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Abstract 

 In blood malignancies, the balance of hematopoietic stem cell (HSC) self-renewal 

and differentiation is disturbed such that HSCs produce abnormal cells with an increased 

capacity to proliferate; however, the exact causes of this imbalance are not known. 

SpeedyA1 (Spy1) is a positive cell cycle regulator known to enhance cellular proliferation 

by direct binding and activation of Cyclin-dependent kinase (Cdk) Cdk2 and by 

promoting degradation of the Cdk inhibitor (CKI) p27
Kip1

. I demonstrate that Spy1 

expression levels are elevated in early stem and progenitor cells during hematopoiesis, 

but that Spy1 may also be implicated in later stages of myeloid differentiation. Spy1 

protein was elevated in human bone marrow tumour samples and Spy1 knock-down in 

HL-60 cells led to decreased cell growth as well as expression of leukemic stem cell 

(LSC) markers. Together, these findings demonstrate a potential role for Spy1 in 

regulating HSC fate and in the development of blood malignancies. 
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INTRODUCTION 

 

In Canada, there are approximately 90,000 people diagnosed with, or in remission 

from, a variety of blood malignancies including leukemia and lymphoma
1
.
 
Leukemia and 

lymphoma are the most common cancers diagnosed in children and youth under the age 

of twenty; these groups of cancers account for approximately one third and one fifth of 

childhood cancers, respectively
1-3

.
 
While advances in treatment have drastically improved 

survival rates for some types of blood cancers
4-11

, there are still many for which a cure 

has yet to be discovered
4,12-13

.
 
Complicating the discovery of new treatments is the 

enormous diversity among different types of blood cancers, each presenting with a 

different genetic background not yet fully elucidated. Therefore, it is of utmost 

importance to resolve the causes of blood cancers on a cellular and molecular level so that 

better treatments can be implemented. 

 

I. Hematopoiesis: Blood Cell Development 

 

The production and development of blood cells is a process known as 

hematopoiesis. This process is arranged in a hierarchy such that all blood cells are derived 

from a primitive hematopoietic stem cell (HSC) that is responsible for maintaining 

homeostasis of the blood system (Figure 1)
14-15

. HSCs, like other stem cells, have the 

unique ability to undergo asymmetric cellular division. Thus, they not only give rise to 

more differentiated blood cells to produce all the many types of blood cells found in the 

body, but they also generate more stem cells through self-renewal to maintain the pool of 

adult stem cells. 

Although HSCs were discovered over 50 years ago by McCulloch and Till
16-18 

and 

first isolated over 20 years ago
19

, it was not until recently that HSCs were discovered to  
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Figure 1. Hematopoietic Cell Development. Primitive HSCs give rise to all blood 

cells of the body through a series of steps in which cells get progressively more 

committed. LT-HSC, long-term repopulating HSC; ST-HSC, short-term repopulating 

HSC; MPP, multipotent progenitor cell; CMP, common myeloid progenitor; CLP, 

common lymphoid progenitor; MEP, megakaryocyte/erythroid progenitor; GMP, 

granulocyte-macrophage progenitor. (from Larsson, J. And Karlsson, S. Oncogene 

2005)
14
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be a heterogeneous population of stem cells with differential reconstitution ability
20-22,23

. 

In fact, different kinds of HSCs have now been characterized and isolated within the 

human hematopoietic system
22-29

. The long-term repopulating HSC (LT-HSC) is thought 

to be responsible for life-long maintenance of the adult stem cell pool
22

. LT-HSCs are 

relatively rare, representing <0.01% of cells found in the adult bone marrow
30-31

.
 
These 

stem cells, when transplanted into irradiated mice, have been shown to be capable of 

retaining engraftment potential indefinitely
22

.
 
LT-HSCs are relatively inactive, dividing 

infrequently to produce more rapidly proliferating short-term repopulating HSCs (ST-

HSCs) which give rise to multipotent progenitors (MPPs) with a decreased ability for 

self-renewal
22,32

.
 
MPPs can differentiate into the common lymphoid progenitor (CLP) 

and/or the common myeloid progenitor (CMP)
 
and at this point in hematopoiesis, blood 

cell development is restricted to the CLP or CMP lineage
14-15

.  

Through a series of differentiation steps, CLPs will give rise to white blood cells 

important for the functioning of the lymphatic system such as B-Lymphocytes, T-

Lymphocytes, and Natural Killer cells
14-15

. CMPs give rise to erythrocytes, 

megakaryocytes, granulocytes, and monocytes
14-15

.
 
Erythrocytes (red blood cells) contain 

hemoglobin and transport oxygen throughout the circulatory system
 
and megakaryocytes 

produce platelets which are important in the formation of blood clots
33-34

. Monocytes are 

white blood cells that produce macrophages which are important in destroying bacteria
33-

34
. Granulocytes are white blood cells important to the functioning of the human immune 

system and include neutrophils, eosinophils, and basophils
33-34

. 

The fate of HSCs is highly dependent on different growth factors present in the 

microenvironment. While the roles of several growth factors and cytokines in 

hematopoietic lineage decisions have been resolved, it is important to note that 

3



interleukin-3 (IL-3) and granulocyte-colony stimulating factor (G-CSF) are important in 

specifying a myeloid fate
30,35

, whereas a lymphoid fate is largely controlled by the 

presence of interleukin-7 (IL-7)
30

. 

 

II. Mammalian Hematopoietic Development 

 

The hematopoietic system is one of the first mammalian tissue systems to form in 

the developing embryo
36-37

. Primitive erythrocytes can be found in the blood islands of 

the extra-embryonic yolk sac early on in embryonic development
36-37

. However, 

definitive HSCs, capable of hematopoietic reconstitution upon engraftment in an adult 

irradiated mouse, are first observed in the aorta-gonad-mesonephros (AGM)
36-38

. In 

humans HSCs in the AGM are seen as early as embryonic day 27, indicating that the 

AGM is the first site of hematopoiesis in the developing embryo
37

. 

There are several developing organs involved in fetal hematopoiesis, including the 

liver, spleen, thymus, and bone marrow, that can contribute to fetal blood cell production 

after first being colonized by migrating blood cells
34,36-37,39-40

. Beginning as early as 

embryonic week 5 in humans the liver plays a distinctive role in fetal hematopoiesis as it 

supports proliferation and differentiation of the colonizing progenitor cells
37

. 

Nonetheless, it is not until later in embryonic development that the human fetal liver 

produces definitive HSCs that express the stem cell marker CD34 and have the capacity 

to undergo hematopoiesis in vitro
37,39

. At this point, the liver is the primary organ 

responsible for human fetal hematopoiesis
37

. 

The bone marrow is the last tissue important for hematopoietic development that 

is established in utero. The bone marrow microenvironment begins to form around 10 

weeks during human embryonic development and primitive myeloid and erythroid cells 
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can be found in the developing marrow as early as week 11
37

.
 
However, HSCs capable of 

hematopoietic reconstitution are not observed in the marrow until right before birth
37

.
 
At 

this time, blood development is diminished in the yolk sac and occurs only to a limited 

extent in the liver
37

.
 
This sequence of events has been shown to be very similar to that of 

hematopoietic development in mice
36

. 

The bone marrow will sustain hematopoiesis on a long-term basis for the 

remainder of the mammalian lifespan. However, other organs also serve important 

hematopoietic functions in the adult mammal. First, the spleen aids in red blood cell 

turnover as it is responsible for the destruction of damaged red blood cells; it also 

contributes to white blood cell synthesis
40

. In addition, the thymus plays a role in adult 

lymphocyte maturation
40

.
 
Moreover, the adult liver is also involved in the turnover of red 

blood cells
40 

and has been found to contain small populations of adult HSCs
41

.
 
HSCs can 

also be found in very small numbers in the circulating peripheral blood. An understanding 

of the role each secondary hematopoietic tissue plays in hematopoiesis is important as 

both fetal and adult tissues were examined in this work.  

 

III. HSC Quiescence 

 

The majority of adult HSCs, like other adult stem cells, remain in a relatively 

inactive state with low turnover referred to as quiescence
32,42-43

.
 
HSC quiescence is 

largely controlled by cell cycle inhibitors at G1 phase of the cell cycle including p21, p27, 

and p57 as well as by the tumour suppressor protein p53
44-47

.
 
