Riabouchinsky flows in magnetohydrodynamics.

Fotini. Labropulu

University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation
https://scholar.uwindsor.ca/etd/3350

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.
NOTICE

The quality of this microform is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Previously copyrighted materials (journal articles, published tests, etc.) are not filmed.

Reproduction in full or in part of this microform is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30.

AVIS

La qualité de cette microforme dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

Les documents qui font déjà l'objet d'un droit d'auteur (articles de revue, tests publiés, etc.) ne sont pas microfilmés.

La reproduction, même partielle, de cette microforme est soumise à la Loi canadienne sur le droit d'auteur, SIC 1970, c. C-30.
RIABOUCHINSKY FLOWS IN MAGNETOHYDRODYNAMICS

by

Fotini Labropulu

A Thesis submitted to the Faculty of Graduate Studies through the Department of Mathematics and Statistics in Partial Fulfillment of the Requirements for the Degree of Master of Science at the University of Windsor.

Windsor, Ontario

1987
Permission has been granted to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film.

The author (copyright owner) has reserved other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without his/her written permission.

L'autorisation a été accordée à la Bibliothèque nationale du Canada de micro filmer cette thèse et de prêter ou de vendre des exemplaires du film.

L'auteur (titulaire du droit d'auteur) se réserve les autres droits de publication; ni la thèse ni de longs extraits de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation écrite.

ISBN 0-315-43756-1
Approved by:

Dr. O.P. Chandna (Supervisor)

Dr. P.N. Kaloni

Dr. A. Watson
Life has in store for us many pleasant moments. The completion of this thesis is one such moment.

In this special moment of joy, two very very special people come to my mind. I would like to express my heartfelt gratitude to my beloved mother Alexandra and my grandfather Nicholas, for their help, support, encouragement and most importantly, their love and belief in me. I respectfully dedicate this thesis to them.

To my beloved brother Nicholas for his love and encouragement.
ACKNOWLEDGEMENTS

I would like to acknowledge the help I have received from many people throughout my studies. First of all, I wish to express my most sincere thanks and appreciation to my supervisor, Dr. O.P. Chandna for his many valuable ideas, capable guidance, consideration and friendship throughout the course of this research and my university life. I shall always be very grateful to him.

I also wish to express my gratitude to Dr. R.M. Barron, Chairman of the Department of Mathematics and Statistics for providing the computer facilities for the production of this manuscript.

My most sincere thanks to my uncle Anthony and his family for their love, help, support and encouragement all through the years.

This research was primarily supported by Dr. O.P. Chandna's Grant (NSERC). Additional support was provided by a Windsor Scholarship from the University of Windsor.

I would also like to express my thanks to my dearest friend Mr. Iqbal Husain. His help and encouragement throughout the last year, in particular, in the typing of this manuscript is very much appreciated.

Special thanks to Mr. Ajay Chandna and Miss Alka Chandna for providing the fantastic computer software Chi-writer for the
typing of this manuscript.

To Dr. A. C. Smith, Dr. H. R. Atkinson, Dr. K. L. Duggal, Dr. D. Tracy, Dr. F. Lemire, Dr. G. McPhail, Dr. P.N. Kaloni and Dr. N. Zamani for their assistance.

Last but not least, thanks to my dearest friends Mr. Mohammed Hamdan, Mr. Phu Nguyen, Miss Ophelia Ho, Miss Rani Thiagarajah, Mr. Rajesh Barnwali, Mr. Raza Husain, Mr. Rana Khalid Naeem, Mr. Shuxin Zhang, and Miss Andromeda Franiel for their encouragement.
ABSTRACT

This Thesis is devoted to the mathematical study of steady magnetohydrodynamic flows. Steady plane flows of ordinary viscous as well as second-grade, incompressible and electrically conducting fluids are studied under the assumption that the magnetic field and the velocity field are transverse, aligned or constantly-inclined to each other throughout the flow region.

By transverse flow, we mean that the magnetic field is normal to the velocity field. By aligned flow, we mean that the velocity field and the magnetic field are everywhere parallel to each other in the flow region. In constantly-inclined flow, the angle between the velocity vector and the magnetic vector is constant everywhere in the flow.

In this work, the flows mentioned above are investigated under the assumption that the streamfunction, defined by the continuity or conservation of mass equation, is linear with respect to x or y. Flow problems involving such a streamfunction are called Riabouchinsky type problems.
TABLE OF CONTENTS

DEDICATION ii

ACKNOWLEDGEMENTS iii

ABSTRACT v

TABLE OF CONTENTS vi

CHAPTER

1 INTRODUCTION 1

1.1 Historical Sketch 1

1.2 Outline of the Current Work 8

2 PRELIMINARIES 11

2.1 Basic Equations of Magnetohydrodynamics 11

2.2 Riabouchinsky Type Problem for an ordinary Non-MHD viscous fluid 15

2.3 Cardan’s Solution of Cubic Equations 19

3 PLANE TRANSVERSE FLOWS 24

3.1 Introduction 24

3.2 Equations of Motion 26

3.3 Compatibility equation 30

3.4 Solution of Riabouchinsky Type Problems. Ordinary Viscous Fluids. 36

3.5 Solution of Riabouchinsky Type Problems. Second-Grade fluids. 45

- vi -
<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>54</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>54</td>
</tr>
<tr>
<td>4.2 Equations of Motion</td>
<td>56</td>
</tr>
<tr>
<td>4.3 Compatibility Equations</td>
<td>60</td>
</tr>
<tr>
<td>4.4 Solution of Riabouchinsky Type Problems. Ordinary Viscous Fluids.</td>
<td>65</td>
</tr>
<tr>
<td>4.5 Solution of Riabouchinsky Type Problems. Second-Grade Fluids.</td>
<td>79</td>
</tr>
<tr>
<td>5</td>
<td>91</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>91</td>
</tr>
<tr>
<td>5.2 Flow Equations</td>
<td>93</td>
</tr>
<tr>
<td>5.3 Compatibility Equation</td>
<td>96</td>
</tr>
<tr>
<td>5.4 Solution of Riabouchinsky Type Problems</td>
<td>99</td>
</tr>
</tbody>
</table>

CONCLUSION

REFERENCES

VITA AUCTORIS
CHAPTER 1
INTRODUCTION

1.1. Historical Sketch

1.1.1. Introduction

Magnetohydrodynamics (MHD) is the study of the macroscopic interactions of electrically-conducting liquids and gases in the presence of a magnetic field. In such a problem, the magnetic field influences the fluid motion and the fluid motion changes in turn the magnetic field. As would be expected, both the equations of fluid mechanics and of electro-magnetism feature in the description of magnetohydrodynamic flow; each impressing something of its own distinctive features on the subject.

When a conducting fluid moves through a magnetic field, an electric field and consequently a current may be induced and, in turn, the current interacts with the magnetic field to produce a body force on the fluid.

Such interactions occur both in nature and in new man-made devices. MHD flow occurs in the sun, the earth's interior, the ionosphere, the stars and their atmospheres, to mention a few. In the laboratory many new devices have been made which utilize the MHD interactions directly, such as propulsion.
units and power generators. Further, at the engineering level, experiments have been made for electric power generation by passing an ionized gas between the poles of a strong electromagnet so that an electric current would be generated at right angles to the magnetic field and to the direction of flow of the plasma, the current being collected by two spaced electrodes at right angles to the direction of the current flow.

From the historical point of view, the first investigations in this field are due to Faraday in 1836. Faraday attempted to detect the electric field induced by the motion of the conducting water in the Thames River in the presence of the earth's magnetic field. His experiments failed because of the low electrical conductivity of the fluid. A second important stage in the development of this science is represented by the experiments of Hartman and Lazarus in 1937 who pointed out the magnetic field influence on the motion of a fluid. In this work, mercury flowing through a tube in the presence of a strong magnetic field was used as conducting fluid. Although the experimental results confirmed the theoretical studies, no practical reason for continuing these investigations existed at that time.

The first genuine magnetohydrodynamic problems have been posed by astrophysics. So in 1940, the Swedish scientist H. Alfvén proved that new waves, unknown to both fluid mechanics and electromagnetism can be propagated through a conducting fluid in a magnetic field.

But the first important impetus in the development of this
science was the discovery of the plasma and its production on the laboratory scale. A plasma is electrically conducting and has the property of maintaining its overall charge neutrality. Plasma is consequently a compressible, continuous (or discrete) electrically conducting medium. It is obvious that the study of the motion of such a medium represents the object of magneto-hydro-dynamics.

Of more recent origin is the interest in magneto-hydro-dynamics spurred by problems encountered in aeronautics and astronautics. At the flight velocities at which future aircraft and space vehicles are expected to operate, the energy levels involved are such as to cause substantial ionization in the atmospheric environment of the vehicles and/or to require propulsion systems capable of producing particle streams with directed energies much higher than those possible with present-day chemical fuels.
1.1.2. Literature Review.

The mathematical study of magneto-hydro-dynamics is concerned primarily with the partial differential equations which arise from the well known physical conservation laws. Most of the research to date has been restricted to MHD with the additional assumption of infinite electrical conductivity. S. Lunquist(1952) investigated unsteady flows with electrical conductivity. Resler and McCune(1959) worked in linearized MHD and Chandrasekhar(1961) worked in related stability problems.

Because this subject is quite complex and because this is a relatively new branch of dynamics, much of the research has consisted in isolating special flows which are accessible via the existing methods of Fluid Dynamics. H. Grad(1960) established the reducibility for a number of MHD problems to fluid dynamics problems. Aligned flows, Transverse flows, Orthogonal flows, Constantly-Inclined flows and Variably-Inclined flows are examples of such special flows.

In Aligned flows, the magnetic field vector and the velocity field vector are everywhere parallel to one another. Steady aligned plane flows were one of the first flows studied. Chandrasekhar(1959) investigated the stability of an aligned flow problem for the case of inviscid incompressible fluids. Vinokur(1961) obtained a kinematic formulation for three dimensional aligned flows of ideal gases. P. Smith (1963) generalized some of the results of steady rotational flows of
ideal gases to aligned flows. Chandna and Nath(1972) developed a substitution principle, for fluids having an arbitrary equation of state, that corresponds to Prim’s(1952) substitution principle, for classical gas flows. Kingston and Power(1968) employed complex variable techniques to study compressible aligned flows. Chandna, Murgai and Srihar(1985) applied hodograph and Charpit’s method to investigate the geometries and the solutions when the velocity magnitude is constant on each individual streamline.

Flows are said to be orthogonal if the velocity and the magnetic field vectors are everywhere orthogonal to each other. Many researchers so far have studied orthogonal flows of inviscid fluids with infinite electrical conductivity. Ladikov(1962) obtained two Bernoulli equations for such flows. Power and Walker(1965), and Power and Talbot(1969), studied plane compressible orthogonal flows by reducing the problem to that of rotational gas dynamic flows. Kingston and Talbot(1969) completely classified the possible flow configurations for the viscous incompressible fluid. Nath and Chandna(1973) investigated steady plane viscous incompressible MHD flows, using the streamfunction and magnetic flux function as independent variables. Chandna and Nath(1973) obtained a number of geometric results for the case of compressible fluids. Garg and Chandna(1976) applied Martin’s method to study Hamel’s problem(1916) for orthogonal steady plane viscous incompressible fluids of infinite electrical conductivity. Chandna and Garg(1979) obtained various solutions for the plane viscous incompressible flow of infinite electrical conductivity by
employing the hodograph transformation.

Constantly-Inclined flows are defined to be those flows for which the magnetic lines and the streamlines are constantly inclined so that the angle between the velocity vector and the magnetic vector is \(\phi = \text{constant} \) and \(\phi = 0 \) everywhere. Until 1973, there appears no mention of such flow in the literature. Waterhouse and Kingston (1973) investigated constantly-inclined flows of incompressible non-viscous fluid with infinite electrical conductivity. Toews and Chandna (1974) considered constantly inclined flows of inviscid compressible fluids. Chandna, Toews and Nath (1975) studied these flows of viscous incompressible fluids.

Plane flows are said to be transverse if the magnetic field is normal to the plane of flow. H. Grad (1960) derived two integrals for transverse flows. R.M. Gunderson (1966) studied simple waves for transverse flows. O.P. Chandna (1972) obtained a compatibility equation for such flows. Toews and Chandna (1974) derived a method for solving the transverse flow problem.

A flow is said to be a variably-inclined flow if the angle between the magnetic field and the velocity field is varying in the flow region. Chandna, Barron and Chew (1982, 1983) applied hodograph transformation and Martin's method respectively to study steady plane flows of incompressible, viscous electrically conducting fluid having infinite electrical conductivity. Chandna, Soteros and Swaminathan (1984) used magnetograph transformations to obtain certain exact solutions of steady plane flows of incompressible, viscous finitely electrically conducting fluid.
A variety of other problems in magnetohydrodynamics have been studied by K.B. Ranger (1969), J.A. Shercliff (1953) and R.H. Wasserman (1967) among others.
1.2 Outline of Current Work.

In this work, steady plane flows of electrically conducting fluids in the presence of a magnetic field are investigated under the assumption that the streamfunction defined by the continuity equation is linear with respect to x and y. Flow problems involving such a streamfunction are called Riabouchinsky type problems. Kaloni and Huschilt (1984) obtained some solutions to these problems for a Non-Newtonian, non-MHD fluid. There are three major parts of this investigation. The first part is devoted to a consideration of transverse viscous incompressible plane flows of finitely and infinitely electrically conducting fluids. The second part is devoted to the study of aligned viscous plane flows of fluids having finite and infinite electrical conductivity. The third part is devoted to the study of constantly inclined viscous incompressible plane flows of infinitely electrically conducting fluids.

We now proceed to give a detailed outline of this thesis:

Chapter 2 consists of some preliminary work. In section 2.1, we give the flow equations of magnetohydrodynamics for both ordinary viscous fluids and second grade fluids. In section 2.2, we consider the solutions of Riabouchinsky type problems for an ordinary, non-MHD viscous fluid. In the last section 2.3, we present the Cardan's method for solving a cubic equation.

In Chapter 3, we consider the plane transverse MHD flows. We study
both finitely and infinitely electrically conducting fluids. In section 3.2, the basic flow equations are transformed into convenient form for this work by employing the definition of transverse flow. Both ordinary viscous fluids and second grade fluids have been studied. In section 3.3, we derive the compatibility or integrability equation for these flows for an ordinary viscous and second grade fluid. In section 3.4, Riabouchinsky type problems of an ordinary viscous fluid are investigated by using the compatibility equation found in the previous section. The last section 3.5 consists of the solution of the Riabouchinsky type problems of a second grade fluid.

In Chapter 4, we consider the plane aligned or parallel flows. We also consider both finitely and infinitely electrically conducting fluids. In section 4.2 of this chapter, the basic equations given in Chapter 2 are transformed into more convenient form for this work by employing the definition of aligned flows. Equations for ordinary and second grade fluids are given. In section 4.3, the derivation of the compatibility equation for this flows is presented. Section 4.4, consists of the solutions of Riabouchinsky type problems of an ordinary viscous fluid by using the compatibility equation. In the last section 4.5, the Riabouchinsky type problems of a second-grade fluid are investigated.

Chapter 5 deals with constantly-inclined viscous incompressible MHD flows with infinite electrical conductivity. In section 5.2, we transform the basic equations of section 2.1 into a more convenient form for this work by using the definition of
constantly-inclined flows. In section 5.3, we derive the compatibility equation for these flows and lastly in section 5.4, we consider the solution of Riabouchinsky type problems for the second-grade fluid.
CHAPTER 2

PRELIMINARIES

2.1. Basic Equations of Magnetohydrodynamics

2.1.1. Ordinary Viscous Fluids

The steady flow of a viscous, incompressible electrically conducting fluid, in the presence of a magnetic field is governed by the following system of equations:

\[
\begin{align*}
\text{div } \mathbf{V} &= 0 \\
\rho(\mathbf{V} \cdot \nabla) \mathbf{V} + \nabla p &= \mu \nabla^2 \mathbf{V} + \mu^* (\nabla \times \mathbf{H}) \times \mathbf{H} \\
\nabla \times (\mathbf{V} \times \mathbf{H}) - (1/\mu^*) \nabla \times (\nabla \times \mathbf{H}) &= 0 \\
\text{div } \mathbf{H} &= 0
\end{align*}
\] (2.1.1)
(2.1.2)
(2.1.3)
(2.1.4)

where \(\mathbf{V} \) denotes the velocity field vector, \(\mathbf{H} \) the magnetic field vector, \(p \) the fluid pressure function, \(\mu \) the coefficient of viscosity, \(\rho \) the constant fluid density, \(\mu^* \) the constant magnetic permeability, \(\sigma \) the electrical conductivity.

Introducing the identity

\[
(\mathbf{V} \cdot \nabla) \mathbf{V} = \nabla[(1/2)|\mathbf{V}|^2] - \mathbf{V} \times (\nabla \times \mathbf{V})
\]

in equation (2.1.2), the system of equations (2.1.1) to (2.1.4) is replaced by the following system:
\[\text{div} \, \mathbf{V} = 0 \] \quad (2.1.5)

\[\rho (\text{grad}[(1/2)|\mathbf{V}|^2] - \mathbf{V} \times (\text{grad} \times \mathbf{V})) = - \text{grad} \, \rho + \mu \nabla^2 \mathbf{V} + \mu^*(\text{curl} \, \mathbf{H}) \times \mathbf{H} \] \quad (2.1.6)

\[\text{curl} (\mathbf{V} \times \mathbf{H}) - (1/\mu^*) \text{curl} (\text{curl} \, \mathbf{H}) = 0 \] \quad (2.1.7)

\[\text{div} \, \mathbf{H} = 0 \] \quad (2.1.8)

This is a system of eight equations in seven unknowns \(\mathbf{V}, \mathbf{H} \) and \(\rho \). Equation (2.1.8) is an additional condition on \(\mathbf{H} \) expressing the absence of magnetic poles in the flow.

2.1.2. Second Grade Fluids

The basic equations governing the motion of an incompressible second grade and electrically conducting fluid, in the presence of a magnetic field, are given by:

\[\text{div} \, \mathbf{V} = 0 \] \quad (2.1.9)

\[\text{div} \, \mathbf{T} + \mu^* (\text{curl} \, \mathbf{H}) \times \mathbf{H} = \rho [\mathbf{V} \cdot \text{grad} \, \mathbf{V}] \] \quad (2.1.10)

\[\text{curl} (\mathbf{V} \times \mathbf{H}) - (1/\mu^*) \text{curl} (\text{curl} \, \mathbf{H}) = 0 \] \quad (2.1.11)

\[\text{div} \, \mathbf{H} = 0 \] \quad (2.1.12)

and the constitutive equation for the Cauchy stress \(\mathbf{T} \) [Coleman and Noll, 1960]

\[\mathbf{T} = -p \mathbf{I} + \mu \mathbf{A}_1 + \alpha_1 \mathbf{A}_2 + \alpha_2 \mathbf{A}_1^2 \] \quad (2.1.13)

where \(\mathbf{V} \) denotes the velocity vector, \(\mathbf{H} \) the magnetic field vector, \(p \) the fluid pressure function, \(\rho \) the constant fluid density, \(\mu \) the coefficient of viscosity, \(\mu^* \) the constant magnetic permeability, \(\sigma \)
the electrical conductivity, \(I \) is the unit tensor, and \(\alpha_1 \) and \(\alpha_2 \) are the normal-stress moduli.

