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Chapter 1

Introduction

The foremost problem in fundamental physics is the reconciliation of gravitational 

and particle physics, or the discovery of a renormalizable theory of quantum grav­

ity. The two arenas, one large-scale, the other small, are described by general rela­

tivity [GR] (Ohanian [1], Misner et al.[2], Hawking & Ellis [3]) and quantum field 

theory [QFT] (Ryder [4], Weinberg [5]), respectively. Although both theories are 

extremely successful and are considered the pillars of present-day physics, we are 

unable to consistently describe regimes in which both theories combine to offer 

significant predictions. GR includes black hole and cosmological physics while 

QFT describes local many-body interactions.

The stubborn refusal of the square peg to fit into the circular hole has led theo­

rists far and wide in search of answers, but there are few viable candidates. This is 

surprising considering our experimental abilities cannot reach the quantum grav­

itational regime — one would imagine that without experiments to constrain our 

attempts, we would be more productive. There are currently two leading candi­

dates: string theory (Sen [6 ]) and loop quantum gravity (Rovelli [7]) (the former 

being much more popular than the latter). Both theories have problems in their 

conceptual framework, proximity to reality, and predictive ability.

This impasse may lead one to progressively more audacious hypotheses, but
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in this thesis I will study two phenomena that may provide a link between quan­

tum and gravitational theory without demanding new theory: Hawking radiation 

(Hawking [8 ] [9], Visser [10]) and the Casimir Effect (Plunien [11], Milonni [12]). 

This is made possible through the use of the semiclassical approximation, a frame­

work developed in the 1970's to describe QFT over spacetimes with nonzero but 

small curvature (Birrell & Davies [13]). Hawking radiation is itself the crowning 

achievement of semiclassical gravity; its derivation in various ways and in vari­

ous setups have made it doctrine, though it has yet to be observed.

Hawking radiation arises because gravitational fields globally alter the quan­

tum vacuum. The properties of the quantum vacuum are known to be interesting 

and sometimes troublesome. Most notably the nonzero energy density implies 

that the vacuum is not "nothing". In fact, when naively integrated over a finite 

volume, the vacuum energy is infinite. When certain boundary conditions are im­

posed on the vacuum, this energy density becomes polarized and small forces are 

created. The Casimir effect is the name given to any such polarization of the elec­

tromagnetic vacuum under boundary conditions in the Minkowski spacetime. Its 

usual manifestation involves forces on ideal capacitor plates in the vacuum. The 

similarities between the two phenomena are immediate: they are the result of de­

formation of the vacuum. The observed quantities are different however: created 

particles/radiation and force. The goal of this thesis is to understand the connec­

tion between the two.

I will assume a rudimentary knowledge of GR; that is, the reader must be 

able to discuss the Schwarzschild solution in some detail. Knowledge of QFT is 

also required, but I collect the basics in an appendix. See the previously cited 

references for the textbook treatments.

The opening section looks at QFT on curved backgrounds, with a discussion 

of the semiclassical approximation. Because the concept of the vacuum is central
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to this thesis, I continue with a section on vacuum states in GR, QFT and semiclas­

sical gravity. Next, I discuss black holes, focusing on the necessary elements: the 

event horizon and the potential barrier (I only need to consider the Schwarzchild 

geometry). I devote a section each to Hawking radiation and the Casimir effect; 

although there are various aspects to each topic, I only discuss the relevant points. 

I close with a discussion of the connections between the two topics.

Notation

• I use metric signature (H ).

• I set the constants h = c = ks = GN =  1.

•  Greek (pL,v... =  0,1,2,3) and Latin (i, j... — 1,2,3) indices are used for space­

time and spatial vectors, respectively. The Einstein summation convention is 

used. Boldface (e.g. x) indicates a spatial vector, is the Minkowski metric 

and is any curved metric; they are used to raise and lower indices. Com­

mas indicate partial differentiation {A^„ — dyA^) and semicolons indicate 

covariant differentiation {A^v =  +  r “„Aa).

• The d'Alembertian is □ =

• The two-sided derivative is defined as: A dx B = A(dxB) -  (dxA)B.

• in f  and sup denote infima and suprema.

• An asterisk denotes complex conjugate, e.g. c*. A  dagger denotes Hermitian 

conjugate, e.g. af.

3
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Chapter 2 

Quantum Fields in the Semiclassical 

Approximation

2.1 The Semiclassical Approximation

QFT has been successful in describing three of the four fundamental forces. Quan­

tum electrodynamics (QED) is often described as "the most successful theory 

ever", because of the remarkably precise agreement of its predictions with ex­

periment. The weak force has been successfully united with the electromagnetic 

force, and experimentally corroborated with the observation of neutral currents 

and the gauge bosons. Quantum chromodynamics is on a firm foundation as the 

description of the strong force as it accounts for quark confinement. In contrast, 

gravity, the fourth force, has been accurately described by GR, but the quantiza­

tion of general relativity has yet to be accomplished, despite immense effort. In 

other words, we have two very successful theories that need conjunction.

GR treats the spacetime metric as a smooth changing field— it is a dynamical 

quantity. QFT, on the other hand, must fix the metric to Minkowski in order to 

treat all other fields — here the metric is a background (almost akin to the absolute 

concept of space and time in Newtonian physics). So in any physical situation

4
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in which gravity and another interaction appear, the role of the metric must be 

clarified. The natural solution is to quantize spacetime and the other fields in­

dependent of the metric, but all attempts to do this have failed. Conventional 

quantization methods are perturbative and require renormalization, but general 

relativity has been shown to be nonrenormalizable. There are unconventional 

candidates, most notably loop quantum gravity and string theory, but they are at 

best unfinished theories.

As a stepping stone to an acceptable theory of quantum gravity, it seems rea­

sonable to use the semiclassical approximation, which essentially treats quantum 

fields over a classical metric, with gravitational fields being small perturbations 

to the spacetime. Such a program was used by Dirac and others when QED was 

being forged, with considerable success, but considerable difficulties arise when 

trying to duplicate this with general relativity. Note that it has been thirty years 

since semiclassical gravity was introduced.

In what regime is the semiclassical approximation valid? The frontier scale 

at which quantum gravity diverges from GR is universally accepted to be the 

Planck length, the length obtained by combining the fundamental constants: lP — 

(■Gh/c3 ) 1/ 2 ~  10_35m. It seems reasonable to assume that above this length scale, 

one can make a perturbative expansion in terms of lP, similar to what is done in 

QED. This naturally breaks down below the Planck length as higher order terms 

blow up, but since the Planck length is so small, this might not be of much conse­

quence.

Subtleties arise however. Because gravity couples equally to everything, in­

cluding itself (as prescribed by the equivalence principle), the graviton is as much 

subject to gravitational phenomena as the photon. That is, quantum gravitational 

effects will occur whenever other quantum effects occur. This complication could 

be dealt with by splitting the metric into a background part, which remains clas­

sical, and a perturbation part that is absorbed into the energy-momentum tensor.

