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ABSTRACT

This study links the anatomy of the peripheral olfactory organ in the bottom-
dwelling round goby (Neogobius melanostomus) with behavioural responses to putative
pheromones and conspecific extracts.

The spatial organization of the nasal cavity was examined using impression
material injection, immunocytochemistry, and transmission electron microscopy. The
peripheral olfactory organ had a compact structure with an olfactory chamber that
contained a single longitudinal lamella. Prominent dorsocaudal lachrymal and ethmoid
accessory nasal sacs were situated ventrocaudal to the chamber. The location of the
olfactory mucosa within the olfactory chamber is novel for teleost fish, as it extends
dorsally beyond the ventral surface. Microvillar and ciliated olfactory sensory neurons
were identified by transmission electron microscopy. G, immunoreactive ciliated
olfactory sensory neurons and G_,- immunoreactive microvillar olfactory sensory neurons
were located throughout the olfactory epithelium. G,,- immunoreactive crypt cells were
also found throughout the olfactory epithelium of some specimens.

The presence of accessory nasal sacs indicates that the round goby may regulate
water flow over the olfactory sensory surface through gill ventilation. Gill ventilation
rates (opercular beats) were recorded from male and female, osmic and anosmic round
gobies during exposure to the putative pheromones estrone and etiocholanolone (10%to0
102 M). Osmic male round gobies demonstrated a significant (p<0.05) increase in basal

ventilation to concentrations of estrone (10® and 10® M) in the winter (September, 2001 -



January, 2002), but responded to a greater range of concentrations (10® to 10™"' M) in the
summer (May - June, 2002). Osmic females did not respond to etiocholanolone in the
winter, but showed significant increases in basal ventilation in the summer to
concentrations of 10® and 107'° M.

The effect of female conspecific urogenital extracts on ventilation was studied on
male round gobies. Osmic and anosmic male round gobies were exposed to urogenital
extracts of females injected with human chorionic gonadotropin in the winter and
summer. Osmic male round gobies showed no response to these extracts during the
winter months, but demonstrated a significant response to urogenital extracts during the
summer. This suggests that the round goby has evolved a complex intraspecific

communication system which is mediated through olfaction.
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GENERAL INTRODUCTION

Olfaction exerts a functional role in many aspects of the reproductive process, and
considerable work on the role of chemical signals and pheromones in the reproductive
behaviour of fishes has been conducted. A relationship between endocrine activity and
sex pheromone function in fish was first in established studies of a goby (Bathygobius
soporator) (Tavolga 1955, 1956). Studies on crab pheromones led to the first clear
indication that aquatic organisms might commonly use released hormone metabolites as
pheromones (Kittredge et al. 1971).

Pheromones have been defined as substances that are secreted to the outside by an
individual and received by a second individual of the same species, which releases a
specific reaction such as a definite behaviour or a developmental process (Karlson and
Liischer 1959). These authors also added that pheromones, as chemical messengers,
should be active in minute amounts and be relatively species-specific, only limited
molecular overlapping between closely-related species being tolerated.

Kittredge and Takahashi (1972) speculated that hormone metabolites are likely to
function as pheromones in many species of aquatic animals as they would have evolved
the chemosensory mechanisms to detect sexually receptive conspecifics. Reproductive
behaviour and olfactory anatomy and physiology of the pheromone receiver should then
be synchronized with a particular physiological event, increasing the chance of
reproductive success in that species. Additional research has shown that hormonally

derived chemical signals (hormonal pheromones) are also used by many fish including



fish from the family Gobiidae. Cottidae, Clariidae, and Cyprinidae (Colombo er al. 1982;
Deving 1976; Sorensen et al. 1988; Stacey and Sorensen 1991; Sorensen 1992; Stacey et
al. 1994a). Nevertheless, the chemical nature and function of pheromones is still poorly
understood (Stacey and Sorensen 1991).

