
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2013

Experimental Comparison of Store-and-Forward and Wormhole Experimental Comparison of Store-and-Forward and Wormhole

NoC Routers for FPGA's NoC Routers for FPGA's

Krunal Jetly
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Jetly, Krunal, "Experimental Comparison of Store-and-Forward and Wormhole NoC Routers for FPGA's"
(2013). Electronic Theses and Dissertations. 4856.
https://scholar.uwindsor.ca/etd/4856

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F4856&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/4856?utm_source=scholar.uwindsor.ca%2Fetd%2F4856&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Experimental Comparison of Store-and-

Forward and Wormhole NoC Routers for

FPGA’s

By

Krunal Jetly

A Thesis

Submitted to the Faculty of Graduate Studies

Through Electrical and Computer Engineering

In Partial Fulfillment of the Requirements for the

Degree of Master of Applied Science at the

University of Windsor

Windsor, Ontario, Canada

2013

978-0-494-87116-4

Your file Votre référence

Library and Archives
Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Direction du
Patrimoine de l'édition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:

ISBN:

Our file Notre référence

978-0-494-87116-4ISBN:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distrbute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

AVIS:
L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans le
monde, à des fins commerciales ou autres, sur
support microforme, papier, électronique et/ou
autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protege cette thèse. Ni
la thèse ni des extraits substantiels de celle-ci
ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne sur la
protection de la vie privée, quelques
formulaires secondaires ont été enlevés de
cette thèse.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

© 2013 Krunal Jetly

All Rights Reserved. No Part of this document may be reproduced, stored or otherwise

retained in a retrieval system or transmitted in any form, on any medium by any means

without prior written permission of the author

Experimental Comparison of Store-and-Forward and Wormhole NoC Routers for

FPGA’s

By

Krunal Jetly

APPROVED BY:

 G. Zhang

Mechanical, Automotive, and Materials Engineering

R. Rashid

Electrical and Computer Engineering

M. A. S Khalid, Advisor

Electrical and Computer Engineering

April, 2013

iv

Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis and that no part of this thesis

has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my thesis,

published or otherwise, are fully acknowledged in accordance with the standard referencing

practices. Furthermore, to the extent that I have included copyrighted material that

surpasses the bounds of fair dealing within the meaning of the Canada Copyright Act, I

certify that I have obtained a written permission from the copyright owner(s) to include

material from two different theses as follows:

(i) From Chapter 3 section 3.1.1.3 (Routing Algorithm), Figure 3.1, Figure 3.2,

Figure 3.4, Figure 3.7, Figure 3.8 from Thesis by Mike Brugge “Design and

Evaluation of a Parameterizable NoC Router for FPGAs”. Sep 21 2009

(ii) From Chapter 2 Section 2.3 (Interface and Signals), Chapter 3 section

3.3.1(Adapter Overview), Chapter 4 Section 4.3 (NIOS II Programing) and

section 4.4 (Modelsim Simulation), Figure 3.5, Figure 3.6, figure 4.6 and figure

4.9 From Thesis by Matt Murawski “NoC Prototyping on FPGAs:

Component Design, Architecture Implementation and Comparison”. May

18 2012

 I have included copies of such copyright clearance permission forms to my Appendix

A and the permissions were received through copyright holder’s email.

v

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis has

not been submitted for a higher degree to any other University or Institution.

vi

Abstract

Network on Chip (NoC) is an interconnection paradigm which is scalable and efficient for

connecting increasing number of components on Field Programmable Systems on Chip

(FPSOC). The router is a key component in NoC that impacts area performance, power

consumption, etc. In this thesis we evaluate and compare two different router designs using

real world benchmark. The first router uses Store-And-Forward strategy (SAF) and XY

routing algorithm and the second router uses Wormhole (WH) as forwarding strategy and

source routing algorithm. These routers were used to implement 4x4 mesh NoCs. A multi

processor system benchmark obtained from Altera was implemented in each NoC. This

enabled us to evaluate and compare the routers using the real world benchmark design. The

evaluation metrics used were area, throughput, power consumption and maximum clock

frequency. Experiment results show that the SAF router is superior to the WH Router.

vii

Acknowledgements

It is an honor for me to have worked with Dr. Mohammed A. S. Khalid throughout my Meng

degree and Master’s in applied science degree here at the University of Windsor. His guidance,

encouragement, wisdom and support carried me through the course of this thesis. My deepest

gratitude goes out to him. My appreciation also goes out to my thesis committee members,

G.Zhang and R.Rashid, for their time to sit on my committee and reviewing my thesis

 I want to thanks my family for all their constant support and encouragement.

Thanks to my parents for their understanding me. Thanks for helping to keep me focused

day after day.

 Finally, I need to acknowledge my friends and fellow graduate students at the

University of Windsor. Matt Murawski and Mike Brugge thank you for your friendship

and guidance. Thanks to Matt for your company and taking those long calls at your office

and helping me out in my Research. You could always provide me with the help I needed.

Lastly, thanks to the rest of my colleagues; amanjot, manveen who made this great

milestone in my life so enjoyable.

viii

Table of Contents

Author’s Declaration of Originality ... iv

Abstract ... vi

Acknowledgements .. vii

List of Figures .. xi

List of Tables .. xiii

List of Abbreviations ... xiv

Chapter 1: Introduction... 1

1.1 Thesis Objectives ... 4

1.2 Thesis Organization ... 4

Chapter 2: Background and Previous Work .. 5

2.1 FPGA Technology .. 5

2.2 Overview of NoC ... 6

2.2.1 NoC Building Blocks .. 6

2.2.1.1 Links ... 7

2.2.1.2 Network Adapters ... 7

2.2.1.3 Routing Node .. 8

2.2.2 Parameters of NoC ... 8

ix

2.3 Interfaces and Signals [22] .. 8

2.3.1 Wishbone ... 8

2.3.1.1 Signals.. 9

2.3.2 Avalon Interface ... 18

2.3.2.1 Avalon-MM ... 18

2.3.2.2 Avalon-ST .. 19

2.3.2.3 Avalon-MM Tristate .. 19

2.3.2.4 Clock .. 20

2.3.2.5 Interrupt .. 20

2.3.2.6 Conduit .. 20

2.4 CAD Tools for NoC Implementation on FPGAs .. 20

2.4.1 Altera Quartus II ... 20

2.4.2 Altera SOPC Builder .. 22

2.4.3 Nios II Embedded Design Suite (EDS) ... 22

2.4.4 Mentor Graphics ModelSim ... 22

2.5 Related Work .. 22

2.6 Summary ... 24

Chapter 3: Description of SAF and WH Router Architecture .. 25

3.1 Functionality .. 25

3.1.1 Protocols and Algorithms ... 25

3.1.1.1 Flow Control .. 25

3.1.1.2 Switching Mode... 26

3.1.1.3 Routing Algorithm [21] .. 26

3.1.1.4 Scheduling ... 30

3.2 Router Implementation... 30

3.2.1 Internal Structure and Data Transfer ... 32

3.2.2 Switching Mechanism .. 36

3.3 Standard Sockets ... 37

3.3.1 Adapter Overview [22] ... 38

3.4 Summary ... 44

x

Chapter 4: NoC Implementation and Evaluation Framework ... 45

4.1 Real World Benchmark Design .. 45

4.2 Implementation of NoC in SOPC Builder---- Add description of SOPC.................................... 47

4.3 Nios II Programming .. 51

4.4 Modelsim Simulation .. 54

4.5 Re-design of SAF Router .. 55

4.6 Summary ... 56

Chapter 5: Experimental Comparison ... 57

Results ... 57

5.1 Mesh Topology .. 57

5.1.1 Placement of the IP Cores .. 58

5.2 Design Space Exploration and Comparison of SAF and WH Routers 59

5.2.1 Redesign the SAF router ... 59

5.2.2 Area Results.. 60

5.2.3 Power Consumption Results .. 64

5.2.4 Clock Frequency Results ... 65

5.2.5 Throughput Results .. 66

5.3 Conclusion ... 68

Chapter 6: Conclusions and Future Work ... 69

6.1 Research Contributions ... 70

6.2 Future Work .. 70

Appendix A .. 71

Copyright Permissions ... 71

References... 74

VITA AUCTORIS .. 77

xi

List of Figures

Figure 2.1: Altera Logic Element Architecture [5] ... 6

Figure 2.2: A NoC Interconnection Networks 4 Basic Functional Blocks 7

Figure 2.3: Single Transfer Hand Shake ... 11

Figure 2.4: Single Read Transfer .. 12

Figure 2.5: Single Write Request Signals ... 13

Figure 2.6: Wishbone RMW ... 14

Figure 2.7: Block Read Request for Wishbone .. 15

Figure 2.8: Incrementing Bursts for Wishbone... 17

Figure 2.9: Avalon MM Transfer.. 19

Figure 2.10: Quartus II Design Flow .. 21

Figure 3.1: Coordinate Configuration for XY Routing .. 27

Figure 3.2: Configuration of Local Ports for XY Routing.. 28

Figure 3.3: Port correlation in routing table.. 29

Figure 3.4: SAF Routers Exterior Structure ... 31

Figure 3.5: WH routers Exterior Structure ... 32

Figure 3.6: WH router's Internal Structure ... 33

Figure 3.7: SAF Router's Internal Structure ... 35

Figure 3.8: Architecture of Switching Fabric ... 37

Figure 3.9: Adapters Overview ... 38

Figure 3.10: Adapter Internal Design Overview ... 40

Figure 3.11: Avalon Wish bone Glue Logic ... 41

Figure 3.12: Slave Sampler Process Flow Chart .. 42

Figure 3.13: Master Sampler Process Flow Chart .. 43

xii

Figure 4.1: Mapping of Benchmark Design Components on 4x4 NoC……………………46

Figure 4.2: Altera Multiprocessor Design Example ... 47

Figure 4.3: NoC Parameters in SOPC Builder.. 48

Figure 4.4: SAF Router based NoC Implemented in SOPC Builder 49

Figure 4.5: SAF Routers NoC Connected to Slave Components ... 50

Figure 4.6: Bridging Example... 51

Figure 4.7: CPU 1 Benchmark Flowchart... 52

Figure 4.8: CPU2 and CPU 3 Benchmark Flowchart ... 53

Figure 4.9: WH Routers Regional Handshaking .. 54

Figure 4.10: RF Routers Regional Handshaking .. 55

Figure 5.1: Mesh and Torus Topology ... 58

Figure 5.2: 10-node ring topology .. 58

Figure 5.3: Placement and Routing ... 59

Figure 5.4: Comparison of SAF router area consumption before and after redesign 60

