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Abstract 

 

 

Network on Chip (NoC) is an interconnection paradigm which is scalable and efficient for 

connecting increasing number of components on Field Programmable Systems on Chip 

(FPSOC). The router is a key component in NoC that impacts area performance, power 

consumption, etc. In this thesis we evaluate and compare two different router designs using 

real world benchmark. The first router uses Store-And-Forward strategy (SAF) and XY 

routing algorithm and the second router uses Wormhole (WH) as forwarding strategy and 

source routing algorithm. These routers were used to implement 4x4 mesh NoCs. A multi 

processor system benchmark obtained from Altera was implemented in each NoC. This 

enabled us to evaluate and compare the routers using the real world benchmark design. The 

evaluation metrics used were area, throughput, power consumption and maximum clock 

frequency. Experiment results show that the SAF router is superior to the WH Router.     
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Chapter 1: Introduction 

 

INTRODUCTION 
 

   The world of silicon integrated circuits has changed a lot in recent years. We have seen the 

feature size of IC decreased from 90nm to 40nm as predicted by moore’s law. This has enabled 

systems on chip (SoC) which can implement complex systems on a single chip which earlier 

needed the Printed Circuit Boards. The electronic industry has continuously changed and 

evolved by packing more functionality in smaller area of silicon, which has resulted in 

Increasing transistor density, higher operating frequencies, shorter time-to-market and reduced 

product life cycle [1]. As the number of computational modules in single IC continuous to 

increase the new interconnection paradigm is needed that is efficient and scalable.   

 

The electronic industry started from IC which used to perform basic logic functions and then 

moved to PLD, CPLD, micro controllers and microprocessors along with these digital blocks 

complex modules that could implement computationally intensive task were implemented on 

single IC’s. Further, with increase in transistor density it was feasible to add more of these blocks 

in smaller area which lead us to the embedded systems. An embedded system is a combination of 

processor and supporting digital blocks which is designed to perform a specific task. In today’s 

technologically advanced world embedded system plays an important role as we can find 

embedded systems almost everywhere for example cameras, DVD players, washing machines 

and also in large stationary units like cellular base stations and factory controllers. At the present 

time SoC enabled us to implement a complete embedded system on a single chip. 

 

 As the transistor density is still increasing it was possible to incorporate more digital blocks 

and so SoCs started to contain many hardware and/or software blocks, such as processors, DSPs, 
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memories, peripheral controllers, gateways, and other custom logic blocks. SoCs have just 

started to get intricately complex and in future there will be more issues coming up with more 

shrinkage in size of transistors. Interconnection Techniques and routing methodologies has 

become one of the most research intensive areas in SoC designs [2]. The issues concerned with 

interconnection methodologies and routing methodologies has been one of the most research 

intensive areas as it affects each facet of SoCs design. Interconnection methods greatly impact 

cost and performance of a SoC. 

     

In earlier days the number of blocks in single IC were limited hence a point to point or simple 

Bus interconnection was used. But, as the designs started to get complex Bus based systems 

could not handle the increase in number of blocks. The routing methods used after SoCs 

introduction was point to point connection between IP’s. Dedicated wires were effective until the 

system were not much complex and less number of the IP’s were there on the SoC’s, but as the 

complexity increased the routing resources were consumed too quickly. Also dedicated wiring 

leads to decrease in the resource reusability and flexibility. So to overcome this limitation 

designer incorporated usage of shared bus where a set of wire is common between different 

multiple cores of the system this increased the reusability and scalability of the resources. For 

achieving this Master and slave scheme has been carried out which uses control signals and slave 

waits for the data to be received or requested from the master. However, with the systems started 

having more masters and slave the contention increased and results to bottleneck which gets 

worse with increase in complexity. Along with this there is concerns regarding complication of 

the protocols while trying to eliminate the scalability problems. Design and verification times 

also grow with SoC complexity [3]. 

 

     ASIC designs are application specific ICs they are used to replace the time consuming part 

of the software. ASIC’s help in increasing the speed of the system by great extent. The ASIC 

design not just concentrates on increasing speed it also decreases area and power consumption of 

the system. ASICs have been a good implementation for large amount of production because 

ASIC is not easy to implement as the systems are very complex and even though automation has 

helped the industry ASIC designing takes away a lot of engineering resources. So to overcome 
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this difficulty the ASICs have started to be replaced by FPGA’s. The competitive world of 

technology has made a new requirement of bringing the new technology out as soon as possible, 

which is stated as “time to market”. This has made the designers to shift to other resources which 

are much faster to design and validate. FPGA has been an answer to that and this is the reason 

why we see usage of FPGA when there is a small scale requirement FPGA is the viable choice 

but for large scale production still ASIC is preferred.  

     

       FPGA has captured significant part of the IC market. Before FPGA were replacing small 

units as it was not containing much of the logic elements and because of that we did not care of 

the routing carried out in FPGAs .With the increase in transistor density more number of logic 

elements were packed into FPGAs and current FPGAs can be considered to be FPSoCs (Field 

Programmable Systems on Chips). With the current trend of integration of more complex 

FPSoC’s  we need a better communication infrastructure and protocol which will alleviate the 

problem of scalability by supporting multiple concurrent connections between IP cores and along 

with that it should allow the reuse of area specific pre-designed and pre-tested IP cores. 

 

NoC is a promising interconnection paradigm that can be used in SoC’s and FPSoC’s. 

The Basic concept behind NoC is similar to computer networks, multiple computers are 

connected to different routers and these routers are connected to each other using different 

topologies. The same concept is used in NoC’s with IP cores replacing computers. Much 

research needs to be done in Exploring the design space of NoC implementation in FPGA’s 

    

This Thesis is intended to shed light on some of the tradeoffs involved in NoC 

implementation on FPGA’s. We implemented two different Router designs and compared them 

using a real world benchmark application. Previous research has evaluated compared router 

designs using data from traffic generators which is not as good as the traffic generated by a real 

world application. Our research results will be useful to the future designers of NoC based 

systems on FPGAs. 
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1.1 Thesis Objectives 

The main goal of this research is to evaluate and compare two NoC routers developed in 

previous research work. The Evaluation metrics used to compare the two routers are area, flit – 

size, Ports, power, throughput and clock frequency. Our research results will help designers 

working on implementation of large complex NoC based systems on FPGAs by allowing them to 

make informed choices on design tradeoffs. This research has the following major objectives: 

 

1. Investigate SAF router implementation on FPGAs.  

2. Developed network adapter based on wishbone protocol that could be interfaced to both 

SAF and WH router. 

3. Implement two mesh NoCs using SAF and WH Routers respectively, to run a real world 

bench mark design. 

4. The two Mesh NoCs were synthesized and results were evaluated and compared using 

metrics area, power, clock and throughput.  

 

For the first objective, we have investigated and understood the functionality and design of 

SAF Router, WH router and NoC adapters. This led us to make changes to SAF Router and NoC 

adapters. Testing was done with the help of a realistic benchmark. The experimental framework 

was developed in VHDL, allowing NoC synthesis in Altera Quartus II design environment 

(Simulation was done using Modelsim). SOPC Builder CADtool was used to implement the 

mesh to NoCs. NIOSII IDE was used to run the Benchmark design on the NoCs implemented in 

FPGA.   

1.2 Thesis Organization 

The remainder of this thesis is organized as follows. In chapter 2, we present the background and 

related work for FPGAs and NoCs. Chapter 3 covers detailed description of the routers used and the 

network adapters. Chapter 4 describes NoC implementation and Evaluation framework. Chapter 5 

presents experimental comparison and analysis. Chapter 6 concludes the thesis and discusses 

possible future work. 
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Chapter 2: Background and Previous Work  

 

 

In this chapter, we will go through previous work done and also the background that is relevant 

to this research is presented. This chapter begins with a brief overview of FPGA technology, 

detailing the benefits. Then describe different aspects of Network-on-Chip (NoC).  This is 

followed by description of the standard sockets used in NoC’s.  We cover the Avalon [4] and 

Wishbone interfaces [5]. Finally the CAD tools used in our research are briefly described and the 

chapter concludes with the description of related research.  