The Rivlin-Ericksen tensors \(A_1 \) and \(A_2 \) are defined as

\[
A_1 = (\text{grad} \ V) + (\text{grad} \ V)^T
\]

\[
A_2 = A_1 + (\text{grad} \ V)^T A_1 + A_1 (\text{grad} \ V)
\]

where

\[
A_1 = (A_1 \cdot \text{grad} \ V).
\]

Substituting equation (2.1.13) in (2.1.10) and making use of (2.1.14), we obtain

\[-\text{grad} \ p + \mu \text{ div } A_1 + \alpha_1 \text{ div } [(\text{grad } A_1) \ V + (A_1 \cdot \text{grad} \ V)] + (A_1 \cdot \text{grad} \ V)^T A_1 + \alpha_1 \text{ div } (A_1^2) + (\mu^*(\text{curl} \ H) \times H = \rho(V \cdot \text{grad} V).
\]

Making use of the following two identities [Fosdick and Truesdell, 1977]

\[
\text{div } [(\text{grad} \ V)^T A_1] = (\text{grad} \ V)^T \text{div } A_1 + A_1 \cdot [\text{grad}(\text{grad} \ V)^T]
\]

\[
\text{div } [(\text{grad } A_1) \ V] = (\text{grad} \text{div } A_1) \ V + \text{div } [A_1 (\text{grad} \ V)^T]
\]

in equation (2.1.15), we get

\[-\text{grad} \ p + \mu \text{ div } A_1 + \alpha_1 [(\text{grad} \text{div } A_1) \ V + (\text{grad} \ V)^T \text{div } A_1 + A_1 \cdot (\text{grad} (\text{grad} \ V)^T)] + (\alpha_1 + \alpha_2) \text{ div } (A_1^2) + \mu^*(\text{curl} \ H) \times H = \rho [(\text{grad} ((1/2)|V|^2) - V \times (\text{grad} \times V))]
\]
Here we also use the fact that

\[(V \cdot \nabla \omega) V = \nabla \left(\left(\frac{1}{2} |V|^2 \right) \right) - V \times (\nabla \times V)\]

Since \(\text{curl(curl } \mathbf{H} \text{)} = \nabla (\text{div } \mathbf{H}) - \nabla^2 \mathbf{H} \) and since \(\text{div } \mathbf{H} = 0 \) by (2.1.12), then equation (2.1.11) reduces to

\[\text{curl}(V \times H) + (1/\mu^* \sigma) \nabla^2 H = 0\] \hspace{1cm} (2.1.19)

Hence, equations of motion (2.1.9) to (2.1.12) reduce to the following system of equations:

\[\text{div } V' = 0\] \hspace{1cm} (2.1.20)

\[-\nabla p + \mu \text{ div } A_1 + \sigma_1 (\nabla \text{ div } A_1) V + (\nabla V)^T \text{ div } A_1 +
\]

\[A_1 \cdot (\nabla (\nabla V)^T) + (\sigma_1 + \sigma_2) \text{ div } [A_1^2] + \mu^* (\text{curl } H) \times H =
\]

\[\rho \left[\nabla \left(\left(\frac{1}{2} |V|^2 \right) - V \times (\text{curl } V) \right) \right]\] \hspace{1cm} (2.1.21)

\[\text{curl}(V \times H) + (1/\mu^* \sigma) \nabla^2 H = 0\] \hspace{1cm} (2.1.22)

\[\text{div } H = 0\] \hspace{1cm} (2.1.23)

Equations (2.1.20) to (2.1.23) is a system of eight equations in seven unknowns \(V, H, \) and \(p \). Equation (2.1.23) is an additional condition on \(H \) expressing the absence of magnetic poles in the flow.
2.2 Riabouchinsky Type Problem for an ordinary Non-MHD Viscous Fluid (Ratip Berker, 1963)

2.2.1. Generalities

The compatibility equation of an ordinary, Non-MHD viscous fluid is given by

\[\nu \nabla^4 \psi + \frac{\partial (\psi, \nabla^2 \psi)}{\partial (x,y)} = 0 \] \hspace{1cm} (2.2.1)

where \(\nu = \mu / \rho \), and \(\psi \) is the streamfunction defined by the continuity equation, that is

\[\frac{\partial \psi}{\partial y} = u \quad \text{and} \quad \frac{\partial \psi}{\partial x} = -v \]

We assume that the streamfunction is linear with respect to \(y \); that is, it has the form

\[\psi(x,y) = y F(x) + G(x) \] \hspace{1cm} (2.2.2)

where \(F(x) \) and \(G(x) \) are arbitrary functions of \(x \). Substituting (2.2.2) into compatibility equation (2.2.1) we find that the functions \(F(x) \) and \(G(x) \) must satisfy the following differential equations:

\[\nu F^{(i)} \nu + F' F'' - F F''' = 0 \] \hspace{1cm} (2.2.3)
\[\nu G^{(i)} \nu + G' F'' - F G''' = 0 \] \hspace{1cm} (2.2.4)

Integrating these two equations once, we get

\[\nu F''' + F' F' - F F'' = A \]
\[\nu G''' + F' G' - F G'' = B \]

where \(A \) and \(B \) are arbitrary constants of integration.

On assuming that no external forces are present, we can find, by using the linear momentum equations, that the pressure is

-15-
given by
\[p = \mu F' - (1/2) F^2 - (1/2) \rho A y^2 - B y + p_o \] \hspace{1cm} (2.2.5)
where \(p_o \) is an arbitrary constant.

If the fluid domain is extended to infinity then in order for the pressure to stay bounded there, we must have \(A = B = 0 \). Also on interchanging \(x \) and \(y \) in the definition of the streamfunction \((2.2.1) \) we can handle, with minor changes, the solutions of the form \(\psi = x f(y) + g(y) \).

2.2.2. Particular Solution

Equation \((2.2.3)\) admits the following two particular solutions:
\[F_1 = \frac{-\delta V}{x}, \quad F_2 = \nu a (1 + k e^{ax}) \] \hspace{1cm} (2.2.6)
where \(a \) and \(k \) are two arbitrary constants.

When \(F = F_1 \), then equation \((2.2.4)\) becomes the Cauchy Euler differential equation.
\[x^4 G^{(i\nu)} + 6 x^3 G''' - 12 x G' = 0 \] \hspace{1cm} (2.2.7)
which admits a general solution of the form
\[G(x) = c_1 + c_2 x^{3} + c_3 x^{-1} + c_4 x^{-2} \] \hspace{1cm} (2.2.8)
where \(c_1, c_2, c_3, c_4 \) are arbitrary constants.

Hence the streamfunction \(\psi(x,y) \) defined by \((2.2.2)\) is given by
\[\psi(x,y) = \frac{-\delta V}{x} + c_1 + c_2 x^{3} + c_3 x^{-1} + c_4 x^{-2} \] \hspace{1cm} (2.2.9)

When \(F = F_2 \), then equation \((2.2.4)\) becomes
\[G^{(iv)} - a (1 + ke^{ax}) G'' + a^3 k e^{ax} G' = 0 \quad (2.2.10) \]

Without loss of generality, we can assume \(a = 1 \), so the above equation \((2.2.10)\) takes the form

\[G^{(iv)} - (1 + ke^x) G'' + k e^x G' = 0 \quad (2.2.11) \]

Employing a series of substitutions of the form

\[G'(x) = H(x), \quad H(x) = P(x) e^x, \quad P'(x) = R(x) \quad (2.2.12) \]

in \((2.2.11)\), we find that \(R(x) \) satisfies the following equation

\[R'' e^x + (2 - k e^x) R' e^x + (1 - 2 k e^x) R e^x = 0 \quad (2.2.13) \]

Integrating this equation once we get

\[R' + (1 - k e^x) R = c_1 e^{-x} \quad (2.2.14) \]

where \(c_1 \) is an arbitrary constant.

The general solution of \((2.2.14)\) is given by

\[R(x) = c_1 \exp(k e^x - x) \int \exp(-k e^x) \cdot dx + c_2 \exp(k e^x - x) \quad (2.2.15) \]

Using the series of substitutions \((2.2.12)\), we find that

\[G(x) = c_1 \int e^x \cdot dx \int \exp(k e^x - x) \cdot dx \int \exp(-k e^x) \cdot dx + \]

\[+ c_2 \int e^x \cdot dx \int \exp(k e^x - x) \cdot dx + c_3 e^x + c_4 \quad (2.2.16) \]

where \(c_3 \) and \(c_4 \) are also arbitrary constants.

Thus, streamfunction \(\psi(x, y) \) is given by

\[\psi(x, y) = \nu (1 + k e^x) y + c_1 \int e^x \cdot dx \int \exp(k e^x - x) \cdot dx \]

\[\int \exp(-k e^x) \cdot dx + c_2 \int e^x \cdot dx \int \exp(k e^x - x) \cdot dx + \]

\[+ c_4 e^x + c_4 \quad (2.2.17) \]
2.2.3. Solution of Riabouchinsky

We assume a special case of solution (2.2.17) where \(G(x) = 0 \), that is to say \(c_1 = c_2 = c_3 = c_4 = 0 \), usually attributed to Riabouchinsky.

Employing (2.2.6), we find that the streamfunction is given by

\[
\psi(x, y) = \nu (1 + k e^{ax}) y
\]

(2.2.18)

If we take \(k = -1 \) and put \(\nu a = -U_0 \), we obtain the following solution which is due to Riabouchinsky

\[
\psi(x, y) = U_0 y \left[\exp(-\frac{U_0}{\nu} x) - 1 \right]
\]

(2.2.19)

\[
u = \frac{U_0^2 (y/\nu)}{\exp(-U_0/\nu)} x \}
\]

(2.2.20)

When \(x \) tends to infinity, \(u \) tends to \(-U_0 \) and \(v \) tends to zero; at infinity we then have a uniform stream parallel to \(Ox \).

Moreover for \(x = 0 \) we have \(u = 0 \) and \(v = (\partial U_0^2/\nu) y \).

The vorticity of the flow (2.2.20) is given by the relation

\[
\omega = - (\frac{U_0^3}{\nu^2}) y \exp(-U_0/\nu) x \}
\]

(2.2.21)

For a fixed value of \(y \) the vorticity decreases in absolute value when one goes away from the plane \(X = 0 \). We can say that there is a neighbourhood of this plane in which the vorticity has an appreciable value; outside of this layer the vorticity is essentially nil.

Finally, the pressure is given by the relation

\[
p = p_0 - \left(\frac{1}{2} \right) \rho \overline{U_0^2} \exp(-2(U_0/\nu) x)
\]

(2.2.20)

where \(p_0 \) denotes the pressure at infinity.
2.3. Cardan's Solution of cubic equations (Borofsky, 1950)

General Method

Let the equation be of the form

\[f(x) = x^3 + a x^2 + b x + c = 0 \]

(2.3.1)

where \(a, b, c \) are any complex numbers. For simplicity, we are taking the leading coefficient to be 1.

We first make a transformation to eliminate the second degree term. If the roots of \(f(x) \) are \(x_1, x_2, x_3 \), then we seek an equation without a quadratic term whose roots are

\[y_1 = x_1 + \alpha, \quad y_2 = x_2 + \alpha, \quad y_3 = x_3 + \alpha \]

where \(\alpha \) is a constant to be determined.

We perform, therefore, the transformation

\[y = x + (a/3), \quad \text{or} \quad x = y - (a/3) \]

(2.3.2)

Hence, the transformed equation is

\[y^3 + p y + q = 0 \]

where \(p = b - (a^2/3) \), \(q = (2a^3 - 9ab + 27c)/27 \).

The expression \(y^3 + p y + q \) is called the reduced cubic. Its roots are

\[y = x + (a/3), \quad y = x + (a/3), \quad y = x + (a/3) \]

(2.3.4)

To solve the reduced cubic, we use a transformation

\[y = z + (\beta/z) \]

where \(\beta \) is a constant to be determined.

The transformed equation is

\[z^3 + (\beta^3/z^3) + q + (3\beta + p)z + \beta (3\beta + p)/z = 0 \]

(2.3.5)
To eliminate as many terms as possible, it is desirable to have \(3 \beta + p = 0\), or \(\beta = -(p/3)\). With this choice for \(\beta\), the transformation is
\[
y = z - \left(\frac{p}{3} z \right)
\]
and the transformed equation is
\[
z^6 + q z^3 - \left(\frac{p^3}{27} \right) = 0
\]
Equation (2.3.7) is quadratic in \(z^3\) with roots given by
\[
z^3 = \left(-q \pm \sqrt{q^2 + \left(\frac{4p^3}{27}\right)}\right)/2
\]
From these expressions for \(z^3\) we shall, in general, obtain six values for \(z\). For each one of the non-zero values of \(z\) we obtain a corresponding value for \(y\) by using (2.3.6). For each of the values of \(y\) there is a corresponding value for \(x\) by using (2.3.2).

Discriminant of Cubic

If \(f(x)\) is of degree 3 and \(x_1, x_2, x_3\) are the roots of \(f(x) = 0\), then
\[
D = (x_1 - x_2)^2 (x_1 - x_3)^2 (x_2 - x_3)
\]
is called the discriminant of \(f(x)\).

Theorem 1: If \(x^3 + a x^2 + b x + c\) has real coefficients then
a) if \(D > 0\), all roots are real and distinct
b) if \(D = 0\), all roots are real and there is a multiple root
c) if \(D < 0\), there is one real root and two (conjugate) imaginary roots.

Theorem 2: If \(f(x) = x^3 + a x^2 + b x + c\), and \(g(y) = y^3 + p y + q\)
is the reduced cubic, then $f(x)$ and $g(y)$ have the same discriminants.

Theorem 3:

a) The discriminant of $y^3 + p y + q$ is $-4 p^3 - 27 q^2$

b) The discriminant of $x^3 + a x^2 + b x + c$ is

$$18 a b c - 4 a^3 c + a^2 b^2 - 4 b^3 - 27 c^2$$

Cubics with Three Real Roots

Whenever the cubic has real coefficients and the discriminant is positive, the roots are real and distinct, but using the general Cardan's method mentioned above we find that the Cardan's formulas necessarily involve imaginary quantities. For, considering the reduced cubic $y^3 + p y + q = 0$, the discriminant is $D = -27 q^2 - 4 p^3$ and the roots are

$$\frac{3}{\sqrt[3]{A}} + \frac{3}{\sqrt[3]{B}}, \quad \omega \frac{3}{\sqrt[3]{A}} + \omega^2 \frac{3}{\sqrt[3]{B}}, \quad \omega^2 \frac{3}{\sqrt[3]{A}} + \omega \frac{3}{\sqrt[3]{B}} \quad (2.3.10)$$

where $A = \left(- q + i \sqrt{D/27}\right)/2$, $B = \left(- q - i \sqrt{D/27}\right)/2 \quad (2.3.11)$

and ω is any of the imaginary cube roots of 1, that is

$$\omega = \frac{-1 \pm i \sqrt{3}}{2} \quad (2.3.12)$$

For practical purposes it is sometimes desirable to express the roots in a form which involves no imaginary quantities. This can be done with the help of the triple angle formula

$$4 \cos^3 \theta - 3 \cos \theta = \cos 3\theta \quad (2.3.12)$$

From this we can see that $z = \cos \theta$ is one root of
\[z^3 - (3/4)z - (\cos 3\theta /4) = 0 \] (2.3.13)

The other two roots of (2.3.13) are \(\cos(\theta + 120^\circ) \), and \(\cos(\theta + 240^\circ) \).

If the reduced cubic has a positive discriminant, by choosing a suitable \(\lambda \) and letting \(y = \lambda z \) we transform the equation \(y^3 + py + q = 0 \) into one of the form (2.3.13). The transformed equation, after dividing by \(\lambda \), is

\[z^3 + (p/\lambda^2)z + (q/\lambda^3) = 0 \] (2.3.14)

Hence, we want to have

\[(p/\lambda^2) = - (3/4) \quad \text{and} \quad (q/\lambda^3) = -(\cos 3\theta /4) \] (2.3.15)

Since \(D > 0 \) and \(p \) and \(q \) are real, then \(p \) is negative. Hence, a real value for \(\lambda = 2 \sqrt[3]{-p/3} \) exists. Using this \(\lambda \), we seek an angle \(\theta \) such that

\[\cos \theta = (3q/2p) \sqrt[3]{3/p} \] (2.3.16)

\(D > 0 \) implies that \(-4p^3 > 27q^2\)

Hence,

\[0 \leq -(27q^2/4p^3) < 1 \]

so that an angle \(3\theta \) exists with the desired cosine. Thus, \(\theta \) can be found.

With the \(\lambda \) and \(\theta \) determined, the transformed equation has the form (2.3.13). Since the roots of (2.3.13) are \(\cos\theta \), \(\cos(\theta + 120^\circ) \), and \(\cos(\theta + 240^\circ) \), then the roots of the reduced cubic are

\[2 \sqrt[3]{-p/3} \cos \theta, \quad 2 \sqrt[3]{-p/3} \cos(\theta + 120^\circ) \quad \text{and} \quad 2 \sqrt[3]{-p/3} \cos(\theta + 240^\circ). \]
Example

Using Cardan's method and the trigonometric method find the roots of

\[m^3 - 2m^2 + \left(\frac{1}{4}\right)m + \left(\frac{1}{2}\right) = 0 \quad (2.3.17) \]

Let \(y = m - \left(\frac{2}{3}\right) \) or \(m = y + \left(\frac{2}{3}\right) \), then equation \((2.3.17)\) reduces to

\[y^3 - \left(\frac{13}{12}\right)y - \left(\frac{2}{9}\right) = 0 \quad (2.3.18) \]

In this case \(p = -\left(\frac{13}{12}\right) \) and \(q = -\left(\frac{2}{9}\right) \)

then

\[\lambda = \frac{2}{3} \sqrt{-\left(p/3\right)} = \frac{\sqrt{13}}{3} \]

and

\[\cos 3\theta = \frac{24}{\left(13 \sqrt{13}\right)} \]

or

\[\theta = 19.7342 \]

Hence, solutions of equation \((2.3.18)\) are given by

\[y_1 = \lambda \cos \theta \quad \text{or} \quad y_1 = 1.13126 \]
\[y_2 = \lambda \cos(\theta + 120^\circ) \quad \text{or} \quad y_2 = -0.917076 \]
\[y_3 = \lambda \cos(\theta + 240^\circ) \quad \text{or} \quad y_3 = -0.214187 \]

Since, \(m = y + \left(\frac{2}{3}\right) \), then the roots of equation \((2.3.17)\) are

\[m_1 = y_1 + \left(\frac{2}{3}\right) \quad \text{or} \quad m_1 = 1.797926 \]
\[m_2 = y_2 + \left(\frac{2}{3}\right) \quad \text{or} \quad m_2 = -0.25041 \]
\[m_3 = y_3 + \left(\frac{2}{3}\right) \quad \text{or} \quad m_3 = 0.452479 \]

NOTE: Section 2.3 of this Chapter is used in Chapter 4 for solving the cubic equation \((4.4.46)\).
CHAPTER 3

PLANE TRANSVERSE FLOWS

3.1. Introduction

Magnetohydrodynamic (MHD) plane flows are said to be transverse if the magnetic field vector is normal to the plane of flow, and the flow variables are functions of the rectangular coordinates x and y only. Many authors have studied these flows when electrical conductivity is infinite.

Not much work has been done for viscous finitely conducting transverse flows. However, Chandna and Garg(1976) established some geometrical properties for finitely conducting incompressible transverse flows.

In this chapter, we study the Riabouchinsky type problems for plane transverse flows applying to both ordinary viscous fluids and second grade fluids. Also, both finitely and infinitely conducting cases are considered.

Up to date, there does not exist any work on the Riabouchinsky type problem for magnetohydrodynamics flows.

This chapter is organized as follows. In section 3.2 the basic flow equations for both ordinary viscous and second grade fluids are transformed into more convenient form for this work. Section 3.3 contains the derivation of the compatibility or
integrability equation. Section 3.4 consists of the solution of Riabouchinsky type problems for an ordinary viscous fluid. Finally, section 3.5 contains the solution of Riabouchinsky type problems for a second grade fluid.
3.2. Equations of Motion

The steady plane motion of a viscous, incompressible fluid of finite electrical conductivity, in the presence of a magnetic field, is governed by the following system of equations

\[\text{div } V = 0 \quad \text{(i)} \]

\[\rho (V \cdot \text{grad}) V + \text{grad} p = \mu \nabla^2 V + \mu^* \text{ (curl } H \text{) } \times H \quad \text{(ii)} \]

\[\text{curl } (V \times H) + \left(\frac{1}{\mu^* \sigma} \right) \nabla^2 H = 0 \quad \text{(iii)} \]

\[\text{div } H = 0 \quad \text{(iv)} \]

where \(V \) denotes the velocity vector, \(H \) the magnetic field vector, \(p \) the fluid pressure function, \(\rho \) the constant fluid density, \(\mu \) the coefficient of viscosity, \(\mu^* \) the constant magnetic permeability, and \(\sigma \) the electrical conductivity.

This is a system of eight equations in seven unknowns. Equation (iv) is an additional condition on \(H \) expressing the absence of magnetic poles in the flow.

3.2.1. Ordinary Viscous Fluid

Considering the magnetic field to be acting in a constant direction, we take \(V = (u, v, 0) \), \(H = (0, 0, H) \) and

\[\frac{\partial}{\partial z} = 0 \]. Making use of these results, we find that

\[\text{curl } H) \times H = - \text{grad } \left[(H^2) /2 \right] \quad \text{(3.2.1)} \]

\[\text{curl } (V \times H) = \left[0, 0, (v - uH)_x - (vH)_y \right] \quad \text{(3.2.2)} \]

\[\nabla^2 H = \left[0, 0, H_{xx} + H_{yy} \right] \quad \text{(3.2.3)} \]
Employing results (3.2.1) to (3.2.3) into the system of equations (i) to (iv), we find that the flow equations governing the motion of a steady plane transverse flow of a viscous, incompressible fluid of finite electrical conductivity, in the presence of a magnetic field, are given by:

\[u_x + v_y = 0 \] (3.2.4)

\[\rho \left[\frac{\partial}{\partial x} \left(\frac{u^2 + v^2}{2} \right) - v \left(v_x - u_y \right) \right] + \frac{\partial}{\partial x} p^* = \mu \nabla^2 u \] (3.2.5)

\[\rho \left[\frac{\partial}{\partial y} \left(\frac{u^2 + v^2}{2} \right) + u \left(v_x - u_y \right) \right] + \frac{\partial}{\partial y} p^* = \mu \nabla^2 v \] (3.2.6)

\[u H_x + v H_y - \frac{1}{\mu^* \sigma} \left(H_{xx} + H_{yy} \right) = 0 \] (3.2.7)

\[p^* = p + (1/2) \mu^* \nabla^2 H^2 \] (3.2.8)

Equations (3.2.4) to (3.2.8) is a system of five equations in five unknowns. The unknowns being \(u, v, p, H \) and \(p^* \).

For infinitely conducting fluids, \(\sigma \) tending to infinity implies that \((1/\mu^* \sigma) \) tends to zero and the diffusion equation (3.2.7) is modified to

\[u H_x + v H_y = 0 \] (3.2.9)

3.2.2. Second Grade Fluid

Considering the magnetic field to be acting in a constant direction, we take \(V = (u, v, 0) \), \(H = (0, 0, H) \) and
\[\frac{\partial}{\partial z} = 0. \] Employing results (3.2.1) to (3.2.3) into the system of equations (2.1.20) to (2.1.23), we find that the flow equations governing the motion of the steady plane transverse flow of a second grade, incompressible fluid of finite electrical conductivity, in the presence of a magnetic field, are

\[u_x + v_y = 0 \] \hspace{1cm} (3.2.10)

\[\rho \left[\frac{\partial}{\partial x} \left(\frac{u^2 + v^2}{2} \right) - v (v_x - u_y) \right] + \frac{\partial}{\partial x} p^* = \mu \nabla^2 u + \]

\[\alpha_1 \left[(u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y}) \nabla^2 u + u_x \nabla^2 u + v_y \nabla^2 v \right] + \]

\[\frac{1}{4} \left(3 \alpha_1 + 2 \alpha_2 \right) \frac{\partial}{\partial x} \left(|A_1|^2 \right) \] \hspace{1cm} (3.2.11)

\[\rho \left[\frac{\partial}{\partial y} \left(\frac{u^2 + v^2}{2} \right) + u (v_x - u_y) \right] + \frac{\partial}{\partial y} p^* = \mu \nabla^2 v + \]

\[\alpha_1 \left[(u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y}) \nabla^2 v + u_y \nabla^2 u + v_y \nabla^2 v \right] + \]

\[\frac{1}{4} \left(3 \alpha_1 + 2 \alpha_2 \right) \frac{\partial}{\partial y} \left(|A_1|^2 \right) \] \hspace{1cm} (3.2.12)

\[u H_x + v H_y - \frac{1}{\mu \sigma} (H_{xx} + H_{yy}), = 0 \] \hspace{1cm} (3.2.13)

\[p^* = p + (1/2) \mu^* H \] \hspace{1cm} (3.2.14)

where
\[|A_1'|^2 = 4(u_x)^2 + 4(v_y)^2 + 2(v_x + u_y)^2. \]

Equations (3.2.10) to (3.2.14) is a system of five equations in five unknowns \(u, v, p, H \) and \(p^* \).