5
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It seems reasonable that the perturbation part can be treated as another quantum 

field, but the viability of this is not universally accepted.

The nature of the semiclassical approximation means the formalism for curved 

spacetime is a natural extension of conventional (Minkowskian) quantum field 

theory. That is, there is little mathematical baggage beyond canonical quantum 

field theory. I have collected standard QFT results in an appendix. The Klein- 

Gordon field will be used as a template, as both the Hawking and Casimir ef­

fects are exhibited by scalar fields. The Maxwell field is used in most deriva­

tions of Casimir effects (including Casimir's original paper) as the practical man­

ifestations are always electromagnetic. Usually only numerical factors separate 

Maxwell and Klein-Gordon results, but I will look at both. The Hawking effect 

exists for the Dirac field (Melnyk [14]), but I choose to omit it.

The intuitive generalization of the Klein-Gordon equation to curved space­

time is to replace the Minkowski metric 77̂  with a general metric g ^ ,  and partial 

derivatives with covariant derivatives. A more rigorous variational calculation 

produces this, plus a curvature dependent term:

[<rV„V„ + m 2 + t;R(x)]<t> =  0 (2.1)

£ is a coupling parameter and R(x) is the scalar curvature. I will only consider

the minimal coupling case (£ =  0). The conformally coupled case (£ = |  in four

spacetime dimensions) is sometimes used -  in this coupling, the Klein-Gordon 

equation is invariant under conformal transformations.

The theory requires a scalar product defined on an arbitrary Cauchy1 hyper­

surface S:

(0 1 , 0 2 ) =  -* [  (-g (x))1/2[M x )K<t>2(X)]d^ -  (2-2)Jt,
The hypersurface element dE^ =  n^dE, where n11 is a future-directed unit vector 

orthogonal to E, and dE is the scalar volume element. It has been shown that the

*A Cauchy surface has the property that it uniquely determines the solution for some wave 
equation if Cauchy boundary conditions are defined on it.

6
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scalar product is independent of £  [3], so the scalar product is a global property 

of field configurations.

To expand the field operator, one needs an orthonormal set of solutions {/w, /*} 

for the wave equation. Often, this can't be done explicitly so the solutions have to 

be treated abstractly. The orthonormality conditions are:

(fu , M  = 6 ( v - u %  ( / ; ,& )  = - .5 (w -u /), ( /„ ,/ ; ,)  = <). (2.3)

Note that I am expressing the modes by energy u> only and suppressing momen­

tum subscripts.

The general quantum field 0 is then expressed:

0  =  J  (flu/w +  a l f* )du> ,  (2.4)

One imposes the equal-time commutation relation:

[0i(i, xl), 4>2(t, x*)] =  S(xl -  xn), (2.5)

which translates into the usual canonical quantization relations:

K ,  <v] =  o, K ,  a*,] =  0, K> al'} = -  u'). (2.6)

A Hilbert space can now be constructed from the vacuum state |0)jn, which is 

defined as the state satisfying, for all u>,

au\0)in = 0. (2.7)

Note the subscript on the vacuum state; there is no unique vacuum in curved

spacetime, so this particular vacuum is determined by our choice of basis. In 

addition, the number, annihilation and creation operators are subject to the par­

ticular basis.

In a general metric, our choice of basis solutions is arbitrary. Let } be

a second complete, orthonormal basis of solutions, and its annihilation and 

creation operators which of course satisfy (2.6). So we now have:

J  (acjfoj +  a l f * ) d u  =  0 =  J  (bup u +  b l p * J d u .  (2.8)

7
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We have a second vacuum state: &o,|0)OUf =  0, a second Fock space: |“n)out = 

^=(&J,)n|0)out and a second number operator: N°ut = b]j)u.

What is referred to as "particle creation" occurs when the onf-particle num­

ber operator, applied to the in-vacuum, yields a positive number. It is important 

then that we express the two bases in terms of each other. This is done by the 

Bogoliubov transformations:

P» =  J  ( o w / o /  +  Pcjuj' f^)du'  (2.9)

f w  =  J ( p C / u P u /  -  P w > o j P l ' ) d o j ' . (2 .10)

£W  and puu/  are called the Bogoliubov coefficients, and they can calculated by:

QW = (Pw,/w') (2-11)

(2-12)

Two relations are important:

J ( a Uj"aw'u" ~ /W '/W )d w w = 6(u> -  u/)  (2.13)

J -  P L 'ai>)du' = K  (2.14)

The first relation is just a consequence of the orthonormality of the bases. The 

second gives the relation between the mode operators of the two bases.

(2.14) implies that applying the out annihiliation operator to the in vacuum 

does not in general "annihilate" it:

bu\0)in = J  (aCw/OW'|0 )in -  (dwu'al'lfyinjdu' =  ( -  J  Puu'du')^' l ) in, (2.15)

where the first term is zero due to the annihilation operator, and the second term 

yields a one-particle state due to the creation operator. We can now calculate the 

expectation value of the owf-number operator in the in-vacuum:

<n<0|JV~*|0>i„ = j \ t 3 ^ ? d w :  (2.16)

Clearly, the in-vacuum is not a "vacuum" to an onf-observer. Particle creation is 

encoded by the Bogliubov coefficients.

8
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2.2 Particles and Fields

Quantum gravity seems to be of minor importance on a practical level: its char­

acteristic phenomena appear only in regimes far-removed from our experience. 

The largest obstacle that the current candidate theories face, in fact, is finding any 

phenomena that may be accessible to us. It threatens to be revolutionary on a 

conceptual level, however. Rovelli has called quantum gravity "nothing less than 

the problem of finding the novel consistent picture" of the universe [7].

Both of its expectant parents could be described as revolutionary. Relativity 

represented a change in our conception of space and time, profound but now 

universally accepted. The conceptual content of quantum theory still provokes 

argument, and the problems with locality and causality can only be accepted by 

considering quantum theory's experimental success. Quantum gravity directly 

involves at least two problematic features: wave-particle duality and the non-zero 

energy of the vacuum, so the controversial aspects cannot be so readily dismissed.

An important result of the semiclassical approximation in fact is the sugges­

tion that our notion of the particle is incorrect. This shouldn't be a shock since 

quantum theory is unable to fully describe matter as particles anyway. In fact, the 

well-known wave-particle duality of quantum mechanics had to be shifted away 

from the particle side of the paradigm to make the theory relativistic (whence 

the name quantum field theory). The fundamental entities became fields over 

spacetime, and the resulting quantization of the field theory yielded a Hermitian 

operator that could be interpreted as particle number. This stood in contrast to 

the experimental viewpoint which clearly favored the point particle concept.

This contrast becomes glaring when one tries to fit quantum field theory onto a 

curved spacetime. It becomes evident that particle number is observer-dependent. 

In conventional quantum field theory, the particle number operator is defined 

globally, in terms of field modes over the entire spacetime (or coordinate patch 

thereof). It is not dependent on spacetime position and is Lorentz-invariant. But

9
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the observed particle is clearly a quasi-local entity since any apparatus that ob­

serves it is finite in spatial extent, and the motion of the apparatus should be 

relevant.