 

2.1 FPGA Technology  

 
Field Programmable Gate Arrays (FPGA) is special integrated circuit, in which the logic 

elements, routing resources are pre-fabricated. Different digital circuits can be specified using 

hardware description languages such as VHDL and Verilog and then synthesized and 

implemented on FPGAs. In many real world applications which requires low to medium volumes 

FPGAs have replaced ASICs due to their many advantages such as low non recurring expenses 

(NRE), fast time to market and flexibility. FPGAs are made up of Logic Elements (LE), in the 

form of look-up tables, which are used to implement custom logic. FPGAs have also evolved and 

with advances in technology and contain advanced components, such as DSP blocks, memory 

blocks, serial interfaces and hard or soft CPU cores. In this thesis, FPGAs are used as 

implementation fabric to evaluate and compare NoC routers.  
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Figure 2.1: Altera Logic Element Architecture [5]           

2.2 Overview of NoC  

This section describes the basic building blocks used in NoCs and their operation. 

2.2.1 NoC Building Blocks  

NoC aims to provide a network on the chip which allows effective communication between 

computational components (IP cores). Figure 2.2 depicts a sample NoC which consists of 4 IP 

cores which are connected using a single router. An adapter is used to connect an IP Core to the 

router and a link is used to connect a router to adapter or to another router.  
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   Adaptors 
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2.2.1.1 Links  

This component provides one to one connections for a routing node with a network adapter or 

another routing node.  It also provides separate control lines for connection establishment and 

teardown.   

2.2.1.2 Network Adapters  

Network Adapters convert the high level protocols (HLP) that IP uses into the packet-based 

communication protocols of the NoC and vice versa.  They are responsible for storing IP core 

addresses, creating and disassembling messages, forming packets and breaking them into flits, 

implementing end-to-end flow control, crossing clock domains, and other higher level network 

issues.   

Router 

IP 

CORE 

IP 

CORE 

IP 

CORE 

IP 

CORE 

Figure 2.2: A NoC Interconnection Networks 4 Basic Functional Blocks 
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2.2.1.3 Routing Node  

The Routing node handles the flow of packets (Traffic) in the network based in NoC. It basically 

runs the routing algorithm which determines the method of flow of packets and it is also a central 

component of the NoC. The parameters of the routers are thus important as they can affect the 

performance of the network to a large extent. The parameters of routers are routing algorithm, 

forwarding strategies, flit size, and number of ports.  

2.2.2 Parameters of NoC 

Every NoC has its own unique parameters. The three main parameters are: Mapping, 

Communication Mechanism and Infrastructure. These parameters play an important role in the 

overall performance of the NoC and so it has been the most important research topic for the NoC 

researchers. It is preferred that these parameters should be chosen according to the application 

requirement in order to enhance the NoC performance for that particular application. This thesis 

attempts to provide an insight into how the choice of parameter selection affects tradeoffs in cost, 

performance and power consumption of NoCs in FPGAs.   

2.3 Interfaces and Signals [22] 

This Section describes in detail the interfaces used in our thesis along with their protocols and 

signals used for communication. The standard sockets used in this thesis include 

Silicore/Opencore.org‘s Wishbone and Altera‘s Avalon interfaces.  

 

2.3.1 Wishbone  

 
Wishbone is one of the handshaking protocol, we have used it as a general purpose interface 

between IP core modules because it’s an open source synchronous SoC interconnection 

architecture. It also has a great range of bandwidth in terms of data transfer speed. 
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2.3.1.1 Signals  

 
Wishbone has a variety of signals, used to provide flexibility and compatibility for attached IP 

cores. The signals common to both master and slave devices are: 

 

 CLK_I – Clock input. All Wishbone output signals are registered on the rising clock edge.  

 

DAT_I – Input data array, with a maximum size of 64 bits.  

 

DAT_O – Output data array, with a maximum size of 64 bits. 

  

 RST_I – Synchronous reset signal  

 

TGD_I – Input data tag array, containing information regarding the DAT_I signal. The data tag 

contains user defined information.  

 

TGD_O – Output data tag array, associated with the DAT_O signal.  

 

Master signals include: 

    

ACK_I – Acknowledge signal used for the handshaking protocol, which indicates the 

termination of a bus cycle.  

 

ADR_O – Address output array 

 

CYC_O – Cycle output signal, indicating a valid bus cycle when asserted. For burst and block 

cycles, the CYC_O signal is held high for multiple transfers until the final cycle. 
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ERR_I – Error input signal, used as an alternative to ACK_I to indicate a failed transfer. The 

exact functionality of this signal depends on the IP core.  

 

LOCK_O – Lock output signal, used to ensure a transfer is uninterruptable. The exact 

functionality of this signal depends on the IP core. 

 

RTY_I – Retry input signal, used as an alternative to ACK_I. The exact functionality of RTY_I 

depends on the IP core. 

 

SEL_O – Select output array, used for fine control over data granularity. The size of SEL_O 

depends on the data width and granularity. For example, 8 bits are used for a 64 bit data bus with 

byte granularity. 

 

STB_O – Strobe output signal, used to indicate valid data transfer cycles. Unlike CYC_O, 

STB_O is deasserted after a transfer. 

 

TGA_O – Address tag output signal, used to contain tag information associated with the ADR_O 

signal. For burst transfers, the TGA_O tag contains Cycle Tag Identifier (CTI), and Burst Type 

Extension (BTE) tags regarding burst specifics. 

 

TGC_O – Cycle tag output signal, used to contain tag information regarding a bus cycle. It can 

be used to distinguish between a single, block or RMW cycle. WE_O – Write enable output 

signal, used to indicate a write transfer. 

 

Slave signals receive the exact same master signals, but in an opposite direction. For example, 

CYC_I receives the cycle output signal, whereas ACK_I sends an acknowledge response from 

the slave to the master‘s ACK_O signal. The types of Wishbone bus cycles are divided into three 

sections – Single, block and burst.  

Single transfers use a handshaking protocol shown in Figure 2.3. The master core initiates a 

transfer with the strobe signal, where the slave responds with ACK, ERR or RTY. Strobe is held 
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high until a response is received, where the stobe signal is then de-asserted. A cycle termination 

signal (ACK, RTY or ERR) must be asserted according to the logical AND of STB and CYC. 

                               

Figure 2.3: Single Transfer Hand Shake 

A more detailed waveform is shown in Figure 2.4, where a sample single read transfer is shown. 

CYC and STB are asserted to indicate a read request, where the address, selection and associated 

tags are also applied. The slave responds with an acknowledge signal at (1), as well as the data 

and associated tags. 
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                                        Figure 2.4: Single Read Transfer 

A single write request is very similar, shown in Figure 2.5, where WE_O is asserted, data is 

provided by the master on DAT_O and the slave terminates the transfer with an acknowledge at 

edge (1). 
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                              Figure 2.5: Single Write Request Signals 
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These two requests can be performed in a Read-Modify-Write (RMW) request, shown in Figure 

2.6. The CYC signal is held high for the duration of the transfer, while the separate strobe signals 

perform the actual individual transfers. 

                  

                                             Figure 2.6: Wishbone RMW 

The block transfers operate slightly differently, where the acknowledge signal may be held high 

for a number of cycles for multiple transfers for increased bandwidth and reduced delay. A block 
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read request is shown in Figure 2.7. Note that CYC is asserted for the entire duration of the 

transfer. 

 

 

                                      Figure 2.7: Block Read Request for Wishbone 
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Burst transfers address the issue of the additional delays involved when cycle termination 

signals, in order to reduce wire routing delay, become synchronous. Additional tag signals are 

used in order to let the slave know of predictable transfers in advance. The Address Tag contains 

two additional identifiers, used to specify burst characteristics: Cycle Tag Identifier (CTI) and 

Burst Type Extension (BTE). CTI is 3 bits, and BTE is 2 bits. They are shown in Table 2.1 and 

Table 2.2. 

CTI (2:0) Description 

000 Classic Cycle  

001 Constant address burst cycle 

010 Incrementing address burst cycle 

011-110 Unused 

111 End-of-Burst 

                                                Table 2.1: Cycle Type Identifier 

BTE (1:0) Description 

00 Linear burst  

01 4-beat wrap burst 

10 8-beat wrap burst 

11  16-beat wrap burst 

                                               Table 2.2: Burst Type Extension 
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The Classic Cycle is not a burst transfer, where no information about future master cycles is 

given. End-of-Burst is used to indicate that the current cycle is the last cycle in the burst. 