For infinitely conducting fluids, \(\sigma \) tending to infinity implies that \(\frac{1}{\mu^* \sigma} \) tends to zero and hence the diffusion equation (3.2.13) reduces to
\[u H_x + v H_y = 0 \] (3.2.15)
3.3 Compatibility Equations

In this section, we derive the compatibility or integrability equations for transverse flow of an ordinary viscous fluid as well as for a second grade fluid by employing the equations of motion for these flows in section 3.2. Riabouchinsky type problems are investigated by using the compatibility equations in the next two sections. This fluid dynamic technique of using the compatibility equation is well known and thoroughly documented in Ratip Berker’s (1963) works for the investigation of exact solutions in ordinary Non-MHD fluid dynamics.

3.3.1. Ordinary Viscous Fluid

Introducing the vorticity function

\[\omega = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \] \hspace{1cm} (3.3.1)

and the generalized pressure function

\[h = \frac{1}{2} \rho q^2 + p^* \] \hspace{1cm} (3.3.2)

in equations (3.2.4) to (3.2.8), where \(q^2 = u^2 + v^2 \), we find that these flows are given by

\[\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \] \hspace{1cm} (3.3.3)

\[\mu \frac{\partial \omega}{\partial y} - \rho v \omega = - \frac{\partial h}{\partial x} \] \hspace{1cm} (3.3.4)

\[\mu \frac{\partial \omega}{\partial x} - \rho u \omega = \frac{\partial h}{\partial y} \] \hspace{1cm} (3.3.5)
\[
\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} = \omega \tag{3.3.6}
\]

\[
u \frac{\partial H}{\partial x} + v \frac{\partial H}{\partial y} = \frac{1}{\mu^* \alpha} \left(\frac{\partial^2 H}{\partial x^2} + \frac{\partial^2 H}{\partial y^2} \right) \tag{3.3.7}
\]

\[
p^* = p + \frac{1}{2} \mu^* H^2 \tag{3.3.8}
\]

This system has the advantage that the linear momentum equations (3.3.4) and (3.3.5) are of first order. Martin (1971) has, with much success, used a similar reduction in order to study viscous Non-MHD flows.

Let \(\psi (x,y) \) be the streamfunction defined by the continuity equation, that is

\[
\frac{\partial \psi}{\partial y} = u, \quad \frac{\partial \psi}{\partial x} = -v \tag{3.3.9}
\]

Using these equations, we can see clearly that the continuity equation (3.3.3) is identically satisfied, since

\[
u_x + v_y = \psi_{xy} - \psi_{yx} = 0 \tag{3.3.10}
\]

while, the vorticity function is given by

\[
\omega = -\nabla^2 \psi \tag{3.3.11}
\]

Employing (3.3.9) and (3.3.11) into equations (3.3.4), (3.3.5) and (3.3.7), these equations become

\[
\frac{\partial h}{\partial x} - \rho \frac{\partial \psi}{\partial x} \nabla^2 \psi = \mu \frac{\partial}{\partial y} \left(\nabla^2 \psi \right) \tag{3.3.12}
\]

\[
\frac{\partial h}{\partial y} - \rho \frac{\partial \psi}{\partial y} \nabla^2 \psi = -\mu \frac{\partial}{\partial x} \left(\nabla^2 \psi \right) \tag{3.3.13}
\]

\[
\frac{\partial \psi}{\partial y} \frac{\partial H}{\partial x} - \frac{\partial \psi}{\partial x} \frac{\partial H}{\partial y} - \frac{1}{\mu^* \alpha} \left(\frac{\partial^2 H}{\partial x^2} + \frac{\partial^2 H}{\partial y^2} \right) \tag{3.3.14}
\]

- 31 -
Differentiating (3.3.12) with respect to \(y \) and (3.3.13) with respect to \(x \) and employing the integrability condition
\[
\frac{\partial^2 h}{\partial x \partial y} = \frac{\partial^2 h}{\partial y \partial x}, \quad \text{we find that the compatibility equation is given by}
\]
\[
\rho \left(\frac{\partial}{\partial (x, y)} (\psi, \nabla^2 \psi) \right) + \mu \nabla^4 \psi = 0 \quad (3.3.15)
\]

Having solved equation (3.3.15), the velocity components are given by equations (3.3.9) and the vorticity function is given by (3.3.11).

Finally, functions \(h, p, p^* \) and \(H \) can be found by solving equations (3.3.2), (3.3.8), (3.3.12), (3.3.13) and (3.3.14).

3.3.2. Second Grade Fluid

Introducing the vorticity function
\[
\omega = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \quad (3.3.16)
\]
we find that
\[
\nabla^2 v = \omega_x \quad (3.3.17)
\]
and
\[
\nabla^2 u = -\omega_y \quad (3.3.18)
\]

Next, we should arrange the \(\alpha_1 \)-terms of equations (3.2.11) and (3.2.12) into more convenient forms. First consider the \(\alpha_1 \)-term of (3.2.11)
\[a_1 \left[\left(\frac{\partial}{\partial x} + v \frac{\partial}{\partial y} \right) \nabla^2 u + \frac{\partial u}{\partial y} \nabla^2 u + \frac{\partial v}{\partial y} \nabla^2 v \right] \]

\[= a_1 \left[\frac{\partial}{\partial x} (u \nabla^2 u) - v \frac{\partial^2 \omega}{\partial y^2} + \frac{\partial v}{\partial x} \nabla^2 v \right] \]

\[= a_1 \left[\frac{\partial}{\partial x} (u \nabla^2 u + v \nabla^2 v) - v \nabla^2 \omega \right] \]

Then consider the \(a_1 \)-term of (3.2.12):

\[a_1 \left[\left(\frac{\partial}{\partial x} + v \frac{\partial}{\partial y} \right) \nabla^2 v + \frac{\partial u}{\partial y} \nabla^2 u + \frac{\partial v}{\partial y} \nabla^2 v \right] \]

\[= a_1 \left[\frac{\partial}{\partial y} (v \nabla^2 v) + u \frac{\partial^2 \omega}{\partial x^2} + \frac{\partial u}{\partial y} \nabla^2 u \right] \]

\[= a_1 \left[\frac{\partial}{\partial y} (u \nabla^2 u + v \nabla^2 v) + u \nabla^2 \omega \right] \]

Using the above results and introducing the generalized pressure

\[h = \frac{1}{2} \rho \frac{q^2}{p^*} - a_1 (u \nabla^2 u + v \nabla^2 v) - \frac{1}{4} \left(3a_1 + 2a_2 \right) |A_1|^2 \]

(3.3.19)

in equations (3.2.10) to (3.2.14), we find that these flows are given by
\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \quad (3.3.20)
\]

\[
\frac{\partial \omega}{\partial x} - \rho \nu \omega = -\mu \frac{\partial \omega}{\partial y} - \alpha_1 \nu \nabla^2 \omega \quad (3.3.21)
\]

\[
\frac{\partial \omega}{\partial y} + \rho \mu \omega = \mu \frac{\partial \omega}{\partial x} + \alpha_1 \mu \nabla^2 \omega \quad (3.3.22)
\]

\[
\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} = \omega \quad (3.3.23)
\]

\[
u \frac{\partial \bar{H}}{\partial x} + v \frac{\partial \bar{H}}{\partial y} - \frac{1}{\mu^*\sigma} \left(\frac{\partial^2 \bar{H}}{\partial x^2} + \frac{\partial^2 \bar{H}}{\partial y^2} \right) = 0 \quad (3.3.24)
\]

\[
p^* = p + (1/2) \mu^* H^2. \quad (3.3.25)
\]

Let \(\psi(x,y) \) be the streamfunction defined by the continuity equation, that is

\[
\frac{\partial \psi}{\partial y} = u \quad \text{and} \quad \frac{\partial \psi}{\partial x} = -v \quad (3.3.26)
\]

Using this definition, we can easily see that equation (3.3.20) is identically satisfied, while the vorticity function is given by

\[
\omega = -\nabla^2 \psi \quad (3.3.27)
\]

Employing (3.3.26) and (3.3.27) into (3.3.21), (3.3.22) and (3.3.24), we find that these equations reduce to
\[
\frac{\partial h}{\partial x} - \rho \frac{\partial \psi}{\partial x} \nabla^2 \psi = \mu \frac{\partial}{\partial y} (\nabla^2 \psi) - \alpha_1 \frac{\partial \psi}{\partial x} \nabla^4 \psi \quad (3.3.28)
\]

\[
\frac{\partial h}{\partial y} - \rho \frac{\partial \psi}{\partial y} \nabla^2 \psi = - \mu \frac{\partial}{\partial x} (\nabla^2 \psi) - \alpha_1 \frac{\partial \psi}{\partial y} \nabla^4 \psi \quad (3.3.29)
\]

\[
\frac{\partial \psi}{\partial y} \frac{\partial H}{\partial x} - \frac{\partial \psi}{\partial x} \frac{\partial H}{\partial y} - \frac{1}{\mu^0} \left(\frac{\partial^2 H}{\partial x^2} + \frac{\partial^2 H}{\partial y^2} \right) = 0 \quad (3.3.30)
\]

Differentiating (3.3.28) with respect to 'y' and (3.3.29) with respect to 'x' and employing the integrability condition

\[
\frac{\partial^2 h}{\partial x \partial y} = \frac{\partial^2 h}{\partial y \partial x},
\]

we find that the compatibility equation for the transverse flow of a second grade fluid is given by

\[
\rho \frac{\partial (\psi, \nabla^2 \psi)}{\partial (x, y)} + \mu \nabla^4 \psi - \alpha_1 \frac{\partial (\psi, \nabla^4 \psi)}{\partial (x, y)} = 0 \quad (3.3.31)
\]

Having solved equation (3.3.31), the velocity components and the vorticity are given by equations (3.3.26) and (3.3.27) respectively.

Finally, functions \(h, p, p^* \) and \(H \) can be found by using equations (3.3.19), (3.3.28), (3.3.29) and (3.3.30).
3.4. Solution of Riabouchinsky Type Problems.

Ordinary Viscous Fluids

We assume that the streamfunction is linear with respect to \(y \), i.e. it has the form

\[
\psi(x, y) = y F(x) + G(x) \quad (1)
\]

The velocity field for solution (1) has the following property: the lines of action of the velocity vectors applied at points \(M \) on the line \(x = x_0 \) parallel to the axis \(Oy \) intersect at the same point, \(P \) say. Let \(C \) be the curve traced out by point \(P \) when \(x_0 \) varies; we call \(C \) the directrix curve for the velocity field considered. It is sufficient to give the curve \(C \) in terms of \(x_0 \) rather than the vector fields. In the case of solution (1) the directrix curve has parametric equations

\[
X = x_0 + \frac{F(x_0)}{F'(x_0)}, \quad Y = -\frac{G'(x_0)}{F'(x_0)}
\]

(Kamke, 1930).

We also point out that by interchanging \(x \) and \(y \) in (1), we can handle with minor changes, the solutions of the form

\[
\psi(x, y) = x f(y) + g(y)
\]

where \(f(y) \) and \(g(y) \) are arbitrary functions of \(y \).

3.4.1. Generalities

We assume that the streamfunction has the form

\[
\psi(x, y) = y F(x) + G(x) \quad (3.4.1)
\]
where $F(x)$ and $G(x)$ are arbitrary functions of x.

Substituting (3.4.1) into compatibility equation (3.3.15), we find that the functions $F(x)$ and $G(x)$ must satisfy the following differential equations:

$$\mu F^{(i\nu)} + \rho [F'F'' - F F'''] = 0$$

(3.4.2)

$$\mu G^{(i\nu)} + \rho [F'G' - F G'''] = 0$$

(3.4.3)

These two equations can each be integrated once, and we thus obtain the equations

$$\mu F'''' + \rho [F'F' - F F'''] = A$$

$$\mu G'''' + \rho [F'G' - F G'''] = B$$

where A and B are arbitrary constants.

Employing (3.4.1) into linear momentum equations (3.3.12) and (3.3.13), we find that

$$h = -\frac{1}{2} y^2 [A - \rho F'F] - y [B - \rho F' G'] + \frac{1}{2} \rho G' + \mu F' + p_o$$

(3.4.4)

where p_o is an arbitrary constant.

Substituting (3.4.1) and (3.4.4) into (3.3.2), we obtain

$$p^* = \mu F' - (1/2) \rho F'^2 - (1/2) A y^2 - B y + p_o$$

(3.4.5)

Employing (3.4.1), diffusion equation (3.3.14) becomes

$$F H_x - (y F' + G') H_y = (1/\mu \sigma) (H_{xx} + H_{yy}) = 0$$

(3.4.6)

Any solution of this equation is a possible magnetic field. One such solution is given by
\[H(x, y) = L(y) \int \exp(\mu \sigma \int F \, dx) \, dx + M(y) \] \hspace{1cm} (3.4.7)

where \(L(y) \) and \(M(y) \) are such that the following equation is satisfied

\[(y F' + G') H_y + \left(1/\mu \sigma\right) H_{yy} = 0 \]

On assuming that magnetic forces are present, we find, by employing (3.4.5) into equation (3.3.8), that the pressure turns out to be

\[p = \mu F' - \left(1/2\right) \rho F^2 - \left(1/2\right) A y^2 - B y + p_0 - \left(1/2\right) \mu \sigma H^2 \] \hspace{1cm} (3.4.8)

where \(H \) is given by (3.4.7).

If the fluid domain is considered to extend to infinity, then in order that the pressure remains bounded there, we must take \(A = B = 0 \).

As we mentioned in section 3.2., if the fluid is infinitely conducting, that is, \(\sigma \) tends to infinity then the diffusion equation reduces to

\[u H_x + v H_y = 0 \]

Since \(u = \psi_y \) and \(v = -\psi_x \), then the above equation yields

\[\psi_y H_x - \psi_x H_y = 0 \]

OR

\[\frac{\partial(H, \psi)}{\partial(x, y)} = 0 \]

Solving this equation, we find that

\[H(x, y) = \text{constant} \quad \text{OR} \quad H(x, y) = H(\psi) \]

- 38 -
where $H(\psi)$ is an arbitrary function of ψ.

3.4.2. Particular Solution

In this section, we will try to solve equations (3.4.2) and (3.4.3). Since, we could not find the general solution of this system, then we just consider some particular solutions.

Equation (3.4.2) admits the following three particular solutions:

$$F_1 = \frac{-6\mu}{\rho x}, \quad F_2 = (\mu/\rho) a(1 + k e^{ax}), \quad F_3 = D x + E \quad (3.4.9)$$

wherein a, k, D, and E are four arbitrary constants.

When $F = F_1$, then equation (3.4.3) becomes the Cauchy-Euler differential equation

$$x^4 G^{(iv)} + 6 x^3 G''' - 12 x G' = 0 \quad (3.4.10)$$

which admits a general solution of the form

$$G(x) = c_1 x^3 + c_2 x^{-1} + c_3 x^{-2} + c_4 \quad (3.4.11)$$

where c_1, c_2, c_3, and c_4 are arbitrary constants.

Thus, the streamfunction defined by (3.4.1) is given by

$$\psi(x,y) = -(6\mu/\rho) (y/x) + c_1 x^3 + c_2 x^{-1} + c_3 x^{-2} + c_4 \quad (3.4.12)$$

From equation (3.4.8) we can find that the pressure distribution is given by

$$p = -10 \mu^2 \rho x^{-2} - (1/2) \mu H^2 + p_0 \quad (3.4.13)$$

where H is given by equation (3.4.7).

We seek, now, the expression for the streamfunction $\psi(x,y)$
which corresponds to the solution F_2. When $F = F_2$, then equation (3.4.3) takes the form

$$G^{(v)} - a (1 + k e^{ax}) G'' + a^3 k e^{ax} G' = 0$$

(3.4.14)

We can easily see, on taking $\xi = a x$ as the variable, that all solutions of equation (3.4.14) are of the form:

$$G = \Phi(ax)$$

and the streamfunction $\psi(x,y)$ is of the form

$$\psi = \Psi(ax, ay)$$

All solutions $\psi(x,y)$ are therefore deducible from the solution where $a = 1$ by similarity.

When, therefore, $a = 1$, equation (3.4.14) becomes

$$G^{(v)} - (1 + k e^x) G'' + k e^x G' = 0$$

(3.4.15)

Employing a series of substitutions of the type

$$G(x) = M(x) e^N(x) = N(x) e^R(x)$$

in equation (3.4.15), we find that the function $R(x)$ satisfies the following equation:

$$R'' + (2 - k e^x) R' + (1 - 2k e^x) R = 0$$

(3.4.17)

Integrating once equation (3.4.17), we obtain a first order linear differential equation, that is,

$$R' + (1 - k e^x) R = c_1 e^x$$

(3.4.18)

where c_1 is an arbitrary constant.

The general solution of (3.4.18) is given by

$$R(x) = c_1 \exp(k e^x - x) \int \exp(-k e^x) \, dx + c_2 \exp(k e^x - x)$$

where c_2 is also an arbitrary constant.
Having found $R(x)$, we are going back to the series of substitutions (3.4.16) and we find that

$$
G(x) = c_1 \int e^x \, dx \int \exp(k \, e^x - x) \, dx \int \exp(-k \, e^x) \, dx +
+ c_2 \int e^x \, dx \int \exp(k \, e^x - x) \, dx + c_3 e^x + c_4
$$

(3.4.19)

wherein c_3 and c_4 are two arbitrary constants.

Hence the streamfunction $\psi(x,y)$ defined by (3.4.1) is given by

$$
\psi(x,y) = (\mu/\rho) \, (1 + k \, e^x) \, y + c_1 \int e^x \, dx \int \exp(k \, e^x - x) \, dx
$$

$$
\int \exp(-k \, e^x) \, dx + c_2 \int e^x \, dx \int \exp(k \, e^x - x) \, dx +
$$

$$
+ c_3 e^x + c_4
$$

(3.4.20)

Finally, from equation (3.4.8) we find that the pressure distribution turns out to be

$$
p = (1/\rho) \, \mu^3 k^2 e^{2x} - (1/2)(\mu^2/\rho)(1 + k \, e^x)^2 + p_0 - (1/2) \, \mu^s H^2
$$

(3.4.21)

where H can be found from equation (3.4.7).

In the special case, where $k = 0$ then

$$
F = (\mu/\rho) \, a
$$

and the solution of (3.4.18) is given by

$$
R(x) = c_1 x \, e^{-x} + c_2 \, e^{-x}
$$

and the streamfunction $\psi(x,y)$ reduces to

$$
\psi(x,y) = (\mu/\rho) \, a \, y - (c_1/2) \, x^2 - (c_1 + c_2) \, x + c_3 \, e^x + c_4
$$

(3.4.22)

When $F = F_3$, then equation (3.4.3) takes the form...
\[\mu G^{(iv)} - \rho (Dx + E) G''' = 0 \] \hspace{1cm} (3.4.23)

Letting \(G'''(x) = R(x) \), then above equation reduces to
\[\mu R' - \rho (Dx + E) = 0 \] \hspace{1cm} (3.4.24)

This equation has a general solution given by
\[R(x) = c \exp\left(\frac{\rho}{\mu} \left(\frac{1}{2} Dx^2 + Ex\right)\right) \]
where \(c \) is an arbitrary constant.

Since \(G'''(x) = R(x) \), then
\[G(x) = \iiint c \exp\left(\frac{\rho}{\mu} \left(\frac{1}{2} Dx^2 + Ex\right)\right) dx\ dx\ dx \] \hspace{1cm} (3.4.25)

and the streamfunction \(\psi(x,y) \) is given by
\[\psi(x,y) = (Dx + E) y + \iiint c \exp\left(\frac{\rho}{\mu} \left(\frac{1}{2} Dx^2 + Ex\right)\right) dx\ dx\ dx \] \hspace{1cm} (3.4.26)

3.4.3. Solution of Riabouchinsky

We consider the special form of the streamfunction \(\psi(x,y) \) defined in (3.4.1), where \(G = 0 \). Riabouchinsky (1924) was the first one to consider this special form of the streamfunction in order to investigate the solutions of ordinary Non-MHD fluid dynamics.

Physically, such a flow represents a plane stagnation flow in which the flow is separated in the two symmetrical regions by the plane \(x = 0 \).

When \(F = F_1 \), then the streamfunction \(\psi(x,y) \) takes the form
\[\psi(x,y) = -6 \left(\frac{\rho}{\mu}\right) y x^{-1} \] \hspace{1cm} (3.4.27)

- 42 -
Using equation (3.4.8) we find that the pressure is given by

\[p = -10 \left(\frac{\mu^2}{\rho} \right) x^{-2} - \left(\frac{1}{2} \right) \mu^* \dot{H}^2 + p_o \] \hspace{1cm} (3.4.28)

where \(H \) is given by equation (3.4.7).