Figure 5.5: Area consumption of standalone routers with respect to flit size 61

Figure 5.6: Area consumption of standalone routers with respect to number of local ports.62

Figure 5.7: Area consumption of the whole NoC with respect to flit size (# of local ports is 1)

... 63

Figure 5.8: Area of consumption for whole NoC with respect to number of local ports (flit

size=8) ... 64

Figure 5.9: Power Consumption Versus flit size for standalone routers 65

Figure 5.10: Maximum Clock frequency versus flit size for standalone routers 66

Figure 5.11: Throughput versus flit size for the whole NoC ... 67

xiii

List of Tables

Table 2.1: Cycle Type Identifier ... 16

Table 2.2: Burst Type Extension .. 16

Table 3.1: Request Type Design ... 57

xiv

List of Abbreviations

Abbreviation Definition

ALUT Adaptive Look Up Table

ASIC Application Specific Integrated Circuit

AVM Avalon Master

AVS Avalon Slave

AWB Avalon-Wishbone

BE Best Effort

BTE Burst Type Extension

CAD Computer Aided Design

CLK Clock

CPU Central Processing Unit

CS Chip Select

CTI Cycle Tag Identifier

DDR Double Data Rate

EDS Embedded Design Suite

FIFO First In, First Out

FPGA Field Programmable Gate Array

GS Guaranteed Service

HDL Hardware Description Language

I/O Input / Output

IC Integrated Circuit

IDE Integrated Development Environment

IP Intellectual Property

xv

IRQ Interrupt Request

JTAG Joint Test Action Group

QoS Quality of Service

KB Kilo Byte

LAN Local Area Network

LE Logic Element

LED Light Emitting Diode

MB Mega Byte

MPSoC Multi-Processor System on Chip

NA Network Adapter

NoC Network on Chip

OCP Open Core Protocol

OE Output Enable

OSI Open Systems Interconnection

PIO Peripheral Input Output

PWR Parameterizable Wormhole Router

RAM Random Access Memory

RISC Reduced Instruction Set Computer

SAF Store and Forward

SDRAM Synchronous Dynamic Random

Access Memory

SoC System on Chip

SOPC System on Programmable Chip

TDM Time Division Multiplexing

UART Universal Asynchronous

Receiver/Transmitter

VC Virtual Channel

VCI Virtual Component Interface

xvi

 VCT Virtual Cut Through

VHDL Very High Speed Integrated Circuit

Hardware Description Language

VLSI Very Large Scale Integration

WB

WH

Wishbone

Wormhole

1

Chapter 1: Introduction

INTRODUCTION

 The world of silicon integrated circuits has changed a lot in recent years. We have seen the

feature size of IC decreased from 90nm to 40nm as predicted by moore’s law. This has enabled

systems on chip (SoC) which can implement complex systems on a single chip which earlier

needed the Printed Circuit Boards. The electronic industry has continuously changed and

evolved by packing more functionality in smaller area of silicon, which has resulted in

Increasing transistor density, higher operating frequencies, shorter time-to-market and reduced

product life cycle [1]. As the number of computational modules in single IC continuous to

increase the new interconnection paradigm is needed that is efficient and scalable.

The electronic industry started from IC which used to perform basic logic functions and then

moved to PLD, CPLD, micro controllers and microprocessors along with these digital blocks

complex modules that could implement computationally intensive task were implemented on

single IC’s. Further, with increase in transistor density it was feasible to add more of these blocks

in smaller area which lead us to the embedded systems. An embedded system is a combination of

processor and supporting digital blocks which is designed to perform a specific task. In today’s

technologically advanced world embedded system plays an important role as we can find

embedded systems almost everywhere for example cameras, DVD players, washing machines

and also in large stationary units like cellular base stations and factory controllers. At the present

time SoC enabled us to implement a complete embedded system on a single chip.

 As the transistor density is still increasing it was possible to incorporate more digital blocks

and so SoCs started to contain many hardware and/or software blocks, such as processors, DSPs,

2

memories, peripheral controllers, gateways, and other custom logic blocks. SoCs have just

started to get intricately complex and in future there will be more issues coming up with more

shrinkage in size of transistors. Interconnection Techniques and routing methodologies has

become one of the most research intensive areas in SoC designs [2]. The issues concerned with

interconnection methodologies and routing methodologies has been one of the most research

intensive areas as it affects each facet of SoCs design. Interconnection methods greatly impact

cost and performance of a SoC.

In earlier days the number of blocks in single IC were limited hence a point to point or simple

Bus interconnection was used. But, as the designs started to get complex Bus based systems

could not handle the increase in number of blocks. The routing methods used after SoCs

introduction was point to point connection between IP’s. Dedicated wires were effective until the

system were not much complex and less number of the IP’s were there on the SoC’s, but as the

complexity increased the routing resources were consumed too quickly. Also dedicated wiring

leads to decrease in the resource reusability and flexibility. So to overcome this limitation

designer incorporated usage of shared bus where a set of wire is common between different

multiple cores of the system this increased the reusability and scalability of the resources. For

achieving this Master and slave scheme has been carried out which uses control signals and slave

waits for the data to be received or requested from the master. However, with the systems started

having more masters and slave the contention increased and results to bottleneck which gets

worse with increase in complexity. Along with this there is concerns regarding complication of

the protocols while trying to eliminate the scalability problems. Design and verification times

also grow with SoC complexity [3].

 ASIC designs are application specific ICs they are used to replace the time consuming part

of the software. ASIC’s help in increasing the speed of the system by great extent. The ASIC

design not just concentrates on increasing speed it also decreases area and power consumption of

the system. ASICs have been a good implementation for large amount of production because

ASIC is not easy to implement as the systems are very complex and even though automation has

helped the industry ASIC designing takes away a lot of engineering resources. So to overcome

3

this difficulty the ASICs have started to be replaced by FPGA’s. The competitive world of

technology has made a new requirement of bringing the new technology out as soon as possible,

which is stated as “time to market”. This has made the designers to shift to other resources which

are much faster to design and validate. FPGA has been an answer to that and this is the reason

why we see usage of FPGA when there is a small scale requirement FPGA is the viable choice

but for large scale production still ASIC is preferred.

 FPGA has captured significant part of the IC market. Before FPGA were replacing small

units as it was not containing much of the logic elements and because of that we did not care of

the routing carried out in FPGAs .With the increase in transistor density more number of logic

elements were packed into FPGAs and current FPGAs can be considered to be FPSoCs (Field

Programmable Systems on Chips). With the current trend of integration of more complex

FPSoC’s we need a better communication infrastructure and protocol which will alleviate the

problem of scalability by supporting multiple concurrent connections between IP cores and along

with that it should allow the reuse of area specific pre-designed and pre-tested IP cores.

NoC is a promising interconnection paradigm that can be used in SoC’s and FPSoC’s.

The Basic concept behind NoC is similar to computer networks, multiple computers are

connected to different routers and these routers are connected to each other using different

topologies. The same concept is used in NoC’s with IP cores replacing computers. Much

research needs to be done in Exploring the design space of NoC implementation in FPGA’s

This Thesis is intended to shed light on some of the tradeoffs involved in NoC

implementation on FPGA’s. We implemented two different Router designs and compared them

using a real world benchmark application. Previous research has evaluated compared router

designs using data from traffic generators which is not as good as the traffic generated by a real

world application. Our research results will be useful to the future designers of NoC based

systems on FPGAs.

4

1.1 Thesis Objectives

The main goal of this research is to evaluate and compare two NoC routers developed in

previous research work. The Evaluation metrics used to compare the two routers are area, flit –

size, Ports, power, throughput and clock frequency. Our research results will help designers

working on implementation of large complex NoC based systems on FPGAs by allowing them to

make informed choices on design tradeoffs. This research has the following major objectives:

1. Investigate SAF router implementation on FPGAs.

2. Developed network adapter based on wishbone protocol that could be interfaced to both

SAF and WH router.

3. Implement two mesh NoCs using SAF and WH Routers respectively, to run a real world

bench mark design.

4. The two Mesh NoCs were synthesized and results were evaluated and compared using

metrics area, power, clock and throughput.

For the first objective, we have investigated and understood the functionality and design of

SAF Router, WH router and NoC adapters. This led us to make changes to SAF Router and NoC

adapters. Testing was done with the help of a realistic benchmark. The experimental framework

was developed in VHDL, allowing NoC synthesis in Altera Quartus II design environment

(Simulation was done using Modelsim). SOPC Builder CADtool was used to implement the

mesh to NoCs. NIOSII IDE was used to run the Benchmark design on the NoCs implemented in

FPGA.

1.2 Thesis Organization

The remainder of this thesis is organized as follows. In chapter 2, we present the background and

related work for FPGAs and NoCs. Chapter 3 covers detailed description of the routers used and the

network adapters. Chapter 4 describes NoC implementation and Evaluation framework. Chapter 5

presents experimental comparison and analysis. Chapter 6 concludes the thesis and discusses

possible future work.

5

Chapter 2: Background and Previous Work

In this chapter, we will go through previous work done and also the background that is relevant

to this research is presented. This chapter begins with a brief overview of FPGA technology,

detailing the benefits. Then describe different aspects of Network-on-Chip (NoC). This is

followed by description of the standard sockets used in NoC’s. We cover the Avalon [4] and

Wishbone interfaces [5]. Finally the CAD tools used in our research are briefly described and the

chapter concludes with the description of related research.

2.1 FPGA Technology

Field Programmable Gate Arrays (FPGA) is special integrated circuit, in which the logic

elements, routing resources are pre-fabricated. Different digital circuits can be specified using

hardware description languages such as VHDL and Verilog and then synthesized and

implemented on FPGAs. In many real world applications which requires low to medium volumes

FPGAs have replaced ASICs due to their many advantages such as low non recurring expenses

(NRE), fast time to market and flexibility. FPGAs are made up of Logic Elements (LE), in the

form of look-up tables, which are used to implement custom logic. FPGAs have also evolved and

with advances in technology and contain advanced components, such as DSP blocks, memory

blocks, serial interfaces and hard or soft CPU cores. In this thesis, FPGAs are used as

implementation fabric to evaluate and compare NoC routers.

6

Figure 2.1: Altera Logic Element Architecture [5]

2.2 Overview of NoC

This section describes the basic building blocks used in NoCs and their operation.