Constant address cycle causes a continual access to the same address, until End-of-Burst is 

given. Lastly, incrementing address burst uses the Burst Type Extension tag to further define the 

address behavior. Consecutive addresses, based on BTE are applied. Linear burst simply adds 

one to the address per cycle, while the beat wrap bursts are modulo the wrap size. Figure 2.8 is 

an example of an incrementing address burst transfer. 

                        

 

                                    Figure 2.8: Incrementing Bursts for Wishbone 
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2.3.2 Avalon Interface  

 
Altera’s Avalon interface is a flexible interconnection architecture aimed at SoCs on FPGAs. 

While Avalon has six different types of interface – Memory Mapped, Streaming, Tristate, Clock, 

Interrupt and Conduit – the Memory Mapped interface will be the main focus due to the nature 

of the research. The other types will be briefly explained.  

 

2.3.2.1 Avalon-MM  

 

The slave interface uses the following signals. Note that not all of them are required. 

 Read – Read is asserted to indicate a read transfer, where readdata is required. 

 Write – Write is asserted to indicate a write transfer, where writedata is required.  

Address – Contains the address used for read and write requests, and can be up to 32 bits. 

Readdata – Contains the data for a read response.  

Writedata – Contains the data for a write request.  

Byteenable – Used for fine control over data granularity. Selects a specific byte lane for transfer, 

and has the available bit widths of 1, 2, 4, 8, 16, 32, 64 and 128. 

Begintransfer – Asserted for the first cycle of each transfer, regardless of waitrequest. 

Waitrequest – Asserted by the slave to indicate that it is unable to respond to a request. 

Readdatavalid – Asserted when data is supplied in response to a read request.  

Burstcount – Indicates the number of transfers that a burst contains, with a maximum size of 32 

bits.  
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Beginbursttransfer – Asserted on the first burst cycle to indicate the start of a burst transfer. 

Figure 2.9 demonstrates examples of slave read and write transfers using Avalon-MM. 

 

 

                                                 Figure 2.9: Avalon MM Transfer 

2.3.2.2 Avalon-ST  

 
Avalon Streaming (Avalon-ST) interfaces are used for driving unidirectional and high bandwidth 

data, where applications include DSP, packets and multiplexed streams. Connected components 

act as either a source or a sink, with data flowing from the source into the sink.  

 

2.3.2.3 Avalon-MM Tristate  

Avalon Memory-Mapped tri-state interfaces allow off-chip components to be used. It is 

relatively similar to Avalon-MM, but with the inclusion of Chip Select (CS) and Output Enable 

(OE) signals, as well as a bidirectional data line. When chip select is present, all signals are 

ignored unless CS is asserted. When OE is de-asserted, the slave will not drive its data lines. 
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2.3.2.4 Clock  

Clock provides synchronization for the Avalon interface and includes a synchronous reset signal. 

All internal logic returns to initial states when reset is asserted.  

 

2.3.2.5 Interrupt  

Each applicable slave device has an interrupt output signal (IRQ), which is asserted when service 

is needed. The master device receives up to 32 interrupt signals and, depending on the IRQ 

scheme, services each interrupt according to a priority table.  

 

2.3.2.6 Conduit  

The Conduit interface is used with Altera’s SOPC Builder software and is used for exporting 

signals for connection with external FPGA pins. 

2.4 CAD Tools for NoC Implementation on FPGAs  

 

2.4.1 Altera Quartus II  

 

Quartus II Software is CAD tool suite provided by Altera Corporation. It is designed to map 

hardware designs conveniently and efficiently to altera FPGAs. The design flow for Quartus II is 

shown in figure 2.10 

 As shown in the flow chart first step of the design flow is the design specification. The 

design entry is done by creating an HDL file. Synthesis is the process where the HDL code is 

checked for any syntax or semantic errors. The HDL is compiled to an intermediate form and 

then an equivalent and optimized RTL implementation is synthesized. Place and Route maps the 

hardware described at the RTL level to available logic and routing resources on the FPGA. 

Timing Analysis evaluates the performance of the design implemented on FPGA and attempts to 

meet timing requirements and attain timing closure. Simulation is used to verify the functionality 
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of the HDL model and its FPGA implementation. Finally, Programming and Configuration stage 

generates the bit stream required to configure. Quartus II Version 9.0 running on sun solaris was 

used in this research.  

                     

. 

                               

 

 

 

 

   

 

 

 

 

 

 

 

Figure 2.10: Quartus II Design Flow 
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2.4.2 Altera SOPC Builder  

 

System-On-a-Programmable-Chip (SOPC) Builder is included with the Quartus II 

software. SOPC Builder provides an environment for design implementation using pre-designed 

components such as Nios II CPU for the embedded systems. In our research we have used these 

pre-designed components and they are interconnected with the help of default Avalon fabric and 

our NoC component which was imported as VHDL coded files. 

  

2.4.3 Nios II Embedded Design Suite (EDS)  

 

The Nios II EDS consists of Eclipse IDE and provides an environment where we can 

configure, program, debug and carry out simulation of Nios II CPUs. All this is carried out by 

using C/C++ programming language which is further compiled, linked and assembled for Nios 

II. It also supports in-circuit debugging and Flash Programming   

2.4.4 Mentor Graphics ModelSim  

 

Mentor Graphics ModelSim [6] is a tool which provides an environment to run the 

simulation tests for the VHDL or Verilog designs. It has many features to debug the problem, 

like assertion tests, breakpoints and in-depth signal variable simulations. It also provides us with 

code coverage and all these features are not well supported in Quartus II’s [7] simulation engine. 

2.5 Related Work 

Our Routers has been designed and synthesized for an Altera Cyclone IV FPGA. This section 

provides a brief review of the state of the art for NoC routers. After that, we describe the Avalon-

Wishbone glue logic and discuss related work in that area. Next, we look at related work in the area 

of NoC adapters, followed by related work that builds a NoC with the Nios II CPU and supporting 
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software. Other areas of related work include similar routers synthesized for FPGAs and their 

evaluation methodologies.    

 Vestias et al. propose GNoC in [8], a generic router which supports a range of routing, 

switching and arbitration protocols.  They create a tool for exploring the sharing of some 

decentralized components to reduce area that is based on the injection rate of ports.  

Unfortunately, they lock all protocols to certain values and do not explore them further.  Their 

tool shows how they can save area when injection rates are low but does not test to see if 

performance is degraded. 

 MoCres, designed by Janarthanan et al. in [9], uses complex VCT flow control and 

attempts to reduce area by combining multiple components into a single component. They create 

multi-clock domain to enable high clock frequencies during transfers.  Optimizations from XY 

routing in the crossbar matrix have been extended to the routing algorithm, and gave us the idea 

for a further arbitration unit extension.  We have also used their idea of creating VHDL wrappers 

to simulate the stand-alone router or routing configurations to compare parameters. 

         Porting from Wishbone Bus to Avalon Bus was the concept given by Xing, Xu, et al. They 

have discussed regarding the glue logic between the Wishbone and Avalon interface sockets, a 

Wishbone compatible I2C controller was ported to the Avalon bus [10]. The glue logic was 

verified with simulation results. While the logic is correct for single transfers, there is much 

missing in the way of variable latency support and high speed Avalon block transfers. The 

readdatavalid signal is not supported in this paper and block transfers will not be queued and 

hence, forced into a wait state. Lastly, there is no mention of burst transfer glue logic. 

              A packet-switched wormhole router was implemented [11], utilizing Virtex-4 SRL16 

components for FIFO implementation, which increases efficiency but decreases portability and 

design reuse. A Wishbone adapter was included, which supports burst transfers. Since the routers 

are input queued, deadlock becomes an issue and was solved by adding a separate read request 

buffer into the Wishbone adapters, which halts any incoming request when the buffer fills. They 

tested the design with a 16 switches, memories and transaction generators. The individual router 

was synthesized for Xilinx FPGAs with four and five ports and compared to related work. 
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               Design and implementation of a Plesiochronous multicore system [12], a 4x4 packet-

switched mesh NoC was implemented with SOPC Builder using Nios II CPUs. Multiple Stratix 

II FPGA boards running at 50MHz were used in order to fit the entire design, which results in an 

on-board throughput of 650Mbps. Inter- board communication operates at 50MBps. A software 

driver is used to access NoC functions within the Nios II CPUs. The system was verified by 

probing certain NoC components as a message traverses the network and returns to the sender, 

and it was found that the maximum communication rate was 434,000 Packets/second. This large 

difference between the theoretical bandwidth of 640Mbps is due to the large amount of time 

required for the packet to traverse the software routines.  