When \(F = F_2 \), we find that the streamfunction \(\psi(x,y) \) reduces to

\[\psi(x,y) = \left(\frac{\mu}{\rho} \right) a \left(1 + k e^{ax} \right) y \] \hspace{1cm} (3.4.29)

On using (3.4.29) and (3.4.4) into (3.3.2), we obtain

\[p^* = \left[- \left(\frac{\mu}{\nu} \right) + \rho \right] \frac{U_0^2}{N} \exp \left(- \left(\frac{U_0}{\nu} \right) x \right) - \left(\frac{1}{2} \right) \rho U_0^2 \left(\exp \left(- 2 \left(\frac{U_0}{\nu} \right) x \right) + 1 \right) + p_o \] \hspace{1cm} (3.4.30)

where \(U_0 = - \nu a \), \(\nu = \mu/\rho \)

Using (3.4.29) into the diffusion equation (3.4.6), we find that a particular solution of this equation is given by

\[H(x,y) = y \exp \left[- \left(\frac{U_0}{\nu} \right) x \right] + \left(\frac{1}{\nu} \right) \left[\left(\frac{1}{\mu^*} \right) - \nu \right] y \] \hspace{1cm} (3.4.31)

Employing (3.4.30) and (3.4.31) into (3.3.8), we find that the pressure distribution is given by

\[p = \left[- \left(\frac{\mu}{\nu} \right) + \rho \right] \frac{U_0^2}{N} \exp \left(- \left(\frac{U_0}{\nu} \right) x \right) + p_o - \left(\frac{1}{2} \right) \rho U_0^2 \left(\exp \left(- 2 \left(\frac{U_0}{\nu} \right) x \right) + 1 \right) - \left(\frac{1}{2} \right) \mu^* \left(y \exp \left(- \left(\frac{U_0}{\nu} \right) x \right) \right) + \left(\frac{1}{\nu} \right) \left[\left(\frac{1}{\mu^*} \right) - \nu \right] \right)^2 \] \hspace{1cm} (3.4.32)
When \(F = F_0 \), then equation (3.4.1) with \(G = 0 \) yields

\[
\psi (x, y) = (D x + E) y
\]

(3.4.33)

Using (3.4.33) in equation (3.4.8), we find that the pressure is given by

\[
p = \mu D^2 - \frac{1}{2} \rho (D x + E)^2 + p_0 - \frac{1}{2} \mu^s H^2
\]

where \(D \) and \(E \) are arbitrary constants and \(H \) is given by (3.4.7).
3.5. Solution of Riabouchinsky Type Problems.

Second-Grade Fluids.

3.5.1. Generalities

We assume that the streamfunction is linear with respect to \(y \), that is to say it has the form

\[
\psi(x, y) = y F(x) + G(x)
\]

(3.5.1)

where \(F(x) \) and \(G(x) \) are two arbitrary functions of \(x \).

Substituting (3.5.1) into compatibility equation (3.3.31), we find that the arbitrary functions \(F(x) \) and \(G(x) \) must satisfy the following two equations

\[
\mu F^{(iv)} + \rho (F' F'' - F F''') - \alpha_1 (F' F^{(iv)} - F F^{(iv)}) = 0
\]

(3.5.2)

\[
\mu G^{(iv)} + \rho (F'' G' - F G''') - \alpha_1 (F^{(iv)} G' - F G^{(iv)}) = 0
\]

(3.5.3)

Integration of these two equations yields:

\[
\mu F''' + \rho (F''^2 - F F''') - \alpha_1 (-F F^{(iv)} + 2 F' F'' - F''^2) = A
\]

\[
\mu G''' + \rho (F'G' - FG''') - \alpha_1 (-FG^{(iv)} + F'G'' - F'''G' + F''G') = B
\]

where \(A \) and \(B \) are arbitrary constants of integration.

Employing (3.5.1) into linear momentum equations (3.3.28) and (3.3.29), we find that

\[
h = -(1/2) y^2 \left[A - \rho F''^2 + 2 \alpha_1 F'F''' - \alpha_1 F''^2 \right] + P_0 - \]

\[
y \left[B - \rho F'G' + \alpha_1 F'G''' - \alpha_1 F'''G' + \alpha_1 F''G'' \right] + \]

\[
- 45
\]
\(\frac{1}{2}, \rho G' - \mu F' + \alpha_1 G'\gamma' + \frac{1}{2} \alpha_2 G'\gamma'^2 \) \hspace{1cm} (3.5.4)

where \(p_0 \) is an arbitrary constant.

Substituting (3.5.1) and (3.5.4) into (3.3.19), we find that

\[p^* = \mu F' - \left(\frac{1}{2} \right) \rho F^2 + \alpha_1 \left(\frac{1}{2} \right) y^2 F' + \frac{1}{2} y F' + \gamma' + \left(\frac{1}{2} \right) G' \gamma'^2 + F' F' + \left(\frac{3}{2} \alpha + 2 \alpha_2 \right) \frac{1}{2} \left(4 F'^2 + y^2 F' + 2 y F' \gamma' + G' \gamma'^2 \right) - \left(\frac{1}{2} \right) A y^2 + B y + p_0 \] \hspace{1cm} (3.5.5)

On assuming, that the magnetic forces are present, we find, by employing (3.5.5) into (3.3.25), that the pressure distribution is given by

\[p = \mu F' - \left(\frac{1}{2} \right) \rho F^2 + \alpha_1 \left(\frac{1}{2} \right) y^2 F' + \frac{1}{2} y F' + \gamma' + \left(\frac{1}{2} \right) G' \gamma'^2 + F' F' + \left(\frac{3}{2} \alpha + 2 \alpha_2 \right) \frac{1}{2} \left(4 F'^2 + y^2 F' + 2 y F' \gamma' + G' \gamma'^2 \right) - \left(\frac{1}{2} \right) A y^2 + B y + p_0 - \left(\frac{1}{2} \right) \mu^* H^2 \] \hspace{1cm} (3.5.6)

where \(H \) can be found by solving the diffusion equation (3.3.30).

If the fluid domain is considered to extend to infinity, then in order that the pressure remains bounded there, we must take \(A = B = 0 \).

If the fluid is infinitely electrically conducting, that is \(\sigma \) tends to infinity then \(1/\mu^* \sigma \) tends to zero and the diffusion equation reduces to

\[u \frac{H_x}{x} + v \frac{H_y}{y} = 0 \] \hspace{1cm} (A)

By the definition of the streamfunction \(\psi (x,y) \), we have

\[-46 - \]
\[u = \psi_y \quad \text{and} \quad v = -\psi_x \]

Employing these results, equation (A) yields

\[\frac{\partial (H, \psi)}{\partial (x, y)} = 0 \]

From this equation, either

\[H = \text{constant} \quad \text{OR} \quad H = H(\psi) \]

where \(H(\psi) \) is an arbitrary function of \(\psi \).

3.5.2. Particular Solutions

Equation (3.5.2) admits the following two particular solutions:

\[F_1 = \left[\mu \left(\rho - \alpha_1 a^2 \right) \right] \left(1 + k e^{\alpha x} \right), \quad F_2 = D x + E \quad (3.5.7) \]

where \(a, k, D \) and \(E \) are arbitrary constants.

I) When \(F = F_1 \), then equation (3.5.3) takes the form:

\[G^{(iv)} - \alpha_1 \left[\frac{a^5 k e^{\alpha x}}{\rho - \alpha_1 a^2} G' - \frac{a (1 + k e^{\alpha x})}{\rho - \alpha_1 a^2} G^{(v)} \right] + \]

\[+ \rho \left[\frac{a^3 k e^{\alpha x}}{\rho - \alpha_1 a^2} G' - \frac{a (1 + k e^{\alpha x})}{\rho - \alpha_1 a^2} G^{'''} \right] = 0 \quad (3.5.8) \]

Without loss of generality, we can take \(a = 1 \) and equation (3.5.8) becomes

\[G^{(iv)} - \alpha_1 \left[\frac{k e^x}{\rho - \alpha_1} G' - \frac{1 + k e^x}{\rho - \alpha_1} G^{(v)} \right] + \]

\[+ \rho \left[\frac{k e^x}{\rho - \alpha_1} G' - \frac{1 + k e^x}{\rho - \alpha_1} G^{''''} \right] = 0 \quad (3.5.9) \]
Next, we try to make a series of substitutions of the type
\[G'(x) = M(x), \quad M(x) = N(x) e^x, \quad N'(x) = R(x) \] (3.5.10)
in order to lower the order of equation (3.5.9) as well as to obtain a solvable form.

Employing substitutions (3.5.10) in (3.5.9), we find that the function \(R(x) \) satisfies the following differential equation
\[\alpha_1 \left[(1 + k e^x) R'' + (3 + 4 k e^x) R' + (3 + 6 k e^x) R \right] \]
\[(1 + 4 k e^x) R + \rho \left[R'' + (2 - k e^x) R' + (1 - 2 k e^x) R \right] = 0 \] (3.5.11)

Multiplying equation (3.5.11) by \(e^x \) and integrating once we can further reduce the order of this equation. The obtained equation is
\[\alpha_1 (1 + k e^x) R'' + [2 \alpha_1 + \rho + 2 \alpha_1 k e^x] R' + \]
\[[\alpha_1 + \rho + (2 \alpha_1 - \rho) k e^x] R = c e^{-x} \] (3.5.12)

Taking \(c = 0 \), then the solution of (3.5.12), which turns out to be in terms of the hypergeometric function \(F(\alpha, \beta, \gamma, x) \), is given by
\[R_1(x) = e^{-x} c_1 F(\alpha, \beta, \gamma, me^x) \] (3.5.13)
\[R_2(x) = e^{-x} c_2 [m e^x]^{-(\rho/\alpha_1)} F(\alpha + \gamma - 1, \beta + \gamma - 1, 2 - \gamma, me^x) \]

where \(\alpha = \sqrt{(\rho + \alpha_1)/\alpha_1}, \quad \beta = \sqrt{(\rho - \alpha_1)/\alpha_1}, \quad \gamma = (\rho + \alpha_1)/\alpha_1 \)
and \(m = -k \) (3.5.14)

The streamfunction \(\psi(x, y) \) defined by (3.5.1) is, thus, given by
\[
\psi(x, y) = \left[\mu/(\rho - \alpha_1) \right] (1 + k e^x) y + \int e^x \left\{ \int e^{-x} c_1 F(\alpha, \beta, \gamma, me^x) \right. \\
\left. + e^{-x} c_2 (m e^x)^{(\rho/\alpha_1)} F(\alpha+\gamma-1, \beta+\gamma-1, 2-\gamma, me^x) \right\} dx \right\} dx + k_1 e^x + k_2
\]

where \(c_1, c_2, k_1 \) and \(k_2 \) are four arbitrary constants.

In the special case where \(k = 0 \), then \(F = \frac{\mu}{\rho - \alpha_1} \) and equation (3.5.12) is modified to

\[
\alpha_1 R'' + (2 \alpha_1 + \rho) R' + (\alpha_1 + \rho) R = c e^{-x}
\]

(3.5.16)

The complementary solution of this equation is

\[
R_c = A_1 e^{-x} + B_1 \exp\left(-\left(\frac{\alpha_1 + \rho}{\alpha_1}\right)x\right)
\]

(3.5.17)

Using the variation of parameters method, we find that the particular solution of equation (3.5.16) is given by

\[
R_p = \left(\frac{c}{\rho}\right) e^{-x} \left(x - \frac{\alpha_1}{\rho} \right)
\]

(3.5.18)

wherein \(c \) is a constant.

Hence, the general solution of (3.5.16) is

\[
R(x) = R_c + R_p = A_1 e^{-x} + B_1 e^{-\left(\frac{\alpha_1 + \rho}{\alpha_1}\right)x} + \\
+ \left(\frac{c}{\rho}\right) e^{-x} \left(x - \frac{\alpha_1}{\rho} \right)
\]

(3.5.19)

where \(A_1 \) and \(B_1 \) are arbitrary constants.

Recalling substitutions (3.5.10), we find that

\[
G(x) = \left[-\left(A_1 + \left(\frac{c}{\rho}\right) \right)x + \left(c \frac{\alpha_1}{\rho} \right)x - \left(c/\rho \right) \left(x^2/2 \right) + \\
+ \left(B_1 / (\alpha_1 + \rho) \right) \left(\alpha_1^2 / \rho \right) e^{-\left(\rho/\alpha_1\right)x} \right)
\]

(3.5.20)

and, thus, the streamfunction takes the form
\[
\psi(x,y) = [\mu/(\rho - \alpha_x)] y + [-(A_x + (c/\rho))x + (c \alpha_x / \rho^2)] x -
- (c/\rho) (x^2/2) + [B_x/(\alpha_x + \rho)] (\alpha_x^2/\rho) e^{-(\rho/\alpha_x)x} \tag{3.5.21}
\]

II) When \(F = F_2 \), then equation (3.5.3) becomes

\[
a_4 (Dx+E) G^{(\nu)} + \mu G^{(\nu)} - \rho (Dx+E) G'' = 0 \tag{3.5.22}
\]

Letting \(G''(x) = R(x) \), then we find that \(R(x) \) satisfies the following equation

\[
a_4 (Dx+E) R'' + \mu R' - \rho (Dx+E) R = 0 \tag{3.5.23}
\]

The solution of (3.5.23), which turns out to be in terms of the hypergeometric function \(F(\alpha, \beta, x) \), is given by

\[
R_1(x) = \exp[\pm 2i((E/\rho D) + x)] c_1 F(\alpha, \beta, \pm 2i((E/\rho D) + x)) \tag{3.5.24}
\]

\[
R_2(x) = \exp[\pm 2i((E/\rho D) + x)] c_2 F(1-\alpha-\beta, 2-\beta, \pm 2i((E/\rho D) + x))
\]

where

\[
\alpha = \mu i / \rho D \quad \beta = - \mu / \rho D \tag{3.5.25}
\]

Since \(G''(x) = R(x) \), then

\[
G(x) = \iint \{ \exp[\pm 2i((E/\rho D) + x)] c_1 F(\alpha, \beta, \pm 2i((E/\rho D) + x)) +
+ c_2 F(1-\alpha-\beta, 2-\beta, \pm 2i((E/\rho D) + x)) \} \, dx \, dx \, dx \tag{3.5.26}
\]

Hence, the streamfunction \(\psi(x,y) \) defined by (3.5.1) has the form

\[
\psi(x,y) = (Dx+E)y + \iint \{ \exp[\pm 2i((E/\rho D) + x)] c_1 F(\alpha, \beta, \pm 2i((E/\rho D) + x))
+ c_2 F(1-\alpha-\beta, 2-\beta, \pm 2i((E/\rho D) + x)) \} \, dx \, dx \, dx \tag{3.5.27}
\]

- 50 -
3.8.3. Solution of Riabouchinsky

We now consider the particular case of (3.5.1), where \(G = 0 \), usually attributed to Riabouchinsky (1924). Physically such a flow represents a plane stagnation in which the flow is separated in the two symmetrical regions by the plane \(x = 0 \).

When \(F = F_1 \), then streamfunction \(\psi(x,y) \) is given by

\[
\psi(x,y) = \left[\frac{\mu a}{(\rho^2 - a_1^2)} \right] (1 + k e^{ax}) y
\]

(3.5.28)

On using (3.5.28) and (3.5.4) into (3.3.19), we find that

\[
p^* = \left[-\left(\frac{\mu s \nu}{\nu} + \frac{\rho s^2}{\nu} \right) \right] U_0^2 \exp\left[-\left(\frac{U_0}{\nu} \right) x \right] - \frac{1}{2} \rho (U_0^2/s^2) *
\]

\[
\frac{1}{2} \left(\exp\left(-2 \left(\frac{U_0}{\nu} \right) x \right) + 1 \right) + (2a_1 + a_2) y^2 \left(\frac{U_0^5}{s^2 \nu^4} \right) \exp\left(-2 \left(\frac{U_0}{\nu} \right) x \right) +
\]

\[
+ (7a_1 + 4a_2) \left(\frac{U_0^4}{s^2 \nu^2} \right) \exp\left(-2 \left(\frac{U_0}{\nu} \right) x \right) - a_1 \left(\frac{U_0^4}{s^2 \nu^2} \right) \exp\left(-\left(\frac{U_0}{\nu} \right) x \right)
\]

\[
+ p_0
\]

(3.5.29)

wherein

\[
U_0 = -\nu a, \quad \nu = \mu / \rho, \quad s = 1 - (a_1 / \rho) a^2 \quad k = -1
\]

(3.5.30)

Employing (3.5.28) into the diffusion equation (3.3.30), we find that one particular solution of this equation is given by

\[
H(x,y) = \left(\frac{1}{s} \right) y \exp\left(-\left(\frac{U_0}{\nu} \right) x \right) + \left(\frac{1}{\nu} \right) \left[\left(1 / \mu^* a \right) - (\nu / s) \right] y
\]

(3.5.31)

Substituting (3.5.29) and (3.5.31) into (3.3.25), and assuming that the magnetic forces are present, we find that the pressure distribution is given by
\[p = \left[-\left(\frac{\mu}{sv} \right) + \left(\frac{\rho}{s^2} \right) \right] U_0^2 \exp\left(-\left(\frac{U_0}{\nu} \right) x \right) - \frac{1}{2} \rho \left(\frac{U_0^2}{s^2} \right) \left[\exp\left(-2\left(\frac{U_0}{\nu} \right) x \right) + 1 \right] + 2a_1 + a_2 \right] y^2 \left(\frac{U_0^4}{s^2 \nu^4} \right) \exp\left(-2\left(\frac{U_0}{\nu} \right) x \right) + \left(7a_1 + 4a_2 \right) \left(\frac{U_0^4}{s^2 \nu^2} \right) \exp\left(-2\left(\frac{U_0}{\nu} \right) x \right) - \alpha_1 \left(\frac{U_0^4}{s^2 \nu^2} \right) \exp\left(-\left(\frac{U_0}{\nu} \right) x \right) + p_0 - \frac{1}{2} \mu^* \left(\frac{1}{s} \right) y \exp\left(-\left(\frac{U_0}{\nu} \right) x \right) + \frac{1}{\nu} \left(\frac{1}{\mu^*} \right) - \left(\frac{\nu}{s} \right) y^2 \right] (3.5.32)

If we set \(k = -1 \) and if we assume that \(U_0 > 0 \), we find that the velocity components, on using (3.5.28) in (3.3.26), can be written as

\[u = \left(\frac{U_0}{s} \right) \left[\exp\left(-\left(\frac{U_0}{\nu} \right) x \right) - 1 \right], \quad v = \left(\frac{U_0^2}{sv} \right) \left[\exp\left(-\left(\frac{U_0}{\nu} \right) x \right) \right] \right) \right) (3.5.33)

Accordingly, at \(x = 0 \) we have \(u = 0 \) and \(v = \frac{U_0^2}{sv} \) where as \(x \) tends to infinity, \(u = -\frac{U_0}{s} \) and \(v \) tends to zero. Thus provided that \(s > 0 \), i.e. \(\rho > \alpha_1 \alpha^2 \) we have two streams of fluid coming from infinity in opposite directions towards the plane \(x = 0 \). If the non-Newtonian parameter, however is such that \(\alpha_1 \rho / \alpha^2 \) then the direction of the flow is reversed. Instead of the fluid coming towards the plane \(x = 0 \), the fluid will flow away towards infinity. Thus depending upon the magnitude of \(\alpha_1 \) we have the flow possibilities in both directions which is not the case in the viscous fluids. We remark that the pressure distribution is not affected by the sign of \(s \).

When \(F = F_2 \), the streamfunction \(\psi(x,y) \) takes the form

\[\psi(x,y) = (Dx + Ex)y \] (3.5.34)

On using (3.5.32) in (3.5.5), we find that
\[p^* = \frac{1}{2} \rho (Dx + E)^2 + 2(3a_1 + 2a_2)D^2 + p_0 \quad , \quad (3.5.35) \]

Employing (3.5.34) into the diffusion equation (3.3.30), we find one particular solution of this equation is given by

\[H(x,y) = k_1 \int \exp(\alpha \mu^*[(1/2)D x^2 + E x]) \, dx + \]
\[+ k_2 \int \exp(- \alpha \mu^*(1/2)D y^2) \, dy + k_3 \quad (3.5.36) \]

wherein \(k_1, k_2, \) and \(k_3 \) are three arbitrary constants.

Substituting (3.5.35) and (3.5.36) into (3.3.25), we obtain that the pressure distribution turns out to be

\[p = - \frac{1}{2} \rho (Dx + E)^2 + 2(3a_1 + 2a_2)D^2 + p_0 - \]
\[- \mu^* [k_1 \int \exp(\alpha \mu^*[1/2)D x^2 + E x]) \, dx + \]
\[+ k_2 \int \exp(- \alpha \mu^*(1/2)D y^2) \, dy + k_3]^2 \quad (3.5.37) \]

Finally, we find that the velocity components, for this choice of \(F, \) are

\[u = D x + E \quad v = - D y \quad (3.5.38) \]

Remark: In comparison to the viscous case, that is \(a_1 = a_2 = 0, \) done in section 3.4, we note that the pressure distribution is considerably modified in a Non-Newtonian or second grade fluid.
CHAPTER 4
PLANE ALIGNED (PARALLEL) FLOWS

4.1. Introduction

Magneto-hydro-dynamics (MHD) plane flows are said to be aligned or parallel flows if the magnetic field is everywhere parallel to the velocity field and all the flow variables are functions of the rectangular coordinates x and y only.

By the definition of aligned flows the magnetic field vector \(\mathbf{H} \) and the velocity vector \(\mathbf{V} \) are related by \(\mathbf{H} = f(x,y) \mathbf{V} \) where \(\mathbf{V} \cdot \nabla f = 0 \). We find that, in regions of incompressible flow where \(\mathbf{V} \cdot \nabla \rho = 0 \), the two flows must be strictly proportional. Exceptions to this occur when (i) in plane flows streamlines are circles or parallel straight lines, (ii) in axially symmetric flow the flow is purely axial, (iii) in both irrotational spatial and doubly laminar spatial flows the flow is helical.