2.2.1 NoC Building Blocks

NoC aims to provide a network on the chip which allows effective communication between

computational components (IP cores). Figure 2.2 depicts a sample NoC which consists of 4 IP

cores which are connected using a single router. An adapter is used to connect an IP Core to the

router and a link is used to connect a router to adapter or to another router.

7

 Adaptors

 Links

2.2.1.1 Links

This component provides one to one connections for a routing node with a network adapter or

another routing node. It also provides separate control lines for connection establishment and

teardown.

2.2.1.2 Network Adapters

Network Adapters convert the high level protocols (HLP) that IP uses into the packet-based

communication protocols of the NoC and vice versa. They are responsible for storing IP core

addresses, creating and disassembling messages, forming packets and breaking them into flits,

implementing end-to-end flow control, crossing clock domains, and other higher level network

issues.

Router

IP

CORE

IP

CORE

IP

CORE

IP

CORE

Figure 2.2: A NoC Interconnection Networks 4 Basic Functional Blocks

8

2.2.1.3 Routing Node

The Routing node handles the flow of packets (Traffic) in the network based in NoC. It basically

runs the routing algorithm which determines the method of flow of packets and it is also a central

component of the NoC. The parameters of the routers are thus important as they can affect the

performance of the network to a large extent. The parameters of routers are routing algorithm,

forwarding strategies, flit size, and number of ports.

2.2.2 Parameters of NoC

Every NoC has its own unique parameters. The three main parameters are: Mapping,

Communication Mechanism and Infrastructure. These parameters play an important role in the

overall performance of the NoC and so it has been the most important research topic for the NoC

researchers. It is preferred that these parameters should be chosen according to the application

requirement in order to enhance the NoC performance for that particular application. This thesis

attempts to provide an insight into how the choice of parameter selection affects tradeoffs in cost,

performance and power consumption of NoCs in FPGAs.

2.3 Interfaces and Signals [22]

This Section describes in detail the interfaces used in our thesis along with their protocols and

signals used for communication. The standard sockets used in this thesis include

Silicore/Opencore.org‘s Wishbone and Altera‘s Avalon interfaces.

2.3.1 Wishbone

Wishbone is one of the handshaking protocol, we have used it as a general purpose interface

between IP core modules because it’s an open source synchronous SoC interconnection

architecture. It also has a great range of bandwidth in terms of data transfer speed.

9

2.3.1.1 Signals

Wishbone has a variety of signals, used to provide flexibility and compatibility for attached IP

cores. The signals common to both master and slave devices are:

 CLK_I – Clock input. All Wishbone output signals are registered on the rising clock edge.

DAT_I – Input data array, with a maximum size of 64 bits.

DAT_O – Output data array, with a maximum size of 64 bits.

 RST_I – Synchronous reset signal

TGD_I – Input data tag array, containing information regarding the DAT_I signal. The data tag

contains user defined information.

TGD_O – Output data tag array, associated with the DAT_O signal.

Master signals include:

ACK_I – Acknowledge signal used for the handshaking protocol, which indicates the

termination of a bus cycle.

ADR_O – Address output array

CYC_O – Cycle output signal, indicating a valid bus cycle when asserted. For burst and block

cycles, the CYC_O signal is held high for multiple transfers until the final cycle.

10

ERR_I – Error input signal, used as an alternative to ACK_I to indicate a failed transfer. The

exact functionality of this signal depends on the IP core.

LOCK_O – Lock output signal, used to ensure a transfer is uninterruptable. The exact

functionality of this signal depends on the IP core.

RTY_I – Retry input signal, used as an alternative to ACK_I. The exact functionality of RTY_I

depends on the IP core.

SEL_O – Select output array, used for fine control over data granularity. The size of SEL_O

depends on the data width and granularity. For example, 8 bits are used for a 64 bit data bus with

byte granularity.

STB_O – Strobe output signal, used to indicate valid data transfer cycles. Unlike CYC_O,

STB_O is deasserted after a transfer.

TGA_O – Address tag output signal, used to contain tag information associated with the ADR_O

signal. For burst transfers, the TGA_O tag contains Cycle Tag Identifier (CTI), and Burst Type

Extension (BTE) tags regarding burst specifics.

TGC_O – Cycle tag output signal, used to contain tag information regarding a bus cycle. It can

be used to distinguish between a single, block or RMW cycle. WE_O – Write enable output

signal, used to indicate a write transfer.

Slave signals receive the exact same master signals, but in an opposite direction. For example,

CYC_I receives the cycle output signal, whereas ACK_I sends an acknowledge response from

the slave to the master‘s ACK_O signal. The types of Wishbone bus cycles are divided into three

sections – Single, block and burst.

Single transfers use a handshaking protocol shown in Figure 2.3. The master core initiates a

transfer with the strobe signal, where the slave responds with ACK, ERR or RTY. Strobe is held

11

high until a response is received, where the stobe signal is then de-asserted. A cycle termination

signal (ACK, RTY or ERR) must be asserted according to the logical AND of STB and CYC.

Figure 2.3: Single Transfer Hand Shake

A more detailed waveform is shown in Figure 2.4, where a sample single read transfer is shown.

CYC and STB are asserted to indicate a read request, where the address, selection and associated

tags are also applied. The slave responds with an acknowledge signal at (1), as well as the data

and associated tags.

12

 Figure 2.4: Single Read Transfer

A single write request is very similar, shown in Figure 2.5, where WE_O is asserted, data is

provided by the master on DAT_O and the slave terminates the transfer with an acknowledge at

edge (1).

13

 Figure 2.5: Single Write Request Signals

14

These two requests can be performed in a Read-Modify-Write (RMW) request, shown in Figure

2.6. The CYC signal is held high for the duration of the transfer, while the separate strobe signals

perform the actual individual transfers.

 Figure 2.6: Wishbone RMW

The block transfers operate slightly differently, where the acknowledge signal may be held high

for a number of cycles for multiple transfers for increased bandwidth and reduced delay. A block

15

read request is shown in Figure 2.7. Note that CYC is asserted for the entire duration of the

transfer.

 Figure 2.7: Block Read Request for Wishbone

16

Burst transfers address the issue of the additional delays involved when cycle termination

signals, in order to reduce wire routing delay, become synchronous. Additional tag signals are

used in order to let the slave know of predictable transfers in advance. The Address Tag contains

two additional identifiers, used to specify burst characteristics: Cycle Tag Identifier (CTI) and

Burst Type Extension (BTE). CTI is 3 bits, and BTE is 2 bits. They are shown in Table 2.1 and

Table 2.2.

CTI (2:0) Description

000 Classic Cycle

001 Constant address burst cycle

010 Incrementing address burst cycle

011-110 Unused

111 End-of-Burst

 Table 2.1: Cycle Type Identifier

BTE (1:0) Description

00 Linear burst

01 4-beat wrap burst

10 8-beat wrap burst

11 16-beat wrap burst

 Table 2.2: Burst Type Extension

17

The Classic Cycle is not a burst transfer, where no information about future master cycles is

given. End-of-Burst is used to indicate that the current cycle is the last cycle in the burst.

Constant address cycle causes a continual access to the same address, until End-of-Burst is

given. Lastly, incrementing address burst uses the Burst Type Extension tag to further define the

address behavior. Consecutive addresses, based on BTE are applied. Linear burst simply adds

one to the address per cycle, while the beat wrap bursts are modulo the wrap size. Figure 2.8 is

an example of an incrementing address burst transfer.

 Figure 2.8: Incrementing Bursts for Wishbone

18

2.3.2 Avalon Interface

Altera’s Avalon interface is a flexible interconnection architecture aimed at SoCs on FPGAs.

While Avalon has six different types of interface – Memory Mapped, Streaming, Tristate, Clock,

Interrupt and Conduit – the Memory Mapped interface will be the main focus due to the nature

of the research. The other types will be briefly explained.

2.3.2.1 Avalon-MM

The slave interface uses the following signals. Note that not all of them are required.

 Read – Read is asserted to indicate a read transfer, where readdata is required.

 Write – Write is asserted to indicate a write transfer, where writedata is required.

Address – Contains the address used for read and write requests, and can be up to 32 bits.

Readdata – Contains the data for a read response.

Writedata – Contains the data for a write request.

Byteenable – Used for fine control over data granularity. Selects a specific byte lane for transfer,

and has the available bit widths of 1, 2, 4, 8, 16, 32, 64 and 128.

Begintransfer – Asserted for the first cycle of each transfer, regardless of waitrequest.

Waitrequest – Asserted by the slave to indicate that it is unable to respond to a request.

Readdatavalid – Asserted when data is supplied in response to a read request.

Burstcount – Indicates the number of transfers that a burst contains, with a maximum size of 32

bits.

19

Beginbursttransfer – Asserted on the first burst cycle to indicate the start of a burst transfer.

Figure 2.9 demonstrates examples of slave read and write transfers using Avalon-MM.

 Figure 2.9: Avalon MM Transfer

2.3.2.2 Avalon-ST

Avalon Streaming (Avalon-ST) interfaces are used for driving unidirectional and high bandwidth

data, where applications include DSP, packets and multiplexed streams. Connected components

act as either a source or a sink, with data flowing from the source into the sink.

2.3.2.3 Avalon-MM Tristate

Avalon Memory-Mapped tri-state interfaces allow off-chip components to be used. It is

relatively similar to Avalon-MM, but with the inclusion of Chip Select (CS) and Output Enable

(OE) signals, as well as a bidirectional data line. When chip select is present, all signals are

ignored unless CS is asserted. When OE is de-asserted, the slave will not drive its data lines.

20

2.3.2.4 Clock

Clock provides synchronization for the Avalon interface and includes a synchronous reset signal.

All internal logic returns to initial states when reset is asserted.

2.3.2.5 Interrupt

Each applicable slave device has an interrupt output signal (IRQ), which is asserted when service

is needed. The master device receives up to 32 interrupt signals and, depending on the IRQ

scheme, services each interrupt according to a priority table.

2.3.2.6 Conduit

The Conduit interface is used with Altera’s SOPC Builder software and is used for exporting

signals for connection with external FPGA pins.

2.4 CAD Tools for NoC Implementation on FPGAs

2.4.1 Altera Quartus II

Quartus II Software is CAD tool suite provided by Altera Corporation. It is designed to map

hardware designs conveniently and efficiently to altera FPGAs. The design flow for Quartus II is

shown in figure 2.10

 As shown in the flow chart first step of the design flow is the design specification. The

design entry is done by creating an HDL file. Synthesis is the process where the HDL code is

checked for any syntax or semantic errors. The HDL is compiled to an intermediate form and

then an equivalent and optimized RTL implementation is synthesized. Place and Route maps the

hardware described at the RTL level to available logic and routing resources on the FPGA.