In HERMES [13], a packet-switched wormhole router with input queuing was designed and 

analyzed. The router has four regional ports and one local port, and uses X-Y routing. 3x3 mesh 

NoC architecture was implemented with traffic generators attached. The buffer size and traffic 

patterns were analyzed and explored, resulting in overall increased performance as buffer size 

increased. A 2x2 NoC was synthesized targeting a Xilinx XC2V1000 FPGA. 

2.6 Summary 

In this chapter, the relevant background material and related previous work was presented.  First, 

the basic concepts of FPGA technology were discussed then a short collection of concise 

definitions of NoC building blocks was presented.  We then listed relevant concepts and theories 

about interfaces and signals. Finally, the Chapter concluded with a discussion of some of the 

previous work that is closely related to this research, and how it was used to motivate our 

research. In Chapter 3, a detailed description of architecture and functionality of SAF and WH 

routers is presented. 
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Chapter 3: Description of SAF and WH Router 

Architecture 

 

 

This chapter discusses the design and implementation of Routers and Adapters explored and 

evaluated in this thesis. It begins with a discussion of basic functionality of the NoC router.  That 

is followed by a discussion of the NoC router architectures, describing their components, and 

data flow.   

3.1 Functionality 

In the following sections, we discuss the functionality of the routers which includes protocols 

and algorithms. This will give us a basic idea of how routers differ from each other.  

3.1.1 Protocols and Algorithms  

NoC router protocols and algorithms govern the flow of data through the NoC network.  They 

make decisions on where data flows, at what speed, in what order, how it is stored, etc.  

Therefore they directly affect performance and area consumption.  Careful selection is crucial 

and there is much work to be done in testing existing protocols and algorithms and proposing and 

evaluating new ones.  The following section describes protocol and algorithm choices used in 

SAP and WH router.   

3.1.1.1 Flow Control 

Both the routers used packet switched flow control (PS).  In PS networks, data is separated into 

small blocks called packets at the core.  This packet includes a header which has information 

about its destination.  Upon creation of the packet, IP cores simply release the packet into the 
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network where a series of interconnected routers forward the packet to its destination.  PS is 

referred to as connectionless as there is no direct connection between communicating cores.  

This is an attractive choice as it allows multiple IP cores to communicate concurrently without 

contention.   

3.1.1.2 Switching Mode 

Switching mode can often be confused with flow control as it plays a large part on the flow of 

the packet. Switching mode is only a parameter of PS networks.  This parameter determines how 

a packet is allocated with buffers and channels and when it will receive service.  A packet is 

broken down into flow control units (flits). Each flit is the size of the channel. The two routers 

have two different switching modes (i) store-and-forward scheme and (ii) wormhole scheme.  In 

SAF scheme, packets are buffered at each router, and the router waits for the full packet to arrive 

before forwarding.  This prevents a single packet from blocking more than one channel at a time.  

The disadvantage is that it increases the buffering requirements of each router. While in WH 

router instead of full packet only the flit is stored and then the path is blocked for the rest of the 

flits. This scheme mitigates the disadvantage of SAF Router as there is no buffering required. 

However, after evaluating these routers we realized that each switching mode has its advantages 

under different applications.  

3.1.1.3 Routing Algorithm [21] 

The routing algorithm is used in the router and determines how the path is chosen to the packets 

destination. SAF Router uses XY routing algorithm known for its simplicity and low area 

overhead. WH Router uses source routing which is a deterministic algorithm that gives the 

designer a chance to determine the routing path and optimize placement with the help of floor 

planning. We will now briefly discuss how the XY routing algorithm and how the WH routing 

works. 



27 

 

  

Figure 3.1: Coordinate Configuration for XY Routing [21] 

In XY routing, each router is given a coordinate based on its position in the network.  We 

restrict our mesh size to 4X4 and therefore our coordinate is 4 bits.  The most significant 2 bits 

portrays the routers vertical displacement with 00 being the lowest (southern) router and 11 

being the highest (northern) router.  The least significant 2 bits portrays the routers horizontal 

displacement with 00 being the left most (western) router and 11 being the right most (eastern) 

router.  Figure 3.1 shows router coordinate configuration within a mesh.  A packet arrives at the 

router with a 16 bit header.   This header contains the destination of the packet along with the 

type of packet.  The vertical displacement is checked first.  If the destination is greater than the 

coordinate, the packet is forward north.  If the destination is lesser then the coordinate, the packet 

is forward south.  If the destination is equal to the coordinate, then its vertical displacement is ok.  

The same process then occurs for the horizontal displacement.  Eventually, the packet arrives at 

the router with the proper coordinate.  At this point the packet is at the proper port and must now 

be forwarded to the correct destination port.  Since routers in our mesh can have up to 4 ports, 

the least significant 2 bits of the header are used to distinguish among local ports.  Figure 3.2 

shows the configuration of local ports within the router.   
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An important note can be made about this algorithm.  Since the vertical displacement is 

always found first, a packet coming in from the east or west ports must already be in its proper 

vertical position.  Therefore, a packet coming in from the east or west ports cannot be forward 

north or south.  This observation is exploited later to optimize the area selected components. 

               XY routing prevents livelock from occurring.  Since all packets leaving the same 

source and headed for the same destination will travel the same path, it also prevents having to 

deal with complex scenarios like packet reordering.  Unfortunately, using the same logic, XY 

routing cannot provide any type of congestion control.     

WH router uses source routing as an algorithm. In source routing the routers do not need 

any router coordinates to be given. Source routing completely depends on routing table which 

helps determining the port that packet has to use in order to progress towards destination. In 

source routing the number of IP cores is an important factor in determining the resource usage 

because more number of IP cores leads to a larger routing table. The routing table is a simple 

lookup table where the information of the next hop is provided to the packet after reading the 

source and destination address from the header flit.  

Figure 11: Configuration of Local Ports for XY Routing [21] 
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In source routing the header flit consists of the source and destination address. Depending 

on the flit size, the size of router input buffer is determined, as it is used to store the header flit 

which can be consisting of two or more flits. First, the header flit is read and from there the 

source and destination address is extracted, the source and destination widths can be determined 

by designer as it is a generic parameter and can be given as input. There is a specific port 

assigned to the packet with respect to the source and destination addresses of the packet. The 

port determination is shown in Figure 3.3. 

 Destination 1 Dest 2 Dest 3 Dest 4  Dest 5….. 

Source 1 Port 1 Port 4 Port 1 Port 4 Port 2 

Source 2 Port 2 Port 1 Port 2 Port 1 Port 1 

Source 3  Port 4 Port 1 Port 1 Port 2 Port 1 

Source 4 Port 3 Port 2 Port 3 Port 3 Port 3 

Source 5… Port 1 Port 3 Port 1 Port 1 Port 4 

 

Figure 12: Port correlation in routing table 

            Figure 3.3 gives a clear idea of how a designer can determine the path of the 

packet. This is the reason why source routing is said to be a deterministic routing algorithm. 

Building the routing table is considered to be the most important task of the designer, as avoiding 

livelock, deadlock and congestion is possible by proper port allocation. Along with this the 

designer can do floor planning and improve the overall performance by placing densely connect 

IPs closer to each other.  
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3.1.1.4 Scheduling 

Scheduling determines the order in which the data is sent and can be done by both the IP cores 

and routers.  If 2 or more packets request the same port at the same time or while it is busy, the 

requested (output) port will have to make a decision on which to grant access first.  This is called 

arbitration. Both the routers allows for some flexibility in choosing arbiter schemes.  Arbitration 

schemes consider priority of packets in routers among the network and include static and 

dynamic.   

In static arbitration schemes, the priority of each port is chosen during design.  One of the 

examples is generic fixed scheme where priority is given to the north first, and degrades 

clockwise. While, dynamic arbitration makes a decision at run-time and is more flexible, also 

requires a larger area.  However, dynamic schemes can avoid deadlock. One of the schemes 

gives priority to the port that has been busiest (sending the most requests).  