In this chapter, we study the Riabouchinsky type problems for plane aligned flows applying to both ordinary viscous fluids and second grade fluids. Also, we consider finitely conducting fluids as well as infinitely conducting. This is the first work that has been done on Riabouchinsky type problems for aligned flows.

This chapter contains five sections which are as follows. In section 4.2 the basic equations of motion of an ordinary viscous fluid as well as of a second grade fluid are transformed into
more convenient form for this work. Section 4.3 contains the derivation of the compatibility or integrability equation of an ordinary viscous fluid as well as of a second grade fluid. Section 4.4 consists of the solution of Riabouchinsky type problems, that is, assuming that the streamfunction is linear with respect to x or y, for an ordinary viscous fluid. Lastly, section 4.5 contains the solution of Riabouchinsky type problems for a second-grade fluid.
4.2. Equations of motion

The basic equations governing the steady plane motion of a viscous incompressible fluid of finite electrical conductivity, in the presence of a magnetic field, are

\[\text{div } \mathbf{V} = 0 \] \hspace{1cm} (i)

\[\rho \cdot (\mathbf{V} \cdot \text{grad}) \mathbf{V} + \text{grad} p = \mu \nabla^2 \mathbf{V} + \mu^* (\text{curl} \mathbf{H}) \times \mathbf{H} \] \hspace{1cm} (ii)

\[\text{curl}(\mathbf{V} \times \mathbf{H}) + (1/\mu^*) \nabla^2 \mathbf{H} = 0 \] \hspace{1cm} (iii)

\[\text{div } \mathbf{H} = 0 \] \hspace{1cm} (iv)

wherein \(\mathbf{V} \) denotes the velocity field vector, \(\mathbf{H} \) the magnetic field vector, \(p \) the fluid pressure function, \(\rho \) the constant fluid density, \(\sigma \) the electrical conductivity, \(\mu \) the coefficient of viscosity and \(\mu^* \) the constant magnetic permeability.

This a system of eight equations in seven unknowns, being \(\mathbf{V}, \mathbf{H} \) and \(p \). Equation (iv) is an additional equation on \(\mathbf{H} \) expressing the absence of magnetic poles in the flow.

4.2.1. Ordinary Viscous Fluids

Assuming that the flows are aligned flows, that is \(\mathbf{H} \) is parallel to \(\mathbf{V} \) everywhere, then

\[\mathbf{H} = f(x,y) \mathbf{V} \] \hspace{1cm} (4.2.1)

where \(f(x,y) \) is some scalar function.

Making use of (4.2.1), we find that

\[(\text{curl} \mathbf{H}) \times \mathbf{H} = [-f^2 \nabla v_x - u_y, -v^2 f_x + u v f_y, u r i - u^2 f_y, 0] \] \hspace{1cm} (4.2.2)

- 56 -
\text{curl}(\nabla \times \mathbf{H}) = 0 \quad (4.2.3) \\
\n\nabla^2 \mathbf{H} = [\nabla^2 (fu), \nabla^2 (fv), 0] \quad (4.2.4) \\

Employing (4.2.1) in equation (iv), we obtain

\[uf_x + vf_y = 0 \quad (4.2.5) \]

Using results (4.2.2) to (4.2.5) in the system of equations (i) to (iv), we find that the flow equations governing the motion of a steady plane aligned flow of a viscous incompressible fluid of finite electrical conductivity, in the presence of a magnetic field, are given by

\[u_x + v_y = 0 \quad (4.2.6) \]

\[
\rho \left[\frac{\partial}{\partial x} \left(\frac{u^2 + v^2}{2} \right) - v(v_x - u_y) \right] + \frac{\partial}{\partial x} p = \mu \nabla^2 u - \\
- \mu^2 f(u^2 + v^2) f_x - \mu^2 f' v(v_x - u_y) \quad (4.2.7)
\]

\[
\rho \left[\frac{\partial}{\partial y} \left(\frac{u^2 + v^2}{2} \right) + u(v_x - u_y) \right] + \frac{\partial}{\partial y} p = \mu \nabla^2 v - \\
- \mu^2 f(u^2 + v^2) f_y + \mu^2 f' u(v_x - u_y) \quad (4.2.8)
\]

\[\nabla^2 (fu) = \nabla^2 (fv) = 0, \quad (1/\mu^2 \sigma) \neq 0 \quad (4.2.9) \]

\[uf_x + vf_y = 0 \quad (4.2.10) \]

\[\mathbf{H} = f(x,y) \mathbf{V} \quad (4.2.11) \]
The diffusion equations (4.2.9) are identically satisfied when the fluid is infinitely electrically conducting so that \((1/\mu^a) \) tends to zero. However, for finitely conducting flows, the functions \(f, u \) and \(v \) must satisfy these additional equations.

4.2.2. Second-Grade Fluids:

Considering the magnetic field to be acting parallel to the velocity field, then there exists some scalar function \(f(x,y) \) such that

\[H = f(x,y) \nabla \]

Introducing this definition and employing results (4.2.1) to (4.2.5) into the system of equations (2.1.20) to (2.1.23), then the steady plane motion of aligned flows of a second grade fluid of finite electrical conductivity, in the presence of the magnetic field is governed by the system

\[u_x + v_y = 0 \quad (4.2.12) \]

\[
\rho \left[\frac{\partial}{\partial x} \left(\frac{u^2 + v^2}{2} \right) - v(v_x - u_y) \right] + \frac{\partial}{\partial x} p = \mu v^2 u - \\
- \mu^a f(u^2 + v^2) f_x - \mu^a f^2 v(v_x - u_y) + \alpha_1 \left[(u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y}) \nabla^2 u \right] + \\
+ \frac{\partial}{\partial x} \left(\nabla^2 u + \frac{\partial v}{\partial x} \nabla^2 v \right) + \frac{1}{4} (3\alpha_1 + 2\alpha_2) \frac{\partial}{\partial x} |A_1|^2 \quad (4.2.13)
\]
\[\rho \left[\frac{\partial}{\partial y} \left(\frac{u^2 + v^2}{2} \right) + u(v_x - u_y) \right] + \frac{\partial}{\partial y} p = \mu \nabla^2 v - \mu^* f(u^2 + v^2) f_y + \mu^* f^2 u(v_x - u_y) + \alpha_1 \left[(u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y}) \nabla^2 v \right] + \frac{\partial u}{\partial y} \nabla^2 u + \frac{\partial v}{\partial y} \nabla^2 v \right] + \frac{1}{4} (3\alpha_1 + 2\alpha_2) \frac{\partial}{\partial y} |A_1|^2 \]

\(\nabla^2 (fu) = \nabla^2 (fv) = 0, \quad (1/\mu^* p) \neq 0 \)

\(u f_x + v f_y = 0 \)

\[H = f(x, y) V \]

where

\[|A_1|^2 = 4(u_x)^2 + 4(v_x)^2 + (v_x + u_y)^2 \]

If the fluid is infinitely conducting so that \((1/\mu^* p)\) tends to zero, then the diffusion equations (4.2.15) are identically satisfied. However, for finitely electrically conducting flows, the functions \(f, u\) and \(v\) must satisfy these additional conditions.
4.3. Compatibility Equations

In this section, we derive the compatibility or
integrability equation for aligned flows of an ordinary viscous
fluid as well as a second grade fluid by employing the flow
equations for these flows in section 4.2. Motions where the
stream function is linear with respect to x or y and the solution
of Riabouchinsky are investigated by using these compatibility
equation in the next two sections.

4.3.1. Ordinary Viscous Fluids.

Introducing the vorticity function

$$\omega = v_x - u_y \quad (4.3.1)$$

and the generalized pressure function

$$h = \frac{1}{2} \rho q^2 + p \quad (4.3.2)$$

in equations (4.2.6) to (4.2.11), where $q^2 = u^2 + v^2$, then aligned
flows are governed by

$$u_x + v_y = 0 \quad (4.3.3)$$

$$h_x = -\mu \omega_y + \rho \nu \omega - \mu^* f(u^2 + \nu^2) f_x - \mu^* f^2 \nu \omega \quad (4.3.4)$$

$$h_y = \mu \omega_x - \rho \nu \omega - \mu^* f(u^2 + \nu^2) f_y + \mu^* f^2 u \omega \quad (4.3.5)$$

$$v_x - u_y = \omega \quad (4.3.6)$$

$$u f_x + v f_y = 0 \quad (4.3.7)$$

$$\nabla^2 (fu) = \nabla^2 (fv) = 0 \quad (4.3.8)$$
This system has the advantage that the linear momentum equations (4.3.4) and (4.3.5) are of first order.

Let \(\psi(x,y) \) be the streamfunction defined by the continuity equation, that is

\[
u = \psi_y, \quad v = -\psi_x \quad (4.3.9)
\]

Using this definition of the streamfunction, we can see clearly that equation (4.3.3) vanishes, while the vorticity function is given by

\[
\omega = -\nabla^2 \psi \quad (4.3.10)
\]

Employing (4.3.9) and (4.3.10) into equations (4.3.4), (4.3.5) and (4.3.7), these equations yields:

\[
\frac{\partial \psi}{\partial x} - \rho \frac{\partial \psi}{\partial x} \nabla^2 \psi = \mu \frac{\partial}{\partial y} (\nabla^2 \psi) - \mu^* f[(\frac{\partial \psi}{\partial y})^2 + (\frac{\partial \psi}{\partial x})^2]f_x - \\
- \mu^* f^2 \frac{\partial \psi}{\partial x} \nabla^2 \psi \quad (4.3.11)
\]

\[
\frac{\partial \psi}{\partial y} - \rho \frac{\partial \psi}{\partial y} \nabla^2 \psi = -\mu \frac{\partial}{\partial y} (\nabla^2 \psi) - \mu^* f[(\frac{\partial \psi}{\partial y})^2 + (\frac{\partial \psi}{\partial x})^2]f_y - \\
- \mu^* f^2 \frac{\partial \psi}{\partial y} \nabla^2 \psi \quad (4.3.12)
\]

\[
\frac{\partial \psi}{\partial y} \frac{\partial f}{\partial x} - \frac{\partial \psi}{\partial x} \frac{\partial f}{\partial y} = 0 \quad (4.3.13)
\]

Differentiating (4.3.11) with respect to 'y' and (4.3.12) with respect to 'x' and employing the integrability condition
\[
\frac{\partial^2 h}{\partial x \partial y} = \frac{\partial^2 h}{\partial y \partial x}
\] we find that the compatibility equation for the aligned flows of an ordinary viscous fluid is given by

\[
\rho \frac{\partial (\psi, \nabla^2 \psi)}{\partial (x, y)} + \mu \nabla^4 \psi - \mu f^2 \frac{\partial (\psi, \nabla^2 \psi)}{\partial (x, y)} + \mu f \frac{\partial (|\nabla \psi|^2, f)}{\partial (x, y)} = 0
\]

(4.3.14)

Solving equation (4.3.14), we can find \(\psi(x, y)\). Having found \(\psi(x, y)\), the velocity components and the vorticity can be found by using equations (4.3.9) and (4.3.10) respectively.

Finally, functions \(h\), \(p\) and \(f\) can be found by using equations (4.3.2), (4.3.11), (4.3.12) and (4.3.13).

4.3.2. Second-Grade fluids

Introducing the vorticity function

\[
\omega = v_x - u_y
\]

(4.3.15)

we find that

\[
\nabla^2 u = -\omega_y, \quad \nabla^2 v = \omega_x
\]

(4.3.16)

Next, we arrange the \(\alpha_i\)-terms of equations (4.2.13): and (4.2.14) in order to obtain more convenient forms. First, consider the \(\alpha_i\)-term of equation (4.2.13)

\[
\alpha_i [u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} \nabla^2 u + \frac{\partial u}{\partial x} \nabla^2 u + \frac{\partial v}{\partial x} \nabla^2 v]
\]

\[
\alpha_i [u \frac{\partial (\nabla^2 u)}{\partial x} + v \frac{\partial}{\partial y} (\nabla^2 u) + \frac{\partial u}{\partial x} \nabla^2 v + \frac{\partial v}{\partial x} \nabla^2 v]
\]

- 62 -
\[= \alpha_1 \left[\frac{\partial}{\partial x} (u\nabla^2 u) + \frac{\partial v}{\partial x} \nabla^2 v + v \left(-\frac{\partial^2 \omega}{\partial y^2} \right) \right] \]
\[= \alpha_1 \left[\frac{\partial}{\partial x} (u\nabla^2 u + v\nabla^2 v) - v\nabla^2 \omega \right] \]

Then consider \(\alpha_1 \)-term of (4.2.14)

\[\alpha_1 \left[(u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y}) \nabla^2 v + \frac{\partial u}{\partial y} \nabla^2 u + \frac{\partial v}{\partial y} \nabla^2 v \right] \]
\[= \alpha_1 \left[\frac{\partial}{\partial y} (v\nabla^2 v) + u \frac{\partial^2 \omega}{\partial x^2} + \frac{\partial u}{\partial y} \nabla^2 u \right] \]
\[= \alpha_1 \left[\frac{\partial}{\partial y} (u\nabla^2 u + v\nabla^2 v) + u\nabla^2 \omega \right] \]

Employing these results and introducing the generalized pressure function

\[h = \frac{1}{2} \rho q^2 + p - \alpha_1 [u\nabla^2 u + v\nabla^2 v] - \frac{1}{4} (3\alpha_1 + 2\alpha_2 |A_1|^2) \quad (4.3.17) \]

in equations (4.2.12) to (4.3.18), where \(q^2 = u^2 + v^2 \), then the aligned flows of a second grade fluid are governed by

\[u_x + v_y = 0 \quad (4.3.18) \]

\[h_x = \rho v \omega = -\mu \omega_y - \mu^* f(u^2 + v^2) f_x - \mu^* f^2 \omega v - \alpha_1 \nabla^2 \omega \quad (4.3.19) \]

\[h_y + \rho u \omega = \mu \omega_x - \mu^* f(u^2 + v^2) f_y + \mu^* f^2 u \omega + \alpha_1 \nabla^2 \omega \quad (4.3.20) \]

\[\nabla^2 (fu) = \nabla^2 (fv) = 0, \quad \frac{1}{\mu^* \sigma} \neq 0 \quad (4.3.21) \]
\[uf_x + vf_y = 0 \] \hspace{1cm} (4.3.22)

\[v_x - u_y = \omega \] \hspace{1cm} (4.3.23)

Introducing the streamfunction \(\psi(x,y) \) defined by the continuity equation, that is

\[u = \psi_y, \quad v = -\psi_x \] \hspace{1cm} (4.3.24)

and using the integrability condition \(\frac{\partial^2 h}{\partial x \partial y} = \frac{\partial^2 h}{\partial y \partial x} \), the compatibility equation of aligned flows for a second grade fluid is given by

\[\rho \frac{\partial(\psi, \nabla^2 \psi)}{\partial(x,y)} + \mu^2 \nabla^4 \psi - \mu^2 f \frac{\partial(\psi, \nabla^2 \psi)}{\partial(x,y)} + \mu^2 f \frac{\partial(\nabla^2 |\nabla \psi|^2, f)}{\partial(x,y)} - \alpha_1 \frac{\partial(\psi, \nabla^4 \psi)}{\partial(x,y)} = 0 \] \hspace{1cm} (4.3.24)

Solving the compatibility equation, we can find the streamfunction \(\psi(x,y) \). Having found \(\psi(x,y) \), the velocity components and the vorticity are given by

\[u = \psi_y, \quad v = -\psi_x, \quad \omega = -\nabla^2 \psi \] \hspace{1cm} (4.3.25)

Lastly, the functions \(h, p \) and \(f \) can be found by solving equations (4.3.17), (4.3.19), (4.3.20) and (4.3.22).
4.4. Solution of Riabouchinsky Type Problems.

Ordinary Viscous Fluids.

Since the compatibility equations are very difficult to solve, different researchers over the past years have assumed different forms of the streamfunction \(\psi(x,y) \) in terms of arbitrary functions and they tried to find these arbitrary functions. In the Riabouchinsky type problems, we assume that the streamfunction is a linear function of \(x \) or \(y \).

For this particular case of aligned flows, recalling equation (4.3.13) we find that

\[
\frac{\partial (f, \psi)}{\partial (x, y)} = 0
\]

From this equation, either

\[f(x, y) = \text{constant} \quad \text{OR} \quad f = f(\psi) \]

where \(f(\psi) \) is an arbitrary function of \(\psi \).

Hence, we have to consider two different cases.

CASE 1

We take \(f = c \), where \(c \) is an arbitrary constant.

A) Generalities.

Assume that the streamfunction is of the form

\[\psi(x,y) = yF(x) + G(x) \]

where \(F(x) \) and \(G(x) \) are arbitrary functions of \(x \).

Substituting (4.4.1) into the compatibility equation (4.3.14) with the assumption that \(f = c \), we find that \(F(x) \) and \(G(x) \) must satisfy the following equations:
\[
\mu F^{(iv)} + (\rho - \mu^* c^2)(F'F'' - FF''') = 0 \quad (4.4.2)
\]
\[
\mu G^{(iv)} + (\rho - \mu^* c^2)(F'G' - FG''') = 0 \quad (4.4.3)
\]

These two equations can each be integrated once, and we, thus, obtain the following two equations:

\[
\mu F'''' + (\rho - \mu^* c^2)(F' - FF'') = A \quad (4.4.2a)
\]
\[
\mu G'''' + (\rho - \mu^* c^2)(G' - FG'') = B \quad (4.4.3a)
\]

where \(A\) and \(B\) are arbitrary constants of integration.

Employing (4.4.1) into (4.3.11) and (4.3.12), we obtain

\[
h_x = \rho(yF' + G')(yF'' + G'') + \mu F'' - c^2 \mu^*(yF' + G')(yF'' + G'')
\]

(4.4.4)
\[
h_y = \rho F(yF'' + G'') - \mu(yF'''' + G''') - c^2 \mu^* F(yF'' + G'')
\]

(4.4.5)

Integrating (4.4.5) with respect to \(y\), after using (4.4.2a) and (4.4.3a), we obtain

\[
h = -\frac{y^2}{2}[A - (\rho - c^2 \mu^*)F''] - y[B - (\rho - c^2 \mu^*)F'G'] + g(x)
\]

(4.4.6)

where \(g(x)\) is an arbitrary function of \(x\).

Differentiating (4.4.6) with respect to \(x\) and using (4.4.4), we get

\[
g(x) = (1/2)(\rho - c^2 \mu^*)G'' + \mu F' + p_0
\]

(4.4.7)

where \(p_0\) is an arbitrary constant.

Using (4.4.7) in (4.4.6), we obtain

\[
h = -\frac{1}{2}y^2[A - (\rho - c^2 \mu^*)F''] - y[B - (\rho - c^2 \mu^*)F'G'] +
\]
\[
+ (1/2)(\rho - c^2 \mu^*)G'' + \mu F' + p_0
\]

(4.4.8)
On assuming that the magnetic forces are present, we find, by substituting (4.4.8) into (4.3.2), that the pressure distribution turns out to be

\[p = \mu F' - (1/2)\rho F^2 - c^2\mu^2 I(1/2)y^2F^2 + yF'G' + (1/2)G'^2 - (1/2)Ay^2 - By + p_0 \] \hspace{1cm} (4.4.9)

If the fluid domain is considered to extend to infinity, then in order that the pressure remains bounded there, we must take \(A = B = 0 \). We also pointed out that by interchanging \(x \) and \(y \) in (4.4.1), we can, with minor changes, handle the solutions of the form \(\psi(x, y) = xf(y) + g(y) \).

As we mentioned in section 4.2, if the fluid is finitely conducting, then functions \(f, u \) and \(v \) must satisfy the diffusion equations

\[\nabla^2(fu) = \nabla^2(fv) = 0 \]

Since, in this case \(f = c \), then the above diffusion equations reduce to

\[\nabla^2 u = \nabla^2 v = 0 \] \hspace{1cm} (4.4.10)

B) Particular Solutions.

Returning to equations (4.4.2) and (4.4.3), we will try to solve them in order to find the arbitrary functions \(F(x) \) and \(G(x) \). Since, it was not possible to find general solutions, then some particular solutions have been considered.

Equation (4.4.2) admits the following three particular
solutions:

\[F_1 = \frac{-6\mu}{(\rho - c^2\mu^*)x}, \quad F_2 = \frac{\mu}{\rho - c^2\mu} a(1 + ke^{ax}), \quad F_3 = Dx + E \]

(4.4.11)

where \(a, k, D\) and \(E\) are arbitrary constants.

I) When \(F = F_1\), then equation (4.4.3) becomes the Cauchy Euler equation

\[x^4 G^{(iv)} + 6x^3 G''' - 12xG' = 0 \]

which admits a general solution of the form

\[G(x) = c_1 x^3 + c_2 x^{-1} + c_3 x^{-2} + c_4 \]

where \(c_1, c_2, c_3\) and \(c_4\) are four arbitrary constants.

Hence, the streamfunction \(\psi(x,y)\) defined by (4.4.1) takes the form

\[\psi(x,y) = \frac{-6\mu}{\rho - c^2\mu^*} \frac{y}{x} + c_1 x^3 + c_2 x^{-1} + c_3 x^{-2} + c_4 \]

(4.4.12)

For the finitely conducting fluids, the diffusion equations (4.4.10) must be satisfied. Putting

\[\psi_y = -6\mu/((\rho - c^2\mu^*)x) \]

into \(\nabla^2 u = 0\), we find that \(\mu = 0\). But this contradicts the fact that the fluid is viscous, that is \(\mu \neq 0\). Hence, we conclude that solution (4.4.12) is not a possible solution for finitely conducting fluids while this is a perfectly good solution for the infinitely conducting fluids.