Timing Analysis evaluates the performance of the design implemented on FPGA and attempts to

meet timing requirements and attain timing closure. Simulation is used to verify the functionality

21

of the HDL model and its FPGA implementation. Finally, Programming and Configuration stage

generates the bit stream required to configure. Quartus II Version 9.0 running on sun solaris was

used in this research.

.

Figure 2.10: Quartus II Design Flow

Design Entry

Synthesis

Place & Route

Time Analysis

Simulation

Programming &

Configuration

Power Analysis

Debugging

Engineering Change

Management

Timing Closure

22

2.4.2 Altera SOPC Builder

System-On-a-Programmable-Chip (SOPC) Builder is included with the Quartus II

software. SOPC Builder provides an environment for design implementation using pre-designed

components such as Nios II CPU for the embedded systems. In our research we have used these

pre-designed components and they are interconnected with the help of default Avalon fabric and

our NoC component which was imported as VHDL coded files.

2.4.3 Nios II Embedded Design Suite (EDS)

The Nios II EDS consists of Eclipse IDE and provides an environment where we can

configure, program, debug and carry out simulation of Nios II CPUs. All this is carried out by

using C/C++ programming language which is further compiled, linked and assembled for Nios

II. It also supports in-circuit debugging and Flash Programming

2.4.4 Mentor Graphics ModelSim

Mentor Graphics ModelSim [6] is a tool which provides an environment to run the

simulation tests for the VHDL or Verilog designs. It has many features to debug the problem,

like assertion tests, breakpoints and in-depth signal variable simulations. It also provides us with

code coverage and all these features are not well supported in Quartus II’s [7] simulation engine.

2.5 Related Work

Our Routers has been designed and synthesized for an Altera Cyclone IV FPGA. This section

provides a brief review of the state of the art for NoC routers. After that, we describe the Avalon-

Wishbone glue logic and discuss related work in that area. Next, we look at related work in the area

of NoC adapters, followed by related work that builds a NoC with the Nios II CPU and supporting

23

software. Other areas of related work include similar routers synthesized for FPGAs and their

evaluation methodologies.

 Vestias et al. propose GNoC in [8], a generic router which supports a range of routing,

switching and arbitration protocols. They create a tool for exploring the sharing of some

decentralized components to reduce area that is based on the injection rate of ports.

Unfortunately, they lock all protocols to certain values and do not explore them further. Their

tool shows how they can save area when injection rates are low but does not test to see if

performance is degraded.

 MoCres, designed by Janarthanan et al. in [9], uses complex VCT flow control and

attempts to reduce area by combining multiple components into a single component. They create

multi-clock domain to enable high clock frequencies during transfers. Optimizations from XY

routing in the crossbar matrix have been extended to the routing algorithm, and gave us the idea

for a further arbitration unit extension. We have also used their idea of creating VHDL wrappers

to simulate the stand-alone router or routing configurations to compare parameters.

 Porting from Wishbone Bus to Avalon Bus was the concept given by Xing, Xu, et al. They

have discussed regarding the glue logic between the Wishbone and Avalon interface sockets, a

Wishbone compatible I2C controller was ported to the Avalon bus [10]. The glue logic was

verified with simulation results. While the logic is correct for single transfers, there is much

missing in the way of variable latency support and high speed Avalon block transfers. The

readdatavalid signal is not supported in this paper and block transfers will not be queued and

hence, forced into a wait state. Lastly, there is no mention of burst transfer glue logic.

 A packet-switched wormhole router was implemented [11], utilizing Virtex-4 SRL16

components for FIFO implementation, which increases efficiency but decreases portability and

design reuse. A Wishbone adapter was included, which supports burst transfers. Since the routers

are input queued, deadlock becomes an issue and was solved by adding a separate read request

buffer into the Wishbone adapters, which halts any incoming request when the buffer fills. They

tested the design with a 16 switches, memories and transaction generators. The individual router

was synthesized for Xilinx FPGAs with four and five ports and compared to related work.

24

 Design and implementation of a Plesiochronous multicore system [12], a 4x4 packet-

switched mesh NoC was implemented with SOPC Builder using Nios II CPUs. Multiple Stratix

II FPGA boards running at 50MHz were used in order to fit the entire design, which results in an

on-board throughput of 650Mbps. Inter- board communication operates at 50MBps. A software

driver is used to access NoC functions within the Nios II CPUs. The system was verified by

probing certain NoC components as a message traverses the network and returns to the sender,

and it was found that the maximum communication rate was 434,000 Packets/second. This large

difference between the theoretical bandwidth of 640Mbps is due to the large amount of time

required for the packet to traverse the software routines.

In HERMES [13], a packet-switched wormhole router with input queuing was designed and

analyzed. The router has four regional ports and one local port, and uses X-Y routing. 3x3 mesh

NoC architecture was implemented with traffic generators attached. The buffer size and traffic

patterns were analyzed and explored, resulting in overall increased performance as buffer size

increased. A 2x2 NoC was synthesized targeting a Xilinx XC2V1000 FPGA.

2.6 Summary

In this chapter, the relevant background material and related previous work was presented. First,

the basic concepts of FPGA technology were discussed then a short collection of concise

definitions of NoC building blocks was presented. We then listed relevant concepts and theories

about interfaces and signals. Finally, the Chapter concluded with a discussion of some of the

previous work that is closely related to this research, and how it was used to motivate our

research. In Chapter 3, a detailed description of architecture and functionality of SAF and WH

routers is presented.

25

Chapter 3: Description of SAF and WH Router

Architecture

This chapter discusses the design and implementation of Routers and Adapters explored and

evaluated in this thesis. It begins with a discussion of basic functionality of the NoC router. That

is followed by a discussion of the NoC router architectures, describing their components, and

data flow.

3.1 Functionality

In the following sections, we discuss the functionality of the routers which includes protocols

and algorithms. This will give us a basic idea of how routers differ from each other.

3.1.1 Protocols and Algorithms

NoC router protocols and algorithms govern the flow of data through the NoC network. They

make decisions on where data flows, at what speed, in what order, how it is stored, etc.

Therefore they directly affect performance and area consumption. Careful selection is crucial

and there is much work to be done in testing existing protocols and algorithms and proposing and

evaluating new ones. The following section describes protocol and algorithm choices used in

SAP and WH router.

3.1.1.1 Flow Control

Both the routers used packet switched flow control (PS). In PS networks, data is separated into

small blocks called packets at the core. This packet includes a header which has information

about its destination. Upon creation of the packet, IP cores simply release the packet into the

26

network where a series of interconnected routers forward the packet to its destination. PS is

referred to as connectionless as there is no direct connection between communicating cores.

This is an attractive choice as it allows multiple IP cores to communicate concurrently without

contention.

3.1.1.2 Switching Mode

Switching mode can often be confused with flow control as it plays a large part on the flow of

the packet. Switching mode is only a parameter of PS networks. This parameter determines how

a packet is allocated with buffers and channels and when it will receive service. A packet is

broken down into flow control units (flits). Each flit is the size of the channel. The two routers

have two different switching modes (i) store-and-forward scheme and (ii) wormhole scheme. In

SAF scheme, packets are buffered at each router, and the router waits for the full packet to arrive

before forwarding. This prevents a single packet from blocking more than one channel at a time.

The disadvantage is that it increases the buffering requirements of each router. While in WH

router instead of full packet only the flit is stored and then the path is blocked for the rest of the

flits. This scheme mitigates the disadvantage of SAF Router as there is no buffering required.

However, after evaluating these routers we realized that each switching mode has its advantages

under different applications.

3.1.1.3 Routing Algorithm [21]

The routing algorithm is used in the router and determines how the path is chosen to the packets

destination. SAF Router uses XY routing algorithm known for its simplicity and low area

overhead. WH Router uses source routing which is a deterministic algorithm that gives the

designer a chance to determine the routing path and optimize placement with the help of floor

planning. We will now briefly discuss how the XY routing algorithm and how the WH routing

works.

27

Figure 3.1: Coordinate Configuration for XY Routing [21]

In XY routing, each router is given a coordinate based on its position in the network. We

restrict our mesh size to 4X4 and therefore our coordinate is 4 bits. The most significant 2 bits

portrays the routers vertical displacement with 00 being the lowest (southern) router and 11

being the highest (northern) router. The least significant 2 bits portrays the routers horizontal

displacement with 00 being the left most (western) router and 11 being the right most (eastern)

router. Figure 3.1 shows router coordinate configuration within a mesh. A packet arrives at the

router with a 16 bit header. This header contains the destination of the packet along with the

type of packet. The vertical displacement is checked first. If the destination is greater than the

coordinate, the packet is forward north. If the destination is lesser then the coordinate, the packet

is forward south. If the destination is equal to the coordinate, then its vertical displacement is ok.

The same process then occurs for the horizontal displacement. Eventually, the packet arrives at

the router with the proper coordinate. At this point the packet is at the proper port and must now

be forwarded to the correct destination port. Since routers in our mesh can have up to 4 ports,

the least significant 2 bits of the header are used to distinguish among local ports. Figure 3.2

shows the configuration of local ports within the router.

28

An important note can be made about this algorithm. Since the vertical displacement is

always found first, a packet coming in from the east or west ports must already be in its proper

vertical position. Therefore, a packet coming in from the east or west ports cannot be forward

north or south. This observation is exploited later to optimize the area selected components.

 XY routing prevents livelock from occurring. Since all packets leaving the same

source and headed for the same destination will travel the same path, it also prevents having to

deal with complex scenarios like packet reordering. Unfortunately, using the same logic, XY

routing cannot provide any type of congestion control.

WH router uses source routing as an algorithm. In source routing the routers do not need

any router coordinates to be given. Source routing completely depends on routing table which

helps determining the port that packet has to use in order to progress towards destination. In

source routing the number of IP cores is an important factor in determining the resource usage

because more number of IP cores leads to a larger routing table. The routing table is a simple

lookup table where the information of the next hop is provided to the packet after reading the

source and destination address from the header flit.

Figure 11: Configuration of Local Ports for XY Routing [21]

29

In source routing the header flit consists of the source and destination address. Depending

on the flit size, the size of router input buffer is determined, as it is used to store the header flit

which can be consisting of two or more flits. First, the header flit is read and from there the

source and destination address is extracted, the source and destination widths can be determined

by designer as it is a generic parameter and can be given as input. There is a specific port

assigned to the packet with respect to the source and destination addresses of the packet. The

port determination is shown in Figure 3.3.