So observation seems to demand that a particle is observer-dependent, and in 

fact this is what we see in the semiclassical approximation. To construct a number 

operator, one must define a basis of modes, which are indexed by frequency. The 

choice of modes is not unique, and in general the choice will affect the number 

operator. It is only the high degree of symmetry in the Minkowski spacetime that 

makes the choice of modes irrelevant. In fact, if one breaks part of that symmetry 

by accelerating in a particular direction, the observer will see a bath of particles.

This muddles our intuitive picture of the universe, as it is much easier to vi­

sualize particles as opposed to spatiotemporally distributed fields. The nomen­

clature doesn't help; it might be more helpful to replace the term "particle" with 

"field quantum". Moreover, the use of the phrase "particle creation" to describe 

the Hawking effect and similar phenomena is misleading -  nothing is being cre­

ated. Rather, the field quanta arrange themselves differently according to the mo­

tion of the observer. The consideration of curved spacetime destroys the invariant 

notion of particle number, somewhat analogous to the way special relativity de­

stroyed the invariant notion of simultaneity.

To help cope with the particle ambiguity it is useful to formulate a particular 

process as a scattering problem. Many situations of interest have metrics that are 

asymptotically Minkowski, particularly for past and future infinity. In this case, 

we can define in and out regions, in which there are no particle ambiguities. In 

the case of the collapsing black hole, we define the in region as that of an observer 

at spatial and past infinity, and the out region as that of an observer at spatial and 

future infinity. If one admits the in region as the vacuum state, a thermal spectrum 

of states is seen in the out region.

Because the particle number requires a definition of field modes, which are

10
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defined either for the entire manifold or for a complete coordinate patch, the the­

oretical definition of a particle is global. To obtain a quasi-local measure of the 

particle, one looks at the energy-momentum tensor TjW(x). It is a locally-defined 

quantity and results of differently moving observers at a spacetime point can be 

related by a tensor transformation. The quantity {(f)\T̂ u\(j)) for a particular state |0) 

then represents an objective measure of particles. The energy-momentum tensor 

for Minkowski spacetime is:

T^u = (2.17)

For a scalar field in a general metric, the expression is somewhat messier (see [13]), 

but for the minimally coupled case, the expression is a direct analogue:

= </>lfi<t>tV -  ^ g ^ g ap(f>,a^,0 + (2.18)

The component T00 represents the energy density and the components T0i, i — 

1,2,3, represent the momentum density. The Hamiltonian and momentum oper­

ators can then be constructed,on a set of constant-time Cauchy hypersurfaces:

H = jTood3x  (2.19)

Pi = jT o id 3x (2 .2 0 )

The energy-momentum tensor is important in understanding Casimir effects, be­

cause it reflects the polarization of the vacuum.

T/iiy and its expectation value play a central role in curved-spacetime quantum 

theory. It is crucial that (T^)  is well-behaved; to ensure this, nontrivial renor­

malization techniques are required. I skip this part of the theory as it is rather 

technical and not pertinent to the thesis. A complete treatment of renormalization 

can be found in Birrell & Davies [13]; it is implied that all results in this work have 

been sufficiently renormalized.

11
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Chapter 3

Vacua

The canonical quantization program paints a picture of the universe in which 

there exists a fundamental entity, the vacuum, whose various excitations produce 

the matter and energy we observe around us. In this sense, the vacuum is the 

theory: all phenomena are properties of the vacuum, and we create non-vacuum 

states and make predictions by applying quantum operators to the vacuum. The 

implication of emptiness by the word vacuum is somewhat misleading: the vac­

uum  is, in fact, "everything". In contrast, the vacuum in GR is still nothing: it is 

metric with vanishing energy-momentum tensor. Since the vacuum is pivotal in 

this work, I will clarify the concept.

While the quantum vacuum is often defined as the lowest energy state, it is 

more appropriate to define it as the zero-particle state. The particle number and 

Hamiltonian operators commute, so that the two definitions are equivalent. When 

constructing the Fock space of states in the canonical program with creation and 

annihilation operators, the ladder of states for each mode must have a lowest 

rung. It turns out that the lowest rung is identical for all modes, and that the 

expectation of particle number for all modes is zero for this state, so it is natural 

for us to call it the vacuum. All other particle configurations are built by applying 

combinations of the creation operators to this state. Note that the uncertainty

12
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principle prevents this state from having zero energy; the energy for each mode is 

one-half of its frequency, and since there are an infinite number of possible modes 

(even after boundary conditions are imposed), the calculated energy is infinite. 

In conventional quantum field theory, one performs a normal ordering process, 

which essentially consists of throwing away the vacuum energy on the grounds 

that only changes in energy are physically important. This seems suspiciously 

ad hoc, but it leads to well-defined and experimentally successful results, so it is 

universally accepted.

The unification of the three non-gravitational interactions in the form of the 

standard model has produced a rich spectrum of vacuum modes. Particles are 

represented by spin-half fermions and interactions by the spin-one gauge bosons. 

The vacuum also exhibits the property of spontaneous symmetry breaking, which 

must be built in to account for the observed particle spectrum (one massless pho­

ton, three massive vector bosons). This involves the Higgs mechanism which 

requires the Higgs scalar boson (which has yet to be observed). The general point 

is that to account for particle physics, one constructs the vacuum state so that all 

other states can be built out of it. While this can account for the zoo of observed 

particles, the process has been rather ad hoc and the arbitrariness of the standard 

model is considered its main weakness.

Because GR is a classical theory, the concept of operator is not applicable. Ten­

sors are the relevant entities and are governed by the Einstein equation:

G,u, = 8 ttT^. (3.1)

The Einstein tensor G ^  = Rllv -  ( \R  — A)g^u is a measure of spacetime content 

and the energy-momentum tensor is a measure of matter content. When the 

energy-momentum tensor is zero, we have what is called the vacuum Einstein 

equation, whose solutions are referred to as vacuum solutions.

It should be noted that this use of the word vacuum pertains to an absence 

of matter, not necessarily the lowest energy state. In fact, the concept of energy

13
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in GR is not fully understood (see Xulu [15]). No tensorial quantity can be con­

structed when matter, gravitational and non-gravitational fields are present, only 

nontensorial energy-momentum complexes whose status is dubious (note that the 

energy-momentum tensor does not include gravitational energy). Because these 

complexes are nontensorial, (unphysical) coordinate changes shift the energy. In 

GR, the spacetime curvature is tied to the energy so that a re-zeroing is not possi­

ble either (as happens in the normal ordering process).

Things get complicated when we go to QFT in curved spacetime. It is clear 

from canonical quantization that the definition of the vacuum is dependent on 

the existence of field modes. As noted in the previous section, particle number is 

dependent on the choice of a basis set of modes. Since we define the vacuum in 

terms of particle number, it follows that there is no unique vacuum in a curved 

spacetime. In particular there are three different vacua discussed in relation to the 

Schwarzschild geometry (Jacobson [16]):

Boulware vacuum The state in which the static observer at future infinity sees an 

absence of particles (this would mean the in vacuum would not be particle- 

free).