Fluids or swabs of the urogenital area, presumed to contain sex pheromones, of
gobiid conspecifics, have evoked responses using physiological and/or behavioural
measures (e.g. Tavolga 1956: Colombo et al. 1982). Moreover, electrophysiological
studies indicate that responses to pheromones are mediated through olfaction (Zippel et
al. 1997; Eisthen 1992; Sorensen 2001).

Knowledge of the specificity of pheromones used during reproduction may aid
biologists and conservation biologists in manipulating the breeding seasons of fish. In
some cases, pheromone manipulation of fish behaviour and physiology may be a cost
effective, time saving, species specific method to control for exotic pest species.
Pheromone research has previously been used to control insect pests of agricultural crops
(review by Shani 2000), a method which is currently being researched for the population
control of sea lamprey, Petromyzon marinus (Li et al. 2002).

It has been estimated that fish olfactory systems can distinguish about a hundred
individual chemical stimulants (review by Sorensen and Caprio 1998). Little is known
about the chemosensory abilities of most fish species, some of which most likely have
different chemical sensitivities and specificities because of the varied nature of their
behavioural ecology and taxonomy (review by Sorensen and Caprio 1998).

The objective of my research was to relate the structure of the peripheral olfactory



organ with behaviour in the non-indigenous round goby. Neogobius melanostomus.
Murphy et al. (2001) have shown that both male and female round gobies respond
physiologically (through electo-olfactogram readings) and behaviourally (increasing basal
ventilation) to various putative pheromones. Their data have provided an experimental
basis for testing involvement of pheromonal communication during reproduction.
Murphy’s (1998) study provided the framework for my research on identifying the
structure of the peripheral olfactory organ in the round goby and its function in
reproductive behaviour. Knowledge of the structure of the olfactory system in the round
goby is important for electrophysiology and deprivation. Olfactory organ structure has
not been examined in any gobiid species, even thought they are the largest family of
marine teleosts. Sex pheromone testing in the round goby is novel, as this is the first

study to examine behaviours of the round goby following exposure to urogenital extracts.

Biology of the round goby:

The round goby, Neogobius melanostomus (Pallas 181 1) (Perciformes: Gobiidae)
is a bottom-dwelling fish of the family Gobiidae (subfamily: Neogobiinae) and is native
to the Black, Caspian, Marmara, Azov and Aral seas of the Ponto-Caspian region
(Simonovi¢ et al. 1996). Members of the genus Neogobius have fused pelvic fins and
elongated dorsal and anal fins (Miller 1986) and are distinguished from the Atlantic and
Mediterranean basin Gobius spp. by the absence of a swimbladder and location of the
uppermost rays of the pectoral fins within the fin membrane (Pinchuk 1991).

Characteristics of the round goby are its brown or mottled colouration, fused pelvic fin,



blunt snout, bulging eyes, black dot on the dorsal fin, and an overall round appearance.
The round goby can attain a maximum length of 300 mm with the average size of the
males being 120 mm and the 70 mm for the females (Charlebois et al. 1997).

In its native region. juvenile round gobies feed on benthic invertebrates while
adult round gobies feed particularly on bivalve mollusks as they have molariform
pharyngeal teeth which allow them to crush hard prey (French 1993; Ghedotti et al.
1995). In the Danube River. a tributary to the Black Sea, the major prey of the round
goby is the zebra mussel, Dreissena polymorpha (Simonovié et al. 2001 )- The life-span
of the round goby is four years but some individuals live as long as 7 or 8 years (Miller
1984). Male round gobies mature primarily at age three, whereas females generally
mature at age two and are smaller than males (Miller 1984; 1986). Male round gobies
grow at a faster rate than females after the first year of life, but within a cohort,
individuals will exhibit different growth strategies (Bil’ko 1971). After attaining a large
size, it is thought that males spawn once and then die (Berg 1949). Round gobies are
typically reported at depths ranging from 0.2 to 2m (Charlebois et al. 1997), but have
been found in Lake Erie at depths of 7-11m (Wickett and Corkum 1998) and 28m in Lake
Michigan with similar depths in Lake Huron (J. Janssen, personal communication).