 Destination 1 Dest 2 Dest 3 Dest 4 Dest 5…..

Source 1 Port 1 Port 4 Port 1 Port 4 Port 2

Source 2 Port 2 Port 1 Port 2 Port 1 Port 1

Source 3 Port 4 Port 1 Port 1 Port 2 Port 1

Source 4 Port 3 Port 2 Port 3 Port 3 Port 3

Source 5… Port 1 Port 3 Port 1 Port 1 Port 4

Figure 12: Port correlation in routing table

 Figure 3.3 gives a clear idea of how a designer can determine the path of the

packet. This is the reason why source routing is said to be a deterministic routing algorithm.

Building the routing table is considered to be the most important task of the designer, as avoiding

livelock, deadlock and congestion is possible by proper port allocation. Along with this the

designer can do floor planning and improve the overall performance by placing densely connect

IPs closer to each other.

30

3.1.1.4 Scheduling

Scheduling determines the order in which the data is sent and can be done by both the IP cores

and routers. If 2 or more packets request the same port at the same time or while it is busy, the

requested (output) port will have to make a decision on which to grant access first. This is called

arbitration. Both the routers allows for some flexibility in choosing arbiter schemes. Arbitration

schemes consider priority of packets in routers among the network and include static and

dynamic.

In static arbitration schemes, the priority of each port is chosen during design. One of the

examples is generic fixed scheme where priority is given to the north first, and degrades

clockwise. While, dynamic arbitration makes a decision at run-time and is more flexible, also

requires a larger area. However, dynamic schemes can avoid deadlock. One of the schemes

gives priority to the port that has been busiest (sending the most requests).

 When comparing the two routers we used a first come first serve arbitration scheme more

details will be provided in the following chapters. This was done to make a fair comparison

between the routers.

3.2 Router Implementation

We now discuss the general structure of both the routers. The SAF Router was designed

with 4 ports for communication with neighboring routers, North, East, South, and West and

anywhere from 0 to 4 local ports for communication to IP cores. A router with no local ports

would be used just to complete a mesh or act as a congestion control unit within the network.

Generic port and component design was used. Therefore, input port has the ability to forward to

its own output port, although this situation could never occur. The router is decentralized

meaning each port runs its own control logic and hence can request and set up concurrent

connections. . The block diagram of SAF Router is shown in Figure 3.4.

31

 Figure 13: SAF Routers Exterior Structure [21]

The WH router was designed with the flexibility of choosing the number of ports.

Generic ports give us opportunity to save area, for example the boundary routers will not need all

the ports for connection. It also gives us the design flexibility to implement many topologies

without any changes to VHDL code. The Block diagram of WH router is shown in Figure 3.5.

32

Figure 14: WH routers Exterior Structure [22]

3.2.1 Internal Structure and Data Transfer

 The WH Router’s internal structure consists of functional blocks such as input buffer,

output buffer, arbiter, crossbar, routing table, switch, priority table and a counter as shown in

figure 16. We now briefly explain the functionality of aforementioned blocks. The input buffer

register is used to store the incoming flits. Once it is stored, the input and output ports are locked

and a counter is started. As the counter reaches zero, the worm is completed and the entire packet

is sent through the node. Now, in parallel we have to decide which node to go through for that

we have a routing table which contains the path for the worm to follow and on that basis the

input and output ports are locked as mentioned before. The worm travels through the router as

shown by thick lines in Figure 3.6.

33

 The most resource consuming blocks in this design are the routing table, crossbar and the

input and output buffers. This has implication on how the flit size affects the area of the router.

Figure 15: WH router's Internal Structure [22]

 Figure 3.7 shows all the functional blocks of the SAF router. It consists of input buffer,

output buffer, Partial crossbar switch, input control and output control. The input buffer stores all

the flits of the incoming packet. Once the whole packet is stored header is read by the input

controller. It determines the next hop and notifies the output controller of the respective output

buffer. For this we have two separate sets of control signals full, empty, take in, spit out and

another set is request and grant. The first set of signals get activated during communication

between input buffer, input controller and also between output buffer and output controller while

the other set of signals gets activated during communication between the input and output

controller. Now these signals are used to build up a sequence for the data to flow inside the

router.

34

 So as soon as the input buffer is full the full signal is sent to the input controller of the

respective input buffer. Along with full signal we sent the first two flits of the packet. They

contain the destination address and indirectly the information of next hop. Input controller reads

the header and determines which port has to be blocked and then communicate with the output

controller of that respective port. Output controller will grant permission to the request. The

request is only granted after the output controller confirms that the output buffer of the requested

port is empty and ready to receive data through the crossbar switch this confirmation is done by

the checking the empty signal coming from the output port. Now the path is blocked during this

time and it works same as in worm switching technique but only during this period of the data

flow. The output controller de-asserts the grant once it receives a full signal from the respective

output buffer. The data flow is shown in figure 3.7 which is in form of thick blue line and control

signals are denoted by thin black lines.

35

Figure 16: SAF Router's Internal Structure [21]

36

3.2.2 Switching Mechanism

The crossbar switch is shown in figure 3.8. It is a set of demultiplexers having an

interconnection allowing all possible connections between input and output channels. The

crossbar switch is used in both the routers but there were some optimizations done in SAF

Router’s crossbar switch as it reduced the area consumption without affecting the functionality

of the system. First, it uses a partial scheme, which includes one 5 by 1 unit for each output

rather than one 5 by 5 unit for all outputs, for a 5 port router. Initial design included 2 switching

options, full and partial switch. Early synthesis results eliminated the full switch design because

it was larger in terms of area and delay. Each output is connected to a different port. Next, there

are no multiplexers in the design. The input data is connected to all partial crossbar units which

will choose the appropriate data for the output. The fact that at a time, the output channel can

only serve one input request is exploited here. The final optimizations are made in the partial

units of the north and south. Though analysis of the XY routing algorithm, we can conclude that

these units will never receive data from the east or west. This reduces the inputs of all of these

units by two.

 WH router on the other hand has fully functional crossbar switch as the above

optimization were not appropriate for the routing scheme decided for this router. This lead to

more area consumption by the cross bar switch.

37

Figure 17: Architecture of Switching Fabric

3.3 Standard Sockets

This section describes the standard sockets used in our research. Standard sockets are

predesigned IP cores that allow easy interface between computational blocks and routers in an

NoC. For example in our research the computational blocks are designed to work on Avalon

protocols while the router works on wishbone protocols so our socket converts signal between

Avalon and wishbone protocols and can be used as network adapters in NoCs. This kind of

design practice reduces the design cycle time and also allows designer to concentrate on the core

functionality of the system. In our case the core functionality is that of the routers while the

network adapters are used as standard sockets.

38

3.3.1 Adapter Overview [22]

The adapter acts as an interface between IP cores and the routers. Its main function is packetizing

and de-packetizing. The adapter is designed for wishbone protocol [14] which is open source and

supported by many IP Core vendors

 The adapter works with routers designed for wishbone protocols and IP cores Designed

for Avalon protocols. This adapter facilitates NoC implementation on Altera FPGAs with router

running on wishbone protocols.

There are two types of adapters – Master and Slave. As illustrated in Figure 3.9, the

Master adapter is responsible for receiving requests from a master component (such as a CPU)

and providing the response signals. The Slave adapter is responsible for receiving the master

requests and providing the slave responses.

 Figure 18: Adapters Overview

The adapter contains a variety of VHDL generics, offering a degree of design flexibility. The

adapter is designed to be compatible with a wide range of signal widths and to conform to

Avalon and Wishbone standards. Avalon interface compatibility is obtained through the use of a

glue logic module. The logic utilization of the glue logic is very small, and hence negligible.

These parameters are divided up into three sections: Interface, NoC and internal. Interface

parameters provide flexibility with the Wishbone/Avalon interfacing. NoC parameters allow the

adapter to operate in a variety of different NoC architectures. Internal parameters concern the

Maste

r Core

Master

Adapte

r

Slave

Adapte

r

Slave

Core

NOC

39

internal operation of the adapter. Common for both adapters, data width (WB_width), address

width (adr_width), address tag width (tga_width), cycle tag width (tgc_width), data tag width

(tgd_width) and selection width (sel_width) are VHDL generics used to specify Wishbone

interface parameters. Specific to the slave adapter, cti_lsb and bte_lsb both indicate cycle type

identifier and burst type extension least significant bit locations, respectively.

NoC parameters are flit_size, fifo_depth, src_width and dest_width. Flit_size is the size of a flit,

in bits. Fifo depth is the number of registers in the adapter‘s FIFOs, which allows the adapter to

queue up flits if the NoC is congested. Src and dest width are the bit widths of the source and

destination NoC addresses, respectively. They should both be equal, where the separate

parameters are present for future optimization allowing lower bits for source addresses.

The internal parameters are fast_burst, burst_depth, burst_tag_en, no_ack, sdram_delay and

Avalon_bursts. Fast_burst indicates that burst and block transfers are to be queued up using a

burst buffer, thus opening request types 4 and 5. Burst_depth is the size of the burst buffer – this

parameter is useful if there is a small flit size but large packet size (due to large data width, for

example) since more requests can be queued and hence the CPU does not get stalled.

Burst_tag_en is used to enable burst tags for Wishbone transfers – 1 to enable, 0 to disable.

No_ack is used when there is no acknowledge signal for reads and writes – For this thesis, it is

set to 1. Sdram_delay is used with single transfers and delays forming a packet by one cycle –

this was needed for interfacing with SDRAM in single transfer mode. Avalon_bursts is used if

Avalon block transfers are used – this distinction is required since Wishbone block transfers are

different from Avalon‘s as explained in chapter 2.

Packets are made up of flits and the minimum packet size is three bits. The first three bits in a

packet is always the request type, while the rest of the packet depends on the request type. The

adapter analyses the request (or response) of the IP core and chooses the appropriate request

type. Table 3.1 indicates all the request types and their size. In the case of this research, only

request types 3, 4 and 7 are used due to the exclusive use of Avalon block transfers.

40

Table 3.1: Request Type Design

The complete adapter is formed of five modules – adr2dest, awb, fifo, master/slave sampler and

master/slave top. Adr2dest is responsible for converting the address signals into NoC

destinations. Awb is the Avalon-Wishbone glue logic. FIFO is the first-in, first-out register bank

used to queue incoming and outgoing flits for the adapter. The sampler is the main logic of the

adapter, responsible for packetizing and de-packetizing the interface requests and responses.

Finally, the top module is responsible for the hand-shaking protocol between the sampler and

FIFOs, and the sampler and NoC. Each component is described below.