       When comparing the two routers we used a first come first serve arbitration scheme more 

details will be provided in the following chapters. This was done to make a fair comparison 

between the routers.         

3.2 Router Implementation 

We now discuss the general structure of both the routers. The SAF Router was designed 

with 4 ports for communication with neighboring routers, North, East, South, and West and 

anywhere from 0 to 4 local ports for communication to IP cores.  A router with no local ports 

would be used just to complete a mesh or act as a congestion control unit within the network.  

Generic port and component design was used. Therefore, input port has the ability to forward to 

its own output port, although this situation could never occur. The router is decentralized 

meaning each port runs its own control logic and hence can request and set up concurrent 

connections.  . The block diagram of SAF Router is shown in Figure 3.4. 

 



31 

 

                      

                                 Figure 13: SAF Routers Exterior Structure [21] 

 

The WH router was designed with the flexibility of choosing the number of ports. 

Generic ports give us opportunity to save area, for example the boundary routers will not need all 

the ports for connection. It also gives us the design flexibility to implement many topologies 

without any changes to VHDL code. The Block diagram of WH router is shown in Figure 3.5.    
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Figure 14: WH routers Exterior Structure [22] 

 

3.2.1 Internal Structure and Data Transfer  

           The WH Router’s internal structure consists of functional blocks such as input buffer, 

output buffer, arbiter, crossbar, routing table, switch, priority table and a counter as shown in 

figure 16. We now briefly explain the functionality of aforementioned blocks. The input buffer 

register is used to store the incoming flits. Once it is stored, the input and output ports are locked 

and a counter is started. As the counter reaches zero, the worm is completed and the entire packet 

is sent through the node. Now, in parallel we have to decide which node to go through for that 

we have a routing table which contains the path for the worm to follow and on that basis the 

input and output ports are locked as mentioned before. The worm travels through the router as 

shown by thick lines in Figure 3.6. 
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        The most resource consuming blocks in this design are the routing table, crossbar and the 

input and output buffers. This has implication on how the flit size affects the area of the router.  

 

Figure 15: WH router's Internal Structure [22] 

 Figure 3.7 shows all the functional blocks of the SAF router. It consists of input buffer, 

output buffer, Partial crossbar switch, input control and output control. The input buffer stores all 

the flits of the incoming packet.  Once the whole packet is stored header is read by the input 

controller. It determines the next hop and notifies the output controller of the respective output 

buffer. For this we have two separate sets of control signals full, empty, take in, spit out and 

another set is request and grant. The first set of signals get activated during communication 

between input buffer, input controller and also between output buffer and output controller while 

the other set of signals gets activated during communication between the input and output 

controller. Now these signals are used to build up a sequence for the data to flow inside the 

router.  
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         So as soon as the input buffer is full the full signal is sent to the input controller of the 

respective input buffer. Along with full signal we sent the first two flits of the packet. They 

contain the destination address and indirectly the information of next hop. Input controller reads 

the header and determines which port has to be blocked and then communicate with the output 

controller of that respective port. Output controller will grant permission to the request. The 

request is only granted after the output controller confirms that the output buffer of the requested 

port is empty and ready to receive data through the crossbar switch this confirmation is done by 

the checking the empty signal coming from the output port. Now the path is blocked during this 

time and it works same as in worm switching technique but only during this period of the data 

flow. The output controller de-asserts the grant once it receives a full signal from the respective 

output buffer. The data flow is shown in figure 3.7 which is in form of thick blue line and control 

signals are denoted by thin black lines.  

 



35 

 

 

Figure 16: SAF Router's Internal Structure [21] 
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3.2.2 Switching Mechanism 

The crossbar switch is shown in figure 3.8.  It is a set of demultiplexers having an 

interconnection allowing all possible connections between input and output channels. The 

crossbar switch is used in both the routers but there were some optimizations done in SAF 

Router’s crossbar switch as it reduced the area consumption without affecting the functionality 

of the system. First, it uses a partial scheme, which includes one 5 by 1 unit for each output 

rather than one 5 by 5 unit for all outputs, for a 5 port router.  Initial design included 2 switching 

options, full and partial switch.  Early synthesis results eliminated the full switch design because 

it was larger in terms of area and delay.  Each output is connected to a different port.  Next, there 

are no multiplexers in the design. The input data is connected to all partial crossbar units which 

will choose the appropriate data for the output.  The fact that at a time, the output channel can 

only serve one input request is exploited here.  The final optimizations are made in the partial 

units of the north and south.  Though analysis of the XY routing algorithm, we can conclude that 

these units will never receive data from the east or west.  This reduces the inputs of all of these 

units by two. 

              WH router on the other hand has fully functional crossbar switch as the above 

optimization were not appropriate for the routing scheme decided for this router. This lead to 

more area consumption by the cross bar switch. 
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Figure 17: Architecture of Switching Fabric 

 

3.3 Standard Sockets 

This section describes the standard sockets used in our research. Standard sockets are 

predesigned IP cores that allow easy interface between computational blocks and routers in an 

NoC. For example in our research the computational blocks are designed to work on Avalon 

protocols while the router works on wishbone protocols so our socket converts signal between 

Avalon and wishbone protocols and can be used as network adapters in NoCs. This kind of 

design practice reduces the design cycle time and also allows designer to concentrate on the core 

functionality of the system. In our case the core functionality is that of the routers while the 

network adapters are used as standard sockets.  
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3.3.1 Adapter Overview [22] 

The adapter acts as an interface between IP cores and the routers. Its main function is packetizing 

and de-packetizing. The adapter is designed for wishbone protocol [14] which is open source and 

supported by many IP Core vendors  

      The adapter works with routers designed for wishbone protocols and IP cores Designed 

for Avalon protocols. This adapter facilitates NoC implementation on Altera FPGAs with router 

running on wishbone protocols. 

There are two types of adapters – Master and Slave. As illustrated in Figure 3.9, the 

Master adapter is responsible for receiving requests from a master component (such as a CPU) 

and providing the response signals. The Slave adapter is responsible for receiving the master 

requests and providing the slave responses. 

 

 

 

 

 

 

                                                Figure 18: Adapters Overview 

The adapter contains a variety of VHDL generics, offering a degree of design flexibility. The 

adapter is designed to be compatible with a wide range of signal widths and to conform to 

Avalon and Wishbone standards. Avalon interface compatibility is obtained through the use of a 

glue logic module. The logic utilization of the glue logic is very small, and hence negligible. 

These parameters are divided up into three sections: Interface, NoC and internal. Interface 

parameters provide flexibility with the Wishbone/Avalon interfacing. NoC parameters allow the 

adapter to operate in a variety of different NoC architectures. Internal parameters concern the 

Maste

r Core 

Master 

Adapte

r 

Slave 

Adapte

r 

Slave 

Core 

 

NOC  



39 

 

internal operation of the adapter. Common for both adapters, data width (WB_width), address 

width (adr_width), address tag width (tga_width), cycle tag width (tgc_width), data tag width 

(tgd_width) and selection width (sel_width) are VHDL generics used to specify Wishbone 

interface parameters. Specific to the slave adapter, cti_lsb and bte_lsb both indicate cycle type 

identifier and burst type extension least significant bit locations, respectively.  

NoC parameters are flit_size, fifo_depth, src_width and dest_width. Flit_size is the size of a flit, 

in bits. Fifo depth is the number of registers in the adapter‘s FIFOs, which allows the adapter to 

queue up flits if the NoC is congested. Src and dest width are the bit widths of the source and 

destination NoC addresses, respectively. They should both be equal, where the separate 

parameters are present for future optimization allowing lower bits for source addresses. 

The internal parameters are fast_burst, burst_depth, burst_tag_en, no_ack, sdram_delay and 

Avalon_bursts. Fast_burst indicates that burst and block transfers are to be queued up using a 

burst buffer, thus opening request types 4 and 5. Burst_depth is the size of the burst buffer – this 

parameter is useful if there is a small flit size but large packet size (due to large data width, for 

example) since more requests can be queued and hence the CPU does not get stalled. 

Burst_tag_en is used to enable burst tags for Wishbone transfers – 1 to enable, 0 to disable. 