The infrequent division of 

HSCs acts as a protective mechanism to limit DNA damage and to prevent premature 

proliferative exhaustion of the stem cell pool
32,42-43

. However, as previously mentioned, 

HSCs do enter the cell cycle occasionally to give rise to ST-HSCs that will support the 
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continuous production of many types of blood cells
32,42-43

. Furthermore, under times of 

physiological stress on the hematopoietic system such as injury or severe blood loss, adult 

HSCs are capable of exiting quiescence and rapidly proliferating to repopulate the 

hematopoietic system
42

. Thus, HSCs are relatively quiescent under homeostatic 

conditions, but retain the ability to rapidly self-renew when necessary. 

 

IV. Hematopoietic Malignancies: Subtypes 

 

Leukemia is primarily a disease of the hematopoietic system affecting organs such 

as the bone marrow and circulating blood. There are many different subtypes of leukemia 

that are classified based on the type of blood cell that is affected. Lymphoblastic or 

lymphocytic leukemia initiates in a marrow cell that is a precursor of a lymphocyte
48

. 

Myelogenous or myelocytic leukemia initiates in a marrow cell that is destined to become 

a red blood cell, platelet, or a type of white blood cell other than a lymphocyte
48

. 

Leukemia can be further classified into several subtypes based on how quickly the disease 

develops and on the maturation stage of the cells as determined by staining and pathology 

analysis
48

.
 
Chronic leukemia takes months, sometimes even years, to develop and is most 

common in adults
3,48

. On the other hand, acute leukemia, the most common form of 

leukemia in children
3
, has a rapid onset and can progress much more quickly

48
.  

Similar to lymphocytic leukemia, lymphomas involve abnormally proliferating 

lymphocytes. Unlike leukemia however, lymphoma results in the formation of masses of 

tumourigenic cells in the lymph nodes. The cancer can also spread to the liver, spleen, 

and other parts of the lymphatic and immune system; metastases to the lungs, bone, and 

central nervous system are also known to occur
3
. 
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Finally, a blood disorder known as myeloma also exists. Multiple myeloma is the 

second most common hematological malignancy and accounts for approximately 1% of 

all cancers
49

.
 
This disease primarily develops in B lymphocytes as they mature in the 

marrow to become plasma cells
49

. Cancerous plasma cells grow very rapidly and, in 

doing so, they prevent normal production of healthy blood cells and platelets; the end 

result is the formation of tumours in the marrow of the bones affected. Myeloma cells can 

invade and weaken the bones causing what are known as osteolytic lesions or bone 

lesions
49

.
 
A plasmacytoma refers to a patient with a bone lesion or tumour in only one 

site, whereas, multiple myeloma refers to a patient with tumours in the marrow of 

multiple bones
49

. 

 

V. Blood Malignancies: Involvement of Cell Cycle Proteins 

Although there are several different types of blood cancer, each affecting different 

kinds of blood cells at different stages of hematopoietic development, the common 

hallmark of blood cancers is an abnormal proliferation of specific kinds of blood cells. 

While the molecular mechanisms driving this abnormal proliferation have not been fully 

elucidated, several cell cycle proteins have been found to be implicated in different blood 

malignancies. 

The mammalian cell cycle is largely regulated by a family of protein kinases 

called Cyclin dependent kinases (Cdks) that, when bound to Cyclin proteins, can promote 

progression through the cell cycle. In addition to cyclin binding, Cdks are activated post-

translationally via phosphorylation by Cdk activating kinase (CAK) and removal of 

inhibitory phosphates by the Cdc25 phosphatases. Cdks are also negatively regulated by 

Cdk inhibitors (CKIs), such as the Cip/Kip family of inhibitors which bind to Cdk-Cyclin 
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complexes and interfere with the proper folding of the catalytic cleft, thereby, rendering 

the complex inactive. The Cip/Kip family includes p27
Kip1

, p21
Cip1

 and p57
Kip2

.  

Several blood malignancies have been found to display elevated Cdk levels and 

low levels of CKIs have been associated with poor prognosis in patients
50-52

.
 
For example, 

leukemia patients with low levels of p27 have presented with a worse prognosis
51

 and 

aberrant regulation of p21 has also been demonstrated in many human leukemias
44

. 

Furthermore, an increase in Cdk2 activity has been observed in both lymphoid and 

myeloid derived leukemias as well as in some lymphomas
50,52

. This increase has partly 

been attributed to the abnormal localization of p27 in the cytoplasm where it cannot 

inhibit activity of Cdk2
52

. 

 

 

VI. Cancer Stem Cell Hypothesis & Leukemic Stem Cells 

 

A population of cells known to drive tumour growth has been shown to exist in 

many cancers
15,53-57

. These cells, termed cancer stem cells (CSCs) possess similar 

characteristics of normal stem cells in that they can propagate themselves and also 

differentiate; thereby, they can not only sustain growth of the cancer, but can also give 

rise to the many differentiated cell types found within a heterogeneous tumour
15,58

. 

The existence of CSCs in blood malignancies was originally hypothesized based 

on the observation that only a very small percentage of human leukemia cells had 

clonogenic properties
59-60

. However, the first conclusive evidence for the existence of 

CSCs in leukemia came from the identification of a rare population of human acute 

myeloid leukemia (AML) cells that could generate leukemias representative to the human 

disease in xenograft transplants
53,61-62

.
 
These CSCs, called leukemic stem cells (LSCs), 
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were later shown to continuously generate leukemias in murine serial transplantation 

experiments, indicating that they possessed an indefinite potential to self-renew
58,63

. 

Although the discovery of LSCs in AML has prompted much research in the area, 

the origin of LSCs has not yet been completely resolved. LSCs may result from the 

transformation of normal HSCs or they may arise from mutations or epigenetic changes 

in more committed progenitor cells allowing for enhanced self-renewal
64-65

. Interestingly, 

there has been evidence to support that AML is organized in a hierarchy with distinct 

classes of LSCs with differential long term repopulating (self-renewal) potential similar 

to that of HSCs
53,58

.
 
Resolving the ambiguity surrounding the origin of the LSC will aid in 

the determination of specific molecular markers that are differentially expressed in 

normal and leukemic stem cells. This is a necessary step in targeting LSCs to eradicate 

this population therapeutically. To date, a few cell surface markers have been found to be 

commonly deregulated in leukemias and researchers are beginning to exploit these for 

drug design and clinical trials
66-70

. In AML the markers CLL-1 and CD33 have been 

identified as potential therapeutic targets for the eradication of LSC populations
67-70

. 

Although possessing the ability to rapidly self-renew, many LSCs have been 

shown to be quiescent, similar to LT-HSCs
58,64,71-72

. This low cycling state provides the 

same protective advantages to LSCs as it does to normal HSCs, limiting DNA damage 

and preventing exhaustion of the LSC population
72

.
 
LSCs are also known to contain an 

abundance of ATP-Binding Cassette Transporters (ABC Transporters)
73

. ABC-

transporters are proteins known to efficiently pump chemotherapeutics out of the cell, 

contributing to drug resistance. The presence of ABC-transporters and the relatively low 

cycling rate of LSCs makes them highly resistant to conventional therapies, especially 

those involving chemotherapeutic drugs
55,58,64,71-73

. Thus, LSCs often persist in the patient 
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post-treatment and can initiate disease relapse (Figure 2)
55,64,71,73

.
 

It is extremely 

important to uncover novel ways to target the LSC population in different blood 

malignancies to successfully induce disease remission. This requires resolving the 

origin(s) and mechanisms behind the development of LSCs. 

 

 

VII. Spy1 

 

SpeedyA1 (Spy1) was initially identified by two independent groups. Ferby and 

colleagues demonstrated that a novel protein, p33-RINGO (Rapid Inducer of G2-M 

Progression in Oocytes) was sufficient to initiate oocyte maturation in Xenopus and that 

depletion of this protein inhibited progesterone-induced oocyte maturation
74

. Similarly, 

Lenormand and colleagues also discovered a novel protein, Spy1, that could induce 

Xenopus oocyte maturation and that this was dependent on activation of the MAPK 

pathway
75

. 

To date, Spy1 is known to be expressed in a variety of human tissues and cell 

lines
76

; of particular interest to this study are the thymus and the liver. Spy1 was also 

found to be a nuclear protein and to be expressed in a cell cycle dependent manner, 

peaking in G1/S phase
76

. Although Spy1 has no sequence homology to the Cyclin 

proteins, it has been found to be capable of binding and activating both the G2/M Cdk, 

Cdk1, and the G1/S Cdk, Cdk2
74-77

. Interestingly, Spy1 can activate Cdk1 and Cdk2 in 

the absence of phosphorylation of the respective Cdks on Thr-161 and Thr-160; a 

modification normally required for Cdk kinase activity
77

.
 

