090-. INC 2, 2
0067'0544010-. MOV # 0, SNR
0067'0574010-. JMP .TD2
0067'0604010-. MOV L # 0, S2C
0067'0634010-. JMP +3
0067'0704010-. SUB 1, 7
0067'0734010-. STA 0, 0, 2
0011 FNT64
01 00765'102400 .TD0: SUB 0.0
02 00766'041400 STA 0.0.1
03 00767'004003 JMP .TD3
04 00710'102520 .TD2: SUBZL 0.0
05 00711'041400 STA 0.0.3
06 00712'014824 .TD3: DSZ 1
07 00713'000761 JMP .TD1
08 00714'002015- JMP GAC3
09 10
10 SUBROUTINE D1TH
11 TO PERFORM DIMINISHED-1 TO
12 2'S COMPLEMENT CODE TRANSLATION
13 14 00715'054015- .DIW: STA 3.AC3
15 00716'020017- LDA 0.N
16 00717'040024- STA 0.1
17 00720'034037- LDA 3.XC
18 00721'174400 NEG 3.3
19 00722'174000 CML 3.3
20 00723'030035- LDA 2.XO
21 00724'151400 D11: INC 2.2
22 00725'175400 INC 2.2
23 00726'021400 LDA 0.0.3
24 00727'101605 MOV 0.0.SNR
25 00730'000403 JMP .+3
26 00731'126400 SUB 1.1
27 00732'000407 JMP D10
28 00733'025000 LDA 1.0.2
29 00734'125535 INCZL# 1.1.SNR
30 00735'000404 JMP D10
31 00736'125112 MOVL# 1.1.SZC
32 00737'000403 JMP .+3
33 00740'125400 INC 1.1
34 00741'045000 D10: STA 1.0.2
35 00742'014024-D12: DSZ 1
36 00743'000761 JMP D11
37 00744'002015- JMP GAC3
38 39 ADDRESS POINTERS
40 00745'000153' .SL0: A3
41 00746'000246' .SL1
42 00747'000252' .SL2
43 00750'000260' .SL3
44 00751'000270' .SL4
45 00752'000302' .SL5
46 00753'000315' .SL6
47 00754'000330' .SL7
48 00755'000341' .SL8
49 00756'000347' .SL9
50 00757'000357' .SL10
51 00759'000371' .SL11
52 00761'000406' .SL12
53 00762'000421' .SL13
54 00763'000432' .SL14
55 00764'000441' .SL15
56 00765'000524' .SR0: B0
57 00766'000442' .SR1
58 00767'000433' .SR2
59 00770'000422' .SR3
60 00771'000407' .SR4
PAGE ZERO VARIABLES AND POINTERS

RTL: 0
RT2: 0
RT3: .RT3
SL: .SL0
R3: .R3
SR: .SR0
SR0: .R0
AC3: 0
AB3: 0
N: 0
NL: 0
NJ: 0
IC: 0
IPC: 0
I: 0
IP: 0
J: 0
JC: 0
K: 0
LE: 0
LE1: 0
PW: 0
APW: 0
X0: 0
XN: 0
XC: 0
MK: .MK
IFT: 0
NB: 40
HBYT: .177400
LBYT: .000377
MN56: 177772
CDX: 0
END

***00000 TOTAL ERRORS, 00000 PASS 1 ERRORS
REFERENCES

VITA AUCTORIS

1950 Born 17th January, in Kedah, Malaysia.

1967 Completed secondary education at Chung Ling High School, Penang, Malaysia.

1973 Graduated from Cheng Kung University, Taiwan.

1974 Worked in Aviation Electronic Department, Air Asia Co. Ltd, Taiwan.

1979 Candidate for the Degree of M.A.Sc.
in Electrical Engineering at the University of Windsor.