No_ack is used when there is no acknowledge signal for reads and writes – For this thesis, it is 

set to 1. Sdram_delay is used with single transfers and delays forming a packet by one cycle – 

this was needed for interfacing with SDRAM in single transfer mode. Avalon_bursts is used if 

Avalon block transfers are used – this distinction is required since Wishbone block transfers are 

different from Avalon‘s as explained in chapter 2.  

Packets are made up of flits and the minimum packet size is three bits. The first three bits in a 

packet is always the request type, while the rest of the packet depends on the request type. The 

adapter analyses the request (or response) of the IP core and chooses the appropriate request 

type. Table 3.1 indicates all the request types and their size. In the case of this research, only 

request types 3, 4 and 7 are used due to the exclusive use of Avalon block transfers. 
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Table 3.1: Request Type Design 

The complete adapter is formed of five modules – adr2dest, awb, fifo, master/slave sampler and 

master/slave top. Adr2dest is responsible for converting the address signals into NoC 

destinations. Awb is the Avalon-Wishbone glue logic. FIFO is the first-in, first-out register bank 

used to queue incoming and outgoing flits for the adapter. The sampler is the main logic of the 

adapter, responsible for packetizing and de-packetizing the interface requests and responses. 

Finally, the top module is responsible for the hand-shaking protocol between the sampler and 

FIFOs, and the sampler and NoC. Each component is described below. 

 

Figure 19: Adapter Internal Design Overview 

Awb is the Avalon-Wishbone glue logic. It contains both the slave and master adapter interfaces, 

indicated with an initial wbs/wbm or avs/avm for Wishbone and Avalon, respectively. Most of 
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the logic is simple name changes for the signals to make building in SOPC Builder [15] easier 

and the component interface conversion is bidirectional. There is additional clocked logic used to 

delay the de-assertion of Avalon read/write signals by one cycle since de-asserting these signals 

is not allowed immediately when the wait_request signal is de-asserted as well. The connections 

are illustrated in Figure 3.11. 

 

Figure 3.11: Avalon Wish bone Glue Logic 

FIFO is an array of registers, responsible for queuing flits into and out of the adapter. An extra 

overflow register is provided to help stop issues with control signal latency. The FIFO‘s depth is 

specified with VHDL generics. Empty and full are used to indicate when the FIFO can be read or 

written to.  

The samplers have two unique versions – master and slave. The operation of the samplers is 

based around the idea of sampling and saving bus signals, yet the operation of the adapters is 

more complicated than this. Simply sampling the bus at specific intervals, placing in a packet 

and sending over the network would cause a lot of wasted packets being sent since the 

transactions are predictable. The Wishbone operation handles three types of transactions: Single, 

block and burst. Single transactions in the adapter perform one complete transaction at a time. 

Block transactions is essentially the same as single transactions for Wishbone, but with a key 

difference in that the acknowledge signal is predicted to be asserted for write requests and is 

done so artificially, thus increasing the speed of the adapter. Read transactions for Wishbone 

block transfers operate the same as single transfers, since a response is required and cannot be 
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predicted. Burst transfers include the cycle and address tags (CTI and BTE, respectively) so read 

requests can be sped up, similar to how block writes work. The Avalon block transfers operate 

differently in that requests can be queued without an acknowledgement for the previous request. 

Thus, a specific VHDL generic (Avalon_bursts) is used to switch the adapter into Avalon‘s block 

request queuing mode. The operation of the slave adapter in this mode is illustrated in Figure 

3.12, and the master adapter is shown in Figure 3.13. 

 

 

 

Figure 20: Slave Sampler Process Flow Chart 
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Figure 21: Master Sampler Process Flow Chart 
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The Top modules (mastertop and slavetop) connect the samplers with input and output FIFOs. 

The top modules are also responsible for providing the handshaking protocol between the FIFOs 

and the NoC. This is done with two flip-flops –wait_for_NoC_ack and NoC_sent. 

Wait_for_NoC_ack is set when an output FIFO sends a flit and is cleared when the NoC 

acknowledges (via. Deasserting the receive_ready_signal). NoC_sent is similar where it only 

writes the first flit to the input FIFO until NoC_send is deasserted. 

 

3.4 Summary 

In this chapter, we discussed architecture and functionality of SAF and WH routers.  The chapter 

concluded with a detailed description of the NoC adapter. In Chapter 4, experimental framework 

will be discussed.   
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Chapter 4: NoC Implementation and 

Evaluation Framework 

 

This chapter begins with a discussion of the real world benchmark design used to test our NoC 

system. This design was used to evaluate two mesh NoCs implemented using SAF and WH 

routers. Chapter 4 concludes with discussion of how test revealed some flaws in SAF Router. 

4.1 Real World Benchmark Design 

This thesis aims to compare two different router designs SAF and WH router with the help of 

real world traffic from a practical system. NoCs have been previously tested by using real 

benchmark design [16], however they were not evaluated and compared using different routers. 

The benchmark design used was a multi-processor design example chosen from Altera‘s website. 

We did some modifications to make the system suitable for simulation and also decrease the 

overall system size. The modified multiprocessor example, shown in Figure 4.2, contains three 

Nios [15] II/f soft core CPUs, three 1ms timers, 16MB of flash memory 

(AMD29LV128M123R_BYTE), a mutex, 64KB of on-chip RAM, 1KB of message buffer RAM 

(on-chip), 256 Mbit (16 bit) SDRAM (Nios Development Board, Cyclone II), a JTAG UART 

interface module, a sysid module and an LED PIO.   

This benchmark is implemented on 4x4 mesh NoC as shown in figure 4.1. Each block in the 

figure represents either a standalone router or a router connected to an IP core through an 

adapter. The system starts by booting from a flash memory which is 16MB in our design. Each 

CPU starts reading data and instruction code from the DDR-SDRAM. Mutex lock is used to 

provide exclusive access to the message buffer by a single CPU at a time. CPUs try to acquire 

the mutex lock simultaneously. The Acquisition depends upon timers; each timer is responsible 
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for sending interrupt requests to the CPUs. CPU 1 is responsible for reading the message buffer, 

clearing it and sending the message to the JTAG UART interface module. CPU 2 and 3 sends 

signals to LED and PIO along with sending the message to the message buffer. The program 

code is contained within the SDRAM for all three CPUs, in separate locations. All the CPUs 

have their reset vector in FLASH memory. CPU 1‘s interrupt vector is contained within the on-

chip memory module, while CPU 2 and 3‘s interrupt vectors are in the SDRAM. The 

functionality of this benchmark design generates enough traffic that can be used to evaluate the 

routers in the NoC. This is more useful compared to using synthetic traffic generators 

 

 

 

 

 

 

 

 

 

  

 

    

 

 

 

 Figure 4.1: Mapping of Benchmark Design Components on 4x4 NoC     
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                                 Figure 4.2: Altera Multiprocessor Design Example 

 

4.2 Implementation of NoC in SOPC Builder---- Add description of SOPC 

SOPC Builder is a CAD tool included in Quartus II. It facilitates interconnection of pre-designed 

components such as computational blocks, memories, bridges, processors etc .Thus designers 

can use SOPC builder to develop a system without worrying about generating the VHDL files 

for interfacing the components. In order to include the whole of our 4x4 mesh NoC we generated 

a single component named Samnrouter and its parameters are shown in figure 4.3. 