In addition, Spy1-Cdk2 

complexes have been found to have broader substrate specificity than other Cyclin-Cdk2 

complexes, suggesting that Spy1 may alter the substrate specificity of Cdk2
78

. Taken 

together, the novel activation and altered substrate specificity of Cdk2 by Spy1 may result  
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Figure 2. LSC Hypothesis. (A) The LSC hypothesis predicts that the leukemic blast cell 

population is maintained by a small subset of tumourigenic cells with stem cell properties. 

LSCs can self-renew and differentiate to maintain the heterogeneous tumour. (B) Current 

treatments do not target LSCs so they persist and can initiate relapse. Novel treatment 

designs that target LSCs may help eliminate the entire malignancy. (from Guzman, M.L. 

and Jordan,C.T. Cancer Control 2004)
55
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in aberrant proliferation at times when it may be inappropriate; this represents one way in 

which Spy1 could contribute to tumourigenesis. 

Additionally, Spy1 is capable of overriding normal cellular responses to stress 

such as apoptosis, senescence, and DNA damage response pathways
79

. It is known that 

endogenous Spy1 levels increase in cells following treatment with DNA damaging agents 

and that the overexpression of Spy1 enhances cell survival in the presence of such agents 

by preventing apoptosis and interfering with repair pathways
79-81

. Specifically, the 

overexpression of Spy1 prevents cells from efficiently activating both G1/S and G2/M 

phase checkpoints following exposure to ultraviolet radiation and the activation of DNA 

damage response pathways increases in the absence of Spy1
79,81

. Moreover, Spy1-Cdk 

complexes demonstrate decreased sensitivity to inhibition by the cell cycle inhibitor, 

p21
Cip1

 and Spy1 has been shown to be capable of overriding the p27
Kip1

-mediated 

checkpoint at G1/S phase of the cell cycle
77,82-83

. Collectively, these findings have 

demonstrated that Spy1 can also contribute to tumourigenesis by promoting cell cycle 

progression even in the presence of cellular stressors. 

Recent data from our lab have demonstrated a role for Spy1 in maintaining 

stemness in the breast and the brain
84

. In addition, Spy1 is known to be elevated in many 

human cancers and it has been recently reported as important in human non-hodgkin’s 

lymphomas
85

. Hang and colleagues found that Spy1 protein was highly expressed in a 

variety of different types of human non-hodgkin’s lymphoma samples and that this 

expression was correlated with that of proliferation markers
85

. Importantly, they found 

that patients with high levels of Spy1 protein had a worse prognosis and decreased overall 

survival compared to patients with lower levels of Spy1 protein
85

. 
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The goals of this study were to explore the involvement of Spy1 in normal 

hematopoietic cell development and to determine its role in human blood malignancies. 

Initially, I sought to examine the expression of Spy1 in different hematopoietic tissues 

and to establish a role for Spy1 in hematopoietic fate decisions in vitro. Secondly, I aimed 

to discover whether Spy1 may be implicated in hematopoietic malignancies, particularly 

those known to contain LSC populations. 

 

Objective 1: Determine a role for Spy1 in hematopoietic stem cell fate. EML cells were 

utilized as a model system of hematopoietic development. These are murine bone marrow 

cells representative of MPP populations that are capable of responding to differentiation 

stimuli to generate differentiated blood cells of the erythroid, myeloid, and lymphoid 

lineages
30,86

.
 
Spy1 expression was examined during the myeloid differentiation of EMLs 

in vitro.  

 

Objective 2: Study the role of Spy1 in the development of hematopoietic malignancies. 

HL-60 cells were used as a representative case of acute myeloid leukemia as Spy1 is 

known to be highly expressed in this line. Short hairpin RNA (shRNA)-mediated knock-

down of Spy1 was performed and growth assays were used to study the effects of Spy1 

depletion on leukemic cell growth. Gene expression levels of known LSC markers in 

AML were also studied following shRNA-mediated depletion of Spy1.  Moreover, 

analysis of Spy1 protein levels in human bone marrow tumours was also performed. 

 

Collectively, this study aims to broaden the understanding of novel cell cycle regulators 

during normal hematopoiesis and in various blood malignancies, particularly AML. The 

13



findings of this study have identified Spy1 as important in regulating HSCs and have 

suggested a potential role for Spy1 in LSC populations. Overall, the outcomes of this 

study may have important implications in the treatment of blood malignancies. 
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MATERIALS AND METHODS 

I. Tissue Microarray Analysis 

Paraffin-embedded Tissue Microarray slides (US BioMax) were first baked at 

60˚C to remove paraffin. Immersion in xylene for 10 minutes, followed by subsequent 

immersion in 100% ethanol, 95% ethanol, and 70% ethanol for 5 minutes each was then 

performed to rehydrate the slide. After being washed in 1X PBS for 5 minutes, slides 

were immersed in sodium citrate buffer (pH 6.0) at 95ºC for approximately 15 minutes 

for antigen retrieval. Slides were then stained with different antibodies. Specifically, a 

blocking antibody (normal goat serum; Cayman Chemical 10006577) was applied to the 

slides at room temperature for 20 minutes followed by application of anti-Spy1 antibody 

at a dilution of 1:100 (Novus Biologicals NB100-2521) for 60 minutes also at room 

temperature. Slides were washed twice for 5 minutes in 1X PBS prior to application of a 

fluorescence-conjugated secondary antibody (Alexa488-goat anti-Rabbit IgG; Invitrogen 

A11008) at a dilution of 1:1300 for 20 minutes at room temperature in the dark. Slides 

were again washed in 1X PBS before application of TOTO-3 nuclear stain (1:1300; 

Molecular Probes T-3600) for 20 minutes in the dark. After a final wash in 1X PBS for 5 

minutes, slides were immersed subsequently in 70%, 95%, and 100% ethanol for 5 

minutes each, followed by immersion in xylene for 8 minutes. Slides were mounted to 

coverslips and ScanArray Express software (Perkin Elmer Inc.) was used to detect and 

quantify fluorescence. Data were normalized to the nuclear stain, TOTO-3. To control for 

non-specific signals, slides were compared to previously established slides stained with 

secondary antibody alone. 
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II. Murine Hematopoietic Tissue Extraction 

Balb-C mice were humanely sacrificed at post-natal day 7 and every week 

thereafter for 6 weeks for the extraction of tissues. All dissection tools were sterilized 

prior to use. Incisions were made on the ventral surface of each mouse beginning at the 

posterior end and moving anteriorly up the centre of the mouse to expose the body cavity 

and the internal organs. Samples of the liver, spleen, and thymus were cut, placed in an 

eppendorf tube and flash frozen in liquid nitrogen prior to storage. Peripheral blood was 

extracted using a syringe and needle. Bone marrow samples were obtained by flushing the 

bones of the hind limbs with 1X PBS; bone marrow from both left and right femurs and 

tibias were pooled. Red blood cells were removed by incubation with red blood cell lysis 

buffer (Sigma R7757) for up to 5 minutes on ice followed by centrifugation at 1200 rpm 

and 4ºC for 5 minutes. All samples were flash frozen in liquid nitrogen prior to storage in 

a -80ºC freezer. Three samples of each tissue were taken from one mouse for each time 

point. 

 

III. Protein Extraction 

Murine tissue samples were lysed and homogenized using a Sonic 60 

Dismembrator (Fisher Scientific FM2602) followed by centrifugation for 20 minutes at 

10,000 rpm and 4ºC to remove any fat or undesired tissues. For lysates in which fat was 

still present, a second centrifugation was necessary. Lysis buffer was composed of 0.1% 

Nonidet P-40, 50 mM Tris-HCl pH 7.4, 0.25% Deoxycholate acid, 1 mM EGTA pH 8.0, 

0.2% SDS, and 150 mM NaCl. The following protease inhibitors were added: PMSF (10 

µL/mL); Leupeptin (1 µL/mL); and Aprotinin (0.5 µL/mL). Protein lysates were stored at 

-80ºC.  
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IV.  Immunoblotting 

Protein concentrations of lysates were determined using the Micro-BCA protein 

assay kit (Thermo Scientific). Briefly, protein lysates were mixed with a working reagent 

in a 1:1 ratio and allowed to incubate at 60ºC for 60 minutes prior to analysis of 

absorbance at 562 nm in a spectrophotometer (Biomate 5, Thermo Electron Corporation 

BIO 145108). All protein concentrations were corrected to the reading of lysis buffer. A 

total of 50 to 100 µg of lysate was prepared in 4X sample buffer (10% glycerol, 62.5 mM 

Tris-HCl pH 6.8, 2% SDS, 0.01 mg/mL bromophenol blue, and 2% β-mercaptoethanol), 

boiled for 5 minutes, and run on a 10% SDS gel for 3 hours at 120 volts. Gels were 

transferred onto PVDF membrane (Millipore IPVH00010) for 2 hours at 30 Volts and 

membranes were subsequently blocked in 1% milk for a minimum of 45 minutes. 