Like other species of gobiids, round goby males occupy, maintain and defend
nests against intrusion by predators. Males migrate onto spawning grounds in the early
spring and set up territories prior to the arrival of the females (Kovtun 1980). Adult male
round gobies are characterized by their large size at maturity, enlarged cheeks and overall

charcoal-black colouration when breeding (Nikol’skii 1963; Miller 1984). Females enter

4



these nests and deposit eggs: the male fertilizes and maintains the eggs and nest for 28
days at 14°C (Miller 1984; Maclnnis and Corkum 2000: J. Janssen and L. Corkum,
personal communication). Nests are typically found at depths of 0.5 to 2 m and under
rocks or logs, in beer cans, or in a structure with one opening (Charlebois et al. 1997:
Jude 1997; Wickett and Corkum 1998). In the Great Lakes, the spawning period extends
from May to August and overlaps with the spawning of native fish (Charlebois et al.
1997; Corkum et al. 1998). Simonovi¢ et al. 2001, report that by late September (Danube
River, Yugoslavia), the gonads of male and female round gobies are small and firmly
attached to the dorsal wall of the body cavity, indicating the end of the reproductive
season.

Eggs of the female round gobies are demersal adhesive and are typically spawned
on any hard overhead surface in a nest which is guarded against predators by the male.
The cylindrical/cone-shaped eggs are arranged in a single layer, enabling the male to
aerate a compact patch of eggs efficiently (Corkum et al. 1998; Wickett and Corkum
1998). The hanging egg position and characteristic shape aid in cleansing since water
will flow around the egg surfaces and sediment particles are easily shed (Miller 1984).
Fertilization rates in the round goby may be as high as 95% and a male can hatch up to
95% of the eggs in his nest (Charlebois et al. 1997). These factors give the round goby
the potential to dominate nesting sites and produce large numbers of offspring each year

(Corkum et al. 1998).



Range and Impacts of round gobies in the Great Lakes:

The round goby is a nonindigenous species (NIS) and was first discovered in the
Great Lakes in June 1990 (Crossman et al. 1992; Jude et al. 1992). NIS are successfully
reproducing organisms transported by humans into an area outside their historic or
geographic range (Fuller er al. 1999). Within five years of their discovery in the St. Clair
River, round goby populations had spread to all five Great Lakes (Jude 1997). They are
now also found in several tributaries in Michigan (Flint, Shiawassee, and Saginaw
Rivers), Ontario (Running Creek, Sydham and Napanee Rivers), and in the Chicago
Sanitary and Shipping Canal en route to the Mississippi River (Steingraeber er al. 1996;
Steingraeber and Thiel 2000). Initial introduction to North America was likely through
the ballast water of foreign vessels presumed to have originated from the Ponto-Caspian
region (Jude et al. 1992). Initial round goby catches in the Great Lakes were in harbour
locations, as they were likely dispersed rapidly in the Great Lakes by freighters moving
from port to port (Jude 1997; Ray and Corkum 2001).

The round goby has been able to spread and proliferate in Great Lakes habitats for _
a number reasons and has several characteristics of successful colonizers. It tolerates a
wide range of environmental conditions; has a diverse diet that includes dreissenids, soft-
bodied invertebrates and fish; has a large body size compared with species of similar
benthic lifestyle; feeds nocturnally; behaves aggressively; spawns repeatedly throughout
spring and summer; and facilitates successful larval recruitment through parental care
(Leach 199S; Ray and Corkum 1997; Maclnnis and Corkum 2000; Charlebois et al. 1997,

2001; Jude 2001). Round gobies have the ability to attain high abundances in optimal,

6



rocky substrate area in the face of native fish communities (Jude 1997) and are large
enough (often > 150 mm) that they are a nuisance to anglers who frequently give up
fishing for sport fish because of bait wastage (J. Janssen, personal communication).