II) Using \(F = F_2\), equation (4.4.3) yields
\[G^{(iv)} - a(1 + ke^{sx})G''/ + e^{3}ke^{sx}G' = 0 \] \hspace{1cm} (4.4.13)

Without loss of generality, we can take \(a = 1 \), so equation (4.4.13) reduces to

\[G^{(iv)} - (1 + ke^{x})G''/ + ke^{x}G' = 0 \] \hspace{1cm} (4.4.14)

Employing a series of substitutions of the type

\[G'(x) = N(x) \hspace{1cm} M(x) = N(x)e^{x} \hspace{1cm} N'(x) = R(x) \] \hspace{1cm} (4.4.15)

in the equation (4.4.14), we find that the function \(R(x) \) satisfies the following equation

\[R'' + (2 - ke^{x})R' + (1 - 2ke^{x})R = 0 \] \hspace{1cm} (4.4.16)

Integrating once equation (4.4.16), we obtain

\[R' + (1 - ke^{x})R = c_{1}e^{-x} \] \hspace{1cm} (4.4.17)

where \(c_{1} \) is an arbitrary constant.

The general solution of (4.4.17) is given by

\[R(x) = c_{1}\exp[ke^{x} - x] \int \exp[- ke^{x}] \, dx + c_{2}\exp[ke^{x} - x] \]

Having found \(R(x) \), we use it in (4.4.15) and we find that

\[G(x) = c_{1} \int e^{x} \, dx \int \exp[ke^{x} - x] \, dx \int \exp[- ke^{x}] \, dx + \]

\[+ c_{2} \int e^{x} \, dx \int \exp[ke^{x} - x] \, dx + c_{3}e^{x} + c_{4} \]

where \(c_{2}, c_{3} \) and \(c_{4} \) are arbitrary constants.

Thus the streamfunction \(\psi(x,y) \) defined by (4.4.1) takes the form

\[\psi(x,y) = \mu \{ \rho - c^{2}\mu^{*} \} (1 + ke^{x})y + c_{1} \int e^{x} \, dx \int \exp[ke^{x} - x] \, dx \]

\[* \int \exp[- ke^{x}] \, dx + c_{2} \int e^{x} \, dx \int \exp[ke^{x} - x] \, dx + c_{3}e^{x} + c_{4} \] \hspace{1cm} (4.4.18)
For finitely electrically conducting fluids, diffusion equations (4.4.10) must be satisfied. Substituting \(u = \psi_y \) and \(v = -\psi_x \) into the diffusion equations, we find that

\[
\begin{align*}
k &= 0 \\
\end{align*}
\]

Thus, for finitely conducting flows, the streamfunction (4.4.18) reduces to

\[
\psi(x,y) = \mu(\rho - c^2\mu^*)y - (c_1/2)x^2 - [c_1 + c_2]x + c_4
\]

(4.4.19)

Using the values of \(F(x) \) and \(G(x) \), that we found above, in the pressure equation (4.4.9) with \(A = B = 0 \), we find that for \(k = 0 \) the pressure distribution is given by

\[
p = -\left(1/2\right)\rho(\mu^2/(\rho - c^2\mu^*)) - (1/2)c^2\mu^*[c_1x + (c_1 + c_2)]^2 + p_0
\]

III) When \(F = F_3 \), then equation (4.4.3) becomes

\[
\mu G^{(iv)} - (\rho - c^2\mu^*)(Dx + E)G''' = 0
\]

Letting \(G'''(x) = R(x) \), then we find that \(R(x) \) satisfies the following equation

\[
\mu R'' - (\rho - c^2\mu^*)(Dx + E)R = 0
\]

which admits a general solution of the form

\[
R(x) = k \exp\left([\rho - c^2\mu^*]/\mu\right)(D/2)x^2 + Ex\}
\]

(4.4.20)

Since \(G'''(x) = R(x) \), then

\[
G(x) = k \int \int \exp\left([\rho - c^2\mu^*]/\mu\right)(D/2)x^2 + Ex\} dx \ dx \ dx
\]

(4.4.21)

and the streamfunction \(\psi(x,y) \) is given by

- 70 -
\[\psi(x,y) = (Dx + E)y + \]
\[+ k \int \int \int \exp\left(\frac{(\rho - c^2 \mu^*)}{\mu} (D/2) x^2 + Ex\right) \, dx \, dx \, dx \]

(4.4.22)

Diffusion equations (4.4.10) must be identically satisfied, for finitely conducting fluids. Thus, using (4.4.22) in the diffusion equations, we find that \(k = 0 \) and hence the form of the streamfunction (4.4.22) reduces to

\[\psi(x,y) = (Dx + E)y \]

(4.4.23)

For this value of the streamfunction, we find that the pressure is given by

\[p = \mu D - (1/2) \rho |Dx + E|^2 - (1/2) c^2 \mu^* y^2 D^2 + p_0 \]

(4.4.24)

C) Solution of Riabouchinsky.

We consider the particular case of (4.4.1) when \(G = 0 \), usually attributed to Riabouchinsky (1924). Physically, such a flow represents a plane stagnation flow in which the flow is separated in the two symmetrical regions by the plane \(X = 0 \).

I) When \(F = F_1 \), then the streamfunction takes the form

\[\psi(x,y) = -6(\mu/(\rho - c^2 \mu^*)) y/x \]

(4.4.25)

and the pressure \(p \) is given by

\[p = 6(\mu^2/(\rho - c^2 \mu^*) x^2) - 18 \rho (\mu^2/(\rho - c^2 \mu^*)^2 x^2) -
- 18 \mu^2 c^2 (\mu^*/(\rho - c^2 \mu^*)^2 x^4) + p_0 \]

(4.4.26)

For finitely conducting fluids, in order to satisfy the diffusion equations, we must have \(\mu = 0 \), which contradicts the fact that the fluid is viscous, that is \(\mu \neq 0 \). Thus, we conclude
that (4.4.25) is not a possible solution for the case of finitely conducting fluids.

II) Letting \(F = F_2 \), then streamfunction is given by

\[
\psi(x, y) = \frac{\mu a}{\rho - c^2 \mu^*} (1 + ke^{ax}) y
\] \hspace{1cm} (4.4.27)

Substituting (4.4.27) in (4.4.9), we find that the pressure is given by

\[
p = - \left(\frac{\mu}{s} \right) U_0^2 \exp[-(U_0/\nu)x] - \frac{1}{2} \rho(U_0^2/s^2)(\exp[-(U_0/\nu)x] - 1)^2
- \frac{1}{2} c^2 \mu^* y^2(U_0^4/s^2 \nu^2)(\exp[-2(U_0/\nu)x] + p_o)
\] \hspace{1cm} (4.4.28)

where

\[
\nu = \frac{\mu}{\rho}, \quad U_0 = - va, \quad s = 1 - \frac{c^2 \mu^*}{\rho}
\]

For finitely conducting fluids, we find that the streamfunction is given by

\[
\psi(x, y) = \frac{\mu a}{\rho - c^2 \mu^*} y
\] \hspace{1cm} (4.4.29)

For this value of \(\psi \), the diffusion equations (4.4.10) are identically satisfied.

III) When \(F = F_3 \), equation (4.4.1) with \(G = 0 \), yields

\[
\psi(x, y) = (Dx + E)y
\] \hspace{1cm} (4.4.30)

Employing (4.4.30) in equation (4.4.9), we find that

\[
p = \mu D^2 - \frac{1}{2} \rho(Dx + E)^2 - \frac{1}{2} c^2 \mu^* y^2 D^2 + p_o
\] \hspace{1cm} (4.4.31)

Substituting \(u = \psi_y \) and \(v = - \psi_x \) into the diffusion equations (4.4.10), we see that both of these equations are identically satisfied.
CASE 2

We assume that \(f = f(\psi) \), where \(f(\psi) \) is an arbitrary function of \(\psi \). For simplicity take \(f = \psi \).

A) Generalities.

We take the streamfunction to be linear with respect to \(y \), that is

\[
\psi(x, y) = yF(x) + G(x) \tag{4.4.32}
\]

where \(F(x) \) and \(G(x) \) are arbitrary functions of their argument \(x \).

Employing (4.4.32) into the compatibility equation (4.3.14), with the assumption that \(f = \psi \), we find that \(F(x) \) and \(G(x) \) must satisfy the following equations:

\[
\rho(F'G' - FG''') + \mu G^{(i)} + \mu' F'G' + FG'G'' - 2F'G/G'2 + 2F^2F'G + 2FG'G''' = 0 \tag{4.4.33}
\]

\[
\rho(F'F'' - FF''') + \mu F^{(i)} + \mu'^2 F'G' + FF'G'' + F^2G'G'' - 4F^2GG' - 2FF'G'2 + 2F^2F' + 2FF'G'G'' + 2F^2G'G''' = 0 \tag{4.4.34}
\]

\[
2F^2F'G' - F^2F''G' + F^3G''' - 2F^3G' - 4FF'G' + 2F^2F'G'' = 0 \tag{4.4.35}
\]

\[
F^2F'F'' + F^3F''' - 2FF'3 = 0 \tag{4.4.36}
\]

On assuming that magnetic forces are present, we find, by using (4.4.32) and (4.3.9) in (4.3.2), that the pressure is given by

\[
p = h - \rho((1/2)F^2 + (1/2)F'2 + (1/2)G'2 + yF'G') \tag{4.4.37}
\]

where \(h \) can be found by solving the two linear momentum equations...
(4.3.11) and (4.4.12).

If the fluid is finitely electrically conducting, then functions \(f \), \(u \) and \(v \) must satisfy the diffusion equations (4.3.8), that is

\[
\nabla^2 (fu) = \nabla^2 (fv) = 0
\]

We remark that by interchanging \(x \) and \(y \) in (4.4.32) we can, with minor changes, handle the solutions of the form \(\psi = xf(y) + g(y) \).

B) Particular Solutions.

Equation (4.4.36) admits the following two particular solutions

\[
F_1 = ke^{ax}, \quad F_2 = Dv^x
\]

where \(k \), \(a \), \(D \) are arbitrary constants and we assume that \(a \neq 0 \).

I) When \(F = F_1 \), then equation (4.4.35) yields

\[
G'''' + 2aG''' - 5a^2 G' = 0
\]

Letting \(G'(x) = R(x) \), we find that \(R(x) \) satisfies the following equation

\[
R'' + 2aR' - 5a^2 R = 0
\]

which admits a general solution of the form

\[
R(x) = c_1 \exp[a(-1 + \sqrt{6})x] + c_2 \exp[-a(1 + \sqrt{6})x]
\]

where \(c_1 \) and \(c_2 \) are arbitrary constants.

Hence, the streamfunction \(\psi(x, y) \) is given by
\[
\psi(x, y) = y e^{\alpha x} + \frac{c_1}{-a + a \gamma \delta} \exp[a(-1 + \sqrt{\delta})x] - \\
\frac{c_2}{a + a \gamma \delta} \exp[-a(1 + \sqrt{\delta})x] + c_3 \tag{4.4.42}
\]

Using \(f = \psi \), \(u = \psi_y \), and \(v = -\psi_x \) into the diffusion equations (4.4.38) we find that, for finitely conducting fluids, the arbitrary constants \(c_1, c_2 \) and \(c_3 \) must satisfy the following equations:

\[
4a^2 y k e^{2\alpha x} + \frac{6a^2 k c_1}{-a + a \gamma \delta} e^{\alpha \gamma \delta} x - \frac{6a^2 k c_2}{a + a \gamma \delta} e^{-\alpha \gamma \delta} x + c_3 k a^2 e^{\alpha x} = 0 \tag{4.4.43}
\]

\[
6c_1 y k a^2 e^{\alpha \gamma \delta} x + 4c_1^2(-a + a \gamma \delta) e^{2(-a + a \gamma \delta)x} + \frac{4a c_1 c_2}{-a + a \gamma \delta} e^{-2\alpha x} + \\
+ c_1 c_3(-a + a \gamma \delta)^2 e^{-(a + a \gamma \delta)x} + 6c_2 a^2 y k e^{-a \gamma \delta} x + 2a k^2 e^{2\alpha x} + \\
+ \frac{4c_1 c_2 a^2}{-a + a \gamma \delta} e^{-2\alpha x} + 4c_1^2(-a - a \gamma \delta) e^{2(-a - a \gamma \delta)x} + \\
+ c_2 c_3(-a - a \gamma \delta)^2 e^{-a(1 + \sqrt{\delta})x} = 0 \tag{4.4.44}
\]

II) Using \(F = F_2 \), we find that equation (4.4.35) becomes the Cauchy-Euler differential equation

\[
x^3 G'''' + x^2 G''' + (3/4) x G'' + (1/2) G = 0 \tag{4.4.45}
\]

Characteristic equation of (4.4.45) is

\[
m^3 - 2m^2 + (1/4)m + (1/2) = 0 \tag{4.4.46}
\]

The roots of equation (4.4.45), using Cardan's method (see section
2.3.4), are

\[m_1 = 1.797926, \quad m_2 = -0.25041, \quad m_3 = 0.452479 \] \hspace{1cm} (4.4.47)

Hence, solution of (4.4.45) is given by

\[G(x) = c_1 x^{m_1} + c_2 x^{m_2} + c_3 x^{m_3} \] \hspace{1cm} (4.4.48)

where \(c_1, c_2 \) and \(c_3 \) are arbitrary constants and \(m_1, m_2 \) and \(m_3 \) are given by (4.4.47).

Thus the streamfunction \(\psi(x,y) \) takes the form

\[\psi(x,y) = D v_x y + c_1 x^{m_1} + c_2 x^{m_2} + c_3 x^{m_3} \] \hspace{1cm} (4.4.49)

For the finitely conducting fluids, substituting the values of \(f, u \) and \(v \) into the diffusion equations (4.4.38), we find that the constants \(c_1, c_2 \) and \(c_3 \) must satisfy the following equations:

\[c_1 D [m_1 + \frac{1}{2}] [m_1 - \frac{1}{2}] x^{m_1-(3/2)} + c_2 D [m_2 + \frac{1}{2}] [m_2 - \frac{1}{2}] x^{m_2-(3/2)} \]

\[+ c_3 D [m_3 + \frac{1}{2}] [m_3 - \frac{1}{2}] x^{m_3-(3/2)} = 0 \] \hspace{1cm} (4.4.50)

\[D c_1 m_1[m_1 - \frac{1}{2}] (m_1 - \frac{3}{2}) x^{m_1-(5/2)} y + D c_2 m_2(m_2 - \frac{1}{2}) (m_3 - \frac{3}{2}) x^{m_2-(5/2)} + (1/2) D c_1 \]

\[* (m_1 - \frac{1}{2}) (m_1 - \frac{3}{2}) x^{m_1-(5/2)} y + c_2 m_1 (m_1 - 1) (2m_1 - 2) x^{2m_1-3} \]

\[+ c_1 c_2 m_2 (m_1 + m_2 - 1) (m_1 + m_2 - 2) x^{m_1+m_2-3} + c_1 c_3 m_3 (m_1 + m_3 - 1) \]

\[* (m_1 + m_3 - 2) x^{m_1+m_3-3} + (1/2) D c_2 (m_2 - \frac{1}{2}) (m_2 - \frac{3}{2}) x^{m_2-(5/2)} y \]

\[+ c_1 c_2 m_1 (m_1 + m_2 - 1) (m_1 + m_2 - 2) x^{m_1+m_2-3} + c_2 m_2 (2m_2 - 1) (2m_2 - 2) x^{2m_2+3} \]

\[- 76 - \]
\[+ c_2 c_3 m_3 (m_2 + m_3 - 1)(m_2 + m_3 - 2)x^{m_2 + m_3 - 3} + (1/2) D c_3 (m_3 - \frac{1}{2}) + \]
\[* \left(m_3 - \frac{3}{2}\right) x^{m_3 - (5/2)} y + c_1 c_3 m_1 (m_1 + m_3 - 1)(m_1 + m_3 - 2)x^{m_1 + m_3 - 3} + \]
\[+ c_2 c_3 m_2 (m_2 + m_3 - 1)(m_2 + m_3 - 2)x^{m_2 + m_3 - 3} + \]
\[+ c_3^2 m_3 (2m_3 - 1)(2m_3 - 2)x^{2m_3 - 3} + D^2 = 0 \quad (4.4.51) \]

where \(m_1, m_2 \) and \(m_3 \) are given by \((4.4.47) \).

C) Solution of Riabouchinsky.

We assume that \(G = 0 \), so that the form of the streamfunction \(\psi(x,y) \) given by \((4.4.32) \) reduces to

\[\psi(x,y) = y F(x) \quad (4.4.52) \]

Using this assumption and letting \(F = F_1 \), then the streamfunction \((4.4.52) \) takes the form

\[\psi(x,y) = k y e^{a x} \quad (4.4.53) \]

Employing \(F = F_1 \) and \(G = 0 \) into \((4.4.37) \), we find that the pressure distribution is

\[p = \mu k e^{a x} - (1/2) \rho k^2 e^{2 a x} + \mu k^4 \left[- (15/4) a^2 y^4 - (7/16) \right] e^{4 a x} \quad (4.4.54) \]

For finitely conducting fluids, the functions \(f = \psi, u = \psi_y \) and \(v = -\psi_x \) must satisfy equations \((4.4.38) \). Employing the values of \(f \), \(u \) and \(v \) in \((4.4.38) \), we find that either

\[k = 0 \quad OR \quad y = \pm 1/(\gamma^2 a^2) \]

If \(k = 0 \), then streamfunction \((4.4.53) \) reduces to

\[\psi(x,y) = 0 \]
Since \(\psi = 0 \), then \(u = 0 \) and \(v = 0 \) which means that we have no flow. So we cannot accept this possibility.

If \(y = \pm 1/(\sqrt{2}a^2) \), then the streamfunction (4.4.53) takes the form

\[
\psi(x, y) = \pm \left(\frac{1}{\sqrt{2}} \right) ke^{ax}
\]

(4.4.55)

and the velocity components are given by

\[
u = \pm \left[k/(\sqrt{2} a) \right] e^{ax}
\]

(4.4.56)

When \(F = F_2 \) and \(G = 0 \), then (4.4.52) yields

\[
\psi(x, y) = Dye^{ax}
\]

(4.4.57)

Substituting the values of \(f \), \(u \) and \(v \) into equations (4.4.38), we find that, for finitely conducting fluids, \(D = 0 \). If \(D = 0 \), then \(\psi = 0 \), which means that we have no flow.
4.5. Solution of Riabouchinsky Type problems.

Second-Grade Fluids.

In order to solve the Riabouchinsky type problems, we assume that the streamfunction is linear with respect to x or y.

Recalling equation (4.3.22) and using the definition of the streamfunction $\psi(x,y)$, we find that

$$\frac{\partial (f, \psi)}{\partial (x, y)} = 0$$

From this equation, either

$$f = \text{constant} \quad \text{OR} \quad f = f(\psi)$$

where $f(\psi)$ is an arbitrary function of ψ.

Hence, we have to consider two cases.

CASE 1

We take $f = c$, where c is any arbitrary constant.

A) Generalities.

Assume that the streamfunction is of the form

$$\psi(x,y) = yF(x) + G(x) \quad (4.5.1)$$

where $F(x)$ and $G(x)$ are arbitrary functions of x.

Employing (4.5.1) into compatibility equation (4.3.24), with the assumption that $f = c$, we find that $F(x)$ and $G(x)$ must satisfy the following equations:

$$\mu F^{(iv)} + \left(\rho - c^2 \mu^* \right) (F'F'' - FF''') - \alpha_1 (F'F^{(iv)} - FF^{(v)}) = 0 \quad (4.5.2)$$

$$\mu G^{(iv)} + \left(\rho - c^2 \mu^* \right) (F'G'' - FG''') - \alpha_1 (F^{(iv)}G' - FG^{(v)}) = 0 \quad (4.5.3)$$

Integration of the above equations yields
\[
\mu_{TT}'' + (\rho - c^2\mu^*)(F'{}^2 - FF'') - \alpha_1 (F F'{}^{(iv)} + 2F'F''{}'/ - F''{}^2) = A \\
(4.5.4)
\]
\[
\mu_{GG}'' + (\rho - c^2\mu^*)(F'G'{}' - FG'') - \alpha_1 (F G'{}^{(iv)} + F'G''{}'/ - F''G'{}'/ + F''G'') = B \\
(4.5.5)
\]
where A and B are arbitrary constants of integration.

Employing \((4.5.1)\) into \((4.3.19)\) and \((4.3.20)\), we obtain
\[
h_x = \rho(yF' + G')(yF'{}' + G'') + \mu F'{}' - c^2\mu^*(yF' + G')(yF'{}' + G'') - \alpha_1 (yF' + G')(yF'{}^{(iv)} + G'{}^{(iv)}) \\
(4.5.6)
\]
\[
h_y = \rho F(yF'{}' + G') - \mu (yF'{}' + G'') - c^2\mu^* F(yF'{}' + G'') - \alpha_1 F(yF'{}^{(iv)} + G'{}^{(iv)}) \\
(4.5.7)
\]
Integrating \((4.5.7)\), after using \((4.5.4)\) and \((4.5.5)\), we get
\[
h = - (1/2)y^2[A - (\rho - c^2\mu^*)F'{}^2 + 2\alpha_1 F'F''{}'/ - \alpha_1 F''{}^2] + g(x) - y[B - (\rho - c^2\mu^*)F'G' + \alpha_1 F'G''{}'/ - \alpha_1 F''G'{}'/ + \alpha_1 F''G'] \\
(4.5.8)
\]
where \(g(x)\) is an arbitrary function of \(x\).

Differentiating \((4.5.8)\) with respect to \(x\) and using \((4.5.6)\), we find that
\[
g(x) = (1/2)(\rho - c^2\mu^*)G'{}^2 + \mu F' - \alpha_1 G'G''{}' + (1/2)\alpha_1 G'{}^{2}/ + \mu_p \\
(4.5.9)
\]
where \(\mu_p\) is an arbitrary constant.