Unruh vacuum The time-reverse of the Boulware vacuum: there are zero par­

ticles at past infinity and a flux of particles (Hawking radiation) at future 

infinity.

Hartle-Hawking vacuum Hawking radiation and incoming thermal radiation on 

the black hole are included so that the black hole is in an equilibrium state.

14
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Chapter 4

Black Holes

The black hole is one of the most important predictions of general relativity and 

its physics will inevitably play an important part in any theory that incorporates 

gravitation. Not only does black hole physics possess most of the important as­

pects of general relativity but the conceptual difficulties that it involves make it 

an important arena for the unification of gravity and quantum theory. Here I 

will present an overview of relevant black hole features. Only geometric aspects 

are important, as it has since been shown that the existence of Hawking radia­

tion is independent of the thermodynamic results (i.e. the existence of black hole 

entropy) [10]. I have collected in an appendix an outline of the thermodynamic 

aspects; they are not crucial to this paper, but are important as background infor­

mation (since they motivated the derivation of Hawking radiation).

It is well known that a (stationary) black hole possesses only three properties: 

mass M, angular momentum J, and electric charge Q, as stated by the "no-hair" 

theorems. The Schwarzschild geometry, being the unique static, spherically sym­

metric solution of the Einstein equation, describes the (J  = 0, Q =  0) black hole. I 

will deal exclusively with that metric in this paper since the phenomena germane 

to the thesis require only a trapped surface. The features of the Kerr (Q =  0), 

Reissner-Nordstrom (J  = 0) and Kerr-Newman (M, Q, J j ^  0) geometries, while

15
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richer, do not contribute to the discussion.

It has been shown (see [1]) that, given the conditions of staticity (i.e. the metric 

is independent and symmetric in time) and spherical symmetry (i.e. the mass 

distribution depends only on one positive definite spatial coordinate), there is 

only one solution to the Einstein equation (Birkhoff's theorem):

ds2 =  (1 -  2M)dt2 -  - A j g  -  r2dfi2, (4.1)
T

where

dft2 =  d02 +  sin2 (0)d02, (4.2)

known as the Schwarzschild metric. M  is taken to be the mass of the gravitating 

object, with geometric units. The time coordinate is that of an observer at infinity 

which is asymptotically Minkowskian.

There are two mathematical singularities in this metric, at r  = 0 and r =  2 M. 

The first is a physical singularity: general relativity breaks down and can make 

no prediction. This is easily sidestepped by noting that the Schwarzschild metric 

is generally understood to be partial: it only describes spacetime outside the mass 

distribution — the interior will have a different metric. The radial position of the 

boundary between the two metrics determines whether the system is black. If 

f  m atter < 2 M, then one is looking at an unspinning, uncharged black hole.

The second singularity is only a coordinate singularity: it can be eliminated 

through a coordinate transformation. A traveller crossing this hypersurface expe­

riences nothing out of the ordinary (the tidal forces will be very strong but finite). 

Its physical significance is global: this is the event horizon. Any timelike world- 

line starting at r  =  2M  must travel inward, never to return. An outgoing radial 

null worldline will have sufficient energy to stay on the horizon; any other null 

ray must fall inward.

The horizon is also a surface of infinite redshift (relative to r  =  oo). The red- 

shift, £  for d r = dfl =  0 , is of course observer-dependent; so while the singularity

16
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r =  2M  is "pseudo", it does reflect a problem for the observer for which the co­

ordinates were defined. Since ^  =  y/1 -  2 M /r  —> oo, as r  -> 2 M, an observer 

at infinity will never see an object disappear into the black hole - it will appear to 

move slower and slower as it approaches the horizon, which of course is not what 

the infalling observer experiences.

The Schwarzschild geometry can be described in other convenient coordinate 

systems. The "tortoise coordinate" is defined as

d 'T  V

d r *2 =  ' . = »  r* = r + 2M In | — — 11 ■ (4.3)
1 - 2  M /r  2M  v '

The tortoise coordinate is used to define the null Schwarzschild coordinates:

u =  t — r* and v — t + r*. (4.4)

Note that r* is not injective — each negative real value describes simultaneously 

a point inside the horizon and a point outside, while the positive real values de­

scribe points outside the radius r  ~  2.56M. Temporarily, I will deal only with the 

spacetime outside the horizon. The Schwarzschild metric for this part, in terms of 

the null coordinates, is:

ds2 =  - ^ M - e-[M*,v)+»-v]/4Mdudv -  r(u, v)2d t f ,  (4.5)
r{u,v)

where it is necessary to use r as an implicit function of u and v.

One can now transform to null Kruskal coordinates:

U =  -4 M e -“/4M (4.6)

V = m e v/iM, (4.7)

so that the metric becomes

ds2 =  ^ M — e-duy)/ 2M& udv  _  v y d Q 2 (4  g)
r(U, V)

Note that these coordinates (describing the spacetime outside the horizon) are 

defined only on the quadrant U < 0, V > 0. But while the previous coordinates
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all possessed the horizon pseudosingularity, the null Kruskal coordinates have 

a metric that is perfectly well behaved at the horizon, and only blows up at the 

proper singularity r = 0 .

The coordinates can be analytically extended past the edges U, V  =  0  to obtain 

the maximal Schwarzschild geometry, meaning that all worldlines end or begin 

at singularities or at infinity. In our original metric, if the matter has been con­

tained inside the horizon for all time, it is mathematically possible for a world- 

line to originate on the edge V  =  0 for finite U. While (4.1) comprises all light 

cones for observers starting outside the horizon, the mathematical possibility of 

a "white hole" exists: a region of spacetime that can influence the region outside 

the horizon but can't be influenced by it. Note that the physical significance of the 

maximal spacetime is uncertain. A black hole seems more likely to form through 

the collapse of a star, which eliminates the white hole and parallel Minkowski re­

gions. The extended spacetime requires the mass to remain within the horizon, so 

it is often referred to as an eternal black hole. While Hawking's paper on particle 

creation considered collapsing black holes, similar calculations exist for eternal 

black holes (see Traschen [17]). Conformal diagrams for eternal and collapsing 

black holes can be found in appendix B.

The trapped surface at r = 2M is the key feature of the geometry for this thesis. 

It is characterized by its surface gravity k:

where £a is the timelike Killing vector of the trapped surface (Wald [18]). For a 

stationary black hole, it essentially measures the acceleration near the horizon of 

a particle corotating with the black hole (multiplied by a redshift factor). During 

the development of black hole thermodynamics, the Hawking temperature was 

identified as a multiple of the surface gravity:

V ^ )  = - 2  k^ , (4.9)

(4.10)
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By the zeroth law, the Hawking temperature is constant. For the Schwarzschild 

spacetime, the surface gravity is k = and the temperature TH = I have 

collected the laws of black hole thermodynamics in an appendix. What is impor-

linked to the surface gravity, which describes the geometry.