Membranes were blotted with either anti-Spy1 antibody (Novus Biologicals NB100-

2521) or anti-Spy1 antibody (AMICUS Biotech) overnight at 4ºC for detection of Spy1 or 

with anti-actin monoclonal antibody (Chemicon Intl. MAB1501R) for 1 hour at room 

temperature for detection of a loading control protein. Secondary antibodies were either 

anti-rabbit IgG (Sigma A0545) or anti-goat (Santa Cruz sc-2020) for Spy1 and anti-

mouse IgG (Sigma A9917) for actin. All secondary antibodies were applied at room 

temperature for 1 hour. Membranes were washed in between primary and secondary 

antibody applications with TBS-Tween. Protein was visualised and densitometry was 

analyzed using FluorChem HD2 imaging software (Alpha Innotech). Only results 

obtained with the Spy1 antibody from Novus Biologicals are shown. 
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V. Cell Culture 

EML cells were purchased from American Type Culture Collection (CRL-11691) 

and cultured in Iscove’s Modified Dulbecco’s Medium (IMDM; ATCC 30-2005) 

supplemented with 20% heat-inactivated fetal bovine serum (hiFBS; Invitrogen 906532), 

1% penicillin/streptomycin solution (P/S; GIBCO 991805), and 50 ng/mL murine stem 

cell factor (SCF; MyBioSource MBS400071). EML cells were maintained at a cell 

density of 2.0 x 10
5 

cells/mL and 2 x 10
6 

cells/mL and passaged every 2 to 3 days. HL-60 

cells were a kind gift of Dr. Michael Boffa (University of Windsor, Biochemistry 

Department) and were cultured in IMDM supplemented with 20% FBS and 1% P/S. All 

cells were maintained in a 37°C humidified incubator set to 5% CO2. 

 

VI. Differentiation of EML Cells 

To induce differentiation of EML cells into myeloid progenitor cells, 1 x 10
5 

cells/mL were seeded in either 12 or 6 well plates. Differentiation media consisted of 

complete growth media (IMDM with 20% hiFBS, 1% P/S, 50 ng/mL SCF) with the 

addition of 10 ng/mL murine interleukin-3 (IL-3; Peprotech 213-13), and 10
-5 

all-trans 

retinoic acid (atRA; Sigma R2625). Control cells were grown in the absence of IL-3 and 

atRA. All plates containing atRA were stored in the dark. Cells were collected by 

centrifugation at 0, 24, 48, and 72 hours after the addition of differentiation media.  

Myeloid progenitor cells generated by 72 hours of growth in media containing IL-

3 and atRA were maintained in IMDM supplemented with 20% hiFBS, 1% P/S, and 10 

ng/mL murine granulocyte macrophage-colony stimulating factor (GM-CSF; Peprotech 

315-03). After 5 to 7 days of incubation with GM-CSF, myeloid progenitor cells were 

selected. To induce terminal differentiation, GM-CSF-dependent myeloid progenitor cells 
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were seeded at a density of 1 x 10
5 

cells/mL in either 12 or 6 well plates in complete 

growth media containing 10 ng/mL murine GM-CSF and 10
-5 

M atRA. Control myeloid 

progenitor cells were grown in the absence of atRA. All plates with media containing 

atRA were stored in the dark. Cells were collected by centrifugation at 0, 24, 48, and 72 

hours after the addition of atRA.  

 

VII. EML Immunomagnetic Cell Sorting 

To obtain a CD34+ population of cells, EML cells were sorted using Dynabeads 

M-450 Epoxy (Invitrogen 140.11) and an EasySep Magnet (Stem Cell Technologies 

18000) according to the manufacturer’s protocol. Briefly, magnetic beads were 

conjugated to anti-CD34 antibody (Santa Cruz IC0115) by incubation for 16 to 24 hours 

on a mutarotator at room temperature (5 µg anti-CD34 per 25 µL of Dynabeads). 25 µL 

of CD34-conjugated magnetic beads and 25 µL buffer (0.1% BSA in 1X PBS) were 

allowed to incubate with 2.5 x 10
6
 cells at 4ºC for 20 minutes with gentle rotation on a 

mutarotator. This ratio was scaled up or down depending on the starting cell number. 

Following this, a magnetic field was applied for 1 minute in the EasySep Magnet causing 

CD34+ cells to be pulled to the inner walls of a test tube so that CD34- cells could easily 

be obtained by removal of the buffer. Several 2 to 3 minute washes with 0.1% BSA buffer 

removed the CD34+ cells. CD34- and CD34+ cells were plated in 6 well tissue culture 

plates for approximately 1 week prior to collection, along with a heterogeneous 

population of EML cells, for further analysis. 
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VIII. HL-60 Lenti-viral Infections 

All HL-60 cell infections were performed in either 96 or 24 well plates. 5.0 x 10
4 

cells/well were seeded for infections in 96 well plates and 1.0 x 10
5
 cells/well were 

seeded for infections in 24 well plates. For all infections, HL-60 cells were seeded in 

serum-free and antibiotic-free IMDM containing 1 µg/mL polybrene (SantaCruz sc-

134220). Cells were allowed to incubate with polybrene-containing media for 

approximately 20 minutes before the addition of virus. Cells were infected with a vector 

carrying shRNA against Spy1 (pLKO-shSpy1) and control cells were infected with 

pLKO-shScrambled (pLKO). Lenti-virus was used at a titre of 10
7
 transducing units 

(TU)/mL and a multiplicity of infection (MOI) of 2 was used for all infections. Virus was 

removed by centrifugation and replaced with complete growth media approximately 20 

hours after the addition of virus. Cells were allowed a 24 to 48 hour recovery period prior 

to the addition of puromycin (Sigma P9620) at a final concentration of 2 µg/mL to select 

for successfully infected cells. Puromycin selection was performed for a minimum of 72 

hours before any subsequent assays. Non-infected control cells that were subjected to the 

same procedure were included in all cell infections. Quantitative real-time polymerase 

chain reaction (qRT-PCR) for expression of the human Spy1 gene was performed to 

quantify infection efficiency.  

 

IX. HL-60 Cell Proliferation Assays 

Upon successful selection in puromycin, cells expressing pLKO and pLKO-

shSpy1 were counted using Trypan Blue exclusion and cell counts performed using a 

BioRad TC10 Automated Cell Counter. 100,000 cells were seeded in 6 well plates in 
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complete growth media and cell counts were performed in triplicate every 24 hours for 3 

days using Trypan Blue exclusion. Wildtype HL-60 cells were also included. 

 

X. HL-60 Cancer Stem Cell Marker Analysis 

After successful selection in puromycin, cells expressing pLKO and pLKO-

shSpy1 were collected along with wild-type HL-60 cells for qRT-PCR analysis of 

leukemic stem cell markers commonly used as diagnostic markers in acute myelogenous 

leukemias. Genes examined were human CD33 and CLL-1. mRNA levels of each gene in 

cells exhibiting Spy1 knock-down were compared to levels in pLKO-infected control 

cells. 

 

XI. HL-60 Cell Differentiation 

To induce granulocytic differentiation, 1 x 10
5
 cells were seeded in 6 well plates. 

Differentiation medium consisted of complete growth media with the addition of atRA at 

a final concentration of 1 µM. Additional cells were also seeded in media containing 

0.1% ethanol to serve as vehicle controls. Cells were allowed to differentiate over a 

period of 5 days; media was changed every 48 hours and cells were grown in the dark. 

Vehicle control and differentiated cells were collected 3 days and 5 days after the addition 

of atRA for further analysis.  

 

XII. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) 

Total RNA was extracted from cell pellets using an RNeasy Extraction Kit 

(Qiagen 74134). Briefly, samples were lysed and homogenized prior to the removal of 

genomic DNA. Ethanol was used to enhance binding of RNA to an RNeasy spin column 
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and a series of wash steps were performed before elution of RNA using RNase-free 

water. RNA concentrations and quality were assessed on a NanoDrop Spectrophotometer 

(ND-1000 software version 3.3.0 Thermo Scientific). RNA was reverse transcribed using 

Superscript II reverse transcriptase (Invitrogen 100004925), 0.5 µg Oligo dT’s (Eurofin) 

and 0.5 µg random nanomers (Thermo Scientific SO142). qRT-PCR was performed using 

Fast SYBR green detection (Applied Biosystems 4385616) on an ABI Viia7 thermocycler 

(Applied Biosystems 278880504). All qRT-PCR reactions were performed for 55 cycles 

and the stages were as follows: denaturation of cDNA was performed at 95ºC for 1 

minute; annealing of primers to single stranded DNA occurred at 60ºC for 20 minutes; 

elongation occurred at 72ºC for 30 seconds. All gene-specific primers were used at a 

concentration of 5 µM with the exception of murine Spy1 and murine Sca-1 primers 

which were used at a concentration of 6 µM. Primer pairs are listed in Table 1. All data 

were normalized to GAPDH as an internal control.  