Using \((4.5.9)\), equation \((4.5.8)\) yields
\[
h = - (1/2)y^2[A - (\rho - c^2\mu^*)F'{}^2 + 2\alpha_1 F'F''{}'/ - \alpha_1 F''{}^2] - y[B - (\rho - c^2\mu^*)F'G' + \alpha_1 F'G''{}'/ - \alpha_1 F''G'{}'/ + \alpha_1 F''G'] + (1/2)(\rho - c^2\mu^*)G'{}^2 + \mu F' - \alpha_1 G'G''{}' + (1/2)G''{}^2 + \mu_p \\
(4.5.10)
\]
On assuming that magnetic forces are present, we find, by using (4.5.10) in (4.3.17), that the pressure is given by

\[
p = \mu F' - (1/2) \rho F^2 + \alpha_1 [(1/2)y^2F'/'^2 + yF'/G' + FF'/ + (1/2)G'/'^2] \\
+ (1/2)(3\alpha_1 + 2\alpha_2)[4F'/^2 + y^2F'/'^2 + G'/'^2 + 2yF'/G'] - \\
- c^2\mu^*[(1/2)y^2F'/'^2 + yF'/G' + (1/2)G'/'^2] - (1/2)Ay^2 - By + p_0
\] \hspace{1cm} (4.5.11)

If the fluid domain is considered to extend to infinity, then in order that the pressure remains bounded there, we must take \(A = B = 0 \). We also pointed out that by interchanging \(x \) and \(y \) in (4.5.1), we can, with minor changes, handle the solutions of the form \(\psi(x,y) = xf(y) + g(y) \).

As we mentioned in section 4.2, if the fluid is finitely electrically conducting, then the functions \(f, u \) and \(v \) must satisfy the diffusion equations, that is

\[
\nabla^2 (fu) = \nabla^2 (fv) = 0
\] \hspace{1cm} (4.5.12)

Keeping in mind that in this case \(f = c \), then equations (4.5.12) reduces to

\[
\nabla^2 u = \nabla^2 v = 0
\] \hspace{1cm} (4.5.13)

B) Particular Solutions.

Equation (4.5.2) admits the following two particular solutions

\[
F_1 = \frac{\mu a}{\rho - c^2\mu^* - \alpha_1 a^2} \left(1 + ke^{ax}\right), \quad F_2 = Dx + E
\] \hspace{1cm} (4.5.14)

where \(a, k, D \) and \(E \) are arbitrary constants.
I) When \(F = F_1 \), equation (4.5.3) yields

\[
\mu G^{(i,v)} + (\rho - c^2 \mu^*) \left[\frac{\mu a^3 \rho e^{ax}}{\rho - c^2 \mu^* - \alpha_1 a^2} G' - \frac{\mu a(1 + ke^{ax})}{\rho - c^2 \mu^* - \alpha_1 a^2} G^{'v} \right] \\
- \alpha_1 \left[\frac{\mu a^3 \rho e^{ax}}{\rho - c^2 \mu^* - \alpha_1 a^2} G' - \frac{\mu a(1 + ke^{ax})}{\rho - c^2 \mu^* - \alpha_1 a^2} G^{'v} \right] = 0
\]

(4.5.15)

Without loss of generality, we can assume that \(a = 1 \), so equation (4.5.15) reduces to

\[
\alpha_1 (1 + ke^x)G^{(v)} + (\rho - c^2 \mu^* - \alpha_1)G^{(i,v)} + (\rho - c^2 \mu^* - \alpha_1)ke^xG' - \\
- (\rho - c^2 \mu^*)(1 + ke^x)G^{'v} = 0
\]

(4.5.16)

In order to reduce the order of (4.5.16), we make a series of substitutions of the type

\[
G^{(v)}(x) = H(x), \quad H(x) = M(x)e^x, \quad M'(x) = R(x)
\]

(4.5.17)

and we find that \(R(x) \) satisfies the following equation

\[
\alpha_1 [(1 + ke^x)R^{'''} + (3 + 4ke^x)R^{''} + (3 + 6ke^x)R^{'} + (1 + 4ke^x)R] + \\
(\rho - c^2 \mu^*)[R^{'''} + (2 - ke^x)R^{''} + (1 - 2ke^x)R] = 0
\]

(4.5.18)

Multiplying equation (4.5.18) by \(e^x \) and integrating once, we get

\[
\alpha_1 [(1 + ke^x)R^{'''} + 2(1 + ke^x)R^{''} + (1 + 2ke^x)R] + \\
+ (\rho - c^2 \mu^*)[R^{'} + (1 - ke^x)R] = d e^{-x}
\]

(4.5.19)

where \(d \) is an arbitrary constant of integration.

Solving equation (4.5.19), we can find \(R(x) \). Having found \(R(x) \) and using substitutions (4.5.17) we find \(G(x) \). Finally, knowing \(F(x) \) and \(G(x) \), we can find the streamfunction defined by (4.5.1).
Consider now a special case of (4.5.19), where \(k = 0 \). If \(k = 0 \), then equation (4.5.19) reduces to

\[
R'' + (2\alpha_1 + \rho - c^2 \mu^*)R' + (\alpha_1 + \rho - c^2 \mu^*)R = d e^{-x}
\]

(4.5.20)

The complementary solution of (4.5.20) is given by

\[
R_c(x) = A_1 e^{-x} + B_1 \exp\left(\frac{(c^2 \mu^* - \alpha_1 - \rho)/\alpha_1}{\alpha_1}x\right)
\]

(4.5.21)

where \(A_1 \) and \(B_1 \) are arbitrary constants.

Using the Variation of Parameters method, we find that the particular solution of equation (4.5.20) is

\[
R_p(x) = \frac{d}{\rho - c^2 \mu^*} \left[x - \frac{\alpha_1}{\rho - c^2 \mu^*} \right] e^{-x}
\]

(4.5.22)

Hence, the general solution of (4.5.20) is of the form

\[
R(x) = R_c + R_p = A_1 e^{-x} + B_1 \exp\left(\frac{(c^2 \mu^* - \rho - \alpha_1)/\alpha_1}{\alpha_1}x\right) + \frac{d}{\rho - c^2 \mu^*} \left[x - \frac{\alpha_1}{\rho - c^2 \mu^*} \right] e^{-x}
\]

(4.5.23)

If \(a = 1 \) and \(k = 0 \), then from (4.5.23) and (4.5.17), we get

\[
G(x) = \left[-A_1 + \frac{d\alpha_1}{\rho - c^2 \mu^*} - \frac{d}{\rho - c^2 \mu^*} \right] x - \frac{d}{2(\rho - c^2 \mu^*)} x^2 + \frac{B_1 \alpha_1^2}{(\alpha_1 + \rho - c^2 \mu^*)(\rho - c^2 \mu^*)} \exp\left(-\frac{(\rho - c^2 \mu^*)/\alpha_1}{\alpha_1}x\right)
\]

(4.5.24)

Hence, the streamfunction \(\psi(x,y) \) is given by

\[
\psi(x,y) = \frac{\mu}{\rho - \alpha_1 - c^2 \mu^*} y + G(x)
\]

(4.5.25)

where \(G(x) \) is given by (4.5.24).

Employing the values of \(F(x) \) and \(G(x) \) in equation (4.5.14), with
A = B = 0, we find that the pressure distribution is

\[
p = - (1/2) \rho \frac{\mu^2}{(\rho - \alpha_1 - c^2 \mu^*)^2} + (2\alpha_1 + \alpha_2) \left[- \frac{d}{\rho - c^2 \mu^*} x^2 + \right. \]

\[
+ \frac{B_1 \alpha_1}{\alpha_1 + \rho - c^2 \mu^*} \frac{\rho - c^2 \mu^*}{\alpha_1} \exp\left[\frac{(c^2 \mu^* - \rho)/(\alpha_1) x}\right]\left] \right.
\]

\[
- (1/2) c^2 \mu \left[\left[- A_1 + \frac{d\alpha_1}{(\rho - c^2 \mu^*)^2} - \frac{d}{\rho - c^2 \mu^*} \right] - \frac{d}{\rho - c^2 \mu^*} x - \right. \]

\[
- \frac{B_1 \alpha_1}{\alpha_1 + \rho - c^2 \mu^*} \exp\left[\frac{(\rho - c^2 \mu^*)/(\alpha_1) x}\right]\right]\left] \right. \right) + p_0 \quad (4.5.26)
\]

Using \(u = \psi_y \) and \(v = -\psi_x \) in (4.5.13), we find that, for finitely conducting fluids, \(B_1 = 0 \) and hence the streamfunction \((4.5.25) \) reduces to

\[
\psi(x,y) = \frac{\mu}{\rho - \alpha_1 - c^2 \mu^*} y \left[A_1 + \frac{d\alpha_1}{(\rho - c^2 \mu^*)^2} - \frac{d}{\rho - c^2 \mu^*} \right] x - \frac{d}{2(\rho - c^2 \mu^*)} x^2 \quad (4.5.27)
\]

II) Employing \(F = F_2 \) into equation (4.5.3), we obtain

\[
\alpha_1 (Dx + E)G^{(v)} + \mu G^{(iv)} = (\rho - c^2 \mu^*) (Dx + E)G'''' = 0 \quad (4.5.28)
\]

Letting \(G''''(x) = R(x) \), then above equation takes the form

\[
\alpha_1 (Dx + E)R'' + \mu R'' - (\rho - c^2 \mu^*) (Dx + E)R = 0 \quad (4.5.29)
\]

The solution of equation (4.5.29), which turns out to be in terms of the hypergeometric function \(F(\alpha, \beta, x) \), is given by

\[- 84 - \]
\[R_1(x) = \exp \left[\pm 2i\left(E/(\rho - c^2 \mu^*)D \right)x \right] C_1 F(\alpha, \beta, \pm 2i\left(E/(\rho - c^2 \mu^*)D \right)x) \]

\[R_2(x) = \exp \left[\pm 2i\left(E/(\rho - c^2 \mu^*)D \right)x \right] C_2 * F(1 - \alpha - \beta, 2 - \beta, \pm 2i\left(E/(\rho - c^2 \mu^*)D \right)x) \]

(4.5.30)

where
\[
\alpha = \frac{\mu i}{(\rho - c^2 \mu^*)D}, \quad \beta = \frac{-\mu}{(\rho - c^2 \mu^*)D}
\]

(4.5.31)

Since \(G''''(x) = R(x) \), then solution of (4.5.28) is

\[
G(x) = \int \int \int \left(\exp \left[\pm 2i\left(E/(\rho - c^2 \mu^*)D \right)x \right] \right) \left[C_1 F(\alpha, \beta, \pm 2i\left(E/(\rho - c^2 \mu^*)D \right)x) + C_2 * F(1 - \alpha - \beta, 2 - \beta, \pm 2i\left(E/(\rho - c^2 \mu^*)D \right)x) \right] dx \ dx \ dx
\]

(4.5.32)

Hence the streamfunction \(\psi(x, y) \) takes the form

\[
\psi(x, y) = (Dx + E)y + G(x)
\]

(4.5.33)

where \(G(x) \) is given by equation (4.5.32).

For finitely conducting fluids, using \(u = \psi_y \) and \(v = -\psi_x \) in the diffusion equation (4.5.13), we find that \(C_1 = C_2 = 0 \) and thus the streamfunction (4.5.33) reduces to

\[
\psi(x, y) = \left(Dx + E \right)y
\]

(4.5.34)
C) Solution of Riabouchinsky.

We consider the particular case of (4.5.1) where \(G = 0 \), usually attributed to Riabouchinsky(1924).

When \(F = F_1 \), and \(G = 0 \), then the streamfunction takes the form

\[
\psi(x, y) = \frac{\mu a}{\rho - \alpha_1 a^2 - c^2 \mu^*} y (1 + ke^{ax}) \quad (4.5.35)
\]

Putting \(F = F_1 \), \(G = 0 \) and \(k = -1 \) into the pressure equation (4.5.41), we find that the pressure distribution is given by

\[
p = -\left(\frac{\mu}{S \nu} \right) U_0^2 \exp(-U_0 / \nu x) - \left(1/2 \right) \rho (U_0^2 / \nu^2) \exp(-U_0 / \nu x) - 1 \right)^2
+ (2\alpha_1 + \alpha_2) y^2 (U_0^2 / \nu^2) \exp(-2U_0 / \nu x) +
+ \left[7\alpha_1 + 4\alpha_2 - \left(1/2 \right) c^2 \mu^* y^2 \right] (U_0^2 / \nu^2) \exp(-2U_0 / \nu x) -
- \alpha_1 (U_0^2 / \nu^2) \exp(-U_0 / \nu x) + p_0
\quad (4.5.36)
\]

where

\[
\nu = \mu / \rho \quad U_0 = -\nu a \quad s = 1 - \left[(\alpha_1 a^2 + c^2 \mu^*) / \rho \right]
\]

If the fluid is finitely electrically conducting, then the diffusion equations (4.5.13) must be satisfied identically. This happen if and only if \(k = 0 \) and, hence, the streamfunction (4.5.35) reduces to

\[
\psi(x, y) = \frac{\mu a}{\rho - c^2 \mu^* - \alpha_1 a^2} y \quad (4.5.37)
\]

Substituting \(F = F_2 \) and \(G = 0 \) into (4.5.1), we get

\[
\psi(x, y) = (Dx + E)y \quad (4.5.38)
\]

\[-86 - \]
and the pressure distribution (4.5.11) takes the form

\[p = \mu D - \frac{1}{2} \rho (Dx + E)^2 + (6\alpha_1 + 4\alpha_2)D^2 - \frac{1}{2} c^2 \mu^* D^2 y^2 + p_0 \]

(4.5.39)

For finitely conducting fluids, solution (4.5.39) does not change since it satisfies the diffusion equations (4.5.13) identically.
CASE 2

In this case, we take \(f = f(\psi) \) where \(f(\psi) \) is an arbitrary function of \(\psi \). For simplicity, we let \(f = \psi \).

AD Generalities.

Assume that the streamfunction is linear with respect to \(y \), that is

\[
\psi(x, y) = yF(x) + G(x)
\] \hspace{1cm} (4.5.40)

where \(F(x) \) and \(G(x) \) are two arbitrary functions of \(x \).

Employing (4.5.40) into the compatibility equation (4.5.24), with the assumption that \(f = \psi \), we find that \(F(x) \) and \(G(x) \) satisfy the following equations

\[
\mu G^{(\nu)} + \rho(F^{(\nu)}F' - FG'' - \alpha_1(F^{(\nu)}G' - FG^{(\nu)}) + \mu^*[-F^{(\nu)}G' + FG^{(\nu)} - 2F'GG' + 2F^2F'G + 2FGG' + F'] = 0
\] \hspace{1cm} (4.5.41)

\[
\mu F^{(\nu)} + \rho(F^{\nu}F'' - FF''') - \alpha_1(F^{(\nu)}F' - FF^{(\nu)}) + \mu^*[-F^{(\nu)}G' + 2F^2G' - 4FGG' - 2FFG' + 2F^2F' + 2FFG' + 2G'F'] = 0
\] \hspace{1cm} (4.5.42)

\[
2F^2F'G - F^2F'G' + F^2G'' - 2F^2G - 4FF'G' + 2F^2F'G' = 0
\] \hspace{1cm} (4.5.43)

\[
F^2F'F'' + F^3F''' - 2FF'G = 0
\] \hspace{1cm} (4.5.44)

Substituting (4.5.40) into the linear momentum equations (4.3.19) and (4.3.20), we obtain
\[h_x = \rho(yF' + G')(yF' + G') + \mu F'' - \mu'(yF' + G')(yF' + G') \ast \\
\ast (yF' + G')^2 + (yF' + G')^2(yF + G) + F^2(yF + G)(yF' + G') - \\
- \alpha_1(yF' + G')(yF(i)v) + G(i)v) \] (4.5.45)

\[h_y = \rho F(yF' + G') - \mu(yF'' + G'') - \mu'(yF' + G')(yF + G)^2 \\
+ F(yF + G)(yF' + G')^2 - F^2(yF + G) - \alpha_1 F(yF(i)v) + G(i)v) \] (4.5.46)

Integrating (4.5.46) with respect to 'y', we get

\[h = y[\rho FG'' - \mu G'' - \mu'(FGG' + F^2G' + F^3G') - \alpha_1 FG(i)v] + \\
+ (1/2)y^2[\rho FF'' - \mu F'' - \mu'(FF''G^2 + F^2GG + 2FF'GG' + F^2G^2) + \\
+ F^4) - \alpha_1 FF(i)v)] - (1/3)y^3\mu'[FG^3G'' + 2F^2F''G + FF'G + 2F^2F'G'] \\
- (1/4)y^4\mu'[FG^3F'' + F^2F'^2] + g(x) \] (4.5.47)

where \(g(x) \) is an arbitrary function of \(x \).

Differentiating (4.5.47) with respect to 'x' and using (4.5.45), we find that

\[g(x) = \frac{1}{2} \rho G' + \mu F' - \mu \int (G^2G'G' + GG'' + F^2GG') dx - \\
- \alpha_1 \int G'G(i)v) dx \] (4.5.48)

Having found \(g(x) \) and substituting this into (4.5.47), we can find the expression for the generalized pressure \(h \).

Finally, substituting the found value of \(h \) into equation (4.3.17), we find, on assuming that magnetic forces are present, that the
pressure is given by

\[p = h - \frac{1}{2} \rho \left[F^2 + y^2 F'^2 + G'^2 + 2yF'G' \right] + \alpha_1 \left[F F'' + y^2 F' F'' + \right. \\
\left. + y (F' G''' + F''' G') + G' G'' \right] + \left(\frac{1}{2} \right) (3 \alpha_1 + 2 \alpha_2) \left[4 F'^2 + y^2 F''^2 + \right. \\
\left. + G''^2 + 2y F''' G' \right] \]

(4.5.49)

For finitely conducting fluids, diffusion equations (4.2.15) must be satisfied identically, that is

\[\nabla^2 (\nu u) = \nabla^2 (\nu v) = 0 \]

(4.5.50)

Returning to the system of equations (4.3.41) to (4.5.44), we shall try to find a solution of this system.

Equation (4.5.44) admits the following two particular solutions

\[F_1 = k e^{a x}, \quad F_2 = D y^x \]

(4.5.51)

where \(k, a \) and \(D \) are arbitrary constants.

Letting \(F = F_1 \) and \(F = F_2 \) then equation (4.5.43) yields the same solutions as in case 2 of section 4.4. Hence the streamfunctions are given by equations (4.4.42) and (4.4.49) respectively. The pressure distribution (4.5.49) is considerably modified in this case however, because \(\alpha_1 \) - and \(\alpha_2 \) -terms are present.

\[-90- \]
CHAPTER 8

PLANE CONSTANTLY-INCLINED FLOWS

6.1. Introduction.

Magnetohydrodynamics (MHD) plane flows are said to be constantly-inclined if the magnetic field vector lies in the plane of flow and the angle between the velocity vector \(\mathbf{v} \) and the magnetic vector \(\mathbf{H} \), at any point, is constant throughout the flow and all the flow variables are functions of the rectangular coordinates \(x \) and \(y \) only.

Waterhouse and Kingston (1973) studied inviscid, constantly inclined plane flows. They obtained Bernoulli-type equations following Ladikov (1962) and classified these flows. Toews and Chandna (1974) carried out the study of constantly inclined compressible flows. Chandna, Toews and Nath (1975) studied viscous incompressible flows to investigate some properties and solutions of these flows.

Up to date there does not exist any work on Riabouchinsky type problems for magnetohydrodynamic flows and especially for constantly inclined flows.

In this chapter, we study the Riabouchinsky type problems for plane constantly inclined flows applying to both ordinary viscous fluids and second grade fluids. Only the infinitely
electrically conducting fluids have been considered.

In section 5.2, the flow equations are transformed into more convenient form for this work. Section 5.3 contains the derivation of the compatibility or integrability equation. Finally, section 5.4 consists of the solution to Riabouchinsky type problems for constantly inclined flows.
5.2 Flow Equations.

The basic equations governing the motion of an incompressible second-grade and electrically conducting fluid, in the presence of the magnetic field, are given by

\[
\text{div } \mathbf{V} = 0 \quad \text{(i)}
\]

\[
\text{div } \mathbf{T} + \mu^* (\text{curl } \mathbf{H}) \times \mathbf{H} = \rho [\mathbf{V} \cdot \text{grad}] \mathbf{V} = 0 \quad \text{(ii)}
\]

\[
\text{curl}(\mathbf{V} \times \mathbf{H}) - (1/\mu^* \sigma) \text{curl}(\text{curl } \mathbf{H}) = 0 \quad \text{(iii)}
\]

\[
\text{div } \mathbf{H} = 0 \quad \text{(iv)}
\]

and the constitutive equation for the Cauchy stress \(\mathbf{T}\)

\[
\mathbf{T} = -p \mathbf{I} + \mu \mathbf{A}_1 + \alpha_1 \mathbf{A}_2 + \alpha_2 \mathbf{A}_1^2 \quad \text{(v)}
\]

where \(\mathbf{V}\) denotes the velocity field vector, \(\mathbf{H}\) the magnetic field vector, \(p\) the fluid pressure function, \(\rho\) the constant fluid density, \(\mu^*\) the constant magnetic permeability, \(\mu\) the coefficient of viscosity, \(\sigma\) the electrical conductivity, \(\mathbf{I}\) is the unit tensor, and \(\alpha_1\) and \(\alpha_2\) are the normal stress moduli.