Figure 19: Adapter Internal Design Overview

Awb is the Avalon-Wishbone glue logic. It contains both the slave and master adapter interfaces,

indicated with an initial wbs/wbm or avs/avm for Wishbone and Avalon, respectively. Most of

41

the logic is simple name changes for the signals to make building in SOPC Builder [15] easier

and the component interface conversion is bidirectional. There is additional clocked logic used to

delay the de-assertion of Avalon read/write signals by one cycle since de-asserting these signals

is not allowed immediately when the wait_request signal is de-asserted as well. The connections

are illustrated in Figure 3.11.

Figure 3.11: Avalon Wish bone Glue Logic

FIFO is an array of registers, responsible for queuing flits into and out of the adapter. An extra

overflow register is provided to help stop issues with control signal latency. The FIFO‘s depth is

specified with VHDL generics. Empty and full are used to indicate when the FIFO can be read or

written to.

The samplers have two unique versions – master and slave. The operation of the samplers is

based around the idea of sampling and saving bus signals, yet the operation of the adapters is

more complicated than this. Simply sampling the bus at specific intervals, placing in a packet

and sending over the network would cause a lot of wasted packets being sent since the

transactions are predictable. The Wishbone operation handles three types of transactions: Single,

block and burst. Single transactions in the adapter perform one complete transaction at a time.

Block transactions is essentially the same as single transactions for Wishbone, but with a key

difference in that the acknowledge signal is predicted to be asserted for write requests and is

done so artificially, thus increasing the speed of the adapter. Read transactions for Wishbone

block transfers operate the same as single transfers, since a response is required and cannot be

42

predicted. Burst transfers include the cycle and address tags (CTI and BTE, respectively) so read

requests can be sped up, similar to how block writes work. The Avalon block transfers operate

differently in that requests can be queued without an acknowledgement for the previous request.

Thus, a specific VHDL generic (Avalon_bursts) is used to switch the adapter into Avalon‘s block

request queuing mode. The operation of the slave adapter in this mode is illustrated in Figure

3.12, and the master adapter is shown in Figure 3.13.

Figure 20: Slave Sampler Process Flow Chart

43

Figure 21: Master Sampler Process Flow Chart

44

The Top modules (mastertop and slavetop) connect the samplers with input and output FIFOs.

The top modules are also responsible for providing the handshaking protocol between the FIFOs

and the NoC. This is done with two flip-flops –wait_for_NoC_ack and NoC_sent.

Wait_for_NoC_ack is set when an output FIFO sends a flit and is cleared when the NoC

acknowledges (via. Deasserting the receive_ready_signal). NoC_sent is similar where it only

writes the first flit to the input FIFO until NoC_send is deasserted.

3.4 Summary

In this chapter, we discussed architecture and functionality of SAF and WH routers. The chapter

concluded with a detailed description of the NoC adapter. In Chapter 4, experimental framework

will be discussed.

45

Chapter 4: NoC Implementation and

Evaluation Framework

This chapter begins with a discussion of the real world benchmark design used to test our NoC

system. This design was used to evaluate two mesh NoCs implemented using SAF and WH

routers. Chapter 4 concludes with discussion of how test revealed some flaws in SAF Router.

4.1 Real World Benchmark Design

This thesis aims to compare two different router designs SAF and WH router with the help of

real world traffic from a practical system. NoCs have been previously tested by using real

benchmark design [16], however they were not evaluated and compared using different routers.

The benchmark design used was a multi-processor design example chosen from Altera‘s website.

We did some modifications to make the system suitable for simulation and also decrease the

overall system size. The modified multiprocessor example, shown in Figure 4.2, contains three

Nios [15] II/f soft core CPUs, three 1ms timers, 16MB of flash memory

(AMD29LV128M123R_BYTE), a mutex, 64KB of on-chip RAM, 1KB of message buffer RAM

(on-chip), 256 Mbit (16 bit) SDRAM (Nios Development Board, Cyclone II), a JTAG UART

interface module, a sysid module and an LED PIO.

This benchmark is implemented on 4x4 mesh NoC as shown in figure 4.1. Each block in the

figure represents either a standalone router or a router connected to an IP core through an

adapter. The system starts by booting from a flash memory which is 16MB in our design. Each

CPU starts reading data and instruction code from the DDR-SDRAM. Mutex lock is used to

provide exclusive access to the message buffer by a single CPU at a time. CPUs try to acquire

the mutex lock simultaneously. The Acquisition depends upon timers; each timer is responsible

46

for sending interrupt requests to the CPUs. CPU 1 is responsible for reading the message buffer,

clearing it and sending the message to the JTAG UART interface module. CPU 2 and 3 sends

signals to LED and PIO along with sending the message to the message buffer. The program

code is contained within the SDRAM for all three CPUs, in separate locations. All the CPUs

have their reset vector in FLASH memory. CPU 1‘s interrupt vector is contained within the on-

chip memory module, while CPU 2 and 3‘s interrupt vectors are in the SDRAM. The

functionality of this benchmark design generates enough traffic that can be used to evaluate the

routers in the NoC. This is more useful compared to using synthetic traffic generators

 Figure 4.1: Mapping of Benchmark Design Components on 4x4 NoC

R5

mutex

 R6

CPU3

R7 msg

buffer

R8

Jtag

R1

CPU1

CCP

CPU

R2 ddr

sdram

R3

cpu2

R4

Timer2

 R9

Timer1

R10

R11

R12

timer3

R13

flash

R14

pio

R15

sysid

R16

47

 Figure 4.2: Altera Multiprocessor Design Example

4.2 Implementation of NoC in SOPC Builder---- Add description of SOPC

SOPC Builder is a CAD tool included in Quartus II. It facilitates interconnection of pre-designed

components such as computational blocks, memories, bridges, processors etc .Thus designers

can use SOPC builder to develop a system without worrying about generating the VHDL files

for interfacing the components. In order to include the whole of our 4x4 mesh NoC we generated

a single component named Samnrouter and its parameters are shown in figure 4.3.

 The components in SOPC builder are connected using Altera’s Avalon interface which

has separate interface signals for the master and slave components. While the NoC runs on

wishbone protocol which does not have different interface signals for master and slave. Hence,

we need to differentiate master and slave interfaces in Samnrouter as shown in figure. This will

avoid any confusion while debugging during simulation as it is difficult to figure out the

difference between master and slave interface signals in the vector forms.

48

Figure 4.3: NoC Parameters in SOPC Builder

The component is then added to the system and the interfaces are connected. Figure 4.4 shows the

torus NoC implemented in SOPC Builder. Each address is assigned manually, where the address bus

from the Nios II is 32 bits and the address bus from the NoC is 27 bits. This means the upper 5 bits

are ignored by the NoC but are used by the Avalon fabric‘s arbitration. Since masters are connected

to their own buses, then master adapters can have the same addresses.

49

Figure 4.4: SAF Router based NoC Implemented in SOPC Builder

The slave components are assigned addresses manually, but each component must have a unique

address range in the range of 27 bits. Figure 4.5 illustrates the NoC connected to the slave

components and their respective assigned addresses.

50

Figure 4.5: SAF Routers NoC Connected to Slave Components

Once the component is created, a Tcl script is automatically created by SOPC Builder. This

script must be manually modified in order to make the master adapters act as bridges so the reset

and exception vectors can be set in the Nios II CPUs. Figure 4.6 illustrates the concept of

bridges, where the Nios II see’s a master adapter as being directly connected to a memory

module. Since each Nios II has their reset and exception vectors pointing to different memory

components, and that an interface can only bridge to one other component, it follows that there

must be two adapters – one for each vector. If the reset and exception vectors pointed to the same

memory module, then only one adapter would be needed. For each master adapter, the

set_interface_property bridgesToMaster parameters must be modified so they contain the slave

adapter‘s name.

51

Figure 4.6: Bridging Example

The last issue involves the number of adapters for each Nios II CPU. It was set to 4 for each Nios

II adapter so that each Nios II bus (data and instruction) gets its own adapter.

4.3 Nios II Programming

Before getting into details about the benchmark program, an issue with Nios II EDS [17] must be

addressed. Since each program resides in different portions of the same memory block and that

Nios II EDS overwrites the data block when compiling the code for each CPU, a script was set

up to copy and concatenate the program files after each compile. Each CPU attempts to acquire a

mutex lock, which results in them writing an incrementing counter to the message buffer. The

counters stop at 5, after which no more messages are sent from that CPU. The three CPUs are

numbered one to three, where CPU1 is responsible for clearing the message buffer and writing to

the message to UART. CPUs 2 and 3 do not clear the message buffer or write to UART, but they

write to the PIO. They have the exact same code, but different program locations in the SDRAM.

The timers interrupt their respective CPUs, which cause them to attempt to acquire a mutex lock.

Figure 4.7 illustrates the flowchart of the programs.

52

Figure 4.7: CPU 1 Benchmark Flowchart

No message

flag?

Count ++

Message = “CPU #: Num: #”

CPU 1

Get CPU ID

Initialize timer

Timer >Last + 1

Set Last Timer

Request mutex

Aquired Mutex

Write to JTAG

Clear message and flag

Message flag = waiting

Release mutex

53

 Figure 4.8: CPU2 and CPU 3 Benchmark Flowchart

Release mutex

Set Last Timer

Request mutex

Aquired Mutex

CPU 2 & 3

Get CPU ID

Initialize

timer

Timer >Last +

1

No message flag?

Count ++

Message = “CPU #: Num: #”

Message flag = waiting

PIO = Count

54

4.4 Modelsim Simulation

Modelsim [18] provides good simulation and debugging capabilitites, and hence is perfect for the

purposes of this research. Using Altera‘s built-in scripts, the program code is loaded into

Modelsim and the automatically generated project files are used. The JTAG UART module

outputs its messages to Modelsim‘s console, which is then used as a basis for simulation end-

time. Once each CPU outputs its 5 messages (CPU #: Num: #), the runtime is recorded at the

final write operation to SDRAM. Figure 4.9 shows a sample of the WH Router regional

handshaking protocol and Figure 4.10 shows a sample of the SAF Router as seen in Modelsim.

At simulation time indicated by label 1 figure 4.9, the router sets the send bit to high on port

number two. Four cycles later, at simulation time indicated by label 2 figure 4.9, there is a

response on the receive signal from port number two, indicating that it has received the flit. The

router de-asserts the send signal on port two and, one cycle later, reasserts it to send another flit.

This is just an example of what how Modelsim is useful in verifying the operation of the system.