 

XIII. qRT-PCR Calculations 

All qRT-PCR reactions were analyzed using Viia7 software version 1.1.5 to 

generate Ct values. Briefly, the Ct of all target genes is balanced to that of the internal 

control, GAPDH, such that ΔCt values are calculated (example: ΔCtSpy1 48hr = CtSpy1 48hr – 

CtGAPDH 48hr). The sample to which all other samples will be compared is then set to zero 

to generate ΔΔCt values; in this case, wildtype cells, pLKO control cells, or 0hr time 

points for differentiation experiments were set to zero (example: ΔΔCtSpy1 48hr = ΔCtSpy1 

48hr – ΔCtSpy1 0hr). The relative quantification (RQ) value is then calculated by taking 2
-ΔΔCt

 

(example: RQSpy1 48hr =  2
-ΔΔCt

Spy1 48hr). All data represents log10 relative quantification. 

Error bars represent the standard error of the mean ΔCt value. 
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Table 1. Murine qRT-PCR Primer Pairs 

 

Murine 

Gene 

Forward Primer (5’-3’) Reverse Primer (5’-3’) 

GAPDH GATGCCCCCATGTTTGTGAT GTGGTCATGAGCCCTTCCA 

Spy1 GCTTTAGGGAAAAACTGGAGA

AAA 

AATGGCCATGACCTCTTCACA 

c-kit GGGCAAGAGTTCCGCCTTCTT GCTGCGACCACAAAGCC 

Sca-1 CTCTGAGGATGGACACTTCT GGTCTGCAGGAGGACTGAGC 

CD34 GAGAATTCTGGAATCCGAGAA

GTGAGGT 

ACTCTAGAACCCAGCCTTTCTCC

TGTAG 

Mac-1 GCCAATGCAACAGGTGCATAT CACACATCGGTGGCTGGTAG 

Gr-1 TGGACTCTCACAGAAGCAAAG GCAGAGGTCTTCCTTCCAACA 

C/EBPε GACCTACTATGAGTGCGAGCC

T 

ACACCCTTGATGAGGGTAGCAG 

 

 

Table 2. Human qRT-PCR Primer Pairs 

 

Human 

Gene 

Forward Primer (5’-3’) Reverse Primer (5’-3’) 

GAPDH GCACCGTCAAGGCTGAGAA

C 

GGATCTCGCTCCTGGAAGATG 

Spy1 TTGTGAGGAGGTTATGGCCA

TT 

GCAGCTGAACTTCATCTCTGTTGT

AG 

CD33 AAGTACAGGAGGAGACTCA

GG 

GTGATTATGAGCACCGAGG 

CLL-1 GTGATGATGTCCAAACATGG

C 

GATTGATGCCTCATGCCTCC 

Mac-1 AGTTGCCGAATTGCATCGA GGCGTTCCCACCAGAGAGA 

 

 

 

 

 

 

 

23



XIV. Statistical Analysis 

All statistical analyses for qRT-PCR data was performed with the use of a 

Student’s paired t-test. Data were only taken as significant if the p-value was less than 

0.05. For statistical analysis on the tissue microarray of human multiple myeloma samples 

(TMA T293) a Student’s paired t-test was performed in Statistica software.  
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RESULTS 

I. Spy1 Protein is Expressed in Mammalian Sites of Hematopoiesis 

To analyse protein expression of Spy1 in tissues known to be implicated in blood 

cell production and maturation, tissue microarray analysis was performed. Tissue samples 

present on the microarray represent those of a human fetus at age 5 months gestation. 

Tissues were stained with anti-Spy1 and anti-rabbit-Alexa 488 antibodies as well as 

TOTO-3 nuclear control stain in order to quantify Spy1 protein levels. Although several 

human tissues were analysed, those of interest to blood cell development are the thymus, 

liver, spleen, and bone.  Results indicate that Spy1 is expressed at the protein level in the 

thymus, liver, spleen, and bone and that this expression is moderate in comparison to 

other tissues represented on the microarray (Figure 3A). Interestingly, of the 

hematopoietic tissues examined, Spy1 was expressed to the greatest extent in the liver and 

the bone.  

Further analysis on liver, spleen, and thymus samples from Balb/C mice at post-

natal age 7 and 21 days was performed using SDS-PAGE and immunoblotting (Figure 

3B). Results were quantified using densitometry and Spy1 protein levels were analyzed 

relative to an internal control protein, actin. Results indicate that Spy1 protein is 

expressed in all the murine hematopoietic tissues sampled thus far. Remaining consistent 

with the tissue microarray data, Spy1 protein was expressed to the highest extent in the 

liver. Furthermore, levels of Spy1 protein showed, at minimum, a 2 fold decrease at each 

site by day 21. Overall, these results show that Spy1 is expressed in mammalian tissues 

important for hematopoietic development. 
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Figure 3. Spy1 protein is expressed in mammalian hematopoietic tissues. (A) Spy1
protein levels in human fetal samples as measured by tissue microarray analysis. Values
are presented as relative to the nuclear control TOTO-3. Error bars represent standard
error of the mean of at least 3 separate samples for each tissue. Hematopoietic tissues are
highlighted in red boxes. (B) Levels of Spy1 protein in Balb/C spleen, liver, and thymus
tissue samples extracted at post-natal days 7 and 21. Densitometry analysis depicts the
ratio of Spy1 protein relative to loading control (β-Actin). Error bars represent standard
error of the mean of 3 protein lysates from each tissue.
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II. Spy1 Expression Decreases During EML Myeloid Differentiation 

The multipotent murine bone marrow cell line, EML, was used as a model for 

hematopoietic myeloid differentiation. EML cells were stimulated to differentiate down 

the myeloid cell lineage to become more committed early progenitor cells capable of 

producing many myeloid cell types (Figure 4A). Specifically, EML cells were given 

murine IL-3 and atRA over a time period of 3 days. Control cells were grown in the 

absence of IL-3 and atRA. mRNA expression of Spy1 relative to EML control cells was 

evaluated every 24 hours using qRT-PCR. Results indicate that both of the stem cell 

markers c-kit and Sca-1 significantly decrease over time (Figure 4B & 4C) while the 

myeloid specific differentiation markers, Mac-1 and Gr-1, both increase over time (Figure 

4D & 4E). Collectively, these results indicate that the EML cells were successfully 

undergoing myeloid differentiation. Furthermore, it was demonstrated that Spy1 mRNA 

consistently decreases as EML cells are forced to differentiate into myeloid progenitor 

cells; at least a 3-fold decrease was observed at all time points (Figure 4F). These results 

were found to be statistically significant. 

 

III. Spy1 Expression is Elevated in CD34
+
 EML Cells 

It has previously been shown that EML cells are a heterogeneous population of 

multipotent blood cells
30,86

. Immunomagnetic sorting using anti-CD34 antibody was 

performed to isolate the CD34
+
 and CD34

-
 populations of EML cells; these populations 

have been shown previously to possess stem-like characteristics
26,52,86-87

. qRT-PCR 

analysis of CD34 mRNA levels shows successful sorting of CD34
+
 and CD34

-
 cells 

(Figure 5A). qRT-PCR analysis of Spy1 mRNA levels within each population compared 

to a heterogeneous population was also performed (Figure 5B). Although these data 
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Figure 4. Spy1 expression decreases during EML myeloid differentiation. (A) A sche-
matic representation of EML cell differentiation. Differentiation steps (arrows) and
growth factors used are marked in red. (B-F) qRT-PCR was used to analyze mRNA levels
of stem cell markers: c-kit (B) and Sca-1(C) as well as myeloid specific differentiation
markers: Mac-1 (D) and Gr-1(E), and Spy1 (F). All data are normalized to GAPDH and are
expressed as relative quantification (RQ) on a logarithmic scale (log 10). Error bars repre-
sent standard error of the mean of three independent experiments each run in triplicate.
Statistical analysis was performed using a Student’s paired t-test (*p<0.001, **p<0.002,
***p<0.005, ****p<0.05)
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represent only two independent experiments, these preliminary results indicate that Spy1 

is elevated in the CD34
+
 population; this is an approximately 50 fold increase over the 

CD34
-
 EML cell population. Taken together, the results presented in Figures 4 and 5 

demonstrate correlative expression of Spy1 in early stem and MPP cells in the 

hematopoietic system. 