The Rivlin-Ericksen tensors \(\mathbf{A}_1\) and \(\mathbf{A}_2\) are defined as

\[
\mathbf{A}_1 = (\text{grad } \mathbf{V}) + (\text{grad } \mathbf{V})^T, \quad \mathbf{A}_2 = \hat{\mathbf{A}}_1 + (\text{grad } \mathbf{V})^T \mathbf{A}_1 + \mathbf{A}_1 (\text{grad } \mathbf{V}) \quad \text{(vi)}
\]

where

\[
\hat{\mathbf{A}}_1 = (\mathbf{A}_1 \cdot \text{grad } \mathbf{V})
\]

Equations (i) to (iv) is a system of eight equations in seven unknowns, the unknowns being \(\mathbf{V}, \mathbf{H}\) and \(p\). Equation (iv) is an additional condition on \(\mathbf{H}\), expressing the absence of magnetic
poles in the flow.

Since in this chapter, we only study infinitely electrically conducting fluids, that is, \(\sigma \) tends to infinity, then equation (iii) above reduces to

\[
\text{curl}(\mathbf{V} \times \mathbf{H}) = 0
\]
(5.2.1)

Letting \(\phi = 0 \) denote the constant angle between the velocity vector \(\mathbf{V} = (u, v, 0) \) and the magnetic vector \(\mathbf{H} = (H_1, H_2, 0) \) in the \((x, y)\) plane and employing (5.2.1), we find that

\[
u H_2 - v H_1 = q H \sin \phi = A
\]
(5.2.2)

where \(q = u^2 + v^2 \) and \(H = H_1^2 + H_2^2 \) are the magnitudes of velocity and magnetic intensity vectors respectively and \(A \) is an arbitrary constant which is non-zero due to the exclusion of aligned flows. Since \(\phi \) is constant, then equation (5.2.2) implies the existence of an arbitrary constant \(B \) such that

\[
u H_1 + v H_2 = q H \cos \phi = B
\]
(5.2.3)

where \(B = A \cot \phi \).

The constant \(B \) is zero if and only if \(\phi = (\pi/2) \) rad.

Considering (5.2.2) and (5.2.3) as two linear algebraic equations in the unknowns \(H_1 \) and \(H_2 \), we solve these in terms of \(u, v \) and \(\phi \) to have

\[
H_1 = \frac{A [v \cot \phi - v]}{u^2 + v^2}, \quad H_2 = \frac{- A [v \cot \phi + u]}{u^2 + v^2}
\]
(5.2.4)

Substituting equation (v) and making use of (vi), (5.2.1), (5.2.2), (5.2.3) and (5.2.4) into the system of equations (i) to
(iv), we find that the plane constantly inclined infinitely conducting flows are governed by

\[u_x + v_y = 0 \] \hspace{1cm} (5.2.5)

\[
\rho \left[\frac{\partial}{\partial x} \left(\frac{u^2 + v^2}{2} \right) - v(v_x - u_y) \right] + \frac{\partial}{\partial x} p = \mu \nabla^2 u - \\
- \mu \eta \lambda_j \frac{u + v \cot \phi}{u^2 + v^2} + \alpha_1 \left(u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} \right) \nabla^2 u + \frac{\partial u}{\partial x} \nabla^2 u + \\
+ \frac{\partial v}{\partial x} \nabla^2 v \right] + \frac{1}{4} (3\alpha_1 + 2\alpha_2) \frac{\partial}{\partial x} |A_1|^2 \] \hspace{1cm} (5.2.6)

\[
\rho \left[\frac{\partial}{\partial y} \left(\frac{u^2 + v^2}{2} \right) + u(v_x - u_y) \right] + \frac{\partial}{\partial y} p = \mu \nabla^2 v + \\
+ \mu \eta \lambda_j \frac{u \cot \phi - v}{u^2 + v^2} + \alpha_1 \left(u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} \right) \nabla^2 v + \frac{\partial u}{\partial y} \nabla^2 u + \\
+ \frac{\partial v}{\partial y} \nabla^2 v \right] + \frac{1}{4} (3\alpha_1 + 2\alpha_2) \frac{\partial}{\partial y} |A_1|^2 \] \hspace{1cm} (5.2.7)

\[
(2uv - 2u^2 \cot \phi) u_x + (v^2 - u^2 - 2uv \cot \phi) u_y + \\
(v^2 - u^2 - 2uv \cot \phi) v_x - (2uv + 2v^2 \cot \phi) v_y = 0 \] \hspace{1cm} (5.2.8)

\[
\frac{\partial}{\partial x} \left[\frac{u + v \cot \phi}{u^2 + v^2} \right] - \frac{\partial}{\partial y} \left[\frac{u \cot \phi - v}{u^2 + v^2} \right] = \frac{j}{A} \] \hspace{1cm} (5.2.9)

where \[|A_1|^2 = 4(u_x)^2 + 4(v_y)^2 + 2(v_x + u_y)^2 \] \hspace{1cm} (5.2.10)

Equations (5.2.5) to (5.2.9) is a system of five equations in four unknowns \(u, v, p \) and current density \(j = \text{curl} \mathbf{H} \).
5.3. Compatibility Equation.

In this section, we derive the compatibility equation for constantly-inclined flows by employing the above equations of motion for these flows. Riabouchinsky type problems are investigated by using the compatibility equation in the next section.

Introducing the vorticity function

\[\omega = v_x - u_y \quad (5.3.1) \]

we find that

\[\nabla^2 v = \omega_x, \quad \nabla^2 u = -\omega_y \quad (5.3.2) \]

Arranging the \(\alpha_i \)-terms of equations (5.2.6) and (5.2.7) into more convenient form and introducing the generalized pressure function

\[h = \frac{1}{2} \rho q^2 + p - \alpha_1 [u \nabla^2 u + v \nabla^2 v] - \frac{1}{4} (3\alpha_1 + 2\alpha_2) |A_1|^2 \quad (5.3.3) \]

in equations (5.2.5) to (5.2.9), we find that the constantly inclined flows are given by

\[\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \quad (5.3.4) \]

\[\frac{\partial h}{\partial x} - \rho v \omega = -\mu \frac{\partial \omega}{\partial y} - \mu^* A_j \left[\frac{u + v \cot \phi}{u^2 + v^2} \right] - \alpha_1 v \nabla^2 \omega \quad (5.3.5) \]

\[\frac{\partial h}{\partial y} + \rho u \omega = \mu \frac{\partial \omega}{\partial x} + \mu^* A_j \left[\frac{u \cot \phi - v}{u^2 + v^2} \right] + \alpha_1 u \nabla^2 \omega \quad (5.3.6) \]
\[(2uv - 2u^2 \cot \phi) u_x + (v^2 - u^2 - 2uv \cot \phi) v_y + (v^2 - u^2 - 2uv \cot \phi) v_x - (2uv + 2v^2 \cot \phi) v_y = 0 \quad (5.3.7)\]

\[\frac{\partial}{\partial x} \left[\frac{u + v \cot \phi}{u^2 + v^2} \right] - \frac{\partial}{\partial y} \left[\frac{ucot \phi - v}{u^2 + v^2} \right] = \frac{j}{A} \quad (5.3.8)\]

\[\omega = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \quad (5.3.9)\]

Equations (5.3.3) to (5.3.9) is a system of seven equations in six unknowns \(u, v, p, \omega, h, j\).

We next introduce the streamfunction \(\psi(x, y)\) defined by the continuity equation (5.3.4), that is

\[\psi_y = u, \quad \psi_x = -v \quad (5.3.10)\]

We can easily see that, equation (5.3.4) is identically satisfied, while the vorticity is given by

\[\omega = -\nabla^2 \psi \quad (5.3.11)\]

Employing (5.3.10) and (5.3.11) into equations (5.3.5) and (5.3.6), we find that these equations take the form

\[\frac{\partial h}{\partial x} - \rho \frac{\partial \psi}{\partial x} \nabla^2 \psi = \mu \frac{\partial}{\partial y} \left(\nabla^2 \psi \right) - \mu^* A j \left[\frac{u + v \cot \phi}{u^2 + v^2} \right] - \alpha_1 \frac{\partial^2 \psi}{\partial x^2} \nabla^2 \psi \quad (5.3.12)\]

\[\frac{\partial h}{\partial y} - \rho \frac{\partial \psi}{\partial y} \nabla^2 \psi = -\mu \frac{\partial}{\partial x} \left(\nabla^2 \psi \right) - \mu^* A j \left[\frac{ucot \phi - v}{u^2 + v^2} \right] - \alpha_1 \frac{\partial^2 \psi}{\partial y^2} \nabla^2 \psi \quad (5.3.13)\]
Differentiating equation (5.3.12) with respect to ‘y’ and (5.3.13) with respect to ‘x’ and using the integrability condition
\[
\frac{\partial^2 h}{\partial x \partial y} = \frac{\partial^2 h}{\partial y \partial x},
\]
we find that the compatibility equation for constantly inclined flows of a second grade fluid is given by
\[
\rho |\text{grad} \psi|^4 \frac{\partial (\psi, \nabla^2 \psi)}{\partial (x, y)} - \mu |\text{grad} \psi|^4 \nabla^4 \psi -
\]
\[
\mu^A |\text{grad} \psi|^2 \cot \phi \frac{\partial (\psi, J)}{\partial (x, y)} - \mu^A |\text{grad} \psi|^2 \left[\frac{\partial \psi}{\partial y} \frac{\partial J}{\partial x} + \frac{\partial \psi}{\partial x} \frac{\partial J}{\partial y} \right]
\]
\[
- \alpha_1 \frac{\partial (\psi, \nabla^2 \psi)}{\partial (x, y)} = 0
\]
\[
(5.3.14)
\]
Having solved equation (5.3.14), the velocity components and the vorticity are given by equations (5.3.10) and (5.3.11) respectively. Finally, functions h, p, H_1 and H_2 can be found by solving equations (5.3.3), (5.3.12), (5.3.13) and (5.2.4).
6.4. Solution of Riabouchinsky type problems.

In the Riabouchinsky type problems, we assume that the streamfunction is linear with respect to \(x \) or \(y \).

A) Generalities.

Assume that the streamfunction is of the form

\[
\psi(x, y) = yF(x) + G(x)
\]
(5.4.1)

where \(F(x) \) and \(G(x) \) are arbitrary functions of \(x \).

Substituting (5.4.1) into equation (5.3.7), we find that functions \(F(x) \) and \(G(x) \) must satisfy the following differential equations:

\[
[- 4FF'G' - G'G'' + F^2G'''] + \cot\phi [- 2F^2F' - 2FG'G'' + 2F'G'^2] = 0
\]
(5.4.2)

\[
[- 4F^2 - 2FG'G'' - F''G' + F^2F'''] + \cot\phi [- 2F'G'' - 2FF''G' + 4F'^2G''] = 0
\]
(5.4.3)

\[
[- F'^2G' - 2F'F''G'] + \cot\phi [- 2FF'F'' + 2F^3] = 0
\]
(5.4.4)

\[
F'^2F'' = 0
\]
(5.4.5)

From equation (5.4.5), either \(F' = 0 \) or \(F'' = 0 \).

Assuming that \(F'' = 0 \) and \(F' \neq 0 \) and using this assumption into the above equations and into compatibility equation (5.3.14), we find that \(F(x) \) and \(G(x) \) must satisfy the following equations:

\[
-G'' + 2\cot\phi F' = 0
\]
(5.4.6)

\[
2F' + \cot\phi G'' = 0
\]
(5.4.7)

\[
\mu G^{(i)} - \rho FG'' + \alpha_4 FG^{(v)} = 0
\]
(5.4.8)
\[\cot \phi F' + 3G'' = 0 \quad (5.4.9) \]

\[\cot \phi \left[-10F' G'' - F^2 G'' - 16F' G' + 8F G''\right] - 4F' F - 2FG' + 6G' G'' + 24F' G' G'' = 0 \quad (5.4.10) \]

\[-12F' F' - 6FG' G'' + 6F^2 F' G' - 18G'' G'' - 36F' G'' G'' = 0 \quad (5.4.11) \]

\[\cot \phi \left[2F^3 F' G'' - F^4 G'' - 30F' G' G'' - 8F'' G' - 2F^2 G'' G'' - 3F^2 G' G'' - 2F^2 G' G'' + 18F'' G' + 6F^2 F' G' + 12FG' G'' + 4F^3 F' G'' \right] - 2F^3 G' + 12FG' G'' G'' + 6G'' G'' G'' = 0 \quad (5.4.12) \]

\[\cot \phi \left[2F^2 F' G' G' + 2F^4 F' - F^4 G' - F^4 G' - 10F' G' G'' - 3F^2 G' G'' + 6F^2 F' G' G' + 6FG' G' G' + 4F^3 F' G' - 2F^3 G' G' + 2FG' G'' G' + 6G'' G'' G' + 6G'' G'' G' = 0 \quad (5.4.13) \]

Solving equations (5.4.6), (5.4.7) and (5.4.9), we find that \(F' = 0 \), which contradicts our assumption that \(F' \neq 0 \).

Hence, we must take \(F' = 0 \).

Assuming \(F' = 0 \), then \(F(x) = D \) where \(D \) is any arbitrary constant.

Using this result in equations (5.4.2) to (5.4.5) and into the compatibility equation (5.3.14), we find that \(G(x) \) must satisfy the following equations:
\[
\mu \left[D^8g^{(i \nu)} + 4D^6g'^2g^{(i \nu)} + 6D^4g'^4g^{(i \nu)} + 4D^2g'^6g^{(i \nu)} + g'g'^{(i \nu)} \right] \\
- \alpha \left[- D^2g^{(i \nu)} - 4D^7g'^2g^{(i \nu)} - 6D^4g'^4g^{(i \nu)} - 6D^3g'^6g^{(i \nu)} - Dg'g^{(i \nu)} \right] + \\
+ 2\mu^* A^2(1 + \cot^2 \phi) \cot \phi \left[- D^4g'^2 - D^4g'^4 + D^2g'^4 - D^2g'^6 \right] + \\
+ 6Dg'^2g'^{2i \nu} + 2\mu^* A^2(1 + \cot^2 \phi) \left[- 2D^3g'^2g'^{2i \nu} + D^2g'^6g'^{2i \nu} \right] - \\
- 2Dg'^3g'^{2i \nu} + Dg'^2g'^{2i \nu} + 6g'^3g'^{2i \nu} \right] + \rho \left[- D^5g'^{2i \nu} - 4D^7g'^2g'^{2i \nu} \right] \\
- 6D^5g'^{4i \nu} - 4D^3g'^{2i \nu} - Dg'^6g'^{2i \nu} \right) = 0 \quad (5.4.14)
\]
\[
- g'^2g'^{2i \nu} + D^2g'^{2i \nu} - 2\cot \phi \ Dg'^{2i \nu} = 0 \quad (5.4.15)
\]

Integrating equation (5.4.15) once, we get

\[
(1/3)g'^3 + D^2g' - \cot \phi \ Dg'^{2} = C_1
\]

OR

\[
g' \left[- g'^2 + 3D^2 - \cot \phi \ Dg' \right] = 3C_1 \quad (5.4.16)
\]

If we take \(C_1 = 0 \), then equation (5.4.16) reduces to

\[
g' \left[- g'^2 + 3D^2 - 3\cot \phi \ Dg' \right] = 0
\]

If \(g' = 0 \), then

\[
- g'^2 + 3D^2 - 3\cot \phi \ Dg' = 0 \quad (5.4.17)
\]

Solving (5.4.17), we find that

\[
g'(x) = - 3\cot \phi \ D \pm \sqrt{9\cot^2 \phi + 12}
\]

OR

\[
g(x) = (- 3\cot \phi \ D \pm \sqrt{9\cot^2 \phi + 12})x + M \quad (5.4.18)
\]

where \(M \) is an arbitrary constant.

Hence, we find that the streamfunction \(\psi(x, y) \) is given by
\[\psi(x,y) = Dy + G(x) \] \hspace{1cm} (5.4.19)

where \(G(x) \) is given by (5.4.18).

Employing (5.4.19) into the linear momentum equations (5.3.12) and (5.4.13), we find that

\[\frac{\partial h}{\partial x} = 0 \] \hspace{1cm} (5.4.20)

and

\[\frac{\partial h}{\partial y} = 0 \] \hspace{1cm} (5.4.21)

Solving equations (5.4.20) and (5.4.21), we find that

\[h = p_0 \] \hspace{1cm} (5.4.22)

where \(p_0 \) is an arbitrary constant.

On assuming that magnetic forces are present, we find, by using (5.4.22) into (5.3.3), that the pressure distribution is given by

\[p = p_0 - \rho \left[\frac{(1/2)D^2}{(1/2A)(3\cot\phi \pm (9\cot^2\phi + 12)^{1/2})^2} \right] \] \hspace{1cm} (5.4.23)

Since \(u = \psi_y \) and \(v = -\psi_x \), we find that

\[u = D \] \hspace{1cm} (5.4.24)

and

\[v = -\left(-3\cot\phi \pm (9\cot^2\phi + 12)^2 \right) \] \hspace{1cm} (5.4.25)

Finally, for these values of \(u \) and \(v \), equation (5.3.7) is identically satisfied.

Next, if we consider an ordinary viscous fluid, that is if \(\alpha_1 = \alpha_2 = 0 \), then the form of the streamfunction (5.4.19) remains the same. Also the pressure distribution remains unchanged.
B) Solution of Riabouchinsky.

We consider the special case of (5.4.1) where $G = 0$, usually attributed to Riabouchinsky (1924). Physically such a flow represents a plane stagnation flow in which the flow is separated in the two symmetrical regions by the plane $X = 0$.

Under this assumption, the streamfunction $\psi(x,y)$ takes the form

$$\psi(x,y) = Dy$$ \hspace{1cm} (5.4.26)

On assuming that magnetic forces are present, we find that the pressure distribution is given by

$$p = p_o - (1/2) \rho D^2$$ \hspace{1cm} (5.4.27)

where p_o is an arbitrary constant.

Using (5.4.26), we find that the velocity components are

$$u = D$$ \hspace{1cm} (5.4.28)
$$v = 0$$

For these values of u and v, equation (5.3.7) is satisfied identically.
CONCLUSION

In the present thesis, Riabouchinsky type problems of plane steady-state MHD flows of a viscous, incompressible fluid have been studied when the flow is assumed to be transverse, aligned and constantly-inclined. Both ordinary viscous fluids and second-grade fluids have been considered.

Solutions of the compatibility equations were obtained and from these solutions the velocity components and the pressure distribution were found. For the transverse and aligned flows the pressure distribution is considerably modified in a Non-Newtonian or second-grade fluid in comparison to the ordinary viscous fluid. However in the constantly-inclined flows the pressure distribution remains the same for both cases.

Beside known existing solutions to the compatibility equation, a number of new solutions were obtained for the different types of flows considered. Some of the new solutions are given by equations (3.4.26), (3.4.33), (3.5.27), (4.4.19), (4.4.22), (4.4.42), (4.4.49), (4.5.35), (5.4.19).

Furthermore, a number of particular solutions to the diffusion equation were found such as equations (3.4.7), (3.4.31), (3.5.31) to mention a few.
REFERENCES

Alfven, H. (1950) "Cosmical electrodynamics" Oxford University Press

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
<th>Title</th>
<th>Journal/Book</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fosdick, R.L. and Truesdell, C.</td>
<td>1977</td>
<td>"Universal flows in the simplest theories of fluids"</td>
<td>Annali Scuola Norm. Superiore, Sr. 4,323</td>
</tr>
<tr>
<td>Grad, H.</td>
<td>1960</td>
<td>"Reducible problems in magnetofluid dynamic steady flows"</td>
<td>Rev. Mod. Phys., 32, pp. 830-847</td>
</tr>
<tr>
<td>Author</td>
<td>Year</td>
<td>Title</td>
<td>Journal/Source</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(English translation: "Spiral Motions of Viscous Fluids". NACA Tech. Men 1342)</td>
<td></td>
</tr>
<tr>
<td>Kamke, E.</td>
<td>(1930)</td>
<td>"Differentialgleichungen reeller Funktionen".</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pp. 29-34. Leipzig.</td>
<td></td>
</tr>
</tbody>
</table>
Martin, M.H.
(1971)
"The flow of a viscous fluid".
Arch. Rat. Mech. Anal., 41, pp. 266-286

Power, G.
and Talbot, R.
(1969)
"Magnetogasdynamics flows in two dimensions with orthogonal magnetic and velocity field distributions".

Power, G.
and Walker, D.
(1965)
"Plane gasdynamic flows with orthogonal magnetic and velocity field distribution".

Prim, R.C.
(1952)
"Steady rotational flow of ideal gases".

Ranger, K.B.
(1969)
"Exact solutions for rotating bodies in a viscous conducting fluid".
Phys. Fluids, 12, pp. 776-777

Resler, E.L.
and McCune J.E.
(1959)
"Some exact solutions in linearized magnetoaerodynamics for arbitrary magnetic Reynold numbers".
Rev. Mod. Phys., 32, pp. 843-854

Riabouchinsky, D.
(1924)
"Some considerations regarding plane irrotational motion of a liquid".

Shercliff, J. A.
(1953)
"Steady motion of conducting fluids in pipes under transverse magnetic fields".

Smith, P.
(1963)
"Substitution principle for MHD flows".
J. Math. Mech., 12, pp. 505-520

Toews, H.
and Chandna, O.P.
(1974)
"Steady transverse plane Magnetogasdynamic flows".
Tensor, 28, pp. 184-188

-108-
"Plane magnetofluidodynamic flows with constantly inclined magnetic and velocity fields".
Can. J. Phys., 52, pp. 753-758

Vinokur, M.
(1961)

"Kinematic formulation of rotational flow in magnetogasdynamics".
Lockheed Aircraft Corp., Tech. Report 6-90-61-10

Waterhouse, J.S.
and Kingston, J.G.
(1973)

"Plane magnetohydrodynamics flows with constantly inclined magnetic and velocity fields".
VITA AUCTORIS

The author was born in Filiatra, Messinias, Greece on May 8, 1962.

She received her high school diploma from the Lyceum of Filiatra in 1980.

She received her B.A. in Honours Mathematics from the University of Windsor in 1987.