A second crucial feature of the Schwarzschild geometry is the presence of an 

effective potential barrier near r — 3M. This barrier scatters incoming modes and 

is only penetrable by high-frequency modes. To solve the scalar wave equation in 

the Schwarzschild geometry, we assume separability:

always real if the potential peak stays below u 2, but otherwise there is a region 

where the wave becomes evanescent. If these turning points exist and are sig­

nificantly far apart, the wave will not penetrate. The points at which the wave 

number vanish and become imaginary were found by Fabbri, in his analysis of 

scattering and absorbing of electromagnetic radiation by black holes [19]:

tant for this thesis is that the temperature, which governs Hawking radiation is

(4.11)

The radial part becomes:

{d% +u>2 — V(r))i> =  0, (4.12)

where the barrier equation is

(4.13)

An incoming wave has an effective wave number k(u>,r) = \Juj2 — V(r). It is

(4.14)

(4.15)

where rj =  arccos(—3uM J Note that 2 M  < r x < 3M  < r 2.
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These turning points exist for all / > 0 if ui is below a certain frequency u;c = 

^ 2j jj2 • Above this frequency, the turning points exist only for I > lc, where:

lc(lc +  1) =  27lo2M 2. (4.16)

Waves with frequencies above the critical frequency and with I below lc pass 

through the barrier unaffected. The low-frequency behavior is crucial. The trans­

mission coefficient below the critical frequency is:

T‘ = 4^ m +~ i y . ^ M ^ -  (417)

All incoming low-frequency waves have a nonzero probability of penetrating 

the barrier. Conversely, virtual particles between the two turning points have 

a nonzero probability of escaping. The link between Hawking radiation and the 

Casimir effect is established by placing spherical conductors at rx and r2, and 

looking at the low-frequency limit u  —> 0. In this limit, the inner plate will be just 

outside the horizon, and the outer plate will tend to infinity:

r i ^ 2 M (l + | ^  +  0 ( ( ^ ) 4) (4.18)

r2 =: ^  +  -  M(1 +  O A ) .  (4.19)
u  I
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Chapter 5 

Hawking Radiation

5.1 The Basic Calculation

Visser [10] has shown that the only requirements for the existence of Hawking 

radiation are

• The existence of an apparent future horizon. I won't worry about the distinc­

tion between an apparent and an event horizon since I only care about the 

Schwarzschild geometry in this paper. But it is important to point out that 

a spacetime can emit radiation even if a event horizon doesn't ultimately 

form.

• Nonzero surface gravity. This is only defined for actual horizons but the 

definition can be extended for an apparent horizon.

• Slow evolution of the metric. This may remove some generality but does 

not detract from the overall message. Obviously, the Schwarzschild solution 

meets this requirement.

In particular, the Einstein equations are not required: Hawking radiation is 

a kinematical, not a dynamical, effect. For example, a black hole will radiate
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whether it is collapsed or eternal (the eternal black hole is purely a kinematical 

state). The implication is that Hawking radiation is quite primitive, and this mo­

tivates the attempt by Visser[20] and others to experimentally observe Hawking 

radiation in acoustic analogue systems where there is obviously no gravitation. 

Furthermore, Bekenstein-Hawking entropy is not tied to Hawking radiation (the 

second law of black hole mechanics is partially derived from the Einstein equa­

tions).

One can take the Schwarzschild metric and express it in Painleve-Gullstrand 

coordinates:

Notice that this form is regular at the horizon (r =  2 M). Consider a quantum field 

in the eikonal approximation (i.e. the geometric optics regime):

which is a rapidly oscillating field in a slowly varying envelope. Note that to sep­

arate the time dependence in the phase like this, we need the above requirement 

that the metric evolves slowly. One can extend the eikonal approximation to the 

WKB approximation, with little effort, but it is not necessary (the WKB approxi­

mation does show that the envelope factor varies as one over r).

It is necessary in this context to alter the wave equation a la Feynman:

ds2 = dtdr — d r2 — r 2dfl2.
r

(5.1)

0 (r, t) = A(r, t ) exp[=Fi(u;£ — J  fc(r')dr')] =  A(r, t) exp[<p(r, £)], (5.2)

= ie,e > 0 . (5.3)

This becomes

(5.4)

Solving for the wave-vector,

(5.5)
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where the positive (negative) sign indicates an outgoing (ingoing) mode. In the 

vicinity of the horizon, the ingoing mode is straightforward:

hn =  (5-6)

but the outgoing mode requires care with respect to the epsilon factor:

kout =  4M u P ( ^ _ 12M ) -  wr$(r -  2M), (5.7)

where PQ says to take the principal part when integrating. Note however that 

the delta function term is only important if integrating across the horizon.

In fact if I integrate from just outside the horizon I get:

fJ 2M

kdr' = 4Muj\n[r — 2M], (5.8)
12M

which gives

0(r, t )  =  A ( r ,  t ) ( r  -  2M )±4MiuJe*iu,t. (5.9)

Note that the phase velocity at the horizon is zero. Since the phase is proportional 

to ln (^ |jg ), the wavefronts pile up logarithmically at the horizon (see Fig. 5.1); 

this is a feature of all derivations of the Hawking effect, in particular Hawking's 

original derivation. Since the envelope is varying very slowly, we can replace it 

with a normalization constant:

<t>escape(r, t )  =  K s c a Pe (r  ~  2 M ) ±4M™ , (5.10)

where the subscript indicates we are considering modes that have escaped to in­

finity.
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Event horizon

Star surface

;+

Surfaces of constant phase

i'

Figure 5.1: Pile-up of wavefronts around the event horizon.
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In contrast, we can consider outgoing modes that straddle the horizon. Now 

the ^-function comes into play; upon integration, we pick up step functions and a 

phase shift upon crossing the horizon:

S a d d le  =  K tr a d d U r  -  2M)±4Miwe ^ { 0 ( r  -  2M )  +  0 (2 M  -  r)e4M™}. (5.11)

Note that this field configuration has a different normalization constant. Also 

note the exponential factor, which in a more suggestive form is

eXP<2^ ) - (5 1 2 )

The ratio of the normalization constants is what determines the Hawking flux of 

particles. Using the normalization condition A.4 and equating, the ratio is:

| N s t r a d d le  | 1
\ K t 12 (5.13)

'escape | Q kB TH — 1

which is the well-known Planck distribution. Note that when computing the two 

norms, the escape-field is integrated over the interval (2 M, oo), while the straddle- 

field is integrated over the interval (0 , oo), since an observer straddling the hori­

zon gets to see both the interior and the exterior of the black hole. Thus the phase 

that is picked up on crossing the horizon is directly responsible for the Planckian 

distribution.

The key step is the choice of vacuum. The accepted assumption is that an 

observer freely falling through the horizon should see nothing out of the ordinary; 

in other words, they do not see real particles. This is the Unruh vacuum. To this 

observer on the horizon, virtual particles may exist, but they must annihilate each 

other in a short time. To an observer at infinity, this is not the case. Pair creation 

of straddling modes is allowed if one particle is ingoing and one is outgoing. The 

observer on the horizon gets to see both particles, but the ingoing particle may be 

hidden from the observer at infinity. The question becomes: what is the content 

of a straddling mode in terms of the observer at infinity? The answer is given by
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the normalization ratio. Each outgoing straddle mode contains a Planckian mix 

of modes as seen at infinity.