Estimating the environmental and economic costs of NIS in the Great Lakes is
difficult, nevertheless, it is known that damage and losses associated with exotics total
approximately $137 billion US per year (Pimentel et al. 2000). Approximately ten
percent of the Great Lakes’ NIS have had significant influences, both economic and
ecological. It is known that introduced fishes frequently alter food webs of aquatic
ecosystems (Pimentel ez al. 2000). As round goby populations increase in the Great
Lakes, their effects on indigenous species are becoming evident. There is concern about
the potential impact of the round goby on native fish species as the round goby may have
a competitive advantage over native mottled sculpins and logperch for food resources in
the St. Clair River (French and Jude 2001). Janssen and Jude (2001) documented a
decline of the native mottled sculpin (Cottus bairdi) in southern Lake Michigan after the
introduction of the round goby. Both species are benthic with similar ecological
requirements for nesting, feeding, and shelter but the ultimate recruitment failure and
subsequent demise of the mottled sculpin most likely were caused by spawning
interference by the round goby (Dubs and Corkum 1996; Charlebois et al. 2001; Janssen
and Jude 2001).

Population densities of round gobies in the St. Clair River have increased
exponentially in the last 10 years. This species now comprises more than 50% of the

catch in the lower part of the St. Clair River (Nichols ef al. 1999). Unfortunately, one of



the few known spawning grounds of lake sturgeon occurs in lower St. Clair River. The
spawning reef is heavily colonized by round gobies, with densities as high as 25/m®. The
predaceous behaviour exhibited by round gobies combined with such high population
densities, raises questions about their impairment to lake sturgeon recruitment. Round
goby populations increase from 10/m? to 25/m? after sturgeon have deposited their eggs.
Sturgeon egg densities are known to decline from 2554/m? as adult sturgeon leave the
reef to an average of 185 egg/m? 48 hours later (Nichols ez al. 1999). This, along with gut
analysis suggests that round gobies and native fish are ingesting sturgeon eggs (Nichols et
al. 1999). The similar predation of lake trout (Salvelinus namaycush), smallmouth bass,
and mottled sculpin eggs by high densities of round gobies at some Great Lakes sites
leads to the prediction that the round goby may negatively affect other native fishes
reproduction and rehabilitation (Chotkowski and Marsden 1999; Janssen and Jude 2001;
J. Janssen and G. Steinhart, personal communication). Charlebois et al. (2001) suggested
that natural chemical control through pheromonal attraction mediated by olfaction be
investigated as a plausible means of controlling round goby populations in areas where
native fishes spawn, to lessen or remedy the impacts they are having on the Great Lakes

commercial and recreational fisheries.

Olfaction and odour signaling:
From bacteria to mammals, detecting chemicals in the environment has been
critical to the success of organisms. As much as 4% of the genome is dedicated to

olfactory sensory neurons (OSNs) and olfactory processing in vertebrates (Firestein



2001). Among higher eukaryotes, there is an evolutionary convergence towards a
conserved organization of signaling pathways in olfactory systems (Hildebrand and
Shephard 1997). The main olfactory system is the primary sense used to find food, detect
predators and prey, and mark territory. A second olfactory sense, has developed for the
specific task of finding a receptive mate, a task of sufficient complexity. This system
specializes in recognizing pheromones which contain information about location,
reproductive state, and availability of a particular species (Firestein 2001 ). Thus olfactory
ability and the function of this second olfactory system in the round goby are the focus of
this study.

In fish, odour molecules enter the nasal cavity via the anterior nostril, where they
stimulate OSNs expressing a particular receptor. The axons of these neurons make
synaptic connections with the second order neurons and mitral cells located within
glomeruli of the olfactory bulb (reviewed by Zielinski and Hara 2001; Mombaerts et al.
1996) (Figure 1). Fish have two types of OSNs, ciliated and microvillous. In these
sensory neurons, cilia or microvilli extend from the apical surface of the dendrite into the
lumen of the nasal cavity. Ciliated cells have up to 8 cilia, each up to 10 pm long, which
project laterally from their olfactory knob (Sorensen and Caprio 1998). Microvillous
cells have a rounded surface, from which up to 80 microvilli up to 5 um emanate (Zeiske
et al. 1992). The cell body of ciliated OSNss is located in the lower third of the olfactory
epithelium, making the dendrite longer than the shorter dendrite of microvillar OSNs.
The cell body of the microvillar OSNs is in the upper third of the olfactory epithelium