Figure 4.9: WH Routers Regional Handshaking

55

Figure 4.10: RF Routers Regional Handshaking

4.5 Re-design of SAF Router

 After testing SAF Router with our benchmark design we discovered some flaws in the

design of the router. These flaws were detected when we used traffic generated by a real world

design. SAF router was designed with an assumption that the number of flits in the packets will

be constant. That is not the case for the real benchmark design. So we made changes in SAF

router by adding a counter which keeps track of packet size throughout the network and

accordingly we made changes to the components. The design of input and output buffer changed

significantly which increased the logic consumption. Since buffers are used in every ports this

lead to significant increase in area of the router. This shows the importance of testing NoCs

using real world design rather than synthetic traffic generators.

56

4.6 Summary

This chapter discusses the NoC implementation and evaluation using the altera SOPC Builder tool.

Issues involved in implementing the NoC within this system as well as the details of the system

operation were discussed. It concluded with a discussion of the ModelSim evaluation environment

used in this thesis. Chapter 5 will discuss comparison of two Mesh NoC’s using SAF and WH

routers.

57

Chapter 5: Experimental Comparison

 Results

This chapter presents a quantitative comparison of SAF and WH routers using a real world

benchmark design. These routers were implemented on a 4X4 mesh NoCs and they are

compared using the following evaluation metrics: area, power consumption, maximum clock

frequency and throughput.

5.1 Mesh Topology

There are many regular topologies that can be used to connect the routers in a NoC. For example,

a 3X3 mesh, 3X3 tarus and 10 node ring topologies are shown in figure 5.1 and 5.2 respectively.

The choice of a topology depends on number of factors including the application for which NoC

based system is implemented. Since, our objective is to compare two routers we have chosen a

simple 4X4 mesh NoC topology to implement our benchmark design. Implementation of mesh

topology and mesh routing algorithm for both the routers is relatively easy compared to other

topologies.

58

 Figure 5.1: Mesh and Torus Topology

Figure 5.2: 10-node ring topology

5.1.1 Placement of the IP Cores

 When mapping the components of the benchmark design on mesh NoC a placement is

needed which assigns closely connected components together in order to minimize congestion.

After analyzing the connection requirements the placement selected for mapping benchmark

design components to mesh NoC is shown in Figure 5.3. Note that routers 10, 11 and 16 are pure

routing nodes with no components attached.

R5 R6 R7 msg R8

R1

CPU1

CCP

CPU

R2 ddr

sdram

R3

cpu2

R4

Timer2

59

5.2 Design Space Exploration and Comparison of SAF and WH Routers

The two routers were compared by synthesizing the NoC for different values of

parameters which are flit size and number of ports. The synthesis and comparison results are

discussed below.

5.2.1 Redesign the SAF router

As discussed in section 4.5 SAF router had to be redesigned to handle real world traffic.

The increase in area of SAF router after this design change is shown in figure 5.4

 Figure 22.3: Placement and Routing

60

Figure 5.4: Comparison of SAF router area consumption before and after redesign

5.2.2 Area Results

 We have compared the area for WH Router and SAF Router by varying their flit size and

number of local ports. Flit size is the size of smallest unit of the packet that traverses through

network. The number of local Ports is used to connect IP’s to the routers.

0

500

1000

1500

2000

2500

3000

3500

4000

4 8 16 32 64

o

f
lo

gi
c

e
le

m
e

n
ts

Flitsize

After

Before

61

Figure 5.5: Area consumption of standalone routers with respect to flit size

Figure 5.5 shows a plot of area consumption verses flit size for SAF router the increase in area is

very small as the flit size increases. The reason for small increase in area of SAF router is

because the buffer size remains the same and there is only a small increase in logic usage. For

WH router the area decreases slightly as the flit size goes from 4 to 8 and then increases

significantly for flit size greater than 32 .There is a dip in area consumption of WH Router when

flit size is 8, this may be possible because Quartus II CAD software is able to find better

placement and routing in case of flit size 8.

 Figure 5.6 show that area consumption increases for both routers as the number of local

ports increases. The increases in area of WH router is steeper because the complexity of the full

cross bar switch increases significantly as more ports are added. In case of SAF routers only the

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

4 8 16 32 64

o

f
Lo

gi
c

El
e

m
e

n
ts

Flit size

WH Router

S&F Router

62

number of buffers for input and output port increase and the partial cross bar switch does not

require much increase in area.

Figure 5.6: Area consumption of standalone routers with respect to number of local ports

Figure 5.7 shows the area consumption of 4X4 mesh NoC versus flit size, as can be seen the

NoC based on WH router consistently requires more than 40% increase in area compared to SAF

router. When we are implementing the whole NoC, area consumption of WH router increases

significantly due to the number of FIFO’s used in the adapter (As shown in Figure 3.10).

0

2000

4000

6000

8000

10000

12000

1 2 3 4

o

f
Lo

gi
c

El
e

m
e

n
ts

Number of local Ports

WH Router

S&F Router

63

As can be seen in Figure 5.8 the area consumption of WH router is consistently higher as the

number of local ports increases from 1 to 4.

0

20000

40000

60000

80000

100000

120000

140000

160000

4 8 16 32 64

o

f
lo

gi
c

el
em

en
ts

flitsize

WH Router

SAF Router

Figure 5.7: Area consumption of the whole NoC with respect to flit size (# of local ports is 1)

64

0

20000

40000

60000

80000

100000

120000

140000

1 2 3 4

number of local ports

lo
gi

c
e

le
m

e
n

ts

WH Router

SAF Router

Figure 5.8: Area of consumption for whole NoC with respect to number of local ports (flit

size=8)

So from the above discussion we can conclude that if area consumption is a critical factor then

SAF router is a better choice compared to WH router.

5.2.3 Power Consumption Results

Figure 5.9 shows the power consumption versus flit size for the two standalone routers. The

power consumption increases slowly as the flit size increases and SAF router uses consistently

less power compared to WH router. The difference in power consumption between two routers is

small but it adds up in large NoC’s where we need many routers. Therefore, for bigger systems

the difference in power consumption will be significant. If we analyze the internal structure of

routers we can see that it has more components communicating frequently compared to the SAF

router. This results in more active links at any given time and hence increases power

consumption. From these results we conclude that SAF has lower power consumption compared

to WH router.

65

Figure 5.9: Power Consumption Versus flit size for standalone routers

5.2.4 Clock Frequency Results

Figure 5.10 shows the maximum clock frequency versus flit size of standalone routers. The

maximum clock frequency remains the same as the flit size increases but SAF router is able to

run at a much higher frequency (more than 3 times higher). This is because in case of WH

routers a packet is routed after the path is determined so it holds the previous packet until the

next path is decided. Where as in SAF router the whole packet is stored in buffer and the

direction of next hope is determined quickly. Even though SAF router has higher clock

frequency the speed performance of the router depends on its throughput not just the clock

frequency.

0

50

100

150

200

250

300

4 8 16 32

P
o

w
e

r
C

o
n

su
m

p
ti

o
n

 m
w

Flitsize

WH Router

SAF Router

66

Figure 5.10: Maximum Clock frequency versus flit size for standalone routers

5.2.5 Throughput Results

 Throughput is one of the most important parameters that can be used to compare two

routers. Throughput measures the data handling capability of the NoC. For NoC based systems

the message throughput, TP, can be defined as follows:

 TP = (Number of messages * Message Length)

 Number of IPs * Total time taken

This definition of throughput is taken from [20]. Number of messages completed refers to the

number of whole messages that successfully arrive at their destination IPs, Message length is

0

5

10

15

20

25

30

35

40

45

4 8 16 32

M
ax

im
u

m
 C

lo
ck

 f
re

q
u

e
n

cy
 M

h
z

Flit size

WH Router

S&F Router

67

measured in flits, Number of IP blocks is the number of functional IP blocks involved in the

communication, and Total time is the time (in clock cycles) that elapses between the occurrence

of the first message generation and the last message reception

 Figure 5.11 shows a plot of throughput versus flit size for the whole of NoC. We can see that

there is decrease in throughput as the flit size increases. This is because as flit size increases the

message length decreases and total time increases only slightly and other factor are constant so

the throughput decreases as the flit size increases. So from throughput point of view either of the

routers is preferable except at flit size of 8.

Figure 5.11: Throughput versus flit size for the whole NoC

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

8 16 32 64

Th
ro

u
gh

p
u

t

Flit size

WH Router

S&F Router

68

5.3 Conclusion

This chapter presented an experimental comparison of SAF and WH router. These routers were

compared by mapping a real world benchmark to 4X4 mesh NoC. Experimental results show

that SAF router is superior to WH router in terms of area and power consumption.

69

Chapter 6: Conclusions and Future Work

 As long as Moore’s Law is valid the number of transistors that can be placed on a single

chip will continue to increase exponentially leading to larger and increasingly complicated

system-on-chip. The traditional bus-based or point to point communication infrastructure

becomes resource intensive and design restrictive. NoC based systems provide an efficient and

scalable communication infrastructure for future SoC and FPSoC’s.

 NoC designs have been evaluated using synthetic traffic generators but they do not

provide us with accurate results [16]. There has not been much research done addressing real

world testing and comparison of the NoC designs. Also much less work has been done to

implement real benchmarks on NoCs using commercially available SoC CAD software, such as

Altera’s SOPC builder, Nios IDE and Modelsim simulator. Therefore, in this thesis we have

compared and evaluated two different NoCs based on two different router designs. The NoCs

uses common topologies (mesh) in order to compare two different router designs. The motivation

of using a common topology was that we can compare the routers performance using different

parameters such as area, power consumption, maximum clock frequency and Throughput. Given

the time constraints we could not implement NoCs using other topologies. The mesh topology

was chosen because it is easier to implement mesh based NoC [19].

Considerable work was done on creating adapters which could work with Avalon bus on

the IP core side and wishbone protocol on the router side.

70

6.1 Research Contributions

 This thesis presented experimental evaluation and comparison of two different routers

WH and SAF. A real world benchmark design was used to compare two routers it was shown

that SAF router gave superior area, power consumption and maximum clock frequency results.

Testing of the NoC Design with a real world benchmark exposed the flaws in SAF router.

These flaws were due to lack of consideration of different packet sizes by the router. This

resulted in many design changes and consequently higher area consumption as discussed in

section 5.2.1. Also there were changes done to SAF Router prior to testing phase to make it work

with standard socket mentioned in chapter 2. These changes made it feasible to use the router as

a separate component which helped in decreasing experimental evaluation setup time and gives

more flexibility to the NoC designer.