The above derivation of the Hawking result, due to Visser, is relatively sim­

ple. Hawking's original calculation [8 ] [9] used backwards ray tracing; fields were 

propagated backwards through time, both from the exterior and interior of the 

black hole, so that the initial state was vacuum. The Feynman path-integral deriva­

tion by Hartle & Hawking is also insightful [21].

5.2 Moving mirrors

In the spirit of the equivalence principle, it is natural that an analogue of Hawking 

radiation exists for accelerated observers instead of observers in curved space­

time. There are two such analogues, both being discovered close on the heels 

of Hawking's landmark paper. Unruh [22] showed that a uniformly accelerating 

particle detector in empty Minkowski spacetime will see a thermal flux of parti­

cles. Davies & Fulling [23] similarly showed that a uniformly accelerating mirror 

in empty Minkowski spacetime will produce a thermal flux of particles as seen by 

an inertial observer. The treatments are very similar, but I will look at the latter as 

it is closer in spirit to the Casimir effect.

The key feature is the future horizon that exists for an accelerating mirror: 

the worldline of such an observer asymptotically approaches a null worldline, so 

all light rays with later advanced time will not intersect the mirror's worldline 

(following Davies & Fulling, the mirror accelerates in the negative x direction). 

Actual particle creation does not require the formation of a horizon though: a 

collapsing star that is stopped just before becoming a black hole will emit particles 

at earlier times. The thermality of the radiation however is a direct result of the 

future horizon, and such a spectrum seems to be the consummation of a natural 

process. Particle creation after all is a local effect subject to minor details of the
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spacetime but thermal particle creation is an intrinsic global event.

Rindler spacetime is the geometry seen by a uniformly accelerating observer. 

The 2D Rindler metric is:

ds2 =  e2a€(dr/ 2 — d£2), (5.14)

where a is a parameter (not the proper acceleration). It is clearly conformally 

equivalent to 2D Minkowski spacetime. It has been established however that, 

in the quantum context, these two problems are not physically equivalent. The 

regularized stress-tensor is not conformally invariant, so even though the mov­

ing mirror produces energy associated with its acceleration, the static mirror in 

Rindler spacetime does not produce energy (which would suggest a paradox).

I consider a mirror that is initially stationary in 2D Minkowski spacetime x(t) = 

0  for t < 0 , and the natural vacuum is obviously that seen by the observer before 

acceleration. The mirror accelerates at t =  0, the intermediate details of which are 

not important, and I set the asymptotic trajectory to be:

x(t) -► - t  + Ae~2Kt + B  (5.15)

for t oo. The horizon is the null asymptote v — x + t — B. The asymptotically 

vanishing factor is carefully chosen to mimic surface gravity. See figure 5.2.

The massless scalar field will obey the Klein-Gordon equation:

d2<\>
dudv

where the null coordinates are:

= 0 , (5.16)

u, v = t x. (5.17)

One imposes the mirror boundary condition:

(f>(t, x(t)) = 0. (5.18)

This has a set of mode solutions, for positive frequencies u  = |/c|:

f t n ( u ,  V ) =  — L = ( e - ^  -  e - M 2r u - u ) ^  { 5 1 9 )
yAnui
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where ru solves the implicit equation

ru ~ x ( t u )  =  u ,  (5.20)

so that the boundary condition will be satisfied. This set of modes describes the 

field to the right of the moving mirror: the left-moving modes are conventional 

plane waves, but the reflected right-moving modes are shifted according to the 

trajectory parameter ru; I will define the shifted coordinate:

p ( u )  = 2Tu -  it. (5.21)

This function specifies how an incoming plane wave is reflected. Conversely, I 

can define its inverse: q ( p ( u ) )  =  u .  q ( v )  takes an outgoing plane wave and traces 

it backwards to obtain the corresponding (non-plane) incoming wave.

One can now expand the field 4>:

^=£*>o[a*/r + <4(/?)*] (5.22)

and define the i n - vacuum: a k \ 0 ,  i n )  = 0. This field should clearly produce no par­

ticles for the initial phase t  < 0 and yield a flux of particles for t  > 0. To examine 

the nature of the particle flux, one can evaluate the Bogoliubov transformation 

between f lk n  and f k u t .

First note that the in-modes for the initial phase are simply (because x ( t )  = 0)

f l n = —jL=(e~iwv -  e~iuJU), t < 0. (5.23)
v 47to;

It is easiest to evaluate the Bogoliubov coefficients on the hypersurface t  = 0 

because the in-modes still have the simple form above, while the owi-modes will 

have become complicated (remember the scalar product can be evaluated on any 

spacelike hypersurface).

To determine f k u t , I will use the backwards ray tracing that Hawking used 

to derive black hole radiation. I take a reflected plane wave e~tuJV along a very
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late retarded time (u —> oo). I trace the plane wave backwards in time, obtaining 

an initial wave e~iwq(v\  For large u, the reflected wave will result from a large 

number of wavefronts that have piled up on the horizon (see figure 5.2). This 

means q(v) varies very rapidly with v. Note that for v > B, all left-moving rays do 

not intersect the detector, so that f ^ i y  > B) — 0, and f%ut(v < B) =  y = ( e _ltJU -
e - i u i q { v ) y

Now I look at the Bogoliubov coefficient ( 3 ^  between the in-modes and the 

backwards-traced particle mode taking the scalar product on the

spacelike hypersurface t = 0 between the mirror position x  =  0 and the position 

of the latest null ray able to hit the mirror x = B:

/U , = i [ B{ f? (d xfS*) -  (5.24)
Jo

= - 2  i f  ( d x f D f f i d x  (integration by parts of first term) (5.25)
J o

i
2ir

J  e-iujq{v)- iu;,xdx. (5.26)

Note the boundary term in the integration by parts was discarded because q(v) 

varies rapidly only near x =  B, so the contribution away from the horizon is 

negligible. We can use the asymptotic trajectory (5.15) to set

q{v) ~  “ ln(-” j—) — B. (5.27)

The integration can be done with the above approximation, using incomplete 

gamma functions (see [24] for information on gamma functions). One can let 

the incomplete gamma functions become complete gamma functions (which will 

allow an explicit calculation) if one lets u' —> oo, which is valid again if u of the 

outgoing trajectory is large, since the high frequencies <J arise near the horizon. 

The final Bogoliubov coefficient is then

/U , =   1 e x p ( - ^  -  iJ ^ AS)~ B -  i J B ) { J Y ^ lKT{\ +  iw/K). (5.28)
V  47X2 UXjO ' 2 k  k
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While this is complicated, the calculation of the modulus squared strips away the 

exponentials if gamma function identities are used:

<5-29>

The second factor indicates a (Bose-Einstein) thermal spectrum with a tempera­

ture T  — k/2h. The particle number involves integrating over all frequencies oj1 

and this calculation diverges. This is obviously an artifact of the infinite length of 

the acceleration period which results in an infinite particle number per mode. The 

divergence is easily removed if wave packets are used instead of plane waves.