 The components in SOPC builder are connected using Altera’s Avalon interface which 

has separate interface signals for the master and slave components. While the NoC runs on 

wishbone protocol which does not have different interface signals for master and slave. Hence, 

we need to differentiate master and slave interfaces in Samnrouter as shown in figure. This will 

avoid any confusion while debugging during simulation as it is difficult to figure out the 

difference between master and slave interface signals in the vector forms.      
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Figure 4.3: NoC Parameters in SOPC Builder 

The component is then added to the system and the interfaces are connected. Figure 4.4 shows the 

torus NoC implemented in SOPC Builder. Each address is assigned manually, where the address bus 

from the Nios II is 32 bits and the address bus from the NoC is 27 bits. This means the upper 5 bits 

are ignored by the NoC but are used by the Avalon fabric‘s arbitration. Since masters are connected 

to their own buses, then master adapters can have the same addresses. 
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Figure 4.4: SAF Router based NoC Implemented in SOPC Builder 

     

The slave components are assigned addresses manually, but each component must have a unique 

address range in the range of 27 bits. Figure 4.5 illustrates the NoC connected to the slave 

components and their respective assigned addresses. 
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Figure 4.5: SAF Routers NoC Connected to Slave Components 

Once the component is created, a Tcl script is automatically created by SOPC Builder. This 

script must be manually modified in order to make the master adapters act as bridges so the reset 

and exception vectors can be set in the Nios II CPUs. Figure 4.6 illustrates the concept of 

bridges, where the Nios II see’s a master adapter as being directly connected to a memory 

module. Since each Nios II has their reset and exception vectors pointing to different memory 

components, and that an interface can only bridge to one other component, it follows that there 

must be two adapters – one for each vector. If the reset and exception vectors pointed to the same 

memory module, then only one adapter would be needed. For each master adapter, the 

set_interface_property bridgesToMaster parameters must be modified so they contain the slave 

adapter‘s name. 
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Figure 4.6: Bridging Example 

The last issue involves the number of adapters for each Nios II CPU. It was set to 4 for each Nios 

II adapter so that each Nios II bus (data and instruction) gets its own adapter. 

4.3 Nios II Programming 

Before getting into details about the benchmark program, an issue with Nios II EDS [17] must be 

addressed. Since each program resides in different portions of the same memory block and that 

Nios II EDS overwrites the data block when compiling the code for each CPU, a script was set 

up to copy and concatenate the program files after each compile. Each CPU attempts to acquire a 

mutex lock, which results in them writing an incrementing counter to the message buffer. The 

counters stop at 5, after which no more messages are sent from that CPU. The three CPUs are 

numbered one to three, where CPU1 is responsible for clearing the message buffer and writing to 

the message to UART. CPUs 2 and 3 do not clear the message buffer or write to UART, but they 

write to the PIO. They have the exact same code, but different program locations in the SDRAM. 

The timers interrupt their respective CPUs, which cause them to attempt to acquire a mutex lock. 

Figure 4.7 illustrates the flowchart of the programs. 
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Figure 4.7: CPU 1 Benchmark Flowchart 
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                                  Figure 4.8: CPU2 and CPU 3 Benchmark Flowchart 
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4.4 Modelsim Simulation 

Modelsim [18] provides good simulation and debugging capabilitites, and hence is perfect for the 

purposes of this research. Using Altera‘s built-in scripts, the program code is loaded into 

Modelsim and the automatically generated project files are used. The JTAG UART module 

outputs its messages to Modelsim‘s console, which is then used as a basis for simulation end-

time. Once each CPU outputs its 5 messages (CPU #: Num: #), the runtime is recorded at the 

final write operation to SDRAM. Figure 4.9 shows a sample of the WH Router regional 

handshaking protocol and Figure 4.10 shows a sample of the SAF Router as seen in Modelsim. 

At simulation time indicated by label 1 figure 4.9, the router sets the send bit to high on port 

number two. Four cycles later, at simulation time indicated by label 2 figure 4.9, there is a 

response on the receive signal from port number two, indicating that it has received the flit. The 

router de-asserts the send signal on port two and, one cycle later, reasserts it to send another flit. 

This is just an example of what how Modelsim is useful in verifying the operation of the system.  

 

 

Figure 4.9: WH Routers Regional Handshaking 
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Figure 4.10: RF Routers Regional Handshaking 

  

4.5 Re-design of SAF Router 

       After testing SAF Router with our benchmark design we discovered some flaws in the 

design of the router. These flaws were detected when we used traffic generated by a real world 

design. SAF router was designed with an assumption that the number of flits in the packets will 

be constant. That is not the case for the real benchmark design. So we made changes in SAF 

router by adding a counter which keeps track of packet size throughout the network and 

accordingly we made changes to the components. The design of input and output buffer changed 

significantly which increased the logic consumption. Since buffers are used in every ports this 

lead to significant increase in area of the router. This shows the importance of testing NoCs 

using real world design rather than synthetic traffic generators. 
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4.6 Summary 

This chapter discusses the NoC implementation and evaluation using the altera SOPC Builder tool. 

Issues involved in implementing the NoC within this system as well as the details of the system 

operation were discussed. It concluded with a discussion of the ModelSim evaluation environment 

used in this thesis. Chapter 5 will discuss comparison of two Mesh NoC’s using SAF and WH 

routers.  
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Chapter 5: Experimental Comparison  

 Results 

 

This chapter presents a quantitative comparison of SAF and WH routers using a real world 

benchmark design. These routers were implemented on a 4X4 mesh NoCs and they are 

compared using the following evaluation metrics: area, power consumption, maximum clock 

frequency and throughput.   

5.1 Mesh Topology 

There are many regular topologies that can be used to connect the routers in a NoC. For example, 

a 3X3 mesh, 3X3 tarus and 10 node ring topologies are shown in figure 5.1 and 5.2 respectively. 

The choice of a topology depends on number of factors including the application for which NoC 

based system is implemented. Since, our objective is to compare two routers we have chosen a 

simple 4X4 mesh NoC topology to implement our benchmark design. Implementation of mesh 

topology and mesh routing algorithm for both the routers is relatively easy compared to other 

topologies. 
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                                           Figure 5.1: Mesh and Torus Topology 

 

 

Figure 5.2: 10-node ring topology 

 

 

5.1.1 Placement of the IP Cores 

           When mapping the components of the benchmark design on mesh NoC a placement is 

needed which assigns closely connected components together in order to minimize congestion. 

After analyzing the connection requirements the placement selected for mapping benchmark 

design components to mesh NoC is shown in Figure 5.3. Note that routers 10, 11 and 16 are pure 

routing nodes with no components attached.  
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5.2 Design Space Exploration and Comparison of SAF and WH Routers 

The two routers were compared by synthesizing the NoC for different values of 

parameters which are flit size and number of ports. The synthesis and comparison results are 

discussed below.  

5.2.1 Redesign the SAF router  

As discussed in section 4.5 SAF router had to be redesigned to handle real world traffic. 

The increase in area of SAF router after this design change is shown in figure 5.4 

                          Figure 22.3: Placement and Routing 
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Figure 5.4: Comparison of SAF router area consumption before and after redesign 

 

 

5.2.2 Area Results  

         We have compared the area for WH Router and SAF Router by varying their flit size and 

number of local ports. Flit size is the size of smallest unit of the packet that traverses through 

network. The number of local Ports is used to connect IP’s to the routers.  
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Figure 5.5: Area consumption of standalone routers with respect to flit size 

 

Figure 5.5 shows a plot of area consumption verses flit size for SAF router the increase in area is 

very small as the flit size increases. The reason for small increase in area of SAF router is 

because the buffer size remains the same and there is only a small increase in logic usage. For 

WH router the area decreases slightly as the flit size goes from 4 to 8 and then increases 

significantly for flit size greater than 32 .There is a dip in area consumption of WH Router when 

flit size is 8, this may be possible because Quartus II CAD software is able to find better 

placement and routing in case of flit size 8.   

 

             Figure 5.6 show that area consumption increases for both routers as the number of local 

ports increases. The increases in area of WH router is steeper because the complexity of the full 

cross bar switch increases significantly as more ports are added. In case of SAF routers only the 
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number of buffers for input and output port increase and the partial cross bar switch does not 

require much increase in area. 

  

 

 

Figure 5.6: Area consumption of standalone routers with respect to number of local ports 

 

Figure 5.7 shows the area consumption of 4X4 mesh NoC versus flit size, as can be seen the 

NoC based on WH router consistently requires more than 40% increase in area compared to SAF 

router. When we are implementing the whole NoC, area consumption of WH router increases 

significantly due to the number of FIFO’s used in the adapter (As shown in Figure 3.10).  
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As can be seen in Figure 5.8 the area consumption of WH router is consistently higher as the 

number of local ports increases from 1 to 4.  
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Figure 5.7: Area consumption of the whole NoC with respect to flit size (# of local ports is 1) 
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Figure 5.8: Area of consumption for whole NoC with respect to number of local ports (flit 

size=8) 

So from the above discussion we can conclude that if area consumption is a critical factor then 

SAF router is a better choice compared to WH router. 