(Morita and Finger 1998).
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Figure 1: A pictural representation of the olfactory system in teleosts from the peripheral
olfactory organ, located between the anterior naris (AN) and posterior naris (PN). The
peripheral olfactory organ contains olfactory epithelium with sensory neurons. The
olfactory nerve connects the peripheral olfactory organ with the olfactory bulb. Figure
modified from Belanger et al. in press and Hara 1975.

OSN dimorphism may be related to odourant quality distinction although the
functional distinction between teleost microvillar and ciliated OSNs is yet to be clearly
defined. Indirect evidence shows that ciliated OSNs respond to bile acids in salmonids,
amino acids (Tommesen 1983), bile acids in rainbow trout (Zielinski and Hara 1988), and

amino acids in goldfish (Zippel et al. 1997). Work on goldfish by Zippel et al. (1997)
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suggests that microvillar OSNs mediate responses to pheromones. Retrograde labelling
performed on catfish (Hansen et al. 2002) and goldfish (Sorensen et al. 2002) suggests
that microvillar, as well as crypt cells perceive pheromones. Eisthen (1992) also suggests
that the presence of microvillar OSNs in the mammalian vomeronasal organ, which is
believed to receive pheromone stimulation. are responsible for perception of pheromones.

How individual vertebrate OSNs transduce receptor binding events into electrical
impulses has been subject of much study as fish have been important models in these
investigations. In fish, olfactory signaling responses are mediated by approximately 5 to
10 million OSNs per nostril (Yamamoto 1982), each containing heterotrimeric GTP-
binding proteins (G-proteins) (Bruch et al. 1989; Sosinsky et al. 2000). Most odour
molecules are recognized by more than one receptor cells and most receptors cells
recognize several odours, probably related by chemical property (review by Firestein
2001). It presently appears that as in other vertebrates, the G-proteins found on fish
OSN:s likely exert their actions through a second-messengers system. an adenylate cyclase
system. Antibodies against the G-protein G, have been used to demonstrate that these
G-proteins are found in catfish olfactory cilia (Abogadie ef al. 1995: Huque and Bruch
1986) and G,, immunoreactive proteins are located in vomeronasal sensory neurons in
terrestrial vertebrates (Matsuoka et al. 2001).

When an odour enters the olfactory chamber it binds the extracellular surface G-
protein coupled receptor. Following this, a cascade of events is initiated that transforms
the chemical energy of binding into a neuronal signal, changing the membrane potential

(review by Firestein 2001). The ligand-bound receptor activates the G-protein (G,
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(Jones and Reed 1989) and the alpha subunit of the G-protein detaches and in tum
attaches to and activates adenylate cyclase (Pace and Lancet 1986). Once this occurs,
abundant ATP is converted to cyclic AMP, a signaling molecule. Cyclic AMP then binds
to the intracelluar surface of an ion channel (a cyclic nucleotide-gated channel) and the
channel opens, allowing an influx of Ca®* and Na’ (Firestein er al. 1991) (Figure 2).
Schlid and Restrepo (1998) and Liu et al. (1999) have shown that OSNs expressing the
G, may have a different olfactory signaling cascade where the alpha subunit of G, binds
to the phospholipase C. The second messenger inositol triphosphate (IP;) binds to and
actives a calcium channel. Inactive OSNs normally maintain a resting voltage of about -
65 mV, but when the cyclic nucleotide-gated channels open, the influx of and Na“ and
Ca®" ions causes the inside of the cell to become less negative. If the channels are open
for long enough, this causes the membrane potential to become about 20 mV less
negative and the cell reaches threshold and generates an action potential. The action
potential is then propagated along the OSN axon to the olfactory bulb (review by

Firestein 2001).
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