So one sees that an acclerating mirror boundary condition induces a thermal 

particle flux as seen by a stationary detector. The physical cause of this phenom­

enon is the shifts and consequent pileup of phase due to the motion of the re­

flecting surface, which results in a nontrivial Bogoliubov transformation between 

in and out modes. While the particle creation due to a collapsing spherical body 

has a different physical cause (gravitation), the situations are formally the same. 

Davies & Fulling [23] note that the two situations differ by a conformal transfor­

mation.
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Figure 5.2: Trajectory for an Accelerating Mirror in x — t space.
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Chapter 6

The Casimir effect

An interesting and well-studied property of the quantum vacuum is the Casimir 

effect. H.B.G. Casimir [25], in his investigations of the van der Waal's force, 

showed in 1948 that fluctuations in the electromagnetic vacuum cause an attrac­

tive force between two neutral, parallel, perfectly conducting plates1. This is not 

predicted by classical electrodynamics. He predicted the pressure on the plates 

should be P  =  where a is the plate separation. This result was confirmed

experimentally in 1958 [27], and much more accurate measurements have been 

made recently [28], [29]. The term Casimir effect has come to describe any in­

stance of vacuum polarization in Minkowski spacetime due to physical bound­

aries which fundamentally changes the quantization. Similar effects due to non­

trivial topologies are called topological Casimir effects.

An illustrative analogy, called the "maritime Casimir effect", has recently been 

suggested by Boersma [30]. In the 19th century, P.C. Caused [31][32] relates how 

some maritime disasters were attributed to a phenomenon in which two nearby 

ships, parallel to each other and on a windless sea, experienced an attractive force.

Conventional derivations of Casimir effects always use an idealized conductor. Real materials 
of course cannot perfectly constrain the quantum fields. Graham et al [26] argue that the nature 
of the material affects the manner in which the system approaches the idealization, which affects 
the actual Casimir energy. This would invalidate energy calculations but not the existence of the 
Casimir force.
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As this is merely a sailors' tale, the existence of such a phenomenon is spurious 

(although not discounted), but a naive explanation relates it nicely to the quan­

tum Casimir effect. Wave modes in between and transverse to the two ships are 

constrained to a discrete set of wavelengths: An = ^ , n  — 1,2,3..., where a is 

the distance between the ships. Transverse modes outside the ships however are 

only constrained at one end and can take a continuum of wavelengths. Since each 

mode carries an energy, the energy density outside the ships should be higher (ig­

noring longitudinal modes as they are unconstrained). The difference in energy 

density should result in a transverse attractive force. Of course, this is an illus­

trative example; the actual physical explanation (or even the existence) of this 

phenomenon has not been established.

It should also be noted that while the intuitive explanation of there being 

"fewer" modes between the ships/plates (both numbers are actually infinite) helps 

in the parallel plate situation, it fails in other geometries. In particular, the Casimir 

effect for a spherical shell results in the shell being pushed outward, even though 

there should be "fewer" modes inside. In general, the sign of the Casimir force is 

highly dependent on geometry and dimension. A better way to think of the effect 

is suggested by Hush water [33], who notes that if the plates are far away from 

each other, the boundary constraints are negligible. If the plates are pushed to­

gether adiabatically, modes aren't eliminated; rather, their frequencies shift. The 

Casimir effect then is a redistribution of modes as opposed to a prohibition of 

modes.

The original Casimir system consists of two parallel, planar, neutral, perfectly 

conducting plates. The calculations are similar for scalar and electromagnetic 

fields, differing by a numerical factor. I will follow the treatment of Milton [34], 

looking at the massless scalar field. The electromagnetic derivation can be found 

in Casimir's original paper or in the more recent papers by Plunien et al. [11] or 

Bordag et al.[35].
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The scalar field is described in the massless case by □</> =  0, and its energy- 

momentum tensor is

Tfiv  — ~  2I 4*,a f t  (6-1)

In one spatial dimension, we impose the Dirichlet boundary conditions <j>{x = 

0 ) — <f>(x — a) — 0 . While there are alternate derivations, I will use popular one 

that uses the Green's function G(x,t,x' , t ') which is defined to satisfy:

UG(x, t, x', t1) = S(x — x')5(t — t') (6.2)

subject to:

G(0, t, x', t') — G(x, t, a, t') = 0. (6.3)

The Fourier transform of the Green's function can be constructed because G de­

pends only on (t — t1), but not on t or £':

G(x, t, x', t') = [  -^-e~t0Ĵt~t^g(x, x\uj)dio. (6.4)
J  27T

g(x, x' ,u)  is called the reduced Green's function and obeys the differential equa­

tion:

(u2 + - ^ ) g ( x , x ' , u )  = - S ( x - x ' ) ,  (6.5)

which is the transform of (6 .2 ).

This last equation can be solved. We only require the solution for two regions:

0 < *,*- < a : g(x,X',u) = -  «) {6 6)
u  sina»a

a < x,x '  : g(x,x',u>) = — — sina;(inf{x, x'} — a)e_lla'Ksupfx’x̂ _a). (6.7)
ui

The time-ordered product of 0 at two different points happens to be a solution 

of (6 .2 ),

T(<fi(x, t)(/)(x', t')) =  6(t -  t’)(j)(xf t)<f>(x', t1) + 6(t' -  t)(j>{x\ t')(f)(x, t ), (6 .8 )
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up to a factor of i. This means G(x, t, x', tr) can be used to get the stress-tensor by 

applying appropriate differential operators to it, and setting (x1, t1) to (x, t). To get 

Too, one applies:

\ ( d td t + d A ) .  (6.9)

Between the plates, we get:

<T„) =  i (dtat, +  & & ,)[! f  (6.10)
I % J Z7T

= J  4 ~ (^ 2 + dxdx>)g{x,x',uj)du)\x,t=x>,t< (6.11)
lU> - [sin ux  sin u(x — a) +  cos l u x  cos u(x — a)]du (6 .1 2 )/ 4w sin uia 

iu 
47r

= J  —  cotuadu) (6.13)

= J  Ccoth(Ca)dC, (6.14)

where the substitution uj = i(  has been made in the last line. The final integral 

does not exist however, since the coth function does not vanish at infinity. But 

note that if one takes the limit a —> oo, one gets the free Minkowski spacetime 

situation (coth((a) =  1 ), which is infinite as well. Since energy in Minkowski 

spacetime is not absolute but expressed up to a constant, one can set the free

spacetime energy-momentum tensor to zero (even though it is formally infinite).