 

IV. Spy1 Expression Increases During EML Terminal Myeloid Differentiation  

EML cells that were successfully differentiated into myeloid progenitor cells were 

further stimulated with murine GM-CSF and atRA to induce differentiation into terminal 

cells of the granulocyte and monocyte lineages (Figure 6A). It is important to note that 

EML-derived myeloid progenitors are absolutely dependent on GM-CSF for growth; 

therefore, control cells were grown in the absence of atRA and the presence of GM-CSF. 

Gene expression of Spy1, c-kit, and the myeloid specific differentiation markers, Mac-1 

and C/EBPε, was analyzed using qRT-PCR every 24 hours for a period of 72 hours. 

Results show that myeloid progenitor cells were successfully differentiating into terminal 

myeloid cells as indicated by the decrease in c-kit expression (Figure 6B) and the increase 

in both Mac-1 (Figure 6C) and C/EBPε (Figure 6D) expression. However, the control 

cells showed a slight increase in Mac-1 and C/EBPε, indicating spontaneous 

differentiation potentially as a result of GM-CSF. Although results were inconsistent with 

regards to Spy1 expression levels between 4 independent experiments, results do suggest 

that Spy1 may be increased at the gene expression level during these later stages of 

differentiation (Figure 6E).  
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Figure 5. Spy1 expression is elevated in CD34 + EML cell populations. Relative
mRNA levels of CD34 (A) or Spy1 (B) were assessed by qRT-PCR in heterogenous EML
populations, CD34 enriched populations (CD34+), and the CD34 negative populations
(CD34-). Data arenormalizedto GAPDH and arepresented as the relative quantification
(RQ) depicted on a logarithmic scale (log10). Error bars represent the standard error of the
mean of two independent sorts each run in triplicate qRT-PCR reactions.
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Figure 6. Spy1 mRNA levels increase during EML terminal myeloid differentiation.
(A) Schematic representation of EML cell line differentiation. The differentiation steps
performed in this experiment are shown in red. (B-E) qRT-PCR analysis of the mRNA
levels of: the stem cell marker c-kit (B), the differentiation markers Mac-1 and C/EBPε (C
& D respectively) , and Spy1 (E). All data are normalized to GAPDH endogenous control
and data are presented as relative quantification (RQ) on a logarithmic scale (log 10). Error
bars represent standard error of the mean of four independent experiments each run in
triplicate. Statistical analysis was assessed by the Student’s paired t-test (*p<0.001,
**p<0.05).

34



V.  Leukemia Cell Growth Decreases in the Absence of Spy1 

To study the role of Spy1 in leukemic stem cell populations, a human acute 

promyelocytic cell line was chosen as a representative case of AML. HL-60 cells were 

infected with lenti-virus to express pLKO-shSpy1 or with pLKO-shScrambled (pLKO) as 

a control. qRT-PCR analysis was used to confirm the knock-down of Spy1; results 

demonstrate approximately an 8 fold decrease in the expression of Spy1 in cells infected 

with pLKO-shSpy1 compared to control pLKO cells (Figure 7A). Cells successfully 

expressing pLKO and pLKO-shSpy1 were selected by growth media containing 

puromycin. After 72 hours of selection, 100% of wildtype HL-60 cells were dead, while 

100% of pLKO and approximately 80% of pLKO-shSpy1 cells were alive, indicating 

they were successfully infected (Figure 7B-G). To assess the effect Spy1 depletion would 

have on HL-60 cell growth, 100,000 cells were seeded in 6 well plates for each construct 

and cell number was assessed every 24 hours using Trypan Blue Exclusion and cell 

counts performed in triplicate. Results indicate that HL-60 cells exhibiting Spy1 knock-

down grow more slowly than both pLKO control and wildtype cells at all time points 

(Figure 8). After 72 hours of growth pLKO-shSpy1 cells have multiplied to produce 

approximately 3.5 x 10
5 

cells, whereas pLKO control cells have nearly double the cell 

number (6 x 10
5
 cells). Therefore, it is evident that HL-60 cells grow significantly slower 

when Spy1 is depleted. These results were found to be statistically significant. 

 

VI. Expression of LSC Genes Decreases in the Absence of Spy1 

CLL-1 and CD33 are both known to be highly expressed on leukemia cells in 

patients with AML, but not on normal HSCs or non-myeloid cells
66,68,70,88

. In addition, 
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Figure 8. Spy1 knock-down slows HL-60 cell growth. Trypan blue exclusion assay was
performed to assess cell proliferation of HL-60 cells successfully infected with shRNA
against Spy1(pLKO-shSpy1) or scrambled control (pLKO). over a period of 72 hours.
Error bars represent the standard error of the mean viable cell number of three indepen-
dent experiments each counted in triplicate. Statistical analysis using a Student’s paired t-
test was performed to compare growth of pLKO to pLKO-shSpy1 cells (#p<0.001) and to
wildtype cells (*p<0.001, **p<0.005) at all time points.
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CLL-1 and CD33 have been previously studied as potential LSC targets in clinical trials 

for treatment of human AML
66-67,69

. Following selection in puromycin, cells exhibiting 

successful knock-down of Spy1 were analysed by qRT-PCR for expression of both CLL-

1 and CD33. Results indicate that both CLL-1 and CD33 levels are decreased in HL-60 

cells expressing shSpy1 when compared to control pLKO cells (Figure 9). More 

specifically, an approximate 3 fold decrease in the expression levels of CLL-1 and an 

approximate 4 fold decrease in the expression levels of CD33 were observed. These 

results indicate a potential role for Spy1 in promoting formation of LSC populations in 

AML. 

 

VII. Spy1 Expression Increases During HL-60 Differentiation 

To examine whether Spy1 levels may be altered by current therapeutic regimens 

for AML, HL-60 cells were treated with atRA. Specifically, HL-60 cells were cultured in 

media containing atRA for 5 days to allow for granulocytic differentiation or in media 

containing 0.1% ethanol as a vehicle control. Cells were analysed using qRT-PCR for 

expression of the human myeloid cell marker Mac-1 and for Spy1 at 3 days and 5 days 

after the addition of atRA (Figure 10). Preliminary results demonstrate that Mac-1 

expression levels increase as HL-60 cells differentiate, demonstrating an approximate 5.6 

fold increase in expression over vehicle control cells by 5 days differentiation. Spy1 gene 

expression also increased as HL-60 cells differentiated, demonstrating approximate 5 fold 

and 16 fold increases in expression over cells treated with a vehicle control at 3 and 5 

days atRA differentiation, respectively. Interestingly, this result is consistent with the 

increase of Spy1 observed during atRA-induced terminal differentiation of EML cells.  
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40



VIII. Spy1 Protein is Significantly Elevated in Myelomas 

To examine levels of Spy1 in a more differentiated blood malignancy, tissue 

microarray analysis of human bone marrow-derived myeloma tumours was performed. 

Specifically, Spy1 protein levels were examined in a variety of human myeloma samples 

relative to levels in normal bone marrow. Paraffin-embedded tissues were stained with 

anti-Spy1 antibody followed by Alexa488 fluorescent conjugated secondary antibody and 

a nuclear control, TOTO-3. Results indicate that Spy1 protein is expressed in normal 

human bone marrow and that this expression is significantly elevated in all of the tumour 

samples examined to date (Figure 11). For example, Spy1 protein was expressed at levels 

more than ten times as great as those observed in normal marrow (Figure 11; Myeloma of 

the Vertebrae). Spy1 protein was increased to the least extent in Ewing’s sarcoma, but 

even this expression was three times that of normal marrow samples (Figure 11). 
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Figure 11. Spy1 protein is significantly elevated in multiple myelomas. Levels of Spy1
protein relative to a nuclear control stain, TOTO-3 are graphed. Tissues are representative
of four different types of multiple myeloma (n=16) (myeloma of the vertebrae, plasma
cell myeloma of the pubis, Ewing’s sarcoma, and myeloma of the neck) and normal bone
marrow tissue (n=8). Samples were obtained from human patients ranging in age from
10-57 years. Error bars represent the standard error of the mean. Statistical significance
was assessed using a student’s paired t-test in Statistica software (*p=0.001, **p=0.0003,
***p=0.00001)
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DISCUSSION 

 Collectively blood malignancies are the 4
th

 most common cancer diagnosed in 

both men and women worldwide
1
. Despite overall drops in mortality due to advances in 

treatment and earlier diagnosis, leukemias still have a poor prognosis with an overall five 

year survival rate of only 51%
1
. Blood malignancies represent a diverse group of cancers 

with many genetic backgrounds, not all of which have been resolved to date. The findings 

presented in this study have demonstrated involvement of the novel cell cycle regulator, 

Spy1, in normal hematopoietic cell development and suggest implications for Spy1 in the 

development of LSCs. 