6.2 Future Work

The SAF and WH router designs used in this thesis can be utilized in future research. They can

be used to implement evaluate and compare different NoC topologies using a number of

benchmark designs. Work can be done on creating a library of parameterizable NoC components

to automate the process of NoC implementation especially on FPSoC platforms.

71

Appendix A

Copyright Permissions

REQUEST FOR PERMISSION TO USE COPYRIGHTED MATERIAL

[February 22
nd

 2013]

[Experimental Comparison of Store-and-Forward and Wormhole NoC Routers for FPGA’s]

Dear Matt Murawski,

I am completing a Master’s Thesis at the University of Windsor entitled "Experimental

Comparison of Store-and-Forward and Wormhole NoC Routers for FPGA’s"

 I would like your permission to include in my thesis the following material:

(i) From Chapter 2 Section 2.3 (Interface and Signals), Chapter 3 section 3.3.1(Adapter

Overview), Chapter 4 Section 4.3 (NIOS II Programing) and section 4.4 (Modelsim

Simulation), Figure 3.5, Figure 3.6, figure 4.6 and figure 4.9 From Thesis by Matt

Murawski “NoC Prototyping on FPGAs: Component Design, Architecture

Implementation and Comparison”. May 18 2012

I have used this information in my experiments and also this information was best described

in the above mentioned thesis written by you. I have also used this information to compare it

with the other router developed by mike Brugge.

72

My thesis will be deposited to the University of Windsor’s online theses and dissertations

repository (http://winspace.uwindsor.ca) and will be available in full-text on the internet for

reference, study and / or copy.

I will also be granting Library and Archives Canada and ProQuest/UMI a non-exclusive license

to reproduce, loan, distribute, or sell single copies of my thesis by any means and in any form or

format. These rights will in no way restrict republication of the material in any other form by you

or by others authorized by you.

Please confirm by email that these arrangements meet with your approval.

Thank you very much for your attention to this matter.

Sincerely,

[Krunal Jetly]

REQUEST FOR PERMISSION TO USE COPYRIGHTED MATERIAL

[February 22
nd

 2013]

[Experimental Comparison of Store-and-Forward and Wormhole NoC Routers for FPGA’s]

Dear Mike Brugge:

I am completing a Master’s Thesis at the University of Windsor entitled "Experimental

Comparison of Store-and-Forward and Wormhole NoC Routers for FPGA’s"

 I would like your permission to include in my thesis the following material:

http://winspace.uwindsor.ca/

73

(i) From Chapter 3 section 3.1.1.3 (Routing Algorithm), Figure 3.1, Figure 3.2, Figure

3.4, Figure 3.7, Figure 3.8 from Thesis by Mike Brugge “Design and Evaluation of

a Parameterizable NoC Router for FPGAs”. Sep 21 2009

I have used this information as I have been comparing the functionality of the router

defined in above mentioned thesis with the other router defined in thesis by matt

murawski.

My thesis will be deposited to the University of Windsor’s online theses and dissertations

repository (http://winspace.uwindsor.ca) and will be available in full-text on the internet for

reference, study and / or copy.

I will also be granting Library and Archives Canada and ProQuest/UMI a non-exclusive license

to reproduce, loan, distribute, or sell single copies of my thesis by any means and in any form or

format. These rights will in no way restrict republication of the material in any other form by you

or by others authorized by you.

Please confirm by email that these arrangements meet with your approval.

Thank you very much for your attention to this matter.

Sincerely,

 [Krunal Jetly]

http://winspace.uwindsor.ca/

74

References

[1] C. Hilton and B. Nelson, "PNoC “a flexible circuit-switched NoC for FPGA-based

systems," IEEE, Computers and Digital Techniques, May 2005, Page(s): 181-188

[2] Saleh, Resve A, Wilton Steven J E, Mirabbasi Shahriar, Hu Alan J. “System-on-Chip:

Reuse and Integration,” IEEE, 2006 Proceeding, Page(s): 1050-1069.

[3] F. Moraes, A. Mello, L. Möller, L. Ost, N. Calazans, "HERMES: an infrastructure for

low area overhead packet-switching networks on chip," ACM, Integration -the VLSI

Journal, 2004, Page(s) 69-93.

[4] Altera Corporation. Altera Avalon Interface Specifications. Literature: SOPC Builder.

[Online] April 2009. http://www.altera.com/literature/manual/mnl_avalon_spec.pdf.

[5] http://www.element-14.com/community/docs/DOC-12235

[6] Mentor Graphics Corporation. ModelSim SE User's Manual. ModelSim SE | Verilog,

VHDL, SystemVerilog Design & Simulation | ModelSim - Advanced Simulation. and

Debugging:. [Online] 2010. [Cited: May 5, 2010.]

http://portal.model.com/modelsim/resources/references/modelsim_se_user.pdf.

[7] Quartus II Handbook Version 9.1 - Volume 4 SOPC Builder. Quartus II Development

Software Literature. [Online] November 2009. [Cited: May 5, 2010.]

http://www.altera.com/literature/hb/qts/qts_qii5v4.pdf.

http://ieeexplore.ieee.org.ezproxy.uwindsor.ca/search/searchresult.jsp?searchWithin=p_Authors:.QT.Saleh,%20Resve%20A..QT.&searchWithin=p_Author_Ids:37280016100&newsearch=true
http://ieeexplore.ieee.org.ezproxy.uwindsor.ca/search/searchresult.jsp?searchWithin=p_Authors:.QT.Wilton,%20Steven%20J%20E.QT.&searchWithin=p_Author_Ids:37265862300&newsearch=true
http://ieeexplore.ieee.org.ezproxy.uwindsor.ca/search/searchresult.jsp?searchWithin=p_Authors:.QT.Mirabbasi,%20Shahriar.QT.&searchWithin=p_Author_Ids:37269465100&newsearch=true
http://ieeexplore.ieee.org.ezproxy.uwindsor.ca/search/searchresult.jsp?searchWithin=p_Authors:.QT.Hu,%20Alan%20J..QT.&searchWithin=p_Author_Ids:37274867600&newsearch=true
http://www.element-14.com/community/docs/DOC-12235
http://www.altera.com/literature/hb/qts/qts_qii5v4.pdf

75

[8] M. P. Vestias, H. C. Neto, "Area and performance optimization of a generic network-

on-chip architecture," ACM, 19th annual symposium on Integrated circuits and systems

design, 2006, Page(s) 68-73.

[9] Janarthanan, V. Swaminathan, K. A. Tomko, “MoCReS: an Area-Efficient Multi-

Clock On-Chip Network for Reconfigurable Systems,” IEEE, Symposium on

Computer Society, March 2007, Page(s): 455-456.

[10] “Porting from Wishbone Bus to Avalon Bus in SoC Design”. Xing, Xu, et al. Xi'an :

s.n., 2007. Electronic Measurement and Instruments, 2007. ICEMI '07. 8th International

Conference on. Vol. 1, pp. 862-865.

[11] “An FPGA Based Open Source Network-on-Chip Architecture”. Ehliar, A. and Liu,

Dake. Amsterdam : s.n., 2007. International Conference on Field Programmable Logic

and Applications, 2007. pp. 800-803.

[12] “Design and Implementation of a Plesiochronous Multi-Core 4x4 Network-on-Chip

FPGA Platform with MPI HAL Support”. Minhass, Wajid Hassan, Öberg, Johnny and

Sander, Ingo. Stockholm, Sweden : Proceedings of the 6th FPGAworld Conference,

2009. 978-1-60558-879-7.

[13] “HERMES: An infrastructure for low area overhead packet-switching networks on

chip”. Moraes, Fernando, et al. 1, Amsterdam, The Netherlands : Elsevier Science

Publishers B. V., 2004, Vol. 38. 0167-9260.

[14] Silicore corporation; opencores.org. WISHBONE, Rev.B3 Specs.

Wishbone::OpenCores. [Online] July 9, 2002. [Cited: 05 03, 2010.]

http://opencores.org/downloads/wbspec_b3.pdf.

[15] Altera Corporation. Nios II Processor Reference Handbook. Literature: Nios II

Processor. [Online] November 2009. [Cited: April 20, 2010.]

http://www.altera.com/literature/lit-nio2.jsp.

[16] R. Marculescu et al, "Outstanding Research Problems in NoC Design: System,

Microarchitecture, and Circuit Perspectives, " IEEE Trans. on CAD of ICs and

Systems, vol. 28, no. 1, January 2009.

[17] Nios II Software Developer's Handbook. Literature: Nios II Processor. [Online]

November 2009. [Cited: May 5, 2010.]

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf.

http://www.altera.com/literature/lit-nio2.jsp
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

76

[18] T. Le, “Implementation and Evaluation of an NoC Architecture for FPGAs,” M.S.

Thesis, University of Windsor, 2009.

[19] Mirza-Aghatabar, M. “An Empirical Investigation of Mesh and Torus NoC

topologies Under Different Routing Algorithms and Traffic Models” Digital System

Design Architectures, Methods and Tools, 2007. DSD 2007. 10th Euromicro Conference

on.

[20] “Performance Evaluation and Design Trade-Offs for Network-on-Chip

Interconnect Architectures”. Pande, Partha Pratim, et al. 8, s.l. : Computers, IEEE

Transactions on , 2005, Vol. 54. 0018-9340.

[21] M. Brugge, “Design and Evaluation of a Parameterizable NoC Router for

FPGAs”, M.A.Sc. Thesis, Department of Electrical and Computer Engineering,

University of Windsor, Canada, 2009.

[22] Matt. Murawski, “NoC Prototyping on FPGAs: Component Design, Architecture

Implementation and Comparison”, M.A.Sc. Thesis, Department of Electrical and

Computer Engineering, University of Windsor, Canada, 2012.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Mirza-Aghatabar,%20M..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4341432
http://m.a.sc/
http://m.a.sc/

77

VITA AUCTORIS

Krunal Jetly was born in Mumbai, Maharashtra, India in year 1986. He received his bachelor’s

Degree in Electronics and Communication in 2008 from Sardar Patel University in V.v.Nagar,

Gujarat, India. He received his M.Eng degree in electrical engineering in 2009 from the

University of Windsor in Windsor, Ontario, Canada. He is currently a candidate in the electrical

and computer engineering M.A.Sc program at the University of Windsor. His research interests

include field programmable-related technologies, hardware and software development for

embedded system, and digital computing.

	Experimental Comparison of Store-and-Forward and Wormhole NoC Routers for FPGA's
	Recommended Citation

	tmp.1619449025.pdf.jgkqI