This means subtracting unity from the coth function and treating only the positive 

C region:

1 f°°
(Ttt) =  J  C(coth(a -  l)c?C (6.15)

1 f ° °  C
=  (6-i6)

“  ( 6 '1 7 )

For Txx, the calculation proceeds identically. The required differential operator 

is the same, so

{Txx) =  {T„) =  (6.18)

35

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



For the off-diagonal terms, the differential operator is symmetric: \{dtdx< + dxdt>) 

so they must be zero. Thus we have a stress-tensor of:

(T„) = -  2 ^ 5  V  (6-19)

The procedure is similar for the field outside the plates:

( T t t )  —  ( T xx) =  [  - — (ijcu'l cosu+a: — a )  +  cusino;(a; — a ) ) e %̂ x ~'a ^ d u  (6.20) 
J Am

1 r°° i  r°°

This is just the (infinite) energy of the free vacuum, so we set it to zero. The stress 

due to the physical boundaries seems to be confined to between the plates, and 

there is clearly a discontinuity in energy across each boundary. The force on each 

plate is given by the jump in each discontinuity (in one spatial dimension, force 

and momentum flux have identical units):

F = ~({Txx\a-) ~ (Txx\a+)) (6.22)

=  - 2 5 ?  (6'23)

The Green's function method applies also to the 3 + 1 situation, although com­

plications arise due to surface divergences. The boundary conditions now become 

<j)(z = 0) =  cj)(z = a) — 0. The same field equation applies, and the energy- 

momentum tensor is still (6.1). Now we use the Fourier transform of the trans­

verse momentum and the frequency (but not the longitudinal momentum):

(Tu) = J  ( ^ ) { ^ ) 2( f tt) e - ^ t+k*x+kvy\  (6.24)

To calculate (Ttt) between the plates, the operator ^ 5 ^ ' ,  or |(w 2 +  k2 +  k2 + 

dzdz>) inside the integral, is applied to the reduced Green's function which obeys

(u2 + k2x + kl + ^ ) g ( x , x ' , u j )  = -5{z  -  z'). (6.25)

Using A =  yJuS1 — kl -  k$, one can check the solution:

0 < x , x '  < a: g(x,x', A) = _ ^ (A M { x ,x -} )SinA(.up{x,x-} -  a)
A sin A a
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The calculation proceeds, using the substitutions u> —► i(  and A —> in, and 

using the polar coordinates (  = k cos 6, k — k sin 6:

(Ttt) _  _  1 / ( £ ) ( * ) V  +  kl + kl +
2 j  27r 27r AsmAa

(6.27)

~  — /(^ ~ )(^ ~ )2n 'V~'v—r~(ca2 cos Aa — A;2 cos A (2z — a)) (6.28)J  2ir 2 n  2 i \  sin Aa \ n  v

1 Z"00 /’7r/2 , gill# , 2 . . . 2„ i r. / \\= ——~ / an d V K  (cos 0cosh/ca +  sm 0cosh2/qz — a))
47T2 J o J o smh/«C

(6.29)
1 f 00 l

= — ——r / d«K3- — (cosh«a +  2 cosh /« (2 2  — a)) (6.30)
l2tt Jo smh /ca

1 f ° °  1 1 e2/« +  g2*(a-*)

KK e2Ka -  1 +  2 + e2Ka -  1 ^
(6.31)

The middle term is independent of a, so it can be thrown out as part of the free 

vacuum. If the third term is integrated over z, from 0 to a, it is reduced to which 

is independent of a and divergent. It does not contribute a physical energy. Only 

the first term remains and it can be calculated:

i r°° k3
<r“> =  - W 0 dK^ T  (632>

7T2
(6.33)

1440a4

Integrating over z, we get the Casimir energy/area for a scalar field between par- 

allel conducting plates: — 14̂ 0a3. Casimir's famous result for the electromagnetic 

field is double this: —7 ^ 3  (since there are two transverse degrees of freedom).

The calculation for Tzz proceeds similarly and one arrives at the following in­

tegral:

=  < 6 3 4 >

This is similar to the 1 + 1 case in that there is no ^-dependence; the integral can 

be broken down into an observable part and a free vacuum part (the third term

37

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



in the tt calculation has no zz analogue). The observable part is — (TXx) and 

(Tyy) on the other hand do pick up the third term of < Ttt >, which I will call A(z). 

The result of that calculation is:

(Txx) = (Tvy) = -  A(z). (6.35)

The appearance of the divergent A(z) term can be linked to the freedom one 

has in defining the energy-momentum tensor. If one uses the definition of [36]:

(6.36)

it clears up. Note that this tensor is traceless, Tft =  0, indicating conformal sym­

metry. This definition is called then the conformal energy-momentum tensor, and 

the previous definition (6.1) the canonical energy-momentum tensor. If one ap­

plies the differential operators corresponding to the extra term in (6.36) to the 

Green's function, one gets an exact cancellation:

( T T a) = ~ A (Z)

(

\

1 0  0 0 

0 - 1 0 0  

0 0 - 1 0  

0 0 0 0

\

(6.37)

and the resulting energy-momentum tensor is traceless and divergenceless (after 

free vacuum subtraction):

7T
1440a4

( 1 0

0 -1

0 0 

0 0

\

0 0 - 1 0  

0 0 0 3

(6.38)

/
The generalization of these results to different geometries is not trivial. The 

case of a spherical cavity or radius r was considered by Boyer [37] and Davies 

[38]. The calculation is very involved, and requires a numerical solution. The 

result is:
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entropy is stipulated:

(C.2)

Hawking's area theorem (the "ungeneralized" second law) [54] states that 

the horizon area may not decrease in a globally hyperbolic spacetime subject 

to the weak energy condition:

for all timelike vectors k This law is violated by the Hawking effect: the 

emission of particles from a black hole decreases the mass and hence the 

horizon area (any particle creation in curved spacetime is essentially a viola­

tion of the weak energy condition). The conventional second law of thermo­

dynamics is also violated by matter crossing the horizon. The generalized 

second law states that either matter or Bekenstein-Hawking entropy may 

decrease, but the sum may not. The law has been corroborated by analytical 

and numerical results (Page [55], Zurek [56]) and no counter-examples have 

been found. The precise nature of the microstates is still not understood 

however (this must be done by any quantum theory of gravity).

3. The third law and its thermodynamic parallel have been somewhat controver­

sial, although the implications of this may not be terribly important. The 

analogy is considered by some to fail for this law, but this is not true un­

der an alternate formulation. The conventional formulation combines the 

Nernst law and Planck's postulate. The Nernst law states that zero temper­

ature states are isentropic; Planck's postulate states that the zero tempera­

ture entropy is always zero. In black hole mechanics, this would translate 

into the requirement that extremal black holes (i.e. k =  0) have zero horizon 

area. This statement is known to be false (Wald [18]). A common alternate 

to the Planck-Nemst law however, the "unattainability law", states that the 

zero temperature state cannot be attained in a finite number of processes.

(C.3)
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This is precisely the third law of black hole mechanics: an extremal black 

hole cannot be formed in a finite number of processes. The two thermody­

namic formulations are not completely equivalent and so there is a question 

about which is the fundamental one. The black hole analogy seems to indi­

cate the latter, and it has been proposed that the Nernst formulation is only 

a property of commonly studied materials (Aizenman [57]).
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