 To determine whether Spy1 protein was expressed in tissues known to play 

important roles in the hematopoietic system, tissue microarray analysis was performed. It 

was found that Spy1 was expressed, at the protein level, rather ubiquitously across many 

human fetal tissues. Notably, Spy1 protein was found to be expressed in fetal tissues 

known to support hematopoietic cell development including the spleen, thymus, and liver. 

This is consistent with previous work which demonstrated Spy1 expression in many 

human tissues including the liver and thymus
76

. Of the tissues examined in this study, 

Spy1 protein levels were greatest in the liver. The liver plays a very prominent role in 

development of the hematopoietic system by supporting hematopoiesis for a large portion 

of fetal development
37,39,41

. It is notable that Spy1 has been found to be involved in 

hepatocellular carcinoma
89

; hence, whether expression is occurring in the hematopoietic 

cells or early hepatic cells from these data is not known. 

 These results were further supported by western blot analysis of murine spleen, 

thymus, and liver tissues where Spy1 protein was found to be expressed at 7 and 21 days 

post-natal development. Consistent with the tissue microarray analysis, Spy1 was 
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expressed to the greatest extent in the liver. The murine liver has been shown to support 

HSC production and development for a short period of time post-natally
39 

and HSCs have 

recently been identified in the adult mammalian liver
41,90

. Moreover, the presence of 

hematopoietic progenitors capable of forming hematopoietic colonies in vitro has been 

observed in many murine adult organs including the liver and the spleen
90-91

. Therefore, 

this result provides further evidence that Spy1 is expressed in tissues important in early 

hematopoietic development. Furthermore, densitometry analysis shows that Spy1 protein 

expression decreased by day 21 in all tissues examined. The proportion of HSCs in 

hematopoietic tissues is known to be the greatest in younger mammals due to a 

developmental need
34

; thus, the decrease in Spy1 protein levels observed in older murine 

samples may be explained by a decrease in the proportion of early stem and progenitor 

cells in these tissues. However, due to the many cell types present in each of these tissues, 

future steps should involve cell sorting in order to draw any direct conclusions between 

Spy1 and HSC development in these tissues. 

 To further clarify a role for Spy1 in hematopoietic cell development, murine bone 

marrow cells capable of erythroid, myeloid, and lymphoid (EML) differentiation in 

response to different growth factors in vitro were utilized
30,86

. EML cells are 

representative of the MPP population in hematopoietic development expressing the cell 

surface markers c-kit, Sca-1, and some early lineage progenitor markers
30

. EML cells 

have previously been immortalized by the expression of a dominant negative retinoic acid 

receptor; this induces a block in EML myeloid differentiation that can be overcome with 

very high concentrations of all-trans retinoic acid
30

. For the purposes of this study, EML 

cells were induced to differentiate down the myeloid pathway by the addition of IL-3 and 

atRA to generate the more committed myeloid progenitor cells, termed GMPs. Results 
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show a significant decrease in Spy1 gene expression during the initial stages of EML 

myeloid differentiation, demonstrating that Spy1 levels correlate with stages of 

development focused on maintaining the early hematopoietic stem and progenitor cell 

populations. This is consistent with previous work in our lab showing that Spy1 levels 

correlate with its ability to regulate stemness decisions in both the breast and the 

brain
84,92

. Future experiments in which Spy1 levels are manipulated prior to 

differentiation will be necessary to further substantiate the functional importance of this 

expression pattern and provide direct evidence that Spy1 plays a role in directing HSC or 

MPP fate. 

 As previously mentioned, EML cells are known to be a heterogeneous population 

of MPP cells expressing early stem cell genes such as c-kit and Sca-1, but also expressing 

markers for early lineage progenitor cells
30

. Furthermore, EML cells contain both a 

CD34
+ 

and CD34
-
 population of cells with different capacities to proliferate and 

differentiate
86

. To determine if Spy1 is differentially expressed in certain populations of 

the HSC compartment, EML cells were subject to immunomagnetic sorting to isolate 

CD34
+ 

and CD34
-
 populations. Results demonstrate an approximate 50 fold increase in 

Spy1 gene expression levels in the CD34
+
 EML population in comparison to both the 

CD34
- 

and the heterogeneous EML populations. This finding further demonstrates that 

Spy1 expression correlates with the stages of hematopoietic development involving the 

early CD34
+
 stem and MPP cells. Differential expression of CD34 in the murine 

hematopoietic stem cell compartment mirrors the proliferative status of the cell 

populations. Relatively quiescent LT-HSCs residing in the bone marrow niche are CD34
-
 

and capable of long-term engraftment
25-26,28,93

. In contrast, ST-HSCs and MPPs have 

transient engraftment ability, can be mobilized from the marrow, and are CD34
+ 25-26,28,93

. 
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Despite these established correlative patterns, it is notable that differences in cell surface 

protein expression have not been definitively linked as playing a causative role in the 

functional differences between ST-HSCs and MPPs
25-26,52,87,94

. Spy1 is expressed to a 

greater extent in the ST-HSCs and MPP cells and, therefore, Spy1 may be important in 

fate decisions of these cells, however, this functional role needs to be directly assessed. 

EML-derived GMP cells are dependent on GM-CSF for survival and can 

spontaneously produce mature monocytes and macrophages. However, EML-derived 

GMP cells display a defect in terminal granulocyte differentiation that can be overcome 

with high concentrations of atRA
30

. To determine how Spy1 levels correlate with these 

later stages of development, EML-derived GMP cells were induced to terminal 

differentiation with GM-CSF and atRA. Control cells were grown in GM-CSF containing 

medium. Interestingly, Spy1 mRNA levels were found to be elevated during the terminal 

differentiation of EML cells, although changes in Spy1 levels were not significantly 

greater than those observed in control cells. This may be due to the fact that EML-derived 

GMPs are capable of spontaneously differentiating down the monocytic pathway; 

therefore, differentiated cells of the monocyte lineage are likely present in the control cell 

populations as indicated by the increases in Mac-1 and C/EBPε in these cells.  

Although LT-HSCs and ST-HSCs have the highest capacity for self-renewal of all 

hematopoietic cells, it has been discovered that MPPs, early and late lineage progenitor 

cells, and even some mature blood cells maintain a proliferative index due to the high 

turnover of blood cells
95-96

. Spy1 has been shown to be necessary for proliferation in a 

variety of mammalian cell types
76,82,84,92

; therefore,  perhaps Spy1 is elevated during the 

differentiation of GMP cells to aid in proliferation of lineage progenitors and mature 
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blood cells lower in the hierarchy. Alternatively, since Spy1 levels were only analysed at 

the mRNA level, it is possible that Spy1 protein continues to decrease during GMP 

differentiation, but that this is regulated at the translational or post-translational level. 

Overall, this result may suggest broader implications for Spy1 in hematopoietic 

development as it indicates a potential need for Spy1 in later stages of blood cell 

differentiation. 

 Collectively, these in vitro experiments indicate that Spy1 expression correlates 

with proliferative stages of myeloid development including the early stem and MPP 

stages; therefore, subsequent experiments aimed to elucidate a role for Spy1 in AMLs 

known to have LSC populations. HL-60 cells are human leukocytes consisting primarily 

of neutrophilic promyelocytes taken from a patient with acute promyelocytic leukemia
94

. 

HL-60 cells were subjected to shRNA-mediated knock-down of Spy1 and effects on 

growth were assessed using trypan blue exclusion and cell counts. It was observed that 

HL-60 cells grew more slowly in the absence of Spy1 in comparison to both control 

pLKO cells and wildtype HL-60 cells. This demonstrates that Spy1 plays an important 

role in promoting cell growth and proliferation in this representative case of AML. These 

results are consistent with previous data demonstrating a proliferative role for Spy1 in 

mammalian cells
76,82,84,97

. Further exploration of these effects in a wide panel of AML cell 

lines is needed. 