5.2.3 Power Consumption Results  

Figure 5.9 shows the power consumption versus flit size for the two standalone routers. The 

power consumption increases slowly as the flit size increases and SAF router uses consistently 

less power compared to WH router. The difference in power consumption between two routers is 

small but it adds up in large NoC’s where we need many routers. Therefore, for bigger systems 

the difference in power consumption will be significant. If we analyze the internal structure of 

routers we can see that it has more components communicating frequently compared to the SAF 

router. This results in more active links at any given time and hence increases power 

consumption. From these results we conclude that SAF has lower power consumption compared 

to WH router. 
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Figure 5.9: Power Consumption Versus flit size for standalone routers 

   

5.2.4 Clock Frequency Results  

Figure 5.10 shows the maximum clock frequency versus flit size of standalone routers. The 

maximum clock frequency remains the same as the flit size increases but SAF router is able to 

run at a much higher frequency (more than 3 times higher). This is because in case of WH 

routers a packet is routed after the path is determined so it holds the previous packet until the 

next path is decided. Where as in SAF router the whole packet is stored in buffer and the 

direction of next hope is determined quickly. Even though SAF router has higher clock 

frequency the speed performance of the router depends on its throughput not just the clock 

frequency. 
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Figure 5.10: Maximum Clock frequency versus flit size for standalone routers 

 

5.2.5 Throughput Results  

                  Throughput is one of the most important parameters that can be used to compare two 

routers. Throughput measures the data handling capability of the NoC. For NoC based systems 

the message throughput, TP, can be defined as follows: 

                                    TP = (Number of messages * Message Length)           

                                                Number of IPs * Total time taken 

This definition of throughput is taken from [20]. Number of messages completed refers to the 
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measured in flits, Number of IP blocks is the number of functional IP blocks involved in the 

communication, and Total time is the time (in clock cycles) that elapses between the occurrence 

of the first message generation and the last message reception 

    Figure 5.11 shows a plot of throughput versus flit size for the whole of NoC. We can see that 

there is decrease in throughput as the flit size increases. This is because as flit size increases the 

message length decreases and total time increases only slightly and other factor are constant so 

the throughput decreases as the flit size increases. So from throughput point of view either of the 

routers is preferable except at flit size of 8. 

 

 

Figure 5.11:  Throughput versus flit size for the whole NoC 
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5.3 Conclusion 

This chapter presented an experimental comparison of SAF and WH router. These routers were 

compared by mapping a real world benchmark to 4X4 mesh NoC. Experimental results show 

that SAF router is superior to WH router in terms of area and power consumption. 
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Chapter 6: Conclusions and Future Work 

 

            As long as Moore’s Law is valid the number of transistors that can be placed on a single 

chip will continue to increase exponentially leading to larger and increasingly complicated 

system-on-chip. The traditional bus-based or point to point communication infrastructure 

becomes resource intensive and design restrictive. NoC based systems provide an efficient and 

scalable communication infrastructure for future SoC and FPSoC’s. 

         

            NoC designs have been evaluated using synthetic traffic generators but they do not 

provide us with accurate results [16]. There has not been much research done addressing real 

world testing and comparison of the NoC designs. Also much less work has been done to 

implement real benchmarks on NoCs using commercially available SoC CAD software, such as 

Altera’s SOPC builder, Nios IDE and Modelsim simulator. Therefore, in this thesis we have 

compared and evaluated two different NoCs based on two different router designs. The NoCs 

uses common topologies (mesh) in order to compare two different router designs. The motivation 

of using a common topology was that we can compare the routers performance using different 

parameters such as area, power consumption, maximum clock frequency and Throughput. Given 

the time constraints we could not implement NoCs using other topologies. The mesh topology 

was chosen because it is easier to implement mesh based NoC [19]. 

 

Considerable work was done on creating adapters which could work with Avalon bus on 

the IP core side and wishbone protocol on the router side.  
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6.1 Research Contributions 

                This thesis presented experimental evaluation and comparison of two different routers 

WH and SAF. A real world benchmark design was used to compare two routers it was shown 

that SAF router gave superior area, power consumption and maximum clock frequency results.  

Testing of the NoC Design with a real world benchmark exposed the flaws in SAF router. 

These flaws were due to lack of consideration of different packet sizes by the router. This 

resulted in many design changes and consequently higher area consumption as discussed in 

section 5.2.1. Also there were changes done to SAF Router prior to testing phase to make it work 

with standard socket mentioned in chapter 2. These changes made it feasible to use the router as 

a separate component which helped in decreasing experimental evaluation setup time and gives 

more flexibility to the NoC designer. 

 

6.2 Future Work 

The SAF and WH router designs used in this thesis can be utilized in future research. They can 

be used to implement evaluate and compare different NoC topologies using a number of 

benchmark designs. Work can be done on creating a library of parameterizable NoC components 

to automate the process of NoC implementation especially on FPSoC platforms.    
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Appendix A 

Copyright Permissions   

 

REQUEST FOR PERMISSION TO USE COPYRIGHTED MATERIAL 

[February 22
nd

 2013] 

[Experimental Comparison of Store-and-Forward and Wormhole NoC Routers for FPGA’s]  

 

Dear Matt Murawski,  

I am completing a Master’s Thesis at the University of Windsor entitled "Experimental 

Comparison of Store-and-Forward and Wormhole NoC Routers for FPGA’s" 

 I would like your permission to include in my thesis the following material: 

  

(i) From Chapter 2 Section 2.3 (Interface and Signals), Chapter 3 section 3.3.1(Adapter 

Overview), Chapter 4 Section 4.3 (NIOS II Programing) and section 4.4 (Modelsim 

Simulation), Figure 3.5, Figure 3.6, figure 4.6 and figure 4.9 From Thesis by Matt 

Murawski “NoC Prototyping on FPGAs: Component Design, Architecture 

Implementation and Comparison”. May 18 2012 

 

I have used this information in my experiments and also this information was best described 

in the above mentioned thesis written by you. I have also used this information to compare it 

with the other router developed by mike Brugge. 
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My thesis will be deposited to the University of Windsor’s online theses and dissertations 

repository (http://winspace.uwindsor.ca) and will be available in full-text on the internet for 

reference, study and / or copy. 

 

I will also be granting Library and Archives Canada and ProQuest/UMI a non-exclusive license 

to reproduce, loan, distribute, or sell single copies of my thesis by any means and in any form or 

format. These rights will in no way restrict republication of the material in any other form by you 

or by others authorized by you.  

 

Please confirm by email that these arrangements meet with your approval. 

Thank you very much for your attention to this matter.  

 

Sincerely,  

[Krunal Jetly]  

 

REQUEST FOR PERMISSION TO USE COPYRIGHTED MATERIAL 

[February 22
nd

 2013] 

[Experimental Comparison of Store-and-Forward and Wormhole NoC Routers for FPGA’s]  

 

Dear Mike Brugge:  

I am completing a Master’s Thesis at the University of Windsor entitled "Experimental 

Comparison of Store-and-Forward and Wormhole NoC Routers for FPGA’s" 

 I would like your permission to include in my thesis the following material: 

  

http://winspace.uwindsor.ca/
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(i) From Chapter 3 section 3.1.1.3 (Routing Algorithm), Figure 3.1, Figure 3.2, Figure 

3.4, Figure 3.7, Figure 3.8 from Thesis by Mike Brugge “Design and Evaluation of 

a Parameterizable NoC Router for FPGAs”. Sep 21 2009      

 

I have used this information as I have been comparing the functionality of the router 

defined in above mentioned thesis with the other router defined in thesis by matt 

murawski.   

My thesis will be deposited to the University of Windsor’s online theses and dissertations 

repository (http://winspace.uwindsor.ca) and will be available in full-text on the internet for 

reference, study and / or copy. 

 

I will also be granting Library and Archives Canada and ProQuest/UMI a non-exclusive license 

to reproduce, loan, distribute, or sell single copies of my thesis by any means and in any form or 

format. These rights will in no way restrict republication of the material in any other form by you 

or by others authorized by you.  

 

Please confirm by email that these arrangements meet with your approval. 

Thank you very much for your attention to this matter.  

Sincerely, 

 [Krunal Jetly]  

 

 

 

 

 

 

http://winspace.uwindsor.ca/
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