 Furthermore, HL-60 cells have been found to express high levels of the LSC 

specific markers CLL-1
69

 and CD33
66

. CLL-1 and CD33 have been extensively studied 

and identified as potential LSC targets important in drug development and clinical trials 

for the treatment of human AML
66-67,69

. Interestingly, when Spy1 was depleted using 

shRNA in HL-60 cells, gene expression levels of both CLL-1 and CD33 decreased as 
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assessed by qRT-PCR. This finding indicates a role for Spy1 in promoting the expression 

of known LSC markers. Taken together, these results suggest a role for Spy1 in 

promoting formation of LSC populations in this representative case of AML. This is 

consistent with previous work from our lab and others demonstrating the involvement of 

Spy1 in aggressive forms of breast and brain cancer and that Spy1 can promote the 

expression of CSC markers important in driving tumour formation
84,92,99-100

. Future 

experiments utilizing sorted CLL-1
+
 and CD33

+
 HL-60 cell populations are necessary to 

accurately examine the effects of Spy1 knock-down on growth and proliferation of the 

LSC compartment of HL-60 cells. 

 To address whether Spy1 levels are altered during therapeutic treatment of AML, 

HL-60 cells were differentiated with atRA to mimic current treatment of acute 

promyelocytic leukemia in the clinic. Promyelocytic leukemia is characterized by an 

accumulation of promyelocytes in the bone marrow that are unable to complete 

granulocytic differentiation
8
; treatment with atRA has seen much success clinically

5-8
, 

however, cases of atRA resistant myelocytic leukemia have been reported
101

. As 

previously observed, knock-down of Spy1 has effects on both leukemic cell growth and 

LSC marker expression in this cell line. Therefore, it was my hypothesis that knock-down 

of Spy1 might sensitize HL-60 cells to differentiation treatment with atRA. Surprisingly, 

initial experiments examining endogenous levels of Spy1 during HL-60 atRA 

differentiation showed an increase in Spy1 gene expression as cells became mature 

granulocytes. Although this result is not consistent with the hypothesis for this 

experiment, it is similar to the observations made during atRA induced terminal EML 

maturation and may be explained by the proliferative potential maintained by late lineage 

progenitors and mature blood cells
95-96

. Furthermore, it is important to note that Spy1 
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levels were only examined at the mRNA level; protein analysis should be completed 

before drawing final conclusions as it is possible that Spy1 is being regulated differently 

at the translational level. Furthermore, functional effects of the knockdown of Spy1 on 

success of treatment will require assays measuring overall cell growth properties 

following treatment, including clonal assays to measure the effects on the LSC 

population.   

 Lastly, tissue microarray analysis was performed to analyse protein expression of 

Spy1 in human blood malignancies. Due to the endogenous expression of Spy1 observed 

in late stage hematopoietic cells, a more differentiated blood malignancy, multiple 

myeloma, was analyzed for expression of Spy1. Multiple myeloma is a plasma cell 

malignancy affecting B lymphocyte development within the hematopoietic system
49

. 

Results demonstrate that Spy1 protein is expressed in normal bone marrow, but that this 

expression is significantly elevated in all of the myeloma tumours examined. This finding 

implies that Spy1 may be important in myeloma and warrants further investigation into a 

role for Spy1 in myelomas. Interestingly, this result suggests a link to Spy1 in a more 

differentiated cancer in contrast to previous work from our lab showing implications for 

Spy1 in aggressive breast and brain cancers of a stem cell origin
84,92

. This may be 

explained by the fact that mature blood cells of the B cell lineage are highly proliferative 

and can undergo clonal expansion during immune reactions
34,96

. Future directions may 

aim to examine a role for Spy1 in EML B Cell differentiation decisions.  

 In summary, this study has demonstrated that Spy1 is expressed in mammalian 

sites important to both murine and human hematopoiesis. Taken together, the decrease in 

Spy1 expression during in vitro differentiation of EMLs and the high expression of Spy1 

in CD34
+
 EML populations demonstrate that Spy1 is endogenously expressed within the 
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ST-HSC and MPP compartment of the hematopoietic hierarchy. However, findings also 

indentified Spy1 to be expressed in more mature hematopoietic cells. Collectively, these 

in vitro experiments demonstrate a correlation between Spy1 expression and proliferative 

stages of the hematopoietic hierarchy. Furthermore, these findings identify Spy1 as 

important in promoting development of LSCs in one subtype of AML and it was revealed 

that Spy1 is significantly elevated in a variety of human myelomas. Overall, this study 

demonstrates that Spy1 may have broader implications in blood malignancies than the 

previously identified role in some types of lymphoma
85

. These findings may have 

implications into the future treatment of different blood malignancies. 
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Appendix A 

Gene Manipulation in EML Cells 

This appendix reviews in detail the many different techniques attempted for both 

transfection of plasmid DNA and infection using lenti-virus. In all cases, successful 

transfection was assessed using a GFP reporter and light microscopy. 

 

I Transfections 

Transfections with polyethylenimine (PEI) 

EML cells were seeded in 12 well plates at densities of 0.5 x 10
5
 cells/mL, 1.0 x 10

5
 

cells/mL, and 2.0 x 10
5
 cells/mL in serum-free media on the day of transfection. Plasmid 

DNA for both the pEIZ control and pEIZ-Spy1 were diluted at a ratio of 1:10 in 150mM 

NaCl. 1 µg plasmid DNA was then mixed with 5 µL of 10 mg/mL polyethylenimine 

(PEI) in eppendorf tubes. This mixture was allowed to incubate at room temperature for 

10 minutes prior to addition to cells. The plate was centrifuged for 5 minutes at 500 x g 

and 4ºC. Following this centrifugation, media was replaced with serum-free media either 

immediately or after approximately 16 hours. 

 

Transfections with JetPrime Reagent 

EML cells grown to approximately 75% confluency in 5 mL of complete growth media in 

6 cm plates were transfected with GFP plasmid DNA using Jet Prime Reagent (VWR 

CA89129-922) and following the manufacturer’s protocol. Briefly, plasmid DNA was 

added to Jet Prime buffer in an eppendorf tube and vortexed prior to the addition of Jet 

Prime Reagent. Following an incubation period of 10 minutes at room temperature, 

plasmid DNA, Jet Prime Reagent, and buffer mixture was added to cells. Different ratios 
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of plasmid DNA to Jet Prime Reagent and buffer can be found in table 3. Each 

transfection was performed in duplicate so that transfection times of both 4 hours and 20 

hours could be attempted.  

 

Table 3. EML Transfection with JetPrime, Conditions 

 GFP Plasmid 

DNA  (µg) 

Amount JetPrime 

Reagent (µL) 

Amount Buffer 

(µL) 

Transfection 1 1.0 2 100 

Transfection 2 2.0 3 200 

Transfection 3 4.0 4 200 

 

 

II Infections with Lenti-Virus 

Lenti-viral Infection 

5,000, 10,000, 25,000 or 50,000 EML cells were seeded in 96 well plates in serum-free 

and antibiotic-free media on the day of infection. Polybrene was added to media at final 

concentrations ranging from 1 µg/mL to 8 µg/mL. In some instances lenti-virus 

containing either the pEIZ control vector, pEIZ-Spy1, pLB-shScrambled, and pLB-

shSpy1were added immediately after the addition of polybrene. In other instances, cells 

were allowed to incubate in media-containing polybrene for 20 to 30 minutes prior to the 

addition of virus. Viral titres for all constructs were 10
7
 TU/mL and different MOIs 

ranging from 0.1 to 10 were attempted. EML cells were allowed to incubate with virus for 

a minimum of 6 hours to a maximum of 24 hours. Upon removal of virus-containing 

media, complete growth media was added. 

 

Lenti-viral Infection – Spinoculation 

50,000 EML cells were seeded in 96 well plates in serum-free media containing 4 to 8 

µg/mL polybrene. After the addition of lenti-virus containing pEIZ control and pEIZ-
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Spy1, plates were subject to centrifugation at either 1500 rpm or 800 x g for 10 to 30 

minutes at 32ºC. Following centrifugation, media was then replaced with complete 

growth media. Alternatively, plates were allowed to incubate for a minimum of 6 hours 

and a maximum of 24 hours before the removal of virus. MOI ranged from 1 to 5. 

 

Lenti-viral Infection with Magnetic Beads 

50,000 EML cells were seeded in 96 well plates in serum-free media containing 4 µg/mL 

polybrene for infection with pEIZ control and pEIZ-Spy1. A mixture of magnetic beads 

and virus was prepared at a ratio of 1 µL to 10 µL, respectively, and allowed to incubate 

on ice for 30 minutes. During this incubation, bead-virus mixtures were vortexed every 5 

minutes. Prior to the addition of the bead-virus mixture, plates were centrifuged for 5 

minutes at 1500 rpm. Plates were then placed on a magnet and allowed to incubate for 20 

minutes in a 37ºC humidified incubator. Virus-containing media was replaced with 

complete growth media approximately 16 hours later. 
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